
https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python® All-in-One For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo,
Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and may
not be used without written permission. Python is a registered trademark
of Python Software Foundation. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE
PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY
NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.wiley.com/
http://www.wiley.com/go/permissions


OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please
contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical
support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-
on-demand. Some material included with standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2021932818

ISBN 978-1-119-78760-0 (pbk); ISBN 978-1-119-78761-7 (ebk); ISBN
978-1-119-78762-4 (ebk)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com/
http://www.wiley.com/


Python® All-in-One For
Dummies®
To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Python All-in-
One For Dummies Cheat Sheet” in the Search
box.

Table of Contents
Cover
Title Page
Copyright
Introduction

About This Book

Foolish Assumptions

What to Buy

Icons Used in This Book

Beyond the Book

Where to Go from Here

Book 1: Getting Started
Chapter 1: Starting with Python

Why Python Is Hot

Choosing the Right Python

Tools for Success

Writing Python in VS Code

Using Jupyter Notebook for Coding

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_zcrggp/ezarrv_pdf_out/OPS/cover.xhtml


Chapter 2: Interactive Mode, Getting Help, and
Writing Apps

Using Python's Interactive Mode

Creating a Python Development Workspace

Creating a Folder for Your Python Code

Typing, Editing, and Debugging Python Code

Writing Code in a Jupyter Notebook

Chapter 3: Python Elements and Syntax
The Zen of Python

Introducing Object-Oriented Programming

Discovering Why Indentations Count, Big Time

Using Python Modules

Chapter 4: Building Your First Python Application
Opening the Python App File

Typing and Using Python Comments

Understanding Python Data Types

Working with Python Operators

Creating and Using Variables

Understanding What Syntax Is and Why It Matters

Putting Code Together

Book 2: Understanding Python Building Blocks
Chapter 1: Working with Numbers, Text, and Dates

Calculating Numbers with Functions

Still More Math Functions

Formatting Numbers

Grappling with Weirder Numbers

Manipulating Strings

Uncovering Dates and Times

Accounting for Time Zones

Working with Time Zones

Chapter 2: Controlling the Action
Main Operators for Controlling the Action

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Making Decisions with if

Repeating a Process with for

Looping with while

Chapter 3: Speeding Along with Lists and Tuples
Defining and Using Lists

What's a Tuple and Who Cares?

Working with Sets

Chapter 4: Cruising Massive Data with Dictionaries
Understanding Data Dictionaries

Creating a Data Dictionary

Looping through a Dictionary

Data Dictionary Methods

Copying a Dictionary

Deleting Dictionary Items

Having Fun with Multi-Key Dictionaries

Chapter 5: Wrangling Bigger Chunks of Code
Creating a Function

Commenting a Function

Passing Information to a Function

Returning Values from Functions

Unmasking Anonymous Functions

Chapter 6: Doing Python with Class
Mastering Classes and Objects

Creating a Class

Creating an Instance from a Class

Giving an Object Its Attributes

Giving a Class Methods

Understanding Class Inheritance

Chapter 7: Sidestepping Errors
Understanding Exceptions

Handling Errors Gracefully

Being Specific about Exceptions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Keeping Your App from Crashing

Adding an else to the Mix

Using try … except … else … finally

Raising Your Own Exceptions

Book 3: Working with Libraries
Chapter 1: Working with External Files

Understanding Text and Binary Files

Opening and Closing Files

Reading a File’s Contents

Looping through a File

Reading and Copying a Binary File

Conquering CSV Files

Converting from CSV to Objects and Dictionaries

Chapter 2: Juggling JSON Data
Organizing JSON Data

Understanding Serialization

Loading Data from JSON Files

Dumping Python Data to JSON

Chapter 3: Interacting with the Internet
Seeing How the Web Works

Chapter 4: Libraries, Packages, and Modules
Understanding the Python Standard Library

Exploring Python Packages

Importing Python Modules

Making Your Own Modules

Book 4: Using Artificial Intelligence
Chapter 1: Exploring Artificial Intelligence

AI Is a Collection of Techniques

Current Limitations of AI

Chapter 2: Building a Neural Network
Understanding Neural Networks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Building a Simple Neural Network in Python

Building a Python Neural Network in TensorFlow

Chapter 3: Doing Machine Learning
Learning by Looking for Solutions in All the Wrong Places

Creating a Machine-Learning Network for Detecting Clothes Types

Visualizing with MatPlotLib

Learning More Machine Learning

Chapter 4: Exploring AI
Limitations of the Raspberry Pi and AI

Adding Hardware AI to the Raspberry Pi

AI in the Cloud

AI on a Graphics Card

Where to Go for More AI Fun in Python

Book 5: Doing Data Science
Chapter 1: Understanding the Five Areas of Data
Science

Working with Big, Big Data

Cooking with Gas: The Five-Step Process of Data Science

Chapter 2: Exploring Big Data
Introducing NumPy, Pandas, and MatPlotLib

Doing Your First Data Science Project

Chapter 3: Using Big Data from Google Cloud
What Is Big Data?

Understanding Google Cloud and BigQuery

Reading the Medicare Big Data

Looking for the Most Polluted City in the World on an Hourly Basis

Book 6: Talking to Hardware
Chapter 1: Introducing Physical Computing

Physical Computing Is Fun

What Is a Raspberry Pi?

Building Projects That Move and Sense the Environment

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Sensing the Environment with the Raspberry Pi

Controlling an LED with Python

But Wait, There's More

Chapter 2: No Soldering! Using Grove Connectors
for Building

Working with the Grove System

Grove Connectors

Connecting with Grove Cables

Chapter 3: Sensing the World
Understanding I2C

Measuring Oxygen and a Flame

Building a Dashboard on Your Phone with Blynk

Where to Go from Here

Chapter 4: Making Things Move
Exploring Electric Motors

Controlling a DC Motor

Running a Servo Motor

Making a Stepper Motor Step

Book 7: Building Robots
Chapter 1: Introducing Robotics

A Robot Is Not Always Like a Human

Not Every Robot Has Arms or Wheels

Understanding the Main Parts of a Robot

Programming Robots

Chapter 2: Building Your First Python Robot
Introducing the Mars Rover PiCar-B

Assembling the Robot

Testing Your Robot

Chapter 3: Programming Your Robot Rover
Building a Simple, High-Level Python Interface

Making a Single Move with Python

Functions of the RobotInterface Class

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The Python Robot Interface Test

Coordinating Motor Movements with Sensors

Making a Python Brain for Our Robot

Overview of the Included Adeept Software

Where to Go from Here

Chapter 4: Using Artificial Intelligence in Robotics
This Chapter’s Projects: Going to the Dogs

Setting Up the First Project

Machine Learning Using TensorFlow

Testing the Trained Network

Taking Cats and Dogs to Our Robot

Setting Up the Second Project

The FindAndChaseTheBall.py Python Program

The Main Program

AI and the Future of Robotics

Index
About the Authors
Connect with Dummies
End User License Agreement

List of Tables
Book 1 Chapter 1

TABLE 1-1 Examples of Python Versions and Release Dates

Book 1 Chapter 4
TABLE 4-1 Examples of Good and Bad Python Numbers

TABLE 4-2 Python’s Arithmetic Operators

TABLE 4-3 Python Comparison Operators

TABLE 4-4 Python Boolean Operators

Book 2 Chapter 1
TABLE 1-1 Some Built-In Python Functions for Numbers

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 1-2 Some Functions from the Python Math Module

TABLE 1-3 Python for Base 2, 8, and 16 Numbers

TABLE 1-4 Python Sequence Operators That Work with Strings

TABLE 1-5 Built-In Methods for Python 3 Strings

TABLE 1-6 Formatting Strings for Dates and Times

TABLE 1-7 Sample Date Format Strings

TABLE 1-8 Sample Date Format Strings

TABLE 1-9 Sample Datetime Format Strings

TABLE 1-10 Sample Time Zones from the Olson Database

Book 2 Chapter 2
TABLE 2-1 Python Comparison Operators for Decision-Making

TABLE 2-2 Python Logical Operators

Book 2 Chapter 3
TABLE 3-1 Methods for Working with Lists

Book 2 Chapter 4
TABLE 4-1 Data Dictionary Methods

TABLE 4-2 A Table of Products

Book 3 Chapter 2
TABLE 2-1 Python JSON Methods for Serializing and Deserializing JSON
Data

TABLE 2-2 Python and JSON Data Conversions

Book 3 Chapter 3
TABLE 3-1 Common HTTP Status Codes

TABLE 3-2 Packages from the Python urllib Library

Book 4 Chapter 2
TABLE 2-1 The Truth Table (a Three-Input XNOR Gate) for the Neural
Network

Book 5 Chapter 2
TABLE 2-1 Columns in the Diamond Database

Book 5 Chapter 3
TABLE 3-1 Columns, Types, and Descriptions of the
inpatient_charges_2015 Dataset

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 6 Chapter 2
TABLE 2-1 The Grove Digital Connector

TABLE 2-2 The Grove Analog Connector

TABLE 2-3 The Grove UART Serial Connector

TABLE 2-4 The Grove I2C Connector

Book 6 Chapter 4
TABLE 4-1 Servo Motor to Patch Cable Wiring

TABLE 4-2 Forward Stepping the Stepper

TABLE 4-3 Backward Stepping the Stepper

TABLE 4-4 First Grove Female Patch Cord to UNL2003 Driver Board

TABLE 4-5 Second Grove Female Patch Cord to UNL2003 Driver Board

List of Illustrations
Book 1 Chapter 1

FIGURE 1-1: Google search trends for the last five years or so.

FIGURE 1-2: Click Download under the largest version number.

FIGURE 1-3: In Windows, right-click and choose Run As Administrator.

FIGURE 1-4: Choose how to install Anaconda.

FIGURE 1-5: Anaconda Navigator home page.

FIGURE 1-6: The welcome screen of VS Code editor.

FIGURE 1-7: VS Code extensions for Python.

FIGURE 1-8: Choose your Python interpreter (usually the highest version
number)...

FIGURE 1-9: Terminal in VS Code (Windows and Mac).

FIGURE 1-10: Python shows the sum of one plus one.

FIGURE 1-11: Launch Jupyter Notebook from Anaconda’s home page.

FIGURE 1-12: Jupyter Notebook opening page.

FIGURE 1-13: Creating a new Jupyter notebook.

FIGURE 1-14: Two ways to run code in a Jupyter cell.

FIGURE 1-15: Result of running code in a Jupyter Notebook cell.

Book 1 Chapter 2

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-1: The Terminal pane in VS Code.

FIGURE 2-2: Python doesn't know what howdy means.

FIGURE 2-3: Python’s interactive help utility.

FIGURE 2-4: Keyword help.

FIGURE 2-5: Python class help.

FIGURE 2-6: Back to the operating system prompt.

FIGURE 2-7: Saving current settings as workspace settings.

FIGURE 2-8: VS Code Settings.

FIGURE 2-9: Python path copied to Workspace Settings.

FIGURE 2-10: Python 3 workspace and AIO Python folder open in VS
Code.

FIGURE 2-11: Right-click a folder name and choose New File.

FIGURE 2-12: New hello.py file is open for editing in VS Code.

FIGURE 2-13: The hello.py file contains some Python code and has
unsaved change...

FIGURE 2-14: Run hello.py.

FIGURE 2-15: Output from hello.py.

FIGURE 2-16: PRINT is typed incorrectly in hello.py.

FIGURE 2-17: VS Code Debug pane.

FIGURE 2-18: A saved Jupyter notebook.

FIGURE 2-19: A Markdown cell containing some Markdown content.

FIGURE 2-20: A Markdown cell with some Markdown code and text in it.

Book 1 Chapter 3
FIGURE 3-1: The Zen of Python.

FIGURE 3-2: Workspace settings with PyLint and Pycodestyle (PEP 8)
enabled.

FIGURE 3-3: A different view of Workspace settings.

FIGURE 3-4: Installed modules.

FIGURE 3-5: All our packages are installed and up-to-date.

Book 1 Chapter 4
FIGURE 4-1: The hello.py file, open for editing in VS Code.

FIGURE 4-2: A comment in hello.py.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-3: Your name and the date you became a customer appear on
Amazon's hom...

FIGURE 4-4: Your first Python app typed into VS Code.

FIGURE 4-5: Right-click a .py file and choose Run Python File in Terminal.

FIGURE 4-6: The 19.9 is the output from print(extended_price) in the
code.

FIGURE 4-7: Touching the mouse pointer to a red wavy underline.

FIGURE 4-8: Touching the mouse pointer to a green wavy underline.

Book 2 Chapter 1
FIGURE 1-1: Trying out the abs() function.

FIGURE 1-2: Trying out the round() function.

FIGURE 1-3: Playing around with built-in math functions at the Python
prompt.

FIGURE 1-4: Using the sqrt() function from the math module.

FIGURE 1-5: More playing around with built-in math functions at the
Python prom...

FIGURE 1-6: A super simple f-string for formatting.

FIGURE 1-7: Formatting a percentage number.

FIGURE 1-8: An f-string can be encased in single, double, or triple
quotation m...

FIGURE 1-9: A multiline f-string enclosed in triple quotation marks.

FIGURE 1-10: All dollar amounts are right aligned within a width of 9
character...

FIGURE 1-11: All the dollar amounts neatly aligned.

FIGURE 1-12: Messing about with binary, octal, and hex.

FIGURE 1-13: Character positions in a string start at 0, not 1.

FIGURE 1-14: Playing around with string operators in Jupyter Notebook.

FIGURE 1-15: ASCII numbers for common characters.

FIGURE 1-16: Playing around with Python 3 string functions.

FIGURE 1-17: Experiments with datetime.date objects in a Jupyter
notebook.

FIGURE 1-18: Calculating age in years and months from a timedelta
object.

FIGURE 1-19: Time zones.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-20: Determining the difference between your time and UTC
time.

FIGURE 1-21: The current date and time for five different time zones.

FIGURE 1-22: Date and time for a scheduled event in multiple time zones.

Book 2 Chapter 2
FIGURE 2-1: The result of a simple if when the condition proves true.

FIGURE 2-2: Result of simple if when the condition proves false.

FIGURE 2-3: Result of simple if when the condition proves true and then
false.

FIGURE 2-4: When taxable is True, sales_tax is added to the total.

FIGURE 2-5: When taxable is False, sales_tax is not added into the total.

FIGURE 2-6: Print an initial greeting based on the time of day.

FIGURE 2-7: A loop that counts from 1 to 10.

FIGURE 2-8: Looping through a list.

FIGURE 2-9: Looping through a list.

FIGURE 2-10: Nested loops.

FIGURE 2-11: Looping while counter is less than 91.

FIGURE 2-12: An infinite while loop.

FIGURE 2-13: A while loop with continue.

FIGURE 2-14: A while loop with break.

FIGURE 2-15: The same code as in Figure 2-14 on a second run.

Book 2 Chapter 3
FIGURE 3-1: Index out-of-range error because scores[5] doesn't exist.

FIGURE 3-2: Looping through a list.

FIGURE 3-3: Seeing whether an item is in a list.

FIGURE 3-4: Appending two new names to the end of the list.

FIGURE 3-5: Removing list items with pop().

FIGURE 3-6: Deleting a list and then trying to print it causes an error.

FIGURE 3-7: Counting items in a list.

FIGURE 3-8: Program fails when trying to find the index of a nonexistent
list i...

FIGURE 3-9: Sorting strings and numbers.

FIGURE 3-10: Sorting and displaying dates in a nice format.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-11: Sorting strings, numbers, and dates in reverse order.

FIGURE 3-12: Playing about with Python sets.

Book 2 Chapter 4
FIGURE 4-1: A data dictionary with keys in the left column and values in
the ri...

FIGURE 4-2: A data dictionary with lists as values.

FIGURE 4-3: A data dictionary for one employee.

FIGURE 4-4: A data dictionary for another employee.

FIGURE 4-5: Printing the value of the zmin key in the people dictionary.

FIGURE 4-6: Python's way of saying there is no schmeedledorp.

FIGURE 4-7: Seeing if a key exists in a dictionary.

FIGURE 4-8: Python's nicer way of saying there is no schmeedledorp.

FIGURE 4-9: Changing the value associated with a key in a dictionary.

FIGURE 4-10: Looping through a dictionary with items() and two variable
names.

FIGURE 4-11: Copying a dictionary.

FIGURE 4-12: Popping an item from a dictionary.

FIGURE 4-13: Experimenting with fromkeys and setdefault.

FIGURE 4-14: Multiple product dictionaries contained in a larger products
dicti...

FIGURE 4-15: Printing data dictionaries formatted into rows and columns.

Book 2 Chapter 5
FIGURE 5-1: Writing, and calling, a simple function named hello().

FIGURE 5-2: The docstring comment for your function appears in VS Code
IntelliS...

FIGURE 5-3: Passing data to a function via a variable.

FIGURE 5-4: An optional parameter with a default value added to the
hello() fun...

FIGURE 5-5: The hello function with three parameters.

FIGURE 5-6: Calling the hello() function with three parameters, and again
with ...

FIGURE 5-7: Calling a function with keyword arguments (kwargs).

FIGURE 5-8: Using the alphabetize function in VS Code.

FIGURE 5-9: A function accepting any number of arguments with *args.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 5-10: Printing a string returned by the alphabetize() function.

FIGURE 5-11: Putting a custom function named lowercaseof() to the test.

FIGURE 5-12: Using a lambda expression as a sort key.

FIGURE 5-13: Two anonymous functions for formatting numbers.

FIGURE 5-14: Two functions for formatting numbers with a fixed width.

Book 2 Chapter 6
FIGURE 6-1: Different car objects.

FIGURE 6-2: The Dog class creates many unique dogs.

FIGURE 6-3: The Member class and member instances.

FIGURE 6-4: Creating a member from the Member class in a Jupyter cell.

FIGURE 6-5: The Member class with username and fullname for both
parameters and...

FIGURE 6-6: VS Code displays help when you access your own custom
classes.

FIGURE 6-7: Changing the value of an object's attribute.

FIGURE 6-8: Changing the value of an object's attributes.

FIGURE 6-9 Adding and testing an .activate() method.

FIGURE 6-10: The free_days variable is a class variable in the Member
class.

FIGURE 6-11: The setfreedays() method is a class method in the Member
class.

FIGURE 6-12: The Member class now has a static method named
currenttime().

FIGURE 6-13: Dogs as objects of the class dogs.

FIGURE 6-14: Several different kinds of animals are similar to dogs.

FIGURE 6-15: A simplified Member class.

FIGURE 6-16: Creating and testing the Admin and User classes.

FIGURE 6-17: The Admin subclass has a new secret_code parameter.

FIGURE 6-18: The complete Admin and User subclasses.

FIGURE 6-19: Three methods with the same name, get_status().

FIGURE 6-20: Output from help(Admin).

Book 2 Chapter 7

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 7-1: The showfilecontents.py and people.csv files in a folder in
VS Code...

FIGURE 7-2: The contents of the people.csv file in Excel (top) and a text
edito...

FIGURE 7-3: The showfilecontents.py file raises an exception.

FIGURE 7-4: The showfilecontents.py file catches the error and displays a
frien...

FIGURE 7-5: The correct error message is displayed.

FIGURE 7-6: Code with try, exception handlers, and an else for when there
are n...

FIGURE 7-7: Custom EmptyFileError exception added for exception
handling.

Book 3 Chapter 1
FIGURE 1-1: How a binary files looks in a program for editing text files.

FIGURE 1-2: Common text and binary files.

FIGURE 1-3: How happy_pickle.jpg is supposed to look.

FIGURE 1-4: The Names.txt file is text, but with lots of non-English
characters...

FIGURE 1-5: Contents of names.txt displayed.

FIGURE 1-6: A new name appended to the end of the names.txt file.

FIGURE 1-7: The binarycopy.py file copies any binary file.

FIGURE 1-8: Running binarycopy.py added happy_pickle_copy.jpg to the
folder.

FIGURE 1-9: A CSV file in Microsoft Excel.

FIGURE 1-10: A CSV file in a text editor.

FIGURE 1-11: Reading a CSV file and converting it to Python data types.

FIGURE 1-12: Reading a CSV file into a list of objects.

FIGURE 1-13: Reading a CSV file into a dictionary of dictionaries.

Book 3 Chapter 2
FIGURE 2-1: Some data in an Excel spreadsheet.

FIGURE 2-2: Excel spreadsheet data converted to JSON format.

FIGURE 2-3: Some data in a Google Firebase Realtime Database.

FIGURE 2-4: Google Firebase Realtime Database data exported to a
keyed JSON fil...

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-5: Output from looping through and displaying keys and values
from sub...

FIGURE 2-6: Output showing one value at a time from each dictionary.

FIGURE 2-7: Output from showing one value at a time from each dictionary
(see b...

FIGURE 2-8: Changing the value of one key in each dictionary, and
removing an e...

FIGURE 2-9: Writing modified Firebase data to a new JSON file named
hitcounts_n...

FIGURE 2-10: Writing modified Firebase data to a new JSON file named
hitcounts_...

Book 3 Chapter 3
FIGURE 3-1: The client makes a request, and the server sends back a
response.

FIGURE 3-2: Different parts of URLs.

FIGURE 3-3: Inspecting HTTP headers with Google Chrome.

FIGURE 3-4: HTTP headers.

FIGURE 3-5: Sample page used for web scraping.

FIGURE 3-6: Some of the code from the sample page for web scraping.

FIGURE 3-7: Web scraping code complete.

FIGURE 3-8: Web scraped data in a JSON file.

FIGURE 3-9: Web scraped data in Excel.

FIGURE 3-10: The entire scraper.py program.

Book 3 Chapter 4
FIGURE 4-1: Python's built-in functions.

FIGURE 4-2: Installed packages as viewed in Anaconda.

Book 4 Chapter 2
FIGURE 2-1: A two-layer neural network.

FIGURE 2-2: Feed-forward and backpropagation.

FIGURE 2-3: An example of a sigmoid function.

FIGURE 2-4: The Loss function during training.

FIGURE 2-5: Our TensorFlow three-layer neural network.

FIGURE 2-6: Results of the two-layer training.

FIGURE 2-7: Results of the three-layer training.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 4 Chapter 3
FIGURE 3-1: A small portion of the Fashion-MNIST database.

FIGURE 3-2: A full GUI on the Raspberry Pi.

FIGURE 3-3: Image 15 from the Fashion-MNIST test database.

FIGURE 3-4: Unclassified dress hanging on a wall.

FIGURE 3-5: The dress at 28x28 pixels.

FIGURE 3-6: Our Raspberry Pi GUI with MatPlotLib visualization.

Book 4 Chapter 4
FIGURE 4-1: The Raspberry Pi processing chip containing the Videocore-
IV.

FIGURE 4-2: The Intel Neural Compute Stick 2.

FIGURE 4-3: The Google Edge TPU accelerator.

FIGURE 4-4: Nvidia 256 Core GPU chip.

Book 5 Chapter 2
FIGURE 2-1: Diamond clarity (horizontal) versus carat size (vertical).

FIGURE 2-2: Diamond clarity count in each type.

FIGURE 2-3: Diamond color count in each type.

FIGURE 2-4: Correlation heat chart.

Book 5 Chapter 3
FIGURE 3-1: Google Cloud developer's console page.

FIGURE 3-2: First credentials screen.

FIGURE 3-3: Second credentials screen.

FIGURE 3-4: Bar chart of Medicare percent paid per state for code 554.

Book 6 Chapter 1
FIGURE 1-1: The main components of the Raspberry Pi 3B+.

FIGURE 1-2: The functions of the Raspberry Pi GPIO pins.

FIGURE 1-3: The Pi2Grover board.

FIGURE 1-4: The Grove blue LED.

FIGURE 1-5: Aligning the Pi2Grover board with the Raspberry Pi.

FIGURE 1-6: The installed Pi2Grover board.

FIGURE 1-7: A Grove cable plugged into the Grove blue LED board.

FIGURE 1-8: The LED aligned with the outline on the board.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-9: The completed “Hello World” project.

FIGURE 1-10: Duty cycles.

Book 6 Chapter 2
FIGURE 2-1: The Arduino Uno Grove base board.

FIGURE 2-2: The Arduino Mini Pro LB board with Grove.

FIGURE 2-3: The Pi2Grover board at work on the Raspberry Pi.

FIGURE 2-4: A Grove connector.

FIGURE 2-5: 5cm-long Grove cables.

FIGURE 2-6: A simple digital Grove module with LED.

FIGURE 2-7: A Grove analog simple voltage divider.

FIGURE 2-8: A Grove UART RFID reader.

FIGURE 2-9: The Grove I2C sunlight sensor.

FIGURE 2-10: 20cm Grove cables.

FIGURE 2-11: Grove female header cables.

FIGURE 2-12: Grove male header cables.

FIGURE 2-13: The SunAirPlus board with the Grove female header patch
cable.

FIGURE 2-14: A Grove adaptor cable attached to Pi2Grover.

FIGURE 2-15: A close-up of the Adafruit GPS with a Grove patch cable.

Book 6 Chapter 3
FIGURE 3-1: The I2C bus.

FIGURE 3-2: HDC1080 temperature and humidity sensor.

FIGURE 3-3: HDC1080 with the Grove cable plugged in.

FIGURE 3-4: The HDC1080 hooked up to the Raspberry Pi.

FIGURE 3-5: The Grove four-channel, 16-bit ADC.

FIGURE 3-6: The Grove oxygen sensor.

FIGURE 3-7: The complete Raspberry Pi/ADC/oxygen sensor hookup.

FIGURE 3-8: The start of our O2 experiment.

FIGURE 3-9: The graph of the data from our O2 experiment.

FIGURE 3-10: The MyTemperature dashboard.

FIGURE 3-11: Blynk in the App Store (left) and creating a Blynk account
(right)...

FIGURE 3-12: Click for QR (left), and then scan the QR to generate your
myTempe...

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-13: The MyTemperature app (left) and the initial screen of the
Blynk a...

FIGURE 3-14: The authentication token in the MyTemperature app project
settings...

FIGURE 3-15: The MyTemperature app’s Live view.

Book 6 Chapter 4
FIGURE 4-1: A DC motor on a small robot.

FIGURE 4-2: Sun-tracking solar panels using a stepper motor.

FIGURE 4-3: The Grove I2C motor driver.

FIGURE 4-4: Annotated diagram of the I2C motor driver board.

FIGURE 4-5: The Adafruit DC motor.

FIGURE 4-6: The wires in the I2C motor drive screw terminals.

FIGURE 4-7: Motors installed on the motor drive.

FIGURE 4-8: The DC motor setup.

FIGURE 4-9: The SG90 micro servo with wires.

FIGURE 4-10: Grove male-pin-to Grove-connector patch cable.

FIGURE 4-11: Servo motor correctly wired to the patch cable.

FIGURE 4-12: Fully connected Pi and servo motor.

FIGURE 4-13: A diagram of a stepper motor.

FIGURE 4-14: Logic analyzer showing the motor stepping sequence.

FIGURE 4-15: The 28BYJ-48 stepper motor and UNL2003 driver board.

FIGURE 4-16: A Grove-connector-to-female-pin-header patch cable.

FIGURE 4-17: Closeup of power connections on the UNL2003 driver
board.

FIGURE 4-18: Second Grove patch cable attached.

FIGURE 4-19: All patch wires installed on the UNL2003 driver board.

FIGURE 4-20: Stepper motor and driver board connected.

FIGURE 4-21: Fully wired Raspberry Pi and stepper motor project.

FIGURE 4-22: Stepper motor, ready to step.

FIGURE 4-23: The Raspberry Pi running the stepper motor.

Book 7 Chapter 1
FIGURE 1-1: Inputs for the BMW robot driving system.

FIGURE 1-2: A robot making bread.

FIGURE 1-3: Baxter making coffee.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-4: The Toasteroid Internet-connected toaster.

Book 7 Chapter 2
FIGURE 2-1: The assembled PiCar-B robot.

FIGURE 2-2: The PiCar-B motor controller board.

FIGURE 2-3: The SG90 micro servo motor.

FIGURE 2-4: The main drive motor.

FIGURE 2-5: A single RGB LED.

FIGURE 2-6: The 12 programmable RGB LEDs.

FIGURE 2-7: Raspberry Pi camera and cable.

FIGURE 2-8: An ultrasonic distance sensor.

FIGURE 2-9: An example of the assembly manual diagrams.

FIGURE 2-10: The assembled PiCar-B showing wiring.

FIGURE 2-11: Setting the VNC viewer option.

Book 7 Chapter 3
FIGURE 3-1: Adeept remote control software.

Book 7 Chapter 4
FIGURE 4-1: Cats and dogs recognition accuracy per epoch.

FIGURE 4-2: Panther the cat on salmon.

FIGURE 4-3: Winston the dog.

FIGURE 4-4: A picture of a dress?

FIGURE 4-5: Robot vision neural network test setup.

FIGURE 4-6: The cat who is apparently a dog.

FIGURE 4-7: MouseAir, an AI mouse-launching cat toy.

FIGURE 4-8: The OpenCV processed frame.

FIGURE 4-9: The OpenCV mask frame.

FIGURE 4-10: Screen for the blue ball color configuration.

FIGURE 4-11: Raspberry Pi trying to chase the ball.

FIGURE 4-12: Missing balls for other targets.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Introduction
The power of Python. The Python language is becoming more and more
popular, and in 2017 it became the most popular language in the world
according to IEEE Spectrum. The power of Python is real.

Python the number-one language because it's easy to learn and use, due
partly to its simplified syntax and natural-language flow but also to the
amazing user community and the breadth of applications available.

About This Book
This book is a reference manual to guide you through the process of
learning Python and how to use it in modern computer applications, such
as data science, artificial intelligence, physical computing, and robotics.
If you're looking to learn a little about a lot of exciting things, this is the
book for you. It gives you an introduction to the topics that you'll need to
explore more deeply.

Python All-in-One For Dummies, 2nd Edition guides you through the
Python language and then takes you on a tour through some cool
libraries and technologies (the Raspberry Pi, robotics, AI, data science,
and more) that all revolve around the Python language. When you work
on new projects and new technologies, Python is there with a diverse
number of libraries just waiting for you to use.

This is a hands-on book, with examples and code throughout. You are
expected to enter the code, run it, and then modify it to do what you
want. You don’t just buy a robot; you build it so you can understand all
the pieces and can make sense of the way Python works with the robot to
control its motors and sensors. Artificial intelligence is complicated, but
Python helps make a significant part of it accessible. Data science is
complicated, but Python helps you do data science more easily. Robotics
is complicated, but Python gives you the code that controls the robot.
And Python even enables you to tie these pieces together and use, say,
AI in robotics.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In this book, we take you through the basics of the Python language in
small, easy-to-understand steps. After we have introduced you to the
language, we step into the world of artificial intelligence, exploring
programming in machine learning and neural networks using Python and
TensorFlow and working on real problems and real software, not just toy
applications.

After that, we’re off to the exciting world of big data and data science
with Python. We look at big public data sets such as medical and
environmental data.

Finally, you get to experience the magic of what we call physical
computing. Using the inexpensive, small, and incredibly popular
Raspberry Pi computer, we show you how to use Python to control
motors and read sensors. This is a lead-up to the final minibook,
“Building Robots,” where you build a robot and control it with Python
and your own programs, even using artificial intelligence. This is not
your mother’s RC car.

Python data science, robotics, AI, and fun all in the same book.

This book won’t make you understand everything about these fields, but
it will give you a great introduction to the terminology and the power of
Python in all these fields. Enjoy the book and go forth and learn more
afterwards.

Foolish Assumptions
We assume that you know how to use a computer in a basic way. If you
can turn on the computer and use a mouse, you’re ready for this book.
We assume that you don’t know how to program yet, although you will
have some skills in programming by the end of the book. If we’re wrong
and you already know Python (or some other computer language), jump
ahead to minibook 4 and dig right into learning something new. Our
intent is to guide you through the language of Python and then through
some of the amazing technologies and devices that use Python. We
provide complete examples. If you get stuck on something, look it up on
the web, read a tutorial, and then come back to it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



What to Buy
To complete the projects in Books 4 through 7, you need a Raspberry Pi
3B+ starter kit at https://amzn.to/2WzYdoY or a Raspberry PI 4B
Starter Kit at https://amzn.to/3nIH8W8. In addition, you need the
items listed in this section, organized by minibook.

 If you want to use a Raspberry Pi 4B in the robot in Book 7, it
will dramatically reduce the battery life, and with some types of
batteries the robot may not be able to boot the Pi 4B.

Book 6
For building the projects in Book 6, you need the following:

Pi2Grover board at https://shop.switchdoc.com or
www.amazon.com. (You can get $5.00 off the board at
shop.switchdoc.com by using the discount code PI2DUMMIES at
checkout.)
Grove blue LED module, which includes a Grove cable, at
https://shop.switchdoc.com or Amazon.

A package of Grove male jumper patch cables, specifically the
Grove-4-male-pin-to-Grove-conversion cables, at
https://shop.switchdoc.com/products/grove-4-pin-male-

jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack and
https://amzn.to/3nyGbic.

A package of female-to-Grove patch cables at
https://shop.switchdoc.com/products/grove-4-pin-female-

jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack and
https://amzn.to/3jhQmXY.

Grove HDC1080 I2C temperature and humidity sensor at
https://store.switchdoc.com or www.amazon.com. The SwitchDoc

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://amzn.to/2WzYdoY
https://amzn.to/3nIH8W8
https://shop.switchdoc.com/
https://www.amazon.com/
https://shop.switchdoc.com/
https://shop.switchdoc.com/products/grove-4-pin-male-jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack
https://amzn.to/3nyGbic
https://shop.switchdoc.com/products/grove-4-pin-female-jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack
https://amzn.to/3jhQmXY
https://store.switchdoc.com/
https://www.amazon.com/


Labs HDC1080 sensor comes with a Grove connector. If you buy a
non-Grove sensor on Amazon, you'll need a female-to-Grove patch
cable, as discussed in Chapter 2 of this minibook. You can get a
female-to-Grove patch cable at
https://shop.switchdoc.com/products/grove-4-pin-female-

jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack and
https://amzn.to/3jhQmXY.

Grove oxygen sensor at www.seeedstudio.com or www.amazon.com.

Pi2Grover Raspberry-Pi-to-Grove converter,
https://shop.switchdoc.com or www.amazon.com. (You can get
$5.00 off the board at shop.switchdoc.com by using the discount
code PI2DUMMIES at checkout.)
Grove four-channel, 16-bit analog-to-digital converter at
https://store.switchdoc.com or www.amazon.com.

Grove I2C motor drive (with a Grove cable) at
www.seeedstudio.com or https://amazon.com.

Two small DC motors at www.adafruit.com/product/711 or
https://amazon.com.

SG90 micro servo motor at www.ebay.com or https://amazon.com.
These motors are inexpensive, so you may end up having to buy two
or more for under $10.
28BYJ-48 ULN2003 5V stepper motor at www.ebay.com or
https://amzn.to/2BuNDVl. This type of motor is inexpensive, so
you may end up having to buy five for $12. Make sure you get the
ones with the driver boards (such as the ones at the Amazon.com
link).

Book 7
For the robot in Book 7, purchase the following:

Adeept Raspberry Pi PiCar-B. Make sure you buy the PiCar-B and
not the PiCar-A. Look for “Adeept Mars Rover PiCar-B.” You can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://shop.switchdoc.com/products/grove-4-pin-female-jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack
https://amzn.to/3jhQmXY
http://www.seeedstudio.com/
https://www.amazon.com/
https://shop.switchdoc.com/
https://www.amazon.com/
https://store.switchdoc.com/
https://www.amazon.com/
http://www.seeedstudio.com/
https://amazon.com/
https://www.adafruit.com/product/711
https://amazon.com/
https://www.ebay.com/
https://amazon.com/
https://www.ebay.com/
https://amzn.to/2BuNDVl


buy the PiCar-B at Amazon.com https://amzn.to/36dukPU,
www.ebay.com, and www.adeept.com.

Two 18650 3.7V LiPo 5000mAh batteries at https://amazon.com
and many other places.

Icons Used in This Book
What’s a Dummies book without icons pointing you in the direction of
truly helpful information that’s sure to speed you along your way? Here
we briefly describe each icon we use in this book.

 The Tip icon points out helpful information that’s likely to make
your job easier.

 This icon marks a generally interesting and useful fact —
something you may want to remember for later use.

 The Warning icon highlights lurking danger. When we use this
icon, we’re telling you to pay attention and proceed with caution.

 When you see this icon, you know that there’s techie-type
material nearby. If you’re not feeling technical-minded, you can
skip this information.

Beyond the Book

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://amzn.to/36dukPU
https://www.ebay.com/
http://www.adeept.com/
https://amazon.com/


In addition to the material in the print or e-book you’re reading right
now, this product also comes with some access-anywhere goodies on the
web. To get this material, simply go to www.dummies.com and search for
“Python All-in-One For Dummies cheat sheet” in the Search box. In
addition, we provide all the source code for this book at
www.dummies.com/go/pythonaiofd2e. Click Downloads in the left
column, and you'll see the code links organized by minibook.

Where to Go from Here
Python All-in-One For Dummies, 2nd Edition is designed so that you
can read a chapter or section out of order, depending on what subjects
you’re most interested in. Where you go from here is up to you!

Book 1 is a great place to start reading if you’ve never used Python
before. Discovering the basics and common terminology can be helpful
when reading later chapters that use the terms and commands regularly!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/
http://www.dummies.com/go/pythonaiofd2e


Book 1
Getting Started

Contents at a Glance
Chapter 1: Starting with Python

Why Python Is Hot

Choosing the Right Python

Tools for Success

Writing Python in VS Code

Using Jupyter Notebook for Coding

Chapter 2: Interactive Mode, Getting Help, and Writing
Apps

Using Python's Interactive Mode

Creating a Python Development Workspace

Creating a Folder for Your Python Code

Typing, Editing, and Debugging Python Code

Writing Code in a Jupyter Notebook

Chapter 3: Python Elements and Syntax
The Zen of Python

Introducing Object-Oriented Programming

Discovering Why Indentations Count, Big Time

Using Python Modules

Chapter 4: Building Your First Python Application
Opening the Python App File

Typing and Using Python Comments

Understanding Python Data Types

Working with Python Operators

Creating and Using Variables

Understanding What Syntax Is and Why It Matters

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Putting Code Together

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Starting with Python

IN THIS CHAPTER
 Discovering why Python is hot
 Finding the tools for success
 Writing Python in VS Code
 Writing Python in Jupyter notebooks

Because you're reading this chapter, you probably realize that Python is
a great language to know if you’re looking for a good job in
programming, or if you want to expand your existing programming
skills into exciting cutting-edge technologies such as artificial
intelligence (AI), machine learning (ML), data science, or robotics, or
even if you’re just building apps in general. So we’re not going to try to
sell you on Python. It sells itself.

Our approach leans heavily toward the hands-on. A common failure in
many programming tutorials is that they already assume you’re a
professional programmer in some language, and they skip over things
they assume you already know.

This book is different in that we don’t assume that you’re already
programming in Python or some other language. We do assume that you
can use a computer and understand basics such as files and folders.

We also assume you’re not up for settling down in an easy chair in front
of the fireplace to read page after page of theoretical stuff about Python,
like some kind of boring novel. You don’t have that much free time to
kill. So we’re going to get right into it and focus on doing, hands-on,
because that’s the only way most of us learn. We’ve never seen anyone
read a book about Python and then sit at a computer and write Python

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



like a pro. Human brains don’t work that way. We learn through practice
and repetition, and that requires being hands-on.

Why Python Is Hot
We promised we weren’t going to spend a bunch of time trying to sell
you on Python, and that’s not our intent here. But we would like to talk
briefly about why it’s so hot.

Python is hot primarily because it has all the right stuff for the kind of
software development that’s driving the software development world
these days. Machine learning, robotics, artificial intelligence, and data
science are the leading technologies today and for the foreseeable future.
Python is popular mainly because it already has lots of capabilities in
these areas, while many older languages lag behind in these
technologies.

Just as there are different brands of toothpaste, shampoo, cars, and just
about every other product you can buy, there are different brands of
programming languages with names such as Java, C, C++ (pronounced
C plus plus), and C# (pronounced C sharp). They’re all programming
languages, just like all brands of toothpaste are toothpaste. The main
reasons cited for Python’s current popularity are

Python is relatively easy to learn.
Everything you need to learn (and do) in Python is free.
Python offers more ready-made tools for current hot technologies
such as data science, machine learning, artificial intelligence, and
robotics than most other languages.

HTML, CSS, AND JavaScript
Some of you may have heard of languages such as HTML, CSS, and JavaScript.
Those aren’t traditional programming languages for developing apps or other generic
software. HTML and CSS are specialized for developing web pages. And although
JavaScript is a programming language, it is heavily geared to website development and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



isn’t quite in the same category of general programming languages like Python and
Java.

If you specifically want to design and create websites, you have to learn HTML, CSS,
and JavaScript whether you’re already familiar with Python or some other programming
language.

Figure 1-1 shows Google search trends over the last five years. As you
can see, Python has been gaining in popularity (as indicated by the
upward slope of the trend) whereas other languages have stayed about
the same or declined. This certainly supports the notion that Python is
the language people want to learn right now and for the future. Most
people would agree that given trends in modern computing, learning
Python gives you the best opportunity for getting a secure, high-paying
job in the world of information technology.

FIGURE 1-1: Google search trends for the last five years or so.

 You can do your own Google trend searches at
https://trends.google.com.

Choosing the Right Python

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://trends.google.com/


There are different versions of Python out roaming the world, prompting
many a beginner to wonder things such as

Why are there different versions?
How are they different?
Which one should I learn?

All good questions, and we’ll start with the first. A version is kind of
like a car year. You can go out a buy a 1968 Ford Mustang, a 1990 Ford
Mustang, a 2019 Ford Mustang, or a 2020 Ford Mustang. They’re all
Ford Mustangs. The only difference is that the one with the highest year
number is the most current Ford Mustang. That Mustang is different
from the older models in that it has some improvements based on
experience with earlier models, as well as features current with the
times.

Programming languages (and most other software products) work the
same way. But as a rule we don’t ascribe year numbers to them because
they’re not released on a yearly basis. They’re released whenever they’re
released. But the principle is the same. The version with the highest
number is the newest, most recent model, sporting improvements based
on experience with earlier versions, as well as features relevant to the
current times.

Just as we use a decimal point with money to separate dollars from
cents, we use decimal points with version numbers to indicate how much
the software has changed. When there’s a significant change, the entire
version number is usually changed. More minor changes are expressed
as decimal points. You can see how the version number increases along
with the year in Table 1-1, which shows the release dates of various
Python versions. We’ve skipped a few releases because there is little
reason to know or understand the differences between all the versions.
We present the table only so you can see how newer versions have
higher version numbers; that’s all that matters.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 1-1 Examples of Python Versions and Release
Dates

Version When Released

Python 3.9 October 2020

Python 3.8 October 2019

Python 3.7 June 2018

Python 3.6 December 2016

Python 3.5 September 2015

Python 3.4 March 2014

Python 3.3 September 2012

Python 3.2 February 2011

Python 3.1 June 2009

Python 3.0 December 2008

Python 2.7 July 2010

Python 2.6 October 2008

Python 2.0 October 2000

Python 1.6 September 2000

Python 1.5 February 1997

Python 1.0 January 1994

If you paid close attention, you may have noticed that Version 3.0 starts
in December 2008, but Version 2.7 was released in 2010. So if versions
are like car years, why the overlap?

The car years analogy just indicates that the larger the number, the more
recent the version. But in Python, the year is the most recent within the
main Python version. When the first number changes, that’s usually a
change that’s so significant, software written in prior versions may not
even work in that version. If you happen to be a software company with
a product written in Python 2 on the market, and have millions of dollars
invested in that product, you may not be too thrilled to have to start over
from scratch to go with the current version. So older versions often

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



continue to be supported and evolve, independent of the most recent
version, to support developers and businesses that are already heavily
invested in the previous version.

The biggest question on most beginners minds is “what version should I
learn?” The answer to that is simple … whatever is the most current
version. You’ll know what that is because when you go to the Python.org
website to download Python, it will tell you the most current stable build
(version). That’s the one they’ll recommend, and that’s the one you
should use.

The only reason to learn something like Version 2 or 2.7 or something
else older would be if you’ve already been hired to work on some
project and the company requires you to learn and use a specific version.
That sort of situation is rare, because as a beginner you’re not likely to
already have a full-time job as a programmer. But in the messy real
world, some companies are heavily invested in an earlier version of a
product, so when hiring, they’ll be looking for people with knowledge of
that version.

In this book, we focus on versions of Python that are current in late 2020
and early 2021, from Python 3.9 and above. Don’t worry about version
differences after the first and second digits. Version 3.9.1 is similar
enough to version 3.9.0 that it’s not important, especially to a beginner.
Likewise, Version 3.9 isn’t that big a jump from 3.8. So don’t worry
about these minor version differences when first learning. Most of
what’s in Python is the same across all recent versions. So you need not
worry about investing time in learning a version that is or will soon be
obsolete.

Tools for Success
Now we need to start getting your computer set up so you can learn, and
do, Python hands-on. For one, you’ll need a good Python interpreter and
editor. The editor lets you type the code, and the interpreter lets you run
that code. When you run (or execute) code, you’re telling the computer
to “do whatever my code tells you to do.”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 The term code refers to anything written in a programming
language to provide instructions to a computer. The term coding is
often used to describe the act of writing code. A code editor is an
app that lets you type code, in much the same way an app such as
Word or Pages helps you type regular plain-English text.

Just as there are many brands of toothpaste, soap, and shampoo in the
world, there are many brands of code editors that work well with Python.
There isn’t a right one or a wrong one, a good one or a bad one, a best
one or a worst one. Just a lot of different products that basically do the
same thing but vary slightly in their approach and what that editor’s
creators think is good.

If you've already started learning Python and are happy with whatever
you’ve been using, you’re welcome to continue using that and ignore our
suggestions. If you’re just getting started with this stuff, we suggest you
use VS Code, because it's an excellent, free learning environment.

Introducing Anaconda and VS Code
The editor we recommend and will be using in this book is called Visual
Studio Code, officially. But most often, it is spoken or written as VS
Code. The main reasons why it’s our favorite follow:

It is an excellent editor for learning coding.
It is an excellent editor for writing code professionally and is used by
millions of professional programmers and developers.
It’s relatively easy to learn and use.
It works pretty much the same on Windows, Mac, and Linux.
It’s free.

The editor is an important part of learning and writing Python code. But
you also need the Python interpreter. Chances are, you’re also going to
want some Python packages. Packages are simply code written by

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



someone else to do common tasks so that you don’t have to start from
scratch and reinvent the wheel every time you want to perform one of
those tasks.

 Python packages are not a crutch for beginners. They are major
components of the entire Python development environment and are
used by seasoned professionals as much as by beginners.

Historically, managing Python, the packages, and the editor was a
somewhat laborious task involving typing cryptic commands at a
command prompt. Although that’s not a particularly bad thing, it isn’t
the most efficient way to do things, especially when you’re first getting
started. You end up spending most of your time upfront trying to learn
and type awkward commands just to get Python to work on your
computer, rather than learning Python itself.

An excellent alternative to the old command-line driven ways of doing
things is to use a more complete Python development environment with
a more intuitive and easily managed graphic user interface, as on a Mac
or Windows or any phone or tablet. The one we recommend is
Anaconda. It is free and excellent. If you’ve never heard of it and aren’t
so sure about downloading something you’ve never heard of, you can
explore what it’s all about at the Anaconda website at
www.anaconda.com.

Anaconda is often referred to as a data-science platform because many
of the packages that come with it are data-science oriented. But don’t let
that worry you if you’re interested in doing other things with Python.
Anaconda is excellent for learning and doing all kinds of things with
Python. And it also comes with VS Code, our personal favorite coding
editor, as well as Jupyter Notebook, which provides another excellent
means of coding with Python. And best of all, it’s 100 percent free, so
it’s well worth the effort of downloading and installing it.

We can’t take you step-by-step through every part of downloading and
installing Anaconda because it’s distributed from the website, and people

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.anaconda.com/


change their websites whenever they feel like it. But we can certainly
give you the broad strokes. You should be able to follow along using
Mac, Windows, or Linux. Just keep an eye on the screen as you go
along, and follow any onscreen instructions as they arise, while
following the steps here.

Installing Anaconda and VS Code
To download and install Anaconda, and VS Code, you’ll need to connect
to the Internet and use a web browser. Any web browser should do, be it
Chrome, Firefox, Safari, Edge, Internet Explorer, or whatever. Fire up
whatever browser you normally use to browse the web, then follow these
steps:

1. Browse to www.anaconda.com/download to get to their download
page.
Don’t worry about version numbers or dates.

2. Keep scrolling down or click a Download button, and you should
find options that look something like the example shown in
Figure 1-2.
We can't say exactly what the page will look like the day you visit.
We used a Windows computer for that screenshot, but Mac and
Linux users will see something similar.

FIGURE 1-2: Click Download under the largest version number.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.anaconda.com/download


3. Click Download under whichever version number is the highest
on your screen.
The highest number for us was version 3.8, but a higher-numbered
version may be available when you get there. Don’t worry about that.

 Jot down the Python version number you’re downloading for
future reference a little later in this chapter. You can also click How
to Install ANACONDA (or however the link might be worded when
you get there) on the download page if you’d like to see the
instructions from the Anaconda team.

4. Follow any onscreen instructions to download the free version.
If you see information about becoming a commercial user (where
you have to pay money), follow the onscreen instructions to
download the free version. You'll have to set up a user account.

5. When the download is complete, open your Downloads folder (or
wherever you downloaded the file).

6. If you’re using Mac or Linux, double-click the file you
downloaded. If you’re using Windows, right-click that file and
choose Run as Administrator, as shown in Figure 1-3.

 The Run-As-Administrator business in Windows ensures
that you can install everything. If that option isn’t available to you,
double-clicking the file’s icon should be sufficient.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-3: In Windows, right-click and choose Run As Administrator.

7. Click Next, Continue, Agree, or I Agree on the first installation
pages until you get to one of the pages shown in Figure 1-4.
Mac is the one on the left, and Windows is on the right.

FIGURE 1-4: Choose how to install Anaconda.

8. Choose whichever option makes sense to you.
If in doubt, Mac users can choose Install on a specific disk and then
Macintosh HD. Windows users with Administrator privileges can
choose Install for All Users. If the option we suggested isn’t
available to you, click the one closest to it.

9. Click Continue or Next and follow the onscreen instructions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you’re unsure about what options to choose on any page, don’t
choose any option. Just accept the default suggestions.

10. When you come to a page where it asks if you want to install
Microsoft VS Code (it may take quite a while), click Install
Microsoft VS Code (or whatever option on your screen indicates
that you want to install VS Code).

 If VS Code is already installed on your computer, no
worries. The Anaconda installer will just tell you that, or perhaps
update your version to the more current version.

11. Continue to follow any onscreen instructions, clicking Continue
or Next to proceed through the installation steps, and then click
Close or Finish on the last page.

You may be prompted to sign up with Anaconda Cloud. Doing so is free
but not required. Decide for yourself if that’s something you want to do.

Opening Anaconda (Mac)
After Anaconda is installed on your Mac, you can open it as you would
any other app. Use whichever of the following methods appeals to you:

Open Launch Pad and click the Anaconda Navigator icon to open it.
Click the Spotlight magnifying glass, start typing Anaconda, and
then double-click Anaconda Navigator.
Open Finder and your Applications folder and double-click the
Anaconda Navigator icon.

After Anaconda Navigator opens, right-click its icon in the dock and
choose Keep in Dock. That way, its icon will be visible in the dock at all
times and easy to find.

Opening Anaconda (Windows)
After Anaconda is installed in Windows, you can start it as you would
any other app. Although there are some differences among different

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



versions of Windows, you should be able to use either of these two
options:

Click the Start button, and then click Anaconda Navigator on the
Start menu.
Click the Start button, start typing Anaconda, and then click
Anaconda Navigator on the Start menu when you see it there.

On the Start menu, you can right-click Anaconda Navigator and choose
Pin to Start or right-click and choose More ⇒ Pin to Taskbar to make the
icon easy to find in the future.

Using Anaconda Navigator
Anaconda Navigator, as the name implies, is the component of the
Anaconda environment that lets you navigate around through different
features of the app and choose what you want to run. When you first
start Navigator, it opens to the Anaconda Navigator home page, which
should look something like Figure 1-5.

 If you see a prompt to get an updated version when you open
Anaconda, it’s okay to install the update. It won't cost anything or
affect your ability to follow along in this book.

The left side of the Anaconda Navigator home page has options such as
Home, Environments, Learning, and Community. They’re not directly
related to learning and doing Python, so you’re welcome to explore them
on your own.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-5: Anaconda Navigator home page.

Writing Python in VS Code
Most of the Python coding we do here, we’ll do in VS Code. Whenever
you want to use VS Code to write Python, we suggest that you open VS
Code from Anaconda Navigator rather than from the Start menu or
Launch Pad. That way, VS Code will already be pointing to the version
of Python that comes with Anaconda, which is easier than trying to
figure out all that yourself. So the steps are

1. If you haven’t already done so, open Anaconda Navigator.
2. Scroll down a little until you see the Launch button under VS

Code, if necessary, and then click the Launch button.

ABOUT GIT
Git is a way to store backups of your coding projects and share coding projects with
other developers or team members. It’s popular with professional programmers, and VS
Code has built-in support for it. But Git is optional and not directly related to learning or

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



doing Python coding, so it’s perfectly okay to choose Don’t Show Again to bypass that
offer when it arrives. You can install Git at any time if you later decide to learn about it.

The first time you open VS Code, you may be prompted to make some
decisions. None of them are required, so you can just click the X in the
upper-right corner of the each one. However, the one that mentions Git
will keep popping up unless you click Don’t Show Again.

When you’re finished, the VS Code window will look something like
Figure 1-6. If you don’t see quite that many options on your screen,
choose Help ⇒ Welcome from the menu bar.

FIGURE 1-6: The welcome screen of VS Code editor.

Your screen will likely be black with white and colored text. In this
book, we show everything as white with black text because it’s easier to
read on paper that way. You can keep the dark background if you like. If
you would rather have a light background, choose Code⇒  Preferences 
⇒ Color Theme (Mac) or File ⇒ Preferences ⇒ Color Theme
(Windows). Then choose a lighter color theme; if you choose Light
(Visual Studio), your VS Code screens will look more like the ones in
this book.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Visual Studio Code is a generic code editor that works with many
different languages. To use VS Code with Python and Anaconda, you
need some VS Code extensions. But you should already have them
because they come with your Anaconda download. To verify that, click
the Extensions icon in the left pane (it looks like a puzzle piece). You
should see at least three extensions listed: Anaconda Extension Pack,
Python, and YAML, as shown in Figure 1-7.

FIGURE 1-7: VS Code extensions for Python.

Choosing your Python interpreter
Before you start doing any Python coding in VS Code, you want to make
sure you’re using the correct Python interpreter. To do so, follow these
steps:

1. Choose View ⇒ Command Palette from VS Code’s menu.
2. Type python and then click Python: Select Interpreter.

Choose the Python version number that matches your download (the
one you jotted down while first downloading Anaconda). If you have

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



multiple options with the same version number, choose the one that
includes the names base and conda, as in Figure 1-8.

FIGURE 1-8: Choose your Python interpreter (usually the highest version number).

Writing some Python code
To ensure that you'll be able to follow along with the examples in this
book, let's make sure VS Code is ready for Python coding. Follow these
steps:

1. In VS Code, choose View ⇒ Terminal from the VS Code menu.
You should see a pane along the bottom-right that looks like one of
those shown in Figure 1-9.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-9: Terminal in VS Code (Windows and Mac).

2. In Terminal, type python and press Enter.
You should see some information about Python followed by a >>>
prompt. That >>> prompt is your Python interpreter; if you type
Python code there and press Enter, the code will execute.

3. Type 1+1 and press Enter.
You should now see 2 (the sum of 1 plus 1), followed by another
Python prompt, as shown in Figure 1-10.

The 1+1 exercise is about as simple an exercise as you can do. However,
all we care about right now is that you saw 2, because that means your
Python development environment is all set up and ready to go. You
won’t have to repeat any of these steps in the future.

FIGURE 1-10: Python shows the sum of one plus one.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now we'll show you how to exit Python and VS Code:

1. In the VS Code Terminal pane, press CTRL+D or type exit() and
press Enter.
The last prompt at the bottom of the Terminal window should now
be whatever it was before you went to the Python prompt, indicating
that you’re no longer in the Interpreter.

2. To close VS Code:
Windows: Click the Close icon (X) in the upper-right corner
or choose View ⇒ Exit from the menu.
Mac: Click the round red dot in the upper-left corner, or
choose Code ⇒ Quit Visual Studio Code from the menu.

3. Close Anaconda Navigator using a similar technique:
Window: Click the X in the upper-right corner or choose File 
⇒ Quit from the menu bar.
Mac: Click the red dot or go to Anaconda Navigator in the
menu and choose Quit Anaconda Navigator.

Getting back to VS Code Python
In the future, any time you want to work in Python in VS Code, we
suggest that you open Anaconda Navigator and then Launch VS Code
from there. You’ll be ready to roll and do any of the hands-on exercises
presented in future chapters.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Using Jupyter Notebook for Coding
Jupyter Notebook is another popular tool for writing Python code. The
name Jupyter comes from the fact that it supports writing code in three
popular languages: Julia and Python and R. Julia and R are popular for
data science. Python is a more generic programming language that
happens to be popular in data science as well, though Python is good for
all kinds of development, not just data science. The Notebook part of the
name comes from the fact that your code is placed in structures similar
to a regular paper notebook.

People often use Jupyter to share code on the Internet. It is free and
comes with Anaconda. So if you’ve installed Anaconda, you already
have it and can open it any time by following these simple steps:

1. Open Anaconda as discussed previously
2. Click Launch under Jupyter Notebook, as shown in Figure 1-11.

Jupyter notebooks are web-based, meaning that when Jupyter opens,
it does so in your default web browser, such as Safari, Chrome,
Edge, Firefox, or Internet Explorer. At first, it doesn’t look like it has
much to do with coding, because it just shows an alphabetized list of
folder (directory) names to which it has access, as shown in Figure
1-12. (Of course, the names you see may be different from those in
the figure, because those folder names are from our computer, not
yours.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-11: Launch Jupyter Notebook from Anaconda’s home page.

FIGURE 1-12: Jupyter Notebook opening page.

3. Click a folder name of your choosing (the Desktop is fine; we’re
not making any commitment here).

4. Click New, and then choose Python 3 under Notebook, as shown
in Figure 1-13.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A new, empty notebook named Untitled opens. You should see a
rectangle with In []: on the left side. That's called a cell, and a cell
can contain either code (words written in the Python language) or
just regular text and pictures. If you want to write code, make sure
the drop-down menu in the toolbar displays Code. Change that menu
option to Markdown if you want to write regular text rather than
Python code.

FIGURE 1-13: Creating a new Jupyter notebook.

 Markdown is a language for writing text that uses fonts, pictures,
and such. We’ll talk more about that in the next chapter. For now,
let’s stay focused on Python code, because that's what this book is
all about.

A cell is not like the Python interpreter, where your code executes
immediately. You have to type some code first (any amount), and then
run that code by clicking the Run button in the toolbar. To see for
yourself, follow these steps:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



1. Click inside the code cell.
2. Type 1+1.
3. Press Enter.

You see 1+1 in the cell, but not the result, 2. To get the result, click Run
in the toolbar or put the mouse pointer into the cell and click the Run
icon to the left of the cell, as shown in Figure 1-14, or click Run in the
toolbar above the cell. You’ll see the number 2 to the right of Out[1].
Out indicates that you’re seeing the output from executing the code in
the cell, which of course is 2 because 1 plus 1 is 2.

FIGURE 1-14: Two ways to run code in a Jupyter cell.

To close a notebook, do either of these following:

Close the tab in the browser that’s showing the cell.
Choose File ⇒ Close and Halt from the toolbar above the cells.

Figure 1-15 shows an example using Chrome as the browser. Your tabs
may look different if you’re using a different browser.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-15: Result of running code in a Jupyter Notebook cell.

You may be prompted to save your work. For now, you don’t need to
save because we’re focused on the absolute basics … what you'll do
every time you run Python code.

Even if you don’t specifically save a notebook, you'll see an icon for it in
the folder in which you created the notebook. The notebook's name will
be Untitled, and if you have filename extensions visible, you’ll see the
.ipynb filename extension. The pynb part is short for Python notebook.
The i in that extension, in case you’re wondering, comes from iPython,
which is the name of the app from which Jupyter Notebook was created
and is short for interactive.

You can delete a notebook file if you're just practicing and don’t want to
keep it. Just make sure you close the notebook in the web browser (or
just close the browser first) — otherwise, you may get an error message
stating that you can’t delete the file while it’s open.

So now you're ready to go. You have a great set of tools set up for
learning Python. The simple skills you’ve learned in this chapter will
serve you well through your learning process, as well as your
professional programming after you’ve mastered the basics. Come on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



over to Chapter 2 in this minibook now and we’ll delve a bit deeper into
Python and using the tools you now have available on your computer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Interactive Mode, Getting Help,

and Writing Apps
IN THIS CHAPTER

 Using interactive mode
 Creating a development workspace
 Creating a folder for your code
 Typing, editing, and debugging code
 Writing code in a Jupyter

Now that you've installed Anaconda and VS Code, you’re ready to start
digging deeper into writing Python code. In this chapter, we take you
briefly through the interactive, help, and code-editing features of VS
Code and Jupyter Notebook to build on what you’ve learned so far. Most
of you are probably anxious to get started on more advanced topics such
as data science, artificial intelligence, robotics, or whatever. But learning
those topics will be easier if you have a good understanding of the many
tools available to you — and the skills to use them.

Using Python's Interactive Mode
Many teachers and authors will suggest that you try things hands-on at
the Python prompt, and assume you already know how to get there.
We’ve seen many frustrated beginners complain that trying activities
recommended in some tutorial never work for them. The frustration
often stems from the fact that they’re typing and executing the code in
the wrong place. With Anaconda, the Terminal pane in VS Code is a
great place to type Python code. So in this chapter that's where you’ll
start.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Opening Terminal
To use Python interactively with Anaconda, follow these steps:

1. Open Anaconda Navigator, and then open VS Code by clicking
its Launch button on the Anaconda home page.

2. If you don’t see the Terminal pane at the bottom of the VS Code
window, choose View ⇒ Terminal from the VS Code menu bar.

3. If the word Terminal isn’t highlighted at the top of the pane, click
Terminal (circled in Figure 2-1).

FIGURE 2-1: The Terminal pane in VS Code.

The first prompt you see is typically for your computer’s operating
system, and likely shows the user name of the account you’re using. For
example, on a Mac, it may look like Alans-Air:~ alan$ but with the
name of your computer in place of Alans-Air. In Windows it would
likely be C:\Users\Alan>, with your user name in place of Alan, and
possibly a different path than C:\Users.

For example, on a Mac, we see this prompt:
Alans-Air:~ alan$

And in Windows, we see this:
C:\Users\Alan>

COLORS AND ICONS IN VS CODE

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



By default, the VS Code Terminal pane displays white text against a black background.
We reverse those colors in this book because dark text against a light background is
easier to see in a printed book. You can use any color scheme you like. If you want to
switch to black on white, as shown in this book, choose File (Windows) or Code (Mac)
and then choose  Preferences ⇒    Color Theme ⇒    Light (Visual Studio).

If you want your icons in VS Code to match the ones we use, you'll need to download
and install the Material Icon theme. You may also want to download the Material Color
theme and try it out; we don’t use it for the book because it doesn’t play well when
printed on paper. Follow these steps:

1. Click the Extensions icon (puzzle piece) in the left pane.
2. Type material, look for Material Icon Theme, and click its Install option.
3. If you see a prompt at the bottom right asking if you want to activate the

icons, click Activate.
4. Choose File (Windows) or Code (Mac), choose Preferences ⇒     File Icon

Theme, and then click Material Icon Theme.

If you don't see the Material icon as an option, make sure you've downloaded
the extension.

5. If you’d like to try out the Material color theme, open File (in Windows) or
Code (on a Mac), choose Preferences ⇒     Color Theme, and then click
Material Icon Theme.

If at any time you change your mind about the color theme, repeat Step 5 and choose
something other than Material Icon Theme.

Depending on your Windows version and current configuration, you
might see the following prompt instead, where xxx is your user name:

PS C:\Users\xxx>.

This just means that you're using PowerShell. You don't need to change
anything. The command shown here will work with PowerShell too.

You would see your user name in place of Alan and possibly a different
path than C:\Users.

Getting your Python version
At the operating system command prompt, type the following and press
Enter to see what version of Python you're using. Note the space before
the first hyphen, and no other spaces.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



python --version

You should see something like Python 3.x.x (where the x’s are numbers
representing the version of Python you’re using). If instead you see an
error message, you’re not quite where you need to be. You want to make
sure you start VS Code from Anaconda, not just from Launch Pad or
your Start menu. Type python --version in the VS Code Terminal pane,
and press Enter again. If it still doesn’t work, choose View ⇒ Command
Palette from the VS Code menu bar, type python, choose Python: Select
Interpreter, and then choose the Python interpreter you downloaded with
Anaconda.

Going into the Python Interpreter
When you’re able to enter python --version and not get an error,
you're ready to work with Python in VS Code. From there you can get
into the Python interpreter by entering the command

python

 When we, or anyone else, says “enter the command,” that means
you have to type the command and then press Enter. Nothing
happens until you press Enter. So if you just type the command and
wait for something to happen, you'll be waiting for a long, long
time.

A NOTE ABOUT PyLint
PyLint is a feature of Anacaona that helps you find and avoid errors in your code. It’s
usually turned on by default. The first time you try to use Python, you might see some
messages in the lower-right corner of VS Code. If you see a message about Python
Language Server, click Try It Now and then click Reload. If you see a message that
Linter PyLint Is Not Installed, click Install.

If you see Select Python Environment near the lower-left corner of VS Code’s window,
click that and choose the Anaconda option from the menu that drops down near the top
center. If you see multiple Anaconda options, choose the one with the largest version
number.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You should see some information about the Python version you’re using
and the >>> prompt, which represents the Python interpreter.

Entering commands
Entering commands in the Python interpreter is the same as typing them
anywhere else. You must type the command correctly, and then press
Enter. If you spell something wrong in the command, you will likely see
an error message, which is just the interpreter telling you it doesn’t
understand what you mean. But don’t worry, you can’t break anything.
For example, suppose you type the command

howdy

After you press Enter, you'll see some techie gibberish that is trying to
tell you that the interpreter doesn’t know what “howdy” means, so it
can’t do that. Nothing has broken. You’re just back to another >>>
prompt, where you can try again, as shown in Figure 2-2.

FIGURE 2-2: Python doesn't know what howdy means.

Using Python's built-in help
One of the prompts in Figure 2-2 mentions that you can type help as a
command in the Python interpreter. Note that you don’t type the
quotation marks, just the word help (and then press Enter, as always).
This time you see

Type help() for interactive help, or help(object) for help about object.

Now the interpreter is telling you to type help followed by an empty pair
of parentheses, or help with a specific word in parentheses (object is the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



example given). Even though you're told to type the command, you
should type it and press Enter. Go ahead and enter the following:

help()

Note that the line does not have spaces. After you press Enter, the screen
provides some information about using Python’s interactive help,
something like the example shown in Figure 2-3.

FIGURE 2-3: Python’s interactive help utility.

Seeing help> at the bottom of the window tells you that you're no longer
in the operating system shell or the Python interpreter (which always
shows >>>) but are now in a new area that provides help. As described
on the screen, you can enter the name of any module, keyword, or topic
to get help with that term. As a beginner, you might not need help with
specifics right at the moment. But it's good to know that the help is there
if you need it.

For example, Python uses certain keywords, which have special meaning
in the language. To get a list of those, just type the following at the
help> prompt:

keywords

After you press Enter, you'll see a list of keywords, as shown in Figure
2-4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-4: Keyword help.

Above the list of keywords is a message telling you that you can type
any keyword at the help> prompt for more information about that
keyword. For example, entering the class keyword provides
information about Python classes, as shown in Figure 2-5. These are not
the kind of classes you attend at school; rather, they're the kind you
create in Python (after you’ve learned the basics and are ready to move
onto more advanced topics).

FIGURE 2-5: Python class help.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



All the technical jargon in the help text is going to leave the average
beginner flummoxed. But as you learn about new concepts in Python,
realize that you can use the interactive help for guidance as needed.

The --More-- at the bottom of the text isn’t a prompt where you type
commands. Instead, it just lets you know that there is more text, perhaps
several pages worth. Press the spacebar or Enter to see it. Every time
you see -- More --, you can press the spacebar or Enter to get to the
next page. Eventually you'll get back to the help> prompt. If you want to
quit rather than keep scrolling, press the letter q.

Exiting interactive help
To get out of interactive help and return to the Python prompt, type the
letter q (for quit) or press Ctrl+Z. You should be back at the >>> prompt.
At the >>> prompt, type exit() or python.

To leave the Python prompt and get back to the operating system, type
exit() and press Enter. Note that if you make a mistake, such as
forgetting the parentheses, you'll get some help on the screen. For
example, if you type exit and press Enter, you'll see

Use exit() or Ctrl-Z plus Return to exit.

You’ll know you’ve exited the Python interpreter when you see the
operating system prompt rather than >>> at the end of the Terminal
window, as in Figure 2-6.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-6: Back to the operating system prompt.

Searching for specific help topics online
Python's built-in help is somewhat archaic because it's text oriented
rather than interactive, but it can help you when you need a quick
reminder about some Python keyword you’ve forgotten. But if you’re
online, you’re better off searching the web for help. If you're looking for
videos, start at www.youtube.com; if not, https://stackoverflow.com/
is a good place to ask questions and search for help. And of course
there’s always Google, Bing, and other search engines.

Regardless of what you use to search, remember to start your search
with the word python or python 3. A lot of programming languages share
similar concepts and keywords, so if you don’t specify the Python
language in your search request, there’s no telling what kinds of results
you may get.

Lots of free cheat sheets
Other good resources for learners are the countless cheat sheets available
online for free. Whenever you start to feel overwhelmed by all the
possibilities of a language like Python, a cheat sheet summarizing things
to a single page or so can help bring information to a more manageable
(and less intimidating) size.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.youtube.com/
https://stackoverflow.com/


Of course, you’re not really cheating with a cheat sheet, unless you use it
while taking a test that you’re supposed to answer from memory. But
writing code in real life is much different from answering multiple-
choice questions. So what we often call a cheat sheet in the tech world is
just another tool to help us learn. Many types of cheat sheets are
available — what appeals to you depends on your learning style. To see
what’s available, head to Google or Bing or any search engine you like
and search for free python 3 cheat sheet. Most are in a format you can
download, print, and keep handy as you learn the seemingly infinite
possibilities of writing code in Python.

Creating a Python Development
Workspace

Although interactive modes and online help are decent support tools,
most people want to use Python to create apps. We’ve found that
creating apps is easiest if you set up a VS Code development
environment specifically for learning and coding Python. You can set up
other development environments for coding in other languages, such as
HTML, CSS, and JavaScript for the web, fine-tuning each as you go
along to best support whatever language you’re working in.

We often switch between Mac and Windows computers, so we have one
development environment for each. Alan keeps his in a OneDrive folder
so he can get to them from anywhere. Although this is not a requirement,
it's handy. If you’ll be working strictly from one computer, however, you
can put your environment on your computer’s hard drive rather than on a
cloud drive.

VS Code uses the term workspace to define what we call a development
environment. That environment is the Python interpreter you’re using
plus any additional extensions you gather along the way.

You can store your workspaces anyplace you like. Do so now, before
proceeding with the next set of steps:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



1. If VS Code isn’t already open, launch it from Anaconda.
2. Choose File ⇒ Save Workspace As, and navigate to the folder

where you want to save the workspace settings.
3. Type a name for the workspace, and then click Save.

In Figure 2-7, Alan is saving his workspace in Windows (top) and
then on a Mac (bottom).

4. Next, do one of the following, depending on whether you're using
a Mac or Windows, to adjust some VS Code settings to indicate
the location of that saved workspace:

On a Mac, choose Code ⇒ Preferences ⇒ Settings.
In Windows, choose File ⇒ Preferences ⇒ Settings.

FIGURE 2-7: Saving current settings as workspace settings.

5. If you see a page like the one in Figure 2-8, click the Open
Settings (JSON) icon near the top-right corner (and circled in
the figure).
If you don't see that icon, look for one that allows you to open
Settings.json.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-8: VS Code Settings.

6. In the next window, select the entire line of code that starts with
python.pythonpath (that line tells VS Code where to find the
Python interpreter on your computer).
You can also select any other command lines that you'd like to make
part of the workspace, but don’t select the curly braces.

7. Right-click the selected code and choose Copy to copy it to the
clipboard.

8. Click the Split Editor Right icon, near the top-right corner.
(The icon looks like two side-by-side pages in the version of VS
code we're using right now.) Two copies of settings.json appear side-
by-side on the screen.

9. Choose View ⇒ Command Palette. Type open and then select
Preferences: Open Workspace Settings (JSON).

10. Click between the setting’s curly braces and paste the lines of
code there, as shown in Figure 2-9.
All the settings in settings.json (on the top) are copied to the Python
3 settings (on the bottom).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-9: Python path copied to Workspace Settings.

11. Choose File ⇒ Save from the VS Code menu.
12. Close the Settings and User Settings tabs by clicking the X on the

right side of each tab.
13. Close VS Code, and then close Anaconda.

You’ll see how to take advantage of the new workspace settings in a
moment.

Creating a Folder for Your Python
Code

Next, you create a folder to store all the Python code that you write in
this book, so it’s all together in one place and easy to find when you
need it. You can put this folder anywhere you like and name it whatever
you like.

In Windows you can navigate to the folder that will contain the new
folder (Alan uses OneDrive, but you can use Desktop, Documents, or
any other folder). Right-click an empty place in the folder. Then choose
New Folder (Mac) or New ⇒ Folder (Windows). Type the folder name
and press Enter. To follow along with the examples in this chapter, name
your folder AIO Python.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now you should associate this code folder with the VS Code workspace
you just created, so that any time you work in the folder you’re using the
correct Python interpreter and other Python-related settings you choose
over time with the files in the code folder. Here’s how:

1. Open Anaconda and launch VS Code from there.
2. From the VS Code menu, choose File ⇒ Open Workspace.
3. Navigate to the folder where you saved your workspace and open

the workspace from there.
4. Choose File ⇒ Add Folder to Workspace.
5. Navigate to the folder in which you created the folder for your

Python code, click that folder’s icon, and choose Add.

The Explorer bar in VS Code, shown in Figure 2-10, indicates that
you've opened both the workspace — Python 3 (Windows) Workspace in
the figure — and, under that workspace, the code folder — AIO Python
in the figure. If you see something entirely different in the left pane,
click the Explorer icon, at the top-left corner of the VS Code window, to
make sure you’re viewing the Explorer pane.

FIGURE 2-10: Python 3 workspace and AIO Python folder open in VS Code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When you expand the Open Editors bar, near the top of the Explorer
pane, you see files that are currently open in VS Code. Each open file is
represented by a tab across the top of the editing area to the right. Right
now, in the image, no files were open. But if, say, the VS Code Welcome
page is open right now on your own screen, you see Welcome on the
right. To close that page, click the X next to its name in the Explorer
pane or on the tab. Any time you want to reopen the Welcome page,
choose Help ⇒ Welcome from the VS Code menu bar.

 If you see a symbol other than a triangle, or no symbol at all,
before a folder name, you maybe be using an icon theme that’s
different from the default. No worries, just click to the left of any
folder to expand or collapse it.

You went through quite a few steps to set up your workspace. The
benefit, especially if you use VS Code to work in multiple languages, is
that any time you want to work with Python in VS Code, all you have to
do is follow these steps:

1. If you’ve closed VS Code, launch it from Anaconda Navigator.
2. Choose File ⇒ Open Workspace from the VS Code menu.
3. Open your workspace.

The workspace and any folders you’ve associated with that
workspace open, and you’re ready to go.

Typing, Editing, and Debugging
Python Code

Most likely, you'll write the vast majority of code in an editor. As you
probably know, an editor enables you to type and edit text. Code is text.
The editor in VS Code is set up for typing and editing code, so you may
hear it referred to as a code editor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Each Python code file you create will be a plain text file with a .py
filename extension. We suggest that you keep any files you create for
this book in that AIO Python folder, which you should be able to see
anytime VS Code and your Python 3 workspace are open.

To create a .py file at any time, follow these steps:

1. If you haven't already done so, open VS Code and your Python 3
workspace.

2. If the Explorer pane isn’t open, click the Explorer icon near the
top-left of VS Code.

3. To create a file in your AIO Python folder, right-click the folder
name and choose New File, as shown in Figure 2-11.

FIGURE 2-11: Right-click a folder name and choose New File.

4. Type the filename with the .py extension (hello.py for this first
one) and press Enter.
The new file opens and you can see its name in the tab on the right,
as shown in Figure 2-12. The larger area below the tab is the editor,
where you type the Python code. The filename also appears under
the AIO Python folder name in the Explorer pane, because that’s
where it’s stored. You can click the Open Editors line to expand and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



collapse it, which just reveals the names of documents that are
currently open for editing.

FIGURE 2-12: New hello.py file is open for editing in VS Code.

Writing Python code
Now that you have a .py file open, you can use it to write some Python
code. As is typical when learning a new programming language, you'll
start by typing a simple Hello World program. Here are the steps:

1. Click just to the right of line 1 in the editing area.
2. Type the following:

print("Hello World")

As you’re typing, you may notice text appearing on the screen. That
text is IntelliSense text, which detects what you’re typing and shows
you some information about that keyword. You don’t have to do
anything with that, though — just keep typing.

3. Press Enter after you’ve typed the line.

The new line of code is displayed on the screen. You may also notice a
few other changes, as shown in Figure 2-13:

The Explorer icon sports a circled 1, indicating that you currently
have one unsaved change.
The hello.py name in the tab and the same filename under Open
Editors (if that section is expanded) displays a dot, to indicate that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the file has unsaved changes.

FIGURE 2-13: The hello.py file contains some Python code and has unsaved changes.

Saving your code
Code you type in VS Code is not saved automatically. There are two
ways to deal with that. One is to try to remember to save any time you
make a change that's worth saving. The easiest way to do that is to
choose File ⇒ Save from VS Code’s menu bar or press Ctrl+S in
Windows or ⌘  +S on a Mac.

We prefer the second method, which is to use AutoSave to automatically
save changes we make. To enable Auto Save, choose File ⇒ Auto Save
from VS Code’s menu bar. The check mark next to Auto Save means
that it's turned on. To turn off AutoSave, just choose File ⇒ Auto Save
again. The file is saved automatically as you make changes.

Running Python in VS Code
To test your Python code in VS Code, you need to run it. The easiest
way to do that is to right-click the file’s name (hello.py in this
example) and choose Run Python File in Terminal, as shown in Figure
2-14.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-14: Run hello.py.

The Terminal pane opens along the bottom of the VS Code window.
You'll see a command prompt followed by a comment to run the code in
the Python interpreter (python.exe). And below that, you’ll see the
output of the program: the words Hello World, in this example, and then
another prompt, as shown in Figure 2-15. This app is not the most
exciting one in the world, but at least now you know how to write, save,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



and execute a Python program in VS Code, a skill you’ll be using often
as you continue through this book and through your Python
programming career.

FIGURE 2-15: Output from hello.py.

 If you're using PowerShell in the Terminal window, you may see
a message about switching to the command prompt. Unless you
happen to be a PowerShell expert and need it (for whatever reason),
you might as well click Use Command Prompt if you see that
option so the prompt won't keep pestering you.

Learning simple debugging
When you’re first learning to write code, you’re bound to make a lot of
mistakes. Realize that mistakes are no big deal — you won’t break or
destroy anything. The code just won’t work as expected.

Before you attempt to run some code, you might see several screen
indications of an error in your code:

The name of the folder and file that contain the error will be red in
the Explorer pane.
The number of errors in the file will appear in red next to the
filename in the Explorer bar.
The total number of errors will appear next to the circled X in the
bottom left corner of the VS Code window.
The bad code will have a wavy red underline.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In Figure 2-16, we typed PRINT in all uppercase, which is not allowed in
Python. Python is case-sensitive and the correct command is print.
Remember, when we show a command to type in lowercase, you have to
type it in lowercase, too.

FIGURE 2-16: PRINT is typed incorrectly in hello.py.

To run the file in Terminal, you must fix the error. Hover the mouse
pointer over the word with the red wavy underline to see a brief (and
highly technical) description of the problem. In the example shown in
Figure 2-16, we would just replace PRINT with print, and then save the
change (unless we've turned on Auto Save). Then we can right-click and
choose Run Python File in Terminal to run the corrected code.

Using the VS Code Python debugger
VS Code has a built-in debugger that helps when working with more
complex programs and provides a means of testing Python programs in
VS Code. You won't be writing anything super complex right now. But
there's no harm in getting the debugger set up and ready as part of your
Python development workspace. Follow these steps to do so now:

1. Click the debug icon to the left of the Explorer pane.
(The Debug icon is a right-facing triangle with a bug in the corner.)
The Debug pane opens.

2. If you see Create a Launch.json File link, click it.
3. Click the drop-down menu at the top of the pane and choose

Workspace, and then click Python File Debug the Currently

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Active Python File, as shown in Figure 2-17.
4. Close launch.json by clicking the X on its tab.

FIGURE 2-17: VS Code Debug pane.

From now on, as an alternative to using the right-click method to run
Python code, you can use the Debug pane. The debugger always works
with the current file, which is whatever file is selected (highlighted) in
the Explorer pane. So the usual steps for using the debugger will likely
be as follows:

1. Click the Explorer pane to see a list of all your files.
2. Click the icon or file name of the file you want to debug.

At the moment you have only one file, hello.py. The hello.py
filename is highlighted in the Explorer pane. The highlight tells you
that hello.py is the current file that the debugger will run when you
tell it to.

3. Open the Debug pane again by clicking the Debug icon in the left
bar of VS Code again.

4. Click the Start Debugging icon.
The icon is a green triangle next to Python: Current File
(workspace).

When you click the Start Debugging icon, the Python code will run as it
did when you chose Run Python File in Terminal. If your code has an

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



error, you'll get additional help on the screen describing the error.

If that seems like a lot to remember, for now all you have to remember is
that whenever you want to run some Python code in VS Code, you can
do either of the following:

Right-click the .py file's name and choose Run File in Terminal.

Click the .py file’s name in the Explorer bar to select the file, click
the Debug icon, and then click the Start Debugging icon, at the top
of the Debug pane. Optionally, you can click Run and choose Start
Debugging, or press the F5 key.

If you can remember those two options for running Python files, you’re
well on your way to learning Python.

We're going to look at a different way to write Python code next. So feel
free to close any files you have open as well as VS Code.

Writing Code in a Jupyter Notebook
In Chapter 1 of this minibook, you learned that you can write and run
Python code in a Jupyter notebook. In this section, we show you how to
create, save, and open a Jupyter notebook. For our example, we create a
subfolder named Jupyter Notebooks inside the AIO Python folder. You
can, of course, save your Jupyter notebook wherever you want using any
filenames you want.

Creating a folder for Jupyter Notebook
A Jupyter Notebooks folder is no different from any other folder, so you
can create it using whatever method you normally use in your operating
system. We put ours in the AIO Python folder we created, again just to
keep all the files for this book in one place:

1. Open your AIO Python folder (or whatever folder you created
for working with files in this book) in Finder (Mac) or Explorer
(Windows).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



2. Right-click an empty spot in that folder, and choose New ⇒ 
Folder (Windows) or New Folder (Mac).

3. Type Jupyter Notebooks as the folder name and press Enter.

Now that you have a folder in which to save Jupyter notebooks, you can
create a notebook, as discussed next.

Creating and saving a Jupyter notebook
To create a Jupyter notebook and save it in a folder, follow these steps:

1. Open Anaconda (if it isn’t already open) and launch Jupyter
Notebooks.

2. Navigate to the Jupyter Notebooks folder you created in the
preceding section.
Because the folder is empty, you should see a message stating that
the notebook list is empty.

3. Click New and choose Python 3.
4. Near the top of the new notebook that opened, click Untitled,

type 01 Notebook as the new name, and click Rename.
See Figure 2-18. The notebook is created and saved as 01 Notebook.

FIGURE 2-18: A saved Jupyter notebook.

Below the menu bar and toolbar in the notebook you'll see a large
rectangular box next to In[]:. That box is a typing area called a cell.
Next, you'll type some code in that cell.

Typing and running code in a notebook

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When your notebook is open, you see at least one cell. When you see
Code in the drop-down menu in the toolbar below the menu bar, the
active cell is for typing code. To take Jupyter Notebook for a spin,
follow these steps:

1. Click in the Code cell to the right of In [ ]: and type the
following:

print("Hello World")

Don't forget to use lowercase letters for the word print.
2. To run the code, hold down the Alt key (Windows) or Option key

(Mac) and press Enter, or click the Run button in the toolbar
above the code.
The output from the code appears below the cell.

Adding Markdown text
As mentioned, you can add text (and pictures and video) to Jupyter
notebooks. When typing regular text, you don’t need to use any special
coding. If you want to format the text or add pictures or videos, however,
you’ll need to use Markdown tags. Markdown is a popular markup
language, something similar to a greatly simplified HTML.

We can’t go into a lengthy tutorial on Markdown here, and you don't
need it to write Python code. And Markdown is easy enough to learn just
by searching Markdown tutorials in your favorite search engine or on
YouTube. But for those who know Markdown already, or are just
curious, we'll take you through the steps for creating a cell that contains
Markdown text in Jupyter Notebook.

First, make sure you're in your Jupyter Notebook app. If you don't have
an empty cell under your Python code, choose Insert ⇒ Insert Cell
Below. Then click in that new cell to add content to it. Type your text
and Markdown in the cell.

We used the text and Markdown code shown in Figure 2-19.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 If you’re interested in learning more about Markdown, check out
Alan's free video tutorials in his online school at
https://alansimpson.thinkific.com/courses/easy-markdown-

with-vs-code.

To run a cell that contains Markdown, click the cell and then click Run
in the toolbar. The code is rendered into text and any other content
you’ve put in the cell, as shown in Figure 2-20.

FIGURE 2-19: A Markdown cell containing some Markdown content.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://alansimpson.thinkific.com/courses/easy-markdown-with-vs-code


FIGURE 2-20: A Markdown cell with some Markdown code and text in it.

To change code in a code cell, just click the cell and type your code
normally. To change the content of a Markdown cell, first double-click
some text or the empty space inside the cell so you can see the code
again, and then make your changes.

With either type of cell, click Run again after making your changes.
Note that only the cell that contains the cursor will run again. If you
want to run all the cells in a notebook, use the double triangle icon in the
toolbar. It's just to the left of the icon that lets you choose between a
code cell and a Markdown cell.

Saving and opening notebooks
To save a Jupyter notebook, choose File ⇒ Save and Checkpoint from
the menu. Optionally, you can click the little Save and Checkpoint icon
(a floppy disk) on the left side of the toolbar.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



To close a notebook, choose File ⇒ Close and Halt from the menu.

Any time that you want to reopen a notebook, open Anaconda and
launch Jupyter Notebook. Then navigate to the file you saved and click
its filename. The filename will probably have the .ipynb filename
extension, which is standard for Jupyter notebooks.

It's worth noting that when you open the folder (the one we named AIO
Python), you’ll see the new Jupyter Notebooks subfolder inside that
folder. When you open that subfolder, each notebook will be in there as
its own file with the .ipynb filename extension.

Okay, so you've dug a little deeper in VS Code and Jupyter Notebook,
mostly so you can save and open Python files and Jupyter notebooks.
These skills will prove useful when you start getting deeper into writing
Python code. See you there!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Python Elements and Syntax

IN THIS CHAPTER
 Understanding the Zen of Python
 Introducing object-oriented programming
 Discovering why indentations are important
 Using Python modules

Many programming languages focus on things that the computer does
and how it does them rather than on the way humans think and work.
This one simple fact makes most programming languages difficult for
most people to learn. Python, however, is based on the philosophy that a
programming language should be geared more toward how humans
think, work, and communicate than what happens inside the computer.
The Zen of Python is the perfect example of that human orientation, so
we start this chapter with that topic.

The Zen of Python
The Zen of Python, shown in Figure 3-1, is a list of the guiding
principles for the design of the Python language. These principles are
hidden in an Easter egg, which is a term for something in a
programming language or an app that's not easy to find and that's an
inside joke to people who have learned enough of the language or app to
be able to find the Easter egg. To get to the Easter egg, follow these
steps:

1. Launch VS Code from Anaconda Navigator and open your
Python 3 workspace.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



2. If the Terminal pane isn’t open, choose View ⇒   Terminal from
the VS Code menu bar.

FIGURE 3-1: The Zen of Python.

3. Type python and press Enter to get to the Python prompt (>>>).

 If you get an error message after you enter the python
command, don't panic. You just need to remind VS Code which
Python interpreter you’re using. Choose View ⇒   Command Palette
from the menu, type python, click Python: Select Interpreter, and
choose the Python 3 version that came with Anaconda.

4. Type import this and press Enter.
The list of aphorisms appears. You may have to scroll up and down
or make the Terminal pane taller to see them all. The aphorisms are
somewhat tongue-and-cheek in their philosophical rhetoric, but the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



general idea they express is to always try to make the code more
human-readable than machine-readable.

The Zen of Python is sometimes referred to as PEP 20, where PEP is an
acronym for Python enhancement proposals. The 20 perhaps refers to
the 20 Zen of Python principles, only 19 of which have been written
down. We all get to wonder about or make up our own final principle.

Many other PEPs exist, and you can find them all on the Python.org
website at www.python.org/dev/peps. The one you’re likely to hear
about the most is PEP 8, which is the Style Guide for Python Code. The
guiding principle for PEP 8 is “readability counts” — that is, readable by
humans. Admittedly, when you’re first learning Python code, most other
peoples’ code will seem like some gibberish scribbled down by aliens,
and you may not have any idea what it means or does. But as you gain
experience with the language, the style consistency will become more
apparent, and you’ll find it easier and easier to read and understand other
peoples’ code, which is an excellent way to learn coding yourself.

We’ll fill you in on Python coding style throughout the book. Trying to
read about it before working on it is sure to bore you to tears. So for
now, any time you hear mention of PEP, or especially PEP 8, remember
that it’s a reference to the Python Coding Style Guidelines from the
Python.org website, and you can find it any time you like by doing a
web search for pep 8. PEP 8 is also referred to as Pycodestyle, especially
in VS Code.

This PEP 8 business can be a double-edged sword for learners. On one
hand, you don’t want to learn a bunch of bad habits only to discover later
that you have to unlearn them. On the other hand, the strict formatting
demands of PEP 8 can frustrate many learners who are just trying to get
their code to work.

To ward off this potential frustration, we follow and explain PEP 8
conventions as we go along. You can take it a step further, if you like, by
configuring PyLint to help you. PyLint is a tool in Anaconda that makes
suggestions about your code as you’re typing. (The program adds a little

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.python.org/dev/peps


wavy underline near code that may be wrong, and some people think the
lines look like lint, hence the name PyLint.)

You can follow these steps to turn on PyLint and PEP 8 now if you’d
like to take it for a spin:

1. Choose File (Windows) or Code (Mac), and then choose
Preferences ⇒   Settings.

2. Under Search Settings, click Workspace.
3. In Search Settings, type pylint and select the Python > Linting:

Enabled option, as shown in Figure 3-2.
4. Type pycodestyle in the Search box.
5. Scroll down and select the Python > Linting: Pycodestyle

Enabled option, as in the bottom half of Figure 3-2.
6. Choose File ⇒   Save All or just Save (if Save All isn't available).

Then close the Settings page by clicking the X in its tab.

FIGURE 3-2: Workspace settings with PyLint and Pycodestyle (PEP 8) enabled.

All the settings you choose in VS Code are stored in a settings.json
file. You can make changes to settings also via that file. To get to the file
through the Preferences options in VS Code, first choose File (Windows)
or Code (Mac) and then choose Preferences⇒  Settings. Click the Open
Settings (JSON) icon near the top right. The icon looks like a paper
document with the top corner folded down, and a rounded arrow near the
top.

If the Pycodestyle linting is too demanding, you can change the first line
of code to true and the second line to false. (See Figure 3-3.) You can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



turn off linting altogether by setting the third code line to false as well.
There are no right or wrong settings, so try what we have for a while and
see how it works for you. If you make any changes to Settings.json,
don't forget to save them and close the settings.json tab.

FIGURE 3-3: A different view of Workspace settings.

Introducing Object-Oriented
Programming

At the risk of getting too technical or computer science-y, we should
mention that there are different approaches to designing languages.
Perhaps the most successful and widely used model is object-oriented
programming, or OOP, which is a design philosophy that tries to mimic
the real world in the sense that it consists of objects with properties as
well as methods (actions) that those objects perform.

Take a car, for example. Any one car is an object. Not all cars are exactly
the same. Different cars have different properties, such as make, model,
year, color, and size, which make them different from one another. And
yet, they all serve the same basic purpose: to get us from point A to point
B without having to walk or use some other mode of transportation.

All cars have certain methods (things they can do) in common. You can
drive them, steer them, speed them up, slow them down, control the
inside temperature, and more by using controls in the car that you can
manipulate with your hands.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



An object in an object-oriented programming language isn't a physical
thing, like a car, because it exists only inside a computer. An object is
strictly a software thing. In Python, you can have a class (which you can
think of as an object creator, such as a car factory) that can produce
many different kinds of objects (cars) for varying purposes (sporty, off-
road, sedan). All these objects can be manipulated through the controls
they all have in common, much as all cars are manipulated by controls
such as the steering wheel, brakes, accelerator, and gearshift.

Python is very much an object-oriented language. The core language
consists of controls (in the form of words) that allow you to control all
different kinds of objects — in your own and other peoples' programs.
However, you need to learn the core language first so that when you’re
ready to start using other peoples’ objects, you know how to do so.
Similarly, after you know how to drive one car, you pretty much know
how to drive them all. You don’t have to worry about renting a car only
to discover that the accelerator is on the roof, the steering wheel on the
floor, and you have to use voice commands rather than a brake to slow it
down. The basic skill of driving applies to all cars.

Discovering Why Indentations
Count, Big Time

In terms of the basic style of writing code, the one feature that really
makes Python different from other languages is that it uses indentations
rather than parentheses and curly braces and such to indicate blocks, or
chunks, of code. We don’t assume that you’re familiar with other
languages, so don’t worry if that statement means nothing to you. But if
you are familiar with a language such as JavaScript, you know that you
have to do quite a bit of wrangling with parentheses and such to control
what’s inside of what.

For example, here’s some JavaScript code. If you’re familiar with the
Magic 8 Ball toy, you may have a sense of what this program is doing.
But that’s not what’s important. Just note all those parentheses, curly
braces, and semicolons:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



document.addEventListener("DOMContentLoaded", function () {var question = 

prompt("Ask magic 8 ball a question");var answer = Math.floor(Math.random() * 

8) + 1; if (answer == 1) {alert("It is certain");} else if (answer == 2) 

{alert("Outlook good");} else if (answer == 3) {alert("You may rely on it");} 

else if (answer == 4) {alert("Ask again later");} else if (answer == 5) 

{alert("Concentrate and ask again");} else if (answer == 6) {alert ("Reply 

hazy, try again");} else if (answer == 7) {alert("My reply is no");} else if 

(answer == 8) {alert("My sources say no")} else {alert ("That's not a 

question");}alert("The end");})

The code is a mess and not fun to read. We can make reading it a little
easier by breaking it into multiple lines and indenting some of those
lines. (Note that doing so isn’t required in JavaScript.) Following is the
reformatted code:

document.addEventListener("DOMContentLoaded", function () {

    var question = prompt("Ask magic 8 ball a question");

    var answer = Math.floor(Math.random() * 8) + 1;

    if (answer == 1) {

        alert("It is certain");

    } else if (answer == 2) {

        alert("Outlook good");

    } else if (answer == 3) {

        alert("You may rely on it");

    } else if (answer == 4) {

        alert("Ask again later");

    } else if (answer == 5) {

        alert("Concentrate and ask again");

    } else if (answer == 6) {

        alert("Reply hazy, try again");

    } else if (answer == 7) {

        alert("My reply is no");

    } else if (answer == 8) {

        alert("My sources say no")

    } else {

        alert("That's not a question");}

    alert("The end");

})

In JavaScript, the parentheses and curly braces are required because they
identify where chunks of code begin and end. The indentations for
readability are optional.

The rules are opposite in Python because it doesn’t use curly braces or
any other special characters to mark the beginning and end of a block of
code. The indentations themselves mark those. So those indentations

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



aren’t optional — they are required and have a considerable effect on
how the code runs. As a result, when you read the code (as a human, not
as a computer), it’s relatively easy to see what’s going on, and you’re not
distracted by a ton of extra quotation marks. Here is that JavaScript code
written in Python:

import random

question = input("Ask magic 8 ball a question")

answer = random.randint(1, 8)

if answer == 1:

    print("It is certain")

elif answer == 2:

    print("Outlook good")

elif answer == 3:

    print("You may rely on it")

elif answer == 4:

    print("Ask again later")

elif answer == 5:

    print("Concentrate and ask again")

elif answer == 6:

    print("Reply hazy, try again")

elif answer == 7:

    print("My reply is no")

elif answer == 8:

    print("My sources say no")

else:

    print("That's not a question")

print("The end")

You may have noticed at the top of the Python code the line that starts
with import. Lines that start with import are common in Python, and
you'll see why in the next section.

Using Python Modules
One of the secrets to Python's success is that it’s comprised of a simple,
clean, core language. That’s the part you need to learn first. In addition
to that core language, many, many modules are available that you can
grab for free and access from your own code. These modules are also
written in the core language, but you don’t need to see that or even know
it because you can access all the power of the modules from the basic
core language.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Most modules are for some a specific application such as science or
artificial intelligence or working with dates and time or … whatever. The
beauty of using modules is that other people spent a lot of time creating,
testing, and fine-tuning that module so you don’t have to. You simply
import the module into your own Python file, and use the module's
capabilities as instructed in the module's documentation.

The preceding sample Magic 8 Ball program starts with this line:
import random

The core Python language has nothing built into it to generate a random
number. Although we could figure out a way to make a random number
generator, we don't need to because someone has figured out how to do
it and has made the code freely available. Starting your program with
import random tells the program that you want to use the capabilities of
the random number module to generate a random number. Then, later in
the program, you generate a random number between 1 and 8 with this
line of code:

answer = random.randint(1, 8)

Hundreds of free modules for Python are available — you just need to
know which ones to import into your program.

Now, you may be wondering where to find all these modules. Well,
they’re all over the place online. But you'll probably never need to find
and download them because you already have the most widely used
modules in the world. They were downloaded and installed along with
Anaconda. To see for yourself, follow these steps:

1. Open Anaconda in the usual manner on your computer.
2. In the left column, click Environments.

On the far right are the Python modules installed on your computer
and ready for you to import and use as needed, as shown in Figure 3-
4. As you scroll down through the list, you’ll see that you already
have a ton of them. The rightmost column tells you each module's
version.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-4: Installed modules.

You may notice that some version numbers are colored and are preceded
with an arrow, which indicates that a more recent version may be
available for you to download. As with programming languages,
modules evolve over time as their authors improve them and add new
capabilities. You’re not required to have the latest version, though. If the
version you have is working, you might want to stick with it.

One of many nice things about Anaconda is that to get the latest version,
you don’t have to do any weird pip commands, as many older Python
tutorials tell you to do. Instead, just click the arrow or version number of
the module or modules you want to download, and then click Apply at
the bottom-right corner. Anaconda does all the dirty work of finding the
current module, determining whether a newer version is available, and
then downloading that version, if it is available.

When all the downloads are finished, you see a dialog box like the one
shown in Figure 3-5. If no package names are listed, all the selected
modules are up-to-date, so click Cancel and then click Home in the left
pane to return to Anaconda’s home page. If, on the other hand, package
names are listed under The Following Packages Will Be Modified, click
Apply to install the latest versions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-5: All our packages are installed and up-to-date.

Understanding the syntax for importing modules
As mentioned, in your own Python code, you must import a module
before you can access its capabilities. The syntax for doing so is

import modulename [as alias]

Code written in a generic format like that, with some parts in italic, some
in square brackets, is sometimes called a syntax chart because it's not
showing you, literally, what to type. Rather, it's showing the syntax
(format) of the code. Here is how information is presented in such a
syntax chart:

The code is case-sensitive, meaning you must type import and as
using all lowercase letters, as shown.
Anything in italics is a placeholder for information you should
supply in your own code. For example, in your code, you would
replace modulename with the name of the module you want to
import.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Anything in square brackets is optional, so you can type the
command with or without the part in square brackets.
You never type the square brackets in your code because they are not
part of the Python language. They are used only to indicate optional
parts in the syntax.

You can type the import line any place you type Python code: at the
Python command prompt (>>>), in a .py file, or in a Jupyter notebook.
In a .py file, always put import statements first, so their capabilities are
available to the rest of the code.

Using an alias with modules
As you just saw with the import command's syntax, you can assign an
alias, or nickname, to any module you import just by following the
module name with a space, the word as, and a name of your own
choosing.

 Most people use a short name that's easy to type and remember,
so they don't have to type a long name every time they want to
access the module’s capabilities.

For example, instead of typing import random to import that module,
you could import it and give it a nickname such as rnd, which is shorter:

import random as rnd

Then, in subsequent code, you wouldn't use the full name, random, to
refer to the module. Instead, you’d use the short name, rnd:

answer = rnd.randint(1, 8)

Using an alternative short name may not seem like a big deal in this
short example. But some modules have lengthy names, and you might
have to refer to the modules in many places in your code.

Now that you've learned some background information, it's time to apply
it and start getting your hands dirty with some real Python code. See you

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



in the next chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Building Your First Python

Application
IN THIS CHAPTER

 Opening the Python file
 Using Python comments
 Understanding data types in Python
 Doing work with Python operators
 Creating variables
 Understanding syntax
 Organizing code

So you want to build an application in Python? Whether you want to
code a website, analyze data, or create a script to automate something,
this chapter gives you the basics you need to get started on your journey.
Most people use programming languages like Python to create
application programs, which are often referred to as applications or
apps or programs. To create apps, you need to know how to write code
inside a code editor. You also need to start learning the language in
which you’ll be creating those apps (Python, in this book).

Like any language, you need to understand the individual words so that
you can start building sentences and, finally, the blocks of code that will
enable your app to work. First, we walk you through creating an app file
in which you will create your code. Then you learn the various data
types, operators, and variables, which are the words of the Python
language, and then Python syntax. Along the way, you see how to save
your app, catch mistakes with linting, and comment your code so that
you and others can understand how you built it and why.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Are you ready?

Opening the Python App File
You'll be using the ever-popular Visual Studio Code (VS Code) editor in
this book to learn Python and create Python apps. We assume that
you’ve already set up your learning and development environment, as
described in previous chapters of this minibook, and know how to open
the main tools, Anaconda Navigator and VS Code. To follow along in
this chapter, start with these steps:

1. Open Anaconda Navigator and launch VS Code from there.
2. If your Python 3 workspace doesn’t open automatically, choose

File ⇒   Open Workspace from the VS Code menu and open the
Python 3 workspace you created in Chapter 2.

3. Click the hello.py file you created in Chapter 2.

4. Select all the text on the first line and delete it, so you can start
from scratch.

At this point, hello.py should be open in the editor, as shown in Figure
4-1. If any other tabs are open, close them by clicking the X in each.

FIGURE 4-1: The hello.py file, open for editing in VS Code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Typing and Using Python Comments
Before you type any code, let's start with a programmer’s comment. A
programmer’s comment (usually called a comment for short) is text in
the program that does nothing. Which brings up the question,” If it
doesn’t do anything, why type it in?” As a learner, you can use
comments in your code as notes to yourself about what the code is
doing. These can help a lot when you’re first learning.

However, comments in code aren’t strictly for beginners. When working
in teams, professionals often use comments to explain to team members
what their code is doing. Developers will also put comments in their
code as notes to themselves, so that if they review the code in the future,
they can refer to their own notes for reminders on why they did
something in the code. Because a comment isn’t code, your wording can
be anything you want. However, to be identified as a comment, you must
do one of the following:

Start the text with a pound sign (#)
Enclose the text in triple quotation marks

If the comment is short (one line), the leading pound sign is sufficient.
Often you’ll see the pound sign followed by a space, as in the next
example, but the space is optional:

# This is a Python comment

To type a Python comment into your own code

1. In VS Code, click next to the 1 under the hello.py tab and type
the following:

# This is a Python comment in my first Python app.

2. Press Enter.
The comment you typed appears on line 1, as shown in Figure 4-2.
The comment text will be green if you’re using the default color
theme. Note that the blinking cursor is now on line 2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-2: A comment in hello.py.

Although you won’t use multiline comments just yet, be aware that you
can type longer comments in Python by enclosing them in triple
quotation marks. These larger comments are sometimes called
docstrings and often appear at the top of a Python module, function,
class, or method definition, which are app building blocks you will learn
about a little later in this book. It isn’t necessary to type one right now,
but here’s an example of what one may look like in Python code:

"""This is a multiline comment in Python

This type of comment is sometimes called a docstring.

A docstring starts with three double-quotation marks, and also ends with 

three double quotation marks. """

At the beginning and end of the comment, you can use three single
quotation marks, rather than three double quotation marks, if you prefer.

In VS Code, comments are usually colored differently than code. Short
comments that start with # are green, and docstrings are brown, to help
them stand out from the Python code that you run.

You can have an unlimited number of comments in your code. If you’re
waiting for something to happen after you type a comment … don’t.
When you’re working in an editor like this, code doesn’t do anything
until you run it. And right now, all we have is a comment, so even if we
did run this code, nothing would happen because comments are for
human readers, not computers. Before you start typing code, you need to
start with the absolute basics, which would be …

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Understanding Python Data Types
You deal with written information all the time and probably don’t think
about the difference between numbers and text. Numbers are amounts,
such as 10 or 123.45. Text consists of letters and words. For computers,
the big difference is that they can do arithmetic (add, subtract, multiple,
divide) with numbers, but not with letters and words.

For example, everyone knows that 1+1 = 2. The same doesn’t apply to
letters and words. The expression A+A doesn’t necessary equal B or AA
or anything else because unlike numbers, letters and words aren’t
quantities. You can buy 12 apples at the store, because 12 is a quantity, a
number. You can’t buy a snorkel apples because a snorkel is a thing —
it’s not a quantity, a number, or a scalar value.

Numbers
Numbers in Python must start with a number digit, (0-9); a dot (period),
which is a decimal point; or a hyphen (-) used as a negative sign for
negative numbers. A number can contain only one decimal point. It
should not contain letters, spaces, dollar signs, or anything else that isn’t
part of a normal number. Table 4-1 shows example of good and bad
Python numbers.

TABLE 4-1 Examples of Good and Bad Python
Numbers

Number Good or
Bad? Reason

1 Good A whole number (integer)

1.1 Good A number with a decimal point

1234567.89 Good A large number with a decimal point and no commas

-2 Good A negative number, as indicated by the starting hyphen

.99 Good A number that starts with a decimal point because it’s
less than 1

$1.99 Bad Contains a $

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Number Good or
Bad? Reason

12,345.67 Bad Contains a comma

1101 3232 Bad Contains a space

91740-3384 Bad Contains a hyphen

123-45-6789 Bad Contains two hyphens

123 Oak Tree
Lane Bad Contains spaces and words

(267)555-1234 Bad Contain parentheses and hyphens

127.0.0.1 Bad Only one decimal point is allowed

 If you’re worried that the number rules won’t let you work with
dollar amounts, zip codes, addresses, or anything else, stop
worrying. You can store and work with all kinds of information, as
you’ll see shortly.

The vast majority of numbers you use will probably match one of the
first four examples of good numbers. However, if you happen to be
looking at code used for more advanced scientific or mathematical
applications, you may occasionally see numbers that contain the letter e
or the letter j. That’s because Python supports three different types of
numbers, as discussed in the sections that follow.

Integers
An integer is any whole number, positive or negative. There is no limit
to its size. Numbers such as 0, -1, and 999999999999999 are all
perfectly valid integers. From your perspective, an integer is just any
valid number that doesn’t contain a decimal point.

Floats
A floating-point number, often called a float, is any valid number that
contains a decimal point. Again, there is no size limit: 1.1 and -1.1 and
123456.789012345 are all perfectly valid floats.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you work with very large scientific numbers, you can put an e in a
number to indicate the power of 10. For example, 234e1000 is a valid
number, and will be treated as a float even if there’s no decimal point. If
you’re familiar with scientific notation, you know 234e3 is 234,000
(replace the e3 with three zeroes). If you’re not familiar with scientific
notation, don’t worry about it. If you’re not using it in your day-to-day
work now, chances are you’ll never need it in Python either.

Complex numbers
Just about any kind of number can be expressed as an integer or a float,
so being familiar with those is sufficient for just about everyone. Note,
though, that Python also supports complex numbers. These bizarre little
charmers always end with the letter j, which is the imaginary part of the
number. If you have no idea what we’re talking about, you’re normal —
only people deep in math land care about complex numbers. If you’ve
never heard of them before now, chances are you won’t be using them in
your computer work or Python programming.

Words (strings)
Strings are sort of the opposite of numbers. With numbers, you can add,
subtract, multiply, and divide because the numbers represent quantities.
Strings are for just about everything else. Names, addresses, and all
other kinds of text you see every day would be a string in Python (and in
computers in general). It’s called a string because it’s a string of
characters (letters, spaces, punctuation marks, and maybe some
numbers). To us, a string usually has some meaning, such as a person’s
name or address. But computers don’t have eyes to see with or brains to
think with or any awareness that humans even exist, so to a computer, if
a piece of information is not something on which it can do arithmetic,
it’s just a string of characters.

Unlike numbers, a string must always be enclosed in quotation marks.
You can use either double (") or single (') quotation marks. All the
following are valid strings:

"Hi there, I am a string"

'Hello world'

"123 Oak Tree Lane"

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



"(267)555-1234"

"18901-3384"

Note that it’s fine to use numeric characters (0-9) as well as hyphens and
dots (periods) in strings. Each is still a string because it’s enclosed in
quotation marks.

 A word of caution. If a string contains an apostrophe (single
quote), the entire string should be enclosed in double quotation
marks like this:

"Mary's dog said Woof"

The double quotation marks are necessary because there’s no confusion
about where the string starts and ends. If you instead used single quotes,
like this:

'Mary's dog said Woof'

the computer would be too dumb to get that right. It would see the first
single quote as the start of the string, the next one (after Mary) as the end
of the string, and then it wouldn’t know what to do with the rest of the
stuff and your app wouldn’t run correctly.

Similarly, if the string contains double quotation makes, enclose the
entire thing in single quotation marks to avoid confusion. For example:

'The dog of Mary said "Woof".'

The first single quotation mark starts the string, the second one ends it,
and the double quotation marks cause no confusion because they’re
inside the string.

So what if you have a string that contains both single and double
quotation marks, like this:

Mary's dog said "Woof".

This deserves a resounding hmm. Fortunately, the creators of Python
realized this sort of thing could happen, so they came up with an escape.
The solution involves something called escape characters because, in a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



sense, they allow you to escape (avoid) the special meaning of a
character such as a single or double quotation mark. To escape a
character, just precede it with a backslash (\). Make sure you use a
backslash (the one that leans back toward the previous character, like
this \) or it won’t work right.

Continuing with the last example, you could enclose the entire thing in
single quotation marks, and then escape the apostrophe (which is the
same character) by preceding it with a backslash, like this:

'Mary\'s dog said "Woof".'

Or you could enclose the entire thing in double quotation marks, and
escape the quotation marks embedded with the string, like this:

"Mary's dog said \"Woof\"."

Another common use of the backslash is to use it and n (\n) to add a line
break on the screen where a user is viewing it (the user being anyone
who uses the app you wrote). For example, this string

"The old pond\nA frog jumped in,\nKerplunk!"

would look like this when displayed to a user:
The old pond

A frog jumped in,

Kerplunk!

Each \n was converted to a line break.

Booleans
A third data type in Python isn't exactly a number or a string. It’s called a
Boolean (named after a mathematician named George Boole), and it can
be one of two values: either True or False. It may seem odd to have a
data type for something that can only be True or False, but doing so is
efficient because you can store the True or False value using a single
bit, which is the smallest unit of storage in a computer.

In Python code, people store True and False values in variables
(placeholders in code that we discuss later in this chapter) using a format
similar to this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



x = True

Or perhaps this:
x = False

You know True and False are Boolean here because they are not
enclosed in quotation marks (as a string would be) and are not numbers.
Also, the initial cap is required. In other words, the Boolean values True
and False must be written as shown.

Working with Python Operators
As we discuss in the preceding section, with Python and computers in
general, it helps to think of information as being one of the following
data types: number, string, or Boolean. You also use computers to
operate on that information, meaning do any necessary math or
comparisons or searches or whatever to help you find information and
organize it in a way that makes sense to you.

Python offers many different operators for working with and comparing
types of information. Here we summarize them all for future reference,
without going into great detail. Whether you use an operator in your own
work depends on the types of apps you develop. For now, it's sufficient
just to be aware that they're available.

Arithmetic operators
Arithmetic operators, as the name implies, are for doing arithmetic;
addition, subtraction, multiplication, division, and more. Table 4-2 lists
Python's arithmetic operators.

TABLE 4-2 Python’s Arithmetic Operators

Operator Description Example

+ Addition 1 + 1 = 2

- Subtraction 10 - 1 = 9

* Multiplication 3 * 5 = 15

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Operator Description Example

/ Division 10 / 5 = 2

% Modulus (remainder after division) 11 % 5 = 1

** Exponent 3**2 = 9

// Floor division 11 // 5 = 2

The first four items in the table are the same as you learned in
elementary school. The last three are a little more advanced, so we’ll
explain them here:

The modulus is the remainder after division. So, for example, 11 % 5
is 1 because if you divide 11 by 2 you get 5 remainder 1. That 1 is
the modulus (sometimes called the modulo).
The exponent is ** because you can’t type a small raised number in
code. But it just means “raised to the power of.” For example, 3**2
is 32 (or 3 squared), which is 3*3, or 9, and 3**4 is 3*3*3*3, or 81.
Floor division, indicated by //, is integer division in that anything
after the decimal point is truncated (cut off), without any rounding.
For example, in regular division 9/5 is 1.8. But 9//5 is 1 because the
.8 is just chopped off — it isn't rounded to 2.

Comparison operators
Computers can make decisions as part of doing their work. But these
decisions are not judgement call decisions or anything human like that.
These decisions are based on absolute facts that are based on
comparisons. The comparison operators Python offers to help you write
code that makes decisions are listed in Table 4-3.

TABLE 4-3 Python Comparison Operators

Operator Meaning

< Less than

<= Less than or equal to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Operator Meaning

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

is Object identity

is not Negated object identity

The first few are self-explanatory, so we won't go into detail there. The
last two are tricky because they concern Python objects, which we
haven’t talked about yet. Talking about Python objects right now would
be a big digression, so if you’re at all confused about any operators right
now, don’t worry about it.

Boolean operators
The Boolean operators work with Boolean values (True or False) and
are used to determine if one or more things is True or False. Table 4-4
summarizes the Boolean operators.

TABLE 4-4 Python Boolean Operators

Operator Code Example What It Determines

or x or y Either x or y is True

and x and y Both x and y are True

not not x x is not True

Python Style Guide (PEP 8) recommends always putting whitespace
around operators. In other words, you want to use the spacebar on the
keyboard to put a space before the operator, type the operator, and then
add another space before continuing the line of code. Here is a
somewhat simple example. We know you're not familiar with coding just
yet so don't worry too much about the meaning of the code. Instead, note
the spaces around the = and > (greater than) operators:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



num = 10

if num > 0:

    print("Positive number")

else:

    print("Negative number")

The first line stores the number 10 in a variable named num. Then the if
checks to see whether num is greater than (>) 0. If it is, the program prints
Positive number. Otherwise, it prints Negative number. So, let's say
you change the first line of the program to this:

num = -1

If you make that change and run the program again, it prints Negative
number because -1 is a negative number.

We used num as a sample variable name in this example so we could
show you some operators with space around them. Of course, we haven't
told you what variables are, so that part of the example may have left
you scratching your head. We clear up that part of this business next.

Creating and Using Variables
Variables are a big part of Python and all computer programming
languages. A variable is simply a placeholder for information that may
vary (change). For example, when you go to Amazon's home page, you
can see your name and the date you became a customer, as shown in
Figure 4-3. The screen may look different when you visit, but the basic
information should be on the page somewhere. Both those pieces of
information are variables, because they change depending on who is
signed in to Amazon.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-3: Your name and the date you became a customer appear on Amazon's home
page.

Certainly not everyone who goes to Amazon that day is named Alan and
has been a member since 1996. Other people must be seeing other stuff
there. But Amazon certainly can’t make a custom home page for every
one of its millions of users. Most of what’s on that page is probably
literal — meaning everyone who views the page sees the same stuff.
Only the information that changes depending on who is viewing the
page is stored as a variable.

In your code, a variable is represented by a variable name rather than a
specific piece of information. Here is another way to think of it. Anytime
you buy one or more of some product, the extended price is the unit
price times the number of items you bought. In other words

Quantity * Unit Price = Extended Price

You can consider Quantity and Unit Price to be variables because no
matter what numbers you plug in for Quantity and Unit Price, you get
the correct extended price. For example, if you buy three turtle doves for
$1.00 apiece, your extended price is $3.00 (3 * $1.00). If you buy two
dozen roses for $1.50 apiece, the extended price is $36 because 1.5 * 24
is 36.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Creating valid variable names
In our explanation of variables, we used names like Quantity and Unit
Price, and this is fine for a general example. In Python, you can also
make up your own variable names, but they must conform to the
following rules to be recognized as variable names:

The variable name must start with a letter or an underscore (_).
After the first character, you can use letters, numbers, or underscores.
Variable names are case sensitive, so after you make up a name, any
reference to that variable must use the same uppercase and lowercase
letters.
Variable names cannot be enclosed in, or contain, single or double
quotation marks.
PEP 8 style conventions recommend that you use only lowercase
letters in variable names and use an underscore to separate multiple
words.

PEP 8, which we mentioned in previous chapters, is a style guide for
writing code, rather than strict must-follow rules. So you often see
variable names that don’t conform to that last style. Camel case
formatting — whereby the first letter is lowercase and new words are
capitalized — is common, even in Python, for example, extendedPrice
or unitPrice.

Experienced Python purists sometimes get a disgusted look on their face
when they see names like these in your code. They would prefer you
stick with the PEP 8 style guidelines, which recommend using
extended_price and unit_price as your variable names, on the
grounds that the PEP 8 syntax is more readable for human programmers.

Creating variables in code
To create a variable, you use the following syntax (order of things):

variablename = value

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



where variablename is the name you make up. You can use x or y, as
people often do in math, but in larger programs, it's a good idea to give
your variables more meaningful names, such as quantity or unit_price
or sales_tax or user_name, so that you can remember what you're
storing in the variable.

The value is whatever you want to store in the variable. It can be a
number, a string, or a Boolean True or False value.

The = sign is the assignment operator and is so named because it assigns
the value (on the right) to the variable (on the left). For example, in the
following:

x = 10

we are storing the number 10 in a variable named x. In other words,
we're assigning the value 10 to the x variable.

And here:
user_name = "Alan"

we're putting the string Alan in a variable named username.

Manipulating variables
Much of computer programming revolves around storing values in
variables and manipulating that information with operators. Time to try
some simple examples to get the hang of it. If you still have VS Code
open with that one comment displayed, follow these steps in the VS
Code editor:

1. Under the line that reads # This is a Python comment in my
first Python app., type this comment and press Enter:

# This variable contains an integer

2. Type the following (don't forget to put a space before and after
the = sign) and press Enter:

quantity = 10

3. Type the following and press Enter:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# This variable contains a float

4. Type the following (don’t type a dollar sign!) and press Enter:
unit_price = 1.99

5. Type the following and press Enter:
# This variable contains the result of multiplying quantity times unit 

price

6. Type the following (with spaces around the operators) and press
Enter:

extended_price = quantity * unit_price

7. Type the following and press Enter:
# Show the results

8. Finally, type this and press Enter:
print(extended_price)

Your Python app creates some variables, stores some values in them,
and calculates a new value, extended_price, based on the contents
of the quantity and unit_price variables. The last line displays the
contents of the extended_price variable on the screen. Remember,
the comments don't do anything in the program as it's running. The
comments are just notes to yourself about what’s going on in the
program.

Figure 4-4 shows how things should look now. If you made any errors,
you may see some wavy lines near errors or stylistic suggestions, such as
an extra space or an omitted Enter at the end of a line. When typing
code, you must be accurate. You can’t type something that looks sort of
like what you were supposed to type. When texting to humans, you can
make all kinds of typographical errors and your human recipient can
usually figure out what you meant based on the context of the message.
But computers don’t have eyes or brains or a concept of context, so they
will generally just not work properly if your code has errors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-4: Your first Python app typed into VS Code.

In other words, if the code is wrong, it won’t work when you run it. It’s
as simple as that — no exceptions.

Saving your work
Typing code is like typing other documents on a computer. If you don’t
save your work, you may not have it the next time you sit down at your
computer and go looking for it. So if you haven’t enabled Auto Save on
the File menu, as discussed in Chapter 2 of this minibook, choose File⇒  
Save.

Running your Python app in VS Code
Now you can run the app and see if it works. An easy way to do that is
to right-click the hello.py filename in the Explorer bar and choose Run
Python File in Terminal, as shown in Figure 4-5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-5: Right-click a .py file and choose Run Python File in Terminal.

If your code is typed correctly, you should see the result, 19.9, in the
Terminal window, as shown in Figure 4-6. The result is the output from
print(extended_price) in the code, and it's 19.9 because the quantity
(10) times the unit price (1.99) is 19.9.

FIGURE 4-6: The 19.9 is the output from print(extended_price) in the code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Suppose your app must calculate the total cost of 14 items that each cost
$26.99. Can you think of how to make that happen? You certainly
wouldn't need to write a whole new app. Instead, in the code you’re
working with now, change the value of the quantity variable from 10 to
14. Change the value of the unitprice variable to 26.99 (remember, no
dollar signs in your number). Here's how the code looks with those
changes:

# This is a Python comment in my first Python app.

# This variable contains an integer

quantity = 14

# This variable contains a float

unit_price = 26.99

# This variable contains the result of multiplying quantity times unit price

extended_price = quantity * unit_price

# Show some results on the screen.

print(extended_price)

Save your work (unless you've turned on AutoSave). Then run the app
by right-clicking and choosing Run Python File in Terminal once again
— just like the first time. The results are again quite a bit of
gobbledygook. But you should see the correct answer,
377.85999999999996, in the Terminal window near the bottom of the
VS Code window. It doesn't round to pennies and it doesn’t even look
like a dollar amount. But you need to learn to crawl before you can learn
to pole vault, so for now just be happy with getting your apps to run.

Understanding What Syntax Is and
Why It Matters

If you look up syntax in the dictionary, one definition you might find is
“the arrangement of words and phrases to create well-formed sentences
in a language.” In programming languages like Python, there is no such
thing as a well-formed sentence. But Python does have words in the
sense that you need a space between each word, just as you do when
typing regular text like this, and the order of those words is important.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Syntax is important in human languages because order contributes much
to the meaning. For example, compare these three short sentences:

Mary kissed John.
John kissed Mary.
Kissed Mary John.

All three sentences contain the same words, but the meanings are
different. The first two make it clear who kissed whom, and the last one
is a little hard to interpret.

Proper syntax in programming languages is every bit as important as it is
in human languages — even more so, in some ways, because when you
make a mistake speaking or writing to someone, that other person can
usually figure out what you meant by the context of your words. But
computers aren’t nearly that smart. Computers don’t have brains, can’t
guess your actual meaning based on context, and in fact the concept of
context doesn’t even exist for computers. So syntax matters even more
in programming languages than in human languages.

Looking back at the earliest code in this chapter, note that all the lines of
actual code (not the comments, which start with #) follow this syntax:

variablename = value

where variablename is some name you made up, and value is
something you are storing in that variable. It works because it's the
proper syntax. If you try to do it like this, it won't work:

value = variablename

For example, the following is the correct way to store the value 10 in a
variable named x:

x = 10

It might seem you could also do it the following way, but it won't work
in Python:

10 = x

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you run the app with that line in it, nothing terrible will happen — you
won’t break anything. But you will get an error message like the
following:

File "…/AIO Python/hello.py", line 10

10=x

^

SyntaxError: cannot assign to literal

The SyntaxError part tells you that Python doesn't know what to do
with that line of code because you didn’t follow the proper syntax. To fix
the error, just rewrite the line as

x = 10

Now let's talk about individual lines of code. In Python, a line of code
ends with a line break or a semicolon. For example, this is three lines of
Python code:

first_name = "Alan"

last_name = "Simpson"

print(first_name, last_name)

It would also be acceptable to use a semicolon instead of a line break:
first_name = "Alan"; last_name = "Simpson"

print(first_name, last_name)

Or, if you prefer:
first_name = "Alan"; last_name = "Simpson"; print(first_name, last_name)

The code runs the same whether you end each line with a break or a
semicolon.

Note how the variable names are all lowercase, and the words are
separated by an underscore:

first_name

last_name

Using all lowercase letters for variable names with words separated by
underscores is a naming convention in Python. But note that a
convention is not the same as a syntax rule. You could name the
variables as follows without breaking any syntax rules:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FirstName

LastName

The naming convention tries to get programmers to follow basic stylistic
guidelines that make the code more readable to other programs, which is
especially important when working in programming teams or groups.

So far you've looked at lines of code. There are also code blocks where
two or more lines of code work together. Here is an example:

x = 10

if x == 0:

    print("x is zero")

else:

    print("x is ",x)

print("All done")

 The == (two equal signs) means “is equal to” in Python and is
used to compare values to one another to see if they're equal. That’s
different from just = (one equal sign), which is the assignment
operator for assigning variables.

The first line, x = 10, is just a line of code. Next, the if x == 0 tests to
see whether the x variable contains the number 0. If x does contain 0, the
indented line (print("x is zero") executes and that's what you see on
the screen. However, if x does not contain 0, that indented line is skipped
and the else: statement executes. The indented line under else:
print("x is ",x) executes, but only if the x doesn't contain 0. The last
line, print("All done!"), executes no matter what, because it's not
indented.

So, as you can see, indentations matter a lot in Python. In the preceding
code, only one of the indented lines will execute depending on the value
in x. You learn about the specifics of using indentations in your code as
you progress through the book. For now, just try to remember that syntax
and indentations are important in Python, so you must type carefully
when writing code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you have linting and PEP 8 enabled in your Workspace settings, as
described in Chapter 3, you may see wavy underlines in code that
appears to be okay. Hovering the mouse pointer over such an underline
will usually show a message indicating the problem, as shown in Figure
4-7.

The exact wording and syntax of any error might vary, depending on the
version of linting you're using. But as an example, in Figure 4-7, the first
part of the message, [pep8], tells you that this error is related to PEP 8
syntax, which says you should put whitespace around operators:

[pep8] missing whitespace around operator

FIGURE 4-7: Touching the mouse pointer to a red wavy underline.

The second part just tells you that the variable named quantity contains
an integer (int), which is a whole number. That part of the message is
information, not an error.

To fix the error, put whitespace around the = sign. In other words, use the
spacebar on your keyboard to put a space before and after the = sign.

But now you see a wavy underline under the 14. What's up with that?
Well, to find out, simply click or hover the mouse pointer over the green
wavy underline and leave the mouse pointer sitting right there until you
see an explanation, as in Figure 4-8.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-8: Touching the mouse pointer to a green wavy underline.

Again, the exact wording of the message may change by the time you
read this. But in this example, the message is [pep8] trailing
whitespace on top and 14: int on the bottom. The bottom part is just
information, telling you that 14 is stored as an integer. The error is the
trailing whitespace. In other words, there's a space after the 14 on that
line. You can't see it, because it’s just a space. To eliminate trailing
spaces and fix the error, click the end of that line and press Backspace
until the cursor is right up to the 4 in 14.

Other colored errors are stylistic errors. But you won’t know the specific
error until you hover the mouse pointer over the wavy underline and
leave the mouse pointer there until you see the message. And the error
won’t go away until you take whatever action is required to fix it.

 If PEP 8 errors seem overwhelming while you're trying to learn,
turn them off temporarily. Choose File⇒  Settings (Windows) or
Code⇒  Settings (Mac). Then in code view, set
python.linting.pyLintEnabled or python.linting.pcodestyleEnabled
or both to false.

Putting Code Together

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The exercises you’ve just completed explain how to type, save, run, and
change an app, save it again, and run it again. Those tasks define what
you’ll be doing with any kind of software development in any language,
so you should practice them until they become second nature. But don’t
worry: You don't have to do this one chapter over and over again to get
the hang of it. You’ll be using these same skills throughout this book as
you work your way from beginner to hot-shot twenty-first-century
Python developer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 2
Understanding Python Building

Blocks
Contents at a Glance

Chapter 1: Working with Numbers, Text, and Dates
Calculating Numbers with Functions

Still More Math Functions

Formatting Numbers

Grappling with Weirder Numbers

Manipulating Strings

Uncovering Dates and Times

Accounting for Time Zones

Working with Time Zones

Chapter 2: Controlling the Action
Main Operators for Controlling the Action

Making Decisions with if

Repeating a Process with for

Looping with while

Chapter 3: Speeding Along with Lists and Tuples
Defining and Using Lists

What's a Tuple and Who Cares?

Working with Sets

Chapter 4: Cruising Massive Data with Dictionaries
Understanding Data Dictionaries

Creating a Data Dictionary

Looping through a Dictionary

Data Dictionary Methods

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Copying a Dictionary

Deleting Dictionary Items

Having Fun with Multi-Key Dictionaries

Chapter 5: Wrangling Bigger Chunks of Code
Creating a Function

Commenting a Function

Passing Information to a Function

Returning Values from Functions

Unmasking Anonymous Functions

Chapter 6: Doing Python with Class
Mastering Classes and Objects

Creating a Class

Creating an Instance from a Class

Giving an Object Its Attributes

Giving a Class Methods

Understanding Class Inheritance

Chapter 7: Sidestepping Errors
Understanding Exceptions

Handling Errors Gracefully

Being Specific about Exceptions

Keeping Your App from Crashing

Adding an else to the Mix

Using try … except … else … finally

Raising Your Own Exceptions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Working with Numbers, Text,

and Dates
IN THIS CHAPTER

 Mastering whole numbers
 Juggling numbers with decimal points
 Simplifying strings
 Conquering Boolean True/False
 Working with dates and times

Computer languages in general, and certainly Python, deal with
information in ways that are different from what you may be used to in
your everyday life. This idea takes some getting used to. In the computer
world, numbers are numbers you can add, subtract, multiply, and divide.
Python also differentiates between whole numbers (integers) and
numbers that contain a decimal point (floats). Words (textual
information such as names and addresses) are stored as strings, which is
short for “a string of characters.” In addition to numbers and strings,
there are Boolean values, which can be either True or False.

In real life, we also have to deal with dates and times, which are yet
another type of information. Python doesn't have a built-in data type for
dates and times, but thankfully, a free module you can import any time
works with such information. This chapter is all about taking full
advantage of the various Python data types.

Calculating Numbers with
Functions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A function in Python is similar to a function on a calculator, in that you
pass something into the function, and the function passes something
back. For example, most calculators and programming languages have a
square root function: You give them a number, and they give back the
square root of that number.

Python functions generally have the syntax:
variablename = functioname(param[,param])

Because most functions return some value, you typically start by
defining a variable to store what the function returns. Follow that with
the = sign and the function name, followed by a pair of parentheses.
Inside the parentheses you may pass one or more values (called
parameters) to the function.

For example, the abs() function accepts one number and returns the
absolute value of that number. If you're not a math nerd, this just means
if you pass it a negative number, it returns that same number as a
positive number. If you pass it a positive number, it returns the same
number you passed it. In other words, the abs() function simply
converts negative numbers to positive numbers.

As an example, in Figure 1-1 (which you can try out for yourself hands-
on in a Jupyter notebook, at the Python prompt, or in a .py file in VS
Code), we created a variable named x and assigned it the value -4. Then
we created a variable named y and assigned it the absolute value of x
using the abs() function. Printing x shows its value, -4, which hasn't
changed. Printing y shows 4, the absolute value of x as returned by the
abs() function.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-1: Trying out the abs() function.

Even though a function always returns one value, some functions accept
two or more values. For example, the round() function takes one
number as its first argument. The second argument is the number of
decimal places to which you want to round that number, for example, 2
for two decimal places. In the example in Figure 1-2, we created a
variable, x, with a whole lot of digits after the decimal point. Then we
created a variable named y to return the same number rounded to two
decimal places. Then we printed both results.

FIGURE 1-2: Trying out the round() function.

Python has many built-in functions for working with numbers, as shown
in Table 1-1. Some may not mean much to you if you're not into math in
a big way, but don't let that intimidate you. If you don't understand what

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



a function does, chances are it's not doing something relevant to the kind
of work you do. But if you're curious, you can always search the web for
python followed by the function name for more information. For a more
extensive list, search for python 3 built-in functions.

TABLE 1-1 Some Built-In Python Functions for
Numbers

Built-In
Function Purpose

abs(x)
Returns the absolute value of number x (converts negative numbers to
positive).

bin(x) Returns a string representing the value of x converted to binary.

float(x) Converts a string or number x to the float data type.

format(x,

y)

Returns x formatted according to the a pattern specified in y. This older
syntax has been replaced with f-strings in current Python versions.

hex(x) Returns a string containing x converted to hexadecimal, prefixed with 0x.

int(x)
Converts x to the integer data type by truncating (not rounding) the decimal
portion and any digits after it.

max(x, y,

z, …)

Takes any number of numeric arguments and returns whichever is the
largest.

min(x, y,

z, …)

Takes any number of numeric arguments and returns whichever is the
smallest.

oct(x) Converts x to an octal number, prefixed with 0o to indicate octal.

round(x,

y)
Rounds the number x to y number of decimal places.

str(x) Converts the number x to the string data type.

type(x) Returns a string indicating the data type of x.

Figure 1-3 shows examples of proper Python syntax for using the built-
in math functions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-3: Playing around with built-in math functions at the Python prompt.

You can also nest functions — meaning you can put functions inside
functions. For example, when z = -999.9999, the expression
print(int(abs(z))) prints the integer portion of the absolute value of
z, which is 999. The original number is converted to positive, and then
the decimal point and everything to its right chopped off.

Still More Math Functions
In addition to the built-in functions you've learned about so far, still
others you can import from the math module. If you need them in an
app, put import math near the top of the .py file or Jupyter cell to make

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



those functions available to the rest of the code. Or to use them at the
command prompt, first enter the import math command.

One of the functions in the math module is the sqrt() function, which
gets the square root of a number. Because it's part of the math module,
you can't use it without importing the module first. For example, if you
enter the following, you'll get an error because sqrt() isn't a built-in
function:

print(sqrt(81))

Even if you do two commands like the following, you'll still get an error
because you're treating sqrt() as a built-in function:

import math

print(sqrt(81))

To use a function from a module, you have to import the module and
precede the function name with the module name and a dot. So let's say
you have some value, x, and you want the square root. You have to
import the math module and use math.sqrt(x) to get the correct answer,
as shown in Figure 1-4. Entering that command shows 9.0 as the result,
which is indeed the square root of 81.

FIGURE 1-4: Using the sqrt() function from the math module.

The math module offers a lot of trigonometric and hyperbolic functions,
powers and logarithms, angular conversions, constants such as pi and e.
We won't delve into all of them because advanced math isn’t relevant to
most people. You can check them all out anytime by searching the web
for python 3 math module functions. Table 1-2 offers examples that may
prove useful in your own work.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 1-2 Some Functions from the Python Math
Module

Built-In Function Purpose

math.acos(x) Returns the arccosine of x in radians

math.atan(x) Returns the arctangent of x, in radians

math.atan2(y, x)
Converts rectangular coordinates (x, y) to polar coordinates (r,
theta)

math.ceil(x)
Returns the ceiling of x, the smallest integer greater than or equal
to x

math.cos(x) Returns the cosine of x radians

math.degrees(x) Converts angle x from radians to degrees

math.e Returns the mathematical constant e (2.718281 …)

math.exp(x)
Returns e raised to the power x, where e is the base of natural
logarithms

math.factorial(x) Returns the factorial of x

math.floor() Returns the floor of x, the largest integer less than or equal to x

math.isnan(x) Returns True if x is not a number; otherwise returns False

math.log(x, y) Returns the logarithm of x to base y

math.log2(x) Returns the base-2 logarithm of x

math.pi Returns the mathematical constant pi (3.141592 …)

math.pow(x, y) Returns x raised to the power y

math.radians(x) Converts angle x from degrees to radians

math.sin(x) Returns the sine of x, in radians

math.sqrt(x) Returns the square root of x

math.tan(x) Returns the tangent of x radians

math.tau() Returns the mathematical constant tau (6.283185 …)

The constants pi, e, and tau are unusual for functions in that you don't
use parentheses. As with any function, you can use these functions in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



expressions (calculations) or assign their values to variables. Figure 1-5
shows some examples of using functions from the math module.

FIGURE 1-5: More playing around with built-in math functions at the Python prompt.

Formatting Numbers
Over the years, Python has offered different methods for displaying
numbers in formats familiar to us humans. For example, most people
would rather see dollar amounts expressed in the format $1,234.56 rather
than 1234.560065950695405695405959. The easiest way to format
numbers in Python, starting with version 3.6, is to use f-stings.

Formatting with f-strings
Format strings, or f-strings, are the easiest way to format data in Python.
All you need is a lowercase f or uppercase F followed immediately by

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



some text or expressions enclosed in quotation marks. Here is an
example:

f"Hello {username}"

The f before the first quotation mark tells Python that what follows is a
format string. Inside the quotation marks, the text, called the literal part,
is displayed literally (exactly as typed in the f-string). Anything in curly
braces is the expression part of the f-string, a placeholder for what will
appear when the code executes. Inside the curly braces, you can have an
expression (a formula to perform some calculation, a variable name, or a
combination of the two). Here is an example:

username = "Alan"

print(f"Hello {username}")

When you run this code, the print function displays the word Hello,
followed by a space, followed by the contents of the username variable,
as shown in Figure 1-6.

FIGURE 1-6: A super simple f-string for formatting.

Here is another example of an expression — the formula quantity times
unit_price — inside the curly braces:

unit_price = 49.99

quantity = 30

print(f"Subtotal: ${quantity * unit_price}")

The output from that, when executed, follows:
Subtotal: $1499.7

That $1499.7 isn't an ideal way to show dollar amounts. Typically, we
like to use commas in the thousands places, and two digits for the
pennies, as in the following:

Subtotal: $1,499.70

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Fortunately, f-strings provide you with the means to do this formatting,
as you learn next.

Showing dollar amounts
To get a comma to appear in the dollar amount and the pennies as two
digits, you can use a format string inside the curly braces of an
expression in an f-string. The format string starts with a colon and needs
to be placed inside the closing curly brace, right up against the variable
name or the value shown.

To show commas in thousands places, use a comma in your format string
right after the colon, like this:

:,

Using the current example, you would do the following:
print(f"Subtotal: ${quantity * unit_price:,}")

Executing this statement produces this output:
Subtotal: $1,499.7

To get the pennies to show as two digits, follow the comma with
.2f

The .2f means “two decimal places, fixed” (never any more or less than
two decimal places). The following code will display the number with
commas and two decimal places:

print(f"Subtotal: ${quantity * unit_price:,.2f}")

Here's what the code displays when executed:
Subtotal: $1,499.70

Perfect! That's exactly the format we want. So anytime you want to
show a number with commas in the thousands places and exactly two
digits after the decimal point, use an f-string with the format string, .2f.

Formatting percent numbers
Now, suppose your app applies sales tax. The app needs to know the
sales tax rate, which should be expressed as a decimal number. So if the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



sales tax rate is 6.5 percent, it has to be written as 0.065 (or .065, if you
prefer) in your code, like this:

sales_tax_rate = 0.065

It's the same amount with or without the leading zero, so just use
whichever format works for you.

This number format is ideal for Python, and you wouldn't want to mess
with that. But if you want to display that number to a human, simply
using a print() function displays it exactly as Python stores it:

sales_tax_rate = 0.065

print(f"Sales Tax Rate {sales_tax_rate}")

Sales Tax Rate 0.065

When displaying the sales tax rate for people to read, you'll probably
want to use the more familiar 6.5% format rather than .065. You can use
the same idea as with fixed numbers (.2f). However, you replace the f
for fixed numbers with %, like this:

print(f"Sales Tax Rate {sales_tax_rate:.2%}")

Running this code multiples the sales tax rate by 100 and follows it with
a % sign, as you can see in Figure 1-7.

FIGURE 1-7: Formatting a percentage number.

In both of the previous examples, we used 2 for the number of digits.
But of course you can display any number of digits you want, from zero
(none) to whatever level of precision you need. For example, using .1%,
as in the following:

print(f"Sales Tax Rate {sales_tax_rate:.1%}")

displays this output when the line is executed:
Sales Tax Rate 6.5%

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Replacing 1 with a 9, like this:

print(f"Sales Tax Rate {sales_tax_rate:.9%}")

displays the percentage with nine digits after the decimal point:
Sales Tax Rate 6.500000000%

You don't need to use an f-string only inside a call to the print function.
You can also execute an f-string and save the result in a variable that you
can display later. The format string itself is like any other string in that it
must be enclosed in single, double, or triple quotation marks. When
using triple quotation marks, you can use either three single quotation
marks or three double quotation marks. It doesn't matter which you use
as the outermost quotation marks on the format string; the output is the
same, as you can see in Figure 1-8.

 For single and double quotation marks, use the corresponding
keyboard keys. For triple quotation marks, you can use three of
either. Make sure you end the string with exactly the same
characters you used to start the string. For example, all the strings
in Figure 1-8 are perfectly valid code, and they will all be treated
the same.

FIGURE 1-8: An f-string can be encased in single, double, or triple quotation marks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Making multiline format strings
If you want to have multiline output, you can add line breaks to your
format strings in a few ways:

Use /n: You can use a single-line format string with \n any place
you want a line break. Just make sure you put the \n in the literal
portion of the format string, not inside curly braces. For example:

user1 = "Alberto"

user2 = "Babs"

user3 = "Carlos"

output=f"{user1} \n{user2} \n{user3}"

print(output)

When executed, this code displays:
Alberto

Babs

Carlos

Use triple quotation marks (single or double): If you use triple
quotation marks around your format string, you don't need to use \n.
You can just break the line in the format string wherever you want it
to break in the output. For example, look at the code in Figure 1-9.
The format string is in triple quotation marks and contains multiple
line breaks. The output from running the code has line breaks in the
same places.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-9: A multiline f-string enclosed in triple quotation marks.

As you can see, the output honors the line breaks and even the blank
spaces in the format string. Unfortunately, it's not perfect — in real life,
we would right align the numbers so that the decimal points line up. All
is not lost, though, because with format strings you can also control the
width and alignments of your output.

Formatting width and alignment
You can also control the width of your output (and the alignment of
content within that width) by following the colon in your f-string with <
(for left aligned), ^ (for centered), or > (for right aligned). Put any of
these characters right after the colon in your format string. For example,
the following will make the output 20 characters wide, with the content
right aligned:

:>20

In Figure 1-9, all the dollar amounts are left aligned, because that's the
default. To right align numbers, which is how we usually see dollar
amounts, you can use > in an f-string. To make the numbers the same
width, specify a number after the > character. For example, in Figure 1-
10, each f-string includes >9, which causes each displayed number to be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



right aligned and 9 characters wide. The output, which you can see at the
bottom of the figure, makes all the numbers align to the right, with their
dollar signs neatly aligned to the left. The spaces to the right of each
dollar sign make sure each number is exactly 9 characters wide.

FIGURE 1-10: All dollar amounts are right aligned within a width of 9 characters (>9).

You may look at Figure 1-10 and wonder why the dollar signs are lined
up the way they are. Why aren't they aligned right next to their numbers?
The dollar signs are part of the literal string, outside the curly braces, so
they aren't affected by the >9 inside the curly braces.

Realigning the dollar signs is a little more complicated than you might
imagine, because you can use the ,.2f formatting only on a number.
You can't attach a $ to the front of a number unless you change the
number to a string — but then it wouldn't be a number anymore, so.2f
wouldn't work.

But complicated doesn't mean impossible; it just means inconvenient.
You can convert each dollar amount to a string in the current format,
stick the dollar sign on that string, and then format the width and
alignment on this string. For example, the following code creates a
variable named s-subtotal containing a dollar sign immediately

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



followed by the dollar amount, with the dollar sign just to the left of the
first digit and no spaces after the dollar sign:

s_subtotal = "$" + f"{subtotal:,.2f}"

In this code, we assume the subtotal variable contains some number.
Let's say the number is 1598.402, though it could be any number. The f"
{subtotal:,2f}" formats the number in a fixed two-decimal-places
format with a comma in the thousands place, like this:

1,598.40

The output is a string rather than a number because an f-string always
produces a string.

The following part of the code sticks (concatenates) a dollar sign in the
front:

"$"+

So now the output is $1,598.40. That final formatted string is stored in a
new variable named s_subtotal. (We added the leading s_ to remind us
that this is the string equivalent of the subtotal number, not the original
number.)

To display that dollar amount right aligned with a width of 9 digits, use
>9 in a new format string to display the s_subtotal variable, like this:

f{s_subtotal:>9}

 When you use + with strings, you concatenate (join) the two
strings. The + only does addition with numbers, not strings.

Figure 1-11 shows a complete example, including the output from
running the code. All the numbers are right aligned with the dollar signs
in the usual place.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-11: All the dollar amounts neatly aligned.

Grappling with Weirder Numbers
Most of us deal with simple numbers like quantities and dollar amounts
all the time. If your work requires you to deal with bases other than 10 or
imaginary numbers, Python has the stuff you need to do the job. But
keep in mind that you don't need to learn these things to use Python or
any other language. You would use these only if your actual work (or
perhaps homework) requires it. In the next section, you look at some
number types commonly used in computer science: binary, octal, and
hexadecimal numbers.

Binary, octal, and hexadecimal numbers
If your work requires dealing with base 2, base 8, or base 16 numbers,
you're in luck because Python has symbols for writing these as well as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



functions for converting among them. Table 1-3 shows the three non-
decimal bases and the digits used by each.

TABLE 1-3 Python for Base 2, 8, and 16 Numbers

System Also Called Digits Used Symbol Function

Base 2 Binary 0,1 0b bin()

Base 8 Octal 0,1,2,3,4,5,6,7 0o oct()

Base 16 Hexadecimal or hex 0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F 0x hex()

Most people never have to work with binary, octal, or hexadecimal
numbers. So if all of this is giving you the heebie-jeebies, don't sweat it.
If you’ve never heard of them before, chances are you’ll never hear of
them again after you’ve completed this section.

 If you want more information about the various numbering
systems, you can use your favorite search engine to search for
binary number or octal, or decimal, or hexadecimal.

You can use these various functions to convert how the number is
displayed at the Python prompt, of course, as well as in an apps you
create. At the prompt, just use the print() function with the conversion
function inside the parentheses, and the number you want to convert
inside the innermost parentheses. For example, the following displays
the hexadecimal equivalent of the number 255:

print(hex(255))

The result is 0xff, where the 0x indicates that the number that follows is
expressed in hex, and ff is the hexadecimal equivalent of 255.

To convert from binary, octal, or hex to decimal, you don't need to use a
function. Just use print() with the number you want to convert inside
the parentheses. For example, print(0xff) displays 255, the decimal

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



equivalent of hex ff. Figure 1-12 shows some more examples you can
try at the Python prompt.

FIGURE 1-12: Messing about with binary, octal, and hex.

Complex numbers
Complex numbers are another one of those weird numbering things you
may never have to deal with unless you happen to be into electrical
engineering, higher math, or a branch of science that uses them. A
complex number is one that can be expressed as a+bi where a and b are
real numbers, and i represents the imaginary number satisfied by the
equation x2=–1. There is no real number x whose square equals –1, so
that's why it’s called an imaginary number.

Some branches of math use a lowercase i to indicate an imaginary
number. But Python uses j (as do those in electrical engineering because
i is used to indicate current).

Anyway, if your application requires working with complex numbers,
you can use the complex() function to generate an imaginary number,
using the following syntax:

complex(real,imaginary)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Replace real with the real part of the complex number, and replace
imaginary with the imaginary number. For example, in code or the
command prompt, try this:

z = complex(2,-3)

The variable z gets the imaginary number 2–3j. Then use a print()
function to display the contents of z, like this:

print(z)

The screen displays the imaginary number 2-3j.

You can tack .real or .imag onto an imaginary number to get the real or
imaginary part. For example, the following produces 2.0, which is the
real part of the number z:

print(z.real)

And this returns –3.0, which is the imaginary part of z:

print(z.imag)

Once again, if none of this makes sense to you, don't worry. It’s not
required for learning or doing Python. Python simply offers complex
numbers and these functions for people who happen to require them.

 If your work requires working with complex numbers, search
the web for python cmath to learn about Python's cmath module,
which provides functions for complex numbers.

Manipulating Strings
In Python and other programming languages, we refer to words and
chunks of text as strings, short for “a string of characters.” A string has
no numeric meaning or value. (We discuss the basics of strings in Book
1, Chapter 4.) In this section, you learn Python coding skills for working
with strings.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Concatenating strings
You can join strings by using a + sign. The process of doing so is called
string concatenation in nerd-o-rama world. One thing that catches
beginners off-guard is the fact that a computer doesn't know a word from
a bologna sandwich. So when you join strings, the computer doesn't
automatically put spaces where you'd expect them. For example, in the
following code, full_name is a concatenation of the first three strings.

first_name = "Alan"

middle_init = "C"

last_name = "Simpson"

full_name = first_name+middle_init + last_name

print(full_name)

When you run this code to print the contents of the full_name variable,
you can see that Python did join them in one long string:

AlanCSimpson

Nothing is wrong with this output, per se, except that we usually put
spaces between words and the parts of a person's name.

Because Python won’t automatically put in spaces where you think they
should go, you have to put them in yourself. The easiest way to represent
a single space is by using a pair of quotation marks with one space
between them, like this:

" "

If you forget to put the space between the quotation marks, like the
following, you won't get a space in your string because there's no space
between the quotation marks:

""

You can put multiple spaces between the quotation marks if you want
multiple spaces in your output, but typically one space is enough. In the
following example, you put a space between first_name and
last_name. You also stick a period and space after middle_init:

first_name = "Alan"

middle_init = "C"

last_name = "Simpson"

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



full_name = first_name + " " + middle_init + ". " + last_name

print(full_name)

The output of this code, which is the contents of that full_name
variable, looks more like the kind of name you're used to seeing:

Alan C. Simpson

Getting the length of a string
To determine how many characters are in a string, you use the built-in
len() function (short for length). The length includes spaces because
spaces are characters, each one having a length of one. An empty string
— that is, a string with nothing in it, not even a space — has a length of
zero.

Here are some examples. In the first line you define a variable named s1
and put an empty string in it (a pair of quotation marks with nothing in
between). The s2 variable gets a space (a pair of quotation marks with a
space between). The s3 variable gets a string with some letters and
spaces. Then, three print() functions display the length of each string:

s1 = ""

s2 = " "

s3 = "A B C"

print(len(s1))

print(len(s2))

print(len(s3))

Following is the output from that code, when executed. The output
makes perfect sense when you understand that len() measures the
length of strings as the number of characters (including spaces) in the
string:

0

1

5

Working with common string operators
Python offers several operators for working with sequences of data. One
weird thing about strings in Python (and in most other programming
languages) is that when you're counting characters, the first character

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



counts as 0, not 1. This makes no sense to us humans. But computers
count characters that way because it’s the most efficient method. So even
though the string in Figure 1-13 is five characters long, the last character
in that string is the number 4, because the first character is number 0. Go
figure.

FIGURE 1-13: Character positions in a string start at 0, not 1.

Table 1-4 summarizes the Python 3 operators for working with strings.

TABLE 1-4 Python Sequence Operators That Work with
Strings

Operator Purpose

x in s Returns True if x exists somewhere in string s.

x not in s Returns True if x is not contained in string s.

s * n or n

* s
Repeats string s n times.

s[i] The ith item of string s where the first character is 0.

s[i:j]
A slice from string x beginning with the character at position i through to
the character at position j.

s[i:j:k] A slice of s from i to j with step k.

min(s) The smallest (lowest) character of string s.

max(s) The largest (highest) character of string s.

s.index(x[,

i[, j]])

The numeric position of the first occurrence of x in string s. The optional i
and j limit the search to the characters from i to j.

s.count(x) The number of times string x appears in larger string s.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Figure 1-14 shows examples of using the string operators in Jupyter
Notebook. When the output of a print() function doesn't look right,
keep in mind two important facts about strings in Python:

The first character is always number 0.

Every space counts as one character, so don't skip spaces when
counting.

FIGURE 1-14: Playing around with string operators in Jupyter Notebook.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You may have noticed that min(s) returns a blank space, meaning that
the blank space character is the lowest character in that string. But what
exactly makes the space “lower” than the letter A or the letter a? The
simple answer is the letter's ASCII number. Every character you can type
at your keyboard, and many additional characters, have a number
assigned by the American Standard Code for Information Interchange
(ASCII).

Figure 1-15 shows a chart with ASCII numbers for many common
characters. Spaces and punctuation characters are “lower” than A
because they have smaller ASCII numbers. Uppercase letters are
“lower” than lowercase letters because they have smaller ASCII
numbers. Are you wondering what happened to the characters assigned
to numbers 0–31? These numbers have characters too, but they are
control characters and are essentially non-printing and invisible, such as
when you hold down the Ctrl key and press another key.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-15: ASCII numbers for common characters.

Python offers two functions for working with ASCII. The ord()
function takes a character as input and returns the ASCII number of that

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



character. For example, print(ord("A")) returns 65, because an
uppercase A is character 65 in the ASCII chart. The chr() function does
the opposite. You give it a number, and it returns the ASCII character for
that number. For example, print(chr(65)) displays A because A is
character 65 in the ASCII chart.

Manipulating strings with methods
Every string in Python 3 is considered a str object (pronounced “string
object”). The shortened word str for string distinguishes Python 3 from
earlier versions of Python, which referred to string as string objects (with
the word string spelled out, not shortened). This naming convention is a
great source of confusion, especially for beginners. Just try to remember
that in Python 3, str is all about strings of characters.

Python offers numerous str methods (also called string methods) to help
you work with str objects. The general syntax of str object methods is as
follows:

string.methodname(params)

where string is the string you're analyzing, methodname is the name of a
method from Table 1-5, and params refers to any parameters that you
need to pass to the method (if required). The leading s in the first
column of Table 1-5 means “any string,” be it a literal string enclosed in
quotation marks or the name of a variable that contains a string.

TABLE 1-5 Built-In Methods for Python 3 Strings

Method Purpose

s.capitalize() Returns a string with the first letter capitalized and the rest lowercase.

s.count(x, [y,

z])

Returns the number of times string x appears in string s. Optionally,
you can add y as a starting point and z as an ending point to search a
portion of the string.

s.find(x, [y,

z])

Returns a number indicating the first position at which string x can be
found in string s. Optional y and z parameters allow you to limit the
search to a portion of the string. Returns –1 if none found.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Method Purpose

s.index(x, [y,

z])

Similar to find but returns a “substring not found” error if string x can't
be found in string y.

s.isalpha()
Returns True if s is at least one character long and contains only
letters (A-Z or a-z).

s.isdecimal()
Returns True if s is at least one character long and contains only
numeric characters (0-9).

s.islower() Returns True if s contains letters and all those letters are lowercase.

s.isnumeric()
Returns True if s is at least one character long and contains only
numeric characters (0-9).

s.isprintable() Returns True if string s contains only printable characters.

s.istitle()
Returns True if string s contains letters and the first letter of each
word is uppercase followed by lowercase letters.

s.isupper() Returns True if all letters in the string are uppercase.

s.lower() Returns s with all letters converted to lowercase.

s.lstrip() Returns s with any leading spaces removed.

s.replace(x, y)
Returns a copy of string s with all characters x replaced by character
y.

s.rfind(x, [y,

z])

Similar to s.find but searches backward from the start of the string. If
y and z are provided, searches backward from position z to position
y. Returns –1 if string x not found.

s.rindex() Same as s.rfind but returns an error if the substring isn't found.

s.rstrip() Returns string x with any trailing spaces removed.

s.strip() Returns string x with leading and trailing spaces removed.

s.swapcase()
Returns string s with uppercase letters converted to lowercase and
lowercase letters converted to uppercase.

s.title()
Returns string s with the first letter of every word capitalized and all
other letters lowercase.

s.upper() Returns string s with all letters converted to uppercase.

You can play around with these methods in a Jupyter notebook, at the
Python prompt, or in a .py file. Figure 1-16 shows some examples in a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Jupyter notebook using three variables named s1, s2, and s3 as strings to
experiment with. The result of running the code appears below the code.

FIGURE 1-16: Playing around with Python 3 string functions.

 Don't bother trying to memorize or even make sense of every
string method. Remember instead that if you need to operate on a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



string in Python, you can do a web search for python 3 string
methods to find out what's available.

Uncovering Dates and Times
In the world of computers, we often use dates and times for scheduling,
or for calculating when something is due or how many days it's past due.
We sometimes use timestamps to record exactly when a user did
something or when an event occurred. There are lots of reasons for using
dates and times in Python, but perhaps surprisingly, no built-in data type
for them exists like the ones for strings and numbers.

To work with dates and times, you typically need to use the datetime
module. Like any module, you must import it before you can use it. You
do that using import datetime. As with any import, you can add an
alias (nickname) that's easier to type, if you like. For example, import
datetime as dt would work too. You just have to remember to type dt
rather than datetime in your code when calling upon the capabilities of
that module.

The datetime module is an abstract base class, which is a fancy way of
saying it offers new data types to the language. For dates and times,
those data types are as follows:

datetime.date: A date consisting of month, day, and year (but no
time information).
datetime.time: A time consisting of hour, minute, second,
microsecond, and optionally time zone information if needed (but no
date).
datetime.datetime: A single item of data consisting of date, time,
and optionally time zone information.

We preceded each type with the full word datetime in the preceding list,
but if you use an alias, such as dt, you can use that in your code instead.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



We talk about each of these data types separately in the sections that
follow.

Working with dates
The datetime.date data type is ideal for working with dates when time
isn't an issue. You can create a date object in two ways. You can get
today’s date from the computer's internal clock by using the today()
method. Or you can specify a year, month, and day (in that order) inside
parentheses.

 When specifying the month or day, never use a leading zero for
datetime.date(). For example, April 1 2020 has to be expressed
as 2020,4,1 — if you type 2020,04,01, it won't work.

For example, after importing the datetime module, you can use
date.today() to get the current date from the computer's internal clock.
Or use date(year, month, day) syntax to create a date object for some
other date. The following code shows both methods:

# Import the datetime module, nickname dt

import datetime as dt

# Store today's date in a variable named today.

today = dt.date.today()

# Store some other date in a variable called last_of_teens

last_of_teens = dt.date(2019, 12, 31)

Try it by typing the code in a Jupyter notebook, at the Python prompt, or
in a .py file. Use the print() function to see what's in each variable, as
shown in Figure 1-17. Your today variable won't be the same as in the
figure; it will the date you try this.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-17: Experiments with datetime.date objects in a Jupyter notebook.

YOUR COMPUTER DATE AND TIME
If your computer is connected to the Internet, its internal date and time should be
accurate. That's because it gets that information from NNTP (Network News Transfer
Protocol), a standard time that any computer or app can get from the Internet.

The datetime information is tailored to your time zone and takes into account the
daylight saving time of your location (if applicable). So in other words, the date and time
shown on your computer screen should match what the calendar and the clock on your
wall say.

You can isolate any part of a date object by using .month, .day, or
.year. For example, in the same Jupyter cell or Python prompt, execute
this code:

print(last_of_teens.month)

print(last_of_teens.day)

print(last_of_teens.year)

Each of the three components of that date appear on a separate line:
12

31

2019

As you saw on the first printout, the default date display is yyyy-mm-dd,
but you can format dates and times however you want. Use f-strings,
which we discuss earlier in this chapter, along with the directives shown

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



in Table 1-6, which includes the format for dates as well as for times, as
we discuss later in this chapter.

TABLE 1-6 Formatting Strings for Dates and Times

Directive Description Example

%a Weekday, abbreviated Sun

%A Weekday, full Sunday

%w Weekday number 0-6, where 0 is Sunday 0

%d Number day of the month 01-31 31

%b Month name abbreviated Jan

%B Month name full January

%m Month number 01-12 01

%y Year without century 19

%Y Year with century 2019

%H Hour 00-23 23

%I Hour 00-12 11

%p AM/PM PM

%M Minute 00-59 01

%S Second 00-59 01

%f Microsecond 000000-999999 495846

%z UTC offset -0500

%Z Time zone EST

%j Day number of year 001-366 300

%U
Week number of year, Sunday as the first day of
week, 00-53 50

%W
Week number of year, Monday as the first day of
week, 00-53 50

%c Local version of date and time
Tue Dec 31 23:59:59

2018

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Directive Description Example

%x Local version of date 12/31/18

%X Local version of time 23:59:59

%% A % character %

 Some tutorials tell you to format dates and times by using
strftime rather than f-strings, and that's certainly a valid method.
We're sticking with the newer f-strings here, however, because we
think they'll be preferred over strftime in the future.

When using format strings, make sure you put spaces, slashes, and
anything else you want between directives where you want those to
appear in the output. For example, this line:

print(f"{last_of_teens:%A, %B %d, %Y}")

when executed, displays this:
Tuesday, December 31, 2019

To show the date in the mm/dd/yyyy format, use %m/%d/%Y, like this:

todays_date = f"{today:%m/%d/%Y}"

The output will be the current date for you when you try it, with a format
like the following:

11/19/2018

Table 1-7 shows a few more examples you can try with different dates.

TABLE 1-7 Sample Date Format Strings

Format String Example

%a, %b %d %Y Sat, Jun 01 2019

%x 06/01/19

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Format String Example

%m-%d-%y 06-01-19

This %A %B %d This Saturday June 01

%A %B %d is day number %j of %Y Saturday June 01 is day number 152 of 2019

Working with times
If you want to work strictly with time data, use the datetime.time class.
The basic syntax for defining a time object using the time class is

variable = datetime.time([hour,[minute,[second,[microsecond]]]])

Notice how all the arguments are optional. For example, you can use no
arguments:

midnight = dt.time()

print(midnight)

This code stores the time as 00:00:00, which is midnight. To verify that
it's really a time, entering print(type(midnight)) displays the
following:

00:00:00

<class 'datetime.time'>

The second line tells you that the 00:00:00 value is a time object from
the datetime class.

The fourth optional value you can pass to time() is microseconds
(millionths of a second). For example, the following code puts a time
that's a millionth of a second before midnight in a variable named
almost_midnight and then displays that time onscreen with a print()
function:

almost_midnight = dt.time(23, 59, 59, 999999)

print(almost_midnight)

23:59:59.999999

You can use format strings with the time directives from Table 1-6 to
control the format of the time. Table 1-8 shows some examples using
23:59:59:999999 as the sample time.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 1-8 Sample Date Format Strings

Format String Example

%I:%M %p 11:59 PM

%H:%M:%S and %f microseconds 23:59:59 and 999999 microseconds

%X 23:59:59

Sometimes you want to work only with dates, and sometimes you want
to work only with times. Often you want to pinpoint a moment in time
using both the date and the time. For that, use the datetime class of the
datetime module. This class supports a now() method that can grab the
current date and time from the computer clock, as follows:

import datetime as dt

right_now = dt.datetime.now()

print(right_now)

What you see on the screen from the print() function depends on when
you execute this code. But the format of the datetime value will be like
this:

2019-11-19 14:03:07.525975

This means November 19, 2019 at 2:03 PM (with 7.525975 seconds
tacked on).

You can also define a datetime using any the following parameters. The
month, day, and year are required. The rest are optional and set to 0 in
the time if you omit them.

datetime(year, month, day, hour, [minute, [second, [microsecond]]])

Here is an example using 11:59 PM on December 31 2019:
import datetime as dt

new_years_eve = dt.datetime(2019, 12, 31, 23, 59)

print(new_years_eve)

Here is the output of that print() statement with no formatting:

2019-12-31 23:59:00

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Table 1-9 shows examples of formatting the datetime using directives
shown previously in Table 1-6.

TABLE 1-9 Sample Datetime Format Strings

Format String Example

%A, %B %d at %I:%M%p Tuesday, December 31 at 11:59PM

%m/%d/%y at %H:%M%p 12/31/19 at 23:59

%I:%M %p on %b %d 11:59 PM on Dec 31

%x 12/31/19

%c Tue Dec 31 23:59:00 2019

%m/%d/%y at %I:%M %p 12/31/19 at 11:59 PM

%I:%M %p on %m/%d/%y 1:59 PM on 12/31/2019

Calculating timespans
Sometimes just knowing the date or time isn't enough. You need to know
the duration, or timespan, as it’s typically called in the computer world.
In other words, not the date, not the o'clock, but the “how long” in terms
of years, months, weeks, days, hours, minutes, or whatever. For
timespans, the Python datetime module includes the
datetime.timedelta class.

A timedelta object is created automatically whenever you subtract two
dates, times, or datetimes to determine the duration between them. For
example, suppose you create a couple of variables to store dates, perhaps
one for New Year's Day and another for Memorial Day. Then you create
a third variable named days_between and put in it the difference you get
by subtracting the earlier date from the later date, as follows:

import datetime as dt

new_years_day = dt.date(2019, 1, 1)

memorial_day = dt.date(2019, 5, 27)

days_between = memorial_day - new_years_day

So what exactly is days_between in terms of a data type? If you print its
value, you get 146 days, 0:00:00. In other words, there are 146 days

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



between those dates; the 0:00:00 is time but because we didn't specify a
time of day in either date, the time digits are all just set to 0. If you use
the Python type() function to determine the data type of days_between,
you see it's a timedelta object from the datetime class, as follows:

146 days, 0:00:00

<class 'datetime.timedelta'>

The timedelta calculation happens automatically when you subtract one
date from another to get the time between. You can also define any
timedelta (duration) using this syntax:

datetime.timedelta(days=, seconds=, microseconds=, milliseconds=, minutes=, 

hours=, weeks=)

If you provide an argument, you must include a number after the = sign.
If you omit an argument, its value is set to 0.

To get an understanding of how this works, try out the following code.
After importing the datetime module, create a date using .date(). Then
create a timedelta object using .timedelta. If you add a date and a
timedelta, you get a new date — in this case, a date that's 146 days
after 1/1/2019:

import datetime as dt

new_years_day = dt.date(2019, 1, 1)

duration = dt.timedelta(days=146)

print(new_years_day + duration)

2019-05-27

Of course, you can subtract too. For example, if you start with a date of
5/27/2019 and subtract 146 days, you get 1/1/2019, as shown here:

import datetime as dt

memorial_day = dt.date(2019, 5, 27)

duration = dt.timedelta(days=146)

print(memorial_day - duration)

2019-01-01

It works with datetimes too. If you're looking for a duration that's less
than a day, just give both times the same date. For example, consider the
following code and the results of the subtraction:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



import datetime as dt

start_time = dt.datetime(2019, 3, 31, 8, 0, 0)

finish_time = dt.datetime(2019, 3, 31, 14, 34, 45)

time_between = finish_time - start_time

print(time_between)

print(type(time_between))

6:34:45

<class 'datetime.timedelta'>

We know that 6:34:45 is a time duration of 6 hours 34 minutes and 45
seconds for two reasons. One, it's the result of subtracting one moment
of time from another. Two, printing the type() of that data type tells us
it’s a timedelta object (a duration), not an o'clock time.

Here is another example using datetimes with different dates: One is the
current datetime, and the other is a date of birth with the time down to
the minute (March 31 1995 at 8:26 AM). To calculate age, subtract the
birthdate from the current time, now:

import datetime as dt

now = dt.datetime.now()

birthdatetime = dt.datetime(1995, 3, 31, 8, 26)

age = now - birthdatetime

print(age)

print(type(age))

8634 days, 7:55:07.739804

<class 'datetime.timedelta'>

The result is expressed as follows:
8634 days, 7 hours, 52 minutes, and 1.967031 seconds

The tiny seconds value stems from the fact that datetime.now grabs the
date and time from the computer's clock down to the microsecond.

You don't always need microseconds or even seconds in your timedelta
object. For example, say you’re trying to determine someone’s age. You
could start by creating two dates, one named today for today's date and
another named birthdate that contains the birthdate. The following
example uses a birthdate of Jan 31, 2000:

import datetime as dt

today = dt.date.today()

birthdate = dt.date(2000, 12, 31)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



delta_age = (today - birthdate)

print(delta_age)

The last two lines create a variable named delta_age and print what's in
the variable. If you run this code, you’ll see something like the following
output (but it won't be exactly the same because your today date will be
whatever today's date is when you run the app):

6533 days, 0:00:00

Let’s say what we really want is the age in years. You can convert
timedelta to a number of days by tacking .days onto timedelta. You
can put that in another variable called days_old. Printing days_old and
its type show you that days_old is an int, a regular old integer you can
do math with. For example, in the following code, the days_old variable
receives the value delta_age.days, which is delta_age from the
preceding line converted to a number of days:

delta_age = (today - birthdate)

days_old = delta_age.days

print(days_old, type(days_old))

6533 <class 'int'>

To get the number of years, divide the number of days by 365. If you
want just the number of years as an integer, use the floor division
operator (//) rather than regular division (/). (Floor division removes
the decimal portion from the quotient, so you get a whole number). You
can put the result of that calculation in another variable if you like. For
example, in the following code, the years_old variable contains a value
calculated by dividing days_old by 365:

years_old = days_old // 365

print(years_old)

18

So we get the age, in years: 18. If you want the number of months, too,
you can ballpark that just by taking the remainder of dividing the days
by 365 to get the number of days left. Then floor divide that value by 30
(because on average each month has about 30 days) to get a good
approximation of the number of months. Use % rather than / for division
to get just the remainder after the division. Figure 1-18 shows the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



sequence of events in a Jupyter notebook, with comments to explain
what's going on.

FIGURE 1-18: Calculating age in years and months from a timedelta object.

Accounting for Time Zones
As you know, when it's noon in your neighborhood, it doesn't mean its
noon everywhere. Figure 1-19 shows a map of all the time zones. If you
want a closer look, simply search the web for time zone map. At any
given moment, it’s a different day and time of day depending on where
you happen to be on the globe. There is a universal time, called the
Coordinated Universal Time or Universal Time Coordinated (UTC). You
may have heard of Greenwich Mean Time (GMT) or Zulu time used by
the military, which is the same idea. All these times refer to the time at
the prime meridian on Earth, or 0 degrees longitude, smack dab in the
middle of the time zone map in Figure 1-19.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-19: Time zones.

These days, most people rely on the Olson Database as the primary
source of information about time zones. It lists all current time zones and
locations. Do a web search for Olson database or tz database if you're
interested in all the details. There are too many time zone names to list
here, but Table 1-10 shows some examples of American time zones. The
left column is the official name from the database. The second column
shows the more familiar name. The last two columns show the offset
from UTC for standard time and daylight saving time.

TABLE 1-10 Sample Time Zones from the Olson
Database

Time Zone Common Name UTC Offset UTC DST Offset

Etc/UTC UTC +00:00 +00:00

Etc/UTC Universal +00:00 +00:00

America/Anchorage US/Alaska −09:00 −08:00

America/Adak US/Aleutian −10:00 −09:00

America/Phoenix US/Arizona −07:00 −07:00

America/Chicago US/Central −06:00 −05:00

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Time Zone Common Name UTC Offset UTC DST Offset

America/New_York US/Eastern −05:00 −04:00

America/Indiana/Indianapolis US/East-Indiana −05:00 −04:00

America/Honolulu US/Hawaii −10:00 −10:00

America/Indiana/Knox US/Indiana-Starke −06:00 −05:00

America/Detroit US/Michigan −05:00 −04:00

America/Denver US/Mountain −07:00 −06:00

America/Los Angeles US/Pacific −08:00 −07:00

Pacific/Pago_Pago US/Samoa −11:00 −11:00

Etc/UTC UTC +00:00 +00:00

Etc/UTC Zulu +00:00 +00:00

So why are we telling you all this? Because Python lets you work with
two different types of datetimes:

Naïve datetime: Any datetime that does not include information that
relates it to a specific time zone
Aware datetime: A datetime that includes time zone information

The timedelta objects and dates that you define with .date() are
always naïve. Any time or datetime you create as time() or datetime()
objects will also by naïve, by default. But with those two you have the
option of including time zone information if it's useful in your work,
such as when you're showing event dates to an audience in multiple time
zones.

Working with Time Zones
When you get the time from your computer’s system clock, it's for your
time zone, but you don't have an indication of what that time zone is. But
you can tell the difference between your time and UTC time by
comparing .now() for your location to .utc_now() for UTC time, and
then subtracting the difference, as shown in Figure 1-20.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-20: Determining the difference between your time and UTC time.

When we ran that code, the current time was 1:02PM and the UTC time
was 6:02PM. The difference was 5:00:00, which means five hours (no
minutes or seconds). Our time is earlier, so our time zone is really UTC
– 5 hours.

Note that if you subtract the earlier time from the later time, you get a
negative number, which can be misleading, as follows:

time_difference = (here_now - utc_now)

Difference: -1 day, 19:00:00

That's still five hours, really, because if you subtract 1 day and 19 hours
from 24 hours (one day), you still get 5 hours. Tricky business. But keep
in mind the left side of the time zone map is east, and the sun rises in the
east in each time zone. So when it’s rising in your time zone, it’s already
risen in time zones to the right, and hasn’t yet risen in time zones to your
left.

If you want to work directly with time zone names, you’ll need to import
some date utilities from Python's dateutils package. In particular, you

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



need gettz (short for get timezone) from the tz class of dateutil. So in
your code, right after the line where you import datetime, use from
dateutil.tz import gettz like this:

# import datetime and dateutil tz

import datetime as dt

from dateutil.tz import gettz

Afterwards, you can use gettz('name') to get time zone information for
any time zone. Replace name with the name of the time zone from the
Olson database: for example, America/New_York for USA Eastern Time,
or Etc_UTC for UTC Time.

Figure 1-21 shows an example where we get the current date and time
using datetime.now() with five different time zones — UTC and four
US time zones.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-21: The current date and time for five different time zones.

All USA times are standard time because no one in the USA is on
daylight saving time (DST) in late November. Let's see what happens if
we schedule an event for some time in July, when the USA is on back on
daylight saving time.

In this code (see Figure 1-22), we import datetime and gettx from
dateutil, as we did in the preceding example. But we're not concerned
about the current time. We're concerned about an event scheduled for
July 4, 2020 at 7:00 PM in our local time zone. So we define that using
the following:

event = dt.datetime(2020,7,4,19,0,0)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-22: Date and time for a scheduled event in multiple time zones.

We didn't say anything about time zone in the date time, so the time will
automatically be for our time zone. That datetime is stored in the event
variable.

The following line of code (after the comment, which starts with #)
shows the date and time, again local, because we didn't say anything
about time zone. We added "Local:" to the start of the text, and added a
line break at the end (\n) to visually separate that word from the rest of
the output.

# Show local date and time

print("Local: " + f"{event:%D %I:%M %p %Z}" + "\n")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When the app runs, it displays the following output based on the
datetime and our format string:

Local: 07/04/20 07:00 PM

The remaining code calculates the correct datetime for each of five time
zones:

name = event.astimezone(gettz("tzname"))

The first name is just a variable name we made up. In
event.astimezone(), the name event refers to the initial event time
defined in a previous line. The astimezone() function is a built-in
dateutil function that uses the following syntax:

.astimezone(gettz("tzname"))

In each line of code that calculates the date and time for a time zone, we
replace tzname with the name of the time zone from the Olson database.
As you can see in the output (refer to Figure 1-22), the datetime of the
event for five different time zones is displayed. Note that the USA time
zones are daylight saving time (such as EDT). Because we happen to be
on the east coast and the event is in July, the correct local time zone is
Eastern Daylight Time. When you look at the output of the dates, the
first one matches our time zone, as it should, and the times for the
remaining dates are adjusted for different time zones.

If you're thinking “Eek, what a complicated mess,” you won't get any
argument from us. None of this strikes us as intuitive, easy, or in the
general ballpark of fun. But if you're in a pinch and need some time zone
information for your data, the coding techniques you've learned so far
should get you want you need.

 If you research Python time zones online, you’ll probably find
that many people recommend using the arrow module rather than
the dateutil module. We won't get into all that here, because
arrow isn’t part of your initial Python installation and this book is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



hefty enough. (If we tried to cover everything, you’d need a
wheelbarrow to carry the book around.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Controlling the Action

IN THIS CHAPTER
 Deciding with if
 Repeating with for
 Looping with while

So far in this book we've talked a lot about storing information in
computers, mostly in variables that Python and your computer can work
with. Having the information in a form that the computer can work with
is critical to getting a computer to do anything. Think of this as the
“having” part — having some information with which to work.

But now we need to turn our attention to the “doing” part — working
with that information to create something useful or entertaining. In this
chapter, we cover the most important and most commonly used
operations for making the computer do stuff. We start with something
that computers do well, do quickly, and do a lot — make decisions.

Main Operators for Controlling the
Action

You control what your program (and the computer) does by making
decisions, which often involves making comparisons. You use operators,
such as those in Table 2-1 to make comparisons. These operators are
often referred to as relational operators or comparison operators
because by comparing items the computer is determining how two items
are related.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 2-1 Python Comparison Operators for Decision-
Making

Operator Meaning

== Is equal to

!= Is not equal to

< Is less than

> Is greater than

<= Is less than or equal to

>= Is greater than or equal to

Python also offers three logical operators, also called Boolean
operators, which enable you assess multiple comparisons before making
a final decision. These operators use the English word for, well, basically
what they mean, as shown in Table 2-2.

TABLE 2-2 Python Logical Operators

Operator Meaning

and Both are true

or One or the other is true

not Is not true

 In case you're wondering about that Boolean word, it’s a
reference to a guy named George Boole who, in the mid-1800s,
helped establish the algebra of logic, which pretty much laid the
foundation for today’s computers. Feel free to do a web search for
his name to learn more.

All these operators are often used with if…then…else decisions to
control what an app or program does. To make such decisions, you use

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the Python if statement.

Making Decisions with if
The word if is used a lot in all apps and computer programs to make
decisions. The simplest syntax for if follows:

if condition: do this

do this no matter what

So the first do this line is executed only if the condition is true. If the
condition is false, that first do this is ignored. Regardless of what the
condition turns out to be, the second line is executed next. Note that
neither line is indented. Indentation means a lot in Python, as you'll see
shortly. But first, let's do a few simple examples with this simple syntax.
You can try it for yourself in a Jupyter notebook or .py file.

Figure 2-1 shows a simple example in which the sun variable receives
the down string. Then an if statement checks to see whether the sun
variable equals the word down and, if it does, prints a Good night!
message. Then it just continues on normally to print an I am here
message.

FIGURE 2-1: The result of a simple if when the condition proves true.

 Make sure you always use two equal signs with no space
between (==) to test equality. This rule is easy to forget. If you type
it incorrectly, the code won't work as expected.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you run the same code with some word other than down in the sun
variable, the first print is ignored. But the next line is executed
normally because it's not dependent on the condition being true, as
shown in Figure 2-2.

FIGURE 2-2: Result of simple if when the condition proves false.

In the second example, it's not true that the sun variable equals down;
therefore the rest of that line is ignored and only the next line is
executed.

In these two examples, the code to be executed when the condition
proves true is on the same line as the if. However, often you want to do
more than one thing when the condition proves true. For that, you'll need
to indent each line to be executed only if the condition proves true. And
code that’s not indented below the if is executed whether the condition
proves true or not. The recommendation is to indent by four spaces, but
that’s not a hard-and-fast rule. You just have to remember that each line
has to be indented the same amount.

Also, you can use the indented syntax even if only one line of code is to
be executed should the condition prove true. In fact, that’s the most
common way to write an if in Python because most people agree it
makes the code more readable from a human perspective. So really, the
syntax is

if condition:

    do this

     …

do this no matter what

So if the condition proves true, the do this line is executed as are any
other lines indented equally to that one. The first un-indented line under

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the if is executed no matter what. So you could write the simple sun
example like this:

sun = "down"

if sun == "down":

    print("Good night!")

print("I am here")

As you can see in Figure 2-3, this code works the same as putting the
code on one line. If sun is down, Good night! prints before the second
print is executed. If sun doesn't equal down, the print statement for
Good night! is skipped.

FIGURE 2-3: Result of simple if when the condition proves true and then false.

If you're wondering whether it's better to use a single line or multiple
lines in your if statements, it depends on what you mean by better. If
you mean better in terms of which method executes the fastest, the
answer is neither. You won't be able to see a speed difference when
executing the code. If by better you mean easier for a human
programmer to read, most people would prefer the second method, with
the code indented under the if statement.

Remember, you can indent any number of lines under the if, and those
indented lines execute only if the condition proves true. If the condition
proves false, none of the indented lines are executed. The unindented
code under the indented lines is always executed because it's not

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



dependent on the condition. Here is an example with four lines of code
that execute only if the condition proves true:

total = 100

sales_tax_rate = 0.065

taxable = True

if taxable:

    print(f"Subtotal : ${total:.2f}")

    sales_tax = total * sales_tax_rate

    print(f"Sales Tax: ${sales_tax:.2f}")

    total = total + sales_tax

print(f"Total    : ${total:.2f}")

 You must spell True and False with an initial capital letter and
the rest lowercase. If you type it any other way, Python won't
recognize it as a Boolean True or False and your code won't run as
expected.

Notice that in the if statement we used

if taxable:

This code is perfectly okay because we made taxable a Boolean that
can only be True or False. You may see other people type it as

if taxable == True:

This line is okay too, and it won’t have any negative effect on the code.
The == True is just unnecessary because, by itself, taxable is already
either True or False.

Anyway, as you can see, we start off with a total variable, a
sales_tax_rate variable, and a taxable variable. When taxable is
True, all four lines under the if are executed, and you end up with the
output shown in Figure 2-4.

When taxable is set to False, all the indented lines are skipped over,
and the total shown is the original total without sales tax added, as
shown in Figure 2-5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-4: When taxable is True, sales_tax is added to the total.

FIGURE 2-5: When taxable is False, sales_tax is not added into the total.

 The curly braces and .2f stuff in Figures 2-4 and 2-5 are just for
formatting, as we discuss in Book 2, Chapter 1, and have nothing to
do with the if logic of the code.

Adding else to your if logic
So far you've looked at code examples in which some code is executed if
some condition proves true. If the condition proves false, that code is
ignored. Sometimes, you may want one chunk of code to execute if a
condition proves true; otherwise (else), if it doesn't prove true, you want
some other chunk of code to be executed. In that case, you can add an

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



else: to your if. Any lines of code indented under the else: are
executed only if the condition did not prove true. Here is the logic and
syntax:

if condition:

    do indented lines here

     …

else:

    do indented lines here

     …

do remaining un-indented lines no matter what

Figure 2-6 shows a simple example where we grab the current time from
the computer clock using datetime.now(). If the hour of that time is
less than 12, the program displays Good morning. Otherwise, it displays
Good afternoon. Regardless of the hour, it prints I hope you are
doing well! So if you write such a program and run it in the morning,
you get the appropriate greeting followed by I hope you are doing
well!, as in Figure 2-6.

FIGURE 2-6: Print an initial greeting based on the time of day.

Now you may look at that and say “Wow, that's impressive, Einstein. But
what if it’s 11:00 at night? Do you really want to say “Good afternoon”?
Yet another question deserving of a resounding “Hmm.” What we need
is an if … else where multiple else statements are possible. That’s
where the elif statement, described next, comes into play.

Handling multiple else statements with elif

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When if … else isn't enough to handle all the possibilities, there’s elif
(which, as you may have guessed, is a word made up from else if). An
if statement can include any number of elif conditions. You can
include or not include a final else statement that executes only if the if
and all the previous elifs prove false.

In its simplest form, the syntax for an if with elif and else is

if condition:

     do these indented lines of code

      …

elif condition:

    do these indented lines of code

     …

do these un-indented lines of code no matter what

Given that structure, it's possible that none of the indented code will
execute. Take a look at this example:

light_color = "green"

if light_color == "green":

    print("Go")

elif light_color == "red":

    print("Stop")

print("This code executes no matter what")

Executing that code results in the following:
Go

This code executes no matter what

If you change the light color to red, like this:
light_color = "red"

if light_color == "green":

    print("Go")

elif light_color == "red":

    print("Stop")

print("This code executes no matter what")

the result is
Stop

This code executes no matter what

Suppose you change the light color to anything other than red or green,
as follows:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



light_color = "yellow"

if light_color == "green":

    print("Go")

elif light_color == "red":

    print("Stop")

print("This code executes no matter what")

Executing this code produces the following output, because neither
color == "green" nor color == "red" proved true, so none of the
indented code was executed:

This code executes no matter what

You can add an else option that happens only if the previous conditions
all prove false:

light_color = "yellow"

if light_color == "green":

    print("Go")

elif light_color == "red":

    print("Stop")

else:

    print("Proceed with caution")

print("This code executes no matter what")

The output is
Proceed with caution

This code executes no matter what

The fact that the light_color is yellow prevents the first two if
conditions from proving true, so only the else code is executed. And
that's true for anything that you put into the light_color variable,
except "red" or "green", because the else isn't looking for a specific
condition. It’s just playing an “if all else fails, do this” role in the logic.

Ternary operations
Here is another code example, where we set a variable named age to 31.
Then we use if…elif…else to make a decision about what to display:

age = 31

if age < 21:

    beverage = "milk"

elif age >= 21 and age < 80:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    beverage = "beer"

else:

    beverage = "prune juice"

 

print("Have a " + beverage)

Comments are always optional. But adding comments to the code can
make it easier to understand, for future reference:

age = 31

 

if age < 21:

    # If under 21, no alcohol

    beverage = "milk"

 

elif age >= 21 and age < 80:

    # Ages 21 - 79, suggest beer

    beverage = "beer"

    

else:

    # If 80 or older, prune juice might be a good choice.

    beverage = "prune juice"

    

print("Have a " + beverage)

 If you're wondering about the rule for indenting comments, there
is no rule. Comments are just notes to yourself; they aren't
executable code. So they're never executed like code, no matter
what their level indentation.

Repeating a Process with for
Decision-making is a big part of writing all kinds of apps — games,
artificial intelligence, robotics … whatever. But sometimes you need to
count or perform a task over and over. For those times, you can use a
for loop, which enables you to repeat a line of code, or several lines of
code, as many times as you like.

Looping through numbers in a range

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you know how many times you want a loop to repeat, using the
following syntax may be easiest:

for x in range(y):

   do this

   do this

   …

un-indented code is executed after the loop

Replace x with any variable name of your choosing. Replace y with any
number or range of numbers. If you specify one number, the range will
be from 0 to 1 less than the final number. For example, run this code in a
Jupyter notebook or .py file:

for x in range(7):

    print(x)

print("All done")

The output is the result of executing print(x) once for each pass
through the loop, with x starting at 0. The final line, which isn't indented,
executes after the loop has finished looping. So the output is

0

1

2

3

4

5

6

All done

You might have expected the loop to count from 1 to 7 instead of 0 to 6.
However, unless you specify otherwise, the loop always starts counting
from 0. If you want to start counting with another number, specify the
starting number and the ending number, separated by a comma, inside
the parentheses. When you specify two numbers, the first number
identifies where the counting starts. The second number is 1 greater than
where the loop stops (which is unfortunate for readability but such is
life). For example, here is a for loop with two numbers in the range:

for x in range(1, 10):

    print(x)

print("All done")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When you run this code, the counter starts at 1 and, as mentioned, stops
1 short of the last number:

1

2

3

4

5

6

7

8

9

All done

If you want the loop to count from 1 to 10, the range is 1,11. This won't
make your brain cells any happier, but at least it gets the desired goal of
1 to 10, as shown in Figure 2-7.

FIGURE 2-7: A loop that counts from 1 to 10.

Looping through a string
Using range() in a for loop is optional. You can replace range with a
string, and the loop repeats once for each character in the string. The
variable x (or whatever you name the variable) contains one character
from the string with each pass through the loop, going from left to right.
The syntax here is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



for x in string

    do this

    do this

     …

do this when the loop is done

As usual, replace x with any variable name you like. The string should
be text enclosed in quotation marks, or it should be the name of a
variable that contains a string. For example, type this code into a Jupyter
notebook or .py file:

for x in "snorkel":

    print(x)

print("Done")

When you run this code, you get the following output. The loop prints
one letter from the word snorkel with each pass through the loop. When
the looping was finished, execution fell to the first un-indented line
outside the loop.

s

n

o

r

k

e

l

Done

The string doesn't have to be a literal string. It can be the name of any
variable that contains a string. For example, try this code:

my_word = "snorkel"

for x in my_word:

    print(x)

print("Done")

The result is the same. The only difference is that we used a variable
name rather than a string in the for loop. But the code knew that you
meant the contents of my_word rather than the literal string my_word,
because my_word isn't enclosed in quotation marks.

s

n

o

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



r

k

e

l

Done

Looping through a list
In Python, a list is basically any group of items, separated by commas,
inside square brackets. You can loop through such a list using a for
loop. In the following example, the list to loop through is specified in
brackets on the first line:

for x in ["The", "rain", "in", "Spain"]:

    print(x)

print("Done")

This kind of loop repeats once for each item in the list. The x variable
gets its value from one item in the list, going from left to right. So,
running the preceding code produces the output you see in Figure 2-8.

You can assign the list to a variable, too, and then use the variable name
in the for loop rather than the list. Figure 2-9 shows an example where
the seven_dwarves variable is assigned a list of seven names. Again,
note how the list is contained in square brackets. These make Python
treat the variable as a list. The for loop then loops through the list,
printing the name of one dwarf (one item in the list) with each pass
through the loop. We used the variable name dwarf rather than x, but
that name can be any valid name you like. We could have used x or
little_person or name_of_fictional_entity or goober_wocky or
anything else, as long as the name in the first line matches the name used
in the for loop.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-8: Looping through a list.

FIGURE 2-9: Looping through a list.

Bailing out of a loop
Typically, you want a loop to go through an entire list or range of items,
but you can also force a loop to stop early if some condition is met. Use
the break statement inside an if statement to force the loop to stop
early. The syntax is

for x in items:

  if condition:

    [do this … ]

    break

  do this

The square brackets in this example aren't part of the code. They indicate
that what is between the brackets is optional. Suppose that someone
completed an exam and we want to loop through the answers. But we
have a rule that says if an answer is empty, we mark it Incomplete and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



ignore the rest of the items in the list. In the following, all items are
answered (no blanks):

answers = ["A", "C", "B", "D"]

for answer in answers:

    if answer == "":

        print("Incomplete")

        break

    print(answer)

print("Loop is done")

In the result, all four answers are printed:
A

C

B

D

Loop is done

Here is the same code, but the third item in the list is blank, as indicated
by "", which is an empty string:

answers = ["A", "C", "", "D"]

for answer in answers:

    if answer == "":

        print("Incomplete")

        break

    print(answer)

print("Loop is done")

Here is the output of running that code:
A

C

Incomplete

Loop is done

So the logic is, as long as some answer is provided, the if code is not
executed and the loop runs to completion. However, if the loop
encounters a blank answer, it prints Incomplete and also “breaks” the
loop, jumping down to the first statement outside the loop (the final un-
indented statement), which prints Loop is done.

Looping with continue

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You can also use a continue statement in a loop, which is kind of the
opposite of break. Whereas break makes code execution jump past the
end of the loop and stop looping, continue makes it jump back to the
top of the loop and continue with the next item (that is, after the item
that triggered the continue). So here is the same code as the preceding
example, but instead of executing a break when execution hits a blank
answer, it continues with the next item in the list:

answers = ["A", "C", "", "D"]

for answer in answers:

    if answer == "":

        print("Incomplete")

        continue

    print(answer)

print("Loop is done")

The output of that code is as follows. It doesn't print the blank answer, it
prints Incomplete, but then it goes back and continues looping through
the rest of the items:

A

C

Incomplete

D

Loop is done

Nesting loops
It's perfectly okay to nest loops — that is, to put loops inside loops. Just
make sure you get your indentations right because the indentations
determine which loop, if any, a line of code is located within. For
example, in Figure 2-10, an outer loop loops through the words First,
Second, and Third. With each pass through the loop, it prints a word and
then it prints the numbers 1–3 (by looping through a range and adding 1
to each range value).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-10: Nested loops.

The loops work because each word in the outer list is followed by the
numbers 1–3. The end of the loop is the first un-indented line at the
bottom, which doesn't print until the outer loop has completed its
process.

Looping with while
As an alternative to looping with for, you can loop with while. The
difference is subtle. With for, you generally get a fixed number of loops,
one for each item in a range or one for each item in a list. With a while
loop, the loop keeps going as long as (while) some condition is true.
Here is the basic syntax:

while condition:

   do this …

   do this …

do this when the loop is done

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



With while loops, you have to make sure that the condition that makes
the loop stop happens eventually. Otherwise, you get an infinite loop that
just keeps going and going and going until some error causes it to fail, or
until you force it to stop by closing the app, shutting down the computer,
or doing some other awkward thing.

Here is an example where the while condition runs for a finite number
of times due to three things:

We create a variable named counter and give it a starting value (65).

We say to run the loop while counter is less than 91.

Inside the loop, we increase counter by 1 (counter += 1).
Increasing by 1 repeatedly eventually increases counter to more
than 91, which ends the loop.

The chr() function inside the loop displays the ASCII character for the
number in counter. Going from 65 to 90 is enough to print all the
uppercase letters in the alphabet, as in you see in Figure 2-11.

The easy and common mistake to make with this kind of loop is to forget
to increment the counter so that it grows with each pass through the loop
and eventually makes the while condition False and stops the loop. In
Figure 2-12, we intentionally removed counter += 1 to cause that error.
As you can see, the loop keeps printing A. It keeps going until you stop
it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-11: Looping while counter is less than 91.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-12: An infinite while loop.

If this happens to you in a Jupyter notebook, don't panic. Just click the
square Stop button to the right of Run. (The Stop button displays
Interrupt the Kernel, which is nerdspeak for stop, when you hover the
mouse pointer over it.) All code execution in the notebook will stop. To
restart the kernel and get back to square one, click the curved arrow to
the right of the Stop button. Then you can fix the error in your code and
try again.

Starting while loops over with continue
You can use if and continue in a while loop to skip back to the top of
the loop just as you can with for loops. Take a look at the code in Figure
2-13 for an example.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-13: A while loop with continue.

A while loop keeps going while a variable named counter is less than
10. Inside the loop, the variable named number is assigned a random
number in the range of 1 to 999. Then the following statement checks to
see if number is even:

if int(number / 2) == number / 2:

Remember, the int() function returns only the whole portion of a
number. So let's say the random number that's generated is 5. Dividing
this number by 2 gets you 2.5. Then int(number) is 2 because the int()
of a number drops everything after the decimal point. Because 2 doesn't
equal 2.5, the code skips over the continue, prints that odd number,
increments the counter, and keeps going.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If the next random number is, say, 12, well, 12 divided by 2 is 6 and
int(6) does equal 6 (because neither number has a decimal point). That
causes the continue to execute, skipping over the print(number)
statement and the counter increment, so it just tries another random
number and continues on its merry way. Eventually, it finds 10 odd
numbers, at which point the loop stops and the final line of code displays
Loop is done.

Breaking while loops with break
You can also break a while loop using break, just as you can with a for
loop. When you break a while loop, you force execution to continue
with the first line of code under and outside the loop, thereby stopping
the loop but continuing the flow with the rest of the action after the loop.

Another way to think of a break is something that allows you to stop a
while loop before the while condition proves false. So it allows you to
literally break out of the loop before its time. Truthfully, however, we
can't remember a situation where breaking out of a loop before its time
was a good solution to a problem, so it's hard to come up with a practical
example. In lieu of that, we’ll just show you the syntax and provide a
generic example. The syntax is

while condition1:

    do this

     …

    if condition2:

        break

do this when the loop is done

Basically, two things can stop this loop. Either condition1 proves false,
or condition2 proves true. Regardless of which of these two things
happen, code execution resumes at the first line of code outside the loop,
the line that reads do this code when the loop is done in the sample
code.

Here is an example where the program prints up to ten numbers that are
not evenly divisible by 5. It may print fewer than that, though, because
when it hits a random number that's evenly divisible by 5, it bails out of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the loop. So the only thing you can predict about the example is that it
will print between zero and ten numbers that are not evenly divisible by
5. You can’t predict how many it will print on any given run, because
there’s no way to tell if or when it will get a random number evenly
divisible by 5 during the ten tries it’s allowed:

import random

print("Numbers that aren't evenly divisible by 5")

counter = 0

while counter < 10:

    # Get a random number

    number = random.randint(1,999)

    if int(number / 5) == number / 5:

        # If it's evenly divisible by 5, bail out.

        break

    # Otherwise, print it and keep going for a while.

    print(number)

    # Increment the loop counter.

    counter += 1

print("Loop is done")

So the first time you run that app, your output may look something like
Figure 2-14. The second time you may get something like Figure 2-15.
There’s just no way to predict the result because the random number is
indeed random and not predictable (which is an important concept in
many games).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-14: A while loop with break.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-15: The same code as in Figure 2-14 on a second run.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Speeding Along with Lists and

Tuples
IN THIS CHAPTER

 Defining lists
 Working with lists
 Understanding tuples
 Checking out sets

Sometimes in code you work with one item of data at a time, such as a
person’s name or a unit price or a username. Other times, you work with
larger sets of data, such as a list of people’s names or a list of products
and their prices. These sets of data are often referred to as lists or arrays
in most programming languages.

Python has lots of easy, fast, and efficient ways to deal with all kinds of
data collections, as you discover in this chapter. As always, we
encourage you to follow along in a Jupyter notebook or .py file. The
“doing” part helps with the “understanding” part.

Defining and Using Lists
The simplest data collection in Python is a list. We provided examples of
these in the preceding chapter. A list is any list of data items, separated
by commas, inside square brackets. Typically, you assign a name to the
list using an = character, just as you would with variables. If the list
contains numbers, don't use quotation marks around them. For example,
here is a list of test scores:

scores = [88, 92, 78, 90, 98, 84]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



REALLY, REALLY LONG LISTS
All the lists in this chapter are short to make the examples easy and manageable. In
real life, however, your lists might contain hundreds or even thousands of items that
change frequently. Typing such long lists in the code directly would make the code
difficult to work with. Instead, you'd store such lists in external files or external
databases, where everything is easier to manage.

All the techniques you learn in this chapter apply to lists stored in external files. The
only difference is that you have to write code to pull the data into the list first. But before
you start tackling big lists, you need to know all the techniques for working with lists of
any size. So stick with this chapter before you move on to managing external data.
You’ll be glad you did.

If the list contains strings, as always, those strings should be enclosed in
single or double quotation marks, as in this example:

students = ["Mark", "Amber", "Todd", "Anita", "Sandy"]

To display the contents of a list on the screen, you can print it just as you
would print any regular variable. For example, executing
print(students) in your code after defining that list displays the
following on the screen:

['Mark', 'Amber', 'Todd', 'Anita', 'Sandy']

This output may not be exactly what you had in mind. But don't worry,
Python offers lots of ways to display lists.

Referencing list items by position
Each item in a list has a position number, starting with 0, even though
you don’t see any numbers. You can refer to any item in the list by its
number using the name for the list followed by a number in square
brackets. In other words, use this syntax:

listname[x]

Replace listname with the name of the list you're accessing and replace
x with the position number of the item you want. Remember, the first
item is always 0, not 1. For example, in the following first line, we

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



define a list named students, and then print item number 0 from that
list. The result, when executing the code, is the name Mark displayed:

students = ["Mark", "Amber", "Todd", "Anita", "Sandy"]

print(students[0])

Mark

 When reading list items aloud, professionals use the word sub
before the number. For example, students[0] would be spoken as
“students sub zero.”

The next example shows a list named scores. The print() function
prints the position number of the last score in the list, which is 4
(because the first one is always 0).

scores = [88, 92, 78, 90, 84]

print(scores[4])

84

If you try to access a list item that doesn't exist, you get an list index
out of range error. The index part is a reference to the number inside
the square brackets. For example, Figure 3-1 shows a little experiment in
a Jupyter notebook where we created a list of scores and then tried to
print score[5]. It failed and generated an error because there is no
scores[5]. There's only scores[0], scores[1], scores[2], scores[3],
and scores[4] because the counting always starts at 0 with the first one
in the list.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-1: Index out-of-range error because scores[5] doesn't exist.

Looping through a list
To access each item in a list, just use a for loop with this syntax:

for x in list:

Replace x with a variable name of your choosing. Replace list with the
name of the list.

 An easy way to make the code readable is to always use a plural
for the list name (such as students, scores). Then you can use the
singular name (student, score) for the variable name. You don't
need to use subscript numbers (numbers in square brackets) with
this approach either. For example, the following code prints each
score in the scores list:

for score in scores:

    print(score)

Remember to always indent the code that's to be executed in the loop.
Figure 3-2 shows a more complete example where you can see the result
of running the code in a Jupyter notebook.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-2: Looping through a list.

Seeing whether a list contains an item
If you want your code to check the contents of a list to see whether it
already contains some item, use in listname in an if statement or a
variable assignment. For example, the code in Figure 3-3 creates a list of
names. Then, two variables store the results of searching the list for the
names Anita and Bob. Printing the contents of each variable displays
True for the one where the name Anita is in the list. The test to see
whether Bob is in the list proves False.

FIGURE 3-3: Seeing whether an item is in a list.

Getting the length of a list

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



To determine how many items are in a list, use the len() function (short
for length). Put the name of the list inside the parentheses. For example,
type the following code in a Jupyter notebook or at the Python prompt or
whatever:

students = ["Mark", "Amber", "Todd", "Anita", "Sandy"]

print(len(students))

Running that code produces this output:
5

The list has five items, though the index of the last item is always 1 less
than the number because Python starts counting at 0. So the last item,
Sandy, refers to students[4] and not students[5].

Adding an item to the end of a list
When you want your code to add an item to the end of a list, use the
.append() method with the value you want to add inside the
parentheses. You can use either a variable name or a literal value inside
the quotation marks. For instance, in Figure 3-4, the line
students.append("Goober") adds the name Goober to the list. The line
students.append(new_student) adds whatever name is stored in the
new_student variable to the list. The .append() method always adds to
the end of the list. So when you print the list, those two new names are at
the end.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-4: Appending two new names to the end of the list.

You can use a test to see whether an item is in a list and then append it
only when the item isn't already there. For example, the following code
won't add the name Amanda to the list because that name is already in
the list:

student_name = "Amanda"

 

#Add student_name but only if not already in the list.

if student_name in students:

    print(student_name + " already in the list")

else:

    students.append(student_name)

    print(student_name + " added to the list")

Inserting an item into a list
Whereas the append() method adds an item to the end of a list, the
insert() method adds an item to the list in any position. The syntax for
insert() is

listname.insert(position, item)

Replace listname with the name of the list, position with the position
at which you want to insert the item (for example, 0 to make it the first
item, 1 to make it the second item, and so forth). Replace item with the
value, or the name of a variable that contains the value, that you want to
put in the list.

For example, the following code makes Lupe the first item in the list:

# Create a list of strings (names).

students = ["Mark", "Amber", "Todd", "Anita", "Sandy"]

 

student_name = "Lupe"

# Add student name to front of the list.

students.insert(0, student_name)

 

# Show me the new list.

print(students)

If you run the code, print(students) will display the list after the new
name has been inserted, as follows:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



['Lupe', 'Mark', 'Amber', 'Todd', 'Anita', 'Sandy']

Changing an item in a list
You can change an item in a list using the = assignment operator just like
you do with variables. Make sure you include the index number in
square brackets to indicate which item you want to change. The syntax is

listname[index] = newvalue

Replace listname with the name of the list; replace index with the
subscript (index number) of the item you want to change; and replace
newvalue with whatever you want to put in the list item. For example,
take a look at this code:

# Create a list of strings (names).

students = ["Mark", "Amber", "Todd", "Anita", "Sandy"]

students[3] = "Hobart"

print(students)

When you run this code, the output is as follows, because Anita has been
changed to Hobart:

['Mark', 'Amber', 'Todd', 'Hobart', 'Sandy']

Combining lists
If you have two lists that you want to combine into a single list, use the
extend() function with the following syntax:

original_list.extend(additional_items_list)

In your code, replace original_list with the name of the list to which
you'll be adding new list items. Replace additional_items_list with
the name of the list that contains the items you want to add to the first
list. Here is a simple example using lists named list1 and list2. After
executing list1.extend(list2), the first list contains the items from
both lists, as you can see in the output of the print() statement at the
end.

# Create two lists of Names.

list1 = ["Zara", "Lupe", "Hong", "Alberto", "Jake"]

list2 = ["Huey", "Dewey", "Louie", "Nader", "Bubba"]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

# Add list2 names to list1.

list1.extend(list2)

 

# Print list 1.

print(list1)

 

['Zara', 'Lupe', 'Hong', 'Alberto', 'Jake', 'Huey', 'Dewey', 'Louie', 

'Nader', 'Bubba']

Easy Parcheesi, no?

Removing list items
Python offers a remove() method so you can remove any value from the
list. If the item is in the list multiple times, only the first occurrence is
removed. For example, the following code displays a list of letters with
the letter C repeated a few times. Then the code uses
letters.remove("C") to remove the letter C from the list:

# Create a list of strings.

letters = ["A", "B", "C", "D", "C", "E", "C"]

 

# Remove "C" from the list.

letters.remove("C")

 

# Show me the new list.

print(letters)

When you execute this code, you'll see that only the first letter C has
been removed:

['A', 'B', 'D', 'C', 'E', 'C']

If you need to remove all of an item, you can use a while loop to repeat
the .remove as long as the item still remains in the list. For example, this
code repeats the .remove as long as “C” is still in the list:

while "C" in letters:

    letters.remove("C")

If you want to remove an item based on its position in the list, use pop()
with an index number rather than remove() with a value. If you want to
remove the last item from the list, use pop() without an index number.
For example, the following code creates a list, removes the first item (0),

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



and then removes the last item (pop() with nothing in the parentheses).
Printing the list proves that those two items have been removed:

# Create a list of strings.

letters = ["A", "B", "C", "D", "E", "F", "G"]

 

# Remove the first item.

letters.pop(0)

# Remove the last item.

letters.pop()

 

# Show me the new list.

print(letters)

Running the code shows that popping the first and last items did, indeed,
work:

['B', 'C', 'D', 'E', 'F']

When you pop() an item off the list, you can store a copy of that value
in some variable. For example, Figure 3-5 shows the same code as the
preceding, but it stores copies of what's been removed in variables
named first_removed and last_removed. At the end it prints the list,
and also shows which letters were removed.

FIGURE 3-5: Removing list items with pop().

Python also offers a del (short for delete) command that deletes any
item from a list based on its index number (position). But again, you

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



have to remember that the first item is 0. So, let's say you run the
following code to delete item number 2 from the list:

# Create a list of strings.

letters = ["A", "B", "C", "D", "E", "F", "G"]

 

# Remove item sub 2.

del letters[2]

 

print(letters)

Running that code shows the list again, as follows:
['A', 'B', 'D', 'E', 'F', 'G']

The letter C has been deleted, which is the correct item to delete because
letters are numbered 0, 1, 2, 3, and so forth.

You can also use del to delete an entire list by removing the square
brackets and the index number. For example, the code in Figure 3-6
creates a list and then deletes it. Trying to print the list after the deletion
causes an error because the list no longer exists when the print()
statement is executed. Note that unlike pop, which returns the item you
deleted, del just deletes without returning anything.

FIGURE 3-6: Deleting a list and then trying to print it causes an error.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Clearing out a list
If you want to delete the contents of a list but not the list itself, use
.clear(). The list still exists, but it contains no items. In other words,
it's an empty list. The following code shows how you could test this.
Running the code displays [] at the end, which lets you know the list is
empty:

# Create a list of strings.

letters = ["A", "B", "C", "D", "E", "F", "G"]

 

# Clear the list of all entries.

letters.clear()

 

# Show me the new list.

print(letters)

 

[]

Counting how many times an item appears in a
list
You can use the Python count() method to count how many times an
item appears in a list. As with other list methods, the syntax is simple:

listname.count(x)

Replace listname with the name of your list, and x with the value you're
looking for (or the name of a variable that contains that value).

The code in Figure 3-7 counts how many times the letter B appears in
the list, using a literal B inside the parentheses of .count() like this:

grades.count("B")

Because B is in quotation marks, you know it's a literal, not the name of
some variable.

This code also counts the number of C grades, but we stored that value
in a variable just to show the difference in syntax. Both counts worked,
as you can see in the output of the program at the bottom.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



We just counted the F's right in the code that displays the message.
There are no F grades, so grades.count("F") returns 0, as you can see
in the output.

In case you're wondering why we're not counting other grades, it's
because the app is just an example to illustrate the Python syntax. We're
not trying to create an actual product to count all real grades in a
classroom.

FIGURE 3-7: Counting items in a list.

 When trying to combine numbers and strings to form a message,
you have to convert the numbers to strings using the str()
function. Otherwise, you get an error that reads something like can
only concatenate str (not "int") to str. In that message,
int is short for integer and str is short for string.

Finding an list item's index
Python offers an .index() method that returns a number indicating the
position of an item in a list, based on the index number. The syntax is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



listname.index(x)

As always, replace listname with the name of the list you want to
search. Replace x what whatever you're looking for (either a literal or a
variable name, as always). Of course, there's no guarantee that the item
is in the list or is in the list only once. If the item isn’t in the list, an error
occurs. If the item is in the list multiple times, the index of only the first
matching item is returned.

Figure 3-8 shows an example where the program crashes at the line
f_index = grades.index(look_for) because there is no F in the list.

FIGURE 3-8: Program fails when trying to find the index of a nonexistent list item.

An easy way to get around this problem is to use an if statement to see
whether an item is in the list before you try to get its index number. If
the item isn't in the list, display a message saying so. Otherwise, get the
index number and show it in a message. That code follows:

# Create a list of strings.

grades = ["C", "B", "A", "D", "C", "B", "C"]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

# Decide what to look for

look_for = "F"

# See if the item is in the list.

if look_for in grades:

    # If it's in the list, get and show the index.

    print(str(look_for) + " is at index " + str(grades.index(look_for)))

else:

    # If not in the list, don't even try for index number.

    print(str(look_for) + " isn't in the list.")

Alphabetizing and sorting lists
Python offers a sort() method for sorting lists. In its simplest form, it
alphabetizes the items in the list (if they’re strings). If the list contains
numbers, they’re sorted smallest to largest. For a simple sort like that,
just use sort() with empty parentheses:

listname.sort()

Replace listname with the name of your list. Figure 3-9 shows an
example using a list of strings and a list of numbers. We created a new
list for each simply by assigning each sorted list to a new list name.
Then the code prints the contents of each sorted list.

FIGURE 3-9: Sorting strings and numbers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 If your list contains strings with a mixture of uppercase and
lowercase letters, and if the results of the sort don't look right, try
replacing .sort() with .sort(key=lambda s: s.lower()) and
then running the code again. See Book 2, Chapter 5 if you're
curious about the details.

Dates are a little trickier because you can’t just type them in as strings,
like "12/31/2020". They have to be the date data type to sort correctly.
This means using the datetime module and the date() method to define
each date. You can add the dates to the list as you would any other list.
For example, in the following line, the code creates a list of four dates:

dates = [dt.date(2020,12,31), dt.date(2019,1,31), dt.date(2018,2,28), 

dt.date(2020,1,1)]

The computer certainly won't mind if you create the list this way. But if
you want to make the code more readable to yourself or other
developers, you may want to create and append each date, one at a time.
Figure 3-10 shows an example where we created an empty list named
datelist:

datelist = []

Then we appended one date at a time to the list using the
dt.date(year,month,day) syntax.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-10: Sorting and displaying dates in a nice format.

After the list is created, the code uses datelist.sort() to sort the dates
into chronological order (earliest to latest). We didn't use
print(datelist) in that code because that method displays the dates
with the data type information included, like this:

[datetime.date(2018, 2, 28), datetime.date(2019, 1, 31), datetime.date (2020, 

1, 1), datetime.date(2020, 12, 31)]

Not the easiest list to read. So, rather than print the entire list with one
print() statement, we looped through each date in the list, and printed
each one formatted with the f-string %m/%d/%Y. This technique displays
each date on its own line in mm/dd/yyyy format, as you can see at the
bottom of Figure 3-10.

If you want to sort items in reverse order, put reverse=True inside the
sort() parentheses (and don't forget to make the first letter of True
uppercase). Figure 3-11 shows examples of sorting all three lists in
descending (reverse) order using reverse=True.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-11: Sorting strings, numbers, and dates in reverse order.

Reversing a list
You can also reverse the order of items in a list using the .reverse
method. This is not the same as sorting in reverse. When you sort in
reverse, you still sort: Z–A for strings, largest to smallest for numbers,
and latest to earliest for dates. When you reverse a list, you simply
reverse the items in the list, no matter their order, without trying to sort

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



them. In the following code, we reverse the order of the names in the list
and then print the list.

# Create a list of strings.

names = ["Zara", "Lupe", "Hong", "Alberto", "Jake"]

# Reverse the list.

names.reverse()

# Print the list.

print(names)

 

['Jake', 'Alberto', 'Hong', 'Lupe', 'Zara']

Copying a list
If you need to work with a copy of a list so as not to alter the original
list, use the .copy() method. For example, the following code is similar
to the preceding code, except that instead of reversing the order of the
original list, we make a copy of the list and reverse that one. Printing the
contents of each list shows how the first list is still in the original order
whereas the second one is reversed:

# Create a list of strings.

names = ["Zara", "Lupe", "Hong", "Alberto", "Jake"]

 

# Make a copy of the list.

backward_names = names.copy()

# Reverse the copy.

backward_names.reverse()

 

# Print the list.

print(names)

print(backward_names)

 

['Zara', 'Lupe', 'Hong', 'Alberto', 'Jake']

['Jake', 'Alberto', 'Hong', 'Lupe', 'Zara']

Table 3-1 summarizes the methods you've learned about so far in this
chapter. As you will see in upcoming chapters, these methods work with
other kinds of iterables (a fancy name that means any list or list-like
thing that you can go through one at a time).

TABLE 3-1 Methods for Working with Lists

Method What It Does

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Method What It Does

append() Adds an item to the end of the list

clear() Removes all items from the list, leaving it empty

copy() Makes a copy of a list

count() Counts how many times an element appears in a list

extend() Appends the items from one list to the end of another list

index() Returns the index number (position) of an element in a list

insert() Inserts an item into the list at a specific position

pop()
Removes an element from the list, and provides a copy of that
item that you can store in a variable

remove() Removes one item from the list

reverse() Reverses the order of items in the list

sort() Sorts the list in ascending order

sort(reverse=True) Sorts the list in descending order

What's a Tuple and Who Cares?
In addition to lists, Python supports a data structure known as a tuple.
Some people pronounce that like “two-pull.” Some people pronounce it
to rhyme with “couple”. But it's not spelled tupple or touple, so our best
guess is that it’s pronounced “two-pull.” (Heck, for all we know, there
may not be only one correct way to pronounce it, but that doesn’t stop
people from arguing about it.)

Anyway, despite the oddball name, a tuple is just an immutable list (like
that tells you a lot). In other words, a tuple is a list, but you can’t change
it after it’s defined. So why would you want to put immutable,
unchangeable data in an app? Consider Amazon. If we could all go into
Amazon and change things at will, everything would cost a penny and
we’d all have housefuls of Amazon stuff that cost a penny, rather than
housefuls of Amazon stuff that cost more than a penny.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The syntax for creating a tuple is the same as the syntax for creating a
list, except you don’t use square brackets. You have to use parentheses,
like this:

prices = (29.95, 9.98, 4.95, 79.98, 2.95)

Most of the techniques and methods that you learned for using lists back
in Table 3-1 don’t work with tuples because they are used to modify
something in a list, and a tuple can’t be modified. However, you can get
the length of a tuple using len, like this:

print(len(prices))

You can use .count() to see how many times an item appears in a tuple.
For example:

print(prices.count(4.95))

You can use in to see whether a value exists in a tuple, as in the
following sample code:

print(4.95 in prices)

This returns True if the tuple contains 4.95 or False if it doesn't.

If an item exists in the tuple, you can get its index number. You’ll get an
error, though, if the item doesn’t exist in the list. You can use in first to
see whether the item exists before checking for its index number, and
then you can return some nonsense value such as –1 if it doesn’t exist, as
in this code:

look_for = 12345

if look_for in prices:

    position = prices.index(look_for)

else:

    position = -1

print(position)

You can loop through the items in a tuple and display them in any format
you want by using format strings. For example, this code displays each
item with a leading dollar sign and two digits for the pennies:

# Loop through and display each item in the tuple.

for price in prices:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    print(f"${price:.2f}")

The output from running this code with the sample tuple follows:
$29.95

$9.98

$4.95

$79.98

$2.95

You can't change the value of an item in a tuple using this kind of
syntax:

prices[1] = 234.56

You’ll get an error message that reads TypeError: 'tuple' object
does not support item assignment. This message is telling you that
you can’t use the assignment operator, =, to change the value of an item
in a tuple because a tuple is immutable, meaning its content cannot be
changed.

Any method that alters, or even just copies, data in a list causes an error
when you try it with a tuple. So the list methods .append(), .clear(),
.copy(), .extend(), .insert(), .pop(), .remove(), .reverse(), and
.sort() would fail when working with tuples. In short, a tuple makes
sense if you want to show data to users without giving them any means
to change any of the information.

Working with Sets
Python also offers sets as a means of organizing data. The difference
between a set and a list is that the items in a set have no specific order.
Even though you may define the set with the items in a certain order,
none of the items get index numbers to identify their position.

To define a set, use curly braces where you use square brackets for a list
and parentheses for a tuple. For example, here's a set with some numbers
in it:

sample_set = {1.98, 98.9, 74.95, 2.5, 1, 16.3}

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Sets are similar to lists and tuples in a few ways. You can use len() to
determine how many items are in a set. Use in to determine whether an
item is in a set.

But you can't get an item in a set based on its index number. Nor can you
change an item already in the set. You can't change the order of items in
a set either. So you can't use .sort() to sort the set or .reverse() to
reverse its order.

You can add a single new item to a set using .add(), as in the following
example:

sample_set.add(11.23)

Not that unlike a list, a set never contains more than one instance of a
value. So even if you add 11.23 to the set multiple times, the set will still
contain only one copy of 11.23.

You can also add multiple items to a set using .update(). But the items
you're adding should be defined as a list in square brackets, as in the
following example:

sample_set.update([88, 123.45, 2.98])

You can copy a set. However, because the set has no defined order, when
you display the copy, its items may not be in the same order as the
original set, as shown in this code and its output:

# Define a set named sample_set.

sample_set = {1.98, 98.9, 74.95, 2.5, 1, 16.3}

# Show the whole set

print(sample_set)

# Make a copy and show the copy.

ss2 = sample_set.copy()

print(ss2)

 

{1.98, 98.9, 2.5, 1, 74.95, 16.3}

{16.3, 1.98, 98.9, 2.5, 1, 74.95}

Figure 3-12 shows some sample code and its output. The code creates a
set named sample_set and then uses a variety of print() statements to
output information. The following line displays the entire set on the
screen:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



print(sample_set)

This line displays 6 because the set has six items:

print(len(sample_set))

And the following line displays True because the number 74.95 is in
sample_set:

print(74.95 in sample_set)

Comments in the code describe what the rest of the lines do. Note this
command inside the loop near the end of the code:

print(f"{price:>6.2f}")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-12: Playing about with Python sets.

Each number is neatly formatted with two digits, because the code uses
the f-string >6.2f, which right aligns each number with two digits after

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the decimal point.

Lists and tuples are two of the most commonly used Python data
structures. Sets don’t seem to get as much play as the other two, but it’s
good to know about them. A fourth — and widely used — Python data
structure is the data dictionary, which you learn about in the next
chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Cruising Massive Data with

Dictionaries
IN THIS CHAPTER

 Producing a data dictionary
 Seeing how to loop through a dictionary
 Copying dictionaries
 Deleting items in a dictionary
 Using multi-key dictionaries

Data dictionaries, also called associative arrays in some languages, are
kind of like lists, which we discuss in Chapter 3 of this minibook. But
each item in the list is identified not by its position in the list but by a
key. You can define the key, which can be a string or a number. All that
matters is that it is unique to each item in the dictionary.

To understand why uniqueness matters, think about phone numbers,
email addresses, and Social Security numbers. If two or more people had
the same phone number, whenever someone called that number, all those
people would get the call. If two or more people had the same email
address, all those people would get the same email messages. If two or
more people had the same Social Security number, and one of those
people was a million dollars behind in their taxes, you better hope you
can convince the tax folks that you’re not the one who’s delinquent, even
though your Social Security number is on the past-due bill.

In this chapter, you'll learn all about Python data dictionaries and how to
use them in your own applications.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Understanding Data Dictionaries
A data dictionary is similar to a list, except that each item in the list has
a unique key. The value you associate with a key can be a number,
string, list, tuple — just about anything, really. So you can think of a
data dictionary as being similar to a table where the first column
contains a single item of information unique to that item and the second
column, the value, contains information relevant to, and perhaps unique
to, that key. In the example in Figure 4-1, the left column contains a key
unique to each row. The second column is the value assigned to each
key.

FIGURE 4-1: A data dictionary with keys in the left column and values in the right.

The left column shows an abbreviation for a person’s name. Some
businesses use names like these when assigning user accounts and email
addresses to their employees.

The value corresponding to each key doesn’t have to be a string or an
integer. It can be a list, or tuple. For example, in the dictionary in Figure
4-2, the value of each key includes a name, a year (perhaps the year of
hire or birth year), a number (for example, the number of dependents the
person claims for taxes), and a Boolean True or False value (which may
indicate, for example, whether the person has a company cellphone). For
now, it doesn’t matter what each item of data represents. What matters is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



that for each key, you have a list (enclosed in square brackets) that
contains four pieces of information about that key.

FIGURE 4-2: A data dictionary with lists as values.

A dictionary may also consist of several different keys, each
representing a piece of data. For example, rather than have a row for
each item with a unique key, you might make each employee their own
little dictionary. Then you can assign a key name to each unit of
information. The dictionary for htanaka, then, might look like Figure 4-
3.

FIGURE 4-3: A data dictionary for one employee.

The dictionary for another employee might have all the same key names,
full_name, year_hired, dependents, and has_company_cell, but a
different value for each of those keys, as shown in Figure 4-4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-4: A data dictionary for another employee.

Each dictionary entry having multiple keys is common in Python,
because the language makes it easy to isolate the specific item of data
you want using object.key syntax, like this:

ppatel.full_name = 'Priya Patel'

ppatel.year_hired = 2015

ppatel,dependents = 1

ppatel.has_company_cell = True

The key name is more descriptive than using an index based on position,
as you can see in the following example.

ppatel[0] = 'Priya Patel'

ppatel[1] = 2015

ppatel[2] = 1

ppatel[3]=True

Creating a Data Dictionary
The code for creating a data dictionary follows this basic syntax:

name = {key:value, key:value, key:value, key:value, …}

The name is a name you make up and generally describes to whom or
what the key-value pairs refer. The key:value pairs are enclosed in
curly braces. The key is usually a string enclosed in quotation marks, but
you can use integers instead. Each colon (:) separates the key name from
the value assigned to it. The value is whatever you want to store for that
key name, and can be a number, string, list — pretty much anything. The
ellipsis (…) just means that you can have as many key-value pairs as you
want. Just remember to separate key:value pairs with commas, as
shown in the syntax example.

To make the code more readable, developers often place each key:value
pair on a separate line. But the syntax is still the same. The only
difference is that a line break follows each comma, as in the following:

name = {

    key:value,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    key:value,

    key:value,

    key:value,

     …

}

If you want to try it out, open a Jupyter notebook, a .py file, or a Python
prompt, and type the following code. Note that we created a dictionary
named people that contains multiple key:value pairs, each separated by
a comma. The keys and values are strings so they're enclosed in
quotation marks, and each key is separated from its value with a colon.
It's important to keep all that straight; otherwise the code won’t work —
yes, even one missing or misplaced or mistyped quotation mark, colon,
comma, or curly brace can mess up the whole thing:

people = {

    'htanaka': 'Haru Tanaka',

    'ppatel': 'Priya Patel',

    'bagarcia': 'Benjamin Alberto Garcia',

    'zmin': 'Zhang Min',

    'afarooqi': 'Ayesha Farooqi',

    'hajackson': 'Hanna Jackson',

    'papatel': 'Pratyush Aarav Patel',

    'hrjackson': 'Henry Jackson'

}

Accessing dictionary data
After you've added the data, you can work with it in a number of ways.
Using print(people) — that is, a print() function with the name of
the dictionary in the parentheses — you get a copy of the entire
dictionary, as follows:

print(people)

{'htanaka': 'Haru Tanaka', 'ppatel': 'Priya Patel', 'bagarcia': 'Benjamin 

Alberto Garcia', 'zmin': 'Zhang Min', 'afarooqi': 'Ayesha Farooqi', 

'hajackson': 'Hanna Jackson', 'papatel': 'Pratyush Aarav Patel', 'hrjackson': 

'Henry Jackson'}

Typically this is not what you want. More often, you're looking for one
specific item in the dictionary. In that case, use this syntax:

dictionaryname[key]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



where dictionaryname is the name of the dictionary, and key is the key
value for which you're searching. For example, if you want to know the
value of the zmin key, you would enter

print(people['zmin'])

Think of this line as saying “print people sub zmin,” where sub just
means the specific key. When you do that, Python returns the value for
that one person — the full name for zmin, in this example. Figure 4-5
shows that output after running the code in a Jupyter notebook cell.

FIGURE 4-5: Printing the value of the zmin key in the people dictionary.

Note that in the code, zmin is in quotation marks because it's a string.
You can use a variable name instead, as long as it contains a string. For
example, consider the following two lines of code. The first one creates
a variable named person and puts the string 'zmin' into that variable.
The next line doesn't require quotation marks because person is a
variable name:

person = 'zmin'

print(people[person])

So what do you think would happen if you executed the following code?
person = 'hrjackson'

print(people[person])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You would see Henry Jackson, the name (value) that goes with the key
'hrjackson'.

How about if you ran this bit of code?
person = 'schmeedledorp'

print(people[person])

Figure 4-6 shows what would happen. You get an error because nothing
in the people dictionary has the key value 'schmeedledorp'.

FIGURE 4-6: Python's way of saying there is no schmeedledorp.

Getting the length of a dictionary
The number of items in a dictionary is considered its length. As with
lists, you can use the len() statement to determine a dictionary's length.
The syntax is

len(dictionaryname)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



As always, replace dictionaryname with the name of the dictionary
you're checking. For example, the following code creates a dictionary,
and then stores its length in the howmany variable:

people = {

    'htanaka': 'Haru Tanaka',

    'ppatel': 'Priya Patel',

    'bagarcia': 'Benjamin Alberto Garcia',

    'zmin': 'Zhang Min',

    'afarooqi': 'Ayesha Farooqi',

    'hajackson': 'Hanna Jackson',

    'papatel': 'Pratyush Aarav Patel',

    'hrjackson': 'Henry Jackson'

    }

# Count the number of key:value pairs and put in a variable.

howmany = len(people)

# Show how many.

print(howmany)

When executed, the print statement shows 8, the value of the hominy
variable, as determined by the number of key-value pairs in the
dictionary.

 As you may have guessed, an empty dictionary that contains no
key-value pairs has a length of 0.

Seeing whether a key exists in a dictionary
You can use the in keyword to see whether a key exists. If the key
exists, in returns True. If the key doesn't exist, in returns False. Figure
4-7 shows a simple example with two print() statements. The first one
checks to see whether hajackson exists in the dictionary. The second
checks to see whether schmeedledorp exists in the dictionary.

As you can see, the first print() statement shows True because
hajackson is in the dictionary. The second one returns False because
schmeedledorp isn't in the dictionary.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-7: Seeing if a key exists in a dictionary.

Getting dictionary data with get()
Having the program crash and burn when you look for something that
isn’t in the dictionary is a little harsh. A more elegant way to handle that
situation is to use the .get() method of a data dictionary. The syntax is

dictionaryname.get(key)

Replace dictionaryname with the name of the dictionary you're
searching. Replace key with the thing you’re looking for. Note that
get() uses parentheses, not square brackets. If you look for something
that is in the dictionary, such as the following, you'd get the same result
as you would using square brackets:

# Look for a person.

person = 'bagarcia'

print(people.get(person))

What makes .get() different is what happens when you search for a
non-existent name. You don't get an error, and the program doesn’t crash
and burn. Instead, get()gracefully returns the word None to let you

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



know that no person named schmeedledorp is in the people dictionary,
as you can see in Figure 4-8.

You can pass two values to get(); the second value is what you want
get to return if it fails to find what you're looking for. For instance, in
the following line of code, we search for schmeedledorp again. But this
time, if the code doesn’t find that person, it displays not None but the
more pompous message Unbeknownst to this dictionary:

print(people.get('schmeedledorp', 'Unbeknownst to this dictionary'))

FIGURE 4-8: Python's nicer way of saying there is no schmeedledorp.

Changing the value of a key
Dictionaries are mutable, which means you can change the contents of
the dictionary from code (not that you can make the dictionary shut up).
The syntax is simply

dictionaryname[key] = newvalue

Replace dictionaryname with the name of the dictionary, key with the
key that identifies the item, and newvalue with whatever you want the
new value to be.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



For example, supposed Hanna Jackson gets married and changes her
name to Hanna Jackson-Smith. You want to keep the same key but
change the value. The line that reads people['hajackson'] = "Hanna
Jackson-Smith" makes the change. The print() statement below that
line shows the value of hajackson after executing that line of code. As
you can see in Figure 4-9, the name has indeed been changed to Hanna
Jackson-Smith.

FIGURE 4-9: Changing the value associated with a key in a dictionary.

 In real life, the data in a dictionary would probably be stored
also in some kind of external file so that it's permanent. Additional
code would be required to save the dictionary changes to that
external file. But you need to learn these basics before you get into
all of that, so let’s just forge ahead with dictionaries for now.

Adding or changing dictionary data
You can use the dictionary update() method to add a new item to a
dictionary or to change the value of a current key. The syntax is

dictionaryname.update(key, value)

Replace dictionaryname with the name of the dictionary. Replace key
with the key of the item you want to add or change. If the key you
specify doesn't exist in the dictionary, it will be added as a new item with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the value you specify. If the key you specify does exist, nothing will be
added. The value of the key will be changed to whatever you specify as
the value.

For example, consider the following Python code that creates a data
dictionary named people and put two peoples' names into it:

# Make a data dictionary named people.

people = {

    'papatel': 'Pratyush Aarav Patel',

    'hrjackson': 'Henry Jackson'

    }

 

# Change the value of the hrjackson key.

people.update({'hrjackson' : 'Henrietta Jackson'})

print(people)

 

# Update the dictionary with a new key:value pair.

people.update({'wwiggins' : 'Wanda Wiggins'})

The first update line changes the value for hrjackson from Henry
Jackson to Henrietta Jackson because the hrjackson key already
exists in the data dictionary:

people.update({'hrjackson' : 'Henrietta Jackson'})

The second update() reads as follows:

people.update({'wwiggins' : 'Wanda Wiggins'})

There is no wwiggins key in the dictionary, so update() can't change the
name for wwiggins. Instead, the line adds a new key-value pair to the
dictionary with wwigins as the key and Wanda Wiggins as the value.

The code doesn't specify whether to change or add the value because the
decision is made automatically. Each key in a dictionary must be unique;
you can't have two or more rows with the same key. So when you do an
update(), the code first checks to see whether the key exists. If it does,
only the value of that key is modified; nothing new is added. If the key
doesn't exist in the dictionary, there is nothing to modify so the new key-
value is added to the dictionary. That process is automatic, and the
decision about which action to perform is simple:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If the key already exists in the dictionary, its value is updated
because no two items in a dictionary are allowed to have the same
key.
If the key does not already exist, the key-value pair is added because
nothing in the dictionary already has that key, so the only choice is to
add it.

After running the code, the dictionary contains three items, paptel,
hrjackson (with the new name), and wwiggins. Adding the following
lines to the end of that code displays everything in the dictionary:

# Show what's in the data dictionary now.

for person in people.keys():

    print(person + " = " + people[person])

If you add that code and run it again, you get the following output,
which shows the complete contents of the data dictionary at the end of
that program:

papatel = Pratyush Aarav Patel

hrjackson = Henrietta Jackson

wwiggins = Wanda Wiggins

As you may have guessed, you can loop through a dictionary in much
the same way you loop through lists, tuples, and sets. But you can do
some extra things with dictionaries, so let’s take a look at those next.

Looping through a Dictionary
You can loop through each item in a dictionary in much the same way
you can loop through lists and tuples, but you have some extra options.
If you just specify the dictionary name in the for loop, you get all the
keys, as follows:

for person in people:

    print(person)

 

htanaka

ppatel

bagarcia

zmin

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



afarooqi

hajackson

papatel

hrjackson

If you want to see the value of each item, keep the for loop the same,
but print dictionaryname[key] where dictionaryname is the name of
the dictionary (people in our example) and key is whatever name you
use right after the for in the loop (person, in the following example).

for person in people:

    print(people[person])

Running this code against the sample people dictionary lists all the
names, as follows:

Haru Tanaka

Priya Patel

Benjamin Alberto Garcia

Zhang Min

Ayesha Farooqi

Hanna Jackson

Pratyush Aarav Patel

Henry Jackson

You can also get all the names by using a slightly different syntax in the
for loop: Add .values() to the dictionary name, as in the following.
Then you can just print the variable name (person) inside the loop. The
output would be the full name of each person, as in the previous loop
example.

for person in people.values():

    print(person)

Lastly, you can loop through the keys and values at the same time by
using .items() after the dictionary name in the for loop. But you will
need two variables after the for as well, one to reference the key and the
other to reference the value. If you want the code to display both
variables as it's looping through the dictionary, you’ll need to use those
names inside the parentheses of the print.

For example, the loop in Figure 4-10 uses two variable names, key and
value (although they could be x and y or anything else) to loop through

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



people.items(). The print statement displays both the key and the
value with each pass through the loop. The print() also has an equal
sign (enclosed in quotation marks) to separate the key from the value. As
you can see in the output, you get a list of all the keys followed by an
equal sign and the value assigned to that key.

FIGURE 4-10: Looping through a dictionary with items() and two variable names.

Data Dictionary Methods
If you've been diligently following along chapter to chapter, you may
have noticed that some of the methods for data dictionaries look similar
to those for lists, tuples, and sets. So maybe now would be a good time
to list, in Table 4-1, all the methods that dictionaries offer. You’ve
already seen some put to use in this chapter. We get to the others a little
later.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 4-1 Data Dictionary Methods

Method What It Does

clear() Empties the dictionary by remove all keys and values.

copy() Returns a copy of the dictionary.

fromkeys()
Returns a new copy of the dictionary but with only specified keys and
values.

get() Returns the value of the specified key, or None if it doesn't exist.

items() Returns a list of items as a tuple for each key-value pair.

keys() Returns a list of all the keys in a dictionary.

pop()
Removes the item specified by the key from the dictionary, and returns
its value.

popitem() Removes the last key-value pair.

setdefault()
Returns the value of the specified key. If the key doesn't exist, inserts the
key with the specified value.

update()
Updates the value of an existing key, or adds a new key-value pair if the
specified key isn't already in the dictionary.

values() Returns a list of all the values in the dictionary.

Copying a Dictionary
If you need to make a copy of a data dictionary to work with, use this
syntax:

newdictionaryname = dictionaryname.copy()

Replace newdictionaryname with whatever you want to name the new
dictionary. Replace dictionaryname with the name of the existing
dictionary that you want to copy.

Figure 4-11 shows a simple example in which we created a dictionary
named people, and then created a dictionary named peeps2 as a copy of
the people dictionary. Printing the contents of each dictionary shows
that they're identical.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-11: Copying a dictionary.

Deleting Dictionary Items
You can remove data from data dictionaries in several ways. The del
keyword (short for delete) can remove any item based on its key. The
syntax is as follows:

del dictionaryname[key]

For example, the following code creates a dictionary named people.
Then it uses del people["zmin"] to remove the item that has zmin as its
key:

# Define a dictionary named people.

people = {

    'htanaka': 'Haru Tanaka',

    'zmin': 'Zhang Min',

    'afarooqi': 'Ayesha Farooqi',

    }

 

# Show original people dictionary.

print(people)

 

# Remove zmin from the dictionary.

del people["zmin"]

 

# Show what's in people now.

print(people)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Printing the contents of the dictionary shows that zmin is no longer in
that dictionary:

{'htanaka': 'Haru Tanaka', 'zmin': 'Zhang Min', 'afarooqi': 'Ayesha Farooqi'}

{'htanaka': 'Haru Tanaka', 'afarooqi': 'Ayesha Farooqi'}

If you forget to include a specific key with the del keyword and specify
only the dictionary name, the entire dictionary is deleted, even its name.
For example, suppose you executed del people instead of using del
people["zmin"] in the preceding code. The output of the second
print(people) would be an error, as in the following, because after the
people dictionary is deleted it no longer exists and its content can't be
displayed:

{'htanaka': 'Haru Tanaka', 'zmin': 'Zhang Min', 'afarooqi': 'Ayesha Farooqi'}

----------------------------------------------------------

NameError Traceback (most recent call last)

<ipython-input-32-24401f5e8cf0> in <module>()

13

14 # Show what's in people now.

---> 15 print(people)

NameError: name 'people' is not defined

To remove all key-value pairs from a dictionary without deleting the
entire dictionary, use the clear method with this syntax:

dictionaryname.clear()

The following code creates a dictionary named people, puts some key-
value pairs in it, and then prints the dictionary so you can see its content.
Then, people.clear() empties all the data:

# Define a dictionary named people.

people = {

    'htanaka': 'Haru Tanaka',

    'zmin': 'Zhang Min',

    'afarooqi': 'Ayesha Farooqi',

    }

 

# Show original people dictionary.

print(people)

 

# Remove all data from the dictionary.

people.clear()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

#Show what's in people now.

print(people)

The output of running this code shows that the people data dictionary
initially contains three property:value pairs. After using people.clear()
to wipe the people dictionary clear, printing it displays {}, which is
Python's way of telling you that the dictionary is empty.

{'htanaka': 'Haru Tanaka', 'zmin': 'Zhang Min', 'afarooqi': 'Ayesha Farooqi'}

{}

The pop() method offers another way to remove data from a data
dictionary. The pop() method actually does two things:

If you store the results of the pop() method in a variable, that
variable gets the value of the popped key.
Regardless of whether you store the result of the pop() method in a
variable, the specified key is removed from the dictionary.

Figure 4-12 shows an example where you first see the entire dictionary
in the output. Then adios = people.pop("zmin") is executed, putting
the value of the zmin key in a variable named adios. We then print the
adios variable so we can see that it contains Zhang Min, the value of the
zmin key. Printing the entire people dictionary again proves that zmin
has been removed from the dictionary.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-12: Popping an item from a dictionary.

Data dictionaries offer a variation on pop() that uses this syntax:

dictionaryname = popitem()

This syntax is tricky because in some earlier versions of Python it would
remove an item at random. That's weird unless you're writing a game or
something and want to remove things at random. But as of Python
version 3.7 (the version used in this book), popitem() always removes
the last key-value pair.

If you store the results of popitem in a variable, you don't get that item’s
value, which is different from the way pop() works. Instead, you get
both the key and its value. The dictionary no longer contains that key-
value pair. So, in other words, if you replace adios =
people.pop("zmin") in Figure 4-12 with adios = people.popitem(),
the output will be as follows:

{'htanaka': 'Haru Tanaka', 'zmin': 'Zhang Min', 'afarooqi': 'Ayesha Farooqi'}

 

('afarooqi', 'Ayesha Farooqi')

 

{'htanaka': 'Haru Tanaka', 'zmin': 'Zhang Min'}

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Having Fun with Multi-Key
Dictionaries

So far you've worked with a dictionary that has one value (a person’s
name) for each key (an abbreviation of that person’s name). But it’s not
unusual for a dictionary to have multiple key-value pairs for one item of
data.

For example, suppose that just knowing the person’s full name isn’t
enough. You want to also know the year the person was hired, his or her
date of birth, and whether or not that employee has been issued a
company laptop. The dictionary for any one person might look like this:

employee = {

    'name': 'Haru Tanaka',

    'year_hired': 2005,

    'dob': '11/23/1987',

    'has_laptop': False

}

Or suppose you need a dictionary of products that you sell. For each
product, you want to know its name, its unit price, whether or not it’s
taxable, and how many you currently have in stock. The dictionary
might look something like this (for one product):

product = {

    'name': 'Ray-Ban Wayfarer Sunglasses',

    'unit_price': 112.99,

    'taxable': True,

    'in_stock'=: 10

}

Note that in each example, the key name is in quotation marks. We used
single quotes in the sample code, but you can use either single or double
quotes. We even enclosed the date in dob (date of birth) in quotation
marks. If you don’t, it may be treated as a set of numbers, as in “11
divided by 23 divided by 1987” which isn’t useful information. Booleans
are either True or False (initial caps) with no quotation marks. Integers
(2005, 10) and floats (112.99) are not enclosed in quotation marks either.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The value for a property can be a list, tuple, or set; it doesn't have to be a
single value. For example, for the sunglasses product, maybe you offer
two models, black and tortoise. You could add a colors or model key
and list the items as a comma-separated list in square brackets like this:

product = {

    'name': 'Ray-Ban Wayfarer Sunglasses',

    'unit_price': 112.99,

    'taxable': True,

    'in_stock': 10,

    'models': ['Black', 'Tortoise']

}

Next let's look at how you might display the dictionary data. You can use
the simple dictionaryname[key] syntax to print just the value of each
key. For example, using that last product example, the output of this
code:

print(product['name'])

print(product['unit_price'])

print(product['taxable'])

print(product['in_stock'])

print(product['models'])

would be:
Ray-Ban Wayfarer Sunglasses

112.99

True

10

['Black', 'Tortoise']

You could get fancier by adding descriptive text to each print
statement, followed by a comma and the code. You could also loop
through the list to print each model on a separate line. And you can use
an f-string to format the data. For example, here is a variation on the
previous print() statements:

product = {

    'name' : 'Ray-Ban Wayfarer Sunglasses',

    'unit_price' : 112.99,

    'taxable' : True,

    'in_stock' : 10,

    'models' : ['Black', 'Tortoise']

}

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



print('Name:    ', product['name'])

print('Price:   ', f"${product['unit_price']:.2f}")

print('Taxable: ', product['taxable'])

print('In Stock:', product['in_stock'])

print('Models:')

for model in product['models']:

    print(" " * 10 + model)

Here is the output of that code:
Name:     Ray-Ban Wayfarer Sunglasses

Price:    $112.99

Taxable:  True

In Stock: 10

Models:

          Black

          Tortoise

 The " " * 10 on the last line of code means print a space (“ ”)
ten times. In other words, indent ten spaces. If you don't put exactly
one space between those quotation marks, you won’t get 10 spaces.
You’ll get 10 of whatever is between the quotation marks, which
also means you’ll get nothing if you don’t put anything between the
quotation marks.

Using the mysterious fromkeys and setdefault
methods
Data dictionaries in Python offer two methods, named fromkeys() and
setdefault(), which are the cause of much head-scratching among
Python learners — and rightly so because it's not easy to find practical
applications for their use. But we’ll take a shot at it and at least show
you what to expect if you ever use these methods in your code.

The fromkeys() method uses this syntax:

newdictionaryname = dict.fromkeys(iterable[,value])

Replace newdictionary with whatever you want to name the new
dictionary. It doesn't have to be a generic name like product. It can be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



something that uniquely identifies the product, such as a UPC (Universal
Product Code) or SKU (stock-keeping unit) specific to your business.

Replace the iterable part with any iterable — meaning, something the
code can loop through; a simple list will do. The value part is optional.
If omitted, each key in the dictionary gets a value of None, which is
simply Python's way of saying no value has been assigned to this key in
this dictionary yet.

In the following example, we created a dictionary named DWC001 (the
SKU for a product in our inventory). We gave it a list of key names,
enclosed in square brackets and separated by commas, which makes it a
properly defined list for Python. We provided nothing for value. The
code then prints the new dictionary. As you can see, the last line of code
prints the dictionary, which contains the specified key names with each
key having a value of None.

DWC001 = dict.fromkeys(['name', 'unit_price', 'taxable', 'in_stock', 

'models'])

print(DWC001)

{'name': None, 'unit_price': None, 'taxable': None, 'in_stock': None, 

'models': None}

Now, suppose that you don’t want to type all those key names. You just
want to use the same keys you’re using in other dictionaries. In that case,
you can use dictionary.keys() for your iterable list of key names, as
long as dictionary refers to another dictionary that exists in the
program.

For example, in the following code, we created a dictionary named
product that has some key names and nothing specific for the values.
Then we used DWC001 = dict.fromkeys(product.keys()) to create a
dictionary with the name DWC001 that has the same keys as the generic
product dictionary. We didn't specify any values in the
dict.fromkeys(product.keys()) line, so each of those keys in the new
dictionary will have values set to None.

# Create a generic dictionary for products named product.

product = {

    'name': '',

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    'unit_price': 0,

    'taxable': True,

    'in_stock': 0,

    'models': []

}

# Create a dictionary named DWC001 that has the same keys as product.

DWC001 = dict.fromkeys(product.keys())

 

# Show what's in the new dictionary.

print(DWC001)

The final print() statement shows what's in the new dictionary. You can
see it has all the same keys as the product dictionary, with each value
set to None.

{'name': None, 'unit_price': None, 'taxable': None, 'in_stock': None, 

'models': None}

The .setdefault() value lets you add a new key to a dictionary, with a
predefined value. But .setdefault() only adds a new key and value; it
doesn't alter the value for an existing key, even if that key's value is
None. So it could come in handy after the fact if you defined other
dictionaries and then later wanted to add another property:value pair
only to dictionaries that don't already have that property.

Figure 4-13 shows an example in which we created the DWC001
dictionary using the same keys as the product dictionary. After the
dictionary is created, setdefault('taxable', True) adds a key named
taxable and sets its value to True — but only if that dictionary doesn't
already have a key named taxable. It also adds a key named
reorder_point and sets its value to 10 but, again, only if that key
doesn't already exist.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-13: Experimenting with fromkeys and setdefault.

As you can see in the output from the code, after the fromkeys and
setdefault operations, the new dictionary has the same keys as the
product dictionary plus a new key-value pair, reorder_point: 10,
which was added by the second setdefault. The taxable key in that
output, though, is still None, because setdefault won't change the value
of an existing key. It adds a new key with the default value to a
dictionary only if it doesn't already have that key.

So what if you really did want to set the default of taxable to True,
rather than None? The simple solution would be to use the standard
syntax, dictionaryname[key] = newvalue to change the value of the
extant taxable key from None to True. The second output in Figure 4-13
proves that changing the value of the key in that manner did work.

Nesting dictionaries
By now it may have occurred to you that any given program you write
may require several dictionaries, each with a unique name. But if you
just define a bunch of dictionaries with names, how could you loop
through the whole kit-and-caboodle without specifically accessing each

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



dictionary by name? The answer is, make each dictionary a key-value
pair in some containing dictionary, where the key is the unique identifier
for each dictionary (for example, a UPC or SKU for each product). The
value for each key would then be a dictionary of all the key-value pairs
for that dictionary. So the syntax would be:

containingdictionaryname = {

    key: {dictionary},

    key: {dictionary},

    key: {dictionary},

    …

}

That's just the syntax for the dictionary of dictionaries. You have to
replace all the italicized placeholder names as follows:

containingdictionaryname: This is the name assigned to the
dictionary as a whole. It can be any name you like but should
describe what the dictionary contains.
key: Each key value must be unique, such as the UPC or SKU for a
product, or the username for a person, or even just some sequential
number, as long as it's never repeated.
{dictionary} Enclose all the key-value pairs for that one dictionary
item in curly braces, and follow that with a comma if another
dictionary follows.

Figure 4-14 shows an example in which we have a dictionary named
products (plural, because it contains many products). This dictionary in
turn contains four individual products. Each product has a unique key:
RB0011, DWC0317, and so forth, which are in-house SKU numbers that
the business uses to manage its own inventory. Each of those four
products in turn has name, price, and models keys.

The complex syntax with all the curly braces, commas, and colons
makes it hard to see what's going on (and hard to type). Outside Python,
in a text file, a spreadsheet, a database, or wherever you're putting the
data, the same data could be stored as a simple table named Products
with the key names as column headings, like the one in Table 4-2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-14: Multiple product dictionaries contained in a larger products dictionary.

TABLE 4-2 A Table of Products

ID (key) Name Price Models

RB00111 Ray-Ban Sunglasses 112.98 black, tortoise

DWC0317 Drone with Camera 72.95 white, black

MTS0540 T-Shirt 2.95 small, medium, large

ECD2989 Echo Dot 29.99

Using a combination of f-strings and some loops, you could get Python
to display that data from the data dictionaries in a neat, tabular format.
Figure 4-15 shows an example of such code in a Jupyter notebook, with
the output from that code right below it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-15: Printing data dictionaries formatted into rows and columns.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 5
Wrangling Bigger Chunks of

Code
IN THIS CHAPTER

 Creating your own function
 Including a comment in a function
 Seeing how to pass information to a function
 Returning values from a function
 Understanding anonymous functions

In this chapter, you learn how to better manage larger code projects by
creating your own functions. Functions provide a way to
compartmentalize your code into small tasks that can be called from
multiple places in an app. For example, if something you need to access
throughout the app requires a dozen lines of code, chances are you don’t
want to repeat that code over and over every time you need it. Doing so
just makes the code larger than it needs to be. Also, if you want to
change something, or if you have to fix an error in that code, you don’t
want to have to do it repeatedly in a bunch of different places. If all that
code were contained in a function, you would have to change or fix it in
only one location.

To access the task that the function performs, you call the function from
your code, just like you call a built-in function such as print. In other
words, you just type the name into your code. You can make up your
own function names, too. So, think of functions as a way to personalize
the Python language so that its commands fit what you need in your
application.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Creating a Function
Creating a function is easy. Follow along in a Jupyter notebook cell or
.py file if you want to get some hands-on experience.

To create a function, start a new line with def (short for definition)
followed by a space, and then a name of your own choosing followed by
a pair of parentheses with no spaces before or inside. Then put a colon at
the end of that line. For example, to create a simple function named
hello(), type

def hello():

This is a function, but it doesn't do anything. To make the function do
something, you have to write Python code on subsequent lines. To
ensure that the new code is “inside” the function, indent each of those
lines.

 Indentations matter big time in Python. There is no command
that marks the end of a function. All indented lines below the def
line are part of that function. The first un-indented line (indented as
far out as the def line) is outside the function.

To make this function do something, put an indented line of code under
def. We'll start by just having the function print hello. So, type
print('Hello') indented under the def line. Now your code looks like
this:

def hello():

    print('Hello')

If you run the code now, nothing will happen. That's okay. Nothing
should happen because the code inside a function isn't executed until the
functioned is called. You call your own functions the same way you call
built-in functions: by writing code that calls the function by name,
including the parentheses at the end.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



For example, if you’re following along, press Enter to add a blank line
and then type hello() (no spaces in there) and make sure it’s not
indented. (You don’t want this code to be indented because it’s calling
the function to execute its code; it’s not part of the function.) So it looks
like this:

def hello():

    print('Hello')

 

hello()

Still, nothing happens if you’re in a Jupyter cell or a .py file because
you've only typed the code so far. For anything to happen, you have to
run the code in the usual way in Jupyter or VS Code (if you’re using a
.py file in VS Code). When the code executes, you should see the
output, which is just the word Hello, as shown in Figure 5-1.

FIGURE 5-1: Writing, and calling, a simple function named hello().

Commenting a Function
Comments are always optional in code. But it's customary to make the
first line under the def statement a docstring (text enclosed in triple
quotation marks) that describes what the function does. It's also common
to put a comment, preceded by a # sign, to the right of the parentheses in
the first line. Here’s an example using the simple hello() function:

def hello():   # Practice function

    """ A docstring describing the function """

    print('Hello')

Because they're just comments, they don’t have any effect on what the
code does. Comments are just notes to yourself or to programming team

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



members describing what the code is about. Running the code again
displays the same results.

As a bonus for VS Code users, when you start typing the function name,
VS Code’s IntelliSense help shows the def statement for your custom
function as well as the docstring you typed for it, as shown in Figure 5-2.
So you get to create custom help for your own custom functions.

FIGURE 5-2: The docstring comment for your function appears in VS Code IntelliSense
help.

Passing Information to a Function
You can pass information to a function for it to work on. To do so, enter
a parameter name in the def statement for each piece of information
you'll be passing to the function. You can use any name for the
parameter, as long as it starts with a letter or underscore, followed by a
letter, an underscore, or a number. The name should not contain spaces
or punctuation. (Parameter names and variable names follow the same
rules.) Ideally, the parameter should describe what’s being passed in, for
code readability, but you can use generic names like x and y, if you
prefer.

Any name you provide as a parameter is local only to that function. For
example, if you have a variable named x outside the function and
another variable named x inside the function, any changes you make to
the x variable inside the function won’t affect the x variable outside the
function.

The technical term for the way variables work inside functions is local
scope, meaning the scope of the variables’ existence and influence stays

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



inside the function and does not extend further. Variables created and
modified inside a function literally cease to exist the moment the
function stops running, and any variables defined outside the function
are unaffected by the goings-on inside the function. This is a good thing
because when you’re writing a function, you don’t have to worry about
accidentally changing a variable outside the function that happens to
have the same name.

 A function can return a value, and that returned value is visible
outside the function. More on how this process works in a moment.

Suppose you want the hello function to say hello to whoever is using
the app (and you have access to that information in some variable). To
pass the information into the function and use it there, you would do the
following:

Put a parameter name inside the function's parentheses to act as a
placeholder for the incoming information.
Inside the function, use that name to work with the information
passed in.

For example, suppose you want to pass a person’s name into the hello
function and then use the name in the print() statement. You could use
any generic name for both the parameter and the function, like this:

def hello(x):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + x)

Inside the parentheses of hello(x), the x is a parameter, a placeholder
for whatever is being passed in. Inside the function, that x refers only to
the value passed into the function. Any variables named x outside the
function are separate from the x used in the parameter name and inside
the function.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Generic names don't exactly help make your code easy to understand. It
would be better to use a more descriptive name, such as name or even
user_name, as in the following:

def hello(user_name):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + user_name)

In the print() function, we added a space after the o in Hello so there'd
be a space between Hello and the name in the output.

When a function has a parameter, you have to pass it a value when you
call it or it won't work. For example, if you added the parameter to the
def statement and still tried to call the function without the parameter, as
in the following code, running the code would produce an error:

def hello(user_name):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + user_name)

    

hello()

The error would read something like the following:
hello() missing 1 required positional argument: 'user_name'

which is a major nerd-o-rama way of saying the hello function expected
something to be passed into it.

For this particular function, a string needs to be passed. We know this
because we concatenate (add) whatever is passed into the variable to
another string (the word hello followed by a space). If you tried to
concatenate a number to a string, you'd get an error.

The value you pass can be a literal (the exact data you want to pass in) or
the name of a variable that contains that information. For example, when
you run this code:

def hello(user_name):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + user_name)

    

hello('Alan')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the output is Hello Alan because when you called the function with the
following line of code, you passed Alan as a string:

hello('Alan')

You can use a variable to pass data too. For example, in the code in
Figure 5-3 we stored the string "Alan" in a variable named
this_person. Then we call the function using that variable name.
Running that code produces Hello Alan, as shown at the bottom of that
figure.

FIGURE 5-3: Passing data to a function via a variable.

Defining optional parameters with defaults
In the preceding section we mention that when you call a function that
expects parameters without passing those parameters, you get an error.
That was a little bit of a lie. You can write a function so that passing a
parameter is optional, but you have to tell the function what to use if
nothing gets passed. The syntax follows:

def functioname(parametername=defaultvalue):

The only thing that’s really different is the = defaultvalue part after the
parameter name. For example, you could rewrite the sample hello()
function with a default value, like this:

def hello(user_name = 'nobody'):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + user_name)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Figure 5-4 shows the function after making that change, along with the
output of testing the function.

First the code calls the function, passing it the value Alan:

hello('Alan')

So the output is
Hello Alan

The second line we used to test the function calls the function but doesn't
pass in a value. In other words, it calls the function but with no value in
the parentheses, like this:

hello()

Because this line doesn't pass in a value, the function defaults to
'nobody' and the output, as you can see at the bottom of the figure, is

Hello nobody

FIGURE 5-4: An optional parameter with a default value added to the hello() function.

Passing multiple values to a function
So far in all our examples we've passed just one value to the function.
But you can pass as many values as you want. Just provide a parameter
name for each value, and separate the names with commas.

For example, suppose you want to pass the user's first name, last name,
and maybe a date to the function. You could define those three
parameters like this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



def hello(fname, lname, datestring):   # Practice function

    """ A docstring describing the function """

    print('Hello ' + fname + ' ' + lname)

    print('The date is ' + datestring)

Note that none of the parameters is optional. So when calling the
function, you need to pass three values, such as this:

hello('Alan', 'Simpson', '12/31/2019')

Figure 5-5 shows an example of executing code with a hello() function
that accepts three parameters.

FIGURE 5-5: The hello function with three parameters.

If you want to use some (but not all) optional parameters with multiple
parameters, make sure the optional ones are the last ones entered. For
example, consider the following, which would not work:

def hello(fname, lname='unknown', datestring):

If you try to run this code with that arrangement, you get an error that
reads something along the lines of

SyntaxError: non-default argument follows default argument.

This error is trying to tell you that if you want to list both required
parameters and optional parameters in a function, you have to put all the
required ones first (in any order). Then the optional parameters can be
listed after that with their = signs (in any order). So the following would
work fine:

def hello(fname, lname, datestring=''):

    msg = 'Hello ' + fname + ' ' + lname

    if len(datestring) > 0:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        msg += ' you mentioned ' + datestring

    print(msg)

Logically, the code inside the function does the following

Create a variable named msg and put in Hello and the first and last
name.
If the datestring passed has a length greater than 0, add “ you
mentioned ” and that datestring to the msg variable.

Print whatever is in the msg variable at this point.

Figure 5-6 shows two examples of calling this version of the function.
The first call passes three values, and the second call passes only two.
Both work because the third parameter is optional. The output from the
first call is the full output including the date, and the output from the
second omits the part about the date.

FIGURE 5-6: Calling the hello() function with three parameters, and again with two
parameters.

Using keyword arguments (kwargs)
If you've ever looked at the official Python documentation at Python.org,
you may have noticed that they throw around the term kwargs a lot.
That's short for keyword arguments and is yet another way to pass data
to a function.

The term argument is the technical term for “the value you are passing to
a function’s parameters.” So far, we’ve used strictly positional

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



arguments. For example, consider these three parameters:
def hello(fname, lname, datestring=''):

When you call the function like this:
hello("Alan", "Simpson")

Python assumes "Alan" is the first name, because it’s the first argument
passed and fname is the first parameter in the function. "Simpson", the
second argument, is assumed to be lname because lname is the second
parameter in the def statement. The datestring is assumed to be empty
because datestring is the third parameter in the def statement and
nothing is being passed as a third argument.

As an alternative to relying solely on an argument's position in the code
to associate it with a parameter name, you can tell the function what’s
what by using the syntax parameter = value in the code calling the
function. For example, take a look at this call to hello:

hello(datestring='12/31/2019', lname='Simpson', fname='Alan')

When you run this code, it works fine even though the order of the
arguments passed doesn’t match the order of the parameter names in the
def statement. But the order doesn't matter here because the parameter
name that each argument goes with is included with the call. Clearly the
'Alan' argument goes with the fname parameter because fname is the
name of the parameter in the def statement.

The same concept applies if you pass variables. Again, the order doesn't
matter. In the following example, the values to be passed to the function
are first placed in variables named attpt_date, last_name, and so forth.
Then the last line calls the hello() function again as in previous
examples. But the value assigned to each parameter name is the name of
a variable, not a literal value being passed in.

appt_date = '12/30/2019'

last_name = 'Janda'

first_name = 'Kylie'

hello(datestring=apt_date, lname=last_name, fname=first_name)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Figure 5-7 shows the result of running the code both ways. As you can
see, it all works fine. There's no ambiguity about which argument goes
with which parameter because the parameter name is specified in the
calling code.

FIGURE 5-7: Calling a function with keyword arguments (kwargs).

Passing multiple values in a list
So far we’ve been passing one piece of data at a time. But you can also
pass iterables to a function. Remember an iterable is anything that
Python can loop through to get values. A list is a simple and perhaps the
most commonly used iterable.

The main trick to working with lists is this: If you want to alter the list
contents (for example, by sorting the contents), make a copy of the list in
the function and then make changes to the copy. You have to work with
a copy of the list that was passed because the function doesn’t receive
the original list in a mutable (changeable) format; it receives only a
pointer to the list, which indicates the list's location. Then the function
can get the list's contents. The function can do anything it likes with its
own copy of the list, but the original list remains unchanged.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



After you have a copy of the list inside the function, you can sort that
copy using the simple sort() method. Or, if you want to sort in
descending order, use sort(reverse=True).

For example, here is a new function named alphabetize() that takes
one argument called names. The name of the parameter being passed in
is original_list. The entire parameter declaration is original_list=
[]. The square brackets indicate an empty list as the default, in case
nothing is passed in as a parameter. In other words, we're using =[] to
define the default input as an empty list. The function can alphabetize a
list of any number of words or names:

def alphabetize(original_list=[]):

    """ Pass any list in square brackets, displays a string with items sorted 

"""

    # Inside the function make a working copy of the list passed in.

    sorted_list = original_list.copy()

    # Sort the working copy.

    sorted_list.sort()

    # Make a new empty string for output

    final_list = ''

    # Loop through sorted list and append name and comma and space.

    for name in sorted_list:

        final_list += name + ', '

    # Knock off last comma space if the string is not blank

    final_list = final_list[:-2]

    # Print the alphabetized list.

    print(final_list)

The first line defines the function. Note that we used original_list=
[]for the parameter. The default value (=[]) is optional, but we put it
there so the function doesn't crash if you accidentally call it without
passing in a list. Instead, it just creates an empty list. For example, when
you start to type the function name in VS Code, you get both the def
statement and the docstring as IntelliSense help to remind you how to
use the function, as in Figure 5-8.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 5-8: Using the alphabetize function in VS Code.

Because the function can't alter the list directly, it first makes a copy of
the original list (the one that was passed) in a new list called
sorted_list, with this line of code:

sorted_list = original_list.copy()

At this point, sorted_list isn't really sorted; it’s still just a copy of the
original. The next line of code does the sorting:

sorted_list.sort()

This function creates a string with the sorted items separated by
commas. So the next line creates a new variable name, final_list and,
after the = sign, starts the variable off as an empty string (two single
quotation marks with no space between):

final_list = ''

This loop loops through the sorted list and adds each item in the list,
separated by a comma and a space, to the final_list string:

for name in sorted_list:

    final_list += name + ', '

When that’s done, if anything was added to final_list, it will have an
extra comma and a space at the end. The following statement removes
those last two characters, assuming the list is at least two characters in
length:

final_list = final_list[:-2]

The next statement just prints final_list so you can see it.

To call the function, you can pass a list inside the parentheses of the
function, like this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



alphabetize(['Schrepfer', 'Maier', 'Santiago', 'Adams'])

As always, you can also pass in the name of a variable that contains the
list, as in this example:

names = ['Schrepfer', 'Maier', 'Santiago', 'Adams']

alphabetize(names)

Either way, the function displays those names in alphabetical order:
Adams, Maier, Santiago, Schrepfer

Passing in an arbitrary number of arguments
A list provides one way of passing a lot of values into a function. You
can also design the function so that it accepts any number of arguments.
Note that this method is not particularly faster or better, so use
whichever is easiest or makes the most sense. To pass in any number of
arguments, use *args as the parameter name, like this:

def sorter(*args):

Whatever you pass in becomes a tuple named args inside the function.
Remember, a tuple is an immutable list (a list you can't change). So
again, if you want to change things, you need to copy the tuple to a list
and then work on that copy. Here is an example where the code uses the
simple statement newlist = list(args). You can read that as the
variable named newlist is a list of all the things that are in the args
tuple. The next line, newlist.sort() sorts the list, and print displays
the contents of the list:

def sorter(*args):

    """ Pass in any number of arguments separated by commas

    Inside the function, they treated as a tuple named args. """

 

    # Create a list from the passed-in tuple.

    newlist = list(args)

    # Sort and show the list.

    newlist.sort()

    print(newlist)

Figure 5-9 shows an example of running this code with a series of
numbers as arguments in a Jupyter cell. As you can see, the resulting list
is in sorted order, as expected.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 5-9: A function accepting any number of arguments with *args.

Returning Values from Functions
So far, all our functions have displayed output on the screen so you can
make sure the function works. In real life, it's more common for a
function to return some value and put it in a variable specified in the
calling code. The line that does the returning is typically the last line of
the function followed by a space and the name of the variable (or some
expression) that contains the value to be returned.

Here is a variation of the alphabetize function. It contains no print
statement. Instead, at the end, it simply returns the alphabetized list
(final_list) that the function created:

def alphabetize(original_list=[]):

    """ Pass any list in square brackets, displays a string with items sorted 

"""

    # Inside the function make a working copy of the list passed in.

    sorted_list = original_list.copy()

    # Sort the working copy.

    sorted_list.sort()

    # Make a new empty string for output

    final_list = ''

    # Loop through sorted list and append name and comma and space.

    for name in sorted_list:

        final_list += name + ', '

    # Knock off last comma space

    final_list = final_list[:-2]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    # Return the alphabetized list.

    return final_list

The most common way to use functions is to store whatever they return
in some variable. For example, in the following code, the first line
defines a variable called random:list, which is just a list containing
names in no particular order, enclosed in square brackets (which tells
Python it's a list). The second line creates a new variable named
alpha_list by passing random:list to the alphabetize() function and
storing whatever that function returns. The final print statement
displays whatever is in the alpha_list variable:

random:list = ['McMullen', 'Keaser', 'Maier', 'Wilson', 'Yudt', 'Gallagher', 

'Jacobs']

alpha_list = alphabetize(random:list)

print(alpha_list)

Figure 5-10 shows the result of running the whole kit-and-caboodle in a
Jupyter cell.

FIGURE 5-10: Printing a string returned by the alphabetize() function.

Unmasking Anonymous Functions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python supports the concept of anonymous functions, also called lambda
functions. The anonymous part of the name is based on the fact that the
function doesn't need to have a name (but can have one if you want it
to). The lambda part is based on the use of the keyword lambda to
define anonymous functions in Python. In other words, when you see the
word lambda in Python code, that line of code is defining an anonymous
function.

The minimal syntax for defining a lambda expression (with no name)
follows:

lambda arguments : expression

Replace arguments with the data being passed into the expression. And
replace expression with an expression (formula) that defines what you
want the anonymous function to return.

A common example of using this syntax is when you're trying to sort
strings of text when some of the names start with uppercase letters and
some start with lowercase letters, as in these names:

Adams, Ma, diMeola, Zandusky

Suppose you write the following code to put the names in a list, sort the
list, and then print it:

names = ['Adams', 'Ma', 'diMeola', 'Zandusky']

names.sort()

print(names)

That output follows:
['Adams', 'Ma', 'Zandusky', 'diMeola']

Having diMeola come after Zandusky seems wrong to us and probably
to you. But computers don’t always see things the way we do. (Actually,
they don’t see anything because they don’t have eyes or brains, but that’s
beside the point.) The reason diMeola comes after Zandusky is because
the sort is based on ASCII, which is a system in which each character is
represented by a number. All lowercase letters have numbers that are
higher than uppercase numbers. So, when sorting, all the words starting

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



with lowercase letters come after the words that start with an uppercase
letter. If nothing else, this warrants at least a minor hmm.

To help with these matters, the Python sort() method lets you include a
key= expression inside the parentheses, where you can tell it how to sort.
The syntax is as follows:

.sort(key = transform)

The transform part is some variation on the data being sorted. If you're
lucky and one of the built-in functions such as len (for length) will
work, you can use that in place of transform, like this:

names.sort(key=len)

Unfortunately for us, the length of the string doesn't help with
alphabetizing. So when you run this line of code, the order is

['Ma', 'Adams', 'diMeola', 'Zandusky']

The sort is going from the shortest string (the one with the fewest
characters) to the longest string. Not helpful at the moment.

You can't write key=lower or key=upper to base the sort on all lowercase
or all uppercase letters either, because lower and upper aren't built-in
functions (which you can verify quickly by doing a web search for
python 3.7 built-in functions).

In lieu of a built-in function, you can use a custom function that you
define using def. For example, we can create a function named
lowercaseof() that accepts a string and returns that string with all its
letters converted to lowercase. Here is the function:

def lowercaseof(anystring):

    """ Converts string to all lowercase """

    return anystring.lower()

We made up the name lowercaseof, and anystring is a placeholder for
whatever string you pass to it in the future. The line return
anystring.lower() returns that string converted to all lowercase by
using the .lower() method of the str (string) object.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Suppose you write this function in a Jupyter cell or .py file.
Then you call the function with something like
print(lowercaseof('Zandusky')). What you get as output is the
string converted to all lowercase, as in Figure 5-11.

FIGURE 5-11: Putting a custom function named lowercaseof() to the test.

Okay, so now we have a custom function to convert any string to all
lowercase letters. How do we use that as a sort key? Easy. Use
key=transform the same as before, but replace transform with your
custom function name. Our function is named lowercaseof, so we'd use
.sort(key=lowercaseof), as shown in the following:

def lowercaseof(anystring):

    """ Converts string to all lowercase """

    return anystring.lower()

 

names = ['Adams', 'Ma', 'diMeola', 'Zandusky']

names.sort(key=lowercaseof)

Running this code to display the list of names puts them in the correct
order, because it based the sort on strings that are all lowercase. The
displayed names are the same as before because only the sorting, which
took place behind the scenes, used lowercase letters. The original data is
still in its original uppercase and lowercase letters.

'Adams', 'diMeola', 'Ma', 'Zandusky'

If you're still awake and conscious after reading all this, you may be
thinking, “Okay, you solved the sorting problem. But I thought we were

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



talking about lambda functions here. Where’s the lambda function?”
There is no lambda function yet. But this is a perfect example of where
you could use a lambda function, because the function you’re calling,
lowercaseof(), does all its work with just one line of code: return
anystring.lower().

When your function can do its thing with a simple one-line expression
like that, you can skip the def and the function name and just use this
syntax:

lambda parameters : expression

Replace parameters with one or more parameter names that you make
up yourself (the names inside the parentheses after def and the function
name in a regular function). Replace expression with what you want
the function to return without the word return. So in this example, the
key, using a lambda expression, would be

lambda anystring: anystring.lower()

Now you can see why it's an anonymous function. The entire first line
with function name lowercaseof() has been removed. So the advantage
of using the lambda expression is that you don’t even need the external
custom function. You just need the parameter followed by a colon and an
expression that tells it what to return.

Figure 5-12 shows the complete code and the result of running it. You
get the proper sort order without the need for a customer external
function like lowercaseof(). You just use anystring:
anystring.lower() (after lambda) as the sort key.

FIGURE 5-12: Using a lambda expression as a sort key.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Note that anystring is a longer parameter name than most Pythonistas
would use. Python folks are fond of short names, even single-letter
names. For example, you could replace anystring with s (or any other
letter), as in the following, and the code would work the same:

names = ['Adams', 'Ma', 'diMeola', 'Zandusky']

names.sort(key=lambda s: s.lower())

print(names)

Way back at the beginning of this section we mentioned that lambda
functions don't have to be anonymous. You can give them names and
call them as you would other functions.

For example, here is a lambda function named currency that takes any
number and returns a string in currency format (that is, with a leading
dollar sign, commas between thousands, and two digits for pennies):

currency = lambda n: f"${n:,.2f}"

Here is one named percent that multiplies any number you send to it by
100 and displays it with two digits after the decimal point and a percent
sign at the end:

percent = lambda n: f"{n:.2%}"

Figure 5-13 shows examples of both functions defined at the top of a
Jupyter cell. Then a few print statements call the functions by name and
pass some sample data to them. Each print() statement displays the
number in the desired format.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 5-13: Two anonymous functions for formatting numbers.

The reason you can define those two functions as single-line lambda
expressions is because you can do all the work in one line,
f"${n:,.2f}" for the first one and f"{n:.2%}" for the second one. But
just because you can do it that way, doesn't mean you must. You could
use regular functions too, as follows:

# Show number in currency format.

def currency(n):

    return f"${n:,.2f}"

 

def percent(n):

# Show number in percent format.

    return f"{n:.2%}"

With this longer syntax, you could pass in more information too. For
example, you might default to a right-aligned format within a certain
width (say 15 characters) so all numbers are right aligned to the same
width. Figure 5-14 shows this variation of the two functions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 5-14: Two functions for formatting numbers with a fixed width.

In Figure 5-14, the second parameter is optional and defaults to 15 if
omitted. So if you call the currency() function like this:

print(currency(9999))

you get $9,999.00 padding with enough spaces on the left to make the
output 15 characters wide. If you call the currency() function like this
instead:

print(currency(9999,20))

you get $9,999.00 padded with enough spaces on the left to make the
output 20 characters wide.

 The .rjust() method used in Figure 5-14 is a Python built-in
string method that right justifies content by padding the left side of
a string with sufficient spaces to make it the specified width.
There's also an .ljust() method that left justifies output by
padding the right side. Furthermore, you're not limited to adding
blanks spaces. You can add any character you like instead of a
space.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



We find the whole business of .ljust() and .rjust() confusing at
times. When in doubt, just do a web search for python left justify or
python right justify to get the details.

So there you have it, the ability to create your own custom functions in
Python. In real life, any time you find that you need access to the same
chunk of code — the same bit of logic — over and over again in your
app, don’t simply copy and paste that chunk of code over and over.
Instead, put the code in a function that you can call by name. That way,
if you decide to change the code, you don’t have to go digging through
your app to find all the places that need changing. Just change it in the
function where it’s all defined in one place.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 6
Doing Python with Class

IN THIS CHAPTER
 Understanding classes and objects
 Learning how to create a class
 Initializing an object in a class
 Populating an object’s attributes
 Discovering how to give a class methods
 Checking out class inheritance

In the preceding chapter, we talk about functions, which allow you to
compartmentalize chunks of code that do specific tasks. In this chapter,
you learn about classes, which allow you to compartmentalize code and
data. You discover all the wonder, majesty, and beauty of classes and
objects (okay, maybe we're overselling things a little there). But classes
have become a defining characteristic of modern object-oriented
programming languages such as Python.

We’re aware we threw a whole lot of techno jargon your way in previous
chapters. Don’t worry. For the rest of this chapter we start off assuming
that — like 99.9 percent of people in this world — you don’t know a
class from an object from a pastrami sandwich.

Mastering Classes and Objects
As you may know, Python is an object-oriented programming language.
The concept of object-oriented programming (OOP) has been a major
buzzword in the computer world for at least a couple decades. The term
object stems from the fact that the model resembles objects in the real
word in that each object is a thing that has certain attributes and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



characteristics that make it unique. For example, a chair is an object.
Lots of different chairs exist that differ in size, shape, color, and
material. But they’re all still chairs.

How about cars? We all recognize a car when we see one. (Well,
usually.) Even though cars aren’t all exactly the same, they all have
certain attributes (year, make, model, color) that make each unique.
They have certain methods in common, where a method is an action or a
thing the car can do. For example, cars all have go, stop, and turn actions
that you control in pretty much the same way.

Figure 6-1 shows the concept where all cars (although not identical)
have certain attributes and methods in common. In this case, you can
think of the class Car as being a factory that creates all cars. After each
car is created, it is an independent object. Changing one car has no effect
on the other cars or the Car class.

FIGURE 6-1: Different car objects.

If the factory idea doesn't work for you, think of a class as a type of
blueprint. For instance, consider dogs. No, there's no physical blueprint
for creating dogs, but there's dog DNA that does pretty much the same
thing. The dog DNA can be considered a type of blueprint (like a Python
class) from which all dogs are created. Dogs vary in attributes such as

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



breed, color, and size, but they share certain behaviors (methods) such as
eat and sleep. Figure 6-2 shows an example of a class of animal called
Dog from which all dogs originate.

Even people can be viewed as objects in this manner. For example,
perhaps you have a club and want to keep track of its members. Each
member is a person, of course. But in code you can create a Member class
to store information about each member. Each member would have
certain attributes — username, full name, and so forth. You could also
have methods such as .archive() to deactivate an account and
.restore() to reactivate an account. The .archive() and .restore()
methods are behaviors that let you control membership, in much the
same way the accelerator, brake, and steering wheel allow you to control
a car. Figure 6-3 shows the concept.

FIGURE 6-2: The Dog class creates many unique dogs.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-3: The Member class and member instances.

The main point is that each instance of a class is an independent object
with which you can work. Changing one instance of a class has no effect
on the class or on other instances, just as painting one car a different
color has no effect on the car factory or on any other cars produced by
that factory.

So, going back to initial concepts, all this business of classes and
instances stems from a type of programming called object-oriented
programming (OOP for short). Python, like any significant, serious,
modern programming language, is object-oriented. The main buzzwords
you need to get comfortable with are the ones we’ve harped on in the
last few paragraphs:

Class: A piece of code from which you can generate a unique object,
where each object is a single instance of the class. Think of a class as
a blueprint or factory from which you can create individual objects.
Instance: One unit of data plus code generated from a class as an
instance of that class. Each instance of a class is also called an object
just like all the different cars are objects, all created by some car
factory (class).
Attribute: A characteristic of an object that contains information
about the object. Also called a property of the object. An attribute

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



name is preceded by a dot, as in member.username which may
contain the username for one site member.
Method: A Python function associated with the class. A method
defines an action that an object can perform. You call a method by
preceding the method name with a dot and following it with a pair of
parentheses. For example member.archive() might be a method that
archives (deactivates) the member's account.

Creating a Class
You create your own classes like you create your own functions. You are
free to name the class whatever you want, so long as it’s a legitimate
name that starts with a letter or underscore and contains no spaces or
punctuation. It’s customary to start a class name with an uppercase letter
to help distinguish classes from variables. To get started, all you need is
the word class followed by a space, a class name of your choosing, and
a colon. For example, to create a new class named Member, use class
Member:.

To make your code more descriptive, feel free to put a comment above
the class definition. You can also put a docstring below the class line,
which will show up whenever you type the class name in VS Code. For
example, to add comments for your new Member class, you might type up
the code like this:

# Define a new class name Member.

class Member:

    """ Create a new member. """

That's it for defining a new class. However, it isn’t useful until you
specify what attributes you want each object that you create from this
class to inherit from the class.

EMPTY CLASSES
If you start a class with class name: and then run your code before finishing the class,
you'll actually get an error. To get around that, you can tell Python that you’re just not

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



quite ready to finish writing the class by putting the keyword pass below the definition,
as in the following code:

# Define a new class name Member.

class Member:

    pass

In essence, what you’re doing there is telling Python “Hey I know this class doesn’t
really work yet, but just let it pass and don’t throw an error message telling me about it.”

Creating an Instance from a Class
To grant to your class the capability to create instances (objects) for you,
you give the class an init method. The word init is short for initialize.
As a method, it's really just a function defined inside a class. But it must
have the specific name __init__ (that's two underscores followed by
init followed by two more underscores).

 That __init__ is sometimes spoken as “dunder init.” The
dunder part is short for double underline.

The syntax for creating an init method is

def __init__(self[, suppliedprop1, suppliedprop2, …])

The def is short for define, and __init__ is the name of the built-in
Python method that's capable of creating objects from within a class. The
self part is just a variable name and is used to refer to the object being
created at the moment. You can use the name of your own choosing
instead of self. But self would be considered by most a best practice
because it's explanatory and customary.

This business of classes is easier to learn and understand if you start
simply. So, for a working example, you'll create a class named Member,
into which you'll pass a username (uname) and full name (fname)
whenever you want to create a member. As always, you can precede the
code with a comment. You can also put a docstring (in triple quotation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



marks) under the first line both as a comment but also as an IntelliSense
reminder when typing code in VS Code:

# Define a class named Member for making member objects.

class Member:

    """ Create a member from uname and fname """

    def __init__(self, uname, fname):

When the def __init__ line executes, you have an empty object named
self inside the class. The uname and fname parameters hold whatever
data you pass in; you see how that works in a moment.

An empty object with no data doesn’t do you much good. What makes
an object useful is its attributes: the information it contains that’s unique
to that object. So, in your class, the next step is to assign a value to each
of the object’s attributes.

Giving an Object Its Attributes
Now that you have a new, empty Member object, you can start giving it
attributes and populate (store values in) those attributes. For example,
let’s say you want each member to have a .username attribute that
contains the user's user name (perhaps for logging in). You have a
second attribute named fullname, which is the member’s full name. To
define and populate those attributes, use the following:

self.username = uname

self.fullname = fname

The first line creates an attribute named username for the new instance
(self) and puts into it whatever was passed into the uname attribute
when the class was called. The second line creates an attribute named
fullname for the new self object, and puts into it whatever was passed
in as the fname variable. Add some comments and the entire class looks
like this:

# Define a new class named Member.

class Member:

    """ Create a new member. """

    def __init__(self, uname, fname):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        # Define attributes and give them values.

        self.username = uname

        self.fullname = fname

Do you see what's happening? The __init__ line creates a new empty
object named self. Next, the self.username = uname line adds an
attribute named username to the empty object, and puts into that attribute
whatever was passed in as uname. Then the self.fullname = fname line
does the same thing for the fullname attribute and the fname value that
was passed in.

 The convention for naming things in classes suggests using an
initial cap for the class name. Attributes, however, should follow
the standard for variables, which is all lowercase with an
underscore to separate words within the name.

Creating an instance from a class
When you've created the class, you can create instances (objects) from it
using this simple syntax:

this_instance_name = Member('uname', 'fname')

Replace this_instance_name with a name of your own choosing (in
much the same way you may name a dog, who is an instance of the Dog
class). Replace uname and fname with the username and full name you
want to put into the object that will be created. Make sure you don't
indent that code; otherwise, Python will think that new code still belongs
to the class’s code. It doesn’t. It’s new code to test the class.

So, for the sake of example, let’s say you want to create a member
named new_guy with the username Rambo and the full name Rocco Moe.
Here's the code for that:

new_guy = Member('Rambo', 'Rocco Moe')

If you run this code and don’t get any error messages, you know it at
least ran. But to make sure, you can print the object or its attributes. To

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



see what’s really in the new_guy instance of Members, you can print it as
a whole. You can also print just its attributes, new_guy.username and
new_guy.fullname. You can also print type(new_guy) to ask Python
what type new_guy is. This code does it all:

print(new_guy)

print(new_guy.username)

print(new_guy.fullname)

print(type(new_guy))

Figure 6-4 shows the code and the result of running it in a Jupyter cell.

FIGURE 6-4: Creating a member from the Member class in a Jupyter cell.

In the figure, you can see that the first line of output is
<__main__.Member object at 0x000002175EA2E160>

This output tells you that new_guy is an object created from the Member
class. The number at the end is its location in memory. Don't worry
about that; you won’t need to know about memory locations right now.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The next three lines of output are
Rambo

Rocco Moe

<class '__main__.Member'>

The first line is the username of new_guy (new_guy.username), and the
second line is the full name of new_guy (new_guy.fullname). The last
line is the type and tells you that new_guy is an instance of the Member
class.

 Much as we hate to put any more burden on your brain cells
right now, the words object and property are synonymous with
instance and attribute. The new_guy instance of the Member class
can also be called an object, and the fullname and username
attributes of new_guy can also be called properties of that object.

Admittedly, it can be difficult to wrap your head around all these
concepts, but just remember that an object is simply a handy way to
encapsulate information about an item that’s similar to other items (like
all dogs are dogs and all cars are cars). What makes the item unique is its
attributes, which won’t necessarily be the same as the attributes of other
objects of the same type, in much the same way that not all dogs are the
same breed and not all cars are the same color.

We intentionally used uname and fname as parameter names to
distinguish them from the attribute names username and fullname.
However, this isn't a requirement. In fact, if anything, people tend to use
the same names for the parameters as they do for the attributes.

Instead of uname for the parameter name, you can use username (even
though it's the same as the attribute name). Likewise, you can use
fullname in place of fname. Doing so won't alter how the class behaves.
You just have to remember that the same name is being used in two
different ways, first as a placeholder for data being passed into the class,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



and then later as an attribute name that gets its value from that passed-in
value.

Figure 6-5 shows the same code as Figure 6-4 with uname replaced with
username and fname replaced with fullname. Running the code
produces the same output as before; using the same name for two
different things didn't bother Python one bit.

FIGURE 6-5: The Member class with username and fullname for both parameters and
attributes.

After you type a class name and the opening parenthesis in VS Code, its
IntelliSense shows you the syntax for parameters and the first docstring
in the code, as shown in Figure 6-6. Naming things in a way that's
meaningful and including a descriptive docstring in the class makes it
easier for you to remember how to use the class in the future.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-6: VS Code displays help when you access your own custom classes.

Changing the value of an attribute
When working with tuples, you can define key:value pairs, much like the
attribute:value pairs you see here with instances of a class. There is one
major difference, though: Tuples are immutable, meaning that after
they’re defined, your code can’t change anything about them. This is not
true with objects. After you create an object, you can change the value of
any attribute at any time using the following simple syntax:

objectname.attributename = value

Replace objectname with the name of the object (which you’ve already
created via the class). Replace attributename with the name of the
attribute whose value you want to change. Replace value with the new
value.

Figure 6-7 shows an example in which, after initially creating the
new_guy object, the following line of code executes:

new_guy.username = "Princess"

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-7: Changing the value of an object's attribute.

The lines of output under that show that new_guy’s username has indeed
been changed to Princess. His full name hasn't changed because you
didn’t do anything to that in your code.

Defining attributes with default values
You don’t have to pass in the value of every attribute for a new object. If
you’re always going to give an attribute some default value at the
moment the object is created, you can just use self.attributename =
value, the same as before, in which attributename is a name of your
own choosing. And value can be some value you just set, such as True
or False for a Boolean, or today's date, or anything that can be
calculated or determined by Python without you providing the value.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



For example, let’s say that whenever you create a new member, you
want to track the date you created that member in an attribute named
date_joined. And you want to be able to activate and deactivate
accounts to control user logins. So you create an attribute named
is_active and decide to start a new member with that attribute set to
True.

If you’re going to be doing anything with dates and times, you’ll want to
import the datetime module, so put that at the top of your file, even
before the class Member: line. Then you can add the following lines
before or after the other lines that assign values to attributes within the
class:

self.date_joined = dt.date.today()

self.is_active = True

Here is how you could add the import and those two new attributes to
the class:

import datetime as dt

 

# Define a new class name Member.

class Member:

    """ Create a new member. """

    def __init__(self, username, fullname):

        # Define attributes and give them values.

        self.username = username

        self.fullname = fullname

 

        # Default date_joined to today's date.

        self.date_joined = dt.date.today()

        # Set is active to True initially.

        self.is_active = True

 If you forget to import datetime at the top of the code, you'll get
an error message when you run the code, telling you it doesn’t
know what dt.date.today() means. Just add the import line to the
top of the code and try again.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



There is no need to pass any new data into the class for the date_joined
and is_active attributes because those attributes get default values from
the code.

PERSISTING CHANGES TO DATA
What's the point of creating all these different classes and objects if everything just
ceases to exist the moment the program ends? What does it mean to create a member
if you can't store that information forever and use it to control members logging into a
website or whatever?

Truthfully, creating objects that cease to exist the moment your program ends isn't the
whole story. All the data you create and manage with classes and objects can be
persisted (retained indefinitely) and be at your disposal at any time by storing that data
in some kind of external file, usually a database.

We get to the business of persistent data in Book 3. But you need to learn the core
Python basics first before you can understand more complicated topics such as
persistence in data.

Note that a default value is just that: It's a value that is assigned
automatically when you create the object. But you can change a default
value in the same way you would change any other attribute’s value,
using this syntax:

objectname.attributename = value

For example, suppose you use the is_active attribute to determine
whether a user is active and can log into your site. If a member turns out
to be an obnoxious troll and you don’t want him logging in anymore,
you could just change the is_active attribute to False like this:

newmember.is_active = False

Giving a Class Methods
Any object you define can have any number of attributes, each given any
name you like, to store information about the object, such as a dog’s
breed and color or a car’s make and model. You can also define you own
methods for any object, which are more like behaviors than facts about

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the object. For example, a dog can eat, sleep, and bark. A car can go,
stop, and turn. A method is really just a function, as you learned in the
preceding chapter. What makes it a method is the fact that it’s associated
with a particular class and with each specific object you create from that
class.

Method names are distinguished from attribute names for an object by
the pair of parentheses that follow the name. To define what the methods
will be in your class, use this syntax for each method:

def methodname(self[, param1, param2, …]):

Replace methodname with a name of your choosing (all lowercase, no
spaces). Keep the word self in there as a reference to the object being
defined by the class. Optionally, you can also pass in parameters after
self using commas, as with any other function.

 Never type the square brackets ([]). They're shown here in the
syntax only to indicate that parameter names after self are allowed
but not required.

Let’s create a method named .show_date_joined() that returns the
user's name and the date the user joined in a formatted string. Here is
how you could define this method:

# A method to return a formatted string showing date joined.

def show_datejoined(self):

    return f"{self.fullname} joined on {self.date_joined:%m/%d/%y}"

The name of the method is show_datejoined. The task of this method,
when called, is to simply put together some nicely formatted text
containing the member's full name and date joined.

To call the method from your code, use this syntax:
objectname.methodname()

Replace objectname with the name of the object to which you're
referring. Replace methodname with the name of the method you want to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



call. Include the parentheses (no spaces). If the class's __init__ method
specifies only self, you don't pass anything in. However, if the
__init__ specifies additional parameters beyond self, you need to
specify values for them. Figure 6-8 shows the complete example.

Note in Figure 6-8 how the show_datejoined() method is defined
within the class. Its def is indented to the same level of the first def. The
code that the method executes is indented under that. Outside the class,
new_guy = Member('Rambo', 'Rocco Moe') creates a new member
named new_guy. Then new_guy.show_datejoined() executes the
show_datejoined() method, which in turn displays Rocco Moe joined
11/18/20, the day we ran the code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-8: Changing the value of an object's attributes.

Passing parameters to methods
You can pass data into methods in the same way you do functions: by
using parameter names inside the parentheses. However, keep in mind
that self is always the first name after the method name, and you never
pass data to the self parameter. For example, let's say you want to
create a method called .activate() and set it to True if the user is
allowed to log in or False when the user isn't. Whatever you pass in is
assigned to the .is_active attribute. Here's how to define that method
in your code:

# Method to activate (True) or deactivate (False) account.

def activate(self, yesno):

    """ True for active, False to make inactive """

    self.is_active = yesno

The docstring is optional. However, the docstring would appear on the
screen when you're typing relevant code in VS Code, so it would serve
as a good reminder about what you can pass in. When executed, this
method doesn’t display anything on the screen; it just changes the
is_active attribute for that member to whatever you passed in as the
yesno parameter.

 It helps to understand that a method is really just a function.
What makes a method different from a function is the fact that a
method is always associated with some class. So a method is not as
generic as a function.

Figure 6-9 shows the entire class followed by some code to test it. The
line new_guy = Member('Rambo', 'Rocco Moe') creates a new member
object named new_guy. Then print(new_guy.is_active) displays the
value of the is_active attribute, which is True because that's the default
for all new members.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-9 Adding and testing an .activate() method.

The line new_guy.activate(False) calls the activate() method for
that object and passes to it a Boolean False. Then
print(new_guy.is_active) proves that the call to activate did indeed
change the is_active attribute for new_guy from True to False.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Calling a class method by class name
As you've seen, you can call a class’s method using the following
syntax:

specificobject.method()

An alternative is to use the specific class name, which can help make the
code easier for humans to understand:

Classname.method(specificobject)

Replace Classname with the name of the class (which we typically
define starting with an uppercase letter), followed by the method name,
and then put the specific object (which you’ve presumably already
created) inside the parentheses.

For example, suppose we create a new member named wilbur using the
Member class and this code:

wilbur = Member('wblomgren', 'Wilbur Blomgren')

Here, wilbur is the specific object we created from the Member class. We
can call the show_datejoined() method on that object by using the
syntax you've already seen:

print(wilbur.show_datejoined())

The alternative is to call the show_datejoined() method of the Member
class and pass to it that specific object, wilbur, like this:

print(Member.show_datejoined(wilbur))

The output from both methods is the same (but with the date on which
you ran the code):

Wilbur Blomgren joined on 11/18/20

The latter method isn't faster, slower, better, worse, or anything like that.
It's just an alternative syntax you can use, and some people prefer it
because starting the line with Member makes it clear to which class the
show_datejoined() method belongs. This in turn can make the code
more readable by other programmers or by yourself a year from now
when you don't remember any of the things you wrote in the app.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Using class variables
So far you’ve seen examples of attributes, which are sometimes called
instance variables, because they’re placeholders that contain information
that varies from one instance of the class to another. For example, in a
Dog class, dog.breed may be Poodle for one dog but Schnauzer for
another dog.

Another type of variable you can use with classes is called a class
variable, which is applied to all new instances of the class that haven't
been created yet. Class variables inside a class don’t have any tie-in to
self because the self keyword always refers to the specific object
being created at the moment. To define a class variable, place the mouse
pointer above the def __init__ line and define the variable using the
standard syntax:

variablename = value

Replace variablename with a name of your own choosing, and replace
value with the specific value you want to assign to that variable. For
example, let's say your code includes a free_days variable that grants
people three months (90 days) of free access on sign-up. You're not sure
if you want to commit to this forever, so rather than hardcode it into your
app (so it’s difficult to change), you can just make it a class variable
that’s automatically applied to all new objects, like this:

# Define a class named Member for making member objects.

class Member:

    """ Create a member object """

    free_days = 90

 

    def __init__(self, username, fullname):

Because we define the free_days variable before we define __init__,
it's not tied to a specific object in the code.

Now suppose that later in the code, you want to store the date that the
free trial expires. You could have an attribute named date_joined that
represents the date that the member joined and another attribute named
free_expires that represents the date that the user's free membership

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



expires. You could determine the second date by adding the number of
free days to the date the member joined. Intuitively, it may seem as
though you could add free_days to the date using a simple syntax like
this:

self.free_expires = dt.date.today() + dt.timedelta(days=free_days)

But if you tried to run this code, you’d get an error saying Python
doesn’t recognize the free_days variable name (even though it’s defined
right at the top of the class). Instead, you must precede the variable name
with the class name or self. For example, this would work:

self.free_expires = dt.date.today() + dt.timedelta(days=Member.free_days)

Figure 6-10 shows the bigger picture. We removed some of the code
from the original class to trim it and make it easier to focus on the new
stuff. The free_days = 365 line near the top sets the value of the
free_days variable to 365. (We used 90 days in the previous example,
but this is a new example, and we want to illustrate how the same code
works with any number of days you specify in the free_days variable.)
Then, later in the code, the __init__ method uses
Member.free_freedays to add that number of days to the current date.
Running this code by creating a new member named wilbur and
viewing his date_joined and free_expires attributes shows the current
date (when you run the code) and the date 365 days after that.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-10: The free_days variable is a class variable in the Member class.

What if you later decide that giving people 90 free days is plenty. You
could just change the 365 day value back to 90 in the class directly.
Since it's a variable, you can do it on-the-fly, like this, outside the class:

#Set a default for free days.

Member.free_days = 90

When you run this code, you still create a user named wilbur with
date_joined and free_days variables. But this time,
wilbur.free_expires will be 90 days after the datejoined, not 365
days.

Using class methods
Recall that a method is a function that's tied to a particular class. So far,
the methods you’ve used, such as .show_datejoined() and
.activate(), have been instance methods, because you always use them
with a specific object — a specific instance of the class. With Python,
you can also create class methods.

As the name implies, a class method is a method associated with the
class as a whole, not specific instances of the class. In other words, class

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



methods are similar in scope to class variables in that they apply to the
whole class and not just individual instances of the class.

As with class variables, you don't need the self keyword with class
methods because that keyword always refers to the specific object being
created at the moment, not to all objects created by the class. So for
starters, if you want a method to do something to the class as a whole,
don’t use def name(self) because the self immediately ties the method
to one object.

It would be nice if all you had to do to create a class method is exclude
the word self, but unfortunately it doesn't work that way. To define a
class method, you first need to type this into your code:

@classmethod

The @ at the start of this defines classmethod as a decorator — yep, yet
another term to add to your ever-growing list of nerd-o-rama buzzwords.
A decorator is generally something that alters or extends the
functionality of that to which it is applied.

Below that line, define your class method using this syntax:
def methodname(cls,x, …):

Replace methodname with the name you want to give your method.
Leave the cls as-is because it's a reference to the class as a whole
(because the @classmethod decorator defined it as such behind-the-
scenes). After cls, you can have commas and the names of parameters
that you want to pass to the method, just as you can with regular instance
methods.

For example, suppose you want to define a method that sets the number
of free days just before you start creating objects, so that all objects get
the same free_days amount. The following code accomplishes that by
first defining a class variable named free_days that has a given default
value of 0. (The default value can be anything.)

Further down in the class is this class method:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Class methods follow @classmethod decorator and refer to cls rather than # 

to self.

@classmethod

def setfreedays(cls,days):

    cls.free_days = days

This code tells Python that when someone calls the setfreedays()
method on this class, it should set the value of cls.free_days (the
free_days class variable for this class) to whatever number of days were
passed in. Figure 6-11 shows a complete example in a Jupyter cell
(which you can type and try for yourself), and the results of running that
code.

FIGURE 6-11: The setfreedays() method is a class method in the Member class.

 It's easy to forget that uppercase and lowercase letters matter a
lot in Python, especially since it seems you're using lowercase 99.9
percent of the time. But as a rule, class names start with an initial
cap, so any call to the class name must also start with an initial cap.

Using static methods
Just when you thought you may finally be finished learning about
classes, it turns out there is another kind of method you can create in a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python class. It's called a static method and it starts with this decorator:
@staticmethod.

So that part is easy. What makes a static method different from instance
and class methods is that a static method doesn’t relate specifically to an
instance of an object or even to the class as a whole. It is a generic
function, and the only reason to define it as part of a class is if you want
to use the same name elsewhere in another class in your code.

Wherever you want a static method, you type the @staticmethod line.
Below that line, you define the static method like any other method, but
you don't use self and you don’t use cls because a static method isn't
strictly tied to a class or an object. Here’s an example of a static method:

@staticmethod

def currenttime():

    now = dt.datetime.now()

    return f"{now:%I:%M %p}"

So we have a method called currenttime() that isn’t expecting any data
to be passed in and doesn't care about the object or class you’re working
with. The method just gets the current datetime using now =
dt.datetime.now() and then returns that information in a nice 12:00
PM format.

Figure 6-12 shows a complete example in which you can see the static
method properly indented and typed near the end of the class. When
code outside the class calls Member.currenttime(), it dutifully returns
the time at the moment, without your having to say anything about a
specific object from that class.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-12: The Member class now has a static method named currenttime().

Understanding Class Inheritance
People who are into object-oriented programming live to talk about class
inheritance and subclasses and so on, stuff that means little or nothing to
the average Joe or Josephine on the street. Still, what they're talking
about as a Python concept is something you see in real life all the time.

As mentioned, if we consider dog DNA to be a kind of factory or Python
class, we can lump all dogs together as members of a class of animals
we call dogs. Even though each dog is unique, all dogs are still dogs
because they are members of the class we call dogs, and we can illustrate
that, as in Figure 6-13.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-13: Dogs as objects of the class dogs.

So each dog is unique (although no other dog is as good as yours), but
what makes dogs similar to one another are the characteristics they
inherit from the class of dogs.

The notions of class and class inheritance that Python and other object-
oriented languages offer didn't materialize out of the clear blue sky just
to make it harder and more annoying to learn this stuff. Much of the
world’s information can best be stored, categorized, and understood by
using classes and subclasses and sub-subclasses, on down to individuals.

For example, you may have noticed that other dog-like creatures roam
the planet (although they’re probably not the kind you’d like to keep
around the house as pets). Wolves, coyotes, and jackals come to mind.
They are similar to dogs in that they all inherit their dogginess from a
higher-level class we could call canines, as shown in Figure 6-14.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-14: Several different kinds of animals are similar to dogs.

Using our dog analogy, we certainly don’t need to stop at canines on the
way up. We can put mammals above that, because all canines are
mammals. We can put animals above that, because all mammals are
animals. And we can put living things above that, because all animals
are living things. So basically all the things that make a dog a dog stem
from the fact that each inherits certain characteristics from numerous
classes, or critters, that preceded it.

 To the biology brainiacs out there, yes we know that Mammalia
is a class, Canis is a genus, and below that are species. So you don’t
need to email or message us on that. We’re using class and subclass
terms here just to relate the concept to classes, subclasses, and
objects in Python.

Obviously the concept doesn’t apply just to dogs. The world has lots of
different cats too. There’s cute little Bootsy, with whom you’d be happy
to share your bed, and plenty of other felines, such as lions, tigers, and
jaguars, with whom you probably wouldn’t.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 If you do a web search for living things hierarchy and click
Images, you’ll see just how many ways there are to classify all
living things, and how inheritance works its way down from the
general to the specific living thing.

Even our car analogy can follow along with this. At the top, we have
transportation vehicles. Under that, perhaps boats, planes, and
automobiles. Under automobiles we have cars, trucks, vans, and so forth
and so on, down to any one specific car. So classes and subclasses are
nothing new. What’s new is simply thinking about representing those
things to mindless machines that we call computers. So let’s see how
you would do that.

From a coding perspective, the easiest way to do inheritance is to create
subclasses within a class. The class defines things that apply to all
instances of that class. Each subclass defines things relevant only to the
subclass without replacing anything that’s coming from the generic
parent class.

Creating the base (main) class
Subclasses inherit all the attributes and methods of some higher-level
main class, or parent class, which is usually referred to as the base class.
This class is just any class, no different from what you’ve seen in this
chapter so far. We’ll use a Member class again, but we’ll whittle it down
to some bare essentials that have nothing to do with subclasses, so you
don’t have to dig through irrelevant code. Here is the basic class:

# Class is used for all kinds of people.

import datetime as dt

 

# Base class is used for all kinds of Members.

class Member:

    """ The Member class attributes and methods are for everyone """

    # By default, a new account expires in one year (365 days)

    expiry_days = 365

 

    # Initialize a member object.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    def __init__(self, firstname, lastname):

        # Attributes (instance variables) for everybody.

        self.firstname = firstname

        self.lastname = lastname

        # Calculate expiry date from today's date.

        self.expiry_date = dt.date.today() + 

dt.timedelta(days=self.expiry_days)

By default, new accounts expire in one year. So this class first sets a
class variable name expiry_days to 365 to be used in later code to
calculate the expiration date from today's date. As you'll see later, we
used a class variable to define expiry_days because we can give it a
new value from a subclass.

To keep the code example simple and uncluttered, this version of the
Member class accepts only two parameters, firstname and lastname.

Figure 6-15 shows an example of testing the code with a hypothetical
member named Joe. Printing Joe's firstname, lastname, and
expiry_date shows what you would expect the class to do when passing
the firstname Joe and the lastname Anybody. When you run the code,
the expiry_date should be one year from the date when you run the
code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-15: A simplified Member class.

Now suppose our real intent is to make two different kinds of users,
Admins and Users. Both types of users will have the attributes that the
Member class offers. So by defining those types of users as subclasses of
Member, they will automatically get the same attributes (and methods, if
any).

Defining a subclass
To define a subclass, make sure you get the cursor below the base class
and back to no indentation, because the subclass isn't a part of, or
contained within, the base class. To define a subclass, use this syntax:

class subclassname(mainclassname):

Replace subclassname with whatever you want to name this subclass.
Replace mainclassname with the name of the base class, as defined at

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the top of the base class. For example, to make a subclass of Member
named Admin, use the following:

class Admin(Member):

To create another subclass named User, add this code:

class User(Member):

If you leave the classes empty, you won't be able to test them because
you'll get an error message telling you the class is empty. But you can
put the word pass as the first command in each one. This is your way of
telling Python “Yes I know these classes are empty, but let it pass, don’t
throw an error message.” You can put a comment above each one to
remind you of what each one is for, as in the following:

# Subclass for Admins.

class Admin(Member):

    pass

 

# Subclass for Users.

class User(Member):

    pass

When you use the subclasses, you don’t have to make any direct
reference to the Member class. Admins and Users will both inherit all the
Member stuff automatically. So, for example, to create an Admin named
Annie, you'd use this syntax:

Ann = Admin('Annie', 'Angst')

To create a User, do the same thing with the User class and a name for
the user. For example:

Uli = User('Uli', 'Ungula')

To see if this code works, you can do the same thing you did for member
Ann. After you create the two accounts, use print() statements to see
what's in them. Figure 6-16 shows the results of creating the two users.
Ann is an Admin, and Uli is a User, but both automatically get all the
attributes assigned to members. (The Member class is directly above the
code shown in the image. We left that out because it hasn't changed.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-16: Creating and testing the Admin and User classes.

So what you've learned here is that the subclass accepts all the different
parameters that the base class accepts and assigns them to attributes,
same as the Person class. But so far, Admin and User are just members
with no unique characteristics. In real life, there will probably be some
differences between these two types of users. In the next sections, you
learn ways to make these differences happen.

Overriding a default value from a subclass
One of the simplest things you can do with a subclass is to give an
attribute that has a default value in the base class some other value. For
example, in the Member class we created a variable named expiry_days
to be used later in the class to calculate an expiration date. But suppose
you want Admin accounts to never expire (or to expire after some
ridiculous duration so there's still some date there). Simply set the new
expiry_date in the Admin class (and you can remove the pass line

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



because the class won't be empty anymore). Here’s how these changes
might look in your Admin subclass:

# Subclass for Admins.

class Admin(Member):

    # Admin accounts don't expire for 100 years.

    expiry_days = 365.2422 * 100

Whatever value you pass will override the default set near the top of the
Member class and will be used to calculate the Admin's expiration date.

Adding extra parameters from a subclass
Sometimes members of a subclass have a parameter value that other
members don’t. In that case, you may want to pass a parameter from the
subclass that doesn’t exist in the base class. Doing so is a little more
complicated than just changing a default value, but it’s a common
technique so you should be aware of it. Let’s work through an example.

For starters, your subclass will need its own def __init__ line that
contains everything that’s in the base class’s __init__, plus any extra
stuff you want to pass. For example, let's say admins have some secret
code and you want to pass that from the Admin subclass. You still have to
pass the first and last name, so your def __init__ line in the Admin
subclass will look like this:

def __init__(self, firstname, lastname, secret_code):

The indentation level will be the same as the lines above it.

Next, any parameters that belong to the base class, Member, need to be
passed up there using this rather odd-looking syntax:

super().__init__(param1, param2, …)

Replace param1, param2, and so forth with the names of parameters you
want to send to the base class. The information you're providing in the
parameters should be everything that's already in the Member parameters
excluding self. In this example, Member expects only firstname and
lastname, so the code for this example is

super().__init__(firstname, lastname)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Whatever you didn't provide in the first set of parameters, you can assign
to the subclass object using this code:

self.secret_code = parametername

Replace parametername with the name of the parameter that you didn't
send up to Member. In this case, that would be the secret_code
parameter. So the code would be:

self.secret_code = secret_code

Figure 6-17 shows an example in which we created an Admin user named
Ann and passed PRESTO as her secret code. Printing all her attributes
shows that she does indeed still have the right expiration date plus a
secret code. As you can see, we also created a regular User named Uli.
Uli's data isn’t affected by the changes to Admin.

In our working example, we haven’t given regular users a secret code
yet. If you try to print a regular user with the Python code as shown,
you'll get an error because that Python code isn't yet written to
accommodate users that have no secret code.

One solution is to just remember that regular users don’t have a secret
code. So when using the app, never try to print the secret code for a
regular user. But it would be better if the code handled the error
gracefully for us. To do so, we would ensure that every user's account is
associated with a secret code. For regular users, the secret code will be
empty, which prevents them from accessing administrator information.
Only admins would have valid secret codes.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-17: The Admin subclass has a new secret_code parameter.

Should a member join as a regular member and later become an admin,
the Python code need only change the empty secret_code to a valid
secret_code.

If your class assigns a secret_code to all users (not just admins), you
won't get an error when you print the data for a regular user. Instead, the
secret code for a regular user will appear as a blank space. To assign a
secret code to every member, even when that secret code is blank, add
the following to the main Member class:

# Default secret code is nothing

self.secret_code = ""

So even though you don't do anything with secret_code in the User
subclass, you don't have to worry about throwing an error if you try to
access the secret code for a User. The User will have a secret code, but it
will just be an empty string. Figure 6-18 shows all the code with both

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



subclasses, and also an attempt to print Uli.secret_code, which just
displays nothing without throwing an error message.

We left the User subclass with pass as its only statement. In real life,
you would probably come up with more default values or parameters for
your other subclasses. But the syntax and code is the same for all
subclasses. The skills you've learned in this section will work for all
your classes and subclasses.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-18: The complete Admin and User subclasses.

Calling a base class method

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Methods in the base class work the same for subclasses as they do for
the base class. To try out a method in the base class, add a new method
called showexpiry(self) to the bottom of the base class, as follows:

class Member:

    """ The Member class attributes and methods are for everyone """

    # By default, a new account expires in one year (365 days)

    expiry_days = 365

 

    # Initialize a member object.

    def __init__(self, firstname, lastname):

        # Attributes (instance variables) for everybody.

        self.firstname = firstname

        self.lastname = lastname

        # Calculate expiry date from today's date.

        self.expiry_date = dt.date.today() + 

dt.timedelta(days=self.expiry_days)

        # Default secret code is nothing

        self.secret_code = ''

 

    # Method in the base class.

    def showexpiry(self):

       return  f"{self.firstname} {self.lastname} expires on 

{self.expiry_date}"

The showexpiry() method, when called, returns a formatted string
containing the user's first and last name and expiration date. Leaving the
subclasses untouched and executing the code displays the names and
expiry dates of Ann and Uli:

Ann = Admin('Annie', 'Angst', 'PRESTO')

print(Ann.showexpiry())

 

 

Uli = User('Uli', 'Ungula')

print(Uli.showexpiry())

Here is that output, although your dates will differ based on the date you
ran the code:

Annie Angst expires on 2118-12-04

Uli Ungula expires on 2019-12-04

Using the same name twice

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You may be wondering about what happens when you use the same
name more than once? Python will always opt for the most specific one,
the one tied to the subclass. It will use the more generic method from the
base class only if nothing in the subclass has that method name.

To illustrate, here's some code that defines a Member class with just a few
attributes and methods, to get any irrelevant code out of the way.
Comments in the code describe what’s going on in the code:

class Member:

    """ The Member class attributes and methods """

    # Initialize a member object.

    def __init__(self, firstname, lastname):

        # Attributes (instance variables) for everybody.

        self.firstname = firstname

        self.lastname = lastname

 

    # Method in the base class

    def get_status(self):

        return  f"{self.firstname} is a Member."

 

# Subclass for Administrators

class Admin(Member):

    def get_status(self):

        return  f"{self.firstname} is an Admin."

 

# Subclass for regular Users

class User(Member):

    def get_status(self):

        return  f"{self.firstname} is a regular User."

The Member class, and both the Admin and User classes, have a method
named get_status(), which shows the member's first name and status.
Figure 6-19 shows the result of running that code with an Admin, a User,
and a Member who is neither an Admin nor a User. As you can see, the
get_status called in each case is the get_status()associated with the
person's subclass (or base class in the case of the person who is a Member
but neither an Admin or User).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-19: Three methods with the same name, get_status().

Python has a built-in help() method that you can use with any class to
get more information about that class. For example, at the bottom of the
code in Figure 6-19, add this line:

help(Admin)

When you run the code again, you'll see some information about that
Admin class, as shown in Figure 6-20.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 6-20: Output from help(Admin).

You don’t need to worry about all the details in Figure 6-20 right now.
The most important section is the one titled Method resolution order,
which looks like this:

Method resolution order:

     Admin

     Member

     builtins.object

The method resolution order tells you that if a class (and its subclasses)
all have methods with the same name (such as get_status), a call to
get_status() from an Admin user will cause Python to look in Admin for
that method and, if it exists, use it. If no get_status() method was

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



defined in the Admin subclass, Python looks in the Member class and uses
that one, if found. If neither of those had a get_status method, it looks
in builtins.object, which is a reference to certain built-in methods
that all classes and subclasses share.

So the bottom line is, if you do store your data in hierarchies of classes
and subclasses, and you call a method on a subclass, Python will use that
subclass method if it exists. If not, Python will use the base class method
if it exists. If that also doesn't exist, it will try the built-in methods. And
if all else fails, it will throw an error because it can’t find the method
your code is trying to call. Usually the main reason for this type of error
is that you simply misspelled the method name in your code, so Python
can’t find it.

An example of a built-in method is __dict__. The dict is short for
dictionary, and those are double-underscores surrounding the
abbreviation. Referring to Figure 6-20, executing the following
command:

print(Admin.__dict__)

doesn't cause an error, even though we’ve never defined a method
named __dict__. That’s because there is a built-in method with that
name, and when called with print(), it shows a dictionary of methods
(both yours and built-in ones) for that object. The method resolution
order isn't something you have to get too involved with this early in the
learning curve. Just be aware that if you try to call a method that doesn’t
exist at any of those three levels, such as this:

print(Admin.snookums())

you will get an error that looks something like this:
---> print(Admin.snookums())

AttributeError: type object 'Admin' has no attribute 'snookums'

This error is telling you that Python has no idea what snookums() is
about. As mentioned, in real life, this kind of error is usually caused by
misspelling the method name in your code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Classes (and to some extent, subclasses) are heavily used in the Python
world, and what you’ve learned here should make it easy to write your
own classes, as well as to understand classes written by others. You’ll
want to learn one more core Python concept before you finish this book:
how Python handles errors, and things you can do in your own code to
better handle errors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 7
Sidestepping Errors

IN THIS CHAPTER
 Discovering exceptions
 Finding out how to handle errors gracefully
 Making sure your app doesn't crash
 Checking out try … except … else … finally
 Learning to raise your own exceptions

We all want our programs to run perfectly all the time. But sometimes,
situations in the real world stop a program from running. The problem
isn't with you or your program. Usually, the person using the program
did something wrong. Error handling is all about anticipating these
problems, catching the error, and then informing users of the problem so
they can fix it.

The techniques we describe here aren’t for fixing bugs in your code. You
have to fix that type of error yourself. We’re talking strictly about errors
in the environment in which the program is running, over which you
have no control. Handling the error is simply a way of replacing the
tech-speak error message that Python normally displays, which is
meaningless to most people, with a message that tells them in plain
English what’s wrong and, ideally, how to fix it.

Again, the user will be fixing the environment in which the program is
running — they won’t be fixing your code.

Understanding Exceptions
In Python (and all other programing languages) the term exception refers
to an error that isn’t due to a programming error. Rather, it’s an error in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the real world that prevents the program from running properly. As a
simple example, let’s have your Python app open a file. The syntax for
that is easy:

name = open(filename)

Replace name with a name of your own choosing, same as a variable
name. Replace filename with the name of the file. If the file is in the
same folder as the code, you don't need to specify a path to the folder
because the current folder is assumed.

Figure 7-1 shows an example. We used VS Code for this example so that
you can see the contents of the folder in which we worked. The folder
contains a file named showfilecontents.py, which is the file that
contains the Python code we wrote. The other file is named people.csv.

FIGURE 7-1: The showfilecontents.py and people.csv files in a folder in VS Code.

The showfilecontents file contains code. The people.csv file contains
data (information about people). Figure 7-2 shows the content of the
people.csv file in Excel (top) so it’s easy for you to read and in a text
editor (bottom), which is how it looks to Python and other languages.
The file's content doesn't matter much right now; what you’re learning
here will work in any external file.

The Python code is just two lines (excluding the comments), as follows:
# Open file that's in this same folder.

thefile = open('people.csv')

# Show the filename.

print(thefile.name)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The first line of code opens the file named people.csv. The second line
of code displays the filename (people.csv) on the screen. Running that
simple showfilecontents.py file (by right-clicking its name in VS
Code and choosing Run Python File in Terminal) displays people.csv
on the screen — assuming a file named people.csv exists in the folder
to open. This assumption is where exception handling comes in.

FIGURE 7-2: The contents of the people.csv file in Excel (top) and a text editor (bottom).

Suppose that for reasons beyond your control, the people.csv file isn't
there because some person or automated procedure failed to put it there.
Or perhaps someone misspelled the filename. It’s easy to accidentally
type, say, .cvs rather than .csv for the filename. Running the app raises
an exception (which in English means “displays an error message”), as
you can see in the Terminal window at the bottom of Figure 7-3. The
exception reads

Traceback (most recent call last):

  File "c:/ Users/ acsimpson/ Desktop/ exceptions/ showfilecontents.py", line 

2,

 in <module>

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    thefile = open('people.csv')

FileNotFoundError: [Errno 2] No such file or directory: 'people.csv'

FIGURE 7-3: The showfilecontents.py file raises an exception.

Traceback is a reference to the fact that if there were multiple
exceptions, they'd all be listed, with the most recent listed first. In this
case, there is just one exception. The File part tells you where the
exception occurred, in line 2 of the showfilecontents.py file. The
following part shows you the line of code that caused the error:

thefile = open('people.csv')

And finally, the exception itself is described:
FileNotFoundError: [Errno 2] No such file or directory: 'people.csv'

The generic name for this type of error is FileNotFoundError. Many
exceptions are also associated with a number (ERRNO 2 in this example).
But the number can vary depending on the operating system
environment, so it's typically not used for handling errors. In this case,
the main error is FileNotFoundError, and the fact that’s its ERRNO 2
where we’re sitting right now doesn’t matter.

 Some people use the phrase throw an exception rather than raise
an exception. The two phrases mean the same thing.

The last part tells you exactly what went wrong: No such file or
directory: 'people.csv.' In other words, Python can’t do the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



open('people.csv') business because there is no file named
people.csv in the current folder.

You could correct this problem by changing the code, but .csv is a
common file extension for files that contain comma-separated values. It
would make more sense to change the name of people.cvs to
people.csv so it matches what the program is looking for and the .csv
extension is well known.

Handling Errors Gracefully
The best way to handle a file not found error is to replace what Python
normally displays with something the person using the app is more
likely to understand. To do that, you can code a try … except block using
this basic syntax:

try:

     The things you want the code to do

except Exception:

     What to do if it can't do what you want it to do

Here’s how you can rewrite the showfilecontents.py code to handle a
missing (or misspelled) file error:

try:

    # Open file and show its name.

    thefile = open('people.csv')

    print(thefile.name)

except Exception:

    print("Sorry, I don't see a file named people.csv here")

Because the file that the app is supposed to open may be missing, we
start with try: and then attempt to open the file under that. If the file
opens, the print() statement runs and displays the filename. But if
trying to open the file raises an exception, the program doesn't bomb and
display a generic error message. Instead, it displays a message that the
average computer user can understand, as shown in Figure 7-4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 7-4: The showfilecontents.py file catches the error and displays a friendly
message.

Being Specific about Exceptions
Our previous code example handled the file not found error gracefully.
But a larger app might have many places where there's a potential for
error, and you want to handle each error differently. To accomplish this,
you can define multiple error handlers, as we discuss next.

Suppose that you manually fix the filename so that it's people.csv as
originally intended. As you saw, when you run the code and there's no
error, the output is just the filename. Below the line that prints the
filename, we've added another line of code:

try:

    # Open file and show its name.

    thefile = open('people.csv')

    print(thefile.name)

    print(thefile.wookems())

except Exception:

    print("Sorry, I don't see a file named people.csv here")

When you run this code, the filename isn't a problem, so the output
displays people.csv, as you'd expect. However, the next line of code,
print(thefile.wookems()), throws an error because we haven't
defined a method named wookems(). Unfortunately, the error message is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



still the same as it was before, even though the cause of the error is that
there is no method in Python named .wookems():

people.csv

Sorry, I don't see a file named people.csv here

So why is the error message saying that the file named people.csv
wasn't found, when we know it was found and that the next line of code
is causing the error? The problem is in the except Exception: line,
which says “if any exception is raised in this try block, do the code
under the except line.”

To clean this up, you need to replace Exception: with the specific
exception you want Python to catch. But how do you know what that
specific exception is? Easy. The exception raised with no exception
handing is

FileNotFoundError: [Errno 2] No such file or directory: 'people.csv'

The first word is the name of the exception that you can use in place of
the generic Exception name, like this:

try:

    # Open file and show its name.

    thefile = open('people.csv')

    print(thefile.name)

    print(thefile.wookems())

except FileNotFoundError:

    print("Sorry, I don't see a file named people.csv here")

Granted, isolating the file not found error doesn't do anything to help
with the bad method name. However, the bad method name isn't an
exception; it’s a programming error that needs to be corrected in the
code by replacing .wookems() with the method name you want to use.
At least the error message you see isn’t the misleading Sorry, I don't
see a file named people.csv here error. The code works normally
and therefore displays the filename when instructed. Then when it
reaches the line that contains the bad .wookem() method, it throws an
error — but not an error related to the filename not being found. It
displays the correct error message for this error, object has no
attribute 'wookems', as shown in Figure 7-5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 7-5: The correct error message is displayed.

Again, if you're thinking about handling the .wookems error, that's not an
exception for which you’d write an exception handler. Exceptions occur
when something outside the program upon which the program depends
isn’t available. Programming errors, such as nonexistent method names,
are errors inside the program and have to be corrected there by the
programmer who wrote the code.

Keeping Your App from Crashing
You can stack up except: statements in a try block to handle different
errors. Just be aware that when the exception occurs, it looks at each one
starting at the top. If it finds a handler that matches the exception, it
raises that one. If some exception occurred that you didn't handle, you
get the standard Python error message. But there’s a way around that too.

If you want to avoid all Python error messages, you can start the last
exception handler in the code with except Exception:. That line means
“If the error that occurred wasn't already handled by one of the previous
exceptions, use the exception handler instead.” In other words, the catch-
all exception handler handles any exception that wasn't already handled

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



in the code. For example, here we have two handlers, one for a file not
found error and one for everything else:

try:

    # Open file and show its name.

    thefile = open('people.csv')

    # Print a couple blank lines then the first line from the file.

    print('\n\n', thefile.readline())

    # Close the file.

    thefile.closed()

 

except FileNotFoundError:

    print("Sorry, I don't see a file named people.csv here")

except Exception:

    print("Sorry, something else went wrong")

 We know that you haven't learned about open and readline and
close, but don't worry about that. All we care about for now is the
exception handling, which is the try: and except: portions of the
code.

Running this code produces the following output:
Username,FirstName,LastName,Role,DateJoined

 

Sorry, something else went wrong

The first line displays the first line of text from the people.csv file. The
second line is the output from the second except: statement, which
reads Sorry, something else went wrong. This message is vague and
doesn't help you find the problem.

Rather than just print a generic message for an unknown exception, you
can capture the error message in a variable and then display the contents
of that variable to see the message. As usual, you can name the variable
anything you like, though a lot of people use e or err as an abbreviation
for error.

For example, consider the following rewrite of the preceding code. The
generic handler, except Exception, now has an as e at the end, which

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



means “whatever exception gets caught here, put the error message in a
variable named e.” Then the next line uses print(e) to display the
content of the e variable:

try:

    # Open file and show its name.

    thefile = open('people.csv')

    # Print a couple blank lines then the first line from the file.

    print('\n\n', thefile.readline())

    thefile.wigwam()

 

except FileNotFoundError:

    print("Sorry, I don't see a file named people.csv here")

except Exception as e:

    print(e)

Running this code displays the following:
Username,FirstName,LastName,Role,DateJoined

 

'_io.TextIOWrapper' object has no attribute 'wigwam'

The first line is just the first line of text from the people.csv file.
There's no error in the code, and that file is there, so all went well. The
second line is

'_io.TextIOWrapper' object has no attribute 'wigwam'

This isn't plain English, but it's better than “Something else went
wrong.” At least the part that reads object has no attribute
'wigwam' lets you know that the problem has something to do with the
word wigwam. You handled the error gracefully and the app didn’t crash.
And you at least got some information about the error that should be
helpful to you, even though it may not be helpful to people who are
using the app with no knowledge of its inner workings.

Adding an else to the Mix
In our last working example, we used one error handler to handle file not
found errors, and a second handler for everything else. But in real life,
you may have to handle many more. And if there's no error, you want

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



execution to continue normally. You can use the else for the last
condition, as follows:

try:

     The thing that might cause an exception

catch a common exception:

     Explain the problem

catch Exception as e:

     Show the generic error message

else:

     Continue on here only if no exceptions raised

 

If you convert this code to plain English, the logic of the flow is as
follows:

Try to open the file.
If the file isn't there, tell them and stop.
If there's some other error, show the generic error message and stop.
Otherwise
Go on with the rest of the code.

By limiting try: to the one thing that's most likely to raise an exception,
we can stop the code dead in its tracks before it tries to go any further.
But if no exception is raised, the code continues on normally, below the
else, where the previous exception handlers don't matter anymore. Here
is all the code with comments explaining what’s going on:

try:

    # Open the file named people.csv

    thefile = open('people.csv')

# Watch for common error and stop program if it happens.

except FileNotFoundError:

    print("Sorry, I don't see a file named people.csv here")

# Catch any unexpected error and stop the program if one happens.

except Exception as err:

    print(err)

# Otherwise, if nothing bad has happened by now, just keep going.

else:

    # File must be open by now if we got here.

    print('\n') # Print a blank line.

    # Print each line from the file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    for one_line in thefile:

        print(one_line)

    thefile.close()

    print("Success!")

 As always with Python, indentations matter a lot. Make sure you
indent your own code as shown in this chapter. Otherwise, your
code will not work right.

Figure 7-6 also shows all the code and the results of running that code in
VS Code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 7-6: Code with try, exception handlers, and an else for when there are no
exceptions.

Using try … except … else … finally

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you look at the complete syntax for Python exception handling, you’ll
see one more option at the end, like this:

try:

    try to do this

except:

    if x happens, stop here

except Exception as e:

    if something else bad happens, stop here

else:

    if no exceptions, continue on normally here

finally:

    do this code no matter what happened above

The finally code is executed when the try block ends no matter what.
For example, if you're inside a function and an except block uses
return to exit the function, the finally code still executes. Without that
kind of feature, the finally block would be the equivalent of putting its
code after and outside the try block.

To illustrate, here is some code that expects an external resource named
people.csv to be available to the code:

print('Do this first')

try:

    open('people.csv')

except FileNotFoundError:

    print('Cannot find file named people.csv')

except Exception as e:

    print(e)

else:

    print('Show this if there is no exception.')

finally:

    print('This is in the finally block')

print("This is outside the try…except…else…finally")

When you run this code with a file named people.csv in the folder, you
get this output:

Do this first

Show this if no exception.

This is in the finally block

This is outside the try…except…else…finally

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



None of the exception-reporting code executed because the open()
statement was able to open the file named people.csv.

If you run this code without a file named people.csv in the same folder,
you get the following result:

Do this first

Cannot find file named people.csv

This is in the finally block

This is outside the try…except…else…finally

This time the code reports that it can't find a file named people.csv. But
the app doesn't crash. Rather, it keeps executing the rest of the code.

These examples illustrate that you can control exactly what happens in a
small part of a program vulnerable to user errors or other outside
exceptions while allowing other code to run normally.

Raising Your Own Exceptions
Python has lots of built-in exceptions for recognizing and identifying
errors, as you'll see while writing and testing code, especially when
you’re first learning. However, you aren’t limited to the built-in
exceptions. If your app has a vulnerability that isn’t covered by the built-
in exceptions, you can invent your own.

 For a detailed list of all the different exceptions that Python can
catch, look at
https://docs.python.org/3/library/exceptions.html in the
Python.org documentation.

The general syntax for raising your own error is
raise error

Replace error with the name of the known error that you want to raise
(such as FileNotFoundError). Or, if the error isn't covered by one of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/3/library/exceptions.html


built-in errors, you can just use raise Exception and that will execute
whatever is under catch Exception: in your code.

As a working example, let's say you want two conditions to be met for
the program to run successfully:

The people.csv file must exist so you can open it.

The people.csv file must contain more than one row of data. The
first row contains column names, not data, so if the file has only
column headings, we will consider it empty.

Here is an example of how you might handle the exception-handling part
of that situation:

try:

    # Open the file ]

    thefile = open('people.csv')

    # Count the number of lines in file.

    line_count = len(thefile.readlines())

    # If there are fewer than 2 lines, raise exception.

    if line_count < 2:

        raise Exception

# Handles missing file error.

except FileNotFoundError:

    print('\nThere is no people.csv file here')

# Handles all other exceptions

except Exception as e:

# Show the error.

    print('\n\nFailed: The error was ' + str(e))

    # Close the file.

    thefile.close()

So let's step through the code. The first lines try to open the people.csv
file:

try:

    # Open the file (no error check for this example).

    thefile = open('people.csv')

We know that if the people.csv file doesn't exist, execution will jump to
the following exception handler, which tells the user the file isn’t there:

except FileNotFoundError:

    print('\nThere is no people.csv file here')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Assuming the file was found and no error was thrown, and the file is
now open, this next line counts how many lines are in the file:

line_count = len(thefile.readlines())

If the file is empty, the line count will be 0. If the file contains only
column headings, like this:

Username,FirstName,LastName,DateJoined

the length will be 1. We want the rest of the code to run only if the length
of the file is 2 or more. So if the line count is less than 2, the code will
raise an exception. You may not know what that exception is, so you tell
the app to raise a general exception with raise Exception (with an
uppercase E):

if line_count < 2:

    raise Exception

The exception handler for general exceptions looks like this:
# Handles all other exceptions

except Exception as e:

    # Show the error.

    print('\n\nFailed: The error was ' + str(e))

    # Close the file.

    thefile.close()

The e variable grabs the exception, and the next print statement
displays the exception. So, let's say you run that code and people.csv is
empty or incomplete. The output would be

Failed: The error was

Note that there is no explanation of the error because we’re using
except Exception as e:

Remember that Exception refers to any error, not an error that has a
specific name stored in the variable named e. To throw an error that has
an error message associated with it, replace Exception with a specific
Python exception name. For example, in the following code we've
replaced the generic Exception with the more specific
FileNotFoundError:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



if line_count < 2:

    raise FileNotFoundError

But if you do that, the FileNotFoundError handler is called and displays
There is no people.csv file, which isn't true in this case and it's not
the cause of the problem. There is a people.csv file; it just doesn’t have
any data to loop through. What you need is a custom exception handler
for that exception.

All exceptions in Python are objects, instances of classes that inherit
from the base class Errors in Python. To create your own exception, you
first have to import the Exception class to use as a base class (much like
the Member class was a base class for different types of users). Then you
define your error as a subclass of that base class. This code goes at the
top of the file so it's executed before any other code tries to use the
custom exception:

# Define Python user-defined exceptions

class Error(Exception):

    """Base class for other exceptions"""

    pass

 

# Your custom error (inherits from Error)

class EmptyFileError(Error):

    pass

As before, the word pass in each class tells Python “I know this class
has no code in it, and that's okay here. You don’t need to raise an
exception to tell me that.”

Now that there exists an exception class called EmptyFileError, you can
raise that exception when the file has insufficient content. Then write a
handler to handle that exception:

    # If there are fewer than 2 lines, raise exception.

    if line_count < 2:

        raise EmptyFileError

# Handles my custom error for too few rows.

except EmptyFileError:

    print("\nYour people.csv file doesn't have enough stuff.")

Figure 7-7 shows all the code.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 7-7: Custom EmptyFileError exception added for exception handling.

So here is how things will play out when the code runs. If there is no
people.csv file at all, this error is displayed:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



There is no people.csv file here.

If there is a people.csv file but it's empty or contains only column
headings, the program displays

Your people.csv file doesn't have enough stuff.

Assuming neither error happened, the code under the else: runs and
displays whatever is in the file.

So as you can see, exception handling lets you plan for errors caused by
vulnerabilities in your code. We’re referring not to bugs in your code or
coding errors but to outside resources that the program needs to run
correctly.

When outside resources are missing or insufficient, you don’t have to let
the program just crash and display a nerd-o-rama error message that will
baffle your users. Instead, you can catch the exception and show users
some text that tells them exactly what’s wrong, which will help them fix
the problem and run the program again, successfully this time. That’s
what exception handling is all about.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 3
Working with Libraries

Contents at a Glance
Chapter 1: Working with External Files

Understanding Text and Binary Files

Opening and Closing Files

Reading a File’s Contents

Looping through a File

Reading and Copying a Binary File

Conquering CSV Files

Converting from CSV to Objects and Dictionaries

Chapter 2: Juggling JSON Data
Organizing JSON Data

Understanding Serialization

Loading Data from JSON Files

Dumping Python Data to JSON

Chapter 3: Interacting with the Internet
Seeing How the Web Works

Chapter 4: Libraries, Packages, and Modules
Understanding the Python Standard Library

Exploring Python Packages

Importing Python Modules

Making Your Own Modules

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Working with External Files

IN THIS CHAPTER
 Working with text and binary files
 Opening, closing, and reading the contents of a file
 Looping through a file
 Reading and copying a binary file
 Working with CSV files
 Importing CSV to objects and dictionaries

Pretty much everything stored in your computer, be it a document,
program, movie, photograph, and more, is stored in a file. Most files are
organized into folders (also called directories). You can browse through
folders and files by using Finder (on a Mac) or File Explorer or
Windows Explorer (in Windows).

Python offers many tools for creating, reading from, and writing to many
different kinds of files. In this chapter, you learn the most important
skills for using Python code to work with files.

Understanding Text and Binary
Files

There are basically two types of files:

Text file: Contains plain text characters. When you open a text file in
a text editor, it displays human-readable content. The text may not be
in a language you know or understand, but you will see mostly
normal characters that you can type at any keyboard.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Binary file: Stores information in bytes that aren’t quite so human
readable. If you open the binary file in a text editor, what you see
may resemble Figure 1-1. (We don’t recommend that you do this.)

FIGURE 1-1: How a binary files looks in a program for editing text files.

 If you open a binary file in a text editor and see this
gobbledygook, don’t panic. Just close the file or program and
choose No if asked to save it. The file will be fine, as long as you
don’t save it.

Figure 1-2 lists examples of different kinds of text and binary files, some
of which you may have worked with before. Other files types are
available; these are among the most widely used.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-2: Common text and binary files.

As with any Python code, you can use a Jupyter notebook, VS Code, or
almost any coding editor to write your Python code. We use VS Code in
this chapter simply because its Explorer bar (on the left, when it’s open)
displays the contents of the folder in which you’re currently working.

Opening and Closing Files
To open a file from a Python app, use the syntax:

open(filename.ext[,mode])

Replace filename.ext with the filename of the file you want to open. If
the file is not in the same directory as the Python code, you need to
specify a path to the file, using forward slashes, even if you're working
in Windows. For example, if you want to open the foo.txt on your
desktop and your user account name is Alan, you'd use the path
C:/Users/Alan/Desktop/foo.txt rather than the more common
Windows syntax with backslashes (C:\Users\Alan\Desktop\foo.txt).

The ,mode is optional (as indicated by the square brackets). Use it to
specify what kind of access you want your app to have, using the
following single-character abbreviations:

r: (Read): Opens the file but does not allow Python to make any
changes. This is the default mode and is used if you don't specify a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



mode. If the file doesn't exist, Python raises a FileNotFoundError
exception.
r+: (Read/Write): Opens the file and allows Python to read and
write to the file.
a: (Append): Opens the file and allows Python to add content to the
end of the file but not change existing content. If the file doesn't
exist, this mode creates the file.
w: (Write): Opens the file and allows Python to make changes to the
file. Creates the file if it doesn't exist.
x: (Create): Creates the file if it doesn't already exist. If the file does
exist, it raises a FileExistsError exception.

 For more information on exceptions, see Book 2, Chapter 7.

You can also specify the type of file you're opening or creating. If you
already specified one of the preceding modes, just add this specification
as another letter. If you use just one of the following letters on its own,
the file opens in Read mode:

t: (Text): Opens the file as a text file and allows Python to read and
write text.
b: (Binary): Opens the file as a binary file and allows Python to read
and write bytes.

You can use the open method in basically two ways. With one syntax
you assign a variable name to the file, and use this variable name in code
to refer to the file:

var = open(filename.ext[,mode])

Replace var with a name of your choosing (though it's common in
Python to use just the letter f as the name).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



After the file is open, you can access its content in a few ways, as we
discuss a little later in the chapter. For now, we simply copy everything
in the file to a variable named filecontents, and then we display this
content using a simple print() function. So to open quotes.txt, read in
all its content, and display that content on the screen, use this code:

f = open('quotes.txt')

filecontents = f.read()

print(filecontents)

With this method, the file remains open until you specifically close it
using the file variable name and the .close() method, like this:

f.close()

 Make sure that your apps close any files they no longer need
open. Failure to do so allows open file handlers to accumulate,
which can eventually cause the app to throw an exception and
crash, perhaps even corrupting some of the open files along the
way.

The second way to open a file, is by using a context manager or
contextual coding. Contextual coding starts with the word with. You still
assign a variable name, but you do so near the end of the line. The last
thing on the line is a colon, which marks the beginning of the with
block. All indented code below that is assumed to be relevant to the
context of the open file (like code indented inside a loop). At the end of
contextual coding, you don't need to close the file because Python does it
automatically:

# ---------------- Contextual syntax

with open('quotes.txt') as f:

    filecontents = f.read()

    print(filecontents)

 

# The unindented line below is outside the with… block;

print('File is closed: ', f.closed)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The following code shows a single app that opens quotes.txt, reads
and displays its content, and then closes the file. With the first method
you have to use .close() to close the file. With the second method, the
file closes automatically, so no .close() is required:

# - Basic syntax to open, read, and display file contents.

f = open('quotes.txt')

filecontents = f.read()

print(filecontents)

# Returns True if the file is closed, otherwise False.

print('File is closed: ', f.closed)

 

# Closes the file.

f.close() #Close the file.

print() # Print a blank line.

 

# ---------------- Contextual syntax

with open('quotes.txt') as f:

    filecontents = f.read()

    print(filecontents)

 

# The unindented line below is outside the with… block;

print('File is closed: ', f.closed)

The output of this app follows:
I've had a perfectly wonderful evening, but this wasn't it.

Groucho Marx

The difference between stupidity and genius is that genius has its limits.

Albert Einstein

We are all here on earth to help others; what on earth the others are here 

for, I have no idea.

W. H. Auden

Ending a sentence with a preposition is something up with which I will not 

put.

Winston Churchill

 

File is closed:  False

I've had a perfectly wonderful evening, but this wasn't it.

Groucho Marx

The difference between stupidity and genius is that genius has its limits.

Albert Einstein

We are all here on earth to help others; what on earth the others are here 

for,

 I have no idea.

W. H. Auden

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Ending a sentence with a preposition is something up with I will not put.

Winston Churchill

 

File is closed:  True

(We can't vouch that these famous quotes were actually said by the
people shown.) At the end of the first output, .closed is False because
it's tested before the close() closes the file. At the end of the second
output, .closed is True without executing a .close() because leaving
the code indented under the with: line closes the file automatically.

For the rest of this chapter, we stick with contextual syntax because it’s
generally the preferred and recommended syntax and a good habit to
acquire right from the start.

The previous example works fine because quotes.txt is a simple text
file that contains only ASCII characters — the kinds of letters, numbers,
and punctuation marks that you can type from a standard keyboard for
the English language. Now consider the following code, which attempts
to open a .jpg file, which is a graphic image, not a text file:

with open('happy_pickle.jpg') as f:

    filecontents = f.read()

    print(filecontents)

Attempting to run that code results in the following error:
UnicodeDecodeError: 'charmap' codec can't decode byte 0x90 in position 40: 

character maps to <undefined>

This message isn't the most helpful one in the world. Suppose we try to
open names.txt, which (one would assume) is a text file like
quotes.txt, using this code:

with open('names.txt') as f:

    filecontents = f.read()

    print(filecontents)

We then run this code, and again get a strange error message, like this:
UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 45: 

character maps to <undefined>

What the heck is going on here?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The first problem is caused because the file type is .jpg, a graphic
image, which means the file is a binary file, not a text file. To open a
.jpg file, you need b in the mode. Or use rb, which means read binary,
like this:

with open('happy_pickle.jpg', 'rb') as f:

    filecontents = f.read()

    print(filecontents)

Running this code doesn't generate an error. But what it does display
doesn't look anything like the actual picture:

\x07~}\xba\xe7\xd2\x8c\x00\x0e|\xbd\xa8\x12l+\xca\xf7\xae\xa5\x9e^\x8d\x89

\x7f\xde\xb4f>\x98\xc7\xfc\xcf46d\xcf\x1c\xd0\xa6\x98m$\xb6(U\x8c\xa6\x83

\x19\x17\xa6>\xe6\x94\x96|g\'4\xab\xdd\xb8\xc8=\xa9[\x8b\xcc`\x0e8\xa3

\xb0;\xc6\xe6\xbb(I.\xa3\xda\x91\xb8\xbd\xf2\x97\xdf\xc1\xf4\xefI\xcdy

\x97d\x1e`;\xf64\x94\xd7\x03

If we open happy_pickle.jpg in a graphics app or in VS Code, it looks
nothing like that gibberish. Instead, it looks like Figure 1-3.

FIGURE 1-3: How happy_pickle.jpg is supposed to look.

So why does the file look so messed up in Python? The print()
function displays the raw bytes that make up the file. Displaying raw

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



bytes isn’t a problem or an issue; it's just not a good way to work with a
.jpg file right now.

The problem with names.txt is different. That file is a text file (.txt),
just like quotes.txt. But if you open it and look at its contents, as in
Figure 1-4, you'll see that it has a lot of unusual characters that you don't
normally see in ASCII (the numbers, letters, and punctuation marks on
your keyboard).

FIGURE 1-4: The Names.txt file is text, but with lots of non-English characters.

All those fancy-looking characters tell you that names.txt is not a
simple ASCII text file. More likely it’s a UTF-8 file, which is basically a
text file that uses more than the standard ASCII text characters. To open
this file, you have to tell Python to expect UTF-8 characters by using
encoding='utf-8' in the open() statement, as shown in Figure 1-5. The
output matches the contents of the names.txt file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-5: Contents of names.txt displayed.

When opening a file, you need to be aware of three things:

For a plain text file (ASCII), you can use r or nothing as the mode.

For a binary file, you must specify b in the mode.

For a text file with fancy characters, you most likely need to open it
as a text file with encoding set to utf-8 in the open() statement.

WHAT IS UTF-8?
UTF-8 is short for Unicode Transformation Format, 8-bit, and is a standardized way to
represent letters and numbers on computers. The original ASCII set of characters,
which contains mostly uppercase and lowercase letters, numbers, and punctuation
marks, worked okay in the early days of computing. But when other languages were
brought into the mix, these characters were just not enough. Many standards for
dealing with other languages have been proposed and accepted over the years. Of
those, UTF-8 has steadily grown in use whereas most others declined. Today, UTF-8 is
pretty much the standard for all things Internet, and so it's a good choice if you have to
choose a character set for a project.

If you’re looking for more history or technical info on UTF-8, take a look at these web
pages:

www.w3.org/International/questions/qa-what-is-encoding

https://pythonconquerstheuniverse.wordpress.com/2010/05/30/unicode-

beginners-introduction-for-dummies-made-simple/

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.w3.org/International/questions/qa-what-is-encoding
https://pythonconquerstheuniverse.wordpress.com/2010/05/30/unicode-beginners-introduction-for-dummies-made-simple/


https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-

software-developer-absolutely-positively-must-know-about-unicode-and-

character-sets-no-excuses/

If you get stuck trying to open a file that’s supposed to be UTF-8 but isn't cooperating,
do a web search for convert file to utf-8 encoding. Then look for a web page or an app
that will work with your operating system to make the conversion.

Reading a File’s Contents
Previously in this chapter, you saw how you can use .read() to read the
contents of an open file. But that's not the only way to read a file. You
have three choices:

read([size]): Reads the entire file if you leave the parentheses
empty. If you specify a size inside the parentheses, it reads that many
characters (for a text file) or that many bytes (for a binary file).
readline(): Reads one line of the contents from a text file — the
line ends wherever there's a newline character. (The newline
character, \n, ends the line that's displayed and moves the cursor
down to the next line.)
readlines(): Reads all the lines of a text file into a list.

 People don't type binary files, so any newline characters in a
binary file are arbitrary. Therefore, readline() and readlines()
are useful only for text files.

Both the read() and readline() methods read in the entire file at once.
The only difference is that read reads in the file as one big chunk of
data, whereas readlines() reads in the file one line at a time and stores
each line as an item in a list. For example, the following code opens
quotes.txt, reads in all the contents, and then displays it

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/


with open('quotes.txt') as f:

    # Read in entire file

    content = f.read()

    print(content)

The content variable stores a copy of everything from the text file. We
print the variable to display its contents. The newline character at the
end of each line in the file starts a new line on the screen when printing.

Here is the same code using readlines() rather than read:

with open('quotes.txt') as f:

    content = f.readlines()

    print(content)

The output from this code is
["I've had a perfectly wonderful evening, but this wasn't it.\n", 'Groucho 

Marx\n', 'The difference between stupidity and genius is that genius has its 

limits.\n', 'Albert Einstein\n', 'We are all here on earth to help others; 

what on earth the others are here for, I have no idea.\n', 'W. H. Auden\n', 

'Ending a sentence with a preposition is something up with I will not 

put.\n', 'Winston Churchill\n']

The square brackets surrounding the output tell you that it's a list. Each
item in the list is surrounded by quotation marks and separated by
commas. The \n at the end of each item is the newline character that
ends the line in the file.

Unlike readlines() (plural), readline() reads just one line from the
file. The line extends from the current position in the file to the next
newline character. Executing another readline() reads the next line in
the file, and so forth. For example, suppose you run this code:

with open('quotes.txt') as f:

    content = f.readline()

    print(content)

The output is
I've had a perfectly wonderful evening, but this wasn't it.

Executing another readline() after this would read the next line. As
you may guess, when it comes to readline() and readlines(), you're

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



likely to want to use loops to access all the data in a way that gives you
more control.

Looping through a File
You can loop through a file using either readlines() or readline().
The readlines() method always reads in the file as a whole. So if the
file is very large, your computer may run out of memory (RAM) before
the file has been read in. But if you know the size of the file and it's
relatively small (maybe a few hundred rows of data or less),
readlines() is a speedy way to get all the data. That data will be in a
list, so you will loop through the list rather than the file. You can also
loop through binary files, but they don’t have lines of text like text files
do. So binary files are read in chunks, as you’ll see at the end of this
section.

Looping with readlines()
When you read a file with readlines(), you read the entire file in one
fell swoop as a list. So you don’t really loop through the file one row at a
time. Rather, you loop through the list of items that readlines() stores
in memory. The code to do so looks like this:

with open('quotes.txt') as f:

    # Reads in all lines first, then loops through.

    for one_line in f.readlines():

        print(one_line)

If you run this code, the output will be double-spaced because each list
item ends with a newline, and then print always adds its own newline
with each pass through the loop. If you want to retain the single spacing,
add end='' to the print statement (make sure you use two single or
double quotation marks with no spaces after =). Here's an example:

with open('quotes.txt') as f:

    # Reads in all lines first, then loops through.

    for one_line in f.readlines():

        print(one_line, end='')

The output from this code follows:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



I've had a perfectly wonderful evening, but this wasn't it.

Groucho Marx

The difference between stupidity and genius is that genius has its limits.

Albert Einstein

We are all here on earth to help others; what on earth the others are here 

for, I have no idea.

W. H. Auden

Ending a sentence with a preposition is something up with I will not put.

Winston Churchill

Let's suppose you're happy with that output but want to improve it
slightly. You want to indent the name below each quote a couple of
spaces and add a blank line below the name. How could you do that?
Well, Python has a built-in enumerate() function that, when used with a
list, counts the number of passes through the loop, starting at 0. So
instead of the for: loop shown in the preceding example, you write for
one_line in enumerate(f.readlines()):. With each pass through the
loop, one_line[0] contains the number of that line, one_line[1]
contains its contents (the text of the line), and you can see whether the
counter is an even number using the modulo operator, %, which returns
the remainder after division. So when you calculate % 2 (modulo 2) for
an even number, you always get 0. An odd number will always return a
non-zero remainder when divided by 2. So you could write the code this
way:

with open('quotes.txt') as f:

    # Reads in all lines first, then loops through.

    # Count each line starting at zero.

    for one_line in enumerate(f.readlines()):

        # If counter is even number, print with no extra newline

        if one_line[0] % 2 == 0:

            print(one_line[1], end='')

        # Otherwise print a couple spaces and an extra newline.

        else:

            print('  ' + one_line[1])

The output is as follows:
I've had a perfectly wonderful evening, but this wasn't it.

  Groucho Marx

 

The difference between stupidity and genius is that genius has its limits.

  Albert Einstein

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

We are all here on earth to help others; what on earth the others are here 

for, I have no idea.

  W. H. Auden

Ending a sentence with a preposition is something up with I will not put.

  Winston Churchill

Looping with readline()
If you aren't too sure about the size of the file you're reading or the
amount of RAM in the computer running your app, using readlines()
to read in an entire file can be risky. If there isn’t enough memory to
hold the entire file, the app will crash when it runs out of memory. To
play it safe, you can loop through the file one line at a time so only one
line of the contents from the file is in memory at any given time.

To use this method, you open the file, read one line, and put it in a
variable. Then loop through the file as long as (while) the variable isn't
empty. Because each line in the file contains some text, the variable
won’t be empty until after the last line is read. Here is the code for this
approach to looping:

with open('quotes.txt') as f:

    one_line = f.readline()

    while one_line:

        print(one_line, end='')

        one_line = f.readline()

For larger files, this method is the way to go because at no point are you
reading in the entire file. The only potential problem is forgetting to
include .readline() inside the loop to advance to the next row.
Otherwise, you end up with in infinite loop that prints the first line over
and over. If you ever find yourself in this situation, press Ctrl+C in the
Terminal window where the code is running to stop the loop.

You can accomplish the same format, where you indent the name under
each quote and add a blank line, by using .readline() in Python. In
your code, start a counter at 1. Create a loop that reads one row at a time
from the text file. Within that loop, increment your counter variable by 1
with each pass through the loop. Then indent and do the extra space on
even-numbered lines like this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Store a number to use as a loop counter.

counter = 1

# Open the file.

with open('quotes.txt') as f:

    # Read one line from the file.

    one_line = f.readline()

    # As long as there are lines to read…

    while one_line:

        # If the counter is an even number, print a couple spaces.

        if counter % 2 == 0:

            print('  ' + one_line)

        # Otherwise print with no newline at the end.

        else:

            print(one_line, end='')

        # Increment the counter

        counter += 1

        # Read the next line.

        one_line = f.readline()

The output from this loop is the same as for the second readlines()
loop, in which each author's name is indented and followed by an extra
blank line caused by using print() without the end=''.

Appending versus overwriting files

 Any time you work with files, it's important to understand the
difference between write and append. If a file contains information
and you open it in write mode and then write more to it, your new
content will overwrite (replace) whatever is already in the file.
There is no undo for this. So if the content of the file is important,
you want to make sure you don’t make that mistake. To add content
to the end of a file, open the file in append (a) mode, and then use
.write to write to the file.

Suppose you want to add the name Peña Calderón to the names.txt file
used in the previous section. This name, as well as the names already in
this file, use special characters beyond the English alphabet, so you need
to set the encoding to UTF-8. Also, if you want to display each name in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the file on a separate line, add a \n (newline) to the end of the name
you're adding. Your code should look like this:

# New name to add with \n to mark end of line.

new_name = 'Peña Calderón\n'

# Open names.txt in append mode with encoding.

with open('names.txt', 'a', encoding='utf-8') as f:

    f.write(new_name)

To verify that it worked, start a new block of code, with no indents, so
names.txt file closes automatically. Then open the file in read (r) mode
and view its contents. Figure 1-6 shows the code for adding the new
name and the code to display the names.txt file after adding the name.

FIGURE 1-6: A new name appended to the end of the names.txt file.

 Typing special characters such as ñ and ó usually involves
holding down the Alt key and typing a three- or four-numeric digit,
for example, Alt+164 for ñ or Alt+0243 for ó. Exactly how you do
this depends on your operating system and editor. You can do a web

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



search for something like type tilde n on Windows or type accented
o on Mac for details.

Using tell() to determine the pointer location
When you loop through a file, its contents are read top to bottom, and
left to right. Python maintains a pointer to keep track of where it is in the
file. When you’re reading a text file with readline(), the pointer is
always the character position of the next line in the file.

If all you’ve done so far is open the file, the character position will be 0,
the start of the file. Each time you execute readline(), the pointer
advances to the start of the next row. Here is some code and its output to
illustrate:

with open('names.txt', encoding='utf-8') as f:

    # Read first line to get started.

    print(f.tell())

    one_line = f.readline()

    # Keep reading one line at a time until there are no more.

    while one_line:

        print(one_line[:-1], f.tell())

        one_line = f.readline()

0

Björk Guðmundsdóttir 25

毛泽东 36

Бopиc Hикoлaeвич Eльцин 82

Nguyễn Tấn Dũng 104

Peña Calderón 121

The first 0 is the position of the pointer right after the file is opened. The
25 at the end of the next line is the position of the pointer after reading
the first line. The 36 at the end of the next line is the pointer position at
the end of the second line, and so forth, until the 121 at the end, when
the pointer is at the end of the file.

If you try to do this with readlines(), you get a different result. Here is
the code:

with open('names.txt', encoding='utf-8') as f:

    print(f.tell())

    # Reads in all lines first, then loops through.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    for one_line in f.readlines():

        print(one_line[:-1], f.tell())

Here is the output:
0

Björk Guðmundsdóttir 121

毛泽东 121

Бopиc Hикoлaeвич Eльцин 121

Nguyễn Tấn Dũng 121

Peña Calderón 121

The pointer starts out at position 0, as expected. But each line displays
121 at the end because readlines() reads in the entire file when
executed, leaving the pointer at the end, position 121. The loop is
actually looping through the copy of the file in memory; it's no longer
reading through the file.

Moving the pointer with seek()
Whereas the tell() method tells you where the pointer is in an external
file, the seek() method enables you to reposition the pointer. The syntax
is

file.seek(position[,whence])

Replace file with the variable name of the open file. Replace position
to indicate where you want to put the pointer. For example, 0 moves the
pointer back to the top of the file. The whence is optional; you can use it
to indicate where in the file to set the pointer position. Your choices are

0: Set the position relative to the start of the file.

1: Set the position relative to the current pointer position.

2: Set the position relative to the end of the file. Use a negative
number for position.

If you omit the whence value, it defaults to 0.

By far, the most common use of seek is to just reset the pointer back to
the top of the file for another pass through the file. The syntax for this is
simply .seek(0).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Reading and Copying a Binary File
Suppose you have an app that changes a binary file, and you want to
always work with a copy of the original file to play it safe. Binary files
can be huge, so rather than opening it all at once and risking running out
of memory, you can read it in chunks and write it out in chunks. Binary
files do not have human-readable content. Nor do they have lines of text.
So readline() and readlines() aren't a good choice for looping
through binary files, but you can use .read() with a specified size.

Figure 1-7 shows the binarycopy.py file, which makes a copy of any
binary file. We'll take you through that code step-by-step so you can
understand how it works.

FIGURE 1-7: The binarycopy.py file copies any binary file.

The first step is to specify the file you want to copy. We chose
happy_pickle.jpg, which, as you can see in the figure, is in the same

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



folder as the binarycopy.py file:

# Specify the file to copy.

file_to_copy = 'happy_pickle.jpg'

To make an empty file to copy into, you need a filename for the file. The
following code takes care of that:

# Create new file name with _copy before the extension.

name_parts = file_to_copy.split('.')

new_file = name_parts[0] + '_copy.' + name_parts[1]

The first line after the copy splits the existing filename in two at the dot,
so name_parts[0] contains happy_pickle and name_parts[1] contains
png. Then the new_file variable gets a value consisting of the first part
of the name with _copy and a dot attached, and then the last part of the
name. So after this line executes, the new_file variable contains
happy_pickle_copy.png.

To make the copy, open the original file in rb (read, binary file) mode.
Then open the file into which you want to copy the original file in wb
mode (write, binary). With write, Python creates a file of this name if the
file doesn't already exist. If the file does exist, Python opens it with the
pointer set at 0, so anything that you write into the file will replace (not
add to) the existing file.

In the code you can see that we used original_file as the variable
name from which to copy, and copy_to as the variable name of the file
into which you copy data. Indentations, as always, are critical:

# Open the original file as read-only binary.

with open(file_to_copy, 'rb') as original_file:

    # Create or open file to copy into.

    with open(new_file, stet'wb') as copy_to:

If you use .read() to read in the entire binary file, you run the risk of it
being so large that it overwhelms the computer's RAM and crashes the
program. To avoid this, we've written this program to read in a modest
4MB (4,096 kilobytes) of data at a time. This 4KB chunk is stored in a
variable named chunk:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Grab a chunk of original file (4MK).

chunk = original_file.read(4096)

The next line sets up a loop that keeps reading one chunk at a time. The
pointer is automatically positioned to the next chunk with each pass
through the loop. Eventually, it will hit the end of the file where it can’t
read anymore. When this happens, chunk will be empty, meaning it has a
length of 0. So this loop keeps going through the file until it gets to the
end:

# Loop through until no more chunks.

while len(chunk) > 0:

Within the loop, the first line copies the last-read chunk into the copy_to
file. The second line reads the next 4KB chunk from the original file.
And so it goes until everything from original_file has been copied to
the new file:

copy_to.write(chunk)

# Make sure you read in the next chunk in this loop.

chunk = original_file.read(4096)

All the indentations stop after this line. When the loop is done, the files
close automatically, and the last line displays Done! as follows:

print('Done!')

Figure 1-8 shows the results of running the code. The Terminal pane
simply shows Done!. But as you can see, there's now a file named
happy_pickle_copy.jpg in the folder. Opening this file will prove that it
is a copy of the original file.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-8: Running binarycopy.py added happy_pickle_copy.jpg to the folder.

Conquering CSV Files
CSV (comma-separated values) is a widely used format for storing and
transporting tabular data. Tabular means the data can generally be
displayed in a table format consisting of rows and columns. In a
spreadsheet app such as Microsoft Excel, Apple Numbers, or Google
Sheets, the tabular format is obvious, as shown in Figure 1-9.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-9: A CSV file in Microsoft Excel.

Without the aid of a special program to make the data in the file display
in a neat tabular format, each row is just a line in the file. And each
unique value is separated by a comma. For instance, opening the file
shown in Figure 1-9 in a simple text editor such as Notepad or TextEdit
shows what's really stored in the file, as you can see in Figure 1-10.

FIGURE 1-10: A CSV file in a text editor.

In the text editor, the first row, often called the header, contains the
column headings, or field names, that appear across the first row of the
spreadsheet. If you look at the names in the second example, the raw
CSV file, you'll see that they’re enclosed in quotation marks, like this:

"Angst, Annie"

The quotation marks indicate that the stuff between them is all one thing.
In other words, the comma between the last and first name is part of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



name; it isn’t the start of a new column. So the first two columns in this
row one are

"Angst, Annie", 1982

and not
Angst, Annie

The same is true in all other rows: The name enclosed in quotation
marks (including commas) is just one name, not two separate columns of
data.

If a string contains an apostrophe, which is the same character as a single
quotation mark, you have to use double quotation marks around the
string. Otherwise, if you do this:

'O'Henry, Harry'

the first part of the string is 'O' and then Python doesn't know what to
do with the text after the second single quotation mark. Using double
quotation marks alleviates any confusion because there are no other
double quotation marks within the name:

"O'Henry, Harry"

Figure 1-10 also illustrates other considerations when creating CSV
files. For example, the Bónañas, Barry name contains some non-ASCII
characters. The second-to-last row contains only a bunch of commas. (In
a CSV file, if a cell is missing its data, you put the comma that ends the
cell with nothing to its left.) The Balance column has dollar signs and
commas in the numbers, which don't work with the Python float data
type. We talk about how to deal with all these issues in the sections to
follow.

Although you could work with CSV files using just what you’ve learned
so far, the task will be a lot quicker and easier if you use the csv module,
which you already have. To use it, just put this near the top of your
program:

import csv

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Remember, this line of code doesn't bring in a CSV file. It brings in the
prewritten code that makes it easier for you to work with CSV files in
your own Python code.

Opening a CSV file
Opening a CSV file is no different from opening any other file. Just
remember that if the file contains special characters, you need to include
encoding='utf-8' to avoid an error message. Optionally, when
importing data, you probably don’t want to read in the newline character
at the end of each row, so you can add newline='' to the open()
statement. Here is how you might comment and code this, except you'd
replace sample.csv with the path to the CSV file you want to open:

# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

To loop through a CSV file, you can use the built-in reader() function,
which reads one row when executed. Again, the syntax is simple:

reader = csv.reader(f)

Replace f with the name you used at the end of your open statement
(without the colon at the very end).

Optionally, you can also count rows as you go. Just put everything to the
right of = in enumerate(), as shown in the following (where we've also
added a comment above the code):

# Create a CVS row counter and row reader.

reader = enumerate(csv.reader(f))

Next, you can set up your loop to read one row at a time. Because you
put an enumerator on the loop, you can use two variable names in your
for: loop. The first variable (which we call i) keeps track of the counter
(which starts at 0 and increases by 1 with each pass through the loop).
The second variable, row, contains the entire row of data from the CSV
file:

# Loop through one row at a time, i is counter, row is entire row.

for i, row in reader:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Within the loop, you can use a print() function to print the value of i
and row with each pass through the loop, like this:

import csv

# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

    # Create a CVS row counter and row reader.

    reader = enumerate(csv.reader(f))

    # Loop through one row at a time, i is counter, row is entire row.

    for i, row in reader:

        print(i, row)

print('Done')

The output from this code, using the sample.csv file described earlier as
input, is as follows:

0 ['\ufeffFull Name', 'Birth Year', 'Date Joined', 'Is Active', 'Balance']

1 ['Angst, Annie', '1982', '1/11/2011', 'TRUE', '$300.00']

2 ['Bónañas, Barry', '1973', '2/11/2012', 'FALSE', '-$123.45']

3 ['Schadenfreude, Sandy', '2004', '3/3/2003', 'TRUE', '$0.00']

4 ['Weltschmerz, Wanda', '1995', '4/24/1994', 'FALSE', '$999,999.99']

5 ['Malaise, Mindy', '2006', '5/5/2005', 'TRUE', '$454.01']

6 ["O'Possum, Ollie", '1987', '7/27/1997', 'FALSE', '-$1,000.00']

7 ['', '', '', '', '']

8 ['Pusillanimity, Pamela', '1979', '8/8/2008', 'TRUE', '$12,345.67']

Note how the row of column names is row 0. The weird \ufeff before
Full Name in that row is the byte order mark (BOM), which is just
something Excel sticks in there. Typically you don't care what’s in that
first row because the real data doesn’t start until the second row. So
don’t give the BOM a second thought; it’s of no value to you and it isn't
doing any harm.

As you can see, each row is a list of five items separated by commas. In
your code, you can refer to each column by its position. For example,
row[0] is the first column in the row (the person’s name). Then, row[1]
is the birth year, row[2] is date joined, row[3] is whether the person is
active, and row[4] is the balance.

All the data in the CSV file consists of strings — even if they don't look
like strings. But anything and everything coming from a CSV file is a
string because a CSV file is a type of text file, and a text file contains
only strings (text) — no integers, dates, Booleans, or floats.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In your app, you'll probably want to convert the incoming data to Python
data types so you can work with them more effectively or even transfer
them to a database. In the next sections, we look at how to do the
conversion for each data type.

Converting strings
Technically, you don’t have to convert anything from the CSV file to a
string. But you may want to chop the file up a bit or deal with empty
strings in some way. First, as mentioned, we care only about the data
here, not that first row. So inside the loop, you can start with an if that
doesn’t do anything if the current row is row 0. Replace the print(i,
row) like this:

# Row 0 is just column headings, ignore it.

if i > 0:

    full_name = row[0].split(',')

    last_name = full_name[0].strip()

    first_name = full_name[1].strip()

This code says “As long as we're not looking at the first row, create a
variable named full_name and store in it whatever is in the first column
split into two separate values at the comma.” After that line executes,
full_name[0] contains the person's last name, which we then put into a
variable named last_name, and full_name[1] contains the person's first
name, which we put into a variable named first_name. But if you run
the code that way, it will bomb, because row 7 doesn't have a name, and
Python can’t split an empty string at a comma (because the empty string
contains no comma).

To get around this, you can tell Python to try to split the name at the
comma, if it can. But if it bombs when trying, just store an empty string
in the full_name, last_name, and first_name variables. Here's that
code with some extra comments thrown in to explain what’s going on.
Instead of printing i and the entire row, the code prints the first name
and last name (and nothing for the row whose information is missing).
The output appears below the code:

import csv

# Open CSV file with UTF-8 encoding, don't read in newline characters.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



with open('sample.csv', encoding='utf-8', newline='') as f:

    # # Create a CVS row counter and row reader.

    reader = enumerate(csv.reader(f))

    # Loop through one row at a time, i is counter, row is entire row.

    for i, row in reader:

        # Row 0 is just column headings, ignore it.

        if i > 0:

            # Whole name split into two at comma.

            try:

                full_name = row[0].split(',')

                # Last name, strip extra spaces.

                last_name=full_name[0].strip()

                # First name, strip extra spaces.

                first_name=full_name[1].strip()

            except IndexError:

                full_name = last_name = first_name = ""

            print(first_name, last_name)

print('Done!')

Annie Angst

Barry Bónañas

Sandy Schadenfreude

Wanda Weltschmerz

Mindy Malaise

Ollie O'Possum

 

Pamela Pusillanimity

Done!

Converting to integers
The second column in each row, row[1], is the birth year. As long as the
string contains something that can be converted to a number, you can use
the simple built-in int() function to convert it to an integer. We do have
a problem in row 7, which is empty. Python won't automatically convert
this to a 0; you have to help it along a bit, as follows:

# Birth year integer, zero for empty string.

birth_year = int(row[1] or 0)

The code looks surprisingly simple, but that is the beauty of Python: It is
surprisingly simple. This line of code says “Create a variable named
birth_year and put in it the second column value, if you can, or if there
is nothing to convert to an integer, then just put in a zero.”

Converting to date

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The third column in our CSV file, row[2], is the date joined, and it
appears to have a reasonable date in each row (except the row whose
data is missing). To convert the textual date to a Python date, you need
to import the datetime module by adding import datetime as dt near
the top of the program. Then the simple conversion is

date_joined = dt.datetime.strptime(row[2], "%m/%d/%Y").date()

A lot is going on here. First, you create a variable named date_joined.
The strptime code means “string parse for date time.” The [row[2]
code means the third column (because the first column is always column
0). The "%m/%d/%Y" tells strptime that the string date contains the
month, a slash, the day of the month, a slash, and then the four-digit year
(%Y). The .date() at the end means “just the date; there is no time here
to parse.”

One small problem. When the program gets to the row whose date is
missing, it will bomb. So once again we'll use a try block to convert the
date; if it can't come up with a date, it puts in the value None, which is
Python's word for an empty object.

 In Python, datetime is a class, so any date and time you create
is an object (of the datetime type). You use '' for an empty string,
but None for an empty object.

Here is the code as it stands now with the import at top for datetime,
and try … except to convert the string date to a Python date:

import csv

import datetime as dt

# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

    # Create a CVS row counter and row reader.

    reader = enumerate(csv.reader(f))

    # Loop through one row at a time, i is counter, row is entire row.

    for i, row in reader:

        # Row 0 is just column headings, ignore it.

        if i > 0:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



            # Whole name split into two at comma.

            try:

                full_name = row[0].split(',')

                # Last name, strip extra spaces.

                last_name = full_name[0].strip()

                # First name, strip extra spaces.

                first_name = full_name[1].strip()

            except IndexError:

                full_name = last_name = first_name = ""

            # Birth year integer, zero for empty string.

            birth_year = int(row[1] or 0)

            # Date_joined is a date.

            try:

                date_joined = dt.datetime.strptime(row[2], "%m/%d/%Y").date()

            except ValueError:

                date_joined = None

            print(first_name, last_name, birth_year, date_joined)

print('Done!')

Here is the output from this code, which now prints first_name,
last_name, birth_year, and date_joined with each pass through the
data rows in the table:

Annie Angst 1982 2011-01-11

Barry Bónañas 1973 2012-02-11

Sandy Schadenfreude 2004 2003-03-03

Wanda Weltschmerz 1995 1994-04-24

Mindy Malaise 2006 2005-05-05

Ollie O'Possum 1987 1997-07-27

  0 None

Pamela Pusillanimity 1979 2008-08-08

Done!

Converting to Boolean
The fourth column, row[3] in each row, contains TRUE or FALSE. Excel
uses all uppercase letters, which are automatically carried over to the
CSV file when saving as CSV in Excel. Python uses initial caps, True
and False. Python has a simple bool() function for converting data to
Boolean. The bool() function won't bomb when it hits an empty cell; it
just considers that cell False. The conversion is as simple as the
following:

# is_active is a Boolean, automatically False for empty string.

is_active = bool(row[3])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Converting to floats
The fifth column in each row contains the balance, which is a dollar
amount. In Python, you want the dollar amount to be an actual numeric
value, so you can do math. The float data type is good because you can
include decimal points for the pennies. But there's one potential snag.
Python floats can't contain a dollar sign ($) or a comma (,), so you must
remove those from the string. Also, you can't have any leading and
trailing spaces. These you can remove easily with the strip() method.
The following line of code creates a variable named str_balance
(which is still a string) but with the dollar sign, comma, and any trailing
leading spaces removed:

# Remove $, commas, leading trailing spaces.

str_balance = (row[4].replace('$', '').replace(',', '')).strip()

You can read this second line as “The new string named str_balance
consists of whatever is in the fifth column after replacing any dollar
signs with nothing, replacing any commas with nothing, and stripping all
leading and trailing spaces.”

Below that line, you can add a comma and then another line to create a
float named balance that uses the built-in float() method to convert
the str_balance string into a float. Like int(), float()stores 0 as the
value of the float if it can't make sense of the thing it's trying to convert
to a float.

The code in Figure 1-11 shows everything in place, including a print()
line that displays the values of all five columns after the conversion.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-11: Reading a CSV file and converting it to Python data types.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



USING REGULAR EXPRESSIONS IN
PYTHON

Although we assume that you're not familiar with other programming languages, some
readers will be and may be wondering why we didn't use a regular expression instead
of the replace() method to remove the dollar sign and comma from balance. Well,
regular expressions aren't built into Python. So if you want to use them, you need to put
an import re at the top of your code, which just uses the substitution capabilities of
regular expressions, you'd need this near the top of your code:

from re import sub

Later in the code, you can replace

str_balance = (row[4].replace('$', '').replace(',', '')).strip()

with

str_balance = (sub(r'[\s\$,]', '', row[4])).strip()

This line does the same thing as the original line. It removes the dollar sign, commas,
and any leading and trailing spaces from the fifth column value.

Converting from CSV to Objects and
Dictionaries

You've seen how to read in data from a CSV file, and how to convert
that data from the default string data type to an appropriate Python data
type. Chances are, in addition to all this, you may want to organize the
data into a group of objects generated from the same class or perhaps
into a set of dictionaries inside a larger dictionary.

All the code you’ve learned so far will be useful, because it’s necessary
to get the job done. To reduce the code clutter in these examples, we’ve
taken the various bits of code for converting the data and put them into
their own functions. This allows you to convert a data item using just the
function name with the value to convert in parentheses, such as
balance(row[4]).

Importing CSV to Python objects

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you want the data from your CSV file to be organized into a list of
objects, write your code as shown here:

import datetime as dt

import csv

# Use these functions to convert any string to appropriate Python data type.

# Get just the first name from full name.

def fname(any):

    try:

        nm = any.split(',')

        return nm[1]

    except IndexError:

        return ''

# Get just the last name from full name.

def lname(any):

    try:

        nm = any.split(',')

        return nm[0]

    except IndexError:

        return ''

# Convert string to integer or zero if no value.

def integer(any):

    return int(any or 0)

# Convert mm/dd/yyyy date to date or None if no valid date.

def date(any):

    try:

        return dt.datetime.strptime(any,"%m/%d/%Y").date()

    except ValueError:

        return None

# Convert any string to Boolean, False if no value.

def boolean(any):

    return bool(any)

# Convert string to float, or to zero if no value.

def floatnum(any):

    s_balance = (any.replace('$','').replace(',',''))

    return float(s_balance or 0)

# Create an empty list of people.

people = []

# Define a class where each person is an object.

class Person:

    def __init__(self, id, first_name, last_name, birth_year, date_joined, 

is_active, balance):

        self.id = id

        self.first_name = first_name

        self.last_name = last_name

        self.birth_year = birth_year

        self.date_joined = date_joined

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        self.is_active = is_active

        self.balance = balance

 

# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

    # Set up a csv reader with a counter.

    reader = enumerate(csv.reader(f))

    # Skip the first row, which is column names.

    f.readline()

    # Loop through remaining rows one at a time, i is counter, row is     # 

entire row.

    for i, row in reader:

        # From each data row in the CSV file, create a Person object with 

unique         # id and appropriate data types, add to people list.

        people.append(Person(i, fname(row[0]), lname(row[0]), 

integer(row[1]), date(row[2]), boolean(row[3]), floatnum(row[4])))

 

# When above loop is done, show all objects in the people list.

for p in people:

    print(p.id, p.first_name, p.last_name, p.birth_year, p.date_joined, 

p.is_active, p.balance)

Here’s how the code works: The first few lines are the required imports,
followed by a number of functions to convert the incoming string data to
Python data types. This code is similar to previous examples in this
chapter. We just separated the conversion code into separate functions to
compartmentalize everything a bit:

import datetime as dt

import csv

# Use these functions to convert any string to appropriate Python data type.

# Get just the first name from full name.

def fname(any):

    try:

        nm = any.split(',')

        return nm[1]

    except IndexError:

        return ''

 

# Get just the last name from full name.

def lname(any):

    try:

        nm = any.split(',')

        return nm[0]

    except IndexError:

        return ''

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Convert string to integer or zero if no value.

def integer(any):

    return int(any or 0)

 

# Convert mm/dd/yyyy date to date or None if no valid date.

def date(any):

    try:

        return dt.datetime.strptime(any,"%m/%d/%Y").date()

    except ValueError:

        return None

 

# Convert any string to Boolean, False if no value.

def boolean(any):

    return bool(any)

 

# Convert string to float, or to zero if no value.

def floatnum(any):

    s_balance = (any.replace('$','').replace(',','')).strip()

    return float(s_balance or 0)

The next line creates an empty list named people to provide a place to
store the objects that the program will create from the CSV file:

# Create an empty list of people.

people = []

Next, the code defines a class that will be used to generate each Person
object from the CSV file:

# Define a class where each person is an object.

class Person:

    def __init__(self, id, first_name, last_name, birth_year, date_joined, 

is_active, balance):

        self.id = id

        self.first_name = first_name

        self.last_name = last_name

        self.birth_year = birth_year

        self.date_joined = date_joined

        self.is_active = is_active

        self.balance = balance

The reading of the CSV file starts in the next lines. The code opens the
sample.csv file with encoding. The newline='' just prevents the code
from sticking the newline character at the end of each row to the last
item of data in each row. The reader uses an enumerator to keep a count
while reading the rows. The f.readline() reads the first row, which is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



just column heads, so that the for that follows starts on the second row.
The i variable in the for loop is the incrementing counter, and the row is
the entire row of data from the CSV file:

# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

    # Set up a csv reader with a counter.

    reader = enumerate(csv.reader(f))

    # Skip the first row, which is column names.

    f.readline()

    # Loop through remaining rows one at a time, i is counter, row is     # 

entire row.

    for i, row in reader:

With each pass through the loop, the code creates a single Person object
from the incrementing counter (i) and appends the data in the row. Note
how we've called on the functions defined earlier in the code to do the
data type conversions. This makes this code more compact and a little
easier to read and work with:

# From each data row in the CSV file, create a Person object with unique  # 

id and appropriate data types, add to people list.

people.append(Person(i, fname(row[0]), lname(row[0]), integer(row[1]), 

date(row[2]), boolean(row[3]), floatnum(row[4])))

When the loop is complete, the next code simply displays each object on
the screen to verify that the code worked correctly:

# When above loop is done, show all objects in the people list.

for p in people:

    print(p.id, p.first_name, p.last_name, p.birth_year, p.date_joined,

         p.is_active, p.balance)

Figure 1-12 shows the output from running this program. Of course,
subsequent code in the program can do anything you need to do with
each object; the printing is there to test and verify that the program
worked.

Importing CSV to Python dictionaries
If you prefer to store each row of data from the CSV file in its own
dictionary, you can use code that’s similar to the preceding code for
creating objects. You don’t need the class definition code, because you
won’t be creating objects here. Instead of creating a people list, you can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



create an empty people dictionary to hold all the individual “person”
dictionaries, like this:

# Create an empty dictionary of people.

people = {}

FIGURE 1-12: Reading a CSV file into a list of objects.

As far as the loop goes, again you can use an enumerator (i) to count
rows, and you can also use this unique value as the key for each new
dictionary you create. The line that starts with newdict= creates a
dictionary with the data from one CSV file row, using the built-in
Python dict() function. The next line assigns the value of i plus 1 to
each newly created dictionary (to start the counting at 1 rather than 0):

# Loop through remaining rows one at a time, i is counter, row is entire row.

for i, row in reader:

    # From each data row in the CSV file, create a dictionary item with 

unique     # id and appropriate data types, add to people list.

    newdict = dict({'first_name': fname(row[0]), 'last_name': lname(row[0]), 

'birth_year': integer(row[1]),

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



'date_joined' : date(row[2]), 'is_active' : boolean(row[3]), 'balance' : 

floatnum(row[4])})

    people[i + 1] = newdict

To verify that the code ran correctly, you can loop through the
dictionaries in the people dictionary and show the key:value pair for
each item of data in each row. Figure 1-13 shows the result of running
that code in VS Code:

Here is all the code that reads the data from the CSV files into the
dictionaries:

import datetime as dt

import csv

# Use these functions to convert any string to appropriate Python data type.

# Get just the first name from full name.

def fname(any):

    try:

        nm = any.split(',')

        return nm[1]

    except IndexError:

        return ''

# Get just the last name from full name.

def lname(any):

    try:

        nm = any.split(',')

        return nm[0]

    except IndexError:

        return ''

# Convert string to integer or zero if no value.

def integer(any):

    return int(any or 0)

# Convert mm/dd/yyyy date to date or None if no valid date.

def date(any):

    try:

        return dt.datetime.strptime(any, "%m/%d/%Y").date()

    except ValueError:

        return None

# Convert any string to Boolean, False if no value.

def boolean(any):

    return bool(any)

# Convert string to float, or to zero if no value.

def floatnum(any):

    s_balance = (any.replace('$', '').replace(',', '')).strip()

    return float(s_balance or 0)

# Create an empty dictionary of people.

people = {}

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Open CSV file with UTF-8 encoding, don't read in newline characters.

with open('sample.csv', encoding='utf-8', newline='') as f:

    # Set up a csv reader with a counter.

    reader = enumerate(csv.reader(f))

    # Skip the first row, which is column names.

    f.readline()

    # Loop through remaining rows one at a time, i is counter, row is     # 

entire row.

    for i, row in reader:

        # From each data row in the CSV file, create a Person object with      

# unique id

and appropriate data types, add          # to people dictionary.

        newdict = dict({'first_name': fname(row[0]), 'last_name': 

lname(row[0]), 'birth_year': integer(row[1]), 

'date_joined' date(row[2]), 'is_active' : boolean(row[3]), 'balance' 

:floatnum(row[4])})

        people[i + 1] = newdict

 

# When above loop is done, show all objects in the people list.

for person in people.keys():

    id = person

    print(id, people[person]['first_name'], \

              people[person]['last_name'], \

              people[person]['birth_year'], \

              people[person]['date_joined'], \

              people[person]['is_active'], \

              people[person]['balance'])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-13: Reading a CSV file into a dictionary of dictionaries.

CSV files are widely used because it's easy to export data from
spreadsheets and database tables to this format. Getting data from those
files can be tricky at times, but you'll find Python’s csv module a big
help. The csv module takes care of many of the details, makes it
relatively easy to loop through one row at a time, and handles the data
however you see fit in your Python app.

Similar to CSV for transporting and storing data in a simple textual
format is JSON, or JavaScript Object Notation. You learn all about
JSON in the next chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Juggling JSON Data

IN THIS CHAPTER
 Discovering how to organize JSON data
 Learning about serialization
 Importing data from JSON files
 Exporting Python data to JSON

JSON (JavaScript Object Notation) is a common marshalling format for
object-oriented data. Marshalling format generally means a format used
to send data from one computer to another. However, some databases,
such as the free Realtime Database at Google’s Firebase, store the data
in JavaScript Object Notation format as well. The name JavaScript at the
front sometimes throws people off, especially when you’re using Python,
not JavaScript, to write your code. But don’t worry. The format just got
its start in the JavaScript world and is now a widely known general-
purpose format used with all kinds of computers and programming
languages.

In this chapter, you learn exactly what JSON is, as well as how to export
and import data to and from JSON. If you find that all the buzzwords
surrounding JSON make you uncomfortable, don’t worry. We get
through all the jargon first. As you’ll see, JSON data is formatted almost
the same way as Python data dictionaries, so there won’t be a lot of new
stuff to learn. Also, you already have the free Python JSON module,
which makes it even easier to work with JSON data.

Organizing JSON Data
JSON data is roughly the equivalent of a data dictionary in Python,
which makes JSON files fairly easy to work with. JSON data is probably

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



easiest to understand when it’s compared to tabular data. For instance,
Figure 2-1 shows some tabular data in an Excel worksheet. Figure 2-2
shows the same data converted to JSON format. Each row of data in the
Excel sheet has been converted to a dictionary of key:value pairs in the
JSON file. And there are, of course, lots of curly braces to indicate that
the data is dictionary data.

FIGURE 2-1: Some data in an Excel spreadsheet.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-2: Excel spreadsheet data converted to JSON format.

Exporting data from Excel is just one way to create a JSON file. You can
also create a keyed JSON file, where each chunk of data has a single key
that uniquely identifies it. (No other dictionary in the same file can have
the same key.) The key can be a number or text; it doesn't really matter
which, as long as it’s unique to each item. When you’re downloading
JSON files created by someone else, it’s not unusual for the file to be
keyed. For example, on Alan’s personal website, he uses the free Google
Firebase Realtime Database to count hits per page and other information
about each page. The Realtime Database stores the data as shown in
Figure 2-3. Those weird things like -LAOqOxg6kmP4jhnjQXS are all
keys that the Firebase generates automatically for each item of data to
guarantee uniqueness. The + sign next to each key allows you to expand
and collapse the information under each key.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-3: Some data in a Google Firebase Realtime Database.

CONVERTING EXCEL TO JSON
In case you're wondering, to convert that sample Excel spreadsheet to JSON, set your
browser to www.convertcsv.com/csv-to-json.htm and follow these steps:

1. In Step 1, open the Choose File tab, set the Encoding to UTF-8, click the
Choose File button, select your Excel file, and click Open.

2. In Step 2, make sure the First Row Is Column Names option is selected and
set Skip # of Lines to 1 to skip the column headings row.

3. In Step 5, click the CSV to JSON button.

4. Next to Save Your Result, type a filename and then click the Download Result
button.

The file should end up in your Downloads folder (or to whatever location you normally
download) with a .json extension. It's a plain text file, so you can open it with any text
editor or a code editor such as VS Code. The converter automatically skips empty rows
in Excel files, so your JSON file won't contain any data for empty rows in a
spreadsheet. If you often work with Excel, CSV, JSON, and similar types of data, you
may want to spend some time exploring the many tools and capabilities that the
www.convertcsv.com website provides.

As you can see in the figure, Firebase also has an Export JSON option
that downloads the data to a JSON file on your computer. Figure 2-4

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.convertcsv.com/csv-to-json.htm
http://www.convertcsv.com/


shows the data in the downloaded file. You can tell that one is a keyed
JSON file because each chunk of data is preceded by a unique key, such
as -LAOqAyxxHrPw6pGXBMZ, followed by a colon. You can work with
both keyed and unkeyed JSON files in Python.

FIGURE 2-4: Google Firebase Realtime Database data exported to a keyed JSON file.

Some readers may have noticed that the Date Joined field in the JSON
file doesn't look like a normal mm/dd/yyyy date. The lastvisit field
from the Firebase database is a datetime, even though it doesn't look
like a date or time. But don’t worry about that. You’ll learn how to
convert odd-looking serial dates (as they’re called) to human-readable
format later in this chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Understanding Serialization
When it comes to JSON, the first buzzword you have to learn is
serialization. Serialization is the process of converting an object (such as
a Python dictionary) into a stream of bytes or characters that can be sent
across a wire, stored in a file or database, or stored in memory. The main
purpose is to save all the information in an object in a way that can be
retrieved easily on any other computer. The process of converting the
information back to an object is called deserialization. To keep things
simple you may just consider using these definitions:

Serialize: Convert an object to a string.
Deserialize: Convert a string to an object.

The Python standard library includes a json module that helps you work
with JSON files. Because it’s part of the standard library, you just have
to put import json near the top of your code to access its capabilities.
The four main methods for serializing and deserializing json are
summarized in Table 2-1.

TABLE 2-1 Python JSON Methods for Serializing and
Deserializing JSON Data

Method Purpose

json.dump() Write (serialize) Python data to a JSON file (or stream).

json.dumps() Write (serialize) a Python object to a JSON string.

json.load() Load (deserialize) JSON from a file or similar object.

json.loads() Load (deserialize) JSON data from a string.

Data types in JSON are similar but not identical to data types in Python.
Table 2-2 lists how data types are converted between the two languages
when serializing and deserializing.

TABLE 2-2 Python and JSON Data Conversions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python JSON

dict object

list, tuple array

str string

int and float number

True true

False false

None null

Loading Data from JSON Files
To load data from JSON files, make sure you import json near the top of
the code. Then you can use a regular file open() method to open the file.
As with other kinds of files, you can add encoding = "utf-8" if you
need to preserve non-ASCII characters in the data. You can also use
newline="" to avoid bringing in the newline character at the end of each
row. The newline character isn't really part of the data; it’s a hidden
character to end the line when displaying the data on the screen.

To load the JSON data into Python, come up with a variable name to
hold the data (we’ll use people). Then use json.load() to load the file
contents into the variable, like this:

import json

# This is the Excel data (no keys)

filename = 'people_from:excel.json'

# Open the file (standard file open stuff)

with open(filename, 'r', encoding='utf-8', newline='') as f:

    # Load the whole json file into an object named people

    people = json.load(f)

Running this code doesn't display anything on the screen. However, you
can explore the people object in a number of ways by using un-indented
print() statements below the last line. For example, the following
displays everything in the people variable:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



print(people)

The output starts and ends with square brackets ([]), which tell you that
people is a list. To verify this, you can run this line of code:

print(type(people))

Python displays the following:
<class 'list'>

This line tells you that the object is an instance of the list class. In
other words, it's a list object, although most people would just call it a
list.

Because the object is a list, you can loop through it. Within the loop, you
can display the type of each item, like this:

for p in people:

    print(type(p))

The output follows:
<class 'dict'>

<class 'dict'>

<class 'dict'>

<class 'dict'>

<class 'dict'>

<class 'dict'>

<class 'dict'>

This is useful information because it tells you that each of the “people”
(which we've abbreviated p in that code) in the list is a Python
dictionary. So within the loop, you can isolate each value by its key. For
example, take a look at this code:

for p in people:

    print(p['Full Name'], p['Birth Year'], p['Date Joined'], p['Is Active'], 

p['Balance'])

Running this code displays all the data in the JSON file, as in the
following. This data came from the Excel spreadsheet shown in Figure
2-1.

Angst, Annie 1982 40554 True 300

Bónañas, Barry 1973 40950 False -123.45

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Schadenfreude, Sandy 2004 37683 True 0

Weltschmerz, Wanda 1995 34448 False 999999.99

Malaise, Mindy 2006 38477 True 454.01

O'Possum, Ollie 1987 35638 True -1000

Pusillanimity, Pamela 1979 39668 True 12345.67

Converting an Excel date to a JSON date
You may be thinking “Hey, waitaminit … what's with those 40554,
40950, 37683 numbers in the Date Joined column?” Well, those are
serial dates, but you can convert them to Python dates. You’ll need to
import the xlrd (Excel reader) and datetime modules. Then, to convert
that integer in the p['Date Joined'] column to a Python date, use this
code:

y, m, d, h, i, s = xlrd.xldate_as_tuple(p['Date Joined'],0)

joined = dt.date(y, m, d)

To display this date in a familiar format, use an f-string like this:
print(f"{joined:%m/%d/%Y}")

Here is all the code, including the necessary imports at the top of the
file:

import json, xlrd

import datetime as dt

# This is the Excel data (no keys)

filename = 'people_from:excel.json'

# Open the file (standard file open stuff)

with open(filename, 'r', encoding='utf-8', newline='') as f:

    # Load the whole json file into an object named people

    people = json.load(f)

 

# Dictionaries are in a list, loop through and display each dictionary.

for p in people:

    name = p['Full Name']

    byear = p['Birth Year']

    # Excel date pretty tricky, use xlrd module.

    y, m, d, h, i, s = xlrd.xldate_as_tuple(p['Date Joined'], 0)

    joined = dt.date(y, m, d)

    balance = '$' + f"{p['Balance']:,.2f}"

    print(f"{name:<22} {byear}  {joined:%m/%d/%Y} {balance:>12}")

Here is the output, which is neatly formatted and looks more like the
original Excel data than the JSON data. If you need to display the data in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



dd/mm/yyyy format, change the pattern in the last line of code to
%d/%m/%Y.

Angst, Annie           1982  01/11/2011      $300.00

Bónañas, Barry         1973  02/11/2012     $-123.45

Schadenfreude, Sandy   2004  03/03/2003        $0.00

Weltschmerz, Wanda     1995  04/24/1994  $999,999.99

Malaise, Mindy         2006  05/05/2005      $454.01

O'Possum, Ollie        1987  07/27/1997   $-1,000.00

Pusillanimity, Pamela  1979  08/08/2008   $12,345.67

Looping through a keyed JSON file
Opening and loading a keyed JSON file is the same as opening a non-
keyed file. However, after the data is loaded, it's a single dictionary
rather than a list of dictionaries. For example, here is the code to open
and load the data we exported from Firebase (the original is shown in
Figure 2-4). This data contains hit counts for pages in a website,
including the page name, the number of hits to date, the last referrer (the
last page that sent someone to that page), and the date and time of the
last visit. As you can see, the code for opening and loading the JSON
data is basically the same. The JSON data loads to an object we named
hits:

import json

import datetime as dt

# This is the Firebase JSON data (keyed).

filename = 'firebase_hitcounts.json'

# Open the file (standard file open stuff).

with open(filename, 'r', encoding='utf-8', newline='') as f:

    # Load the whole json file into an object named people

    hits = json.load(f)

 

print(type(hits))

When you run this code, the last line displays the data type of the hits
object, into which the JSON data was loaded, as <class 'dict'>. This
tells you that the hits object is one large dictionary rather than a list of
individual dictionaries. You can loop through this dictionary using a
simple loop like we did for the non-keyed JSON file:

for p in hits:

     print(p)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The result, however, is that you don't see much data. All you see is the
key for each subdictionary contained in the larger hits dictionary:

-LAOqAyxxHrPw6pGXBMZ

-LAOqOxg6kmP4jhnjQXS

-LAOrwciIQJZvuCAcyLO

-LAOs2nsVVxbjAwxUXxE

-LAOwqJsjfuoQx8WISlX

-LAQ7ShbQPqOANbDmm3O

-LAQrS6avlv0PuJGNm6P

-LI0iPwZ7nu3IUgiQORH

-LI2DFNAxVnT-cxYzWR-

This output is not an error or a problem. It’s just how nested dictionaries
work. But don’t worry, it’s easy to get to the data inside each dictionary.
For instance, you can use two looping variables, which we’ll call k (for
key) and v (for value), to loop through hits.items():

for k, v in hits.items():

    print(k, v)

This gives you a different view in which you see each key followed by
the dictionary for that key enclosed in curly braces, as shown in Figure
2-5. (The curly braces tell you that the data inside is in a dictionary.)

FIGURE 2-5: Output from looping through and displaying keys and values from
subdictionaries.

The values for each subdictionary are in the v object of this loop. If you
want to access individual items of data, use v followed by a pair of
square brackets with the key name (for the field) inside. For example,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



v['count'] contains whatever is stored as the count: in a given row.
Take a look at this code, which displays the data but not the key.

for k, v in hits.items():

    # Store items in variables.

    key = k

    hits = v['count']

    last_visit = v['lastvisit']

    page = v['page']

    came_from = v['lastreferrer']

    print(f"{hits} {last_visit} {page:<28} {came_from}")

The output is the data from each dictionary, formatted in a way that’s a
little easier to read, as shown in Figure 2-6.

FIGURE 2-6: Output showing one value at a time from each dictionary.

You may have noticed that we’ve run into another weird situation with
the lastvisit column. The date appears in the format 545316328750
rather than the more familiar mm/dd/yyyy format. This time we can’t
blame Excel because these dates were never in Excel. What you’re
seeing is the Firebase timestamp of when the data item was last written
to the database. This date is expressed as a UTC date, including the time
down to the nanosecond, which is why the number is so long. Obviously,
if people are to understand these dates, you should translate them to
Python dates, as we discuss next.

Converting Firebase timestamps to Python dates
As always, the first thing you need to do when working with dates and
times in a Python app is to make sure you’ve imported the datetime
module, which we usually do by using the code import datetime as
dt, in which the dt is an optional alias (a nickname that's easier to type
than the full name).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Because the Firebase datetime is UTC-based, we know that we can use
the datetime .utcfromtimestamp() method to convert that date to
Python time. But there's a catch. If you follow the documentation, you'd
expect the following to work:

last_visit = dt.datetime.utcfromtimestamp(v['lastvisit'])

However, apparently that nanosecond resolution we mentioned in the
preceding section is a bit much in Windows and this code raises an OS
Error exception. Fortunately, an easy work-around exists. Dividing that
lastvisit number by 1,000 trims the last few digits, which gets the
number into a lower-resolution datetime that Windows can stomach. All
we really care about in this application is the date of the last visit; we
don't care about the time. So you can grab just the date and get past the
error by writing the code like this:

    last_visit = dt.datetime.utcfromtimestamp(v['lastvisit']/1000).date()

You end up with a simple Python date in the last_visit variable, so
you can use a standard f-string to format the date however you like. For
example, use the following in your f-string to display the last_visit
date:

{last_visit: %m/%d/%Y}

The dates will be in mm/dd/yyyy format in the output, like this:
12/20/2018

12/19/2018

12/17/2018

12/20/2018

11/30/2018

12/16/2018

12/20/2018

12/20/2018

12/19/2018

Loading unkeyed JSON from a Python string
The load() method we used in the previous examples loaded the JSON
data from a file. However, because JSON data is always delivered in a
text file, you can copy and paste the entire thing into a Python string.
Typically, you give the string a variable name and set it equal to some

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



triple-quoted string (like a Python docstring) that starts and ends with
triple quotation marks. Put all the JSON data inside the triple quotation
marks as in the following code. To keep the code short, we've included
data for only a few people, but at least you can see how the data is
structured:

import json

# Here the JSON data is in a big string named json_string.

# It starts with the first triple quotation marks and extends

# down to the last triple quotation marks.

json_string = """

{

"people": [

    {

    "Full Name": "Angst, Annie",

    "Birth Year": 1982,

    "Date Joined": "01/11/2011",

    "Is Active": true,

    "Balance": 300

  },

 {

    "Full Name": "Schadenfreude, Sandy",

    "Birth Year": 2004,

    "Date Joined": "03/03/2003",

    "Is Active": true,

    "Balance": 0

  }

]

}

"""

Seeing all the data from within your code like this might be nice, but
there is one big disadvantage: You can't loop through a string to get to
individual items of data. If you want to loop through, you need to load
the JSON data from the string into an object. To do this, use
json.loads() (where the s in loads is short for from string), as in the
following code. That peep_data is a name we made up to differentiate
the loaded JSON data from the data in the string:

# Load JSON data from the big json_string string.

peep_data = json.loads(json_string)

Now that you have an object (peep_data), you can loop through and
work with the code one bit at a time, like this:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Now you can loop through the peep_data collection.

for p in peep_data['people']:

    print(p["Full Name"], p["Birth Year"], p["Date Joined"],p['Is 

Active'],p['Balance'])

Figure 2-7 shows all the code and the result of running that code in VS
Code.

FIGURE 2-7: Output from showing one value at a time from each dictionary (see bottom of
image).

Loading keyed JSON from a Python string
You can store not only unkeyed data but also keyed data in a Python
string. In the following example, we used json_string as the variable
name again, but the data inside the string is structured differently. The
first item has a key of 1 and the second item has a key of 2. But again,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the code uses json.loads(json_string) to load this data from the
string into a JSON object:

import json

# Here the JSON data is in a big string named json_string.

# It starts with the first triple quotation marks and extends

# down to the last triple quotation marks.

json_string = """

  {

  "1": {

    "count": 9061,

    "lastreferrer": "https://difference-engine.com/Courses/tml-5-1118/",

    "lastvisit": "12/20/2018",

    "page": "/etg/downloadpdf.html"

  },

  "2": {

    "count": 3342,

    "lastreferrer": "https://alansimpson.me/",

    "lastvisit": "12/19/2018",

    "page": "/html_css/index.html"

  }

  }

"""

# Load JSON data from the big json_string string.

hits_data = json.loads(json_string)

 

# Now you can loop through the hits_data collection.

for k, v in hits_data.items():

    print(f"{k}. {v['count']:>5} - {v['page']}")

The loop at the end uses two variables named k and v to loop through
hits_data.items(), which is the standard syntax for looping through a
dictionary of dictionaries. The loop prints the key, hit count, and page
name from each item, in the format shown in the following code:

1. 9061 - /etg/downloadpdf.html

2. 3342 - /html_css/index.html

Changing JSON data
When you have JSON data in a data dictionary, you can use standard
dictionary procedures (originally presented in Book 2, Chapter 4) to
manipulate the data in the dictionary. As you're looping through the data
dictionary with key:value variables, you can change the value of any
key:value pair using the relatively simple syntax:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



value['key'] = newdata

Note that key and value are just the k and v variables from the loop. For
example, suppose you're looping through a dictionary created from the
Firebase database, which includes a lastvisit field shown as a UTC
timestamp number. You want to change this timestamp to a string in a
more familiar Python format. Set up a loop as in the following code, in
which the first line inside the loop creates a new variable named pydate
that contains the date as a Python date. Then the second line replaces the
contents of v['lastvisit'] with this date in mm/dd/yy format:

for k, v in hits_data.items():

    # Convert the Firebase date to a Python date.

    pydate = dt.datetime.utcfromtimestamp(v['lastvisit']/1000).date()

    # In the dictionary, replace the Firebase date with Python date.

    v['lastvisit']= f"{pydate:%m/%d/%Y})"

When this loop is complete, all the values in the lastvisit column will
be dates in mm/dd/yyyy format rather than Firebase timestamp format.

Removing data from a dictionary
To remove data from a dictionary as you're going through the loop, use
this syntax:

pop('keyname', None)

Replace 'keyname' with the name of the column you want to remove.
For example, to remove all the lastreferrer key names and data from a
dictionary created by the Firebase database JSON example, add the
following to the loop:

v.pop('lastreferrer', None)

Figure 2-8 shows an example where lines 1–8 import Firebase data into
a Python object named hits_data. Line 10 starts a loop that goes
through each key (k) and value (v) in the dictionary. Line 12 converts the
timestamp to a Python date named pydate. Then line 16 replaces the
timestring that was in the lastvisit column with that Python date as a
string in mm/dd/yyyy format. Line 16, v.pop('lastreferrer', None),

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



removes the lastreferrer key:value pair from each dictionary. The
final loop shows what's in the dictionary after making these changes.

Keep in mind that changes you make to the dictionary in Python have no
effect on the file or string from which you loaded the JSON data. If you
want to create a new JSON string or file, use the json.dumps() or
json.dump() method, discussed next.

FIGURE 2-8: Changing the value of one key in each dictionary, and removing an entire
key:value pair from the dictionary.

Dumping Python Data to JSON
So far we've talked about bringing JSON data from the outside world
into your app so Python can use its data. Sometimes, you may want to go
in the opposite direction, to take some data already in your app in a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



dictionary format and export it to JSON to pass to another app, the
public at large, or whatever. This is where the json.dump() and
json.dumps() methods come into play.

The dumps() method creates a JSON string of the data, which is still in
memory so you can use print()to see it. For example, the previous code
examples imported a Firebase database to a Python dictionary, and then
looped through that dictionary changing all the timestamps to
mm/dd/yyyy dates and removing all the lastreferrer key:value pairs.
So let's say that you want to create a JSON string of this new dictionary.
You could use dumps like the following to create a string named
new_dict, and you could also print that string to the console. The last
two lines of code outside the loop would be

# Looping is done, copy new dictionary to JSON string.

new_dict = json.dumps(hits)

print(new_dict)

The new_dict string would show in its native, not-very-readable format,
which would look something like this:

{"-LAOqAyxxHrPw6pGXBMZ": {"count": 9061, "lastvisit": "12/20/2018)", "page":

            "/etg/downloadpdf.html"}, "-LAOqOxg6kmP4jhnjQXS": {"count": 3896,

            "lastvisit": "12/20/2018)", "page": "/"}, "-LAOrwciIQJZvuCAcyLO":

            {"count": 3342, "lastvisit": "12/20/2018)", "page":

            "/html_css/index.html"}, … }}

We replaced some of the data with … because you don't need to see all
the items to see how unreadable it looks.

Fortunately, the .dumps() method supports an indent= option which
you can use to indent the JSON data and make it more readable. Two
spaces is usually sufficient. For example, add indent=2 to the preceding
code:

#Looping is done, copy new dictionary to JSON string.

new_dict = json.dumps(hits, indent=2)

print(new_dict)

The output shows the JSON data in a much more readable format:
{

  "-LAOqAyxxHrPw6pGXBMZ": {

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    "count": 9061,

    "lastvisit": "12/20/2018)",

    "page": "/etg/downloadpdf.html"

  },

  "-LAOqOxg6kmP4jhnjQXS": {

    "count": 3896,

    "lastvisit": "12/20/2018)",

    "page": "/"

  },

 …

}

If you use non-ASCII characters in your data dictionary and you want to
preserve them, add ensure_ascii=False to your code, as follows:

new_dict = json.dumps(hits, indent=2, ensure_ascii=False)

In our example, the key names in each dictionary are already in
alphabetical order (count, lastvisit, page). But in your own code, if
you want to ensure that the keys in each dictionary are in alphabetical
order, add sortkeys=True to your .dumps method as follows:

new_dict = json.dumps(hits, indent=2, ensure_ascii=False, sort_keys=True)

If you want to output your JSON data to a file, use json.dump() rather
than json.dumps(). You can use ensure_ascii=False to maintain non-
ASCII characters, and sort_keys=True to alphabetize key names. You
can also include an indent= option, although that would make the file
larger, and typically you want to keep files small to conserve space and
minimize download time.

As an example, suppose you want to create a file named
hitcounts_new.json (or, if it already exists, open it to overwrite its
contents). You want to retain any non-ASCII characters that you write to
the file. Here's the code for that; the 'w' is required to make sure the file
opens for writing data into it:

with open('hitcounts_new.json', 'w', encoding='utf-8') as out_file:

Then, to copy the dictionary named hits as JSON data into this file, use
the name you assigned at the end of the code in the preceding line.
Again, to retain any no-ASCII characters and optionally to alphabetize

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the key names in each dictionary, follow that line with this one, indented
so that it's contained in the with block:

json.dump(hits, out_file, ensure_ascii=False, sort_keys=True)

Figure 2-9 shows all the code starting with the data that was exported
from Firebase, looping through the dictionary that the import created,
changing and removing some content, and then writing the new
dictionary out to a new JSON file named hitcounts_new.json.

FIGURE 2-9: Writing modified Firebase data to a new JSON file named
hitcounts_new.json.

Figure 2-10 shows the contents of the hitcounts_new.json file after
running the app. We didn't indent the JSON data because files are really
for storing or sharing, not for looking at, but you can still see that the
datevisited values are in mm/dd/yyyy format and the lastreferrer
key:value pair isn't in there because earlier code removed it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-10: Writing modified Firebase data to a new JSON file named
hitcounts_new.json.

JSON is a widely used format for storing and sharing data. Luckily,
Python has lots of built-in tools for accessing and creating JSON data.
We’ve covered the most important capabilities here. But don’t be shy
about doing a web search for python json if you want to explore more.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Interacting with the Internet

IN THIS CHAPTER
 Understanding how the web works
 Opening web pages from Python
 Using Python to post to the web
 Web scraping with Python

As you probably know, the Internet is home to virtually all the world’s
knowledge. Most of us use the web all the time to find information. We
do so using a web browser such as Safari, Google Chrome, Firefox,
Opera, Internet Explorer, or Edge. To visit a website, you type a URL
(uniform resource locator) into your browser’s address bar and press
Enter, or you click a link that sends you to the page automatically.

As an alternative to browsing the web with your web browser, you can
access its content programmatically. In other words, you can use a
programming language such as Python to post information to the web, as
well as to access web information. In a sense, you make the web your
personal database of knowledge from which your apps can pluck
information at will. In this chapter, you learn about the two main
modules for accessing the web programmatically with Python: urllib
and BeautifulSoup.

Seeing How the Web Works
When you open up your web browser and type in a URL or click a link,
that action sends a request to the Internet. The Internet directs your
request to the appropriate web server, which in turn sends a response
back to your computer. Typically that response is a web page, but it can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



be just about any file. Or it can be an error message if what you
requested no longer exists at that location. But the important thing is that
you, the user (a human being), and your user agent (the program you're
using to access the Internet) are on the client side of things. The server,
which is just a computer, not a person, sends back its response, as
illustrated in Figure 3-1.

FIGURE 3-1: The client makes a request, and the server sends back a response.

Understanding the mysterious URL
The URL is a key part of accessing a web page, because that's how the
Internet finds the resource you’re seeking. On the web, most resources
use Hypertext Transfer Protocol (HTTP), and thus their URLs start with
http:// or https://. The difference is that http:// sends stuff across
the wire in its raw form, which makes it susceptible to hackers and
others who can “sniff out” the traffic. The https protocol is secure in
that the data is encrypted, which means it's been converted to a secret
code that’s not as easy to read. Typically, any site with whom you do
business and to whom you transmit sensitive information, such as
passwords and credit card numbers, uses https to keep that information
secret and secure.

The URL for any website can be relatively simple, such as Alan’s URL,
which is https://AlanSimpson.me. Or it can be complex to add more
information to the request. Figure 3-2 shows the parts of a URL, some of
which you may have noticed in the past.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Note that the order matters. For example, it's possible for a URL to
contain a path to a specific folder or page (starting with a slash right
after the domain name). The URL can also contain a query string, which
is always last and always starts with a question mark (?). After the
question mark comes one or more name=value pairs, basically the same
syntax you've seen in data dictionaries and JSON. If there are multiple
name=value pairs, they are separated by ampersands.

FIGURE 3-2: Different parts of URLs.

 A # followed by a name after the page name at the end of a URL
is called a fragment, which indicates a particular place on the target
page. Behind the scenes in the code of the page is usually a <a
id="name"></a> tag that directs the browser to a spot on the page
to which it should jump after it opens the page.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Exposing the HTTP headers
When you're using the web, all you care about is the stuff you see on
your screen. At a deeper, somewhat hidden level, the two computers
involved in the transaction are communicating with one another through
HTTP headers. The headers are not normally visible to the human eye,
but they are accessible to Python, your web browser, and other
programs. You can choose to see the headers if you want, and doing so
can be handy when writing code to access the web.

The product we use most often to view headers is HTTP Headers, which
is a Google Chrome extension. If you have Chrome and want to try
HTTP Headers for yourself, use Chrome to browse to
https://www.esolutions.se/, scroll down to Google Chrome
Extensions, click HTTP Headers, and install the extension. To see the
headers involved whenever you've just visited a site, click the HTTP
Headers icon in your Chrome toolbar (it looks like a cloud) and you’ll
see the HTTP header information (see Figure 3-3).

Two of the most important things in the HTTP headers are at the top,
where you see GET followed by a URL. This tells you that a GET
request was sent, meaning the URL is just a request for information;
nothing is being uploaded to the server. The URL after the word GET is
the requested resource. Another type of response is POST, and that
means there’s some information you’re sending to the server, such as
when you post something on Facebook, Twitter, or any other site that
accepts input from you.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.esolutions.se/


FIGURE 3-3: Inspecting HTTP headers with Google Chrome.

The line below the GET shows the status of the request. The first part
indicates the protocol used. In the example in Figure 3-4, the protocol is
HTTP1.1, which just means the web request follows the HTTP version
1.1 rules of communication. The 200 is the status code, which in this
case means “okay, everything went well.” Common status codes are
listed in Table 3-1.

FIGURE 3-4: HTTP headers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 3-1 Common HTTP Status Codes

Code Meaning Reason

200 Okay No problems exist.

400 Bad
Request

The server is available but can't make sense of your request, usually
because something is wrong with your URL.

403 Forbidden The site has detected that you're accessing it programmatically,
which it doesn't allow.

404 Not found Either the URL is wrong or the URL is right but the content that is no
longer there.

All of what we’ve been telling you here matters because it’s related to
accessing the web programmatically with Python, as you’ll see next.

Opening a URL from Python
To access the web from a Python program, you need to use aspects of the
urllib, or URL Library, package. This one library consists of modules,
each of which provides capabilities that are useful for different aspects
of accessing the Internet programmatically. Table 3-2 summarizes the
packages.

TABLE 3-2 Packages from the Python urllib Library

Package Purpose

request Opens URLs

response Handles the response that arrived; you don't need to work with it directly

error Handles request exceptions

parse Breaks up the url into smaller chunks

robotparser
Analyzes a site's robots.txt file, which grants permissions to bots that are
trying to access the site programmatically

Most of the time you’ll likely work with the request module because it
enables you to open resources from the Internet. The syntax for
accessing a single package from a library is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



from library import module

where library is the name of the larger library, and module is the name
of the module. To access the capabilities of the response module of
urllib, use the following syntax at the top of your code (the comment
line optional):

# import the request module from urllib library.

from urllib import request

To open a web page, use this syntax:
variablename = request.urlopen(url)

Replace variablename with a variable name of your own choosing.
Replace url with the URL of the resource you want to access enclosed
in single- or double-quotation marks (unless it's stored in a variable). If
the URL is already stored in a variable, just the variable name without
quotation marks will work.

When running the code, the result will be an HTTPResponse object.

For example, you can run the following code in a Jupyter notebook or
any .py file to access a sample HTML page Alan added to his site for
this purpose:

# Import the request module from urllib library.

from urllib import request

# URL (address) of the desired page.

sample_url = 'https://AlanSimpson.me/python/sample.html'

# Request the page and put it in a variable named thepage.

thepage = request.urlopen(sample_url)

# Put the response code in a variable named status.

status = thepage.code

# What is the data type of the page?

print(type(thepage))

# What is the status code?

print(status)

Running this code displays this output:
<class 'http.client.HTTPResponse'>

200

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The variable named thepage contains an http.client.HTTPResponse
object, which is everything the server sent back in response to the
request. The 200 is the status code that tells you all went well.

Posting to the web with Python
Not all attempts to access web resources will go as smoothly as the
preceding example. For example, type the following URL in your
browser's address bar, and press Enter:

https://www.google.com/search?q=python web scraping tutorial

Google returns a search result of many pages and videos that contain the
words python web scraping tutorial. If you look at the address bar, you
may notice that the URL you typed has changed slightly. The blank
spaces have all been replaced with %20, as in the following line of code:

https://www.google.com/search?q=python%20web%20scraping%20tutorial

The %20 is the ASCII code, in hex, for a space. Those of you familiar
with the web may recognize %20 because HTTP doesn't support the use
of literal spaces in a URL. The %20 can be converted back to a space, if
needed, after the transfer is complete.

Now let's see what happens if you run the same code with the Google
URL rather than the original URL. Here is that code:

from urllib import request

# URL (address) of the desired page.

sample_url = 'https://www.google.com/search?

q=python%20web%20scraping%20tutorial'

# Request the page and put it in a variable named the page.

thepage = request.urlopen(sample_url)

# Put the response code in a variable named status.

status = thepage.code

# What is the data type of the page?

print(type(thepage))

# What is the status code?

print(status)

When you run this code, things don’t go so smoothly. You may see
several error messages, but the most important message is

HTTPError: HTTP Error 403: Forbidden

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.google.com/search?q=python
https://www.google.com/search?q=python%20web%20scraping%20tutorial


The error isn’t with your coding. Rather, it’s an HTTP error. Specifically,
it’s error number 403 for Forbidden. The URL was sent to Google, but it
replied “Sorry, you can search our site from your browser, but not from
Python code like that.” Google, like many other big sites, rejects
attempts to access its content programmatically, in part to protect its
rights to its content and in part to have some control over incoming
traffic.

The good news is, sites that don’t allow you to post directly using
Python or some other programming language often do allow you to post
content through their API (application programming interface). You can
still use Python as your programming language. You just have to abide
by their rules.

An easy way to find out whether a site has such an API is to simply
search the web using Google, Bing, or any search engine you like. For
example, post to facebook with python or post to twitter with python or
something like that. We won’t attempt to provide an example here of
doing such a thing, because Facebook tends to change the rules often
and anything we say may be outdated by the time you read this. But a
web search should get you want you need to know. If you get lots of
results, focus on the ones posted most recently.

Scraping the web with Python
Whenever you request a page from the web, it’s delivered to you as a
web page usually consisting of HTML and content. HTML is markup
code that, with another language called CSS, tells the browser how to
display the content in terms of size, position, font, images, and all other
such visual, stylistic matters. In a web browser, you don’t see that
HTML or CSS code. You see only the content, which is generally
contained in blocks of HTML code on the page.

Even though much of the data you see on a web page comes from a
database, you don't have permission to access the database directly.
However, you can use a technique known as web scraping to pull data
from the web page for use in some other manner. Python has great web
scraping capabilities, and this is a hot topic most people want to learn

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



about. So for the first part of this chapter, we focus on web scraping
using the sample page from Figure 3-5 as our working example.

The code that tells the browser how to display that page’s content isn’t
visible in the browser, unless you view the source code. In most
browsers, you can do that by pressing the F12 key or by right-clicking an
empty spot on the page and choosing View Source or Inspect or some
other such option. On most web pages, the real content — the stuff you
see in the browser — is between the <body> … </body> tags. Within the
body of the page, there may be sections for a header, a navigation bar
footer, perhaps ads, and more. In that particular page, the real meat of
the content is between the <article> … </article> tags. Each square
that you see on the web page in Figure 3-5. is called a card, and each
card is defined as a link in <a> … </a> tags.

FIGURE 3-5: Sample page used for web scraping.

Figure 3-6 shows some of the HTML code for the page in Figure 3-3.
We're showing code for only the first two links in the page, but all the
links follow the same structure. And they are all contained in the section
denoted by a pair of <article> … </article> tags.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-6: Some of the code from the sample page for web scraping.

Note that each link consists of several tags, as summarized here:

<a> … </a>: The a (anchor) tags define where the browser should
take users when they click the link. The href= part of the <a> tag is
the URL of the page to which users should be taken.
<img>: The img tag defines the image that appears for each link. The
src= attribute in the tag defines the source of the image — in other
words, the location and filename to display for that link.
<span> … </span>: At the bottom of the link is text enclosed in
<span> … </span> tags. That text appears at the bottom of each link
as white text against a black background.

 The term screen scraping is also used as a synonym for web
scraping. Although, as you’ll see, you’re not scraping content from
the computer screen. You’re scraping it from the file that gets sent
to the browser so that the browser can display the information on
your screen.

In the Python code, you need to import two modules, both of which
come with Anaconda so you should have them. One of them is the
request module from urllib, which allows you to send a request to the
web for a resource and to read what the web serves back. The second is
called BeautifulSoup (from a song in the book Alice in Wonderland).
That one provides tools for parsing the web page that you've retrieved
for specific items of data in which you're interested.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



To get started, open a Jupyter notebook or create a .py file in VS Code
and type the first two lines as follows:

# Get request module from url library.

from urllib import request

# This one has handy tools for scraping a web page.

from bs4 import BeautifulSoup

Next, you need to tell Python where the page of interest is located on the
Internet. In this case, the URL is

https://alansimpson.me/python/scrape_sample.html

You can verify this by typing the URL into the address bar of your
browser and pressing Enter. But to scrape the page, you’ll need to put
that URL in your Python code. You can give it a short name, like
page_url, by assigning it to a variable:

# Sample page for practice.

page_url = 'https://alansimpson.me/python/scrape_sample.html'

To get the web page at that location into your Python app, create another
variable, which we'll call rawpage, and use the urlopen method of the
request module to read in the page:

# Open that page.

rawpage = request.urlopen(page_url)

To make it relatively easy to parse that page in subsequent code, copy it
to a BeautifulSoup object. We'll name the object soup in our code.
You’ll also have to tell BeautifulSoup how you want the page parsed.
You can use html5lib, which also comes with Anaconda:

# Make a BeautifulSoup object from the html page.

soup = BeautifulSoup(rawpage, 'html5lib')

Parsing part of a page
Most web pages contain lots of code for content in the header, footer,
sidebars, ads, and whatever else is going on in the page. The main
content is often just in one section. If you can identify just that section,
your parsing code will run more quickly. In this example, in which we
created the web page ourselves, we put all the main content between a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://alansimpson.me/python/scrape_sample.html


pair of <article> … </article> tags. In the following code, we assign
that block of code to a variable named content. Later code in the page
will parse only that part of the page, which can improve speed and
accuracy.

# Isolate the main content block.

content = soup.article

Storing the parsed content
When scraping a web page, your goal is typically to collect specific data
of interest. In this case, we want just the URL, image source, and the text
for a number of links. We know there will be more than one line. An
easy way to store these is to put them in a list, so in the following code
we create an empty list named links_list:

# Create an empty list for dictionary items.

links_list = []

Next the code needs to loop through each link tag in the page content.
Each link starts with a <a> tag and ends with a </a> tag. To tell Python
to loop through each link individually, use the find_all method of
BeautifulSoup in a loop. In the following code, as we loop through the
links, we assign the current link to a variable named link:

# Loop through all the links in the article.

for link in content.find_all('a'):

Each link's code will look something like this, though each will have a
unique URL, image source, and text:

<a href="https://alansimpson.me/datascience/python/lists/">

    <img src="../datascience/python/lists/lists256.jpg" alt="Python lists">

    <span>Lists</span>

</a>

The three items of data we want are as follows:

Link url, which is enclosed in quotation marks after the href= in the
<a> tag

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Image source, which is enclosed in quotation marks after src= in the
img tag

Link text, which is enclosed in <span> … </span> tags

The following code teases out each component by using the .get()
method on BeautifulSoup to isolate something inside the link (that is,
between the <a> and </a> tags that mark the beginning and end of each
link). The following gets the URL portion of the link and puts it in a
variable named url:

url = link.get('href')

Indent that code under the loop so it's executed for each link. The
following code gets the image source and puts it in a variable named
img:

img = link.img.get('src')

The text is between <span> … </span> text near the bottom of the link.
To grab that and put it into a variable named text, add this line of code:

text = link.span.text

You don't have to use .get() for that because the text isn’t in an HTML
attribute such as href= or src=. It's just text between <span> … </span>
tags.

Finally, you need to save all that before going to the next link in the
page. An easy way to accomplish that is to append all three items of data
to the links_list using this code:

links_list.append({'url' : url, 'img': img, 'text': text})

That's it for storing all the data for one link with each pass through the
loop. One caveat: Web browsers are forgiving of errors in HTML code,
so there could be mistyped or missing code that could cause the loop to
fail. Typically, the error will be in the form of an attribute error, where
Python can’t find some attribute.

If data is missing, we prefer that Python just skip the bad line and keep
going, rather than crash and burn, leaving us with no data. So we should

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



put the whole business of grabbing the parts in a try: block, which, if it
fails, allows Python to just skip that one link and move to the next:

# Try to get the href, image url, and text.

try:

    url = link.get('href')

    img = link.img.get('src')

    text = link.span.text

    links_list.append({'url' : url, 'img': img, 'text': text})

# If the row is missing anything…

except AttributeError:

    #… skip it, don't blow up.

    pass

Figure 3-7 shows all the code as it stands right now. If you run it as
shown, the link_list will be filled with all the data you scraped, but
that doesn't do you much good. Chances are, you want to save that data
to use elsewhere. You can do so by saving the data to a JSON file, a
CSV file, or both, whatever is most convenient for you. In the sections
that follow, we show you both methods.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-7: Web scraping code complete.

Saving scraped data to a JSON file
To save the scraped data to a JSON file, first import the json module
near the top of your code, like this:

# If you want to dump data to the json file.

import json

Then, below the loop (not indented, because you don’t want to repeat the
code for each pass through the loop), first open a file, for writing, using
the following code. You can name you file anything you like. We’ve
opted to name ours links.json:

# Save as a JSON file.

with open('links.json', 'w', encoding='utf-8') as links_file:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Then, indented under that line, use json.dump() to dump the contents of
links_list to the JSON file. We typically add ensure_ascii=false to
preserve any non-ASCII characters, but doing so is optional:

json.dump(links_list, links_file, ensure_ascii=False)

That's it! After you run the code, you’ll have a file named links.json
that contains all the scraped data in JSON format. If you open the file
from VS Code, it will look like one long line, because we didn’t add line
breaks or spaces to indent. But when you see it as one long line, you can
copy and paste it to a site like jsonformatter.org, which will display
the data in a more readable format without changing its content, as
shown in Figure 3-8.

FIGURE 3-8: Web scraped data in a JSON file.

Saving scraped data to a CSV file
If you prefer to go straight to a CSV file with your scraped data, start by
importing the csv module near the top of your code:

# If you want to save to CSV.

import csv

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Then, below and outside the loop that creates links_list, open in write
mode a file with the filename of your choosing. In the following code we
named ours links.csv. We also used newline='' to avoid putting an
extra newline at the end of each row:

# Save it to a CSV.

with open('links.csv', 'w', newline='') as csv_out:

Indented below that open, create a csv writer that targets the file based
on the name you assigned at the end of the with line:

csv_writer = csv.writer(csv_out)

The first row of a CSV file typically contains field names (also called
column headings). So the next step is to add that row to the table, using
whatever names you want to apply to headings:

# Create the header row

csv_writer.writerow(['url', 'img', 'text'])

Then you can write all the data from link_list to the CSV file by
looping through link_list and writing the three items of data, separated
by commas, to new rows:

for row in links_list:

    csv_writer.writerow([str(row['url']),str(row['img']),str(row['text'])])

Running the code produces a file named links.csv. If you open that file
in Excel or another spreadsheet app, you'll see that the data is neatly
organized into a table with columns labeled url, img, and text, as
shown in Figure 3-9.

Figure 3-10 shows all the code for scraping both to JSON and CSV.
Seeing all the code in the proper order should help you debug your own
code, if need be. Note that we removed some comments from the top of
the code to get it to all fit in one screenshot.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-9: Web scraped data in Excel.

FIGURE 3-10: The entire scraper.py program.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Accessing the web programmatically opens new worlds of possibilities
for acquiring and organizing knowledge and is, in fact, part of a field of
study called data science. Many specialized tools are available as well,
which you’ll discover in Book 5.

Before launching into the more advanced and specialized applications of
Python in Books 4 and beyond, we need to discuss one more
fundamental concept. Throughout these first chapters, you’ve used many
kinds of libraries and modules. But you haven't used all that Python has
to offer. In the next chapter, you learn about more Python libraries,
packages, and modules, and how to use them to achieve your goals.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Libraries, Packages, and

Modules
IN THIS CHAPTER

 Understanding the standard library
 Surveying Python packages
 Seeing how to import a Python module
 Creating your own Python modules

For the most part, all the chapters leading up to this one have focused on
the core Python language, the elements of the language you’ll need no
matter how you intend to use Python. But as you’ve seen, many
programs start by importing one or more modules. Each module is
essentially a collection of prewritten code, which you can use in your
own code without having to reinvent that wheel. The granddaddy of all
this prewritten specialized code is called the Python standard library.

Understanding the Python Standard
Library

The Python standard library is basically all the stuff you get when you
get the Python language, including all the Python data types such as
string, integer, float, and Boolean. Every instance of these data types is
an instance of a class defined in the standard library. For this reason, the
terms type, instance, and object are often used interchangeably. An
integer is a whole number; it’s also a data type in Python. But it exists
because the standard library contains a class for integers, and every

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



integer you create is an instance of that class and hence an object
(because classes are the templates for things called objects).

The type() function in Python usually identifies the type of a piece of
data. For example, run these two lines of code at a Python prompt, in a
Jupyter notebook, or in a .py file:

x = 3

print(type(x))

The output is
<class 'int'>

The output tells you that x is an integer and an instance of the int class
from the standard library. Running this code:

x = 'howdy'

print(type(x))

produces this output:
<class 'str'>

That is, x contains data that's the string data type, created by the Python
str class. The type() function works for a float (a numeric value with a
decimal point, such as 3.14) and for Booleans (True or False).

Using the dir() function
The Python standard library offers a dir() method that displays a list of
all the attributes associated with a type. For example, in the preceding
example, the result <class 'str'> tells you that the data is the str data
type. So you know that's a type, and thus an instance of a class called
str (short for string). If you enter this command:

dir(str)

Something like the following is displayed:
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', 

'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem:_', 

'__getnewargs__', '__gt__', '__hash__', '__init__','__init_subclass__', 

'__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', 

'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



'__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', <!-

-<ce:anchor id="pp:344 np:345" role="page-break"/>-->'casefold', 'center', 

'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 

'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 

'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 

'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 

'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 

'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 

'translate', 'upper', 'zfill']

Names surrounded by double-underscores, such as __add__ and
__class__, are sometimes called dunder-named items, where dunder is
short for double underscores. (Dunder-named items are often referred to
as special variables or magic methods.) Each dunder-named item
represents something built into Python that plays a role you don't
necessarily access directly. For example, the __add__ method is invoked
by using the + (addition) operator to add two numbers or join two
strings.

The regular functions don’t have the double underscores and are
typically followed by parentheses. For example, take a look at these
lines of code:

x = "Howdy"

print(type(x), x.isalpha(), x.upper())

The output is
<class 'str'> True HOWDY

The first part, <class 'str'>, tells you that x contains a string. As such,
you can use any of the attributes shown in the output of dir(str) on it.
For example, True is the output from x.isalpha() because x does
contain alphabetic characters. HOWDY is the output of x.upper(), which
converts the string to all uppercase letters.

 Beginners often wonder what good seeing a bunch of names
such as 'capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', and 'format' in a dir()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



output does for them when they don't know what the names mean
or how to use them. Well, seeing the names doesn't help much if
you don’t pursue it any further. You can get more detailed
information by using help() rather than dir.

Using the help() function
The Python prompt also offers a help() function with the syntax:

help(object)

To use it, replace object with the object type with which you're seeking
help. For example, to get help with str objects (strings, which come
from the str class) enter this command at the Python prompt:

help(str)

The output will be more substantial information about the topic in the
parentheses. For example, where dir(str) lists the names of attributes
of that type, help(dir) provides more detail about each item. For
example, dir(str) tells you that there's a thing called capitalize in the
str class, but help(dir) tells you a bit more about it, as follows:

capitalize(self, /)

   Return a capitalized version of the string.

   More specifically, make the first character have upper case and the rest 

lower case.

The word self just means that whatever word you pass to capitalize is
what gets capitalized. The / at the end marks the end of positional-only
parameters, meaning that you can't use keywords with parameters after
that as you can when defining your own functions.

What usually works best for most people is a more in-depth explanation
and one or more examples. For those, a web search is usually your best
bet. Start the search with the word Python (so the search engine knows
what the search is in reference to) followed by the exact word with
which you are seeking assistance. For example, searching for

python capitalize

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



provides links to lots of different resources for learning about the
capitalize function of the str object, including examples of its use.

 When you're finished viewing help, you don't have to scroll to
the end to get back to the prompt. Simply press Ctrl+C.

A good (albeit technical) resource for the Python standard library is the
standard library documentation itself. This information is always
available at https://docs.python.org/ usually under the Library
Reference link. But even that wording may change, so if in doubt, just
do a web search for python standard library. Be forewarned that the
library is huge and technical, so don't expect to understand it right off the
bat. Instead, use it as an ongoing resource to learn about things that
interest you as your knowledge of Python develops.

 The documentation that appears at https://docs.python.org/
will generally be for the current stable version. Links to older
versions and to any newer versions that may be in the works when
you visit are available from links on the left side of the page.

Exploring built-in functions
Both dir() and help() are examples of Python built-in functions, which
are always available to you in Python, in any app you're creating, as well
as at the Python command prompt. These built-in functions are also part
of the standard library. In fact, if you do a web search for Python built-in
functions, some of the search results will point directly to the Python
documentation. Clicking one of these results will open a section of the
standard library documentation and display a table of all the built-in
functions, as shown in Figure 4-1. On that page, you can click the name
of any function to learn more about it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://docs.python.org/
https://docs.python.org/


FIGURE 4-1: Python's built-in functions.

Exploring Python Packages
The Python language supports modular programming, in which a
program is broken down into smaller, more manageable components, or
modules. And some of those components might already have been
created by someone else and can be reused.

Any large project, whether you’re working alone or as a team member,
can be simplified and streamlined if some components can use code
that’s already been written, tested, debugged, and deemed reliable by
members of the Python programming community. The packages you
hear about in relation to Python are that kind of code — code that has
been developed and nurtured, is trustworthy, and is generic enough to be
used as a component of a large project.

Thousands of packages are available for Python. A good resource for
finding packages is PyPi, a clever name that’s easy to remember and
short for Python Package Index. You can check it out at
https://pypi.org/.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://pypi.org/


In addition, a program named pip, for Pip Installs Packages (another
clever name) is a package manager that you can use to explore, update,
and remove existing packages. To use pip, you have to get to your
operating system’s command prompt, which is Terminal on a Mac, and
cmd.exe or PowerShell in Windows. If you're using VS Code, the
simplest way to get to the command prompt is to open VS Code and
choose View⇒    Terminal.

If you already have pip, typing this command at a command prompt will
tell you which version of pip is currently installed:

pip --version

The result will likely look something like this (but with your version’s
numbers and names):

pip 18.1 from C:\Users\…\AppData\Local\Continuum\anaconda3\lib\site-

packages\pip (python 3.7)

To see what packages you already have installed, enter this at the
operating system command prompt:

pip list

Most people are surprised at the number of packages that are already
installed. One of the advantages of installing Python with Anaconda is
that you get lots of great packages in the mix. And you don’t have to rely
on pip list to find their names. Instead, just open Anaconda Navigator
and click Environments in the left column. You’ll see a list of all
installed packages, along with a brief description and version number for
each, as shown in Figure 4-2.

 See Book 1 for more information on installing and using
Anaconda.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-2: Installed packages as viewed in Anaconda.

Although it’s okay to use pip to install any packages you don’t already
have, the one disadvantage is that those packages may not show up in
Anaconda Navigator’s list of installed packages. To get around that, any
time you see an instruction to pip something to install it, try replacing
pip with conda (short for Anaconda). This adds the package to your
collection, so it will appear both when you do pip list and when you
look at the list in Anaconda Navigator.

Importing Python Modules
You'll hear the word module used with Python all the time. If you think
of the standard library as a physical library and a package as a book in
that library, a module is one chapter in one book. In other words, a
package may contain many modules, and a library may contain many
packages. The module is a big part of what makes Python a modular
language, because code is grouped together according to function. You
don’t have to import everything including the kitchen sink to use some

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



code. On the other hand, if you need to use several related things, such
as functions for working with dates and times, you don’t have to import
them one at a time. Typically, importing just the entire module will get
you what you need.

You can import functionality from modules in a few ways. One of the
most common is to simply import the entire module. To do that, just
follow the import command with the name of the module you want to
import. For example, the following imports the entire math module:

import math

After you import a module, the dir() and help() functions work on that
too. For example, if you tried doing dir(math) or help(math) before
import math, you'd get an error. That’s because that math package isn’t
part of the standard library. However, if you do import math first and
then help(math), it all works.

There may be times when you don't need the whole kit-and-caboodle. In
those cases, you can import just what you need using the following
syntax:

from math import pi

In this example, you’re importing one thing (pi), so you’re not bringing
in unnecessary stuff. The latter example, where you added "import pi",
is also handy because in your code you can refer to pi as just pi, you
don't have to use math.pi.

To see for yourself, at the Python prompt, such as in a VS Code
Terminal window, enter the command print(pi) and press Enter. Most
likely you'll get an error that reads:

NameError: name 'pi' is not defined

In other words, pi isn't part of the standard library, which is always
available to your Python code. To use pi, you have to import the math
module. You can do so in two ways. You can import the entire module
by typing the following at the Python prompt:

import math

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



But if you do that and then enter
print(pi)

you'll get the same error again, even though you imported the math
package. When you import an entire module and want to use part of it,
you have to precede the part you want to use with the name of the
module and a dot. For example, if you enter this command:

print(math.pi)

you get the correct answer:
3.141592653589793

Be aware that when you import just part of a module, the help() and
dir() functions for the entire module won't work. For example, if
you’ve only executed from math import pi in your code and you
attempt to execute a dir(math) or help(math) function, it won't work
because Python has only pi and not the entire module at its disposal.

You usually use help() and dir()at the Python prompt for a quick
lookup rather than when you're writing an app. So using from rather than
import is more efficient because you're bringing in only what you need.

You can also import multiple items from a package by listing their
names, separated by commas, at the end of the from command. For
example, suppose you need pi and square roots in your app. You could
import just those into your app using this syntax:

from math import pi, sqrt

Once again, because you used the from syntax for the import, you can
refer to pi and sqrt() in your code by name without the leading module
name. For example, after executing that from statement, the following
code:

print(sqrt(pi))

displays the following, which, as you may have guessed, is the square
root of the number pi:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



1.7724538509055159

You may also notice people importing a module like this:
from math import *

The asterisk is short for “everything.” So in essence, that command is
the same as import math, which also imports the entire math module,
but with a subtle difference. When you write from math import * you
associate the name of everything in the math module with that module.
So you can use those names without the math. prefix. In other words,
after you execute the following:

from math import *

you can do a command like print(pi) and it will work, even without
using print(math.pi). Although this approach seems smart and
convenient, many programmers think it isn't Pythonic. If you’re
importing lots of modules and using lots of different pieces of each,
avoiding module names in code can make it harder for other
programmers to read and make sense of that code.

Making Your Own Modules
For all the hoopla about modules, a module is a simple thing. It’s just a
file with a .py extension that contains Python code. That's it. So any
time you write Python code and save it in a .py file, you’ve created a
module. That’s not to say you always have to use that code as a module;
you can treat it as a stand-alone app. But if you wanted to create a
module with code that you need often in your own work, you could
certainly do so. We explain the process in this section.

The module name, without its extension, is the same as the filename.

Suppose that you want three functions to simplify formatting dates and
currency values. You can make up any name you like for each function.
For our working example, we’ll use these three names:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



to_date(any_str): Pass in any string (any_str) date in mm/dd/yy or
mm/dd/yyyy format and the function sends back a Python
datetime.date that you can use for date calculations.

mdy(any_date): Pass in any Python date or datetime, and the
function returns a string date formatted in mm/dd/yyyy format for
display on the screen.
to_curr(any_num, len): Pass in any Python float or integer number
and the function returns a string with a leading dollar sign, commas
in thousands places, and two digits for the pennies. len is an optional
number for length. If provided, the return value will be padded on
the left with spaces to match the length specified.

So here is all the code for all three items:
# Contains custom functions for dates and currency values.

import datetime as dt

 

def to_date(any_str):

    """ Convert mm/dd/yy or mm/dd/yyyy string to datetime.date, or None if 

invalid date. """

    try:

        if len(any_str) == 10:

            the_date = dt.datetime.strptime(any_str,'%m/%d/%Y').date()

        else:

            the_date = dt.datetime.strptime(any_str,'%m/%d/%y').date()

    except (ValueError, TypeError):

        the_date = None

    return the_date

 

def mdy(any_date):

    """ Returns a string date in mm/dd/yyyy format. Pass in Python date or 

string date in mm/dd/yyyy format """

    if type(any_date) == str:

        any_date = to_date(anydate)

    # Make sure a datetime is being forwarded

    if isinstance(any_date,dt.date):

        s_date = f"{any_date:'%m/%d/%Y'}"

    else:

        s_date = "Invalid date"

    return s_date

 

def to_curr(anynum, len=0):

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    """ Returns a number as a string with $ and commas. Length is optional 

"""

    s = "Invalid amount"

    try:

        x = float(anynum)

    except ValueError:

        x= None

    if isinstance(x,float):

        s = '$' + f"{x:,.2f}"

        if len > 0:

            s=s.rjust(len)

    return s

You can create the same file and name it myfunc.py if you want to
follow along. Note that the file contains only functions. So if you run it,
it won't do anything on the screen because there's no code that calls any
of the functions.

To use those functions in a Python app or program you write, first make
sure you copy the myfunc.py file to the same folder as the rest of the
Python code you’re writing. Then, when you create a new program,
import myfunc as a module just as you would any other module created
by someone else:

import myfunc

You have to use the module name in front of any of the functions that
you call from that module. So if you want to make the code a little more
readable, use this instead:

import myfunc as my

With that as your opening line, you can refer to any function in your
custom module with my. as the prefix. For example, use my.to_date()
to call the to_date function. Here is a page that imports the module and
then tests all three functions using that my syntax:

# Import all the code from myfunc.py as my.

import myfunc as my

 

# Need dates in this code

from datetime import datetime as dt

 

# Some simple test data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

string_date="12/31/2019"

# Convert string date to datetime.date

print(my.to_date(string_date))

 

today = dt.today()

# Show today's date in mm/dd/yyyy format.

print(my.mdy(today))

 

dollar_amt=12345.678

# Show this big number in currency format.

print(my.to_curr(dollar_amt))

When you run the code, the output should look like this:
2019-12-31

'12/27/2018'

$12,345.68

We also mentioned that you can skip using the prefix if you import items
by name. In this case, that means you could call to_date() and mdy()
and to_curr() without using the my. prefix. The first line of code would
need to be

from myfunc import to_date, mdy, to_curr

The rest of the code would be the same as in the preceding example,
except you can leave off the my. prefixes as in the following code:

# Import all the code from myfunc.py by name.

from myfunc import to_date, mdy, to_curr

 

# Need dates in this code

from datetime import datetime as dt

 

# Some simple test data.

 

string_date="12/31/2019"

# Convert string date to datetime.date

print(to_date(string_date))

 

today = dt.today()

# Show today's date in mm/dd/yyyy format.

print(mdy(today))

 

dollar_amt=12345.678

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Show this big number in currency format.

print(to_curr(dollar_amt))

So that’s it for Python libraries, packages, and modules. All three
represent code written by others that you’re allowed to use in any Python
code you write. The only real difference is size. A library may contain
several packages, a package may contain several modules, and the
modules usually contain functions, classes, or other prewritten chunks of
code that you’re free to use.

In the chapters that follow, you’ll see lots of modules and classes
because they make Python so modular and applicable to many different
types of work and study. But keep in mind that the core principles of the
Python language that you’ve learned in these first three minibooks apply
everywhere, whether you’re doing data science or AI or robotics. You’ll
be using that core language to work with code that others have written
for that one specialized area.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 4
Using Artificial Intelligence

Contents at a Glance
Chapter 1: Exploring Artificial Intelligence

AI Is a Collection of Techniques

Current Limitations of AI

Chapter 2: Building a Neural Network
Understanding Neural Networks

Building a Simple Neural Network in Python

Building a Python Neural Network in TensorFlow

Chapter 3: Doing Machine Learning
Learning by Looking for Solutions in All the Wrong Places

Creating a Machine-Learning Network for Detecting Clothes Types

Visualizing with MatPlotLib

Learning More Machine Learning

Chapter 4: Exploring AI
Limitations of the Raspberry Pi and AI

Adding Hardware AI to the Raspberry Pi

AI in the Cloud

AI on a Graphics Card

Where to Go for More AI Fun in Python

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Exploring Artificial Intelligence
IN THIS CHAPTER

 Exploring AI techniques: neural networks and machine learning
 Checking out TensorFlow
 Understanding AI limitations

Artificial intelligence (AI) has been a much-maligned set of words over
the past few years. The popular news media tends to take any small
advance in AI out of context and proclaim “smart computers are here!”
For example, in 2017, Facebook engineers programmed two programs to
value certain objects more than others (balls, blocks, and such) and then
had the two programs, through a rules set and a language like English,
negotiate with each other to maximize the acquisition of objects that the
programs valued.

The programs did not have a language syntax checker and because of the
way the programs learned the communication between the programs
soon became syntactically incorrect English. (A good example is when a
program wanted something, it would say “I want” and the program logic
decided that if one “I want” is good, saying many “I want I want I want”
should be better.) The news media reported this as a new language (it
wasn’t). And later, when the programs were shut down because the
experiment was finished, some pundit decided instead that the Facebook
engineers did so right before the programs had become sentient.
Needless to say, this wasn’t the case.

This chapter introduces you to the concept of AI and describes its
limitations. We explore different AI techniques and then give a bit of
history to put the current AI revolution in context.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Dictionary.com defines artificial intelligence as “the theory and
development of computer systems able to perform tasks that
normally require human intelligence, such as visual perception,
speech recognition, decision-making, and translation between
languages.”

AI Is a Collection of Techniques
The point of this chapter is to demystify AI and describe how useful and
cool new AI techniques can be. Note that we said “AI techniques” and
not just “AI.” General AI, in the sense of robots imitating humans
doesn't currently exist (and isn’t even close), but we do have a bunch of
different algorithms, statistical techniques, and tools that can do some
impressive humanlike things, such as learning and adapting to the
environment.

In this chapter, we show you three AI techniques:

Neural network
Machine learning
A TensorFlow classifier program with Python

After reading this book, you will become sentient. Oh wait, you've
bought this book, so you're already over that threshold. Next, we briefly
describe each of the major AI techniques and programs that we delve
into in the next three chapters.

Neural networks
Just by the name neural networks, you know we’re going to talk about
brain cells. Human brains have billions of neurons (approximately 80
billion by some counts) and have roughly 10 times the amount of glial
cells (which help neurons communicate and play a role in neuron
placement). A key to understanding how the brain works is connections.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Each neuron has many connections with other neurons (up to 200,000
connections for some neurons in the brain), so it is not just the count of
neurons that make people intelligent — it’s how they are connected.
Neural networks in AI have, in a sense, been reversed-engineered from
biological neurons.

ARTIFICIAL INTELLIGENCE IS THE
TECHNOLOGY OF THE FUTURE

“What magical trick makes us intelligent? The trick is that there is
no trick. The power of intelligence stems from our vast diversity, not
from any single, perfect principle.”

—MARVIN MINSKY, THE SOCIETY OF MIND (1987)
John Shovic: I had the honor of having lunch and spending an afternoon with Dr.
Minsky in 1983 in Pocatello, Idaho. I was working as a VLSI (very large scale integrated
circuit) design engineer at American Micro Systems, a company located in Pocatello,
and I had just started my Ph.D. work part-time at the University of Idaho. My first AI
class was under my belt, and I was beside myself that Dr. Marvin Minsky from the AI
Lab at MIT was coming to Pocatello. I made a few phone calls and managed to get him
to meet with two of us who had been in the AI class, for lunch and an afternoon
meeting. Looking back, I am amazed that he would take this kind of time for us, but that
was the kind of guy he was.

It was like we were Rolling Stones fans and Mick Jagger was coming to town to spend
time with us. Honestly, much as I would like to spend an afternoon with Mick Jagger, I
would rather meet with Dr. Minsky.

I had just finished his book, Artificial Intelligence, and I was bursting with questions
about his work. He was interested in what we had learned from our AI class at the
University of Idaho and was quite complimentary about Dr. John Dickinson, the
professor of the AI course, and his choice of subjects. I had a lot of enthusiasm about
the topic and was thinking that I might make a career of it. Of all we talked about, I
remember one thing clearly. He said (and this is paraphrased), “I started in AI about 20
years ago and I was convinced then that 20 years later we would have true AI. I now
think we are still about 20 years from having true AI.”

Well, I remember thinking about that day 20 years later, in 2003, and realizing we still
weren’t there. At that point, I started wondering whether AI will always be the
technology of the future. Here I am in 2020, another 17 years later, and we still don’t
have general AI. But one thing has changed in those years. We now have a bunch of AI
techniques for learning and efficient searching that can do some impressive things and
may someday lead to the general AI that Dr. Minsky was talking about. Who knows? It
may even take less than 20 years!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Elephants have over 270 billion neurons, but they aren’t nearly
as densely connected as human neurons. Robert Metcalf, the
founder of 3Com and an entrepreneur professor at the University of
Texas, famously said (referring to Ethernet) that “the value of a
telecommunications network is proportional to the square of the
number of connected users of the system.” With that squared value
of connections coming in, we make up for those missing 190 billion
elephant neurons by having ours much more densely connected.
(However, is it any surprise that elephants have good memories and
a complex social system?)

AI researchers thought (and were right) that if we could reverse-engineer
neurons and their connections, we could use this information to
construct computer models that could be used to make smarter
programs. However, the limitations of the first popular model
(Preceptrons) quickly led to general disappointment and the first AI
Winter (see the sidebar titled “The AI Winter”).

Over the past 30 years, however, much more research has gone into the
structure and science behind neural networks, including the study of
convolutional neural networks and deep-learning software architectures.
This research has led to packages that have immediate application to
real-world problems.

THE AI WINTER
The term AI Winter was first discussed at the 1984 meeting of the American Association
of Artificial Intelligence. Our friend from another sidebar, Dr. Marvin Minsky, warned the
business community that enthusiasm for AI had spiraled out of control in the 1980s and
that disappointment would certainly follow. Three years after he said that, the multi-
billion-dollar AI business collapsed. An AI Winter refers to the time when investment
and research dollars dried up. In economic terms, this is called a bubble, much like the
dot-com bubble in 1999, the real estate bubble that collapsed in 2007, and the Dutch
tulip bulb market bubble in Holland in 1637. Overhype leads to over-expectations,
which lead to inevitable disappointment.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The AI winter happened again in the 2000s (partially because of the dot-com bubble),
and researchers went to great lengths to avoid using the term AI in their proposals and
papers. It seems to us that we are again approaching such a bubble, but none of us are
anywhere near smart enough to know when winter is coming (pardon this, Game of
Thrones fans). One of the big differences is that a number of AI techniques have moved
into the mainstream market, such as Amazon Alexa and Google Home, so AI
techniques are much more widely used. Some of the current exuberance and
investment in AI is irrational, but this time we have ended up with a lot of good tools that
we can continue to use even when the bubble pops.

Neural networks are good models for how brains learn and classify data.
Given that, it is no surprise that neural networks show up in machine
learning and other AI techniques. Neural networks consist of neurons
and, most importantly, the wiring connecting them together. The neurons
and connections of those neurons make up a neural network.

When defining a neural network, you define the architecture and layout
— creating an arbitrary network of connections. The setting of the
network by machine has turned into another field we call evolutionary
computing, as described in the sidebar. When you set up a network of
neurons one of the most important choices you make is the activation
function. The neuron activates when a threshold determined by the
activation function is crossed. The activation function is one of the key
things you define when you build a Python model of neurons in the next
chapter.

EVOLUTIONARY COMPUTING
Evolutionary computing is a set of computational algorithms and heuristics (a fancy
word for rules of thumb) for global optimization that are inspired by biological evolution.
It is derived from machine-learning techniques but differs in that evolutionary computing
is generally used to solve problems whose solution is not known by the programmer
beforehand. (Machine-learning programs are taught what they are looking for.)

By using evolutionary computing algorithms, you can find guided solutions to problems
in a design space (otherwise known as a problem space). Evolutionary computing has
been used to create solutions as diverse as better spacecraft antennas and improved
bus routing. The process uses computationally intensive algorithms to search a
problem space for solutions. Evolutionary computing is computationally intensive
because you have a population of solutions that you look at to see which program is
getting close to a solution, and then select the new ones to move to the next
generation. Survival of the fittest! These population evaluations are difficult for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



computers to process, which is why so many evolution algorithms require massive
parallel computing.

John Shovic: A student in my graduate Advanced Robotics class at the University of
Idaho used evolutionary computing to enable a robot named Baxter to pick out red or
yellow blocks from one box and move them to another box (as shown in the first photo).
He used pictures from the robot arm's cameras and evolutionary computing to try to find
an algorithm to identify and locate these blocks so Baxter could find them. Neither
Baxter nor the student succeeded in using evolutionary computing algorithms to find a
solution. Why? Using evolutionary computing techniques to find a solution to an ill-
defined and unconstrained problem requires exponentially greater computing
resources, and even these still might not come up with a solution. Smaller, constrained
problems are a better match for evolutionary techniques.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Machine learning
Learning is the classic example of what it means to be human. We learn.
We adapt. Machine learning is an AI technique that studies the use of
computer algorithms and programs that improve automatically through
use and experience.

John Shovic: Humans learn quickly and can apply that same learning to
different situations. As I write this I am watching my 2-year-old
granddaughter, Hazel, eat her first quesadilla. I see that she has learned
to find the food on her plate, tell her mom that she likes it, grab the food,
bring it to her mouth, and eat it. I wish I could teach my robots to be half
as smart as Hazel is at 2. Now I just need to clean the cream cheese off
my laptop.

Today, AI researchers have brought quasi-human–level learning to
computers in specific tasks, such as image recognition and sound
processing (“Alexa, find me a new TV show”), and may get to a level of
similar learning in other tasks, such as driving a car.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Machine learning isn’t fully automated. You can’t say, “Computer, read
this book” and expect it to understand what it is reading. Currently, using
machine-learning techniques requires large amounts of human-classified
and human-selected data, data analysis, and training.

Many different techniques are used in machine learning, such as the
following:

Statistical analysis
Neural networks
Decision trees
Evolutionary algorithms

Machine learning refers to the different ways of using these learning
techniques to emulate and even better the expert systems that ruled AI in
the 1980s. In the late 1980s, John wrote his Ph.D. dissertation on how to
build a deeply pipelined machine to speed up the evaluation of expert
systems. Hardware acceleration of machine learning is still an active
area of research today.

In the following chapter, we show you how to use Python to build
machines that demonstrate all the important tasks of machine learning.

AI IN SMARTPHONES
The current AI revolution is making its way into handhelds. Both Samsung and Apple
are racing to add these features to their phones. As of this writing, processing for the
latest Samsung phones occurs not on the phone but in the cloud. The A14 Bionic chip
in the latest Apple smartphones features a six-core CPU (central processing unit) and a
four-core GPU (graphics processing unit — a specialized CPU for AI and graphics
techniques). The A14 processor chip is dedicated to AI applications, such as facial ID
recognition software, and has a specialized neural network for a variety of applications.

The AI program and hardware in the smartphone can performing over 11 trillion
operations per second. Take that, animojis in your text messages.

TensorFlow — A framework for deep learning

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TensorFlow is an open-source, multi-machine set of APIs (application
programming interfaces) used for building, learning, and doing research
on deep learning. It hides a lot of the complexity of deep learning, which
makes the technology more accessible.

TensorFlow started in 2011 as a proprietary AI environment in the
Google Brain group. It has been extensively used at Google and, when it
was released to open source, it was embraced immediately by the AI
community. Of over 95,000 GitHub source repositories using
TensorFlow, only 32 are from Google Research. (GitHub is a popular
website where people place their code for applications and projects in a
way that other people can use and learn from them.)

TensorFlow gets its name from the way the data is processed. A tensor is
a multidimensional matrix of data, which is transformed by each
TensorFlow layer it moves through. Most college students first learn
about matrix mathematics in a linear algebra course. (For a crash course,
check out Linear Algebra For Dummies by Mary Jane Sterling.)

 So, TensorFlow is built on matrices. And another name for a
matrix is a tensor, which is where the name TensorFlow comes
from.

TensorFlow is Python-friendly and you can use it on many different
machines and also in the cloud. It's also easy to understand and easy to
use, so you can get your head into AI applications quickly.

Current Limitations of AI
The key word in all of AI is understanding. A machine-learning
algorithm has been taught to drive a car, for example, but the resulting
program does not understand how to drive a car. The emphasis of AI is
to perform an analysis of the data, but the human controlling the data
still has to interpret it and see whether the data fits the problem.
Interpretation also goes far beyond just the data. Humans often can tell

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



whether the data or a conclusion is true or false, even when they can’t
describe exactly how they know. AI just accepts that the conclusion is
true.

Considering that we don’t even understand a lot of human behavior and
abilities ourselves, it is unlikely that anyone will be developing
mathematical models of such behavior soon. And we need those models
to start getting AI programs to achieve anything approaching human
thought processes.

But with all its limitations, AI is useful for exploring large complex
programs to find good solutions.

Now let’s go and start using AI in Python!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Building a Neural Network

IN THIS CHAPTER
 Understanding the basics of neural networks
 Creating your first neural network
 Building a neural network in Python

Neural networks and various other models of how the brain operates
have been around as long as people have been talking about AI. Dr.
Marvin Minsky, introduced in Chapter 1 of this minibook, started
mainline interest in modeling neurons with his seminal work with
perceptrons in 1969. At the time, widespread irrational exuberance about
how the perceptron was going to quickly make AI practical attracted a
good deal of venture capital to the area. But when many of these
ventures failed, investment in neural networks dried up. What’s popular,
sells.

Fast-forward 37 years from John’s conversation with Dr. Minsky in
1983. Today we see renewed interest in neural networks. Better models
have been built, but more importantly, we now have useful and
economical applications based on neural networks. Will the current
market situation lead to another bubble? Most assuredly, but this time
the interest in AI should continue because of the application areas that
have been developed.

This chapter introduces you to the concept of neural networks and how
to implement them in Python. To download the code for this chapter, go
to www.dummies.com/go/pythonaiofd2e.

Understanding Neural Networks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


These are the six attributes of a neural network:

Input layer of neurons
Some number of hidden layers of neurons
Output layer of neurons connecting to the world
Set of weights and biases between each neuron level
Choice of activation function for each hidden layer of neurons
Choice of loss function to reduce overtraining the network

Figure 2-1 shows the architecture of a two-layer neural network. Note
the three layers in this two-layer neural network: The input layer is
typically excluded when you count a neural network’s layers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-1: A two-layer neural network.

A neuron, as the word is used in AI, is a software model of a nervous
system cell that behaves more or less like a brain neuron. The model
uses numbers to make one neuron or another more important to the
results. These numbers are called weights.

By looking at this diagram, you can see that the neurons on each layer
are connected to all the neurons of the next layer. Weights are given for
each inter-neural connecting line.

Layers of neurons

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Figure 2-1 shows the input layer, the hidden layer (so-called because it's
not directly connected to the outside world), and the output layer. This is
a simple network; real networks can be much more complex with many
more layers. Deep learning gets its name from the fact that when you
have multiple hidden layers, you increase the depth of the neural
network.

Note that the layers filter and process information from left to right. This
kind of neural network is called a feed-forward input because the data
feeds in only one direction.

Now that we have a network, how does it learn? The neural network
receives an example and guesses at the answer (by using whatever
default weights and biases that it starts with). If the answer is wrong, it
backtracks and modifies the weights and biases in the neurons, in an
effort to fix the error. This process is called backpropagation and
simulates what people do when performing a task using an iterative trial-
and-error approach. See Figure 2-2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-2: Feed-forward and backpropagation.

BACKPROPAGATION

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In the human brain, learning happens because of the addition of new connections
(synapses) and the modification of those connections based on external stimuli.

In AI research, the methods used to propagate from results to previous layers (also
called feedback) have changed over the years. Some experts think that the latest surge
of AI applications and the exit from the last AI Winter (see Book 4, Chapter 1) is due to
the algorithms and techniques now used for backpropagation.

Backpropagation is a mathematically complex topic. For a more detailed description of
the math and how it is used, check out Machine Learning For Dummies, by John Paul
Mueller and Luca Massaron.

After you do this process many times, the neural network begins to get
better (learns) and provides better answers with each iteration, or epoch.
The process can take days or weeks and lots of computer power for
complex tasks.

Although it may take days or weeks to train a neural net, after it is
trained, it can be duplicated with little effort by copying the topology,
weights, and biases of the trained network. When you have a trained
neural net, you can use it easily again and again (while not consuming
much computer power), until you need something different. As a result,
engineers can deploy neural networks in products at low cost. Training is
expensive, but the use of the trained network is not.

Neural networks do model some types of human learning, but humans
have significantly more complex ways to hierarchically categorize
objects (such as categorizing horses and pigs as animals) with little
effort. Neural networks (and the deep learning field) are not good at
transferring knowledge and results from one type of situation to another
without retraining.

Weights and biases
Looking at the network in Figure 2-1, you can see that the output of this
neural network is dependent on only the weights of the connections and
the biases (adjusting the neuron threshold up or down) of the neurons
themselves. Although the weights affect the steepness of the activation
function curve (more on that later), the bias shifts the entire curve to the
right or left. The program's modification of the weights and biases
determines the strength of predictions of the individual neurons.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Training the neural network involves using the input data to fine-tune the
weights and biases.

The activation function
In building our first neural network, an important topic is the activation
function. The activation function is the software function that determines
whether information passes through (thus activating the neuron) or is
stopped by the individual neuron (thus deactivating the neuron).
However, you use the function not only as a gate (open or shut) but also
to transform the input signal to the neuron in some useful way.

Many types of activation functions are available. For our simple neural
network, we will use one of the most popular ones — the sigmoid
function. A sigmoid function has a characteristic S curve, as shown in
Figure 2-3.

FIGURE 2-3: An example of a sigmoid function.

Remember we talked about neuron bias earlier in this chapter? If you
apply a 1.0 value bias to the curve in Figure 2-3, the curve shifts to the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



right, making the (0,0.5) point move to (1,0.5).

Loss function
The loss function is the last piece of the puzzle that needs to be
explained. The loss function compares the result of our neural network to
the desired results. Put another way, the loss function tells us how good
our current results are. Using a loss function is a good way to avoid
overtraining the network, in which the network ends up being able to
operate only on the training data.

In addition to using the loss function to reduce overtraining, we also
transmit the result of the loss function to our backpropagation channel to
improve our neural network.

We will use a function that finds the derivative of the loss function
showing the quality of our result (the slope of the curve is the first
derivative, calculus fans) to figure out what to do with our neuron
weights. This changing of bias and weights from the loss function
calculation is a major part of the learning activity of the network.

You've been introduced to all the parts of our neural network, so it's time
to build an example.

Building a Simple Neural Network
in Python

Before building a neural network, you need to decide what you want it to
learn. For our example, we’ll choose a simple goal: Implement a three-
input XNOR gate (an exclusive NOR gate) with inputs X1, X2, and X3
and the result as Y1. Table 2-1 shows the function we want to implement
in table form, showing the inputs and desired outputs of the neural
network presented in Figure 2-1. Note that an exclusive NOR function
returns 1 only if all the inputs are either 0 or 1.

TABLE 2-1 The Truth Table (a Three-Input XNOR Gate)
for the Neural Network

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



X1 X2 X3 Y1X1 X2 X3 Y1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

USES OF XNOR FUNCTIONS
XNOR gates are used in a number of applications, both in software and hardware. You
can use an XNOR gate as part of a one-bit adder that adds one bit to another bit (and
provides a carry bit to string them together to make big adders) or strings bits together
to build a pseudo-random number generator.

The coolest XNOR gate application we've heard about involves coding algorithms and
the Reed-Solomon error-correction algorithm. Reed-Solomon algorithms mix up your
data by using XNOR gates and some additional data (redundant data), resulting in
more robust data to transmit long distances (such as from Pluto, our former ninth
planet). Long transmission distances can have all sorts of events that cause noise in
the data, corrupting bits and bytes.

When you receive the data, you use XNOR gates again to reconstruct the original data,
correcting any errors (up to a point) so you have good data. We can transmit data much
farther with less power because the Reed-Solomon code makes the transmission more
error-tolerant.

Why do we know anything about this? John worked with a team on chips for Reed-
Solomon codes in the 1980s at the University of Idaho for NASA. Our chips and
derivatives ended up on projects such as the Hubble Space Telescope and John’s
personal favorite, the New Horizons space probe, which visited Pluto and Ultima Thule
in the Oort Cloud. The incredible pictures from those space probes go through all those
little XNOR gates.

The neural-net Python code
We will be using the Python library called NumPy, which provides a
great set of functions to help us organize our neural network and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



simplify the calculations.

Although NumPy is designed to simplify writing code for matrix
mathematics (a matrix is also known as a tensor) in linear algebra, it also
includes a number of higher mathematical functions useful in various
types of AI. NumPy is now the preferred library to use and is also a part
of SciPy and MatPlotLib, two common scientific packages for analysis
and visualization of data.

Following is the Python code using NumPy for the two-layer neural
network (refer to Figure 2-2). Using nano (or your favorite text editor),
create a file called "2LayerNeuralNetwork.py" and enter the following
code:

# 2 Layer Neural Network in NumPy

 

 

 

import numpy as np

 

# X = input of our 3 input XOR gate

# set up the inputs of the neural network (right from the table)

X = np.array(([0,0,0],[0,0,1],[0,1,0], \

    [0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]), dtype=float)

# y = our output of our neural network

y = np.array(([1], [0],  [0],  [0],  [0], \

     [0],  [0],  [1]), dtype=float)

 

# what value we want to predict

xPredicted = np.array(([0,0,1]), dtype=float)

 

X = X/np.amax(X, axis=0) # maximum of X input array

# maximum of xPredicted (our input data for the prediction)

xPredicted = xPredicted/np.amax(xPredicted, axis=0)

 

# set up our Loss file for graphing

 

lossFile = open("SumSquaredLossList.csv", "w")

 

class Neural_Network (object):

  def __init__(self):

    #parameters

    self.inputLayerSize = 3  # X1,X2,X3

    self.outputLayerSize = 1 # Y1

    self.hiddenLayerSize = 4 # Size of the hidden layer

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

    # build weights of each layer

    # set to random values

    # look at the interconnection diagram to make sense of this

    # 3x4 matrix for input to hidden

    self.W1 = \

            np.random.randn(self.inputLayerSize, self.hiddenLayerSize)

    # 4x1 matrix for hidden layer to output

    self.W2 = \

            np.random.randn(self.hiddenLayerSize, self.outputLayerSize)

 

  def feedForward(self, X):

    # feedForward propagation through our network

    # dot product of X (input) and first set of 3x4  weights

    self.z = np.dot(X, self.W1)

 

    # the activationSigmoid activation function - neural magic

    self.z2 = self.activationSigmoid(self.z)

 

    # dot product of hidden layer (z2) and second set of 4x1 weights

    self.z3 = np.dot(self.z2, self.W2)

 

    # final activation function - more neural magic

    o = self.activationSigmoid(self.z3)

    return o

 

  def backwardPropagate(self, X, y, o):

    # backward propagate through the network

    # calculate the error in output

    self.o_error = y - o

 

    # apply derivative of activationSigmoid to error

    self.o_delta = self.o_error*self.activationSigmoidPrime(o)

 

    # z2 error: how much our hidden layer weights contributed to output

    # error

    self.z2_error = self.o_delta.dot(self.W2.T)

 

    # applying derivative of activationSigmoid to z2 error

    self.z2_delta = self.z2_error*self.activationSigmoidPrime(self.z2)

 

    # adjusting first set (inputLayer --> hiddenLayer) weights

    self.W1 += X.T.dot(self.z2_delta)

    # adjusting second set (hiddenLayer --> outputLayer) weights

    self.W2 += self.z2.T.dot(self.o_delta)

 

  def trainNetwork(self, X, y):

    # feed forward the loop

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    o = self.feedForward(X)

    # and then backpropagate the values (feedback)

    self.backwardPropagate(X, y, o)

 

 

  def activationSigmoid(self, s):

    # activation function

    # simple activationSigmoid curve as in the AIO Python book

    return 1/(1+np.exp(-s))

 

  def activationSigmoidPrime(self, s):

    # First derivative of activationSigmoid

    # calculus time!

    return s * (1 - s)

 

 

  def saveSumSquaredLossList(self,i,error):

    lossFile.write(str(i)+","+str(error.tolist())+'\n')

 

  def saveWeights(self):

    # save this in order to reproduce our cool network

    np.savetxt("weightsLayer1.txt", self.W1, fmt="%s")

    np.savetxt("weightsLayer2.txt", self.W2, fmt="%s")

 

  def predictOutput(self):

    print ("Predicted XOR output data based on trained weights: ")

    print ("Expected (X1-X3): \n" + str(xPredicted))

    print ("Output (Y1): \n" + str(self.feedForward(xPredicted)))

 

myNeuralNetwork = Neural_Network()

trainingEpochs = 1000

#trainingEpochs = 100000

 

for i in range(trainingEpochs): # train myNeuralNetwork 1,000 times

  print ("Epoch # " + str(i) + "\n")

  print ("Network Input : \n" + str(X))

  print ("Expected Output of XOR Gate Neural Network: \n" + str(y))

  print ("Actual  Output from XOR Gate Neural Network: \n" + \

          str(myNeuralNetwork.feedForward(X)))

  # mean sum squared loss

  Loss = np.mean(np.square(y - myNeuralNetwork.feedForward(X)))

  myNeuralNetwork.saveSumSquaredLossList(i,Loss)

  print ("Sum Squared Loss: \n" + str(Loss))

  print ("\n")

  myNeuralNetwork.trainNetwork(X, y)

 

myNeuralNetwork.saveWeights()

myNeuralNetwork.predictOutput()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Breaking down the code
Some of the following code might seem obtuse the first time through, so
in this section we provide some explanations:

# 2 Layer Neural Network in NumPy

 

 

 

import numpy as np

If you get an import error when running the preceding code, install the
NumPy Python library. To do so on a Raspberry Pi (or an Ubuntu
system), type the following in a Terminal window:

sudo apt-get install python3-numpy

Next, we define all eight possibilities of our X1–X3 inputs and the Y1
output from Table 2-1:

# X = input of our 3 input XNOR gate

# set up the inputs of the neural network (right from the table)

X = np.array(([0,0,0],[0,0,1],[0,1,0], \

    [0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]), dtype=float)

# y = our output of our neural network

y = np.array(([1], [0],  [0],  [0],  [0], \

     [0],  [0],  [1]), dtype=float))

We now choose a value to predict. We will predict them all, but the value
stored in xPredicted will be the answer that we want at the end:

# what value we want to predict

xPredicted = np.array(([0,0,1]), dtype=float)

 

X = X/np.amax(X, axis=0) # maximum of X input array

# maximum of xPredicted (our input data for the prediction)

xPredicted = xPredicted/np.amax(xPredicted, axis=0)

Save the Sum Squared Loss results to a file (for further use by Excel) per
epoch:

# set up our Loss file for graphing

 

lossFile = open("SumSquaredLossList.csv", "w")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Next, we build the Neural_Network class for our problem. (Refer to
Figure 2-2 for the network we're building.) You can see that each layer is
represented by a single line in the code:

class Neural_Network (object):

  def __init__(self):

    #parameters

    self.inputLayerSize = 3  # X1,X2,X3

    self.outputLayerSize = 1 # Y1

    self.hiddenLayerSize = 4 # Size of the hidden layer

Set all the network weights to random values initially:
    # build weights of each layer

    # set to random values

    # look at the interconnection diagram to make sense of this

    # 3x4 matrix for input to hidden

    self.W1 = \

            np.random.randn(self.inputLayerSize, self.hiddenLayerSize)

    # 4x1 matrix for hidden layer to output

    self.W2 = \

            np.random.randn(self.hiddenLayerSize, self.outputLayerSize)

The rand function generates an array of random numbers between 0 and
1. Our feedforward() function implements the feed-forward path
through the neural network. The feedforward() function multiplies the
matrices containing the weights from each layer to the next layer and
then applies the sigmoid activation function:

  def feedForward(self, X):

    # feedForward propagation through our network

    # dot product of X (input) and first set of 3x4  weights

    self.z = np.dot(X, self.W1)

 

    # the activationSigmoid activation function - neural magic

    self.z2 = self.activationSigmoid(self.z)

 

    # dot product of hidden layer (z2) and second set of 4x1 weights

    self.z3 = np.dot(self.z2, self.W2)

 

    # final activation function - more neural magic

    o = self.activationSigmoid(self.z3)

    return o

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



And now we add the backwardPropagate() function, which implements
the real trial-and-error learning that our neural network uses:

  def backwardPropagate(self, X, y, o):

    # backward propagate through the network

    # calculate the error in output

    self.o_error = y - o

 

    # apply derivative of activationSigmoid to error

    self.o_delta = self.o_error*self.activationSigmoidPrime(o)

 

    # z2 error: how much our hidden layer weights contributed to output

    # error

    self.z2_error = self.o_delta.dot(self.W2.T)

 

    # applying derivative of activationSigmoid to z2 error

    self.z2_delta = self.z2_error*self.activationSigmoidPrime(self.z2)

 

    # adjusting first set (inputLayer --> hiddenLayer) weights

    self.W1 += X.T.dot(self.z2_delta)

    # adjusting second set (hiddenLayer --> outputLayer) weights

    self.W2 += self.z2.T.dot(self.o_delta)

To train the network for a particular epoch, we call the
backwardPropagate() function and the feedforward() function each
time we train the network:

  def trainNetwork(self, X, y):

    # feed forward the loop

    o = self.feedForward(X)

    # and then backpropagate the values (feedback)

    self.backwardPropagate(X, y, o)

The sigmoid activation function and the first derivative of the sigmoid
activation function follow:

  def activationSigmoid(self, s):

    # activation function

    # simple activationSigmoid curve as in the book

    return 1/(1+np.exp(-s))

 

  def activationSigmoidPrime(self, s):

    # First derivative of activationSigmoid

    # calculus time!

    return s * (1 - s)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Then we save the epoch values of the loss function to a file (for Excel
use) and also to save the neural weights:

  def saveSumSquaredLossList(self,i,error):

    lossFile.write(str(i)+","+str(error.tolist())+'\n')

 

  def saveWeights(self):

    # save this in order to reproduce our cool network

    np.savetxt("weightsLayer1.txt", self.W1, fmt="%s")

    np.savetxt("weightsLayer2.txt", self.W2, fmt="%s")

Next, we run our neural network to predict the outputs based on the
current trained weights:

  def predictOutput(self):

    print ("Predicted XOR output data based on trained weights: ")

    print ("Expected (X1-X3): \n" + str(xPredicted))

    print ("Output (Y1): \n" + str(self.feedForward(xPredicted)))

 

myNeuralNetwork = Neural_Network()

trainingEpochs = 1000

#trainingEpochs = 100000

Following is the main training loop that goes through all requested
epochs. Change the trainingEpochs variable in the preceding code
snippet to vary the number of epochs you would like to train your
network:

for i in range(trainingEpochs): # train myNeuralNetwork 1,000 times

  print ("Epoch # " + str(i) + "\n")

  print ("Network Input : \n" + str(X))

  print ("Expected Output of XOR Gate Neural Network: \n" + str(y))

  print ("Actual Output from XOR Gate Neural Network: \n" + \

      str(myNeuralNetwork.feedForward(X)))

  # mean sum squared loss

  Loss = np.mean(np.square(y - myNeuralNetwork.feedForward(X)))

  myNeuralNetwork.saveSumSquaredLossList(i,Loss)

  print ("Sum Squared Loss: \n" + str(Loss))

  print ("\n")

  myNeuralNetwork.trainNetwork(X, y)

Finally, save the results of the training for reuse and to predict the output
of our requested value:

myNeuralNetwork.saveWeights()

myNeuralNetwork.predictOutput()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Running the neural-network code
Now that the code is ready, it's time to train our neural network and
examine the results. At a command prompt, enter the following
command:

python3 2LayerNeuralNetworkCode.py

The program starts stepping through 1,000 epochs of training, printing
the results of each epoch, and then displaying the final input and output.
It also creates the following files of interest:

weightsLayer1.txt: This file contains the final trained weights for
input-layer-to-hidden-layer connections (a 4x3 matrix).
weightsLayer2.txt: This file contains the final trained weights for
hidden-layer-to-output-layer connections (a 1x4 matrix).
SumSquaredLossList.csv: This comma-delimited file contains the
epoch number and each loss factor at the end of each epoch. We use
this to graph the results across all epochs.

Here is the final output of the program for the last epoch, which is 999
because we start at 0:

Epoch # 999

 

Network Input :

[[0. 0. 0.]

 [0. 0. 1.]

 [0. 1. 0.]

 [0. 1. 1.]

 [1. 0. 0.]

 [1. 0. 1.]

 [1. 1. 0.]

 [1. 1. 1.]]

Expected Output of XOR Gate Neural Network:

[[1.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 [1.]]

Actual  Output from XOR Gate Neural Network:

[[0.93419893]

 [0.04425737]

 [0.01636304]

 [0.03906686]

 [0.04377351]

 [0.01744497]

 [0.0391143 ]

 [0.93197489]]

Sum Squared Loss:

0.0020575319565093496

 

 

Predicted XOR output data based on trained weights:

Expected (X1-X3):

[0. 0. 1.]

Output (Y1):

[0.04422615]

At the bottom, you see that the expected output is 0.04422615, which is
quite close but not quite the expected value of 0. Compare each expected
output to the actual output from the network, and you'll see that they
match pretty closely. Every time you run the program, the results will be
slightly different because you initialize the weights with random
numbers at the start of the run.

The goal of neural-network training is to get the answer exactly right but
right within a stated tolerance of the correct result. For example, if we
say that any output above 0.9 is a 1 and any output below 0.1 is a 0, our
network would have given perfect results.

The Sum Squared Loss output value is a measure of all the errors of all
the possible inputs.

We graphed the Sum Squared Loss values versus the epoch number, and
the result is the graph in Figure 2-4. You can see that the program gets
better quite quickly and then tails off.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-4: The Loss function during training.

Let's try one more experiment and increase the number of epochs to
100,000:

Epoch # 99999

 

 

Network Input :

[[0. 0. 0.]

 [0. 0. 1.]

 [0. 1. 0.]

 [0. 1. 1.]

 [1. 0. 0.]

 [1. 0. 1.]

 [1. 1. 0.]

 [1. 1. 1.]]

Expected Output of XOR Gate Neural Network:

[[1.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [1.]]

Actual Output from XOR Gate Neural Network:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



[[9.85225608e-01]

[1.41750544e-04]

[1.51985054e-04]

[1.14829204e-02]

[1.17578404e-04]

[1.14814754e-02]

[1.14821256e-02]

[9.78014943e-01]]

Sum Squared Loss:

0.00013715041859631841

 

 

Predicted XOR output data based on trained weights:

Expected (X1-X3):

[0. 0. 1.]

Output (Y1):

[0.00014175]

The numbers are better but the results in the 1,000 epoch run were good
enough according to our accuracy criteria (> 0.9 = 1 and < 0.1 = 0).
1,000 epochs produce data good enough for our stated problem.
Increasing our training run to 100,000 epochs improves things only
slightly.

Using TensorFlow for the same neural network
TensorFlow is a Python package that supports neural networks based on
matrices and flow graphs similar to NumPy. However, unlike NumPy,
TensorFlow is designed for use in machine-learning and AI applications
and therefore has libraries and functions specifically for those
applications.

A tensor is a multidimensional matrix of data, which is transformed by
each TensorFlow layer it moves through. TensorFlow is Python-friendly
and can be used on many different machines and also in the cloud. The
capability to run on different machines and architectures makes
TensorFlow an excellent choice for general use. As mentioned, neural
networks are data-flow graphs and are implemented in terms of
performing operations on matrices of data and then moving the resulting
data to another matrix. Because matrices are tensors and the data flows
from one to another, you can see where the TensorFlow name comes
from. Neural network programs are full of matrices.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TensorFlow is one of the best-supported application frameworks, with
APIs (application programming interfaces) for Python, C++, Haskell,
Java, Go, Rust, and a third-party package for R.

Installing the TensorFlow Python library
To install the TensorFlow software on Windows, Linux, or Raspberry Pi,
check out the official TensorFlow link at
www.tensorflow.org/install/pip. You can also try Colab and Jupyter
Notebook.

TensorFlow is a typical module and API (applications programming
interface) for use by Python 3. When you install TensorFlow, many
dependencies are also installed.

INTRODUCING TENSORS
As described in Chapter 1 of this minibook, tensors are multidimensional matrices of
data. But an additional discussion about the vocabulary of tensors is helpful.

A scalar can be thought of as a single piece of data. Only one piece of data is
associated with a scalar. For example, a value of 5 meters or 5 meters/second
are examples of a scalar, as is 45 degrees Fahrenheit or 21 degrees Celsius.
You can think of a scalar as a point on a plane.

A vector differs from a scalar because it contains at least two pieces of
information. An example of a vector is 5 meters east — this describes a
distance and a direction. A vector is a one-dimensional matrix (2x1, for
example). You can think of a vector as an arrow located on a plane. Plane
vectors are the simplest form of tensor. A 3x1 vector gives you the coordinates
for 3D space: x, y, and z.

A tensor is a matrix that can be characterized by magnitude and multiple
directions. Scalars can be recognized as individual numbers, vectors as
ordered sets of numbers, and tensors by a single or multidimensional array of
numbers. A vector is a special case of a tensor. For a great non-mathematical
introduction to tensors, go to www.youtube.com/watch?v=f5liqUk0ZTw.

Building a Python Neural Network
in TensorFlow

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.tensorflow.org/install/pip
https://www.youtube.com/watch?v=f5liqUk0ZTw


For our neural network example in TensorFlow, we will use a network a
bit larger than the two-layer neural network we used for NumPy (refer to
Figure 2-1), which implemented an XNOR gate. Figure 2-5 shows the
new three-layer neural network. Refer to Table 2-1 for the truth table for
both networks.

FIGURE 2-5: Our TensorFlow three-layer neural network.

Keras is an open-source neural-network library that enables fast
experimentation with neural networks, deep learning, and machine
learning. Keras is an indispensable part of TensorFlow. In 2017, Google
decided to natively support Keras as the preferred interface for
TensorFlow. Keras provides the excellent and intuitive set of
abstractions and functions, whereas TensorFlow provides the efficient
underlying implementation. NumPy implements the necessary matrix
math in the TensorFlow modules.

The five steps to implementing a neural network in Keras with
TensorFlow follow:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



1. Load and format your data.
2. Define your neural network model and layers.
3. Compile the model.
4. Fit and train your model.
5. Evaluate the model.

Loading your data
The first step, loading your data, is trivial in our model but is often the
most complex and difficult part of building an entire program. You have
to examine your data (for example, an XOR gate or a database of factors
affecting diabetic heart patients) and figure out how to map the data and
the results to get to the information and predictions you want.

Defining your neural-network model and layers
In the second step, defining your network, you can see one of the
primary advantages of Keras over other frameworks. You basically just
construct a stack of the neural layers you want your data to flow through.
Remember that TensorFlow is just matrices of data flowing through a
neural network stack. In this step, you choose the configuration of your
neural layer and activation functions.

Compiling your model
In the third step, you compile your model, which hooks up your Keras
layer model with the underlying machine-specific software (the back-
end) to run on your hardware. You also choose what you want to use for
a loss function.

Fitting and training your model
The real work of training your network takes place in the fourth step.
You determine how many epochs you want the program go through. You
also accumulate the history of what is happening through all the epochs,
and use this information to create your graphs.

Evaluating the model

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



After training your model, you have to evaluate it. Evaluation refers to
running your trained machine-learning model on other data to see how
well the model does on data that was not included in your training set.

The Python code using TensorFlow, NumPy, and Keras for the two-layer
neural network follows (refer to Figure 2-1). Using nano (or your
favorite text editor), open a file called TensorFlowKeras.py and enter
the following code:

import tensorflow as tf

 

from tensorflow.keras import layers

 

from tensorflow.keras.layers import Activation, Dense

 

import numpy as np

 

# X = input of our 3 input XOR gate

# set up the inputs of the neural network (right from the table)

X = np.array(([0,0,0],[0,0,1],[0,1,0],

            [0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]), dtype=float)

# y = our output of our neural network

y  = np.array(([1], [0],  [0],  [0],  [0],

             [0],  [0],  [1]), dtype=float)

 

 

model = tf.keras.Sequential()

 

model.add(Dense(4, input_dim=3, activation='relu',

    use_bias=True))

#model.add(Dense(4,  activation='relu', use_bias=True))

model.add(Dense(1, activation='sigmoid', use_bias=True))

 

model.compile(loss='mean_squared_error',

        optimizer='adam',

        metrics=['binary_accuracy'])

 

print (model.get_weights())

 

history = model.fit(X, y, epochs=2000,

        validation_data = (X, y))

 

 

model.summary()

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# printing out to file

loss_history = history.history["loss"]

numpy_loss_history = np.array(loss_history)

np.savetxt("loss_history.txt", numpy_loss_history,

        delimiter="\n")

 

binary_accuracy_history = history.history["binary_accuracy"]

numpy_binary_accuracy = np.array(binary_accuracy_history)

np.savetxt("binary_accuracy.txt", numpy_binary_accuracy, delimiter="\n")

 

 

 

print(np.mean(history.history["binary_accuracy"]))

 

result = model.predict(X ).round()

 

print (result)

After looking at the code, we will run the neural network and then
evaluate the model and results.

Breaking down the code
The first thing to note about our TensorFlow and Keras code is that it's
much simpler and easier to understand than the two-layer model we
wrote earlier in the chapter in Python using NumPy.

First, we import all the libraries we need to run our example two-layer
model. Note that TensorFlow includes Keras by default. And once again
we see our friend NumPy as the preferred way of handling matrices:

import tensorflow as tf

 

from tensorflow.keras import layers

 

from tensorflow.keras.layers import Activation, Dense

 

import numpy as np

Step 1, load and format your data: In this case, we just set up the truth
table for the XOR gate with NumPy arrays. Loading and formatting your
data can get much more complex when you have large, diverse, cross-
correlated sources of data:

# X = input of our 3 input XOR gate

# set up the inputs of the neural network (right from the table)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



X = np.array(([0,0,0],[0,0,1],[0,1,0],

            [0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]), dtype=float)

# y = our output of our neural network

y  = np.array(([1], [0],  [0],  [0],  [0],

             [0],  [0],  [1]), dtype=float)

Step 2, define your neural network model and layers: This step is where
the power of Keras shines. Adding more neural layers and changing their
size and activation functions are simple tasks. We also apply a bias
(which shifts the activation curve to the right) to our activation function
(relu, in this case, with our friend the sigmoid function for the final
output layer), which we did not do in our pure Python model because the
data we were training on was so simple.

Next, look at the commented model.add statement that follows. When
we go to our next three-layer neural network example, we uncomment
that single line to add an additional layer to our neural network. We use
the relu, which is a simple, general-purpose linear activation function:

model = tf.keras.Sequential()

 

model.add(Dense(4, input_dim=3, activation='relu',

    use_bias=True))

#model.add(Dense(4, activation='relu', use_bias=True))

model.add(Dense(1, activation='sigmoid', use_bias=True))

Step 3, compile your model: We are using the same loss function that we
used in our pure Python implementation, mean_squared_error. New is
the optimizer Adam, which is a method for stochastic optimization.
Stochastic optimization refers to a set of methods for minimizing or
maximizing a value when randomness is present in the program. The
default optimizer provides a method for efficiently modifying the
weights of the neural layers.

Now we turn to the metrics we want as outputs from the program.
binary_accuracy compares the outputs of our network to either a 1 or a
0. You will see values of, say, 0.75, which means six out of eight are
correct (because we have eight possible outputs). binary_accuracy
means exactly what you would expect from the name:

model.compile(loss='mean_squared_error',

        optimizer='adam',

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        metrics=['binary_accuracy'])

Next we print the starting weights of our model. By default, the network
initialization steps use a random method to assign the weights. You can
seed that method to use the same starting weights for each run and get
the same results, or you can change the method used to generate the
weights completely.

print (model.get_weights())

Step 4, fit and train your model: We chose the number of epochs that
would enable us to move towards a binary accuracy of 1.0 most of the
time. Here we load the NumPy arrays with the input (X) and our
expected output (y). The validation_data parameter compares the
outputs of the trained network in each epoch and generates val_acc and
val_loss and stores them in the history variable:

history = model.fit(X, y, epochs=2000,

        validation_data = (X, y))

Then we print a summary of the model so we can make sure it was
constructed in the way we expected:

model.summary()

Next, we print the values from the history variable, which we will then
graph:

# printing out to file

loss_history = history.history["loss"]

numpy_loss_history = np.array(loss_history)

np.savetxt("loss_history.txt", numpy_loss_history,

        delimiter="\n")

 

binary_accuracy_history = history.history["binary_accuracy"]

numpy_binary_accuracy = np.array(binary_accuracy_history)

np.savetxt("binary_accuracy.txt", numpy_binary_accuracy, delimiter="\n")

Step 5, evaluate the model: We run the model to predict the outputs from
all the inputs of X, using the round function to make the outputs either 0
or 1. Note that the round function replaces the criteria we used in our
pure Python model, which was <0.1 = "0" and >0.9 = "1". We also
calculate the average of all the binary_accuracy values of all epochs,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



but the number isn't useful — except to show us that the closer to 1.0,
the faster the model succeeded:

print(np.mean(history.history["binary_accuracy"]))

 

result = model.predict(X ).round()

 

print (result)

Now let's move along to some results.

Checking the results

 When you run TensorFlow programs, you may see something
like this:

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: compiletime 

version 3.4 of module 'tensorflow.python.framework.fast_tensor_util' does not 

match runtime version 3.5

return f(*args, **kwds)

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: builtins.type 

size changed, may indicate binary incompatibility. Expected 432, got 412

return f(*args, **kwds)

This output occurs because of a problem with the way TensorFlow was
built for your machine. These warnings can be safely ignored. The good
folks over at TensorFlow.org say that this issue will be fixed in the next
version.

To run the two-layer model, type python3 TensorFlowKeras.py in the
Terminal window. After watching the epochs march away (you can
change the amount of output by setting the Verbose parameter in your
model.fit command), we are rewarded with the following:

…

Epoch 1999/2000

8/8 [==============================] - 0s 2ms/step - loss: 0.0367 - 

binary_accuracy: 1.0000 - val_loss: 0.0367 - val_binary_accuracy: 1.0000

Epoch 2000/2000

8/8 [==============================] - 0s 2ms/step - loss: 0.0367 - 

binary_accuracy: 1.0000 - val_loss: 0.0367 - val_binary_accuracy: 1.0000

_________________________________________________________________

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Layer (type)        Output Shape       Param #

=================================================================

dense (Dense)        (None, 4)        16

_________________________________________________________________

dense_1 (Dense)       (None, 1)        5

=================================================================

Total params: 21

Trainable params: 21

Non-trainable params: 0

_________________________________________________________________

0.8436875

[[1.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [1.]]

By epoch 2,000, we have achieved the binary accuracy of 1.0, as hoped
for, and the results of our model.predict function call at the end of the
program output matches our truth table. Figure 2-6 shows the loss
function and binary accuracy values plotted against the epoch number as
the training progressed.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-6: Results of the two-layer training.

The new network’s loss function (shown in Figure 2-6) is much
smoother than the previous network’s loss function (refer to Figure 2-4.)
This smoother loss function has to do with the activation choice (relu)
and the optimizer function (ADAM). ADAM (Adaptive Moment
Estimation) uses a stochastic algorithm (uses random numbers) to
improve the results of the loss function. Also, remember that you will
get a somewhat different curve each time because of the random number
initial values set in the weights of the individual neurons. You can seed
your random number generator to make the random number generator
give you the same random numbers each time you run the program. This
makes it easier to optimize your performance.

WHY USE A GUI TO RUN TensorFlow?
You'll spend a lot of time coding in text editors to build your models. For simplicity’s
sake, we exported our data to Excel to produce the graphs in this chapter. Most of the
time, we use a Terminal window, but there is a big advantage to using a computer’s full
GUI (graphical user interface) desktop to open a Terminal window for editing. That big
advantage is called TensorBoard. TensorBoard is a part of TensorFlow and is available
to you in a browser (such as Chrome or Firefox). You point TensorBoard (running in the
browser) at your job directory and you can easily do all sorts of visual analysis of your
neural network experiments.

With our first neural network in this chapter, we made a big deal about
backpropagation and how it was a fundamental part of neural networks.
However, Keras handles backpropagation automatically. If you want to
modify how Keras is doing backpropagation, you can change the
optimization parameter in the module.compile command (we used
ADAM), but the process requires quite a bit of work. When you run
your training for the network, you're using the backpropagation
algorithm and optimizing this according to the chosen optimization
algorithm and loss function specified when compiling the model.

Note that when the binary accuracy reaches 1.00 (in the example run, at
epoch 1556), your network is fully trained in this case.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Changing to a three-layer neural network in
TensorFlow and Keras
Now let’s add another layer to our neural network. Refer to Figure 2-5
for the new network; Figure 2-7 shows the results. Open the
TensorFlowKeras.py file in your favorite editor. We will be making a
slight change to the following:

model.add(Dense(4, input_dim=3, activation='relu',

    use_bias=True))

#model.add(Dense(4, activation='relu', use_bias=True))

model.add(Dense(1, activation='sigmoid', use_bias=True))

FIGURE 2-7: Results of the three-layer training.

If we remove the comment character in front of the middle layer, we will
have a three-layer neural network with four neurons per layer. It’s that
easy. Here is what the code should look like now:

model.add(Dense(4, input_dim=3, activation='relu',

    use_bias=True))

model.add(Dense(4, activation='relu', use_bias=True))

model.add(Dense(1, activation='sigmoid', use_bias=True))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When we run the program, we get the results from the three-layer neural
network, which look something like this:

8/8 [==============================] - 0s 2ms/step - loss: 0.0153 - 

binary_accuracy: 1.0000 - val_loss: 0.0153 - val_binary_accuracy: 1.0000

Epoch 2000/2000

8/8 [==============================] - 0s 2ms/step - loss: 0.0153 - 

binary_accuracy: 1.0000 - val_loss: 0.0153 - val_binary_accuracy: 1.0000

_________________________________________________________________

Layer (type)        Output Shape       Param #

=================================================================

dense (Dense)        (None, 4)        16

_________________________________________________________________

dense_1 (Dense)       (None, 4)        20

_________________________________________________________________

dense_2 (Dense)       (None, 1)        5

=================================================================

Total params: 41

Trainable params: 41

Non-trainable params: 0

_________________________________________________________________

0.930375

[[1.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [0.]

 [1.]]

You can see that you have three layers in the neural network. The
capability to change the neural network quickly and efficiently is one
reason why the TensorFlow/Keras software is so powerful. It's easy to
tinker with parameters and make changes.

The three-layer run converges to a binary accuracy of 1.00 at about
epoch 916, much faster than epoch 1556 in the two-layer run. In
addition, the loss function is significantly more sloped than the two-layer
example (refer to Figure 2-6).

Just for fun, we ran this program again and changed the number of
neurons to 100 per each hidden layer. As expected, the program
converged to a binary accuracy of 1.00 much faster than in the previous

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



run (epoch 78 versus epoch 916). Run your own experiments to get a
feel for the way the results vary with different parameters, layers, and
neuron counts.

Believe it or not, you now understand a great deal about how neural
networks and machine learning works. Go forth and train those neurons!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Doing Machine Learning

IN THIS CHAPTER
 Understanding the basics of machine learning
 Using TensorFlow to do machine learning
 Working with MatPlotLib

What does it mean to learn something? One definition is “the acquisition
and mastery of what is already known about something and the extended
clarification of meaning of that knowledge.” Another definition is that
learning is “a relatively permanent change in a person’s knowledge or
behavior due to experience.”

The second definition best fits with the current state of AI. Our
engineering and scientific culture has developed algorithms and
programs that can learn things about data and about sensory input and
apply that knowledge to new situations. But our machines do not
understand anything about what they have learned. They have just
accumulated data about their inputs and have transformed that input to
some kind of output which we hope means something to the observing
humans.

However, even though machines don't understand what they have
learned, you can do some impressive problem solving using the
machine-learning techniques described in this chapter. And maybe the
techniques we are developing now will lead the way to something much
more impressive in the future.

What does it mean for a machine to learn something? We use the
following rough definition: If a machine can take inputs and transform
them to useful outputs, the machine has learned something. For example,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



if you write a simple program to add two numbers, you have taught that
machine something — how to add two numbers.

In this chapter, we focus on machine learning and the use of algorithms
and statistical models that progressively improve their performance on a
specific task. If this sounds like our neural network experiments in
Chapter 2 of this minibook, you are correct. Machine learning involves
not only neural networks but also other sophisticated data analysis and
statistical techniques. To download the code for this chapter, go to
www.dummies.com/go/pythonaiofd2e.

Learning by Looking for Solutions
in All the Wrong Places

One of the problems with machine learning and AI in general is figuring
out how an algorithm can find the best solution. The operative word is
best. How do we know a given solution is best? We set specific goals
and achieve them (the solution may be just good enough rather than
optimal).

Some people compare the problem of finding the best solution to that of
trying to find the highest mountain in an area on a foggy day. You get to
the top of a mountain and proclaim, “I am on the highest mountain.”
Well, you're on the highest mountain you can see. But if you define your
goal as being on the top of a mountain more than 1,000 feet high, and
you're at 1,250 feet, you have met your goal. Meeting a goal such as
being above 1,000 feet is called a local maxima, and it may or may not
be the best maxima available.

Defining a goal for your machine-learning project is a key step in the
entire process of building and using a machine-learning program.

In this chapter, we do most of our goal setting (training the machine)
with known solutions to a problem. First we train our machine and then
we apply the training to new, similar examples of the problem.

The three main types of machine-learning algorithms follow:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


Supervised learning: This type of algorithm builds a model of data
that contains both inputs and outputs. The data is known as training
data. We show this type of machine learning in this chapter.
Unsupervised learning: For this type of algorithm, the data contains
only inputs, and the algorithms look for structures and patterns in the
data. The algorithms generally have sophisticated statistical and
mathematic goals, not simple goals such as finding a mountain taller
than 1,000 meters.
Reinforcement learning: In this type of algorithm, software takes
actions based on a cumulative reward. The algorithm does not
assume knowledge of an exact mathematical model and is used when
exact models are unavailable. Reinforcement learning is the most
complex area of machine learning, and the one that might be most
fruitful in the future. Experimenting with reinforcement learning is
the area of robotic vision interpretation research using machine
learning that is of great interest to co-author John Shovic.

Next, we jump into doing machine learning with Python.

Creating a Machine-Learning
Network for Detecting Clothes Types

We use TensorFlow and Keras and the freely available training database
called Fashion-MNIST (Modified National Institute of Standards and
Technology) to build some machine-learning examples and look at their
results. (For more about TensorFlow and Keras, refer to Chapter 2 of this
minibook.) The database contains 60,000 fashion products from ten
categories. It contains data in 28x28 pixel format, with 6,000 items in
each category, as shown in Figure 3-1.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-1: A small portion of the Fashion-MNIST database.

Fashion-MNIST uses a MNIST-format (a collection of grayscale images
with a resolution of 28x28 pixels) fashion database of 60,000 images
classified into ten types of apparel:

0: t-shirt/top
1: trouser
2: pullover
3: dress
4: coat
5: sandal
6: shirt
7: sneaker
8: bag
9: ankle boot

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



We use the same five-step approach we used to build layered networks
with Keras in Chapter 2 of this minibook. TensorFlow and Keras.

1. Load and format your data.
2. Define your neural network model and layers.
3. Compile the model.
4. Fit and train your model.
5. Evaluate the model.

Setting up the software environment
Most of the action in this chapter is, as usual, in the command line,
because you still have to type code and run software. However, we're
going to display some graphics on the screen and use MatPlotLib to
evaluate what the machine-learning program is doing, so start a GUI
(graphics user interface) if you haven’t already.

If you're using a headless Raspberry Pi, either add a keyboard, mouse,
and monitor or bring up VNC (virtual network computer) to use your
computer monitor as a display for a second computer — the Raspberry
Pi, in this case. Many links on the web describe how to do this and how
to bring up the GUI on your main computer. For a great source of
tutorials on setting up the software and connecting the Raspberry Pi,
visit www.raspberrypi.org.

We use VNC on a headless Raspberry Pi in this chapter. Figure 3-2
shows the GUI running on the Raspberry Pi (actually running VNC, but
you can’t tell from this image).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.raspberrypi.org/


FIGURE 3-2: A full GUI on the Raspberry Pi.

 If you're missing any of the Python libraries that we use in this
example, search the web instructions on installing them on your
machine. Every setup is a little different. For example, if you’re
missing seaborn, search “installing seaborn python library on [name
of your machine].” If you do a search on “seaborn for the Raspberry
Pi,” you'll find “sudo pip3 install seaborn.”

Getting the data from the Fashion-MNIST
dataset
Getting the data is easy, although it will take a while to first load it on
your computer. After you run the program for the first time, it will use

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the Fashion-MNIST data copied to your computer.

Training the network
We will train our machine-learning neural network using all 60,000
images of clothes: 6,000 images in each of the ten categories.

Testing our network
Our trained network will be tested with three different sets of data:

A set of 10,000 training photos (unclassified, that is not in the
training data) from the Fashion_MNIST data set

A selected image from the Fashion_MNIST data set

A photo of a woman's dress

This first version of the program will run a test on 10,000 unclassified
files from the Fashion_MNIST database.

The Python code using TensorFlow, NumPy, and Keras to perform
analysis on the Fashion_MNIST network follows. Using nano (or your
favorite text editor), open the FMTensorFlow.py file and enter the
following code:

#import libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

 

# Import Fashion MNIST

fashion_mnist = input_data.read_data_sets('input/data',

        one_hot=True)

 

fashion_mnist = tf.keras.datasets.fashion_mnist

 

(train_images, train_labels), (test_images, test_labels) \

        = fashion_mnist.load_data()

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

 

 

class_names = ['T-shirt/top', 'Trouser',

        'Pullover', 'Dress', 'Coat',

        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

 

 

train_images = train_images / 255.0

 

test_images = test_images / 255.0

 

 

model = tf.keras.Sequential()

 

 

model.add(tf.keras.layers.Flatten(input_shape=(28,28)))

model.add(tf.keras.layers.Dense(128, activation='relu' ))

model.add(tf.keras.layers.Dense(10, activation='softmax' ))

 

 

model.compile(optimizer=tf.train.AdamOptimizer(),

                      loss='sparse_categorical_crossentropy',

                                    metrics=['accuracy'])

 

 

model.fit(train_images, train_labels, epochs=5)

 

# test with 10,000 images

test_loss, test_acc = model.evaluate(test_images, test_labels)

 

print('10,000 image Test accuracy:', test_acc)

Breaking down the code
If you read the description of the TensorFlow and Keras program in
Chapter 2, this code should look familiar. In this section, we break the
code down into our familiar five-step Keras process.

But first, we import all the libraries needed to run the example two-layer
model. Note that TensorFlow includes Keras by default. And once again
our friend NumPy is the preferred way of handling matrices:

#import libraries

import numpy as np

import matplotlib.pyplot as plt

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

In step 1, we load and format the data. This time we're using the built-in
data set reading capability. The program knows what this data is because
of the import statement from tensorflow.examples.tutorials.mnist
in the preceding code:

# Import Fashion MNIST

fashion_mnist = input_data.read_data_sets('input/data',

        one_hot=True)

 

fashion_mnist = tf.keras.datasets.fashion_mnist

 

(train_images, train_labels), (test_images, test_labels) \

        = fashion_mnist.load_data()

Next we give some descriptive names to the ten classes in the
Fashion_MNIST data:

class_names = ['T-shirt/top', 'Trouser',

        'Pullover', 'Dress', 'Coat',

        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Then we change the scale of the images from 0–255 to 0.0–1.0:
train_images = train_images / 255.0

 

test_images = test_images / 255.0

In step 2, we define the neural network model and layers. Keras makes it
very easy to add neural layers and change their sizes and activation
functions. We also apply a bias to our activation function (relu), in this
case with softmax, for the final output layer:

model = tf.keras.Sequential()

 

 

model.add(tf.keras.layers.Flatten(input_shape=(28,28)))

model.add(tf.keras.layers.Dense(128, activation='relu' ))

model.add(tf.keras.layers.Dense(10, activation='softmax' ))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In step 3, we compile the model. The loss function
sparse_categorical_crossentropy is used when an individual integer
is assigned for each clothes category, as we do in this example. Adam (a
method for stochastic optimization) is a good default optimizer because
it's well suited for problems that are large in terms of data or parameters
or both.

model.compile(optimizer=tf.train.AdamOptimizer(),

    loss='sparse_categorical_crossentropy',

        metrics=['accuracy'])

 The sparse_categorical_crossentropy loss function
measures the error between categories across the data set.
Categorical refers to the fact that the data has more than two
categories (binary) in the data set. Sparse refers to using a single
integer to refer to classes (0–9, in our example). Entropy (a measure
of disorder) refers to the mix of data between the categories.

In step 4, we fit and train the model. We chose five epochs due to the
time it takes to run the model for our examples. Feel free to increase the
number of epochs. Here we load the NumPy arrays for the input to our
network (the database train_images).

model.fit(train_images, train_labels, epochs=5)

In step 5, we evaluate the model. The model.evaluate() function is
used to compare the outputs of your trained network in each epoch and
generates test_acc and test_loss for your information in each epoch
as stored in the history variable.

# test with 10,000 images

test_loss, test_acc = model.evaluate(test_images, test_labels)

 

print('10,000 image Test accuracy:', test_acc)

Results of the training and evaluation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



We ran our program on the Raspberry Pi 3B+. (A Raspberry Pi 4B is at
least twice as fast.) You can safely ignore the code mismatch warnings
and the future deprecation announcements at this point.

Here are the results of the program:
Epoch 1/5

60000/60000 [==============================] - 44s 726us/step - loss: 0.5009 

- acc: 0.8244

Epoch 2/5

60000/60000 [==============================] - 42s 703us/step - loss: 0.3751 

- acc: 0.8652

Epoch 3/5

60000/60000 [==============================] - 42s 703us/step - loss: 0.3359 

- acc: 0.8767

Epoch 4/5

60000/60000 [==============================] - 42s 701us/step - loss: 0.3124 

- acc: 0.8839

Epoch 5/5

60000/60000 [==============================] - 42s 703us/step - loss: 0.2960 

- acc: 0.8915

10000/10000 [==============================] - 4s 404us/step

10,000 image Test accuracy: 0.873

Fundamentally, the test results are saying that with our two-layer neural
machine-learning network, we're classifying 87 percent of the 10,000-
image test database correctly. When we upped the number of epochs to
50, and the accuracy increased to only 88.7 percent — lots of extra
computation time with little increase in accuracy.

Testing a single test image
Next we test a single image from the Fashion_MNIST database, which is
shown in Figure 3-3. Add the following code to the end of your program
and rerun the software:

#run test image from Fashion_MNIST data

 

img = test_images[15]

img = (np.expand_dims(img,0))

singlePrediction = model.predict(img,steps=1)

print ("Prediction Output")

print(singlePrediction)

print()

NumberElement = singlePrediction.argmax()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Element = np.amax(singlePrediction)

 

print ("Our Network has concluded that the image number '15' is a "

        +class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

Here are the results from a five-epoch run:
Prediction Output

[[1.2835168e-05 9.9964070e-01 6.2637120e-08 3.4126092e-04 4.4297972e-06

  7.8450663e-10 6.2759432e-07 9.8717527e-12 1.2729484e-08 1.1002166e-09]]

 

Our Network has concluded that the image number '15' is a Trouser

99% Confidence Level

FIGURE 3-3: Image 15 from the Fashion-MNIST test database.

Woo-hoo! It worked. It correctly identified the picture as a trouser.
Remember, however, that we had an overall accuracy level on the test
data of only 87 percent.

Testing on external pictures

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Next, we test the program using one of our own pictures, taken with an
iPhone. See Figure 3-4.

FIGURE 3-4: Unclassified dress hanging on a wall.

Using Preview on a Mac, we converted the picture's resolution from
3024x3024 pixels to 28x28 pixels, as shown in Figure 3-5. Although
28x28 pixels does not result in a clear picture, the photo in Figure 3-5 is
clearer than the ones in Figure 3-1 from the Fashion-MNIST database.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-5: The dress at 28x28 pixels.

Most of the following code arranges the data from the original JPG
picture to fit the picture format required by TensorFlow. You should be
able to use this code to easily add your own pictures for more
experiments:

# read test dress image

imageName = "Dress28x28.JPG"

 

testImg = Image.open(imageName)

testImg.load()

data = np.asarray( testImg, dtype="float" )

 

 

data = tf.image.rgb_to_grayscale(data)

data = data/255.0

 

 

data = tf.transpose(data, perm=[2,0,1])

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

singlePrediction = model.predict(data,steps=1)

print ("Prediction Output")

print(singlePrediction)

print()

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

 

print ("Our Network has concluded that the file '"

        +imageName+"' is a "+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

The results, round 1
The results did not make us happy, as you will see shortly. We put the
Dress28x28.JPG file in the same directory as our program and ran a
five-epoch training run. Here are the results:

Prediction Output

[[1.2717753e-06 1.3373902e-08 1.0487850e-06 3.3525557e-11 8.8031484e-09

  7.1847245e-10 1.1177938e-04 8.8322977e-12 9.9988592e-01 3.2957085e-12]]

 

Our Network has concluded that the file 'Dress28x28.JPG' is a Bag

99% Confidence Level

Our neural network machine-learning program, after classifying 60,000
pictures and 6,000 dress pictures, concluded at a 99 percent confidence
level … wait for it … that the Dress28x28.JPG photo is a bag. We don't
usually laugh at software results but did when we read this one.

So we increased the training epochs to 50 and reran the program. Here
are the results from that run:

Prediction Output

[[3.4407502e-33 0.0000000e+00 2.5598763e-33 0.0000000e+00 0.0000000e+00

0.0000000e+00 2.9322060e-17 0.0000000e+00 1.0000000e+00 1.5202169e-39]]

Our Network has concluded that the file 'Dress28x28.JPG' is a Bag

100% Confidence Level

The dress is still a bag, but now our program is 100 percent confident
that the dress is a bag. Hmm. This illustrates one of the problems with
machine learning. Being 100 percent certain that a picture of a dress is a
picture of a bag is still 100 percent wrong.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



What is the real problem here? The neural network configuration is
probably not good enough to distinguish a dress from a bag. Additional
training epochs didn’t seem to improve the accuracy, so the next thing to
try is to increase the number of neurons in our hidden level.

We changed the model layers in our program to use a four-level
convolutional-layer model. We love how we can dramatically change the
neural network when using Keras and TensorFlow.

A convolutional neural network (CNN) works by scanning images and
analyzing the pixels in the image chunk by chunk: for example, with a
5x5 pixel window that moves by a stride length of two pixels each time
until it spans the entire message. It’s like looking at an image using a
microscope; you see only a small part of the picture at any one time, but
after moving back and forth you eventually see the entire picture. Using
a CNN network on the Raspberry Pi increased the single epoch time
from 10 seconds to 1.5 hours, a decrease in performance of 540 times.
CNNs use a great deal of computing power.

What other things could you try to improve the accuracy of this
machine-learning program? You could use data augmentation
(increasing the training samples by rotating, shifting, and zooming the
pictures) and a variety of other techniques beyond the scope of this
introduction to machine learning.

The CNN model code
The following code has the same overall structure as the last program.
The only significant change is the addition of the new layers for the
CNN network:

#import libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

 

# Import Fashion MNIST

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



fashion_mnist = input_data.read_data_sets('input/data',

        one_hot=True)

 

fashion_mnist = tf.keras.datasets.fashion_mnist

 

(train_images, train_labels), (test_images, test_labels) \

        = fashion_mnist.load_data()

 

 

 

 

class_names = ['T-shirt/top', 'Trouser',

        'Pullover', 'Dress', 'Coat',

        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

 

 

train_images = train_images / 255.0

 

test_images = test_images / 255.0

 

 

# Prepare the training images

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)

 

# Prepare the test images

test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

 

 

model = tf.keras.Sequential()

 

input_shape = (28, 28, 1)

model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', 

input_shape=input_shape))

model.add(tf.keras.layers.BatchNormalization())

 

model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu'))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

model.add(tf.keras.layers.Dropout(0.25))

 

model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dropout(0.25))

 

model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

model.add(tf.keras.layers.Dropout(0.25))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

model.add(tf.keras.layers.Flatten())

 

model.add(tf.keras.layers.Dense(512, activation='relu'))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dropout(0.5))

 

model.add(tf.keras.layers.Dense(128, activation='relu'))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dropout(0.5))

 

model.add(tf.keras.layers.Dense(10, activation='softmax'))

 

model.compile(optimizer=tf.train.AdamOptimizer(),

                      loss='sparse_categorical_crossentropy',

                                    metrics=['accuracy'])

 

 

model.fit(train_images, train_labels, epochs=5)

 

# test with 10,000 images

test_loss, test_acc = model.evaluate(test_images, test_labels)

 

print('10,000 image Test accuracy:', test_acc)

 

#run test image from Fashion_MNIST data

 

img = test_images[15]

img = (np.expand_dims(img,0))

singlePrediction = model.predict(img,steps=1)

print ("Prediction Output")

print(singlePrediction)

print()

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

 

print ("Our Network has concluded that the image number '15' is a "

        +class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

The results, round 2
The run on the Raspberry Pi 3B+ took about seven hours to complete.
The results follow:

10,000 image Test accuracy: 0.8601

Prediction Output

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



[[5.9128129e-06 9.9997270e-01 1.5681641e-06 8.1393973e-06 1.5611777e-06

  7.0504888e-07 5.5174642e-06 2.2484977e-07 3.0045830e-06 5.6888598e-07]]

 

Our Network has concluded that the image number '15' is a Trouser

The key number here is the 10,000-image test accuracy, which at 86
percent is lower than the accuracy of our previous, simpler machine-
learning neural network (87 percent). Why did this happen? The lower
accuracy is probably related to overfitting the training data, in which the
trained network recognizes the training set better but loses the capability
to recognize new test data. This type of issue highlights the fact that
using machine-learning programs is an art and a science.

 Choosing which machine-learning neural network to use to work
with your data is one of the major decisions you will make in your
design. However, understanding activation functions, dropout
management, and loss functions will also deeply affect the
performance of your machine-learning program. Optimizing all
these parameters at once is a difficult task that requires research and
experience. Some of this is really rocket science!

Visualizing with MatPlotLib
Now that we've moved to a GUI-based development environment, we're
going to run our base code again and analyze the run by using
MatPlotLib. We're using a Raspberry Pi for these experiments, but you
can use a Mac, a PC, or another Linux system. If you can install
TensorFlow, MatPlotLib, and Python on your computer system, you can
do these experiments.

To install MatPlotLib on your Raspberry Pi, type pip3 install
matplotlib.

We add the history variable to the output of model.fit to collect data.
Next, we add MatPlotLib commands to graph the loss and the accuracy

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



from our epochs and then to add figure displays for our two individual
image tests.

Using nano (or your favorite text editor), open the
FMTensorFlowPlot.py file, and enter the following code:

#import libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

 

# Import Fashion MNIST

fashion_mnist = input_data.read_data_sets('input/data', one_hot=True)

 

fashion_mnist = tf.keras.datasets.fashion_mnist

 

(train_images, train_labels), (test_images, test_labels) = 

\fashion_mnist.load_data()

 

 

 

 

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

                       'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

 

 

train_images = train_images / 255.0

 

test_images = test_images / 255.0

 

 

model = tf.keras.Sequential()

 

 

model.add(tf.keras.layers.Flatten(input_shape=(28,28)))

model.add(tf.keras.layers.Dense(128, activation='relu' ))

model.add(tf.keras.layers.Dense(10, activation='softmax' ))

 

 

model.compile(optimizer=tf.train.AdamOptimizer(),

                      loss='sparse_categorical_crossentropy',

                                    metrics=['accuracy'])

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

 

history = model.fit(train_images, train_labels, epochs=2)

 

# Get training and test loss histories

training_loss = history.history['loss']

accuracy = history.history['acc']

# Create count of the number of epochs

epoch_count = range(1, len(training_loss) + 1)

 

# Visualize loss history

plt.figure(0)

plt.plot(epoch_count, training_loss, 'r--')

plt.plot(epoch_count, accuracy, 'b--')

plt.legend(['Training Loss', 'Accuracy'])

plt.xlabel('Epoch')

plt.ylabel('History')

plt.show(block=False);

plt.pause(0.001)

 

test_loss, test_acc = model.evaluate(test_images, test_labels)

 

#run test image from Fashion_MNIST data

 

 

 

img = test_images[15]

 

plt.figure(1)

plt.imshow(img)

plt.show(block=False)

plt.pause(0.001)

 

img = (np.expand_dims(img,0))

singlePrediction = model.predict(img,steps=1)

 

print ("Prediction Output")

 

print(singlePrediction)

 

print()

 

NumberElement = singlePrediction.argmax()

 

Element = np.amax(singlePrediction)

 

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



print ("Our Network has concluded that the image number '15' is a "

 

                +class_names[NumberElement])

 

print (str(int(Element*100)) + "% Confidence Level")

 

 

print('Test accuracy:', test_acc)

 

# read test dress image

imageName = "Dress28x28.JPG"

 

testImg = Image.open(imageName)

 

plt.figure(2)

plt.imshow(testImg)

plt.show(block=False)

plt.pause(0.001)

testImg.load()

data = np.asarray( testImg, dtype="float" )

 

 

data = tf.image.rgb_to_grayscale(data)

data = data/255.0

 

 

data = tf.transpose(data, perm=[2,0,1])

 

 

 

singlePrediction = model.predict(data,steps=1)

 

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

print(NumberElement)

print(Element)

print(singlePrediction)

 

print ("Our Network has concluded that the file '"+imageName+"' is a 

"+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

 

plt.show()

The results of running the program is shown in Figure 3-6. The window
labeled Figure 0 shows the accuracy data for each of the five epochs of
the machine-learning training. You can see the accuracy slowly increase

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



with each epoch. The window labeled Figure 1 shows the test picture for
the first recognition test (the program found a pair of trousers, which is
correct). Finally, the window labeled Figure 2 shows the dress picture,
which is still incorrectly identified as a bag. Harumph.

FIGURE 3-6: Our Raspberry Pi GUI with MatPlotLib visualization.

Learning More Machine Learning
You've built and experimented with machine learning and neural
networks, and seen how useful and powerful Python can be. The next
step? We recommend you check out Machine Learning For Dummies by
John Paul Mueller and Luca Massaron and Deep Learning with Python
by François Chollet (Manning Publications). And for a great beginner's
overview of the AI field, read Artificial Intelligence For Dummies by
John Paul Mueller and Luca Massaron.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Next, you explore using Python with some other AI applications.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Exploring AI

IN THIS CHAPTER
 Seeing the limitations of AI on a Raspberry Pi
 Using the cloud to do AI
 Using AI on graphics cards

After reading the previous three chapters, you've learned quite a bit
about using some of the basics of artificial intelligence, specifically
neural networks and machine learning. AI has a lot more to it than these
two topics, though. We could look at advanced searching (not Google
searching but rather looking at big problem spaces and trying to figure
out solutions to the problem using AI). We could also look at the
problem of autonomous robotics (which we touch upon in Book 7), but
that topic is complicated.

Instead, in this chapter, we talk about other ways of doing AI software
beyond the Raspberry Pi. Remember how it took us seven hours to run
five epochs of training on our large neural network? Sounds like we
could use something more powerful to accomplish more training in less
time. That’s what this chapter is about. To download the code for this
chapter, go to www.dummies.com/go/pythonaiofd2e.

Limitations of the Raspberry Pi and
AI

The Raspberry Pi is an inexpensive, full-blown computing device. The
Raspberry Pi 3B+, which we use throughout this book, has the following
major specifications:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


CPU: Broadcom quad-core 64-bit processor @ 1.4GHz
GPU: Broadcom Videocore-IV
RAM: 1GB SDRAM
Networking: Gigabit Ethernet, 802.11b/g/n/ac Wi-Fi
Storage: SD card

These specs stack up very well for a $35 computer but not so much for a
dedicated AI computer. The Raspberry Pi doesn't have enough RAM or a
sophisticated GPU (graphics processing unit). Figure 4-1 shows the
Raspberry Pi 3B+ processing chip. The new Raspberry Pi 4B with 8GB
of RAM costs about $70, has more than eight times the RAM, and will
generally run about two times faster in most applications. The GPU in
the Raspberry Pi (the Videocore-IV) has four GPUs and could be used to
accelerate machine-learning applications.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-1: The Raspberry Pi processing chip containing the Videocore-IV.

Two mitigating circumstances keep the Raspberry Pi in the running
when it comes to experimenting with AI. One, you can buy an AI

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Accelerator, which can plug into the USB ports of the Raspberry Pi.
Two, you can use the Raspberry Pi to control processors and AI
hardware located in the cloud.

THE BROADCOM VIDEOCORE-IV ON THE
RASPBERRY PI 3B+

The Videocore-IV is a low-power mobile graphics processor. It's a two-dimensional DSP
(digital signal processor) that is set up basically as a four-GPU core unit. These GPU
core units are called slices and can be roughly compared to GPU computer units, such
as those used by AMD and Nvidia (which can have 256, 512, or more individual GPU
units, far outclassing the Videocore 4 units) to power their GPU cards, which are
popular with AI researchers and hobbyists.

The Videocore-IV processor is designed to be used in video encoding and decoding
applications, not so much for AI use. However, some researchers have made use of the
four slices to accelerate neural network processing on the Raspberry Pi to achieve up
to about three times the performance of the four-core main processor used alone.

One of the main barriers to using the Videocore on the Raspberry Pi for AI applications
is that the specifications, development tools, and product details have been available
only under NDAs (non-disclosure agreements), which do not go along with open-source
development. However, you can now get full documentation and the complete source
code for the Raspberry Pi 3B+ graphics stack under a nonrestrictive BSD license, which
should provide a path forward.

 Remember from Chapter 3 of this minibook that the bulk of
computer time in building a machine-learning AI system was for
training and, when that training was done, it didn't take a lot of
processing to characterize an unclassified picture. Therefore, you
could train on one big machine and then deploy on a simpler
computer such as the Raspberry Pi in the actual product. This
approach doesn’t work all the time (especially if you want the
program to keep learning as it runs, such as in reinforcement
learning) but when it does work, it allows you to deploy
sophisticated machine-learning programs on much simpler and less
expensive hardware.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Performing AI analysis or training on small computers connected to a
network is called edge computing or computing on the edge of the
network.

Adding Hardware AI to the
Raspberry Pi

A number of companies have started to build specialized AI compute
sticks (USB dongles that have processors in the stick rather than just
memory), many of which can be used on the Raspberry Pi. Typically,
Python libraries or wrappers, and often TensorFlow Python libraries,
support using these sticks. Two of the most interesting sticks follow:

The Intel Neural Compute Stick (NCS): The NCS stick plugs into
the USB port of the Raspberry Pi or other computer and provides
hardware support for deep learning-based analysis (refer to Chapters
1–3 in this minibook).
For example, from your small Raspberry Pi computer system, you
can use Amazon Cloud to perform image analysis, processing, and
classification, thus moving a computationally expensive task from
your Raspberry Pi to the cloud. However, performing the analysis
with your trained deep-learning neural network by using a NCS stick
can possibly allow you to disconnect your device from the Internet
entirely. The NCS stick runs around 60 times faster than doing image
analysis on the Raspberry Pi and costs less than $100. Figure 4-2
shows the Intel Neural Compute Stick 2.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-2: The Intel Neural Compute Stick 2.

You can do facial recognition, text analysis, monitoring, and
maintenance using this NCS stick. Pretty cool!

 Note that the NCS stick performs analysis and conducts
inferences on data, but it is not used for training models! You still
need to build and train the models. It has a good interface with Keras
and TensorFlow, so training is possible in a reasonable fashion.
Think of the NCS stick as an accelerator for use by your final project
when the training is complete.
The Google Edge TPU accelerator: The Google Edge TPU (tensor
processing unit) has a USB type-C socket that you can plug into a
Linux-based system to provide accelerated machine-learning
analysis and inferences. (That’s why they call the TPU an
accelerator.) Does the word tensor sound familiar? Tensors are
matrices, as in our neural network examples in Chapters 2 and 3 of
this minibook. Figure 4-3 shows the Google Edge TPU accelerator.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Much like the Intel NCS stick, this device is all about
executing trained machine-learning models. You still train the
machine-learning networks using other techniques, and then execute
the model on the stick.

FIGURE 4-3: The Google Edge TPU accelerator.

In the next few years, this type of specialized hardware for running
machine-learning models will explode. You'll see multiple different
architectures and solutions from Google, Intel, Nvidia, AMD,
Qualcomm, and a number of other smaller companies around the world.
Everyone is starting to climb on the AI accelerator bandwagon.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



AI in the Cloud
Those in the tech industry love to use buzzwords such as the cloud.
Often, the use of such language results in arbitrary and nebulous terms
that leave consumers (or even sophisticated technical people) unsure
what they mean. When your data or programs are running in the cloud,
they're just running on computers in a data center.

Some people define the cloud as software or services that run on the
Internet rather than on your local machine. This is correct to a degree,
but nothing really runs on the Internet; it runs on machines connected to
the Internet. Understanding that in-the-cloud software runs on servers
and is not just “out there” quickly demystifies the cloud and its
functions.

If you have two computers networked together and use one of the
computers for a data server, you have your own cloud. Companies such
as Western Digital and Dell help consumers build their own cloud-based
computing systems. Bill Wachsmuth, a manager at Western Digital,
states, “Cloud computing is a huge growth market for data storage. We
can take existing drives, modify the control software, and repackage the
same hardware to aid cloud computing and storage.”

By using the cloud, you can use services and storage unavailable to you
on your local network and (in one of the most important game changers
of cloud computing) you can ramp your usage up and down on a
dynamic basis depending on your computing needs.

Using the cloud requires Internet access, but not necessarily 100 percent
of the time. (You can fire off a cloud process and then come back to it
later.) The requirement to be connected to the Internet continuously
limits the cloud in applications such as self-driving cars, which aren’t
guaranteed to have good Internet access all the time. This “fire and
forget” mode is useful for IoT (Internet of Things) devices for which you
want to conserve power (such as battery-powered devices).

So, how do you use the cloud? The answer depends on the service and
vendor, but in machine-learning applications, the most common method

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



is to set up Python on a computer that calls cloud-based functions and
applications. All cloud vendors provide examples.

Great consumer examples of cloud usage are the Amazon Echo and
Alexa. They listen to you, compress the speech data, send it to the
Amazon AWS cloud, translate and interpret your data, and then send it
back with a verbal response or a command (to, for example, turn on your
lights). All that processing occurs in the cloud. When your Internet
connection goes down, these devices can do little except say “I am
having problems connecting to the Internet.”

A number of cloud providers for storage and services exist. The top four
cloud providers for AI at the time of this writing follow:

Google Cloud
Amazon Web Services
IBM Cloud
Microsoft Azure

Google Cloud
Google Cloud is probably the most AI-focused cloud provider. You can
gain access to TPUs (tensor processing units) in the cloud, which, like
the Google TPU stick described previously, can accelerate your AI
applications. Much of Google Cloud’s functionality reflects the core skill
set of the company — search.

For example, the Cloud Vision API can detect objects, logos, and
landmarks in images. Some excellent students at the University of Idaho
are building a Smart City application called ParkMyRide, which uses a
Raspberry Pi–based solar-powered camera to take pictures of the street
and the Google Cloud Vision API to determine street parking
availability. The software sends a picture of the street to Google and gets
back the number of cars found and where they are in the picture. They
then supply this information to a smartphone app that displays the
information graphically. Pretty neat.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Other featured services of Google Cloud are video content search
applications and speech-to-text/text-to-speech packages (think Google
Home —similar to Amazon Alexa). Like Amazon and Microsoft,
Google is using its own AI-powered applications to create services for
customers to use.

Amazon Web Services
Amazon Web Services (AWS) is focused on supplying businesses with
their consumer AI expertise. Many of these cloud services are built on
consumer product versions. So, for example, as Alexa improves, the
cloud services improve. In a sense, the millions of Alexa consumers are
training Alexa to be a better product.

Amazon has not only text and natural language offerings but also
machine-learning visualization and creation tools, vision recognition,
and analysis.

IBM Cloud
IBM Cloud has received a bad rap for being hard to use. There were so
many options on so many different platforms that it was almost
impossible to figure out where to start. In the past couple of years,
however, IBM Cloud has improved. IBM merged its three big divisions
(IBM BlueMix cloud services, SoftLayer data services, and the Watson
AI group) under the Watson brand. More than 170 services are available,
so initially setting up applications and programs is still hard, but there is
much better control and consistency over the process.

Watson Studio, their machine-learning environment, is used to build and
train AI models in one integrated environment. IBM also provides huge
searchable knowledge catalogs and has one of the better IoT
management platforms.

One of the cool services in Watson Studio is Watson Personality
Insights, which predicts personality characteristics, needs, and values
through written text. What would Watson Personality make of the
authors of this book? We should run the text of this book through
Watson and see the diagnosis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Microsoft Azure
Microsoft Azure has an emphasis on developers. Similar to Amazon and
Google, Microsoft's AI applications are built on consumer products they
have produced. They break down their AI offerings into three categories:

AI services
AI tools and frameworks
AI infrastructures

Azure also has support for specialized FPGA (field-programmable gate
arrays — think hardware that can be changed by programming on the
fly) and has built out the infrastructure to support a wide variety of
accelerators. Microsoft is one of the largest customers of Intel Neural
Network chips.

Microsoft Azure has products for machine learning, IoT toolkits, and
management services, and a full and rich set of data services, including
databases, support for GPUs and custom silicon AI infrastructure, and a
container service that can turn your inside applications into cloud apps.

Microsoft Azure is the one to watch for spectacular innovations.

AI on a Graphics Card
Graphics cards, such as the Nvidia graphics chip in Figure 4-4, have
been an integral part of the PC experience for decades. People often hunt
for the latest and greatest graphics card to make their PCs better gaming
machines. Although CPU speed is important, the quality and architecture
of the graphics card makes a bigger difference. Why? Computing high-
resolution graphics is computationally expensive, and the way to solve
the computational speed problem is to build graphics cards out of
computers designed to do graphics. These high-quality graphics cards
can evaluate machine-learning neural networks very efficiently. Thus
was born the GPU (graphics processing unit), a specialized computer
core designed to work with graphics.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-4: Nvidia 256 Core GPU chip.

Nvidia and others started building graphics cards that contained multiple
GPUs, which dramatically improved video resolution and frame rates in
games. One thing to remember is that graphics algorithms are
constructed using data structures called matrices (or tensors) that are
processed in pipelines.

Wait. Tensors? Matrices? This sounds suspiciously like the kind of data
structures we use in AI and machine learning. The graphic-processing
similarities between machine-learning and deep-learning algorithms
have made GPUs useful and effective because they can quickly solve
matrix equations, the type of calculation used to train neural networks.

Regardless of the type of neural network used, all programming
techniques and modules rely on performing complex statistical
operations. During training (learning) operations, a multitude of images
or data points are fed to the network and then trained with the correct
classification or correct answer. You have to correlate millions of tensors
(matrices) and tensor elements to build a trained network that will get
the right result.

To speed up the training, these operations can be done in parallel, which
turns out to be a good use of the many parallel GPUs on a graphics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



board.

An individual GPU core is much simpler than a CPU core because the
GPU core is designed for a specific purpose rather than a general one.
This simplicity makes it cheaper to build multicore GPU chips than to
build multicore CPU chips.

The proliferation of graphics cards with many GPU cores makes these
graphics cards perfect for machine-learning applications. The
combination of a powerful multicore CPU and many GPUs can
dramatically accelerate machine-learning programs. TensorFlow in
particular has versions of the software designed to work with GPU
boards, removing a lot of the complication of using these boards.

To put this processing power in perspective, the Raspberry Pi 3B+ has 4
processor cores and, in some sense, 4 GPU cores. One of the latest GPU
boards from Nvidia has 3,584 cores. By using a large core count GPU
board, you can do a lot of fast training and evaluation of machine-
learning networks, but you won’t speed up operations such as database
access or general computational tasks. Executing these tasks requires
more complex CPU cores.

The GPU-based boards are not the last step in the evolution of
specialized computers and hardware to support AI applications. We are
seeing even more specialized chips. At last count, more than 50
companies are working on chips that accelerate AI functions.

When we discussed the Microsoft Azure cloud offering, we mentioned
that Microsoft has built out infrastructure to support AI acceleration
hardware in the cloud. This development is one of the big reasons to
watch what Microsoft is doing.

The future lies in more and more specialized hardware, especially as this
hardware gets easier and easier to deal with from the user software side.

Where to Go for More AI Fun in
Python

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If you're interested in furthering your knowledge and abilities in machine
learning and AI, check out the following sources for project inspiration:

“Is Santa Claus Real?,” Varun Vohra,
https://towardsdatascience.com/is-santa-claus-real-

9b7b9839776c

“Keras and deep learning on the Raspberry Pi,” Adrian Rosebrock,
www.pyimagesearch.com/2017/12/18/keras-deep-learning-

raspberry-pi/

“MouseAir – Using AI on the Raspberry Pi to Entertain your Cat,”
John Shovic, www.switchdoc.com/2019/11/mouseair-raspberry-
pi-cat-toy/

“How to easily Detect Objects with Deep Learning on Raspberry
Pi,” Sarthak Jain, https://medium.com/nanonets/how-to-easily-
detect-objects-with-deep-learning-on-raspberrypi-

225f29635c74

“Building a Cat Detector using Convolutional Neural Network,”
Venelin Valkov, https://medium.com/@curiousily/tensorflow-
for-hackers-part-iii-convolutional-neural-networks-

c077618e590b

“Real time Image Classifier on Raspberry Pi Using Inception
Framework,” Bapi Reddy, https://medium.com/@bapireddy/real-
time-image-classifier-on-raspberry-pi-using-inception-

framework-faccfa150909

In the Dummies tradition, you'll accelerate your learning in these
important technologies by not only reading but also building programs
and modifying other people's programs.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://towardsdatascience.com/is-santa-claus-real-9b7b9839776c
https://www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/
https://www.switchdoc.com/2019/11/mouseair-raspberry-pi-cat-toy/
https://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-225f29635c74
https://medium.com/@curiousily/tensorflow-for-hackers-part-iii-convolutional-neural-networks-c077618e590b
https://medium.com/@bapireddy/real-time-image-classifier-on-raspberry-pi-using-inception-framework-faccfa150909


Book 5
Doing Data Science

Contents at a Glance
Chapter 1: Understanding the Five Areas of Data Science

Working with Big, Big Data

Cooking with Gas: The Five-Step Process of Data Science

Chapter 2: Exploring Big Data
Introducing NumPy, Pandas, and MatPlotLib

Doing Your First Data Science Project

Chapter 3: Using Big Data from Google Cloud
What Is Big Data?

Understanding Google Cloud and BigQuery

Reading the Medicare Big Data

Looking for the Most Polluted City in the World on an Hourly Basis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Understanding the Five Areas

of Data Science
IN THIS CHAPTER

 Learning about data science
 Understanding big data
 Discovering the five steps of data science

Data science affects our lives in more ways than you may think. When
you use Google or Bing or DuckDuckGo, you're using a sophisticated
application of data science. The suggestions for other search terms that
come up when you're typing? They come from data science. Medical
diagnoses and interpretations of images and symptoms are examples of
data science. Doctors rely on data science interpretations more and more
these days.

As with most of the topics in this book, data science looks intimidating
to the uninitiated. Inferences, data graphs, and statistics, oh my!
However, just as in previous chapters on artificial intelligence, if you dig
in and look at some examples, you can get a handle on what data science
is and isn’t.

In this chapter, we introduce you to the use of Python in data science and
talk about just enough theory to get you started. If nothing else, we want
to leave you with an understanding of the process of data science and
give you a better idea of what's behind some of the results of big data
analysis that are touted in the news. For example, one study says coffee
is bad for you but another says the opposite — and sometimes the
studies are based on the same data! The hardest part of data science and
statistics is determining what the results mean, beyond simple
interpretations — and are worthy of their own book. At the end of our

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data science journey, you'll know more about the processes involved in
analyzing results.

There's a mystery to data science and big data, but with a little
knowledge and a little Python, we can penetrate the veil and do some
real data analysis.

Python and its myriad tools and libraries can make data science much
more accessible to non-computer scientists. One thing to remember is
that most scientists (including data scientists) are not necessarily experts
in computer science. They like to use tools that simplify coding and
enable them to focus on getting answers and performing data analysis.

Working with Big, Big Data
The media likes to throw around the notion of “big data” and how
people can get insights into consumer (and your) behavior from it. Big
data refers to complex datasets that are too large for conventional data-
processing software (databases, spreadsheets, and traditional statistics
packages such as SPSS Statistics) to handle. The industry talks about big
data using three concepts, called the “three v’s”: volume, variety, and
velocity.

Volume
Volume refers to the size of the dataset. The volume can be really, really
big — almost hard-to-believe big. For example, Facebook has more
users than the population of China. There are over 250 billion images on
Facebook and 2.5 trillion posts. That's a lot of data.

And what about the upcoming world of IoT (Internet of Things)?
Gartner, one of the world’s leading analysis companies, estimates 22
billion devices by 2022. That's 22 billion devices producing thousands of
pieces of data. Imagine that you're sampling the temperature in your
kitchen once a minute for a year — that's over ½ million data points.
Add the humidity to the measurements and now you have 1 million data
points. Multiply that by five rooms and a garage, all with temperature
and humidity measurements, and your house is producing 6 million

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



pieces of data from just one IoT device per room. The amount of data
generated gets crazy quickly.

And look at your smartphone. Imagine how many pieces of data it
produces in a day. Location, usage, power levels, and cellphone
connectivity constantly spews out of your phone into databases and your
apps and application dashboards such as Blynk.

Data science is how we make use of all this data.

Variety
Photos and images are different data types from temperature and
humidity or location information. In a sense, the information is
concentrated in, say, temperature and more smeared out in images.
Photos are sophisticated data structures and are hard to interpret and
harder still for machines to classify correctly. As you will see in Book 7,
a computer has a shot at distinguishing a cat from a dog, but try to throw
a baby Yoda into the picture and the computer doesn’t have the context
to know what the baby Yoda is. The computer has only the context (or,
in other words, the training) to tell apart a cat or a dog. Computer vision
and interpretation are tough problems.

 Let’s talk about voice for a minute. Amazon’s Alexa is very
good at translating voice to text but not as good at assigning
meaning to the text. One reason is the lack of context
(environmental factors such as social cues, tone, and body
language), but another reason is the many ways that people ask for
things, make comments, and so on. Alexa (and Amazon) is keeping
track of all the queries and then doing data science on them to find
the types of things that people are asking for and the variety of
ways they ask for them. All that information gathering could be for
nefarious reasons, but it could also be to build a system that better
services the consumer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Data science has a much better chance of identifying patterns when the
voice has been translated to text because text is easier to search and
analyze than audio. However, in this translation we lose a lot of
information about tone of voice, emphasis, and so on.

Velocity
Velocity refers to how fast the data is changing and how fast it is being
added to the data piles. Facebook users upload about 1 billion pictures a
day, so in the next couple of years Facebook will have over 1 trillion
images. Facebook is a high-velocity dataset. A low-velocity dataset (not
changing at all) might be the set of temperature and humidity readings
from your house in the last five years. Needless to say, high-velocity
datasets require different techniques than low-velocity datasets.

Managing volume, variety, and velocity
The management of volume, variety, and velocity is a complex topic.
Data scientists have developed many methods for processing data. The
three V’s describe the dataset and give you an idea of the data
parameters. The process of gaining insights in data is called data
analytics. In the next chapters, we focus on gaining knowledge about
analytics and learning how to use Python to ask data analytics questions.
After doing data science for a few years, you'll be vvvery good at
managing this process.

Cooking with Gas: The Five-Step
Process of Data Science

We generally can break down the process of doing science on data
(especially big data) into five steps:

1. Capture the data.
2. Process the data.
3. Analyze the data.
4. Communicate the results.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



5. Maintain the data.

We finish this introductory chapter by talking about each of these steps
so you can get a handle on the flow of the data science process and a feel
for the complexity of the tasks.

Capturing the data
To have something to do analysis on, you must capture data. In any real-
world situation, you probably have a number of potential sources of
data, such as company records, public databases, or your own gathered
data. Inventory them and decide what to include in your project. But
before you can know what to include, you have to carefully define your
business questions and goals. With well-defined goals, it's easier to
know if you have achieved them.

If you can, combine your data sources so it's easy to get to the
information you need to find insights and build all those nifty reports
you just can’t wait to show off to management.

Processing the data
Processing the data is the part of data science that should be easy but
almost never is. Some data scientists spend months massaging and
manipulating their data so they can process and trust it. You need to
identify anomalies and outliers, eliminate duplicates, remove missing
entries, and determine what data is inconsistent. You need to clean and
process your data carefully so that you don't remove data important to
your upcoming analysis work or introduce bias that will destroy your
ability down the line to make good inferences or get good answers.

 One more data-processing issue to worry about: According to
Marketing Week in 2015, 60 percent of consumers provide
intentionally incorrect information when submitting data online.
(We humbly admit to doing this all the time to online marketing
forms and even to political pollsters, especially when we sense a
political agenda in the questions. Bad boys we are.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Even good data scientists have been accused of cherry-picking data
while cleaning it to support a hypothesis. You have to be careful in
processing your data to maintain the integrity and validity of your
analysis. Expect to spend a lot of time completing this step.

Understand that it takes only a small amount of disproportionate
information to dramatically devalue a database. More food for thought.

Analyzing the data
By the time you've expended all that energy to get to the point of looking
at the data to see what you can find, you would think that asking the
questions would be relatively simple. It's not. Analyzing big datasets for
insights and inferences or asking complex questions requires the most
human intuition in all of data science. Some questions, such as “What is
the average money spent on cereal in 2020?” can be easily defined and
calculated, even on huge amounts of data. But useful questions, such as,
“How can I get more people to buy Sugar Frosted Flakes?” is the
$64,000 question.

A question such as that has layers and layers of complexity. You want a
baseline of how much Sugar Frosted Flakes your customers are currently
buying. That answer should be easy to get. Then you have to define what
you mean by more people. Do you mean more people or more revenue?
Change the price to $0.01 per box, and you will have lots more people
buying Sugar Frosted Flakes. What you really want is more revenue or,
specifically, more margin (margin = price – cost). But the difficult part
of the question is how do you motivate people to buy more Sugar
Frosted Flakes? And is the answer in the data you have collected?

 The hard part of analysis is making sure we're asking the right
question in the right way of the right kind of data.

Analyzing the data requires skill and experience in statistical techniques
such as linear and logistic regressions and finding correlations between
different data types by using a variety of probability algorithms and
formulas such Naïve Bayes (cool name!). Although a full discussion of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



these techniques is beyond the scope of this book, we go through some
examples later in this minibook.

DATA SCIENCE VERSUS DATA ANALYTICS
Currently, data science refers to the process of working out insights from large datasets
of unstructured data. Data science uses predicative analytics, statistics, and machine
learning to wade through large amounts of data. Data analytics focuses on using and
creating statistical analysis for existing sets of data to achieve insights on that data.

With these vague descriptions and the fact that more techniques are being developed
to do data analysis on big data (not surprisingly named big data analytics), you can see
how the two areas are moving closer and closer. At the risk of ridicule from our fellow
academics, we would definitely call steps 3–5 of data analytics — analyze the data,
communicate the results, and maintain the data — a subset of data science data.

Communicating the results
After you've crunched and mangled your data into the format you need
and then analyzed the data to answer your questions, you need to present
the results to management or the customer. Most people visualize and
understand information better and faster when they see it in a graphical
format rather than just in text.

Data science people use two major Python packages to communicate
results: the R language and MatPlotLib. We use MatPlotLib to display
our big data graphics and if you've read Book 4, you've experienced
MatPlotLib firsthand.

Maintaining the data
Maintaining the data is the step in data science that many people ignore.
After they've asked their first round of questions and received their first
round of answers, many professionals basically move on to the next
project. However, there's a reasonable chance that at some point, perhaps
much later, they will have to ask more questions about the same data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Be sure to archive and document the following information so
you can restart a project quickly or, even more likely, reuse parts of
the project for a new one:

Data and sources
Models you used to modify the data (including any exception data
and “data throw-out criteria”)
Queries and results

In many business, especially in the medical and financial service areas,
there are legal reasons for preserving data and the means used to get to
the conclusions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Exploring Big Data

IN THIS CHAPTER
 Using NumPy for data science
 Using Pandas for fast data analysis
 Learning from your first data science project
 Visualizing with MatPlotLib in Python

In this chapter, you discover some of the tools and processes that data
scientists use to format, process, and query data.

A number of Python-based tools and libraries (such as R) are available,
but we decided to use NumPy for three reasons. First, it is one of the two
most popular tools to use for data science in Python. Second, many AI-
oriented projects use NumPy (such as the one in the last chapter). And
third, the highly useful Python data science package, Pandas, is built on
NumPy.

Pandas is turning out to be an important package in data science. It
encapsulates data in a more abstract way, making it easier to manipulate,
document, and understand the transformations you make in the base
datasets.

MatPlotLib is a good Python-centric package for visualizing the results
of big data analysis but requires a steep learning curve. However, this
has been ameliorated to some degree by new add-on Python packages,
such as seaborn and plotly.

You'll use these three packages as your introduction to data science. To
download the code for this chapter, go to
www.dummies.com/go/pythonaiofd2e.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


Introducing NumPy, Pandas, and
MatPlotLib

Anytime you look at the scientific computing and data science
communities, three key Python packages keep coming up: NumPy,
Pandas, and MatPlotLib. We discuss all three in this section.

NumPy
NumPy adds tools for big-data manipulation to Python, such as large-
array manipulation functions and high-level mathematical functions.
NumPy is best at handling basic numerical computation such as means
and averages. It also excels at the creation and manipulation of
multidimensional arrays known as tensors or matrices. In Book 4, you
use NumPy extensively in manipulating data and tensors in neural
networks and machine learning. It's an exceptional tool for artificial
intelligence applications.

 You can find numerous good tutorials for using and installing
NumPy on the web. Following are some good step-by-step ones:

Python Numpy — Introduction to ndarray [Part 1]
(www.machinelearningplus.com/python/numpy-tutorial-part1-
array-python-examples/): A good introduction to matrices (also
known as tensors) and how they fit into NumPy
NumPy Tutorial (www.tutorialspoint.com/numpy): A nice
overview of NumPy, including where it comes from and how to use
it
NumPy Tutorial: Learn with Example (www.guru99.com/numpy-
tutorial.html): Less theory, but a bunch of great examples to fill in
the practical gaps after looking at the first two tutorials

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.machinelearningplus.com/python/numpy-tutorial-part1-array-python-examples/
https://www.tutorialspoint.com/numpy
https://www.guru99.com/numpy-tutorial.html


Here’s a simple example of a NumPy program. This program builds a
2x2 matrix, and then performs various matrix-oriented operations on the
maxtrix:

import numpy as np

 

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

 If you're installing NumPy on the Raspberry Pi, use this
command first:

sudo apt-get install python3-numpy

Pandas
Python is great for manipulating and preparing data, but not so great for
data analysis and modeling. Pandas fills this gap.

Pandas provides fast, flexible, and expressive data structures to make
working with relational or labeled data more intuitive. We think that it's
the fundamental building block for doing real-world data analysis in
Python. Pandas performs well with tabular types of data (such as SQL
tables or Excel spreadsheets) and is really good with time-series data
(such as temperature taken hourly). Pandas is yet is another example of
the power of using Python libraries to make your problem solving easier.

Remember our discussion on data massaging? Dealing with missing or
bad data? Data massaging is one of things that Pandas is designed for
and does well. It also allows for complex hierarchical data structures,
which can be accessed in an intuitive way using Pandas functions. You
can merge and join datasets as well as convert many types of data into
the ubiquitous Pandas datatype, the DataFrame.

Pandas is based on NumPy and shares the speed of that Python library,
achieving a large speed increase when compared to straight Python code,
especially code that loops thorough data.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Pandas DataFrames are a way to store data in rectangular grids
that can be easily examined. A DataFrame can contain other
DataFrames, a one-dimensional series of data, a NumPy tensor (an
array — here we go again with similarities to Book 4 on neural
networks and machine learning), and dictionaries for tensors and
matrices.

In addition to specifying data for your DataFrame, you can specify
indexes and column names, which makes the code more understandable
for data analysis and manipulation. You can access, delete, and rename
your DataFrame components as you bring in more structures and join
more related data into your DataFrame structure.

MatPlotLib
MatPlotLib is a library that adds data visualization functions to Python.
MatPlotLib complements the use of NumPy in data analysis and
scientific programs. It provides a Python object-oriented API
(application programming interface) for embedded plots inserted in
applications by using general-purpose GUI programs. MatPlotLib is also
available in a procedural version for MatLab called PyLab.

With MatPlotLib, you can make elaborate and professional-looking
graphs. You can even build live graphs that update while your
application is running. This feature can be handy in machine-learning
applications and data-analysis applications, where it's good to see the
system making progress toward some goal. With a real-time display, you
may also see when the results are good enough or when further training
is providing little benefit.

Doing Your First Data Science
Project

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Time for us to put NumPy and Pandas to work on a simple data science
project. We will be working with data from the Kaggle website
(www.kaggle.com). Kaggle, whose tag line is “Your Home for Data
Science,” is a Google-owned online community of data scientists and
users. Kaggle allows users to find datasets, download the data, and use
the data under very open licenses, in most cases. Kaggle also supports a
robust set of competitions for solving machine-learning problems, often
posted by companies that actually need the solution. Kaggle has good
discussion communities that are helpful for beginners
(www.kaggle.com/discussion).

Diamonds are a data scientist’s best friend
For this first problem, we chose the diamonds database because it has a
fairly simple structure and only about 54,000 elements — easy for our
Raspberry Pi computer to use. You can download it at
www.kaggle.com/shivam2503/diamonds. Using Kaggle is free, but you
do have to register and sign in.

The metadata (data describing data) consists of ten variables, which you
can also think of as column headers. See Table 2-1.

TABLE 2-1 Columns in the Diamond Database

Column
Header

Type of
Data Description

Index
counter Numeric Specific index of record

carat Numeric Carat weight of the diamond

cut Text Cut quality of the diamond, in increasing order of fair, good, very
good, premium, and ideal

color Text Color of the diamond, with D the best and J the worst

clarity Text
How obvious inclusions are in the diamond, from best to worst, with
FL equal to flawless and I3 equal to level 3 inclusions: FL, IF,
VVS1, VVS2, VS1, VS2, SI1, SI2, I1, I2, I3

depth Numeric
Percentage depth: The height of a diamond, measured from the
culet (the bottom tip of the cut diamond) to the table (the flat facet
on top of the cut diamond), divided by its average girdle diameter

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.kaggle.com/
https://www.kaggle.com/discussion
https://www.kaggle.com/shivam2503/diamonds


Column
Header

Type of
Data Description

table Numeric Percentage table: The width of the diamond's table expressed as a
percentage of its average diameter

price Numeric Price of the diamond

x Numeric Length in mm

y Numeric Width in mm

x Numeric Depth in mm

If you were to use data as a training set for a machine-learning program,
you would create a program using NumPy and TensorFlow similar to the
one in Book 4, Chapter 2. In this chapter, we create a set of simple
Pandas-based data analysis programs to read the data and ask some
questions.

We use a DataFrame (2D-labeled data structure with columns that can be
of different types) because it makes it easier to visualize 2D data.

 If you're installing NumPy and Pandas on the Raspberry Pi, type
the following commands (commands for other computers will be
similar):

sudo apt-get install python3-numpy

sudo apt-get install python3-pandas

Now, using nano (or your favorite text editor), open a file called
FirstDiamonds.py and enter the following code:

# Diamonds are a Data Scientist's Best Friend

 

#import the pandas and numpy libraries

import numpy as np

import pandas as pd

 

 

# read the diamonds CSV file

# build a DataFrame from the data

df = pd.read_csv('diamonds.csv')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

 

print (df.head(10))

print()

 

# calculate the total value of the diamonds

sum = df.price.sum()

print ("Total $ Value of Diamonds: ${:0,.2f}".format( sum))

 

# calculate the mean price of the diamonds

 

mean = df.price.mean()

print ("Mean $ Value of Diamonds: ${:0,.2f}".format(mean))

 

#  summarize the data

descrip = df.carat.describe()

print()

print (descrip)

 

descrip = df.describe(include='object')

print()

print (descrip)

Making sure you have the diamonds.csv file in your directory, run the
following command:

python3 FirstDiamonds.py

You should see the following results:
   Unnamed: 0  carat        cut color clarity  depth  table  price     x     

y     z

0           1   0.23      Ideal     E     SI2   61.5   55.0    326  3.95  

3.98  2.43

1           2   0.21    Premium     E     SI1   59.8   61.0    326  3.89  

3.84  2.31

2           3   0.23       Good     E     VS1   56.9   65.0    327  4.05  

4.07  2.31

3           4   0.29    Premium     I     VS2   62.4   58.0    334  4.20  

4.23  2.63

4           5   0.31       Good     J     SI2   63.3   58.0    335  4.34  

4.35  2.75

5           6   0.24  Very Good     J    VVS2   62.8   57.0    336  3.94  

3.96  2.48

6           7   0.24  Very Good     I    VVS1   62.3   57.0    336  3.95  

3.98  2.47

7           8   0.26  Very Good     H     SI1   61.9   55.0    337  4.07  

4.11  2.53

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



8           9   0.22       Fair     E     VS2   65.1   61.0    337  3.87  

3.78  2.49

9          10   0.23  Very Good     H     VS1   59.4   61.0    338  4.00  

4.05  2.39

 

Total $ Value of Diamonds: $212,135,217.00

Mean $ Value of Diamonds: $3,932.80

 

count    53940.000000

mean         0.797940

std          0.474011

min          0.200000

25%          0.400000

50%          0.700000

75%          1.040000

max          5.010000

Name: carat, dtype: float64

 

          cut  color clarity

count   53940  53940   53940

unique      5      7       8

top     Ideal      G     SI1

freq    21551  11292   13065

That's a lot of data for a short piece of code!

Breaking down the code
Now we step through our data science code to see how all the code
elements play together:

# Diamonds are a Data Scientist's Best Friend

First, we import all the needed libraries:
#import the pandas and numpy libraries

import numpy as np

import pandas as pd

Next, we read the diamonds file into a Pandas DataFrame. Note that we
didn’t have to format and manipulate the data in this file. Working with
the data in the original file is not normal in real data science. Getting
your data where you want it to be will often require a significant amount
of time — sometimes as much time as the entire rest of the project:

# read the diamonds CSV file

# build a DataFrame from the data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



df = pd.read_csv('diamonds.csv')

For a sanity check, we print the first ten rows in the DataFrame:
print (df.head(10))

print()

Then we calculate a couple of values from the column named price.
Note that we get to use the actual column name as part of the DataFrame
object. It’s great that you can do this with Python!

# calculate the total value of the diamonds

sum = df.price.sum()

print ("Total $ Value of Diamonds: ${:0,.2f}".format( sum))

 

# calculate the mean price of the diamonds

 

mean = df.price.mean()

print ("Mean $ Value of Diamonds: ${:0,.2f}".format(mean))

Next we run the built-in describe function to describe and summarize
the data about the carat DataFrame element:

# summarize the data

descrip = df.carat.describe()

print()

print (descrip)

The next statement prints a description for all nonnumeric columns in
our DataFrame, specifically, the cut, color, and clarity columns:

descrip = df.describe(include='object')

print()

print (descrip)

Visualizing the data with MatPlotLib
Now we move to the data visualization with MatPlotLib. In Book 4, we
use MatPlotLib to draw some graphs related to the way the machine-
learning program improved its accuracy during training. Here we use
MatPlotLib to show some interesting things about the dataset.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 To install MatPlotLib on your Raspberry Pi, type sudo pip3
install matplotlib.

 When your program uses MatPlotLib, you need to run the
program from a Terminal window inside the Raspberry Pi GUI.
You can use VNC to get a GUI if you're running your Raspberry Pi
headless.

One of the useful features of Pandas and MatPlotLib is that the NumPy
and DataFrame types are compatible with common graphic formats such
as .jpg and .gif images, so you can deal with image data.

Diamond clarity versus carat size
Our first plot is a scatter plot showing diamond clarity versus diamond
carat size. Using nano (or your favorite text editor), open a file called
Plot_ClarityVSCarat.py and enter the following code:

# Looking at the Shiny Diamonds

 

#import the pandas and numpy libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

 

# read the diamonds CSV file

# build a DataFrame from the data

df = pd.read_csv('diamonds.csv')

 

 

import matplotlib.pyplot as plt

 

carat = df.carat

clarity = df.clarity

plt.scatter(clarity, carat)

plt.show()  # or plt.savefig("name.png")

Run your program. The result is shown in Figure 2-1. Now, how is that
for ease in plotting? Pandas and MatPlotLib go hand-in-hand.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-1: Diamond clarity (horizontal) versus carat size (vertical).

Remember that diamond clarity is measured by how obvious the
inclusions are in the diamond, from best (FL, flawless) to worst (I3,
level-3 inclusions): FL, IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1, I2, I3.
Note that we had no flawless diamonds in our diamond database.

One comment about the value order and the column order. The plot is
presenting the values in the order in which they appear in the dataset.
The first record has clarity SI2, the next has clarity SI1, then VS1, and
so on. You can see this if you execute this code:

for i in range(20):

    print(df.iloc[i].clarity)

You could sort the data by the clarity column, but then you'd get
alphabetical order because that column isn’t numeric. Probably the real
solution is to process the data to convert the clarity values into numeric
values. This is an example of how data preprocessing can be harder than
the analysis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



You might be tempted to make a statement that the largest diamonds are
rated as I1. However, remember that you have no idea how this data was
collected so you can't draw such general conclusions. All you can say is
that “In this dataset, the clarity I1 has the largest diamonds.”

Number of diamonds in each clarity type
Now we present a plot that will show you the distribution of diamonds in
each clarity type. Using nano (or your favorite text editor), open up a file
called Plot_CountClarity.py and enter the following code:

# Looking at the Shiny Diamonds

 

#import the pandas and numpy libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

 

# read the diamonds CSV file

# build a DataFrame from the data

df = pd.read_csv('diamonds.csv')

 

 

import matplotlib.pyplot as plt

 

# count the number of each textual type of clarity

 

clarityindexes = df['clarity'].value_counts().index.tolist()

claritycount= df['clarity'].value_counts().values.tolist()

 

print(clarityindexes)

print(claritycount)

 

plt.bar(clarityindexes, claritycount)

plt.show()  # or plt.savefig("name.png")

When you run the Plot_CountClarity.py program, you see the results
shown in Figure 2-2.

Again, remember that diamond clarity is measured by how obvious
inclusions are within the diamond: FL,IF, VVS1, VVS2, VS1, VS2, SI1,
SI2, I1, I2, I3 (in order from best to worst: FL = flawless, I3= level 3
inclusions). Note that we had no flawless diamonds in our diamond
database.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



This graph shows that the medium-quality diamonds SI1, VS2, and SI2
are most represented in our diamond dataset.

FIGURE 2-2: Diamond clarity count in each type.

Number of diamonds in each color type
We looked at clarity versus size, and now we'll look at color type versus
number of diamonds in each clarity type in the pile of diamonds. Using
nano (or another text editor), open a file called Plot_CountColor.py and
enter the following code:

# Looking at the Shiny Diamonds

 

#import the pandas and numpy libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

 

# read the diamonds CSV file

# build a DataFrame from the data

df = pd.read_csv('diamonds.csv')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

 

import matplotlib.pyplot as plt

 

# count the number of each textual type of color

 

colorindexes = df['color'].value_counts().index.tolist()

colorcount= df['color'].value_counts().values.tolist()

 

print(colorindexes)

print(colorcount)

 

plt.bar(colorindexes, colorcount)

plt.show()  # or plt.savefig("name.png")

Run your program. The result is shown in Figure 2-3.

FIGURE 2-3: Diamond color count in each type.

The color G, which is almost colorless, represents about 25 percent of
our sample size. The general rule is less color, higher price. The

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



exceptions are pinks and blues, which are outside this color mapping and
sample.

Using Pandas heat plots to find correlations
Our last plot is a heat plot, which shows correlations between numeric
values inside the database. We take all the numerical values and create a
matrix that shows how closely they correlate. To quickly and easily
generate this graph, we use another library for Python and MatPlotLib
called seaborn, which provides an API built on top of MatPlotLib that
integrates with Pandas DataFrames. That integration makes seaborn
ideal for data science.

Using nano (or another text editor), create a file called Plot_Heat.py
and enter the following code:

# Looking at the Shiny Diamonds

 

#import the pandas and numpy libraries

import numpy as np

import pandas as pd

 

import matplotlib.pyplot as plt

import seaborn as sns

 

# read the diamonds CSV file

# build a DataFrame from the data

df = pd.read_csv('diamonds.csv')

 

# drop the index column

df = df.drop('Unnamed: 0', axis=1)

 

f, ax = plt.subplots(figsize=(10, 8))

corr = df.corr()

print (corr)

sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool),

        cmap=sns.diverging_palette(220, 10, as_cmap=True),

                    square=True, ax=ax)

 

plt.show()

Run the example Python program Plot_Heat.py to find out whether you
have seaborn on your Raspberry Pi. If you don’t have seaborn, you'll get

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



an import error from Python. If seaborn is not present, type the following
command:

sudo apt-get install python3-seaborn

Run the program and feast on some real data visualization, as shown in
Figure 2-4.

FIGURE 2-4: Correlation heat chart.

The first thing to note is that the darker the color, the higher the
correlation between the two variables. The diagonal stripe from the top
left to the top bottom shows that carat correlates 100 percent with carat.
No surprise there. The x, y, and z variables correlate with each other,
which says that as the diamonds in the database increase in one
dimension, they increase in the other two dimensions as well.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



How about price? As carat and size increase, so does price. This makes
sense. Interestingly, depth — the height of a diamond, measured from
the culet (the bottom tip) to the table (the flat facet on the top), divided
by its average girdle diameter — does not correlate strongly with price
and is somewhat negatively correlated.

It's amazing the amount of inferences you can draw from this kind of a
map. Heat maps are fabulous for spotting general cross-correlations in
your data.

It would be interesting to see the correlation between color, clarity, and
price. But this correlation isn't included on the chart because the color
and clarity columns are textual, and you can do correlations only on
numerical values. You could fix this by substituting a numerical code (1–
8, for example) for each color letter and then regenerating the heat chart.
The same technique can be used for diamond clarity. Again, data
preprocessing is a time-consuming and sometimes difficult part of doing
data science.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Using Big Data from Google

Cloud
IN THIS CHAPTER

 Accessing really big data
 Using Google Cloud BigQuery
 Building your first queries
 Visualizing results with MatPlotLib

Up to this point, you've been dealing with relatively small sets of data. In
this chapter, you use big data from the Medicare database and then very
big data from NOAA (National Oceanic and Atmospheric Agency) that
changes every hour!

Even if you have access to a powerful enough computer to download
large datasets like these, not every big dataset can be downloaded. Some
datasets can't be downloaded legally. And in the case of the air quality
database from NOAA, you would have to download a new version every
hour. In cases like these, it’s better to leave the data where it is and use
the cloud. In addition, when you let the cloud do the database and
analysis work, your computer doesn’t have to be very big or very fast.

To download the code for this chapter, go to
www.dummies.com/go/pythonaiofd2e.

What Is Big Data?
Big data refers to datasets that are too large or complex to be dealt with
using traditional data-processing techniques. Data with many cases and
many rows offers greater accessibility to sophisticated statistical

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


techniques and generally lead to smaller false discovery rates. A false
discovery rate is the expected proportion of errors where you incorrectly
rejected your hypothesis (in other words, you received false positives).

As mentioned in Chapter 1 of this minibook, big data is becoming more
prevalent in our society as the number of computers and sensors
proliferate and create more data at an ever-increasing rate. In this
chapter, we talk about using the cloud to access these large databases
(using Python and Pandas) and then visualizing the results on a
Raspberry Pi.

Understanding Google Cloud and
BigQuery

In the first program, you access data using Google Cloud and manipulate
and analyze the data using Google BigQuery. It is important to
understand that you aren’t just using data in the cloud, you're also using
the data analysis tools in the cloud. Basically, you're using your
computer to tell the computers in the cloud what do with the data and
how to analyze it. Not much is happening on your local computer.

Google Cloud Platform
Google Cloud Platform is a suite of cloud-computing services that run
on the same infrastructure as Google end-user products such as Google
Search and YouTube. This cloud strategy has been successfully used at
Amazon and Microsoft. Google uses their own internal data services and
products to build a cloud offering. With this approach, both the user and
the company benefit from advances and improvements to products and
clouds.

The Google Cloud Platform has over 100 different APIs (application
programming interfaces) and data service products available for data
science and artificial intelligence. The primary service we use in this
chapter is the Google API called BigQuery.

BigQuery from Google

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A REST (representational state transfer) software system defines a set of
communication structures to be used for creating web services, typically
using http and https requests to communicate. With a REST-based
system, different computers and different operating systems can enable
the same web service.

A RESTful web service uses URL addresses that ask specific questions
in a standard format and get a response just like a browser gets a web
page. Additional Python libraries are used to hide the complexity of the
queries going back and forth. BigQuery is based on a RESTful web
service.

In software engineering, abstraction is a technique for arranging
complexity in computer systems. It works by establishing a simple layer
in the software (such as Python modules) that masks the complex details
below the surface. Abstraction in software systems is key to making big
systems work and reasonable to program. For example, although a web
browser uses HTML to display web pages, layers of software under the
HTML are doing such things such as transmitting IP packets or
manipulating bits. These lower layers are different if you're using a
wired network or a Wi-Fi network. The cool thing about abstraction is
that we don’t need to know how complex it is. We just use the software.

BigQuery is a serverless model, which means BigQuery has one of the
highest levels of abstraction in the cloud community, removing the
user’s responsibility for bringing new virtual machines online, the
amount RAM, the numbers of CPUs, and so on. Scale from one to
thousands of CPUs in a matter of seconds, paying only for the resources
you use. You can stream data into BigQuery on the order of millions of
rows (data samples) per second, which means you can start to analyze
the data almost immediately. Google Cloud has a free, 90-day trial with
$300 of credit, so you won’t have to pay while working on the examples
in Book 5.

BigQuery has a large number of public big-data datasets; we access the
ones from Medicare and NOAA. We use BigQuery (through the
google.cloud library) with the Pandas Python library. The google.cloud

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python library maps the BigQuery data into our friendly Pandas
DataFrames (described in Chapter 2 of this minibook).

Computer security on the cloud
We would be remiss if we didn’t talk just a little bit about maintaining
good computer security when using the cloud. Google provides
computer security by using the IAM (identity and access management)
paradigm throughout its cloud offerings. IAM lets the account owner
(who is the administrator) authorize who can take what kind of action on
specific resources, giving the owner full control and visibility for simple
projects as well as finely grained access extending across an entire
enterprise.

We show you how to set up IAM authentication in the sections that
follow.

THE MEDICARE PUBLIC DATABASE
Medicare is the national health insurance program (single payer) in the United States
administered by the Centers for Medicare and Medicaid Services (CMS). Medicare
provides health insurance for Americans 65 years and over as well as younger people
with certain disabilities and conditions. In 2017 it provided health insurance to over 58
million people.

With that many people in the system, Medicare generates a huge amount of data every
year. Google and CMS teamed up to put a large amount of this data on the BigQuery
public database so you could look at and analyze the data without trying to load it on
your local machine.

Signing up for BigQuery
Go to https://cloud.google.com and sign up for your free trial.
Although Google requires a credit card to prove that you're not a robot, it
doesn't charge you even when your trial is over unless you manually
switch to a paid account. If you exceed $300 during your trial (which
you probably won’t), Google will notify you but will not charge you.
The $300 limit should be more than enough to do a bunch of queries and
learn on the BigQuery cloud platform.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://cloud.google.com/


Reading the Medicare Big Data
In this section, to start using BigQuery with your own Python programs,
you set up a project and download your authentication .json file, which
contains keys that let you access your account and the data. The
Medicare database is the largest easily accessible medical data set in the
world. We ask some specific medical queries of this database.

Setting up your project and authentication
To access Google Cloud, you need to set up a project and then receive
your authentication credentials from Google.

 Make sure you follow these directions closely to get the Google
authentication correct the first time. When you download your
authentication file, don’t lose it or delete it. You can’t download it a
second time. Instead, you have to go through the authentication
process again.

If you don’t have a Google account, create one. Then go to
www.google.com and log in,. Next, go to
https://developers.google.com/ and click Google Cloud. Fill out
your billing information, and you'll be ready to begin.

The following steps will show you how to set up your project and get
your authentication credentials:

1. Go to https://console.developers.google.com/ and sign in
using your account name and password.
The screen shown in Figure 3-1 appears.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.google.com/
https://developers.google.com/
https://console.developers.google.com/


FIGURE 3-1: Google Cloud developer's console page.

2. Click the My First Project button, in the upper-left corner of the
screen.

3. On the pop-up screen, click the New Project button in the upper
right.

4. For the project name, type MedicareProject and then click
Create.
You return to the screen shown in Figure 3-1.

5. In the drop-down menu on the upper left, choose
MedicareProject.

 Make sure you change the selection to MedicareProject and
don't leave the default as My First Project. Otherwise, you'll be
setting up the APIs and authentication for the wrong project. This
mistake is a very common one.

6. Click the +Enable APIs and Services button (near the top) to
enable the BigQuery API.
The API selection screen appears.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



7. In the search box, search for BigQuery and then select BigQuery
API. Click Enable.
Now to get our authentication credentials.

8. In the right corner of the screen, choose Create Credentials.
The screen shown in Figure 3-2 appears.

FIGURE 3-2: First credentials screen.

9. In the drop-down menu, select BigQuery API and then click the
No, I'm Not Using Them option below the Are You Planning to
Use This API with the App Engine or Compute Engine? section.

10. Click the What Credentials Do I Need? button.
The screen shown in Figure 3-3 appears.

11. In the Service Account Name box, type MedicareProject and then,
in the Role drop-down menu, select Project and then select  
Owner.

12. Leave the JSON radio button selected and click Continue.
A message appears saying that the service account and key have
been created. A file named something like MedicareProject-
1223xxxxx413.json is downloaded to your computer.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Do not lose this file! It contains your authentication
information.

13. Copy the downloaded file to the directory where you'll be
building your Python program file.

Now let’s move on to our first example.

FIGURE 3-3: Second credentials screen.

The first big-data code
The MedicareQuery1.py program reads one of the several dozen public-
data Medicare datasets and grabs some data for analysis. We will use the
inpatient_charges_2015 dataset and a SQL query to select the
information from the dataset that we want to look at and analyze. (Check
out the nearby sidebar, “Learning SQL,” for more on SQL if you're not
already familiar with this ubiquitous query language.)

Table 3-1 shows all the columns in the inpatient_charges_2015
dataset.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TABLE 3-1 Columns, Types, and Descriptions of the
inpatient_charges_2015 Dataset

Column Type Description

provider_id STRING
The CMS certification number
(CCN) of the provider billing for
outpatient hospital services.

provider_name STRING The name of the provider.

provider_street_address STRING The street address in which the
provider is physically located.

provider_city STRING The city in which the provider is
physically located.

provider_state STRING The state in which the provider is
physically located.

provider_zipcode INTEGER The zip code in which the provider
is physically located.

drg_definition STRING

The code and description
identifying the MS-DRG. MS-DRGs
are a classification system that
groups similar clinical conditions
(diagnoses) and the procedures
furnished by the hospital during the
stay.

hospital_referral_region_description STRING
The hospital referral region (HRR)
in which the provider is physically
located.

total_discharges INTEGER
The number of discharges billed by
the provider for inpatient hospital
services.

average_covered_charges FLOAT

The provider's average charge for
services covered by Medicare for
all discharges in the MS-DRG.
These vary from hospital to hospital
because of differences in hospital
charge structures.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Column Type Description

average_total_payments FLOAT

The average total payments to all
providers for the MS-DRG,
including the MS-DRG amount,
teaching, disproportionate share,
capital, and outlier payments for all
cases. Also included in average
total payments are co-payment and
deductible amounts that the patient
is responsible for and any
additional third-party payments for
coordination of benefits.

average_medicare_payments FLOAT

The average amount that Medicare
pays to the provider for its share of
the MS-DRG. Average Medicare
payment amounts include the MS-
DRG amount, teaching,
disproportionate share, capital, and
outlier payments for all cases.
Medicare payments do not include
beneficiary co-payments and
deductible amounts nor any
additional payments from third
parties for coordination of benefits.

LEARNING SQL
SQL (Structured Query Language) is a query-oriented language used to interface with
databases and to extract information from those databases. Although it was designed
for relational database access and management, it has been extended to many other
types of databases, including data accessed by BigQuery and Google Cloud.

Here are some excellent tutorials to get your head around how to access data using
SQL:

www.w3schools.com/sql

www.sql-tutorial.net

SQL For Dummies, 9th Edition, Allen G. Taylor

SQL All-in-One For Dummies, 3rd Edition, Allen G. Taylor

SQL in 10 Minutes, 4th Edition (Sams Publishing), Ben Forta

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.w3schools.com/sql
http://www.sql-tutorial.net/


Using nano (or another text editor), enter the following code and then
save it as MedicareQuery1.py:

import pandas as pd

from google.cloud import bigquery

 

 

# set up the query

 

QUERY = """

        SELECT provider_city, provider_state, drg_definition,

        average_total_payments, average_medicare_payments

        FROM `bigquery-public-data.cms:medicare.inpatient_charges_2015`

        WHERE provider_city = "GREAT FALLS" AND provider_state = "MT"

        ORDER BY provider_city ASC

        LIMIT 1000

        """

 

client = bigquery.Client.from:service_account_json(

            'MedicareProject2-122xxxxxf413.json')

 

 

query_job = client.query(QUERY)

df = query_job.to_dataframe()

 

print ("Records Returned: ", df.shape )

print ()

print ("First 3 Records")

print (df.head(3))

As soon as you've built this file, replace the MedicareProject2-
122xxxxxf413.json file with your own authentication file (which you
copied into the program directory earlier).

 When you run the MedicareQuery1.py program, you'll get an
import error if the google.cloud library isn't installed. If this
happens, type the following in the Terminal window on your
computer:

sudo pip3 install google-cloud-bigquery

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When running these programs on a Raspberry Pi, if you see an error that
“the pyarrow library is not installed,” try the following:

sudo pip3 install pyarrow

As of November 2020, if installing pyarrow doesn't work, the pyarrow
maintainers have not yet fixed the problem with the pip3 pyarrow
installation. You will need to move to Windows, another Linux version,
or a Mac to run these examples.

Breaking down the code
First, we import our libraries. Note the google.cloud library and the
bigquery import:

import pandas as pd

from google.cloud import bigquery

Next we set up a SQL query to fetch the data into a Pandas DataFrame
for analysis:

# set up the query

 

QUERY = """

        SELECT provider_city, provider_state, drg_definition,

        average_total_payments, average_medicare_payments

        FROM `bigquery-public-data.cms:medicare.inpatient_charges_2015`

        WHERE provider_city = "GREAT FALLS" AND provider_state = "MT"

        ORDER BY provider_city ASC

        LIMIT 1000

        """

See the structure of the SQL query? We SELECT the columns that we
want (as listed in Table 3-1) FROM the bigquery-public-
data.cms:medicare.inpatient_charges_2015 database only WHERE the
provider_city is GREAT FALLS and the provider_state is MT. Finally,
we tell the system to order the results by ascending, alphanumeric order
by the provider_city.

Remember to replace the following json filename with your
authentication file:

client = bigquery.Client.from:service_account_json(

            'MedicareProject2-122xxxxxef413.json')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now we fire off the query to BigQuery:
query_job = client.query(QUERY)

And translate the results to our good friend the Pandas DataFrame:
df = query_job.to_dataframe()

Now just a few more code statements to display what we get back from
BigQuery:

print ("Records Returned: ", df.shape )

print ()

print ("First 3 Records")

print (df.head(3))

Run your program MedicareQuery1.py and you should see the results of
your query as shown next. If you get an authentication error, make sure
you put the correct authentication file into your directory. And if
necessary, generate another authentication file, paying special attention
to the project name selection.

Records Returned:  (112, 5)

 

First 3 Records

  provider_city provider_state

drg_ definition  average_total_payments  average_medicare_payments

0   GREAT FALLS             MT  064 - INTRACRANIAL HEMORRHAGE OR CEREBRAL 

INFA…                11997.11                   11080.32 

1   GREAT FALLS             MT           039 - EXTRACRANIAL PROCEDURES W/O

CC/MCC                 7082.85                    5954.81

2   GREAT FALLS             MT  065 - INTRACRANIAL HEMORRHAGE OR CEREBRAL

INFA…                 7140.80                    6145.38

Visualizing your Data

We found 112 records from Great Falls. You can go back and change the
query in your program to select your own city and state.

Doing a bit of analysis
You've established a connection to a big-data database. Now let's set up
another query. We will search the entire inpatient_charges_2015
dataset to look for patients with MS_DRG code 554, bone diseases and
arthropathies without major complication or comorbidity (in other
words, people who have issues with their bones but with no serious

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



issues currently manifesting externally). We find such a diagnosis
through one of the most arcane and complicated coding systems in the
world: ICD-10, which maps virtually any diagnostic condition to a
single code.

ICD CODES
ICD10 is the well-established method for coding medical professional diagnoses for
billing and analysis. The latest version of ICD-10 was made mandatory in 2015,
resulting in great angst throughout the medical community. It consists of over 155,000
codes, from M79.603 — Pain in Arm, unspecified to S92.4 — Fracture of Greater Toe.
These codes are merged into the MS_DRG codes used in the Medicare databases we
examine here. When John Shovic had a medical software startup, he developed a
love/hate relationship with ICD 10 codes. His favorite codes follow:

V97.33XD: Sucked into jet engine, subsequent encounter.

Z63.1: Problems in relationship with in-laws.

V95.43XS: Spacecraft collision injuring occupant, sequela.

R46.1: Bizarre personal appearance.

Y93.D1 Activity, knitting and crocheting.

Create a file called MedicareQuery2.py using nano or your favorite text
editor, and then copy the following code into the file:

import pandas as pd

from google.cloud import bigquery

 

 

# set up the query

 

QUERY = """

        SELECT provider_city, provider_state, drg_definition,

        average_total_payments, average_medicare_payments

        FROM `bigquery-public-data.cms:medicare.inpatient_charges_2015`

        WHERE drg_definition LIKE  '554 %'

        ORDER BY provider_city ASC

        LIMIT 1000

        """

 

client = bigquery.Client.from:service_account_json(

            'MedicareProject2-1223283ef413.json')

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

 

query_job = client.query(QUERY)

df = query_job.to_dataframe()

 

print ("Records Returned: ", df.shape )

print ()

print ("First 3 Records")

print (df.head(3))

The only thing different in this program from our previous one is that we
added LIKE '554 %', which matches any DRG that starts with 554.

When we ran the program, we got the following results:
Records Returned:  (286, 5)

 

First 3 Records

  provider_city provider_state                               drg_definition  

average_total_payments  average_medicare_payments

0      ABINGTON             PA  554 - BONE DISEASES & ARTHROPATHIES W/O MCC    

5443.67                    3992.93

1         AKRON             OH  554 - BONE DISEASES & ARTHROPATHIES W/O MCC    

5581.00                    4292.47

2        ALBANY             NY  554 - BONE DISEASES & ARTHROPATHIES W/O MCC    

7628.94                    5137.31

Now we have some interesting data. Let’s do a little analysis. What
percent of the total payments for this condition is paid by Medicare? The
remainder is usually paid by the patient. We aren’t taking third-party
billing into account.

Create a file called MedicareQuery3.py using nano or your favorite text
editor, and copy the following code into the file:

import pandas as pd

from google.cloud import bigquery

 

 

# set up the query

 

QUERY = """

        SELECT provider_city, provider_state, drg_definition,

        average_total_payments, average_medicare_payments

        FROM `bigquery-public-data.cms:medicare.inpatient_charges_2015`

        WHERE drg_definition LIKE  '554 %'

        ORDER BY provider_city ASC

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        LIMIT 1000

        """

 

client = bigquery.Client.from:service_account_json(

            'MedicareProject2-1223283ef413.json')

 

 

query_job = client.query(QUERY)

df = query_job.to_dataframe()

 

print ("Records Returned: ", df.shape )

print ()

 

total_payment = df.average_total_payments.sum()

medicare_payment = df.average_medicare_payments.sum()

 

percent_paid = ((medicare_payment/total_payment))*100

print ("Medicare pays {:4.2f}% of Total for 554 DRG".format(percent_paid))

print ("Patient pays {:4.2f}% of Total for 554 DRG".format(100-percent_paid))

The results follow:
Records Returned: (286, 5)

Medicare pays 77.06% of Total for 554 DRG

Patient pays 22.94% of Total for 554 DRG

Payment percent by state
Next, we select each individual state in our database (not all states are
represented) and calculate the percent paid by Medicare by state for a
DRG that starts with 554. Call this file MedicareQuery4.py:

import pandas as pd

from google.cloud import bigquery

 

 

# set up the query

 

QUERY = """

        SELECT provider_city, provider_state, drg_definition,

        average_total_payments, average_medicare_payments

        FROM `bigquery-public-data.cms:medicare.inpatient_charges_2015`

        WHERE drg_definition LIKE  '554 %'

        ORDER BY provider_city ASC

        LIMIT 1000

        """

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



client = bigquery.Client.from:service_account_json(

            'MedicareProject2-1223283ef413.json')

 

 

query_job = client.query(QUERY)

df = query_job.to_dataframe()

 

print ("Records Returned: ", df.shape )

print ()

 

# find the unique state values

 

states = df.provider_state.unique()

states.sort()

 

total_payment = df.average_total_payments.sum()

medicare_payment = df.average_medicare_payments.sum()

 

percent_paid = ((medicare_payment/total_payment))*100

print("Overall:")

print ("Medicare pays {:4.2f}% of Total for 554 DRG".format(percent_paid))

print ("Patient pays {:4.2f}% of Total for 554 DRG".format(100-percent_paid))

 

print ("Per State:")

 

# now iterate over states

 

print(df.head(5))

state_percent = []

for current_state in states:

    state_df = df[df.provider_state == current_state]

 

    state_total_payment = state_df.average_total_payments.sum()

 

    state_medicare_payment = state_df.average_medicare_payments.sum()

 

    state_percent_paid = ((state_medicare_payment/state_total_payment))*100

    state_percent.append(state_percent_paid)

 

    print ("{:s} Medicare pays {:4.2f}% of Total for 554 DRG".format

 (current_state,state_percent_paid))

Now some visualization
For our last experiment, we use MatPlotLib to visualize the state-by-
state data in a graph generated by the MedicareQuery4.py program.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Do you already have seaborn on your Raspberry Pi? (If you've
installed MatPlotLib, you probably do.) To find out, run the
MedicareQuery4.py example Python program. If seaborn isn't
installed, you'll see import errors and should then run the following
command:

sudo apt-get install python3-seaborn

Moving to our VNC program so we can have a GUI on our Raspberry
Pi, add the following code to the end of the preceding
MedicareQuery4.py code:

# We could graph this using MatPlotLib with the two lists,

# but we want to use DataFrames for this example

 

data_array = {'State': states, 'Percent': state_percent}

 

df_states = pd.DataFrame.from:dict(data_array)

 

# Now back in dataframe land

import matplotlib.pyplot as plt

import seaborn as sb

 

print (df_states)

 

df_states.plot(kind='bar', x='State', y= 'Percent')

plt.show()

Figure 3-4 shows the resulting graph from running the
MedicareQuery4.py program.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-4: Bar chart of Medicare percent paid per state for code 554.

Looking for the Most Polluted City
in the World on an Hourly Basis

Just one more quick example. Another public database on BigQuery
called OpenAQ contains air-quality measurements from 47 countries
around the world. And this database is updated hourly, believe it or not.

Here is some code that picks up the top three worst polluted cities in the
world, as measured by air quality:

import pandas as pd

from google.cloud import bigquery

 

# sample query from:

QUERY = """

        SELECT location, city, country, value, timestamp

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        FROM `bigquery-public-data.openaq.global_air_quality`

        WHERE pollutant = "pm10" AND timestamp > "2017-04-01"

        ORDER BY value DESC

        LIMIT 1000

        """

 

client = bigquery.Client.from:service_account_json(

                    'MedicareProject2-1223283ef413.json')

query_job = client.query(QUERY)

df = query_job.to_dataframe()

 

print (df.head(3))

Copy this code into a file called PollutedCity.py and run the program.
Following is the current result of running the code (as of this writing):

        location          city country  value    timestamp

0       Dilovası        Kocaeli   TR  5243.00 2018-01-25 12:00:00+00:00 

1  Bukhiin urguu    Ulaanbaatar   MN  1428.00 2019-01-21 17:00:00+00:00

2  Chaiten Norte  Chaiten Norte   CL   999.83 2018-04-24 11:00:00+00:00

Dilovasi, Kocaeli, Turkey is not a healthy place to be right now. Doing a
quick Google search of Dilovasi finds that cancer rates are three times
higher than the worldwide average. This striking difference apparently
stems from the environmental heavy metal pollution that has persisted in
the area for about 40 years, mainly due to intense industrialization.

John will definitely be checking this on a daily basis.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 6
Talking to Hardware

Contents at a Glance
Chapter 1: Introducing Physical Computing

Physical Computing Is Fun

What Is a Raspberry Pi?

Building Projects That Move and Sense the Environment

Sensing the Environment with the Raspberry Pi

Controlling an LED with Python

But Wait, There's More

Chapter 2: No Soldering! Using Grove Connectors for
Building

Working with the Grove System

Grove Connectors

Connecting with Grove Cables

Chapter 3: Sensing the World
Understanding I2C

Measuring Oxygen and a Flame

Building a Dashboard on Your Phone with Blynk

Where to Go from Here

Chapter 4: Making Things Move
Exploring Electric Motors

Controlling a DC Motor

Running a Servo Motor

Making a Stepper Motor Step

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Introducing Physical

Computing
IN THIS CHAPTER

 Understanding how to use small computers
 Using a Raspberry Pi to sense the environment around you
 Making your computer do physical things

We think it's more difficult to learn about the software (Python) than the
hardware, which is why in the last several hundred pages we've focused
on learning how to program in Python. But now it's time for you to learn
how to make your computer do something with Python. Making your
computer do mechanical things — and interact with the world around
you — is called physical computing!

 In this chapter, we hook up various sensors and motors to a
Raspberry Pi computer. Although the voltages we use — 3.3V and
5V — are not particularly dangerous to people, hooking up things
incorrectly can burn out the computer or sensors. For this reason,
follow these two rules assiduously:

Rule 1: Turn off all power before you hook up or change any wires.
Rule 2: Double-check your connections, especially the power
connections, which are power and ground. To find out why these are
the most important wires to check, see the next chapter!

Physical Computing Is Fun

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



One reason why we want to you to learn about physical computing is
that little computers doing physical things (typically called embedded
systems) are everywhere. And we mean everywhere. Look around your
kitchen. Your refrigerator has a computer — or maybe two or three if it
has a display. Your blender has a computer. Your oven has a computer.
Your microwave has a computer. If you use Phillips Hue lights in your
house, your light bulbs have a computer. Your car has upwards of 20
computers.

One more example. How about the lowly toaster? If you have a Bagel
button or a display on your toaster, it has a computer in there. Why are
there so many computers in your house? Because it's significantly less
expensive to control gadgets with a computer than with special
hardware. (You can buy computers in bulk for about 15¢ each!)

Most of these computers are much simpler and slower and carry much
less RAM (random access storage) than your average PC. A PC may
have 4GB to 16GB of RAM (1GB equals approximately 1 billion bytes),
but the computer running your toaster probably has only about 100 bytes
of RAM.

All these little computers are doing physical computing, sensing and
interacting with the environment. The refrigerator computer is checking
its temperature and then turning on the cooling machinery if necessary,
minimizing the amount of electricity it uses. The stove updates its
display on the front panel, monitoring the buttons and dials and
controlling the temperature so you get a good lasagna for dinner.

What Is a Raspberry Pi?
The functionality of these very small computers was too limited to use in
the examples in this book, so we compromised and used the Raspberry
Pi, a $35 computer that has an immense amount of hardware and
software available for use (especially with Python). It’s more complex
than a toaster but much simpler than the computer in your TV.

A Raspberry Pi is a popular SBC (single board computer) that has been
around since 2012. It was created by the Raspberry Pi Foundation to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



teach basic science and engineering in schools around the world. It
turned out to be wildly popular, with more than 30 million computers
sold. A bunch of other Raspberry Pi models are available, from the
Raspberry Pi Zero ($5) to the new Raspberry Pi 4B (~$60). We use the
Raspberry Pi 3B+ for the projects in the book, but you could also use the
4B.

To demystify some of the technology that we deal with every day, let’s
talk about the major blocks of hardware on the Raspberry Pi 3B+
computer, as shown in Figure 1-1.

GPIO connector: General purpose input-output pin connector. We
use this connector a lot in the rest of Book 6.
CPU/GPU: Central processing unit/graphics (for the screen)
processing unit. This block is the brains of the gear and tells
everything else what to do. Your Python programs are run by this
block.
USB ports: These are standard USB (universal serial bus) ports, the
same interfaces you find on big computers. There are many devices
you can connect to a USB port, just as on your PC. You will plug
your mouse and keyboard into these ports.
Ethernet port: Just like the Ethernet interface on your computer.
Connects to a network via wires.
Wi-Fi: This block isn’t shown on the diagram because it's inside the
CPU chip. If you choose to connect with Wi-FI, you don’t have to
trail Ethernet wires all over just to talk with the Internet.
HDMI out: You plug your monitor or TV into this port.
Composite video and audio jack: This jack can supply sound or
composite video.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-1: The main components of the Raspberry Pi 3B+.

microSD card slot: You plug in your micro SD card with your
operating system in this slot.
Status PWR LED: The red LED shows the status of the power
supply. (Note that it doesn’t stay on all the time.)
Status ACT LED: The yellow LED flashes when the Raspberry Pi
is accessing the SD card.
Other ports:

Micro USB (universal serial bus): You plug your 5V power
supply in the micro USB connector.
Camera CSI (camera serial interface): You can plug a
Raspberry Pi camera into this ribbon cable connector.
Display DSI (display serial interface): This connector is for
high-speed connections to a variety of custom displays, a
topic well beyond the scope of our book.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



To get our computer to do mechanical actions and sense the environment
(apart from the computer screen and keyboard), we need a computer and
one of two other devices — a sensor or an actuator. A sensor is a small
piece of electronics that can detect something about the environment
(such as temperature or humidity), and an actuator is a fancy word for a
motor or cable that does things in the real world.

In the remainder of this chapter, you will learn about the necessary
ingredients of your first physical computing project, which turns on and
off an LED. This first project is the physical computing version of
“Hello World” that we all do when we're learning software. Blinking
LED, here we come!

 Buy a Raspberry Pi Starter Kit (which comes with a power
supply, an operating system, and a case) and get it set up before
continuing. We recommend that beginners also get a mouse,
keyboard, and monitor to do the setup. More advanced users may
want to use the software SSH (Secure SHell) to do a headless setup.
Again, the best place to understand how to start is to go to the
tutorials on www.raspberrypi.org.

Building Projects That Move and
Sense the Environment

At the beginning of the chapter, we talked about computers in the
kitchen. All those computers sense the environment (the oven
temperature, for example) and most are doing something to affect the
environment (your blender chopping up ice for a nice Margarita, for
example). You'll be able to build and design your own projects (and
believe us, after you get acquainted with the hardware, you'll be able to
design wonderful things). You just need to jump in and do your first
project.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.raspberrypi.org/


Then, in further chapters, you build more complex things that will be the
launching point to your own projects, all programmed in Python!

WHAT OTHER SMALL COMPUTERS ARE
AVAILABLE?

Hundreds of different types of small computers and boards are out there for project
building. We chose the Raspberry Pi because of the full support for the Python
language, the availability of hundreds of Python libraries, and the number of websites
(such as the fabulous www.raspberrypi.org) for learning how to set up and use the
computer.

Two general categories of small computer systems are accessible to the beginning
user: computers based on the Linux operating system (Raspbian, the software on the
Raspberry Pi, is a form of Linux) and computers with a much smaller or no operating
system. Both versions of computers and operating systems are useful in different
applications.

Although Linux is a multitasking, complex operating system that can run with multiple
CPU cores, it supports a Windows-like GUI on the Raspberry Pi, making it easy to
operate.

Arduinos are small computers that have a small computer and limited amount of RAM.
Even though they are much smaller and simpler than the Raspberry Pi, the
development boards are about the same price. If you buy the Arduino chips in volume,
however, the Arduino type of computer is much less expensive than a Raspberry Pi. An
Arduino has many more input/output pins than a Raspberry Pi and has an onboard
ADC (analog digital converter), which the Raspberry Pi lacks. In a later chapter, we
show you how to create a project with an external ADC and the Raspberry Pi. The
project involves a flame. You know that will be fun.

Another class of small computers similar to Arduinos are the SAMD21, ESP8266, and
ESP32 boards. These boards can be programmed by the same IDE (integrated
development environment) that Arduino devices use. They have much less RAM than
the Raspberry Pi, but like the Pi, they come with built-in Wi-Fi (and sometimes
Bluetooth) interfaces that make them useful in building projects you want to connect to
the Internet, such as IoT (Internet of Things) projects. All these computers are fun to
play with, but the Raspberry Pi has a much better environment for Python development
and learning.

Sensing the Environment with the
Raspberry Pi

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.raspberrypi.org/


By now you have your Raspberry Pi computer set up and running on
your monitor, keyboard, and mouse. If not, do that now (remember our
friend, www.raspberrypi.org). The next few paragraphs will be a lot
more fun if you have a Raspberry Pi computer to work with!

The Raspberry Pi is the perfect platform for physical computing with
Python because it has a multiscreen environment, lots of RAM and
storage to play with, and the tools we need to build the projects we want.

GPIO pins
A powerful feature of the Raspberry Pi is the row of GPIO (general-
purpose input-output) pins along the top. Into this 40-pin header, we can
plug a large number of sensors and controllers to do amazing things to
expand the Raspberry Pi.

Using Python software, GPIO pins can be designated as input pins or
output pins and used for many purposes. Two 5V power pins, two 3.3V
power pins, and a number of ground pins have fixed uses. (See the
description of voltages in the next chapter.) Figure 1-2 shows the
function of each GPIO pin.

FIGURE 1-2: The functions of the Raspberry Pi GPIO pins.

A GPIO pin outputs a 1 or a 0 from the computer to the pin. See the next
chapter for more on how this output is accomplished and what it means.
Basically, a 1 is 3.3V and a 0 is 0V, but you can think of them just as 1
and 0.

GPIO libraries

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.raspberrypi.org/


A number of GPIO Python libraries can be used for building projects.
The one we use throughout the rest of this book is the gpiozero library,
which is installed on all Raspberry Pi desktop software releases. The
library documentation and installation instructions (if needed) are
located on https://gpiozero.readthedocs.io/en/stable/.

Now we're going to jump into the “Hello World” physical computing
project with our Raspberry Pi.

Buying and assembling the hardware for “Hello
World”
To do this project, you need two pieces of Grove hardware:

Pi2Grover board: This board, shown in Figure 1-3, converts the
Raspberry Pi GPIO pin header to Grove connectors. Grove
connectors are easy to use, and you can’t reverse the power pins!
You can buy the Pi2Grover at https://shop.switchdoc.com or at
Amazon for about $20. (You can get $5.00 off the board at
shop.switchdoc.com by using the discount code PI2DUMMIES at
checkout.) Lots more on this board in the next chapter.

FIGURE 1-3: The Pi2Grover board.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://gpiozero.readthedocs.io/en/stable/
https://shop.switchdoc.com/


Grove blue LED module: This module includes a Grove cable. You
can buy this at https://shop.switchdoc.com or Amazon for $3.
(See Figure 1-4.) The LED module allows you to turn an LED on
and off by using the Raspberry Pi.

FIGURE 1-4: The Grove blue LED.

For more on Grove connectors, see the next chapter.

For a number of you readers, this will be the first time you've ever
assembled a physical computer-based project. The following step-by-
step procedure makes the process easy:

1. Align the Pi2Grover board with the 40-pin GPIO connector on
the Raspberry Pi (see Figure 1-5.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://shop.switchdoc.com/


FIGURE 1-5: Aligning the Pi2Grover board with the Raspberry Pi.

2. Gently push the Pi2Grover board onto the Raspberry Pi GPIO
pins, making sure the pins are aligned (see Figure 1-6).
No pins should be showing on either end. Make sure the pins on the
Raspberry Pi and on top of the Pi2Grover board are not bent.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-6: The installed Pi2Grover board.

3. Plug one end of the Grove cable into the Grove blue LED board
(see Figure 1-7).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-7: A Grove cable plugged into the Grove blue LED board.

4. If necessary, plug the blue LED into the Grove blue LED board,
with the flat side of the LED aligned with the flat side of the
outline on the board (see Figure 1-8).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-8: The LED aligned with the outline on the board.

5. Plug the other end of the Grove cable into the slot marked
D12/D13 on the Pi2Grover board (see Figure 1-9).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-9: The completed “Hello World” project.

We've finished assembling the hardware. Now it’s time to create the
Python software.

Controlling an LED with Python
Now that we have the hardware connected, we can apply power to the
Raspberry Pi. If all is well, the Grove blue LED and a blue power LED
on the Pi2Grover board will light, the yellow LED on the Raspberry Pi
will flash (during bootup), and the red LED on the Raspberry Pi will
light (but may then turn off depending on your power supply).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 The Grove blue LED lights when we turn on the Raspberry Pi
power because the GPIO pins on the Raspberry Pi power up as
inputs. Because the GPIO pin is an input and nothing is driving the
GPIO pin (the Grove LED wants an output, not an input to control
the LED), the GPIO pin just floats with an undetermined voltage —
it's in tri-state (neither a 1 nor a 0, but somewhere in-between).
Because of the circuitry on the Pi2Grover board, the input will float
towards a 1, so the LED turns on. When you turn your GPIO pin to
an output in the code, the LED will turn off.

To get started, follow these steps:

1. Using your keyboard, open a Terminal window.

 If you don’t know how to open and use a Terminal window
and the command line on the Raspberry Pi, go to
www.raspberrypi.org/documentation/usage/terminal/ for an
excellent tutorial.

2. Enter the following Python code into a file using the nano text
editor (or an editor of your choice). Save it to the file
HelloWorld.py.

from gpiozero import LED

from time import sleep

 

blue = LED(12)

 

while True:

    blue.on()

    print( "LED On")

    sleep(1)

    blue.off()

    print( "LED Off")

    sleep(1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.raspberrypi.org/documentation/usage/terminal/


 For an excellent tutorial on using the nano text editor, visit
www.raspberrypi.org/magpi/edit-text/.

3. Now the big moment. Start your program by running the
following on the command line of the Terminal window:

sudo python3 HelloWorld.py

The LED blinks on and off once per second and the following appears
on the screen in the Terminal window:

LED On

LED Off

LED On

LED Off

LED On

LED Off

LED On

LED Off

LED On

LED Off

LED On

To stop the program, press Ctrl+C (^C, in geek terms).

 The keyword sudo stands for super user do. We use sudo in
front of the python3 command because some versions of the
Raspberry Pi operating system restrict a regular user's access to
certain pins and functions. By using sudo, we're running this
command as a super user, which means it will run regardless. In
newer versions of the Raspberry Pi OS, you just type python3
HelloWorld.py. If the program doesn't work, go back to sudo
python3 HelloWorld.py.

The following statement imports the LED function from the Python
gpiozero library:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.raspberrypi.org/magpi/edit-text/


from gpiozero import LED

Then we import the sleep function from the Python time library:

from time import sleep

Next, we assign an LED on GPIO 12 (remember D12/D13 on the
Pi2Grover board?):

blue = LED(12)

Now we start the loop that will go forever:
while True:

Turn on the LED:
blue.on()

print( "LED On")

Wait for one second to go by:
sleep(1)

Turn off the LED:
blue.off()

print( "LED Off")

sleep(1)

The program then loops forever — until you stop it.

Wow, you've now entered the world of physical computing. Just wait
until the next minibook, where you control robots with Python.

But Wait, There's More
Because we have all this hardware set up, we'll do one more project.
This time, we use PWM (pulse width modulation) to vary the brightness
of the LED.

 Pulse-width modulation is a technique in which you vary the
amount of time a signal is at 1 versus at 0. Our LED turns on at 1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



and off at 0, so if we vary the time the LED is at 1 versus at 0, we
can control the brightness as registered by the human eye. This ratio
is called the duty cycle, which is shown in Figure 1-10. With a duty
cycle of 100 percent, the LED is on 100 percent of the time, and
with a duty cycle of 0 percent, it's off all the time. Varying the time
the signal is on changes the apparent brightness of the LED. The
LED is switched on and off at a default frequency of 100 times per
second (Hz), but you can change the frequency.

FIGURE 1-10: Duty cycles.

Enter the following Python code into nano and save it as
HelloWorld2.py. Note the PWMLED(12) function, which connects the
LED on GPIO pin 12 to the PWM software:

from gpiozero import PWMLED

from time import sleep

 

led = PWMLED(12)

 

while True:

    led.value = 0  # off

    sleep(1)

    led.value = 0.5  # half brightness

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    sleep(1)

    led.value = 1  # full brightness

    sleep(1)

Run the code, and the brightness will change every second:
sudo python3 HelloWorld2.py

And use the following code to see a smooth continuous brightening and
darkening of the LED:

from gpiozero import PWMLED

from signal import pause

led = PWMLED(12)

led.pulse()

pause()

WHY DOES THE LED SEEM TO FLICKER?
When you run your Python program, it's not the only thing running on the Raspberry Pi.
Type ps xaf at your command-line prompt in the Terminal window, and you'll see that
dozens of programs are running.

Because the operating system on the Raspberry Pi is multitasking (more than one task
is running at a time), sometimes your PWM task (as it is being run in software) doesn't
get the CPU quite when it wants. As a result, you see a little jitter in the LED. The
Raspberry Pi has two hardware PWM GPIO pins, which also can be used to drive LEDs
if you aren’t using the audio output on the Raspberry Pi. On a Raspberry Pi 3B+, the
flicker is barely noticeable, unless the Raspberry Pi is loaded down with other
programs.

Boy, you accomplished a lot in this chapter. You have now started to see
the possibilities of physical computing. And you have a blue LED!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
No Soldering! Using Grove

Connectors for Building
IN THIS CHAPTER

 Understanding how to plug hardware together
 Choosing a base unit
 Working with the four types of sensors
 Using different Grove cables

Grove is a modular, standardized connecter prototyping system. Grove
takes a building-block approach to assembling electronics. Compared to
a jumper or solder-based system, Grove is easier to connect, experiment
with, and build, and it simplifies the learning process. However, Grove
does requires some learning and expertise.

In this chapter, you learn what Grove connections are and what types of
Grove connections exist, and you look at example Grove modules for
each of the connections.

Working with the Grove System
The Grove system consists of a base unit and various modules with
standardized connectors. The base unit allows for easy connection to a
single-board computer (such as a Raspberry Pi or Arduino). Every
Grove module typically addresses a single function, from a button to a
sensor for monitoring heart rate.

Selecting a Grove base unit
A Grove base unit is a controller or shield to which you attach Grove
modules. The base unit provides the processing power, and the modules

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



offer the input sensors and output actuators of your system.

Note that you don’t need a base unit to connect Grove modules. Instead,
you can use a cable (a Grove-to-pin-header converter) from the pins on
the Raspberry Pi or Arduino to the Grove connectors. (We show you
how to do this in the “Connecting with Grove Cables” section.) Using
header pins, however, is more complicated and prone to error.

Arduino base unit
We mostly talk about the Raspberry Pi in this book, but a number of
other computers are out there too, such as the popular Arduino. Several
good base unit shields are available for the Arduino that provide a lot of
Grove connectors. Figure 2-1 shows the base unit designed to plug into
an Arduino Uno. Base units are also available for the Arduino Mega,
Due, and others.

FIGURE 2-1: The Arduino Uno Grove base board.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Some Arduino boards, such as the Mini Pro LP (see Figure 2-2), have
Grove connectors built right into the board so you don’t even need a
base unit.

FIGURE 2-2: The Arduino Mini Pro LB board with Grove.

Raspberry Pi base unit
On the Raspberry Pi side, the pickings are much slimmer. Most base unit
devices are “too smart,” isolating you from the Raspberry Pi hardware
and software. The additional hardware layer is a problem when you want

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



to connect to hardware using Python. We prefer a solution that is closer
to the Pi hardware for learning and flexibility.

We use the Pi2Grover Raspberry Pi base unit, shown in Figure 2-3. It's
basically just a voltage level shifter (from the Raspberry Pi 3.3V to 5V
for all the Grove sensors), and it doesn't get in the way of writing drivers
in Python.

FIGURE 2-3: The Pi2Grover board at work on the Raspberry Pi.

Error-proofing with a Grove connector
A Grove connector is a four-pin standard-size connector that you plug
into base units and Grove modules. These standardized connectors are
keyed so that you can't plug them in backwards, and the four types of
connectors are designed so that if you plug the wrong type of device into
the wrong type of base unit, there's no problem. They aren’t destroyed;
they just won’t work. This is a very good thing.

Usually, if you plug things in backwards or connect boards incorrectly,
you can damage or destroy the boards. The standardized connectors in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the Grove system, however, enable you to connect boards while taking
no chances on hooking up the power and ground incorrectly.

 Note one exception: If you plug in a 3.3V I2C Grove module
that is non-5V tolerant into a 5V I2C Grove connector, you could
fry the device. In this book, we avoid such situations by making
sure everything we do is 5V!

Four types of Grove connectors are available. Figure 2-4 shows the male
Grove connector.

All Grove cables are physically identical and can be interchanged. They
differ in the signal type they provide. As mentioned, you won't short out
power and ground by plugging in the Grove cable in the incorrect Grove
connector.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-4: A Grove connector.

All Grove connectors are wired the same. The first pin is signal 1, the
second pin is signal 2, the third pin is power, and the forth pin is ground.

The wire colors on Grove cables are always the same, as shown in
Figure 2-5:

Yellow: Connects to Pin 1.
White: Connects to Pin 2.
Red: Power on all Grove connectors. Connects to Pin 3.
Black: Ground on all Grove connectors. Connects to Pin 4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-5: 5cm-long Grove cables.

WHAT ARE VOLTAGES?
Hmmm. What's the difference between 3.3V and 5V? V refers to voltage, which is
similar to the water pressure in a pipe. The higher the pressure, the more water comes
out. The higher the voltage, the more current out of the pipe. If the water pressure is too
high, it can break the pipe. Similarly, if the voltage is too high, you can damage a
Raspberry Pi's input lines, which accept 3.3V. We like using the Pi2Grover board
because it converts and buffers all the lines to and from the Raspberry Pi from 3.3V to
5V.

Voltages are always measured with reference to something, usually ground. A common
ground is important so that all voltages are referenced in the same way. Not having a
common ground in a system (thus confusing the voltages!) results in flaky behavior.
The importance of grounds leads to the Second Law of Shovic, “You can always trust
your mother, but you can never trust your ground.” (The First Law of Shovic is “It works
better if you plug it in!”)

Grove Connectors

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now it's time to wax poetic about the four types of Grove connectors we
use when talking about sensors and devices. By using the wrong
connector, you may not fry your board, but your project will not work
correctly!

Grove digital — All about those 1s and 0s
Computers often communicate with each other and with external devices
by using digital bits. We can get information from bits in two ways. One
is the value (1 or 0) and the other is timing, such as how long the bit has
a value of 1. The thought of timing leads us to the serial Grove ports we
talk about later in this chapter.

 Many sensors need only one or two bits. A bit is the basis of all
digital computer hardware and can be either 1 or 0. Although bits
are represented by voltage levels, fundamentally we treat bits as
having only a 1 or 0 value.

A digital Grove connector consists of the standard four lines coming into
the Grove connector. The two signal lines (pins 1 and 2) are generically
called D0 and D1. Most modules use only D0, but some (such as the
LED bar Grove display) use both. Often base units call the first
connector D0 and the second D1, and they are wired D0/D1 (D0 on pin
1 and D1 on pin 2) and then D1/D2 (D1 on pin 1 and D2 on pin2), and
so on. See Table 2-1 for a description of each pin of the digital Grove
connector.

TABLE 2-1 The Grove Digital Connector

Pin Name Description

1 (yellow) D0 Primary digital input/output

2 (white) D1 Secondary digital input/output

3- (red) VCC Power for Grove module (5V or 3.3V)

4 (black) GND Ground

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Some examples of Grove digital modules are switch modules, the fan
module, and the LED module. Figure 2-6 shows what the Grove
connector looks like on the schematic for the Grove LED module from
the previous chapter. These digital modules range from the simple to the
very complex.

FIGURE 2-6: A simple digital Grove module with LED.

Grove analog: When 1s and 0s aren’t enough
A Grove analog connector consists of the standard four lines coming
into the Grove connector. The two signal lines are generically called A0
and A1. Most modules use only A0. Often base units call the first
connector A0 and the second A1, and they are wired A0/A1 and then
A1/A2, and so on. This simple voltage divider (which will divide 5V to
a lower voltage, such as 2.5V), shown in Figure 2-7, will give you a
different analog voltage reading depending on the position of the switch
and the voltage present across the green connector on the left side. See
Table 2-2 for the descriptions of each pin.

Several examples of Grove analog modules are a potentiometer, a
voltage divider, and the Grove air-quality sensor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-7: A Grove analog simple voltage divider.

TABLE 2-2 The Grove Analog Connector

Pin Name Description

1 (yellow) A0 Primary analog input

2 (white) A1 Secondary analog input

3 (red) VCC Power for Grove module (5V or 3.3V)

4 (black) GND Ground

Grove UART (or serial) — bit-by-bit transmission

 Remember when we talked about digital signals and how you
can convey information not only in the level of the signal (1 or 0)
but also in how long it stays at a 1 or 0 (the timing)? This timing
information is the basis of sending a serial signal. For example, 8
single bits such as 01000001 sent at a specific speed can represent
the letter A. The speed at which the bit is sent is called its baud
rate. (Baud comes from Emile Baudot, who was an inventor and a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



scientist making great progress in the late 1800s with the
telegraph.)

The Grove UART (universal asynchronous receiver/transmitter) module
is a specialized version of a Grove digital module that uses the digital
level (1 or 0) and the timing of the signal to receive and transmit data. It
uses Pin 1 and Pin 2 for the serial input and transmit, respectively. The
Grove UART (also called a serial interface) connector is labeled from
the base unit’s point of view. In other words, Pin 1 is the RX line (which
the base unit uses to receive data, so it is an input) and Pin 2 is the TX
line (which the base unit uses to transmit data to the Grove module).
Table 2-3 lists a description of each pin on the UART Grove connector.

TABLE 2-3 The Grove UART Serial Connector

Pin Name Description

1
(yellow) RX Serial receive (from the base unit’s point of view, not the Grove

board’s)

2 (white) TX Serial transmit (from the base unit’s point of view, not the Grove
board’s)

3 (red) VCC Power for Grove module (5V or 3.3V)

4 (black) GND Ground

Examples of Grove UART modules are XBee wireless sockets and the
125KHz RFID reader, which is shown in Figure 2-8.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-8: A Grove UART RFID reader.

ANALOG VERSUS DIGITAL: THE DEBATE
CONTINUES

The differences between analog and digital signals are both simple and confusing. A
digital signal has a value of 1 or 0. That’s it. Analog voltages can have any voltage
value, such as 1.2V, 3.14198V, or any other floating-point value. So with analog, you
can have many different voltages. Now for the more complicated part. We represent a 1
on the devices we're talking about here as a 5V signal, and a 0 as a 0V signal. And it is
even more complicated than that. Typically, any signal above about 2.5V can be
considered a 1, and anything less than 0.7V can be considered a 0 if read by a digital
port. Let’s just treat signals for this book as digital or analog and leave it at that.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



An analog signal is used when it's important to know what voltage is present at the
signal input or output. For example, suppose that a value of 1.420V coming from a
moisture sensor indicates a dry plant and a voltage of 3.342V indicates that the plant
has plenty of water. Because the values between 1.420V and 3.342V indicate how dry
the plant is, it's important to know the actual voltage number. Later, we discuss how to
read an analog voltage into a digital computer by converting the analog voltage into a
digital number by the use of an ADC (analog-to-digital converter). Then our computer
can tell whether the plant is dry or not!

Grove I2C — Using I2C to make sense of the
world
Our favorite devices to plug into little computers are I2C (inter-
integrated circuit) sensors. Hundreds of types of inexpensive I2C sensors
are on the market. And many types of I2C Grove sensors are available to
plug and go!

The sensor shown in Figure 2-9 is a SI1145 sunlight I2C sensor. It
measures not only the visible sunlight strength but also the infrared (IR)
and ultraviolet (UV) components. This inexpensive sensor can tell you
whether you're going to get sunburned as well as if your plants are
happy! (The sensor is the little colored chip marked U1; it has a clear top
to let light through.)

You just have to love the things you can do these days with computers.

 Most I2C sensors can be used with both 3.3V and 5V base units,
but a few are only 3.3V or only 5.0V. You need to check the
specifications. If you connect a 3.3V I2C sensor to your 5V Grove
connector, you'll probably destroy the device. See Table 2-4 for the
pin descriptions of the Grove connector.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-9: The Grove I2C sunlight sensor.

TABLE 2-4 The Grove I2C Connector

Pin Name Description

1 (yellow) SCL I2C clock

2 (white) SDA I2C data

3 (red) VCC Power for Grove module (5V or 3.3V)

4 (black) GND Ground

The Grove I2C connector has the standard layout. Pin 1 is the SCL
signal and Pin 2 is the SDA signal. Power and ground are the same as
the other connectors. Often the I2C bus on a controller (such as the
ESP8266, Raspberry Pi, or Arduino) uses just digital I/O pins to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



implement the I2C bus. The pins on the Raspberry Pi and Arduino,
however, have hardware support for the I2C bus. The ESP8266 has a
purely software I2C interface, which children of the ’90s called “bit
banging.”

Connecting with Grove Cables
Many lengths of Grove cables are available, from 5cm all the way up to
50cm. (See Figure 2-10.) They have a Grove connector on each end and
are interchangeable. You use these to plug your sensors into the
Raspberry Pi.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-10: 20cm Grove cables.

And if you want to use a device or a sensor that doesn't have a Grove
connector, you can use a Grove patch cable. The Grove patch, or
adapter, cable converts pin headers to Grove connectors. Two types of
Grove adaptor cables are available. The first type is a Grove-connector-
to-female-header-pins cable, as shown in Figure 2-11.

FIGURE 2-11: Grove female header cables.

The second type is a Grove-connector-to-male-header-pins cable, as
shown in Figure 2-12. For comparison, Figure 2-10 shows normal Grove
connectors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-12: Grove male header cables.

 The power of the patch cable is that you can connect to non-
Grove sensors.

 To use a patch cable, you have to figure out what pin goes where
and that determination is based on the type of sensor and the
interface. Grove connectors support four kinds of interfaces, as we

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



talk about earlier in this chapter. Be careful and make sure you
check twice before applying power!

An example of the power of the patch!
Now we're going to figure out how to use a Grove patch cable with a
real sensor.

SunAirPlus is a solar power controller and data collector. It has an I2C
interface on the pin header that we often want to convert to Grove
connectors. We connect the cable in the following way (see Figure 2-
13):

Pin 1 – Yellow (SCL)
Pin 2 – White (SDA)
Pin 3 – Red (VDD)
Pin 4 – Black (GND)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-13: The SunAirPlus board with the Grove female header patch cable.

Figure 2-14 shows the other end of the adaptor cable plugged into the
Pi2Grover adaptor board on the Raspberry Pi.

FIGURE 2-14: A Grove adaptor cable attached to Pi2Grover.

Second example: The Adafruit Ultimate GPS
Now we do a second example with a GPS module that uses a serial
interface. The Adafruit Ultimate GPS connects to a Raspberry Pi or an
Arduino through a serial interface (UART). To use Grove connectors, we
connect the cable in the following way:

Pin 1 – Yellow (TX)
Pin 2 – White (RX)
Pin 3 – Red (VIN)
Pin 4 – Black (GND)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Note that serial connectors are a bit odd in that you need to
connect RX on the Grove connector to TX on the sensor, and TX
on the Grove connector to RX on the sensor. (See Figure 2-15.)
Flipping these lines is the most common mistake in hooking up a
serial interface.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-15: A close-up of the Adafruit GPS with a Grove patch cable.

Now that you understand how to hook up Grove modules, cables, and
connectors, it’s time to start building more complex projects in the next
chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Sensing the World

IN THIS CHAPTER
 Discovering how to use I2C sensors
 Sensing your environment with a Raspberry Pi
 Collecting and saving data
 Connecting Python to your smartphone

Sensors for the Raspberry Pi and other small computers number in the
thousands. From detecting people in front of your computer with a
passive infrared (PIR) sensor to detecting a myriad of environmental
conditions (temperature, humidity, air quality, and so on), your computer
can monitor the physical world in many inexpensive ways. In this
chapter, you discover how to program your computer to communicate
with these sensors.

To download the code for this chapter, go to
www.dummies.com/go/pythonaiofd2e.

Understanding I2C
For a computer to talk to sensors, it needs an interface. An interface
consists of a hardware interface, which contains pins, types, and voltage
levels, and a software interface, which is usually called a driver or an
API (application programming interface). In this book, the software
interface is a Python module.

You get data to your computer from your outside sensors in four major
ways:

Digital input: GPIO pins programmed to be input lines.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


Analog input: Analog values that go through an analog-to-digital
converter (ADC) to be read by a computer.
Digital I2C: A general interface used for communicating with
sensors. ITC is pronounced “I squared C” for inter-integrated circuit
bus.
Digital SPI: An interface using 1s and 0s and timing to produce a
serial peripheral interface.

In this book, we deal with sensors using digital inputs, analog inputs,
and digital I2C interfaces. SPI is a similar interface to I2C that is
supported by many sensors. Why not use SPI in this book? Just for
simplicity. Most SPI parts also have an I2C interface on the chip.

To understand the I2C interface, let’s look at what an I2C bus is. An I2C
bus is often used to communicate with chips or sensors that are on the
same board or located physically close to the CPU. I2C was developed
by Phillips (now NXP Semiconductors). To get around hardware
licensing issues (that have largely gone away), the bus is often called
TWI (two-wire interface). SMBus, developed by Intel, is a subset of I2C
that defines the protocols more strictly. Both the Arduino and the
Raspberry Pi support the I2C bus.

Every sensor on the I2C bus has an address. For example, the address of
the HDC1080 temperature and humidity sensor we use in this chapter
has an address of 0x40. The 0x means that the number that follows is in
hexadecimal notation — base 16 instead of base 10 (our normal
numbering system).

I2C provides good support for slow, close peripheral devices that need to
be addressed only occasionally. For example, a temperature-measuring
device generally changes very slowly, so it's a good candidate for an I2C
interface, whereas a camera, which generates lots of data quickly and
potentially changes often, is not.

I2C uses only two bidirectional open-drain lines: SCL (serial clock line)
and SDA (serial data line), similar to two serial data lines next to each
other. Open-drain means the device can pull a level down to ground (0)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



but can't pull the line up to Vdd (1). Thus, a requirement of the I2C bus
is that both lines are pulled up to Vdd by using a resistor.

Not properly pulling up the lines is the first and most common mistake
people make when they first use an I2C bus. The Pi2Grover board we
use in this book contains 10K Ohm pullup resistors, so you don't have to
worry about connecting pullups to the SDA and SCL signals.

You can connect two types of devices to an I2C bus: master devices and
slave devices. Typically, you have one master device (the Raspberry Pi,
in our case) and multiple slave sensors, each with an individual 7-bit
address, as shown in Figure 3-1.

FIGURE 3-1: The I2C bus.

A protocol defines how a bus behaves and is used. The I2C protocol
uses three types of messages:

Digital single message where a master writes data to a slave
Digital single message where a master reads data from a slave
Digital combined messages, where a master issues at least two reads
or writes or both to one or more slaves

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Lucky for us, almost all the complexity of dealing with the I2C bus is
hidden by Python drivers and libraries.

Enabling I2C on the Raspberry Pi

 To use the I2C bus on the Raspberry Pi, you need to make sure
that it's enabled in the operating system. Here is a good tutorial
from Adafruit on how to do just that:
https://learn.adafruit.com/adafruits-raspberry-pi-

lesson-4-gpio-setup/configuring-i2c.

Did you enable I2C correctly? The easy way to check is to type the
following command in the Terminal window:

sudo i2cdetect -y 1

If it returns the following:
-bash: i2cdetect: command not found

you have not enabled your I2C bus. Repeat the tutorial to fix this.

On the other hand, if it returns this:
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

00:          -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

you have been successful! The dashes mean there are no sensors on the
I2C bus.

The hardware for reading temperature and
humidity
To talk to an I2C device, you should have one on the bus. We start with
the HDC1080 temperature and humidity sensor, which is shown in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c


Figure 3-2. You can get one of these inexpensive sensors at
https://store.switchdoc.com or at www.amazon.com.

FIGURE 3-2: HDC1080 temperature and humidity sensor.

THE HDC1080 TEMPERATURE AND
HUMIDITY SENSOR

The HDC1080 temperature and humidity sensor is an amazing device considering how
that it costs about $8. The HDC1080 is located at I2C address 0x40.

The Grove temperature and humidity sensor (HDC1080) utilizes the HDC1080 sensor
chip from Texas Instruments and provides excellent measurement accuracy at very low
power. The sensor measures humidity based on a novel capacitive sensor. The
humidity and temperature sensors are factory calibrated. The innovative WLCSP
(wafer-level chip-scale package) simplifies board design with the use of an ultra-
compact package. The HDC1080 is functional within the full –40°C to +125°C
temperature range, and 0–100 percent relative humidity range. The accuracy of the
chip is +/− 3 percent for the relative humidity and +/− 0.2C for the temperature.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://store.switchdoc.com/
https://www.amazon.com/


Note: If you buy a non-Grove sensor on Amazon, you'll need a female-
to-Grove patch cable, as discussed in Chapter 2 of this minibook. The
SwitchDoc Labs HDC1080 sensor comes with a Grove connector. In
either case, you need the Pi2Grover Raspberry-Pi-to-Grove converter,
which was described in Chapters 1 and 2 of this minbook, which is also
available at https://store.switchdoc.com or at www.amazon.com.

Now let’s install the HDC1080 I2C sensor on our Raspberry Pi. Follow
these steps:

1. Shut down your Raspberry Pi by typing sudo halt on the
command line (or by choosing Shutdown from the GUI menu).
Then, when the yellow LED has stopped blinking, unplug the
power from your Raspberry Pi.
The sudo halt command prepares the SD card on the Raspberry Pi
for shutdown. Just unplugging your Raspberry Pi may not always
corrupt the card but if it does, repairing the card is a long, technical,
irritating process.

 Always shut down the Raspberry Pi before plugging
anything into it or pulling anything out of it. Exceptions are USB
ports, audio cables, and Ethernet cables, which are designed to
support hot-plugging.

2. Plug a Grove cable into the HDC1080, as shown in Figure 3-3.

 We are using the SwitchDoc Labs HDC1080. If you're using
a non-Grove Amazon device, you need to use a Grove patch cable,
as described in Chapter 2 of this minibook.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://store.switchdoc.com/
https://www.amazon.com/


FIGURE 3-3: HDC1080 with the Grove cable plugged in.

3. Plug the other end of the Grove cable into one of the Grove
connectors marked I2C on the Pi2Grover plugged on top of your
Raspberry Pi. (See Figure 3-4.)
Note: The I2C is a bus connected across all I2C connectors, which
means you can use any of the four I2C connectors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-4: The HDC1080 hooked up to the Raspberry Pi.

4. Power up the Raspberry Pi and open a Terminal window.
5. In the Terminal window, type sudo i2cdetect -y 1 to be

rewarded with the following:
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

00:          -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Remember the 0x40 address of the HDC1080? There it is in the
output.

Now you're ready to use Python to read the temperature and humidity
from this sensor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Reading temperature and humidity from an I2C
device using Python
The use of Python libraries are key to being productive in writing Python
applications. We will be using the SDL_Pi_HDC1080_Python3 library,
which is available on github.com at
https://github.com/switchdoclabs/SDL_Pi_HDC1080_Python3.

To read the temperature and humidity, follow these steps:

1. First, create a directory in your main directory:
cd

mkdir I2CTemperature

cd I2CTemperature

Now you're in the I2CTemperature directory.

2. Clone the library the SDL_Pi_HDC1080_Python3 library on the
Raspberry Pi.
Use the following command in the Terminal window:

git clone https://github.com/switchdoclabs/SDL_Pi_HDC1080_Python3.git

Here git clone clones the git repository and copies it to your
Raspberry Pi. If you enter ls in the Terminal window, you'll see the
following output:

pi@RPi3-60:~/I2CTemperature $ ls

SDL_Pi_HDC1080_Python3

pi@RPi3-60:~/I2CTemperature $

3. Using nano (or your favorite text editor), create a file and name
it temperatureTest.py and enter the following code:

import sys

 

sys.path.append('./SDL_Pi_HDC1080_Python3')

 

import time

import SDL_Pi_HDC1080

 

 

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/switchdoclabs/SDL_Pi_HDC1080_Python3


# Main Program

print

print ("")

print ("Read Temperature and Humidity from HDC1080 using I2C bus ")

print ("")

 

hdc1080 = SDL_Pi_HDC1080.SDL_Pi_HDC1080()

 

 

while True:

 

        print ("-----------------")

        print ("Temperature = %3.1f C" % hdc1080.readTemperature())

        print ("Humidity = %3.1f %%" % hdc1080.readHumidity())

        print ("-----------------")

 

        time.sleep(3.0)

4. Run the code by typing the following:
sudo python3 temperatureTest.py

You should see the following output, with new temperature and
humidity readings every three seconds:

Read Temperature and Humidity from HDC1080 using I2C bus

-----------------

Temperature = 24.2 C

Humidity = 32.9 %

-----------------

-----------------

Temperature = 24.2 C

Humidity = 32.9 %

-----------------

-----------------

Temperature = 24.2 C

Humidity = 32.9 %

-----------------

You're now reading environmental data from an I2C device. Your
Raspberry Pi is connected to the real world. Save this project. You'll
use it again later in this chapter.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Try this experiment. Blow on the HDC1080 sensor board and
watch the humidity go up! You'll see something like this:

-----------------

Temperature = 24.2 C

Humidity = 32.9 %

-----------------

-----------------

Temperature = 24.1 C

Humidity = 33.6 %

-----------------

-----------------

Temperature = 24.1 C

Humidity = 33.9 %

-----------------

-----------------

Temperature = 24.1 C

Humidity = 36.3 %

-----------------

-----------------

Temperature = 24.1 C

Humidity = 36.5 %

-----------------

-----------------

GITHUB, A REPOSITORY FOR GOOD
THINGS

Github.com is a web-based hosting service for version control using Git, a well-known
system for providing source control for software. Git, which is mostly used for computer
code, provides access control and collaboration features such as bug tracking, feature
requests, and task management.

In 2018, GitHub was acquired by Microsoft, Inc., which pledged to allow github.com to
operate as an independent division. So far, so good.

As of January 2020, GitHub reported having over 40 million users and 190 million
repositories, making it the largest host of source code in the world.

Breaking down the program

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now let's look at the temperature and humidity program and see how it
works. The first line imports the Python sys library:

import sys

The next line tells Python to search the SDL_Pi_HDC1080_Python3
directory (created by your clone command in Step 2 in the preceding
section) in our current directory so the program can find the library:

sys.path.append('./SDL_Pi_HDC1080_Python3')

More imports:
import time

import SDL_Pi_HDC1080

The next few statements print a title for the program’s output:
# Main Program

print

print ("")

print ("Read Temperature and Humidity from HDC1080 using I2C bus ")

print ("")

The next statement defines the hdc1080 object and initializes it:

hdc1080 = SDL_Pi_HDC1080.SDL_Pi_HDC1080()

These statements read the temperature and humidity and print them to
the Terminal window. Note how using the HDC1080 library hides the
complexity of using an I2C device:

while True:

        print ("-----------------")

        print ("Temperature = %3.1f C" % hdc1080.readTemperature())

        print ("Humidity = %3.1f %%" % hdc1080.readHumidity())

Sleep for three seconds and then repeat:
print ("-----------------")

time.sleep(3.0)

You could add all sorts of different functions to this program, such as
turning on a red LED if the temperature gets too hot or turning on a blue
LED if the temperature gets too cold.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 You can even tweet the temperature and humidity by using the
https://python-twitter.readthedocs.io Python library.

UNDER THE HOOD OF AN I2C DRIVER
I2C devices have not only an address (such as 0x40, the address of our HDC1080) but
also registers. You can think of a register as a numbered address in which to write
commands and read data. The HDC1080 has eight different registers, as shown in the
figure below.

An I2C driver basically reads from these addresses and writes from these addresses to
control the HDC1080 and to read the temperature and humidity data. The following
figure shows the format of the temperature register located at pointer address 0x00.

In the SDL_Pi_HDC1080 Python library, take a look at the Python code to read that I2C
register:

        def readTemperature(self):

 

                s = [HDC1080_TEMPERATURE_REGISTER] # temp

                s2 = bytearray( s )

                HDC1080_fw.write( s2 )

                time.sleep(0.0625)  # From the data sheet

 

                #read 2 byte temperature data

                data = HDC1080_fr.read(2)

 

                buf = array.array('B', data)

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://python-twitter.readthedocs.io/


 

                # Convert the data

                temp = (buf[0] * 256) + buf[1]

                cTemp = (temp / 65536.0) * 165.0 - 40

                return cTemp

This looks intimidating but it isn't as complicated as it seems. Breaking it down, we first
define the function:

        def readTemperature(self):

Then we format the pointer address (0x00 in this case) into a byte array:

                s = [HDC1080_TEMPERATURE_REGISTER] # temp

                s2 = bytearray( s )

We first write the register address:

                HDC1080_fw.write( s2 )

We delays 62.5ms, as required by the data sheet. (You can find the data sheet by
searching for HDC1080 on www.ti.com.)

               time.sleep(0.0625)  # From the data sheet

We read two bytes:

                #read 2 byte temperature data

                data = HDC1080_fr.read(2)

And place the two bytes into a byte array:

                buf = array.array('B', data)

Then we convert the data bytes using the formula in the data sheet:

                # Convert the data

                temp = (buf[0] * 256) + buf[1]

                cTemp = (temp / 65536.0) * 165.0 – 40

And send the temperature back to the calling program:

               return cTemp

You can find many low-level drivers and programs that read from and write to I2C
devices on the Raspberry Pi. This driver is one of the most common. Other drivers
include Adafruit_i2c, SMBUS, PyComms, and Quick2Wire. You'll typically use the
SMBUS library, but once in a while you'll run into a device that requires some non-
SMBUS functionality.

Measuring Oxygen and a Flame

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.ti.com/


The next experiment is more complex. We take a Grove oxygen sensor
and place it under a partially sealed glass jar with a lit candle, and then
measure the oxygen in the glass jar and watch the level go down as the
candle consumes the oxygen. A quick web search tells us that the
oxygen should drop about 30 percent before the flame is extinguished,
from 21 percent oxygen to about 14.7 percent oxygen. We watch the
data on the browser window running on the Raspberry Pi.

We store the information in a CSV file (comma-delimited file), which
we will graph later using MatPlotLib. We could also read this data into
an Excel spreadsheet and graph it using Excel.

 MatPlotLib is a Python library for making publication-quality
plots using methods similar to MATLIB. You can output formats
such as PDF, Postscript, SVG, and PNG.

You need to the following to do this experiment:

Analog-to-digital converter: Converts the analog output of the
oxygen sensor to digital data for the Raspberry Pi.
Grove oxygen sensor: Measures the percentage of oxygen in the air
and converts it to an analog value (0V–5V).
Candle: Consumes the oxygen in the bowl. You can use any candle
as long as it fits under the bowl.
Large glass bowl: Covers and seals the candle so we can measure
the oxygen.

Analog-to-digital converters (ADC)
An analog-to-digital converter takes an analog signal and converts it to a
digital signal (16 bits, in this case) for a computer to read. (See the
difference between analog and digital signals in Chapter 2 of this
minibook.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



When you have the digital number in the computer, you can convert it
back to volts by multiplying the digital number by 5.0/32768.0 to
produce a floating-point number representing volts. 32768 is 2 raised to
the 15th power, representing 15 bits, with the 16th bit representing the
sign. These numbers come from the fact that we're using a 16-bit ADC.

The Grove analog-to-digital converter we use in this experiment, shown
in Figure 3-5, is a Grove four-channel, 16-bit analog-to-digital converter
available at https://store.switchdoc.com and www.amazon.com. Other
Grove ADC modules are available, but we wanted to use a 16-bit ADC
converter for greater accuracy.

The Grove oxygen sensor
The Grove gas sensor (O2), shown in Figure 3-6, tests the oxygen
concentration in the air. It detects the current oxygen concentration and
outputs voltage values proportional to the concentration of oxygen. This
would be a fun sensor to use in a greenhouse. What? Another project?

FIGURE 3-5: The Grove four-channel, 16-bit ADC.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://store.switchdoc.com/
https://www.amazon.com/


FIGURE 3-6: The Grove oxygen sensor.

You can buy the Grove oxygen sensor for about $55 at
www.seeedstudio.com or www.amazon.com.

The sensor value reflects only the approximate trend of oxygen gas
concentration in a permissible error range. The Grove gas sensor
requires about a 30-minute warm-up. Reading a more exact amount of
oxygen would require a more precise and costly instrument.

Hooking up the oxygen experiment
By now, you have quite a bit of experience hooking up Grove devices to
the Raspberry Pi. Follow these steps to set up the oxygen sensor:

1. Shut down your Raspberry Pi by typing sudo halt on the
command line (or by choosing Shutdown from the GUI menu).
Then, when the yellow LED has stopped blinking, unplug the
power from your Raspberry Pi.

2. Plug one end of a Grove cable into the Grove oxygen sensor, and
plug the other end into the Grove connector marked A1 on the
Grove four-channel, 16-bit ADC board.

3. Plug another Grove cable into the Grove connector marked I2C
on the Grove four-channel, 16-bit ADC board. Plug the other
end of the Grove cable into one of the connectors marked I2C on
the Pi2Grover board plugged into the Raspberry Pi, as shown in
Figure 3-7.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.seeedstudio.com/
https://www.amazon.com/


4. Apply power to the Raspberry Pi.
5. Run the command i2cdetect -y 1 in a Terminal window.

FIGURE 3-7: The complete Raspberry Pi/ADC/oxygen sensor hookup.

You should see this output:
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

00:          -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Address 0x48 is the Grove four-channel, 16-bit ADC board. If you don’t
see this output, go back and check your wiring.

Now we'll test the setup by running a simple Python program. First make
a new directory for the program:

cd

mkdir oxygenProject

cd oxygenProject

git clone https://github.com/switchdoclabs/SDL_Pi_Grove4Ch16BitADC

Then use nano to enter the following code into a file called
senseOxygen.py in your Terminal window:

import time,  sys

 

sys.path.append('./SDL_Pi_Grove4Ch16BitADC/SDL_Adafruit_ADS1x15')

 

import SDL_Adafruit_ADS1x15

 

ADS1115 = 0x01    # 16-bit ADC

 

# Select the gain

gain = 6144  # +/- 6.144V

 

# Select the sample rate

sps = 250  # 250 samples per second

 

# Initialize the ADC using the default mode (use default I2C address)

adc = SDL_Adafruit_ADS1x15.ADS1x15(ic=ADS1115)

dataFile = open("oxygenData.csv",'w')

 

totalSeconds = 0

while (1):

 

        # Read oxygen channel  in single-ended mode using the settings above

        print ("--------------------")

        voltsCh1 = adc.readADCSingleEnded(1, gain, sps) / 1000

        rawCh1 = adc.readRaw(1, gain, sps)

 

        # O2 Sensor

        sensorVoltage = voltsCh1 *(5.0/6.144)

        AMP  = 121

        K_O2  = 7.43

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



        sensorVoltage = sensorVoltage/AMP*10000.0

        Value_O2 = sensorVoltage/K_O2 - 1.05

 

        print ("Channel 1 =%.6fV raw=0x%4X O2 Percent=%.2f" % (voltsCh1, 

rawCh1, Value_O2 ))

        print ("--------------------")

 

        dataFile.write("%d,%.2f\n" % (totalSeconds, Value_O2))

        totalSeconds = totalSeconds + 1

        dataFile.flush()

        time.sleep(1.0)

 When you have finished using the oxygen sensor, make sure you
put it back in the included capped container and seal the top.
Otherwise, humidity will destroy the sensor over time. (We've
destroyed these sensors in the past by leaving them unsealed.)

When we ran the program, we got the following the results:
--------------------

Channel 1 =2.436375V raw=0x32C2 O2 Percent= 22.05

--------------------

--------------------

Channel 1 =2.436375V raw=0x32C2 O2 Percent= 22.05

--------------------

--------------------

Channel 1 =2.436375V raw=0x32C1 O2 Percent= 22.05

--------------------

--------------------

Channel 1 =2.436375V raw=0x32C2 O2 Percent= 22.05

--------------------

--------------------

Channel 1 =2.436187V raw=0x32C1 O2 Percent= 22.05

--------------------

Breaking down the code
Now let’s examine the code for this project. In these statements, we set
the parameters for the ADC module:

import time,  sys

 

sys.path.append('./SDL_Pi_Grove4Ch16BitADC/SDL_Adafruit_ADS1x15')

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



import SDL_Adafruit_ADS1x15

 

# Normal Imports.  Notice the path goes to the subdirectory in your 

directory.

 

ADS1115 = 0x01       # 16-bit ADC

 

# Select the gain

gain = 6144  # +/- 6.144V

 

# Select the sample rate

sps = 250  # 250 samples per second

Then we open the text file to store our data, which we will graph later
with Excel or another method:

# Initialize the ADC using the default mode (use default I2C address)

adc = SDL_Adafruit_ADS1x15.ADS1x15(ic=ADS1115)

 

dataFile = open("oxygenData.csv",'w')

Read the data from the ADC. We also show the raw data from which we
calculate the voltage:

totalSeconds = 0

while (1):

 

        # Read oxygen channel  in single-ended mode using the settings above

 

        print ("--------------------")

        voltsCh1 = adc.readADCSingleEnded(1, gain, sps) / 1000

        rawCh1 = adc.readRaw(1, gain, sps)

The voltsCh1 formula is from the specification of the O2 sensor
(www.seeedstudio.com/Grove-Oxygen-Sensor-ME2-O2-f20.html). The
formula allows us to calculate O2 percentage given the 16 bits of data
from the ADC:

        # O2 Sensor

        sensorVoltage = voltsCh1 *(5.0/6.144)

        AMP  = 121

        K_O2  = 7.43

        sensorVoltage = sensorVoltage/AMP*10000.0

        Value_O2 = sensorVoltage/K_O2 - 1.05

Here we write the data to the file:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.seeedstudio.com/Grove-Oxygen-Sensor-ME2-O2-f20.html


        print ("Channel 1 =%.6fV raw=0x%4X O2 Percent=%.2f" % (voltsCh1, 

rawCh1, Value_O2 ))

        print ("--------------------")

 

        dataFile.write("%d,%.2f\n" % (totalSeconds, Value_O2))

We flush the file to make sure the last value is written to the file. We
eventually terminate this program with by pressing Ctrl-C:

        totalSeconds = totalSeconds + 1

        dataFile.flush()

Interpreting the results
Now that you have built the software, put your candle under the bowl
with the oxygen sensor, start your program, and light the candle. See
Figure 3-8. After a while, the flame will go out. Stop your program by
pressing Ctrl-C.

        time.sleep(1.0)

The data is in the directory that contains your program in a file called
oxygenData.csv. Use Excel to graph your data. If you need a tutorial on
that process, go to www.workzone.com/blog/how-to-make-a-graph-in-
excel/.

Looking at the numbers in Figure 3-9, we determined that we started
with about 21 percent oxygen and the candle went out at about 15.8
percent oxygen, a reduction of about 25 percent from start to finish. The
15.8 percent ending value is higher than the expected 30 percent
reduction of oxygen levels (a 14.7 percent ending value). We suspect
that the difference is due to sensor accuracy and candle type. Also note
the graph right after the candle went out. The oxygen started to creep up,
indicating that the seal wasn't perfect.

To see a video of the experiment, go to
https://youtu.be/3amRqlYoVzo.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.workzone.com/blog/how-to-make-a-graph-in-excel/
https://youtu.be/3amRqlYoVzo


FIGURE 3-8: The start of our O2 experiment.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-9: The graph of the data from our O2 experiment.

Building a Dashboard on Your
Phone with Blynk

When you drive a car, all the information about your speed, how much
fuel remains, and more is on your dashboard. We're going to show you
how to construct a simple dashboard so you can view project data on
your smartphone. We use the free Blynk app (free for small dashboards;
they charge to build more controls). This app is available in the various
app stores for Android and iPhone. We use the iPhone for our example,
but the process is almost identical for Android phones.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



HDC1080 temperature and humidity sensor
redux
Earlier in the chapter, you built a temperature and humidity sensing
project using a Raspberry Pi. Grab that project now and let's write more
software to connect it to Blynk and display our values on the phone.
Figure 3-10 shows what the dashboard will look like.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-10: The MyTemperature dashboard.

OTHER DASHBOARDS

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Blynk is not the only Internet dashboard available. You can also check out the following:

Freeboard

XOBXOB

Adafruit IO

ThinkSpeak

IBM Cloud

Initialstate

All have different strengths and weaknesses, as well as a free option.

Adding the Blynk dashboard
First, we show you how to set up the Blynk app. We do the setup on an
iPhone, but the process is similar on an Android phone. And the Python
is identical in both cases! Blynk uses the concept of energy, which
allows you to use widgets. You start with 2,000 units of energy for
experimentation, which is sufficient for this project. You can purchase
more if needed.

1. Install the Blynk app on your mobile phone. Then open the app
and create an account.
See Figure 3-11. You need to set up an account and provide your
email address, but you won’t be charged for this.

2. Tap the QR icon to scan a QR (Figure 3-12, left), and then scan
the QR code (Figure 3-12, right).
The MyTemperature app appears on your screen.

3. After opening the app, tap the nut icon (Figure 3-13, right) to go
to project settings.

4. RP the E-Mail button to send the authentication token (Auth
Token) to your email, as shown in Figure 3-14.
You can copy and paste the token in an email to yourself (or use the
E-Mail button at the bottom of the screen) or into some other secure
document. You'll be adding the token to the Python
temperatureTest.py program file in the next section.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-11: Blynk in the App Store (left) and creating a Blynk account (right).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-12: Click for QR (left), and then scan the QR to generate your myTemperature
app in Blynk.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-13: The MyTemperature app (left) and the initial screen of the Blynk app (right).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-14: The authentication token in the MyTemperature app project settings.

You've completed the Blynk myTemperature app installation. Now let's
modify the software to support the Blynk app.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The modified temperatureTest.py software for the
Blynk app
To modify the software to support the Blynk app, follow these steps:

1. Create a directory in your main directory by entering the
following:

cd

mkdir myTemperature

cd myTemperature

Now you're in the myTemperature directory.

2. Install the Blynk library on the Raspberry Pi by cloning the
library located at github.com. Use the following command in the
Terminal window:

git clone https://github.com/switchdoclabs/SDL_Pi_HDC1080_Python3.git

3. Use nano (or your favorite editor) to enter the following code
into a file named myTemperature.py:

#!/usr/bin/env python3

 

#imports

 

import sys

 

sys.path.append('./SDL_Pi_HDC1080_Python3')

 

import time

import SDL_Pi_HDC1080

 

import requests

import json

 

 

BLYNK_URL = 'http://blynk-cloud.com/'

BLYNK_AUTH = 'xxxx'

 

# Main Program

print

print ("")

print ("Read Temperature and Humidity from HDC1080 using I2C bus and 

""send to Blynk ")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/switchdoclabs/SDL_Pi_HDC1080_Python3.git


print ("")

 

hdc1080 = SDL_Pi_HDC1080.SDL_Pi_HDC1080()

 

def blynkUpdate(temperature, humidity):

    print ("Updating Blynk")

 

    try:

 

        put_header={"Content-Type": "application/json"}

        val = temperature

        put_body = json.dumps(["{0:0.1f}".format(val)])

        r = requests.put(BLYNK_URL+BLYNK_AUTH+'/update/V0', 

data=put_body, headers=put_header)

 

 

        put_header={"Content-Type": "application/json"}

        val = humidity

        put_body = json.dumps(["{0:0.1f}".format(val)])

        r = requests.put(BLYNK_URL+BLYNK_AUTH+'/update/V1', 

data=put_body, headers=put_header)

 

 

        put_header={"Content-Type": "application/json"}

        val = time.strftime("%Y-%m-%d %H:%M:%S")

        put_body = json.dumps([val])

        r = requests.put(BLYNK_URL+BLYNK_AUTH+'/update/V2', 

data=put_body, headers=put_header)

    

        return 1

 

    except Exception as e:

                print ("exception in updateBlynk")

                print (e)

                return 0

 

while True:

        

        temperature =  hdc1080.readTemperature()

        humidity = hdc1080.readHumidity()

 

        print ("-----------------")

        print ("Temperature = %3.1f C" % hdc1080.readTemperature())

        print ("Humidity = %3.1f %%" % hdc1080.readHumidity())

        print ("-----------------")

 

 

        blynkUpdate(temperature, humidity)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

        time.sleep(3.0)

This code updates your Blynk app every three seconds.

 If you update your Blynk app more than once a second, you
may be disconnected from the server. Be a good Blynk citizen and
keep your updates to less than ten values per second.

4. Replace the xxxx with the Blynk authorization token you copied
in Step 4 in the preceding section.
For example, we replaced

BLYNK_AUTH = 'xxxx'

with
BLYNK_AUTH = '445730794c1c4c8ea7852a31555f44444'

 You must use the authorization code you were emailed. The
example code shown here will not work.

Breaking down the code
Now let’s break down the code section by section. The following code is
similar to the HDC1080 code from earlier in this chapter, with the
exception of the blynkUpdate code:

def blynkUpdate(temperature, humidity):

    print ("Updating Blynk")

    try:

Why do we have a try: here? Because sometimes the requests library
will throw an error if the Internet is being funky. The try: / except:
code will trap any error from the requests library and continue to try
again.

Next, we set up the required http header for the requests library:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



put_header={"Content-Type": "application/json"}

THE REQUESTS LIBRARY
The Python requests library allows you to use Python to send HTTP/1.1 requests and
access the response data of the requests. It's designed to enable humans to interact
with http requests without exposing the complexity of the requests. Very Pythonic.

The following code sets the number of digits to the right of the decimal
point to only 1 so we won't have long numbers of relatively meaningless
digits because of the accuracy of the HDC1080:

val = temperature

put_body = json.dumps(["{0:0.1f}".format(val)])

The following code transfers the data to the Blynk server in the form of
an http request:

r = requests.put(BLYNK_URL+BLYNK_AUTH+'/update/V0', data=put_body, 

headers=put_header)

Here we print to the Terminal screen any exception. If you get an
authentication error, the except: clause will also help you figure out if
you've set the Blynk authentication code incorrectly:

except Exception as e:

              print ("exception in updateBlynk")

              print (e)

              return 0

Next, let’s run the program:
Sudo python3 myTemperature.py

You see this type of output on the terminal screen:
-----------------

Temperature = 22.6 C

Humidity = 36.8 %

-----------------

Updating Blynk

-----------------

Temperature = 22.5 C

Humidity = 36.8 %

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



-----------------

Updating Blynk

Tap the run icon (left-pointing triangle) at the top-right of your Blynk
app on the phone, and then watch the data start to come in. If you don’t
get data in a few seconds, check your authentication code and make sure
you've started the app by tapping the run icon in the upper-right corner
of the app.

Your results should look like Figure 3-15.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 3-15: The MyTemperature app’s Live view.

Note that the Live display on the graph can look a little strange.
However, your other displays (selected by clicking 1h, 5h, 1d, and so on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



below the graph) will start filling in and look the way you would expect
a graph of your local temperature should look.

Where to Go from Here
In this chapter, you learned a lot about how to connect to the physical
world on your Raspberry Pi. To build on your new expertise, we suggest
that you make some of the following modifications to your project:

Add more I2C sensors to your Raspberry Pi. You can choose from
hundreds.
Add a digital sensor to your Pi, such as a PIR detector to detect
warm bodies (such as humans) in front of your Raspberry Pi.
Add an I2C compass and accelerometer to your Pi.
Build larger and more complex dashboards, and show off your
project by sharing your authentication code with your friends.
Add a motor to make things move. Oh wait! You do that in the next
chapter!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Making Things Move

IN THIS CHAPTER
 Moving things with Python
 Understanding DC motors and software
 Using a servo motor
 Making a stepper motor step

Making things move around with Python is undeniably cool. With
motors, physical computing goes to a whole new level.

Robots, microwaves, refrigerators, and electric cars use electric motors
to move around, blow air, pump coolant, and take you 60 mph wherever
you want to go. Electric motors are everywhere — they consume more
than half the electric energy produced in the United States.

At its simplest, an electric motor is a machine that converts electrical
energy into mechanical energy. In this chapter, we talk about DC (direct
current) motors. Direct current is a single, fixed voltage, such as 9V or
5V or 3.3V. Alternating current (AC), on the other hand, is what you get
out of your house outlets.

To download the code for this chapter, go to
www.dummies.com/go/pythonaiofd2e.

Exploring Electric Motors
All motors use magnets to create motion. All magnets have a north and a
south pole. North to north and south to south repel each other whereas
north and south attract. Clever people have figured out how to use this
fact to create motion. We're all familiar with permanent magnets, like the
ones you use to hang things on the front of your refrigerator. However,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


you can also create magnets (specifically, a magnetic field) by running a
current around a coiled wire. By periodically reversing the current
through this electromagnet, you can create force, which then becomes
motion. There are many ways to build motors, but the electromagnet is
the fundamental basis of all of them.

In this chapter, we describe three common types of motors used in small
projects and robots:

Small DC motors
Servo motors
Stepper motors

Small DC motors
A DC motor has two wires: power and ground. (See Figure 4-1.) When
you supply power (putting 5V on the power line, for example), the motor
will start spinning. Reverse the power and ground wires, and the motor
will spin in the opposite direction.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-1: A DC motor on a small robot.

You control the speed of a DC motor by using pulse width modulation
(PWM), a technique you saw in Chapter 1 of this minibook for
controlling the brightness of an LED. If the power is cycled at 50 percent
(half on/half off), the motor will spin at one-half the speed. These DC
motors are inexpensive and great for driving wheels. Sometimes we put
an encoder on the motor shaft so we can read how far the shaft has
turned, giving the computer some feedback that can be useful.

Use a DC motor anytime you want something to be spun at a particular
revolutions per minute (RPM), such as a fan or a car wheel.

Servo motors
A servo motor is generally a combination of three things: a DC motor, a
simple control circuit, and a set of gears. Sometimes a servo motor
includes a potentiometer (variable resistor) that will give position

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



feedback like the encoder in the DC motor discussed in the preceding
section.

The servo motor is commanded to go to a specific position by using our
friend PWM again. However, in this case, a specific pulse wave holds
the motor in a specific position and resists a load or a force trying to
move the motor. The maximum amount of force that the servo motor can
exert against an external force or load is called the torque rating. Servos
are continuously powered and generally have only about a 180 degree
range of motion.

You find servo motors in flaps on model RC (remote control) airplanes,
rudder control on RC boats, and some types of robot arms. When you
want to move an object and hold it at a specific position, a servo motor is
often the answer.

Stepper motors
A stepper motor is similar to a servo motor but uses a different method
to move the shaft. See Figure 4-2. Whereas a servo motor uses a DC
motor, a stepper motor uses multiple-toothed electromagnets
surrounding a central-toothed shaft.

Stepper motors use an external controller (you'll use the Raspberry Pi)
that sequences the electromagnets surrounding the central shaft to make
it turn in steps, hence the name stepper motor. Unlike a servo motor, a
stepper motor provides a steady holding torque even when it's not
powered up and doesn’t require a feedback system to determine its
position. As long as the load is within the limits of the servo motor
torque, there are no positional errors.

Stepper motors are for slow, precise rotation. 3D printers are a great
example of the use of stepper motors.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-2: Sun-tracking solar panels using a stepper motor.

Next, we get to have some fun showing you how to use Python to
control these three types of motors with GPIO (general-purpose input-
output) pins and an I2C controller.

Controlling a DC Motor
You can drive DC motors from a Raspberry Pi in lots of different ways.
Dozens of robot controllers and motor controller boards will work for
this project. The one we use is an I2C controlled board (tying in with our
projects from the last chapter), which gives us control over two motors,
their individual direction, and their individual speed. Pretty cool.

Here is the parts list:

Pi2Grover Grove interface board: Buy this at
https://shop.switchdoc.com or https://amazon.com.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://shop.switchdoc.com/
https://amazon.com/


Grove I2C motor driver: Available (with a Grove cable) at
www.seeedstudio.com or https://amazon.com.

Two small DC motors: Go to www.adafruit.com/product/711 or
https://amazon.com.

For more on the Pi2Grover board, refer to Chapters 1–3 of this
minibook. Let’s spend some time on the Grove I2C motor driver because
it has a unique way of controlling motors.

Grove I2C motor driver
The Grove I2C motor drive, shown in Figure 4-3, can drive two motors
at the same time, all controlled by the I2C bus from the Raspberry Pi.
The I2C motor driver handles all the complexity of controlling the DC
motors while presenting a simple way of controlling the motors via a
Python program.

FIGURE 4-3: The Grove I2C motor driver.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.seeedstudio.com/
https://amazon.com/
https://www.adafruit.com/product/711
https://amazon.com/


The Grove I2C driver can drive up to 2A for each motor, but we are
using motors a lot smaller than that. It can optionally handle 6V to 15V
motors, but again, we are using small motors, so we will just use the
Raspberry Pi power supply. If you're using bigger motors or want to use
an external power supply, you can still use this board.

Figure 4-4 shows the components on the I2C motor driver board. Note
that the board has another small computer, an Atmega 8L, which
emulates an I2C interface, processes commands coming from your
Raspberry Pi, and then controls the motors — all at once. Yet another
example of how even boards for little computers have little computers
on them. Computers are everywhere!

FIGURE 4-4: Annotated diagram of the I2C motor driver board.

You can see the two motor connections on the left side of the board.
LEDs on the board show what the board is currently controlling and
powering. Figure 4-5 shows the Adafruit DC motor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-5: The Adafruit DC motor.

Let’s wire the motors and the motor controller and start our engines!
Shut down and turn off the power on your Raspberry Pi before you
follow these steps:

1. Loosen the set of two screw terminals on the end of the I2C
motor controller board and insert the bare end of the wires on
the motors (see Figure 4-6) into the holes.
Note that with DC motors, it doesn’t matter which color wire goes in
which screw hole. The motor will just rotate in the opposite
direction. Just match the colors into each side as you wire both
motors. We added some length to the wires, but that is optional.
Figure 4-7 shows the installed motor on your Grove I2C motor drive
board.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-6: The wires in the I2C motor drive screw terminals.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-7: Motors installed on the motor drive.

2. Check that you have the jumper in place on the board (refer to
Figure 4-4).
The jumper is called Output for external MCU selector in the
diagram. It comes that way in the package, but make sure anyway.
The board won’t operate as wired if the jumper is not installed.

3. Plug one end of a Grove cable into the Grove connector on the
Grove I2 motor driver board and plug the other end into an I2C
Grove connector on the Pi2Grover board.

Now, power up the Raspberry Pi so you can start writing some Python!
After power up, all five LEDs should be lit on the Grove I2C motor
drive board. If not, shut down the Pi again and check your wiring.

Python DC motor software
DC motors are often used for robot wheels, so the words forward and
backward should start to give you some ideas for later in the book when

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



you build a robot car.

The software we use for the Python DC motor experiment will be
familiar because it's similar to the I2C project software we dealt with in
Chapters 2 and 3.

The use of Python libraries is key to being productive in writing Python
applications. We use SDL_Pi_GroveI2CMotorDrive, which is available
on https://github.com/switchdoclabs.

 If your I2C motor driver board and motor don't respond after
hookup, try pressing the Reset button on the I2C motor driver
board. (The button is in the lower-right corner of Figure 4-4.)
Figure 4-8 shows the assembled motor and I2C motor driver board.

To set up the software, follow these steps:

1. Create a directory in your main directory by entering the
following:

cd

mkdir dcMotor

cd dcMotor

Now you're in the dcMotor directory.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/switchdoclabs


FIGURE 4-8: The DC motor setup.

2. Install the SDL_Pi_GroveI2CMotorDrive Python3 library on the
Raspberry Pi by using the following command in your Terminal
window to clone the library:

git clone 

https://github.com/switchdoclabs/SDL_Pi_GroveI2CMotorDrive.git

The git clone command clones the git repository located at the
address and copies it to your Raspberry Pi. If you enter ls in the
terminal window, you'll see the following output:

pi@RPi3-60:~/dcMotor $ ls

SDL_Pi_GroveI2CMotorDrive

3. Using nano (or your favorite text editor), create a file called
dcmotorTest.py and enter the following code:

import sys

sys.path.append("./SDL_Pi_GroveI2CMotorDrive")

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



import SDL_Pi_GroveI2CMotorDrive

import time

 

#"0b1010" defines the output polarity

#"10" means the M+ is "positive" while the M- is "negative"

 

MOTOR_FORWARD =  0b1010

MOTOR_BACKWARD =  0b0101

 

 

try:

 

    m= SDL_Pi_GroveI2CMotorDrive.motor_drive()

 

    #FORWARD

    print("Forward")

    #defines the speed of motor 1 and motor 2;)

    m.MotorSpeedSetAB(100,100)

    m.MotorDirectionSet(MOTOR_FORWARD)

    time.sleep(2)

 

    #BACK

    print("Back")

    m.MotorSpeedSetAB(100,100)

    #0b0101  Rotating in the opposite direction

    m.MotorDirectionSet(MOTOR_BACKWARD)

    time.sleep(2)

 

    #STOP

    print("Stop")

    m.MotorSpeedSetAB(0,0)

    time.sleep(1)

 

    #Increase speed

    for i in range (100):

        print("Speed:",i)

        m.MotorSpeedSetAB(i,i)

        time.sleep(.02)

    print("Stop")

    m.MotorSpeedSetAB(0,0)

 

except IOError:

    print("Unable to find the I2C motor drive")

    print("Hit Reset Button on I2C Motor Drive and Try Again")

This program runs both motors forward at full speed (100), runs them
backward at full speed, stops the motors, runs them backward at a slow

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



speed ramping up to full speed, and then stops the motors.

The key aspects of this software are calls to the
SDL_Pi_GroveI2CMotorDrive library. The library supports the following
functions:

MotorSpeedSetAB( MotorSpeedA, MotorSpeedB): This function sets
the motor speed for the A motor (M1) and the B motor (M2). The
range for the motor speed is 0–100.
MotorDirectionSet(Direction): This function controls whether the
motors go forward or backward by using the constants set in the
program, which are MOTOR_FORWARD = 0b1010 and MOTOR_BACKWARD
= 0b0101.

The SDL_Pi_GroveI2CMotorDrive library uses the smbus library, one of
many I2C Python libraries available. For example, in the smbus library,
you send the command to the I2C board as a block write consisting of
the I2C address, a command byte, and then the arguments. Here is the
I2C smbus call for setting the motor direction:

    #Set motor direction

    def MotorDirectionSet(self,Direction):

        bus.write_i2c_block_data(self.I2CMotorDriveAdd, self.DirectionSet, 

[Direction,0])

        time.sleep(.02)

Time to run the DC motors. Type this in your Terminal window:
sudo python3 testMotor.py

You are rewarded by seeing the LEDs change and the motors go through
the sequence you programmed in Python. You should be able to make
your own sequences easily from this example.

 All these motors take power from the Raspberry Pi when
running, so shut down the Pi and then disconnect the DC motors
when you're ready to move to the next section.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Running a Servo Motor
A servo motor is a different beast than a DC motor. A servo motor has a
DC motor inside, but it also has a controller circuit that allows you to
move and hold the DC motor at a specific position. Servo motors are
great on a robot arm, where you want the arm to move to a specific
position, but not so great for an application that requires a circular
motion, such as wheels on a robot.

You control servo motors by using PWM (pulse width modulation).
Although you can buy boards that will do PWM (and support bigger
servo motors!) under control of your computer, for this small servo we
will be using the built-in PWM capability of the GPIO (general purpose
input-output) pins of the Raspberry Pi.

Here is the parts list:

Pi2Grover Grove interface board: Buy this at
https://shop.switchdoc.com or https://amazon.com.

SG90 micro servo motor: Try www.ebay.com or
https://amazon.com. These motors are inexpensive, so you may
end up having to buy two or more for under $10.
A package of Grove male jumper patch cables: You want the
Grove-4-male-pin-to-Grove-conversion cables, which are available
at https://shop.switchdoc.com/products/grove-4-pin-male-
jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack and
https://amzn.to/3nyGbic.

We describe the Pi2Grover in Chapters 1, 2, and 3 of this minibook.

The SG90 micro servo motor, shown in Figure 4-9, is a small,
inexpensive servo motor available from many sources. It can turn about
90 degrees in each direction, for a total of 180 degrees. It has an
operating voltage of 3.0V to 7.0V with a current draw of about 40mA
(40 milliamps; a milliamp is 1/1000th of an amp of current) at
maximum, so the 5V on the Raspberry Pi can easily operate this servo.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://shop.switchdoc.com/
https://amazon.com/
https://www.ebay.com/
https://amazon.com/
https://shop.switchdoc.com/products/grove-4-pin-male-jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack
https://amzn.to/3nyGbic


FIGURE 4-9: The SG90 micro servo with wires.

HOW MUCH CURRENT CAN THE
RASPBERRY PI SUPPLY TO THE 5V PINS?
Are you wondering how much current the Raspberry Pi 3 can supply to the 5V pins?
Unfortunately, there isn't a simple answer to this question because it depends on what
is connected to the Raspberry Pi 3 and the type of USB power supply you're using.
250mA is a good number as a general rule, but if you have a beefy 5V USB power
supply (say 2.5A), you can go a lot higher, up to 1000mA or more. The Raspberry Pi 3
has a 2.5A fuse on the 5V power supply. The fuse is resettable, so if you pop it, just let
it cool down and it will work again.

Most servo motors, including the SG90, have three control wires:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Yellow: PWM control signal
Red: Power (5V, in our case)
Brown: Ground

You use the Grove-male-pin-to-Grove-connector patch cables, shown in
Figure 4-10, to make a connection between the three pins on the servo to
a Grove connector. Then you can plug the Grove end of the cable into
your Raspberry Pi Pi2Grover board.

FIGURE 4-10: Grove male-pin-to Grove-connector patch cable.

Now let's connect the wires and make the servo motor rock!

1. Shut down your Raspberry Pi and remove power.
2. Plug one end of the Grove patch cable into your SB90 servo

motor (see Figure 4-11), following the wire chart in Table 4-1.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Check your wiring carefully. You can damage your Pi and
motor if you reverse these wires.

FIGURE 4-11: Servo motor correctly wired to the patch cable.

TABLE 4-1 Servo Motor to Patch Cable Wiring

SG90 Servo Grove Patch Cable Function

Yellow wire Yellow wire PWM signal

Red wire Red wire Power

Brown wire Black wire Ground

3. Plug the other end of the Grove patch cable into the Pi2Grover
Grove connector marked D4/D5.

4. Put a piece of electrical tape or blue tape over the unused white
exposed pin on the Grove patch cable to keep it from shorting
something.

5. Put one of the supplied rocker arms on the servo motor gear so
you can more easily see its range of motion, as shown in Figure

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



4-12.

Now let’s look at the Python software.

FIGURE 4-12: Fully connected Pi and servo motor.

Python servo software
To control the servo motor, we aren't going to use a higher-level servo
library (and there are many available for the Raspberry Pi in Python).
Instead, we us GPIO and the PWM function of the RPi GPIO built-in
library. Okay, okay. We are using a library (RPi.GPIO), but we're not
adding layers of API (application programming interface) calls like we
normally would do. We’re getting down and dirty with the GPIO pins.
To do so, follow these steps:

1. Create a directory in your main directory by entering the
following:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



cd

mkdir Servo

cd Servo

2. Using nano (or another text editor), create a file called
servoTest.py and enter the following Python code:

import RPi.GPIO as GPIO

import time

 

 

GPIO.setmode(GPIO.BCM)

ServoPin = 4

 

GPIO.setup(ServoPin, GPIO.OUT)

 

p = GPIO.PWM(ServoPin, 50)

p.start(7.5)

 

try:

    while True:

        p.ChangeDutyCycle(7.5)  # turn towards 90 degree

        print ("90 degrees")

        time.sleep(1) # sleep 1 second

        print ("0 degrees")

        p.ChangeDutyCycle(2.5)  # turn towards 0 degree

        time.sleep(1) # sleep 1 second

        print ("180 degrees")

        p.ChangeDutyCycle(12.5) # turn towards 180 degree

        time.sleep(1) # sleep 1 second

 

 

except KeyboardInterrupt:

    p.stop()

    GPIO.cleanup()

Breaking down the code
Time to go through the code line by line and understand the
functionality. The following code sets the pin number to the D4/5 Grove
connector on the Pi2Grover board:

import RPi.GPIO as GPIO

import time

 

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



GPIO.setmode(GPIO.BCM)

ServoPin = 4

Next, we use GPIO.OUT to set the GPIO pin to output:

GPIO.setup(ServoPin, GPIO.OUT)

This command sets an object p to the ServoPin (4) at a frequency of
50Hz.

p = GPIO.PWM(ServoPin, 50)

Different PWM values move the motor from one end of its range of
motion to the other. For our motors, we empirically found that a duty
cycle of 2.5 percent moved the motor to its start position at 0 degrees,
7.5 percent positioned the motor at 90 degrees, and 12.5 percent moved
the motor to its extreme position of 180 degrees. These values are
similar for most small servos. For a good beginner's tutorial on servo
motors, go to www.raspberrypi.org/blog/how-to-use-a-servo-
motor-with-raspberry-pi/.

p.start(7.5)

The numbers we use to move the servo in the following code are
determined by servo type. For our servo, we use the constant 7.5 and the
numbers 2.5 and 12.5:

try:

    while True:

        p.ChangeDutyCycle(7.5)  # turn towards 90 degree

        print ("90 degrees")

        time.sleep(1) # sleep 1 second

        print ("0 degrees")

        p.ChangeDutyCycle(2.5)  # turn towards 0 degree

        time.sleep(1) # sleep 1 second

        print ("180 degrees")

        p.ChangeDutyCycle(12.5) # turn towards 180 degree

        time.sleep(1) # sleep 1 second

Note how we put the entire body of this program in a try: except:
clause. Now, when you press Ctrl-C to exit the program, it will shut
down the servo motor and release the GPIO pins back to the operating
system. This pin cleanup is a good thing to do when you deal with GPIO
pins directly.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.raspberrypi.org/blog/how-to-use-a-servo-motor-with-raspberry-pi/


except KeyboardInterrupt:

    p.stop()

    GPIO.cleanup()

Now it's time to run the program. Type the following in a Terminal
window:

sudo python3 servoTest.py

The screen prints the following lines and your servo happily obeys your
programmed orders:

90 degrees

0 degrees

180 degrees

90 degrees

0 degrees

180 degrees

90 degrees

0 degrees

Try different angles and sequences by changing the code and the
constants in the p.ChangeDutyCycle function. You won't hurt the servo.

Now we have a servo motor working on our Raspberry Pi. You can see
why you use a DC motor for wheels and a servo for non-rotating tasks.
In the next minibook, you see a robot car that uses DC motors to turn the
back wheels with the steering of the front wheels. Remember at the
beginning when we told you a servo motor can move an robot arm, a
flap on an RC airplane, or a rudder on an RC boat? Watching the servo
motor go through its programmed sequence should spark ideas about
other things to do with a servo motor.

Experiment and build your own magical projects! Now we step right
down the line to our last major motor, a stepper motor.

Making a Stepper Motor Step
Stepper motors are a different beast than DC motors or servo motors. A
stepper motor can accurately position items by using a digital interface.
You can accurately position things with a servo motor too, but the task
requires more electronics and positional feedback.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A stepper motor gets around the positional inaccuracy of servo motors
by accurately moving from one step to another under command of
software. The stepper motor advances the motor one step by sending a
specific sequence to two electromagnetic coils. See Figure 4-13. You
implement this stepping sequence in the Python software controlling the
stepper motor.

FIGURE 4-13: A diagram of a stepper motor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A stepper motor typically has two coils to move the motor from one step
to another.

Tables 4-2 and 4-3 show the sequence for stepping the stepper motor one
step forward and backward, respectively. This pattern of steps will be
obvious in our Python software.

TABLE 4-2 Forward Stepping the Stepper

Coil_A_1 (Pin 12) Coil_A_2 (Pin 20) Coil_B_1 (Pin 13) Coil_B_2 (Pin 21)

1 0 1 0

0 1 1 0

0 1 0 1

1 0 0 1

TABLE 4-3 Backward Stepping the Stepper

Coil_A_1 (Pin 12) Coil_A_2 (Pin 20) Coil_B_1 (Pin 13) Coil_B_2 (Pin 21)

1 0 0 1

0 1 0 1

0 1 1 0

1 0 1 0

In Figure 4-14, this digital sequence is graphically portrayed with a logic
analyzer connected to the Raspberry Pi GPIO pins used to drive the
stepper motor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-14: Logic analyzer showing the motor stepping sequence.

FEEDBACK: WHAT A USEFUL THING!
Feedback occurs when you route a system's output back into its inputs as a loop.
Sound complicated? It can be, but the basics are simple. Suppose you publish an
article and ask for comments. People supply comments (nice ones, we hope) and you
change the article based on some of those comments. That's feedback!

You use feedback in electrical circuits to achieve a better and more accurate positioning
of a servo motor, for example. By reading an encoder on the shaft of the servo (an
encoder gives you an electrical signal proportional to the position of the shaft), your
software can use that feedback to tweak the PWM duty cycle to get a more accurate
position.

There are two types of feedback: negative feedback and positive feedback. Good
comments and constructive criticism about our article are examples of positive
feedback, whereas comments just saying the article is bad are examples of negative
feedback.

In electronics, however, you generally tend to like negative feedback and not like
positive feedback. We use negative feedback to get closer to the desired position on

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the shaft. Positive feedback tends to make differences get larger. Ever hear a speaker
wail when you put a microphone too close the speaker? That's positive feedback.

Well, now you know all you need to know about stepper motors to build
your first project. Here is the parts list:

Pi2Grover Grove interface board: Buy this at
https://shop.switchdoc.com or https://amazon.com. We
described the Pi2Grover in Chapters 1, 2, and 3 of this minibook.
28BYJ-48 ULN2003 5V stepper motor: Try www.ebay.com or
https://amzn.to/2BuNDVl. This type of motor is inexpensive, so
you may end up having to buy five for $12. Make sure you get the
ones with the driver boards (such as the ones at the Amazon.com
link).
A package of Grove female patch cables, specifically Grove-
connector-to-female-pins: Available at
https://shop.switchdoc.com/products/grove-4-pin-female-

jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack

https://amzn.to/3i5u6jf.

The 28BYJ-48, shown in Figure 4-15, is a 5V stepper motor that has
5.625 x 1/64 degrees per step (approximately 0.822 degrees per step).
The motor has a driver board with a ULN2003 motor driver chip and,
best of all, four LEDs that indicate how your program is changing the
GPIO pins connected to the motor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://shop.switchdoc.com/
https://amazon.com/
https://www.ebay.com/
https://amzn.to/2BuNDVl
https://shop.switchdoc.com/products/grove-4-pin-female-jumper-to-grove-4-pin-conversion-cable-5-pcs-per-pack
https://amzn.to/3i5u6jf


FIGURE 4-15: The 28BYJ-48 stepper motor and UNL2003 driver board.

The female Grove patch cables, shown in Figure 4-16, connect the
stepper motor drive board to the Raspberry Pi.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-16: A Grove-connector-to-female-pin-header patch cable.

Time to build your stepper motor project! Just follow these steps:

1. Shut down your Raspberry Pi and remove power.
2. Connect a Grove female patch cord to the UNL2003 driver

board according to the wire chart in Table 4-4.
Note that we put a wire tie on the cable to keep things neat and tidy.
Look carefully at your red and black wire on the Grove patch cord to
make sure it's plugged in correctly, as shown in Figure 4-17.

TABLE 4-4 First Grove Female Patch Cord to UNL2003
Driver Board

Grove Patch Cable UNL2003 Driver Board Function

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Grove Patch Cable UNL2003 Driver Board Function

Yellow wire IN1 Coil A_1

White wire IN2 Coil B_1

Red wire + Power

Black wire − Ground

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-17: Closeup of power connections on the UNL2003 driver board.

3. Connect a second Grove female patch cord to the UNL2003
driver board, as shown in the wire chart in Table 4-5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Use a wire tie or a piece of tape to keep the unused red and black
wires out of the way, as shown in Figure 4-18.

TABLE 4-5 Second Grove Female Patch Cord to
UNL2003 Driver Board

Grove Patch Cable UNL2003 Driver Board Function

Yellow wire IN3 Coil A_2

White wire IN4 Coil B_3

Red wire No Connect

Black wire No Connect

FIGURE 4-18: Second Grove patch cable attached.

4. Check all your connections again and make sure they look like
those in Figure 4-19.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



5. Plug the 28BYJ-4 stepper motor cable into the UNL2003 driver
board connector, as shown in Figure 4-20.
The cable is keyed, so it goes in only one way.

6. Plug the first Grove patch cable (the one with all four wires
connected to the UNL2003 driver board) into the Pi2Grover
Grove connector marked D12/13.

FIGURE 4-19: All patch wires installed on the UNL2003 driver board.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-20: Stepper motor and driver board connected.

7. Plug the second Grove patch cable (the one with the yellow and
white wires connected) into the Pi2Grove Grove connector
marked D20/21.
The wiring is now complete. The fully wired system is shown in
Figure 4-21.

8. Put a cardboard arrow on your stepper motor shaft so you can
more easily see it move, as shown in Figure 4-22.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-21: Fully wired Raspberry Pi and stepper motor project.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-22: Stepper motor, ready to step.

Python stepper software

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Similar to what we did with the servo motor, we aren't going to use a
higher-level stepper library. Instead, we will control a stepper motor
directly by using GPIO pins. Just follow these steps:

1. Create a directory in your main directory by entering the
following:

cd

mkdir Stepper

cd Servo

2. Using nano (or another text editor), create a file called
stepperTest.py and enter the following Python code:

import sys

 

import RPi.GPIO as GPIO

import time

 

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

coil_A_1_pin = 12

coil_B_1_pin = 13

coil_A_2_pin = 20

coil_B_2_pin = 21

 

GPIO.setup(coil_A_1_pin, GPIO.OUT)

GPIO.setup(coil_A_2_pin, GPIO.OUT)

GPIO.setup(coil_B_1_pin, GPIO.OUT)

GPIO.setup(coil_B_2_pin, GPIO.OUT)

 

 

def forward(delay, steps):

  for i in range(0, steps):

    setStep(1, 0, 1, 0)

    time.sleep(delay)

    setStep(0, 1, 1, 0)

    time.sleep(delay)

    setStep(0, 1, 0, 1)

    time.sleep(delay)

    setStep(1, 0, 0, 1)

    time.sleep(delay)

def backwards(delay, steps):

   for i in range(0, steps):

    setStep(1, 0, 0, 1)

    time.sleep(delay)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    setStep(0, 1, 0, 1)

    time.sleep(delay)

    setStep(0, 1, 1, 0)

    time.sleep(delay)

    setStep(1, 0, 1, 0)

    time.sleep(delay)

 

 

def setStep(w1, w2, w3, w4):

  GPIO.output(coil_A_1_pin, w1)

  GPIO.output(coil_A_2_pin, w2)

  GPIO.output(coil_B_1_pin, w3)

  GPIO.output(coil_B_2_pin, w4)

   

while True:

  

  try:

 

    # Delay between steps (milliseconds)

    delay = 10

    # How many Steps forward

    steps = 50

    forward(int(delay) / 1000.0, int(steps))

    # How many Steps backwards

    steps = 50

    backwards(int(delay) / 1000.0, int(steps))

   

  except KeyboardInterrupt:

    # shut off all coils

    setStep(0,0,0,0)

    sys.exit()

The try: except: clause at the end of the program shuts off all GPIO
pin outputs and returns them to the operating system for future use when
you press Ctrl+C to stop the program.

Breaking down the code
We've written our first stepper motor control software, and now it's time
to see how it works. The stepperTest.py code is pretty simple. We set
the GPIO outputs to 1 and 0, according to the stepper motor sequences
shown in Tables 4-2 and 4-3. You can see the exact sequences in the
code in the forward() and backwards() functions.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now let’s run the code and start stepping away. Power up your Pi and
open a Terminal window. Note that all four of the LEDs turn on when
you power up, as shown in Figure 4-23, but they will be turned off when
you run your Python program.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-23: The Raspberry Pi running the stepper motor.

The stepper motor turns 50 steps to the left and then 50 steps to the right.
Try changing those variables in the program to move the stepper motor

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



to other positions. Do you see how these motors can be used in 3D
printers and robots to accurately position printing heads, bed height, and
robot arms?

With all you've learned in this minibook, you're ready to build a robot
that you can control with Python.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Book 7
Building Robots

Contents at a Glance
Chapter 1: Introducing Robotics

A Robot Is Not Always Like a Human

Not Every Robot Has Arms or Wheels

Understanding the Main Parts of a Robot

Programming Robots

Chapter 2: Building Your First Python Robot
Introducing the Mars Rover PiCar-B

Assembling the Robot

Testing Your Robot

Chapter 3: Programming Your Robot Rover
Building a Simple, High-Level Python Interface

Making a Single Move with Python

Functions of the RobotInterface Class

The Python Robot Interface Test

Coordinating Motor Movements with Sensors

Making a Python Brain for Our Robot

Overview of the Included Adeept Software

Where to Go from Here

Chapter 4: Using Artificial Intelligence in Robotics
This Chapter’s Projects: Going to the Dogs

Setting Up the First Project

Machine Learning Using TensorFlow

Testing the Trained Network

Taking Cats and Dogs to Our Robot

Setting Up the Second Project

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The FindAndChaseTheBall.py Python Program

The Main Program

AI and the Future of Robotics

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 1
Introducing Robotics

IN THIS CHAPTER
 Understanding what a robot is
 Recognizing the different types of robots
 Knowing the parts of a robot

Robots. That name has been bandied about for a hundred years. It comes
from a Czech word, robota, which means “involuntary labor.” It was
first used in the 1920 play “R.U.R. – Rossum’s Universal Robots” by
Karel Capek, but it was really Capek’s brother Josef who coined the
word. Did you know there was a robot in Frank Baum’s land of Oz in
1907? He didn’t call it a robot, but it’s definitely a robot.

Robots are everywhere in today’s modern world. Your house is filled
with them. How is that possible? To understand what we are talking
about, you need to understand the definition of robot more in computer-
science terms than in Hollywood’s.

A Robot Is Not Always Like a
Human

Two things to know about robots:

Robots have only two features, a computer and an actuator.
Robots are dumb. We call this rule #1. Robots are not people.

Robots have a computer of some kind; think of it as the machine’s brain.
These brains can vary from IBM’s Watson to a small 8-bit processor
with a few thousand bytes of RAM. (You will see this with Baxter the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Coffee-Making Robot, which has 16 computers inside. But more on that
in a moment.)

The computers don’t even have to be in the robot itself. You can have a
network connection to the computer controlling the robot. Some of these
computers run a servo motor or joint, while others control the joints as a
group. We can think of the control computer as the robot’s brain. This
group joint action is similar to the way our joint reflexes work without
getting our brain involved.

So, what is an actuator? It is something that physically affects the world
outside. Under this definition, a sophisticated IoT (Internet of Things)
device connected to a sensor and a database is not really a robot,
whereas a computer that controls a toaster actuator to pop up the toasted
bread is a robot. As with any definition, you can argue corner cases all
day. But this is a good working definition that shows just how varied the
body type of a robot can be.

Not Every Robot Has Arms or
Wheels

The classic conception of a robot tends to look at least vaguely human.
The amazing robots that help assemble cars in factories, for example,
have giant arms that pick up car doors, weld metal, place windshields,
and do many other assembly line tasks. Smaller arms in manufacturing
lines all over the world help to produce small goods as well as large
ones.

One of the relatively new categories of robots is called a cobot
(collaborative robot). This type of robot is designed to work closely
alongside humans in manufacturing lines. Robots in car lines will hurt
you if you get in their way, but cobots will stop if they encounter you.
Cobots do tasks to make people more efficient. Baxter the Coffee-
Making Robot is an example of a cobot.

Robots don’t always have arms (remember the toaster?). Robots can
look like microwaves. They can look like cars (yes, self-driving cars, but

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



also like your current car). Modern-day cars are filled with computers
doing robotic things. For example, a computer measures how hard you
push down on the gas pedal and adjusts the fuel-and-air mixture
accordingly. A sensor reads the position of the gas pedal and transmits
that signal to a computer, which then controls the engine. No cables
physically connect your pedal to a mechanical gas pump or valve. In the
2019 BMW X3s, for example, you can push a button to switch from
comfort mode to sport mode, which changes the way the wheel feels
(and how much feedback you get from the road), the way the gas pedal
responds, and even how the suspension reacts to road conditions. (See
Figure 1-1.) In a modern car, more than 20 computers do all sorts of
things and talk to each other constantly.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-1: Inputs for the BMW robot driving system.

When you mention robots, people usually think of the large arms in
assembly lines or those fabulous robotic dogs made by Boston Dynamic.
However, many other types of robots exist, as you discover in the
following sections.

The Wilkinson bread-making robot
Wilkinson Baking (www.wilkinsonbaking.com), in Walla Walla,
Washington, has invented a robotic bread-making system (see Figure 1-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.wilkinsonbaking.com/


2) that may bring bread-baking back to local stores and away from giant
bread plants. By the way, they claim that their bread requires one-sixth
of the fossil fuel needed to get the product to the consumer.

This type of disruption has happened before. Remember when you sent
photographic film away to big plants to get it developed? Then suddenly,
machines (yes, robots) were built that allowed mom-and-pop stores to
get back into the film-development and picture-printing business. Yes,
the proliferation of digital cameras took most of that business way, but
you can see the point.

FIGURE 1-2: A robot making bread.

Baxter, the coffee-making robot
Baxter is a general-purpose cobot manufactured by Rethink Robotics in
2011 (see Figure 1-3). Although he is a fairly old cobot, he has a
fabulous set of sensors and cameras (one in each arm!) and each arm has
a different attachment (a gripper on the left and a suction cup on the
right). This setup allows students to build some sophisticated projects.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 1-3: Baxter making coffee.

Baxter has more than 16 different computers inside: a main computer (a
desktop Dell PC, believe it or not) strapped to his torso and individual
computers controlling the joints, cameras, and sensors in both arms.
Baxter’s brain for the coffee-making program (all in Python) is located
across the room and is connected to Baxter by a network connection.
The main program in the brain computer uses a distributed ROS (robot
operating system) to be controlled and provide information and images
to the user and the controlling computer. Take a look at the video at
https://youtu.be/zVL8760H768.

Three students in the University of Idaho's Advanced Robotics class
were called on to teach Baxter to make coffee in their senior robotics
class, and after three months and thousands of lines of code, they
succeeded. The team used machine vision techniques to recognize when
the coffee was done, connect Baxter to the Amazon AWS Cloud so they
could use Alexa (“Alexa, tell Baxter the Robot to make coffee”), and
write a variety of pick-and-place code to select a Keurig cup and to
deliver a full cup of coffee to the customer’s table.

Now that Baxter can do all these tasks, he appears much smarter, but
rule #1 still applies (“Robots are dumb”). He can make coffee, but he

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/zVL8760H768


can’t make toaster strudel … yet. Next semester.

By the way, we all know what software bugs are. Bugs in robotics
projects can be interesting to watch because the robot may do something
completely different than what you intended. Software bugs in robotics
programs can lead to physical consequences. Spilled coffee in this case.

The Griffin Bluetooth-enabled toaster
You really didn’t think we were going to finish these examples of robots
without using a toaster, did you? The Griffin Bluetooth-enabled toaster
was presented at CES (Consumer Electronic Show) as part of suite of
connected kitchen appliances. (See Figure 1-4.) It allows you to program
(by app) your desired level of toasty crispness, and it can send your
phone a notification when your toast is done. Also, it looks like it never
went into production, which is a great disappointment to John because
he wants a connected toaster. Really, really wants one. Here is a link to a
YouTube video for the toaster: www.youtube.com/watch?v=Z7h8-f-
k8C8.

Enough examples. Let’s now move into to what makes a robot and how
we program them in Python!

FIGURE 1-4: The Toasteroid Internet-connected toaster.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.youtube.com/watch?v=Z7h8-f-k8C8


Understanding the Main Parts of a
Robot

All robots have four general types of components:

Computers
Motors and actuators
Communications
Sensors

In this section, we describe each component in turn.

Computers
Computers are ubiquitous in robotics. Computers control cameras and
motors, interpret the images coming in from the cameras, and read the
sensors monitoring the environment around the robot.

These computers are mostly small computers called embedded systems.
They may have only one dedicated function (such as monitoring the
amount of current used for a specific motor), or they may be
coordinating an entire set of motors in an arm, telling the other
computers what to do.

Higher-level computers in the system are used for planning and
receiving orders from other robots (or, say, an assembly line itself) and
people. And most of these higher-level computers are programmed in
Python.

Motors and actuators
Adding motors and actuators makes a robot more than just a computer
(such as your laptop). Motors move things and come in all sorts of types
and sizes. (Refer to Book 6 for an introduction to motors.) Actuator is a
term with a definition that’s a bit broader than motor’s. A motor is an
actuator, and so is a memory wire, which is a type of metal that is heated
to make the wire move and expand. Later, when the wire cools down, it

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



goes back to its original size and position. The way the wire expands and
contracts is similar to muscle fiber, and it has a lot of uses in the robotic
industry. People use memory wire to open ventilation flaps and to
change the direction of microphones and sensors. In Book 6, you use
Python to make motors move.

Communications
Robots need to communicate. Not just verbally or onscreen, but also in a
digital format that other computers and robots understand to coordinate
actions and react to the environment. Robots use communication also to
offload complex tasks (such as computer vision interpretation) to other
computers, sometimes even in the cloud. Many of these communication
types (Bluetooth, TCP/IP networks, Wi-Fi) use computers inside the
communication device to accomplish the information transfers between
the components of the robot and the environment.

Sensors
We’ll admit it: We love sensors and are always on the lookout for the
latest and greatest ones. Electricity sensors, temperature and humidity
sensors, electronic gyroscopes, pressure and touch sensors, people
sensors, cameras, and image-processing sensors are becoming more
inexpensive and pervasive every day. And many of these sensors and
functions are programmed using Python for data-processing and
hardware drivers.

In modern robotics and embedded systems, these components all end up
mixed together. A motor in a robot will have a computer,
communications, and sensors all together in a single board or enclosed
box.

Programming Robots
Robots are programmed in many different types of languages. Some
robots can be programmed by people moving an arm to a specific set of
locations (teaching the robot in a sense). Other robots are programmed to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



move from one location to another by using procedural statements in a
more traditional computer science language.

The most popular programming language in the world for programming
robots at a high level (above the motor drivers and low-level program,
which are usually done in the C++ language) is Python. Hands down.
Baxter is programmed via an API (application programming interface)
provided for Python. Programmers use Python to call many robotic
functions and image processing as well as to provide movement
planning and coordination between robots. Although many robot
manufacturers will have their own proprietary software, almost all
provide a method for working with Python via libraries and modules.

The best way to jump in and understand the relationship of Python to
robots is to build a robot and then write Python to read sensors,
understand the environment, and then make decisions on where to move
and what tasks to accomplish. By the end of this minibook, you will
have a much better understanding of how all these parts — motors,
sensors, and software — play together to make your robot move!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 2
Building Your First Python

Robot
IN THIS CHAPTER

 Building a robot
 Understanding the components
 Learning to program the components

In this chapter, we build a robot and show you how to use Python to talk
to all the parts. Why build the robot first? For two reasons: First, you
save money by buying a kit-based robot versus a prebuilt one. Second,
by building a robot you get to know how all the parts fit together and
work, and how to use Python to control those motors and sensors.

We have chosen a robot based on our friend, the Raspberry Pi single-
board computer. You can get robots based on many other types of
computers, including the Arduino, but with those smaller computers, you
can’t do the kind of processing or artificial intelligence applications that
you can on the Raspberry Pi.

After all, this is Python All-in-One For Dummies. Wouldn’t you like to
be able to use some of the sophisticated Python tools you learned earlier
in this book?

Python programs are available for the Arduino (Circuit Python, for
example), but the small processor and memory on the Arduino are
limitations. The Raspberry Pi is much better suited for high-level AI
applications on robots.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Introducing the Mars Rover PiCar-
B

When we were deciding which robot to build in this book, we assembled
four different small robot cars. All were similarly priced, and each had
drawbacks. After careful consideration, we chose to use the Adeept
PiCar-B (shown in Figure 2-1) for several reasons:

The assembly manual is clear with lots of pictures and diagrams.
The supplied software is compatible with Python 3 (and the Stretch
version of the Raspberry Pi operating system).
The PiCar-B requires no soldering.
The PiCar-B is reasonably priced and has good availability.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-1: The assembled PiCar-B robot.

What you need for the build

 You need three things to build the robot used in this chapter, in
addition to some basic tools (although the kit comes with Allen
wrenches and screwdrivers) and some plastic wire ties to bundle the
wires after assembly:

Raspberry Pi 3B+: Yes, you could get by with a smaller Raspberry
Pi (such as the Raspberry Pi Zero), but we recommend that you get
the 3B+ so you can do faster and more sophisticated processing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



onboard the robot. However, you pay a price for a faster Pi in power
consumption and battery life. For our purposes, it's a good tradeoff.
If you want to use a Raspberry Pi 4B in this robot, it will
dramatically reduce the battery life, and with some types of batteries
the robot may not be able to boot the Pi 4B. (For more information
on startup currents, check out this article John wrote about
measuring them on the 3B+ and 4B:
www.switchdoc.com/2019/10/raspberry-pi-3b-4b-startup-

currents-examined/.)
Among other places, you can buy the Raspberry Pi 3B+ at
Amazon.com, Newark.com, and Adafruit.com.
Adeept Raspberry Pi PiCar-B: The Adeept Raspberry Pi PiCar-B
is not quite as available as the Raspberry Pi. When you buy this,
make sure you're buying the PiCar-B and not the PiCar-A. They
added Mars Rover to the name of this product in their catalog, so
look for the “Adeept Mars Rover PiCar-B.”
You can buy the PiCar-B at Amazon.com
(https://amzn.to/36dukPU), eBay.com, and Adeept.com.

18650 LiPo batteries: The PiCar-B requires two 18650 3.7V LiPo
5000mAh batteries. You can also power the robot by turning off the
power switch (or removing the batteries) and supplying power for
the Raspberry Pi from the micro USB plug, which then powers both
the robot and the Raspberry Pi.
The package we chose has two sets of batteries and a wall charger.
You can buy this type of battery at Amazon.com and many, many
other places.

Understanding the robot components
Now it's time to look at the components in the PiCar-B. We’re not going
to focus on the mechanical structure of how the robot is built but rather
on each active component, such as sensors and motors. We will also talk
about the Python software used to communicate with these components
in the Python system test software later in this chapter and in our own
robotic software in Chapter 3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.switchdoc.com/2019/10/raspberry-pi-3b-4b-startup-currents-examined/
https://amzn.to/36dukPU


We provide Python code snippets to show you how each of the sensors
and motors are controlled. For more complete code and a detailed
description, see the “Preparing for running tests on your rover in
Python” section, later in this chapter.

Motor controller board
The motor controller is designed to interface the Raspberry Pi to the
sensors and motors on the PiCar-B. (See Figure 2-2.) The main two
chips on the board are the PCA9685, an I2C device that controls up to
16 servo motors (of which 3 are used, so there’s lots of room for
expansion), and an L289P, which provides power to the main drive
motor.) The rest of the board connects the GPIO (general-purpose input-
output) pins from the Raspberry Pi to the various sensors and devices.
The motor controller board also has a 5.0V power supply that supplies
the Raspberry Pi and motors from the LiPo batteries.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-2: The PiCar-B motor controller board.

Servo motors
Servo motors are a generally a combination of three things: a DC motor,
a simple control circuit, and a gearing set. Sometimes they also include a
potentiometer (a variable resistor), which gives positional feedback. See
Book 6, Chapter 4 for a description of feedback and its uses.

You control the position by using pulse-width modulation (PWM), a
technique that we saw in Book 6, Chapter 1 for controlling the
brightness of an LED.

The SG90 micro servo motor supplied with the robot is a small,
inexpensive servo motor. (See Figure 2-3.) It has an operating voltage of
3V–7V with a current draw of about 40mA (40 milliamps; a milliamp is
1/1000th of an amp of current) at maximum, so the 5V on the Raspberry
Pi is sufficient to operate this servo. It can turn about 90 degrees
backward and forward for a total of 180 degrees.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-3: The SG90 micro servo motor.

Most servo motors have three control wires, and the SG90 is no
exception. The three wires are as follows:

Yellow: PWM control signal
Red: Power (5V, in our case)
Brown: Ground

Servos are continuously powered and generally have only about a 180–
270 degree range of motion. All three servo motors used by this robot
are SC-90 9g micro servos.

These servos are controlled from the PCA9685 I2C chip, so the servos
don’t use any GPIO lines from the Raspberry Pi. The PCA9685 is on the
I2C bus of the Raspberry Pi. (See Chapter 3 in Book 6 for more
information about the I2C bus.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



To control a servo motor, we just have to set the PWM value to the
position to which we want the servo moved on the appropriate PWM
line in the PCA9685:

print ("-------------------")

print ("Servo Test - Head Left")

print ("-------------------")

pwm.set_pwm(HEAD_TURN_SERVO, 0, calValues.look_left_max)

time.sleep(1.0)

The number passed to the servo motor for position
(calValues.look_left_max) is empirically determined later in this
chapter and is set by looking at the range of the servo motor as you
command it to the left and right. See “Calibrating your servos,” later in
this chapter.

Drive motor
The main drive motor is a DC motor with two wires: power and ground.
(See Figure 2-4.) When you supply power (by putting 5V on the power
line, for example), the motor will start spinning. Reverse the power and
ground wires, and the motor spins in the opposite direction.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-4: The main drive motor.

You control the speed of a DC motor by using pulse-width modulation
(PWM), a technique that can be used also to control the brightness of an
LED (refer to Book 6, Chapter 1) and servo motors. If the power is
cycled at 50 percent (half on/half off), the motor will spin at one-half the
speed. Sometimes you will put an encoder on the motor shaft, which
allows you to read into a computer how far the shaft has turned, giving
the computer some feedback that can be useful.

This motor uses six GPIO lines from the Raspberry Pi to control speed
and direction.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The intricacies of controlling this motor are well hidden from the user.
Here is the Python code to move the car forward:

motor.motor_left(MOTOR_START, forward,left_spd*spd_ad)

motor.motor_right(MOTOR_START,backward,right_spd*spd_ad)

 Why are we turning on both a left and right motor when there is
only one drive motor in the PiCar-B? The reason is that you can't be
sure which way your motor is wired; it may be wired one direction
or it may be reversed. (Ours was reversed.) You have two motor
plugs on the controller board. If the forward command causes the
robot to move backward, you just move the motor to the other
motor connection and everything works. Writing the preceding
code (using both motor controllers) allows the software to work
with either kind of motor.

RGB LED
The front of the robot has two single RGB LEDs, one on each side. (See
Figure 2-5.) Each of these big LEDs has three smaller LEDs inside the
housing. These smaller LEDs are red, blue, and green and are
individually controlled by GPIO lines from the Raspberry Pi (running
software PWM code that allows us to mix the R, G, and B LEDs).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-5: A single RGB LED.

print ()

print ("-------------------")

print ("Left Front LED Test - Red ")

print ("-------------------")

led.side_on(led.left_R)

time.sleep(1.0)

led.side_off(led.left_R)

You turn on the LEDs individually and, using other software later in this
book, can set the brightness of each LED.

Pixel RGB programmable LEDs
The robot has twelve programmable Pixel RGB LEDs, connected as a
string, with two sets of three on the bottom of the robot and two sets of
three pointing to the rear. (See Figure 2-6.) These twelve LEDs are
connected in serial, like Christmas lights. And like some Christmas
lights, if one goes out, all the rest of the string goes too. That is because
the Raspberry Pi controls the LEDs by sending a single serial data

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



stream through them. This serial stream is precisely timed, which
requires some special code on the Raspberry Pi to make it work.

FIGURE 2-6: The 12 programmable RGB LEDs.

The Pixel string of 12 RGB LEDs uses a single GPIO pin coming from
the Raspberry Pi:

print ()

print ("-------------------")

print ("12 RGB Pixel LED Test - On ")

print ("-------------------")

rainbowCycle(strip, wait_ms=20, iterations=3)

PIXEL RGB STRINGS ON THE
RASPBERRY PI

The Raspberry Pi has a complex, multifaceted operating system based on Linux. It is a
multitasking preemptive operating system, which means virtually any task (and all user
tasks) can be interrupted (stopped). Therefore, our serial stream to the Pixel LEDs can

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



be delayed and corrupted. This corruption appears on the Pixel string when some
individual LEDs are not set to the correct color.

The library we are using solves this real-time corruption problem by using the PWM and
DMA hardware on the Raspberry Pi’s processor. The PWM (pulse-width modulation)
module can generate a signal with a specific duty cycle to, for example, drive a servo or
dim an LED. The DMA (direct memory access) module can transfer bytes of memory
between parts of the processor without using the CPU. By using DMA to send a specific
sequence of bytes to the PWM module, the Pixel data signal can be generated without
being interrupted by the Raspberry Pi’s operating system. The use of DMA allows the
data to be sent to the LEDs with no participation by the Pi’s operating system, so no
corruption.

Because the Arduino type of processors don’t really have an operating system, it's
pretty easy to generate these signals on an Arduino compared to a Raspberry Pi.
Processors like the ESP8266 and the ESP32 do have tasks running in the background
(such as Wi-Fi) and therefore require special drivers to compensate for that to avoid
data corruption and flickering. Note that although the DMA technique works well on the
Raspberry Pi 3B+ and 4B, the LEDs do not always work well with older and smaller
Raspberry Pi models (A+, 3B, Pi Zero, or Pi Zero W).

This command cycles a rainbow of colors around all 12 LEDs on the
back and bottom of the robot. The driver for the RGB Pixel string is
complicated, but we’ll provide code to easily control the LEDs — and
we’ll give you some examples of how to use them for other purposes.
We really do love these LEDs and use them in many projects.

Pi camera
The camera that comes with in the PiCar-B is the classic Raspberry Pi
camera, version 2.1, as shown in Figure 2-7. It has a Sony 8 megapixel
sensor and can support pictures up to 3280 x 2464 at 15 frames per
second. (The latest camera in the newest Raspberry Pi Foundation model
has 12.3 megapixels and a lens bracket but is much too large for our
small robotic car.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-7: Raspberry Pi camera and cable.

The camera has a good color response and is well supported in Python
and with OpenCV, the Open Source Computer Vision package we use
later in Chapter 4 of this minibook. The Pi camera talks to the Raspberry
Pi via a parallel data ribbon cable connected to the Raspberry Pi board.

The following code opens up a small window on the GUI of the
Raspberry Pi, waits 20 seconds, moves the window and resizes it, waits
2 seconds, moves it again and then closes the window:

print ()

print ("-------------------")

print ("Open Video Window")

print ("-------------------")

camera.resolution = (1024, 768)

camera.start_preview(fullscreen=False,window=(100,100,256,192))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



time.sleep(20)

camera.preview.window=(200,200,256,192)

time.sleep(2)

camera.preview.window=(0,0,512,384)

time.sleep(2)

camera.close()

 To view the video from the robot in this chapter, start a GUI
(graphics user interface) if you haven’t already. If you are running
on a headless Raspberry Pi, either add a keyboard, mouse, and
monitor or stop now and bring up VNC (virtual network computer).
Think of using your computer monitor as a display on a second
computer — the Raspberry Pi, in this case. Many links on the web
describe how to do this and how to bring up the GUI on your main
computer. The official Raspberry Pi Foundation tutorial is at
www.raspberrypi.org/documentation/remote-access/vnc/.

We are using VNC on a headless Raspberry Pi in this chapter. Feel free
to connect a mouse, a keyboard, and a monitor directly to the Raspberry
Pi if you want, but you will be better off using VNC because your robot
will be mobile. If you're using VNC to see the GUI of the Raspberry Pi
(as we are doing), you need to do the following. Right-click the VNC
server icon and then click Options. The VNC Server — Options dialog
box appears. Click Troubleshooting in the left sidebar, and then select
the Enable Direct Capture Mode check box. See the “Assembling the
Robot” section, later in this chapter, for more detail.

Ultrasonic sensor
The ultrasonic detector used in the PiCar-B is a non-contact distance
measurement module that works at 40KHz. (See Figure 2-8.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.raspberrypi.org/documentation/remote-access/vnc/


FIGURE 2-8: An ultrasonic distance sensor.

When provided a pulse trigger signal longer than 10uS through the
signal pin, the unit issues 8 cycles of 40kHz cycle level and detects the
echo. The pulse width of the echo signal is proportional to the measured
distance. Simple, yet effective.

The formula used is Distance = Echo signal high time * Sound speed
(340M/S)/2.

In the following code, the call to ultra.checkdisk() calls the software
that sets the transmit GPIO bit and then waits for the returning echo,
marking the time received. It then calculates the time of transit and
reports the distance in meters, which we convert to centimeters:

print ()

print ("-------------------")

print ("Ultrasonic Distance Test")

print ("-------------------")

average_dist = 0.0

for i in range(0,10):

    distance = ultra.checkdist()

    average_dist = average_distance + distance

    print ("Distance = {:6.3f}cm ".format( distance*100))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    time.sleep(1.0)

average_distance = average_distance / 10

print ("average_dist={:6.3f}cm".format(average_dist*100))

Assembling the Robot
The PiCar-B comes with an assembly manual complete with blow out
pictures of how things go together. (See Figure 2-9.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 2-9: An example of the assembly manual diagrams.

It took us about four hours to put together the robot and get to the point
to begin testing.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 Do not go beyond Chapter 2 in the PiCar-B assembly manual.
Chapter 3 starts installing all the Adeept software on the Raspberry
Pi, and you will want to test the robot using the software in this
book to better understand the parts of the robot before continuing.

So, go build your robot and then meet us back here to start testing it.
Calibrating your servos is the first step in testing! Then we run a full
system test. Figure 2-10 shows the assembled robot.

FIGURE 2-10: The assembled PiCar-B showing wiring.

 Here are a few helpful tips when building the robot:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



A power switch is on the left side of the motor drive board (viewed
from the front of the robot). It shuts off the power from the batteries.
(The power switch is not mentioned in the manual.)
Make sure you use the longer of the two supplied ribbon cables for
the Pi camera. The short one will not quite reach.
Route the wires as shown in Figure 2-10 so the motors won’t bind.
Use some plastic wire ties to hold things in place, allowing enough
room for the servos and housing to turn. A wire wrap enclosure is
included that will fit some of the wires in your kit.

PROPERLY TURNING OFF YOUR
RASPBERRY PI

Unlike most other computers, the Raspberry Pi does not have an on/off switch.
However, like many other computers, just pulling the plug on a Raspberry Pi
could have dire consequences, in this case, corrupting the SD card that the
Raspberry Pi uses for program and data storage. Before you shut down the
Raspberry Pi, type sudo halt in a terminal window.

When you run this command, after a bit, the ACT light (the green one) will blink
10 times (at 0.5 second intervals) and then turn off. At this point, you can safely
remove the power or pull the plug.

The red power LED will remain on as long as power is applied to the Raspberry
Pi.

Pay close attention to the orientation of the plastic parts and servos
during assembly. Almost all have an asymmetrical top and bottom
and need to be oriented correctly to be assembled.
Don’t drop tiny screws. They’re hard to find!

Testing Your Robot
We now have completed the robot assembly. It's time to calibrate the
robot and test each one of the sensors, motors, and LEDs.

Calibrating your servos

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Now that you've assembled the robot, it's time to start testing things. The
first thing to do is to calibrate your servo motors. Why do they need
calibration? Although the instructions have you leave the servo motor in
the center of their motion range during assembly, they will not
necessarily be in the correct place (and might also get moved during the
assembly process).

The calibrateServo.py program runs each of the three servos from one
end of motion to the other. By watching the motors as they turn, you can
write down the max, min, and center numbers of each servo listed on the
terminal window display. Then you place these values in the
calValues.py program for the rest of the programs to access. The values
in calValues.py are right for our robot and will probably be pretty close
for yours, but you should run the program to be sure.

The calibrateServo code is as follows:

#!/usr/bin/python3

 

# calibrate servos

import time

 

import Adafruit_PCA9685

 

import calValues

 

#import the settings for servos

 

 

pwm = Adafruit_PCA9685.PCA9685()

pwm.set_pwm:freq(60)

 

 

#servo mapping

# pmw 0 head tilt

HEAD_TILT_SERVO = 0

# pwm 1 head turn

HEAD_TURN_SERVO = 1

# pwm 2 wheels turn

WHEELS_TURN_SERVO = 2

 

 

if __name__ == '__main__':

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    print("--------------------")

    print("calibrate wheel turn")

    print("--------------------")

 

    for i in range(calValues.turn_right_max,

            calValues.turn_left_max,10):

        pwm.set_pwm(WHEELS_TURN_SERVO,0, i)

        print("servoValue = ", i)

        time.sleep(0.5)

 

    print("--------------------")

    print("calibrate head turn")

    print("--------------------")

 

    for i in range(calValues.look_right_max,

            calValues.look_left_max,10):

        pwm.set_pwm(HEAD_TURN_SERVO,0, i)

        print("servoValue = ", i)

        time.sleep(0.5)

 

 

    print("--------------------")

    print("calibrate head up/down")

    print("--------------------")

 

    for i in range(calValues.look_up_max,

            calValues.look_down_max,10):

        pwm.set_pwm(HEAD_TILT_SERVO,0, i)

        print("servoValue = ", i)

        time.sleep(0.5)

The code is pretty straightforward, but the servo program loop needs a
little explanation:

     for i in range(calValues.turn_right_max,

           calValues.turn_left_max,10):

        pwm.set_pwm(WHEELS_TURN_SERVO,0, i)

        print("servoValue = ", i)

        time.sleep(0.5)

This loop steps through the servo range as given in calValues.py from
the right to the left, turning the head in steps of 10. This gives you a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



good idea where the right, left, and center should be (taking into account
the robot frame too!), and you can add those values to calValues.py.

The calValues.py file holds the calibration values for the servo motors.
You replace the values in this program with your own values from
calibrateServos.py:

# Servo calibration values

 

# head

look_up_max     = 150

look_down_max   = 420

look_tilt_middle = 330

 

# head turn

look_right_max   = 200

look_left_max     = 450

look_turn_middle = 310

 

# wheels

turn_right_max  = 180

turn_left_max   = 460

turn_middle     = 320

 

# turn_speed

look_turn_speed  = 5

 

# motor speed

 

left_spd   = 100         #Speed of the car

right_spd  = 100         #Speed of the car

Preparing for running tests on your rover in
Python
Now that you have assembled the PiCar-B and calibrated the servos, it's
time to run some tests. We told you to not install the Adeept software,
but if you got too excited and did, you need to disable the auto startup of
their software.

To do so, open the ~/.config/autostart/car.desktop file and change
the following line:

Exec=sudo python3 /home/Adeept_PiCar-B/server/server.py

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



to this:
#Exec=sudo python3 /home/Adeept_PiCar-B/server/server.py

And then reboot your Raspberry Pi by typing sudo reboot.

Installing software for the PiCar-B Python test
Now we download and run the Python test of all the PiCar-B robot
functions. Here is a video of what the following Python test software
does on the PiCar-B robot: https://youtu.be/UvxRBJ-tFw8.

To download the software for Book 7, Chapter 2, go to
www.dummies.com/go/pythonaiofd2e and click the Code for Book 7
link.

Go into the Book 2 Testing directory and then follow these instructions,
which are necessary to get the 12 programmable RGB LEDs to work on
the Raspberry Pi:

1. In a Terminal window, type the following:
sudo apt-get install build-essential python3-dev git scons swig

This command installs several developer libraries that will allow you
to compile the Pixel RGB driver software.

2. Download the Pixel (also called NeoPixels) code from github
using the clone command, which copies all the source code to
your local computer:

git clone https://github.com/jgarff/rpi_ws281x.git

3. Change to rpi_ws281x directory and run scons to compile the
software:

cd rpi_ws281x

scons

4. Change to the python directory under the rpi-ws2891x directory
and install the Python module from there:

cd python

5. Install the Python 3 library file:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/UvxRBJ-tFw8
http://www.dummies.com/go/pythonaiofd2e


sudo python3 setup.py install

The PiCar-B Python test code
The Python test file is approximately 370 lines long, so we don't provide
a full listing here. The important parts of the file have been discussed
along with the individual components and sensors in previous sections in
this chapter. A number of other libraries and files are in the Testing
directory.

Run the test software (PiCar-B-Test.py) by typing:

sudo python3 PiCar-B-Test.py

You should immediately see your car start doing the testing sequence, as
shown at https://youtu.be/UvxRBJ-tFw8.

Pi camera video testing
Next we need to test the Pi camera on the robot. To prepare for this test,
the test must be running in a GUI on your Raspberry Pi. If you're using
VNC to display the GUI on another computer, such as your laptop, you
must enable a VNC option on the Raspberry Pi. Right-click the VNC
server icon and then click Options. The VNC Server — Options dialog
box appears. Click Troubleshooting in the left sidebar, and then select
the Enable Direct Capture Mode check box. (See Figure 2-11.)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/UvxRBJ-tFw8


FIGURE 2-11: Setting the VNC viewer option.

You have to set this VNC option because the Raspberry Pi camera takes
a small section out of the video display and maps in the picture from the
camera rather than rendering it on the screen software. If you're using a
monitor, no problem. But for VNC to grab this section and the video,
you need to enable the check box to allow VNC to see your video.

The Pi camera test software (PiCar-B-Video-Test.py), which is in the
Testing directory, follows:

#!/usr/bin/python3

 

DEBUG = True

VIDEOTEST = True

 

# runs through a video tests for the PiCar-B

 

import RPi.GPIO as GPIO

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



import motor

import ultra

import socket

import time

import threading

 

import led

import os

import picamera

from picamera.array import PiRGBArray

import cv2

 

 

import calValues

 

 

if __name__ == '__main__':

 

    camera = picamera.PiCamera()              #Camera initialization

    camera.resolution = (640, 480)

    camera.framerate = 7

    rawCapture = PiRGBArray(camera, size=(640, 480))

 

 

    try:

 

        print ("-------------------")

        print ("-------------------")

        print (" PiCar2- Video Test")

        print (" Must be run from a GUI")

        print ("-------------------")

        print ("-------------------")

        print ()

        print ()

 

        if (VIDEOTEST):

 

            print ()

            print ("-------------------")

            print ("Open Video Window")

            print ("-------------------")

 

 

            camera.resolution = (1024, 768)

            camera.start_preview(fullscreen=False,

                    window=(100,100,256,192))

            time.sleep(20)

            camera.preview.window=(200,200,256,192)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



            time.sleep(2)

            camera.preview.window=(0,0,512,384)

            time.sleep(2)

            camera.close()

    except KeyboardInterrupt:

        destroy()

This code opens a small window on the GUI of the Raspberry Pi (or on
your laptop if you are using VNC), waits 20 seconds, moves the window
and resizes it, waits 2 seconds, moves the window again, and then closes
the window.

Now you have finished building and testing your robot. In the next
chapter, you give the robot a Python brain and start having some fun.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 3
Programming Your Robot Rover
IN THIS CHAPTER

 Moving and sensing with your robot
 Understanding autonomous vehicles

Okay, let’s review where you are now. You have a basic understanding
of robots and (more importantly) the major components of robots. You
understand that Python can control these components so that they can
work together to accomplish robotic tasks. That’s a lot of information.

Next, we show you how to string together these components and
software to make a simple robotic brain so that our robot rover can move
by itself. The rover won’t be a fully functional self-driving car, but after
going through this chapter, you will have some sense of how those large
self-driving cars are programmed.

Building a Simple, High-Level
Python Interface

Let’s first make a short Python module that allows us to build more
complicated programs while hiding the complexity of dealing with the
robot hardware.

Our high-level robotic interface is a python class file called
RobotInterface.py. The code length is beyond what we want to list in
the book, but it is available at www.dummies.com/go/pythonaiofd2e. We
describe a few functions and then show you how to use the rest of the
module.

The motorForward() function

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


The motorForward() function is typical of the motor functions located
in the RobotInterface class:

def motorForward(self, speed, delay):

    motor.motor_left(self.MOTOR_START, self.forward,speed)

    motor.motor_right(self.MOTOR_START, self.backward,speed)

    time.sleep(delay)

    motor.motor_left(self.MOTOR_STOP, self.forward,speed)

    motor.motor_right(self.MOTOR_STOP, self.backward,speed)

This function drives the robot forward for the number of seconds passed
into the function in the delay argument. When you call this function,
you must use a number in seconds (such as 2) — not milliseconds — in
the delay argument.

It basically starts the motors running forward, waits for the time
specified in the delay, and then shuts off the motors.

Note that we have two commands to run the motor. (Actually, two
commands to start the motor and two to stop it.) As explained in the last
chapter, the control board has two motor controllers, and this code will
work even if you wire the motors backwards during assembly.

The wheelsLeft function()
This function will turn the front wheels fully left and delay 50ms:

def wheelsLeft(self):

    pwm.set_pwm(self.WHEELS_TURN_SERVO, 0, calValues.turn_left_max)

    time.sleep(0.05)

The wheelsLeft() function sets WHEELS_TURN_SERVO to the leftmost
position of the wheels and then delays 50ms. Why the delay? You will
see these delays scattered through the RobotInterface class file. They
keep multiple, back-to-back servo commands from exceeding the current
capacity of the power supply. By delaying the next servo command by
50ms, the high current transient caused by moving the first servo has a
chance to die away before the next servo command is executed.

The wheelsPercent function()
The wheelsPercent() function allows the user to set the servo to a
percent of the total range of the servo motor. The functional value goes

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



from full left (0) to full right (100) for the wheels; 50 is approximately in
the middle. The values may vary from the middle if your servo has an
asymmetric range of motion. If you do, use the wheelsMiddle()
function to center your wheels.

This code calculates the total range of motion of the servo motor and
then multiplies it by the percentage requested. It then sets the servo
motor to the requested range:

def wheelsPercent(self,percent):

    adder = calValues.turn_left_max + (calValues.turn_left_max –   

calValues.turn_right_max)*(percent/100.0)

    pwm.set_pwm(self.WHEELS_TURN_SERVO, 0,int(calValues.turn_right_max + 

adder))

    time.sleep(0.05)

Making a Single Move with Python
Now we're going to string together these functions and make the robot
move. First, go to this book's support page at
www.dummies.com/go/pythonaiofd2e and download the software for
Book 7, Chapter 3.

In the following code, we move the robot a short distance ahead with a
motorForward command and then back to its original position with a
motorBackward() command. We hope that you're starting to see the
magic of this approach.

Following is the single move code that will move the robot forward and
then back:

#!/usr/bin/python3

# Robot Interface Test

 

import RobotInterface

import time

 

RI = RobotInterface.RobotInterface()

 

print ("Short Move Test")

 

RI.wheelsMiddle()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


 

RI.motorForward(100,1.0)

time.sleep(1.0)

RI.motorBackward(100,1.0)

First, we import the RobotInterface class library and also the time
library for sleep(). Note how few lines of code are necessary. The
complexity of the underlying robot interface libraries are hidden by the
using RobotInterface module.

import RobotInterface

import time

Then we initialize the RobotInterface module and assign the module to
the RI object variable:

RI = RobotInterface.RobotInterface()

print ("Short Move Test")

We center the wheels with the wheelsMiddle() function:

RI.wheelsMiddle()

Now comes the good part. We drive the robot forward for one second,
pause a second, and then run it backward for one second, to the robot's
original position:

RI.motorForward(100,1.0)

time.sleep(1.0)

RI.motorBackward(100,1.0)

Pretty simple, right? Name the file singleMove.py.

For a video of what you should see when you run this code on your
robot in a terminal window, go to https://youtu.be/UT0PG7z2ccE.

Our job isn't finished until when? Oh yes, until the documentation is
finished. Off to document the RobotInterface class functions.

Functions of the RobotInterface
Class

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/UT0PG7z2ccE


In this section, we document the functions of the RobotInterface class.
We show you the Robot Interface Test program, and then it is off to the
races building robot software! The RobotInterface class is derived
from both original software by the author and from Adeept. We included
all the necessary software, so you don't need to install it.

Front LED functions
The following functions control the two LEDs on the front of the robot.

set_Front_LED_On()
The set_Front_LED_On() function sets the front LED to On:

set_Front_LED_On(colorLED)

Remember that these two front LEDs are tricolor, with red, green, and
blue individual LEDs, each of which is individually controllable. The
colorLED parameter controls the side of the robot and color to turn on.
You set the color and select the side by using the following constants
from the RobotInterface class:

RobotInterface.left_R

RobotInterface.left_G

RobotInterface.left_B

RobotInterface.right_R

RobotInterface.right_G

RobotInterface.right_B

For example, RobotInterface.left_R turns on the red LED on the
robot's left side (as viewed when standing behind the robot). You can
make multiple calls to this program to turn on all three of the LEDs.
Turning on an already on LED does not hurt anything and is ignored.

We could write a more sophisticated driver for the LEDs to drive the
LEDs' GPIOs with PWM (pulse-width modulation), allowing even
greater color mixing.

WHAT IS RGB?
RGB stands for red green blue, and an RGB LED uses three LEDs (red, green and
blue) to produce multiple colors. RGB is an additive color model in which each color is
added in various ways to reproduce an array of colors. For example, if you want a red

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



color, you turn the red LED to 100% and the green and blue LEDs to 0%. If you want a
white color, you turn all three LEDs to 100%. Most of the time, 100% on is represented
by 255 and 0% is 0. A light pink color, for example, is (R=255, G=204, B=229). A good
site for choosing RGB colors is www.colorschemer.com/rgb-color-codes/.

Note that unless you're using hardware PWM pins on the Raspberry Pi,
the LEDs will flicker when using this technique because of the
Raspberry Pi's multitasking operating system. See Book 6, Chapter 1 for
a more thorough description of the PWM process and why you would
see flickering. You could, however, write Python drivers for the
PCA9685 servo driver board problem by using the PWM hardware on
the driver board to fix the flickering.

set_Front_LED_Off()
The set_Front_LED_Off() function sets the Front LED to Off:

set_Front_LED_Off(colorLED)

As mentioned in the preceding section, these two front LEDs are
tricolor, with red, green, and blue LEDs, each of which is individually
controllable.

The colorLED parameter controls the side of the robot and the color LED
to turn off. You set the color and select the side by using the following
constants from the RobotInterface class:

RobotInterface.left_R

RobotInterface.left_G

RobotInterface.left_B

RobotInterface.right_R

RobotInterface.right_G

RobotInterface.right_B

For example, set_Front_LED_Off(RobotInterface.left_R) turns off
the red LED on the robot's left side (as viewed from the rear of the
robot). You can make multiple calls to this program to turn off all three
LEDs. Turning off an already off LED does not hurt anything and is
ignored.

Pixel strip functions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.colorschemer.com/rgb-color-codes/


The robot has 12 pixel LEDs in four locations. These RGB LEDs, which
are called pixels, are controlled by a single serial line that runs through
them all. They are programmed by a fairly sophisticated and touchy
serial sequence of precisely timed pulses from the Raspberry Pi. Because
of the Raspberry Pi operating system, these pulses can't be generated
accurately enough using Python and GPIO signals. However, a helpful
person named jgarff created a complex driver that uses the DMA (direct
memory access) interface on the Raspberry Pi. (The library is named
rpi_ws281x and is included in the download from
www.dummies.com/go/pythonaiofd2e — very clever coding). We use
that driver to generate those pulses. Our RobotInterface software hides
all this complexity from the user.

rainbowCycle()
The rainbowCycle() call starts a rainbow cycle that uses all 12 Pixel
LEDs and runs through many colors. Although there are only RGB
LEDs on each Pixel, the driver creates many different colors by varying
the brightness of each LED individually:

rainbowCycle(wait_ms = 20, iterations = 3)

The wait_ms parameter sets the delay (in milliseconds) between each
color change. It defaults to a 20ms delay. The iterations parameter sets
the number of full color cycles (each color cycle has 256 different
colors) to perform before returning; it defaults to 3 cycles.

colorWipe()
The colorWipe() function sets all 12 Pixel LEDs to the same color or
off:

colorWipe(color)

For example, colorWipe(color(0,0,0)) sets all Pixels to Off. The
color parameter specifies the RGB values color to be used using the
colorWipe() function. (See the color() function later in this chapter.)

theaterChaseRainbow()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/pythonaiofd2e


The theaterChaseRainbow() function starts a 40-second pattern of
“chasing LEDs” on all 12 LEDs:

theaterChaseRainbow(wait_ms = 50)

The wait_ms parameter sets the delay, in milliseconds, between each
movement. It defaults to 50 milliseconds.

setPixelColor()
The setPixelColor() function sets an individual Pixel (numbered from
0 through 11) to a specific color:

setPixelColor(pixel, color, brightness)

The color parameter specifies the color to be set by using the color()
function, for example, color(255,255,32).

The brightness parameter sets the brightness (0–255) for the entire the
Pixel string. The color of your selection is scaled by the maximum
brightness selected.

color()
The color() function is a helper function that converts the R, G, and B
values into a single 24-bit integer used by the internal Pixel driver:

color(red, green, blue, white = 0)

The red, green, and blue parameters are integers and range from 0 (off)
to 255 (fully on). The white=0 parameter is for RGBW Pixel LEDs. The
Pixels on the robot are RGB LEDs.

allLEDSOff()
The allLEDSOff() function turns all the LEDs on the robot off, both the
front two LEDs and the 12-LED Pixel string:

allLEDSOff()

Ultrasonic distance sensor function
The ultrasonic distance sensor works by sending a pulse of high-
frequency sound and then counting the time before it bounces back to
the receiver. Because we know the speed of sound, we can calculate the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



distance in front of the sensor. The method is not perfect (we would
rather be using a laser!), but it's a good starting distance sensor.
Ultrasonic sensors are slower than lasers and have a more spread out
focus, which leads to inaccurate readings on some complex objects.

fetchUltraDistance()
The fetchUltraDistance() function does an measurement from the
ultrasonic distance sensor in the head of the robot and returns the
distance in centimeters (cm):

fetchUltraDistance()

Main motor functions
The main motor on our robot drives the back wheels and moves the
robot. The motor functions are used to tell how fast and how long to run
the main motor.

motorForward()
The motorForward() function drives the robot forward at speed for the
delay number of seconds before shutting off the motors:

motorForward(speed, delay)

The speed parameter sets the duty cycle of the PWM GPIO pin driving
the interface for the motor. It goes from 0 (off) to 100 (fast).

The delay parameter tells the driver how long to run the motor, in
seconds.

motorBackward()
The motorBackward() function drives the robot backward at speed for
the delay number of seconds before the shutting off the motors:

motorBackward(speed, delay)

The speed parameter sets the duty cycle of the PWM GPIO pin driving
the interface for the motor. It goes from 0 (off) to 100 (fast).

The delay parameter tells the driver how long to run the motor, in
seconds.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



stopMotor()
The stopMotor() function stops the main motor immediately:

stopMotor()

This function is useful only if you were driving the motor in another
thread. You can think of a thread as another entire program running at
the same time as your main program. In Chapter 4 of this minibook, we
build a threaded program for the robot. This sophisticated programming
technique has some significant benefits to writing robot code, which we
explore in that chapter.

Servo functions
The servo functions control the three servos on the robot: head-turning,
head-tilting, and front wheels servos.

headTurnLeft()
The headTurnLeft() function turns the robot's head all the way to the
left:

headTurnLeft()

“All the way to the left” is defined in the calValues.py file. Refer to
Chapter 2 in this minibook for information on the calibration values and
how to set them using the calibrateServos.py program.

headTurnRight()
The headTurnRight() function turns the robot's head all the way to the
right:

headTurnRight()

“All the way to the right” is defined in the calValues.py file. Refer to
Chapter 2 in this minibook for information on the calibration values and
how to set them using the calibrateServos.py program.

headTurnMiddle()
The headTurnMiddle() function turns the robot head to the middle of
the front of the robot:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



headTurnMiddle()

“The middle” is defined in the calValues.py file. Refer to Chapter 2 in
this minibook for information on the calibration values and how to set
them using the calibrateServos.py program.

headTurnPercent()
The headTurnPercent() function turns the head from 0 (all the way to
the left) to 100 (all the way to the right):

headTurnPercent(percent)

The headTurnPercent() function is useful for more precisely aiming the
head. Again, “all the way to the left” and “all the way to the right” are
defined in the calValues.py file. Refer to Chapter 2 of this minibook for
information on the calibration values and how to set them using the
calibrateServos.py program.

The percent parameter has values from 0 to 100 and represents the
linear percent from left to right. Note that the value 50 may not be quite
in the middle because your servos may not be set exactly in the middle
of their range.

headTiltDown()
The headTiltDown() function tilts the robot head all the way down:

headTiltDown()

“All the way down” is defined in the calValues.py file. Refer to
Chapter 2 of this minibook for information on the calibration values and
how to set them using the calibrateServos.py program.

headTiltUp()
The headTiltUp() function tilts the robot head all the way up:

headTiltUp()

“All the way up” is defined in the calValues.py file. Refer to Chapter 2
of this minibook for information on the calibration values and how to set
them using the calibrateServos.py program.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



headTiltMiddle()
The headTiltMiddle() function tilts the robot head so that it points out
directly from the front of the robot:

headTiltMiddle()

“The middle” is defined in the calValues.py file. Refer to Chapter 2 of
this minibook for information on the calibration values and how to set
them using the calibrateServos.py program.

headTiltPercent()
The headTiltPercent() function turns the head from 0 (all the way
down) to 100 (all the way to the up):

headTiltPercent(percent)

This function is useful for more precisely aiming the head. Again, “all
the way down” and “all the way up” are defined in the calValues.py
file. Refer to Chapter 2 of this minibook for information on the
calibration values and how to set them using the calibrateServos.py
program.

The percent parameter has values of 0 to 100 and represents the linear
percent from down to up. Note that the value 50 may not be quite in the
middle because your servos may not be set exactly in the middle of their
range (as set by the servo calibration process) and because of the way
your robot was built.

wheelsLeft()
The wheelsLeft() function turns the robot's front wheels all the way to
the left:

wheelsLeft()

“All the way to the left” is defined in the calValues.py file. Refer to
Chapter 2 of this minibook for information on the calibration values and
how to set them using the calibrateServos.py program.

wheelsRight()

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The wheelsRight() function turns the robot's front wheels all the way to
the right:

wheelsRight()

“All the way to the right” is defined in the calValues.py file. Refer to
Chapter 2 of this minibook for information on the calibration values and
how to set them using the calibrateServos.py program.

wheelsMiddle()
The wheelsMiddle() function turns the robot's front wheels to the
middle:

wheelsMiddle()

“To the middle” is defined in the calValues.py file. Refer to Chapter 2
of this minibook for information on the calibration values and how to set
them using the calibrateServos.py program.

wheelsPercent()
The wheelsPercent() function turns the wheels from 0 (all the way to
the left) to 100 (all the way to the right):

wheelsPercent(percent)

This function is useful for more precisely setting the direction of the
robot's front wheels. Again, “all the way to the left and “all the way to
the right”” are defined in the calValues.py file. Refer to Chapter 2 in
this minibook for information on the calibration values and how to set
them using the calibrateServos.py program.

The percent parameter has values from 0 to 100 and represents the
linear percent from left to right. Note that the value 50 may not be quite
in the middle because your servos may not be set exactly in the middle
of their range (as set by the servo calibration process) and because of the
way your robot was built.

General servo function
We have included a general function to control all the servos at once.
Calling this function moves all servos to the center position.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



centerAllServos()
The centerAllServos() function puts all the servos to the center of
their range, as defined in the calValues.py file:

centerAllServos()

The Python Robot Interface Test
Now that we've defined the robot API (application programming
interface), let's run the system test using the RobotInterface Python
class. This program is useful for two reasons. First, it tests all functions
in the RobotInterface class. Second, it shows how to use each function
in a Python program. This next program, RITest.py, is designed to test
all the functions of the robot controlled by the RobotInterface class.

The code for RITest.py follows:

#!/usr/bin/python3

# Robot Interface Test

 

import RobotInterface

import time

 

 

RI = RobotInterface.RobotInterface()

 

print ("Robot Interface Test")

print ("LED tests")

RI.set_Front_LED_On(RI.left_R)

time.sleep(0.1)

RI.set_Front_LED_On(RI.left_G)

time.sleep(0.1)

RI.set_Front_LED_On(RI.left_B)

time.sleep(1.0)

RI.set_Front_LED_On(RI.right_R)

time.sleep(0.1)

RI.set_Front_LED_On(RI.right_G)

time.sleep(0.1)

RI.set_Front_LED_On(RI.right_B)

time.sleep(1.0)

 

RI.set_Front_LED_Off(RI.left_R)

time.sleep(0.1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RI.set_Front_LED_Off(RI.left_G)

time.sleep(0.1)

RI.set_Front_LED_Off(RI.left_B)

time.sleep(1.0)

RI.set_Front_LED_Off(RI.right_R)

time.sleep(0.1)

RI.set_Front_LED_Off(RI.right_G)

time.sleep(0.1)

RI.set_Front_LED_Off(RI.right_B)

 

time.sleep(1.0)

RI.rainbowCycle(20, 1)

time.sleep(0.5)

 

# Runs for 40 seconds

RI.theaterChaseRainbow(50)

time.sleep(0.5)

 

print ("RI.Color(0,0,0)=", RI.Color(0,0,0))

RI.colorWipe(RI.Color(0,0,0))

time.sleep(1.0)

for pixel in range (0,12):

    RI.setPixelColor(pixel,RI.Color(100,200,50),50)

    time.sleep(0.5)

 

print ("Servo Tests")

RI.headTurnLeft()

time.sleep(1.0)

RI.headTurnRight()

time.sleep(1.0)

RI.headTurnMiddle()

time.sleep(1.0)

 

RI.headTiltDown()

time.sleep(1.0)

RI.headTiltUp()

time.sleep(1.0)

RI.headTiltMiddle()

time.sleep(1.0)

 

RI.wheelsLeft()

time.sleep(1.0)

RI.wheelsRight()

time.sleep(1.0)

RI.wheelsMiddle()

time.sleep(1.0)

 

print("servo scan tests")

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



for percent in range (0,100):

    RI.headTurnPercent(percent)

for percent in range (0,100):

    RI.headTiltPercent(percent)

for percent in range (0,100):

    RI.wheelsPercent(percent)

 

print("motor test")

RI.motorForward(100,1.0)

time.sleep(1.0)

RI.motorBackward(100,1.0)

 

print("ultrasonic test")

print ("distance in cm=", RI.fetchUltraDistance())

 

print("general function test")

RI.allLEDSOff()

RI.centerAllServos()

Run the program by typing sudo python3 RITest.py in a terminal
window. Note that you have to use sudo because the Pixel LEDs require
root permission (granted by sudo) to correctly run. You see the following
output on the Terminal screen while your program is running:

Robot Interface Test

LED tests

RI.Color(0,0,0)= 0

Servo Tests

servo scan tests

motor test

ultrasonic test

distance in cm= 16.87312126159668

general function test

Here's a link to the video of the RobotInterface class test:
https://youtu.be/1vi-UGao0oI.

ROS: THE ROBOT OPERATING SYSTEM
We have written a fairly simple interface class for the PiCar-B robot. The RobotInterface
module allows us to control the robot from a Python program. If we had more room in
this book we would connect our robot to the ROS (robot operating system and
pronounced “Ross”). (Actually, an entire book could be written about the use of ROS for
a robot like ours.) ROS is designed for controlling robots in a distributed system. Even
though it's called the robot operating system, it really isn't an operating system.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/1vi-UGao0oI


ROS is middleware, which is software designed to manage the complexity of writing
software in a complicated and heterogenous (meaning lots of different types of robots
and sensors) environment. ROS allows us to treat different robots in a similar manner.

ROS uses a publish-subscribe system, similar to a newspaper. A newspaper publishes
stories, but only the people who subscribe to the newspaper see those stories. A
subscriber might want a subscription only to the comics or the front page. A robot like
ours might publish the current value of the ultrasonic sensor or the current camera
image (or even a video stream) and other computers or robots on the network could
subscribe to the video stream and see what your robot is seeing. And your robot could
subscribe to other sensors (such as a temperature sensor in the middle of the room) or
even look at what other robots are seeing.

The power of this technique is that now you can make your robot part of an ecosystem
consisting of computers, sensors, and even people making use of your data and
contributing information to your robot.

We could build a ROS interface on our robot and then control it remotely and feed
sensor data to other computers. To give you an idea of the scalability of this software,
you could control the robot car as well as a giant industrial robot and even coordinate
the two robots to work together.

In many ways, ROS rocks. Find out more about ROS at www.ros.org. John Shovic is
standing with his giant industrial ROS-controlled robot in the picture. For a holiday-
themed example of the big robot in motion, check out this YouTube video:
https://youtu.be/uU5KEzhE7ps.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.ros.org/
https://youtu.be/uU5KEzhE7ps


https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Coordinating Motor Movements
with Sensors

The capability to modify and coordinate motor movements with sensor
movements is key to movement in the environment. Sensors give
information to be acted upon as well as feedback from our motions.
Think of the act of catching a baseball with a glove. Your sensors? Eyes
and the sense of touch. Your eyes see the ball and then move your hand
and arm to intercept the ball. You're coordinating your movement with a
sensor (meaning your eyes). The feedback? Knowing you've caught the
ball in your mitt by the feel of it hitting your gloved hand as well as
feedback from your vision to know approximately when you will close
your hand. You're also updating your internal learning system to become
better at catching the ball.

PiCar-B has two sensors that read information from the outside world so
that the robot can analyze what it sees. The ultrasonic sensor detects
what's in front of the robot and the camera photographs the world.
However, programming robot vision is difficult.

Chapter 4 talks about using artificial intelligence for robots to
understanding what the camera is seeing, and we will be building an
example of how to do this using machine learning. We touch on using
camera images for analysis in Chapter 4 of this minibook.

For our next example, we will focus on the simpler sensor, the ultrasonic
distance sensor. The following Python code, simpleFeedback.py, moves
the robot forward or backward depending on the robot's distance from
the object in front of it:

#!/usr/bin/python3

# Robot Interface Test

 

import RobotInterface

import time

 

DEBUG = True

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RI = RobotInterface.RobotInterface()

 

print ("Simple Feedback Test")

 

RI.centerAllServos()

RI.allLEDSOff()

 

# Ignore distances greater than one meter

DISTANCE_TO_IGNORE = 1000.0

# Close to 10cm with short moves

DISTANCE_TO_MOVE_TO = 10.0

# How many times before the robot gives up

REPEAT_MOVE = 10

 

def bothFrontLEDSOn(color):

    RI.allLEDSOff()

    if (color == "RED"):

        RI.set_Front_LED_On(RI.right_R)

        RI.set_Front_LED_On(RI.left_R)

        return

    if (color == "GREEN"):

        RI.set_Front_LED_On(RI.right_G)

        RI.set_Front_LED_On(RI.left_G)

        return

    if (color == "BLUE"):

        RI.set_Front_LED_On(RI.right_B)

        RI.set_Front_LED_On(RI.left_B)

        return

 

 

 

 

try:

    Quit = False

    moveCount = 0

    bothFrontLEDSOn("BLUE")

    while (Quit == False):

        current_distance = RI.fetchUltraDistance()

        if (current_distance >= DISTANCE_TO_IGNORE):

            bothFrontLEDSOn("BLUE")

            if (DEBUG):

                print("distance too far ={:6.2f}cm"

                        .format(current_distance))

        elif (current_distance <= 10.0):

                # reset moveCount

                # the Robot is close enough

                bothFrontLEDSOn("GREEN")

                moveCount = 0

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



                if (DEBUG):

                    print("distance close enough ={:6.2f}cm"

                            .format(current_distance))

 

                time.sleep(5.0)

                # back up and do it again

                RI.motorBackward(100,1.0)

        else:

                if (DEBUG):

                    print("moving forward ={:6.2f}cm"

                            .format(current_distance))

                # Short step forward

                bothFrontLEDSOn("RED")

                RI.motorForward(90,0.50)

                moveCount = moveCount + 1

 

        # Now check for stopping our program

        time.sleep(1.0)

        if (moveCount > REPEAT_MOVE):

            Quit = True

 

except KeyboardInterrupt:

    print("program interrupted")

 

print ("program finished")

The simpleFeedback.py program is a great example of the use of
feedback in robotics. The robot first checks to see if it is less than 1
meter (1000cm) from the wall. If it is, it slowly starts to advance toward
the wall in short steps. When it is closer than 10cm to the wall, it stops,
waits five seconds, and then backs up about a meter (the distance
depends on your flooring and the charge left on the batteries) to repeat
the process:

          if (moveCount > REPEAT MOVE):

              Quit = True

It also gives up if it takes more than ten moves to get to the wall, if
somehow it has moved farther than 1000cm away from the wall, or if the
user has pressed Ctrl+C to interrupt the program.

Note how we use the LEDs to give surrounding people feedback as to
what the robot is doing. This visual feedback is an important part of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



making human–robot interaction more efficient, understandable, and
safer.

The main structure of the program is in a Python while loop. As long as
we haven't interrupted the program (or one of the other quit criteria
hasn't been satisfied), our little robot will keep working until the battery
goes dead.

Copy the code into simpleFeedback.py and give the program a try by
executing sudo python3 simpleFeedback.py. Here are the printed
results:

Simple Feedback Test

moving forward = 55.67cm

moving forward = 44.48cm

moving forward = 34.22cm

moving forward = 26.50cm

moving forward = 17.53cm

distance close enough =  9.67cm

moving forward = 66.64cm

moving forward = 54.25cm

moving forward = 43.55cm

moving forward = 36.27cm

moving forward = 28.44cm

moving forward = 21.08cm

moving forward = 13.55cm

distance close enough =  6.30cm

moving forward = 64.51cm

moving forward = 52.89cm

moving forward = 43.75cm

moving forward = 33.95cm

moving forward = 26.79cm

^Cprogram interrupted

program finished

You can see the feedback video at https://youtu.be/mzZIMxch5k4.

Play with this code. Try other ideas and different constants and see the
different results you get. For example, what happens if you increase the
speed of the motors or change the minimum distance to 5cm from 10cm?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/mzZIMxch5k4


Making a Python Brain for Our
Robot

Now you're going to create a simple self-driving car. In a sense, you're
going to apply the results from the simpleFeedback.py program to
create an autonomous vehicle that is not very smart but illustrates the use
of feedback in decision making.

The Python brain you are writing is nothing more than a combination of
the code for sensing the wall (from earlier in this chapter) and the code
for generating a random walk based on the information gained from the
ultrasonic sensor. After we tested the code for a while, the robot would
get stuck, so we added code to detect when the robot is stuck and to back
out in that situation.

Note: Make sure the batteries are fully charged before running this code.
When the batteries dip a bit, your motor speed will dramatically
decrease. Another way to fix this problem is to use bigger batteries.

Following is the code for the robot brain:
#!/usr/bin/python3

# Robot Brain

 

import RobotInterface

import time

 

from random import randint

 

DEBUG = True

 

RI = RobotInterface.RobotInterface()

 

print ("Simple Robot Brain")

 

RI.centerAllServos()

RI.allLEDSOff()

 

# Close to 20cm

CLOSE_DISTANCE = 20.0

# How many times before the robot gives up

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



REPEAT_TURN = 10

 

 

def bothFrontLEDSOn(color):

    RI.allLEDSOff()

    if (color == "RED"):

        RI.set_Front_LED_On(RI.right_R)

        RI.set_Front_LED_On(RI.left_R)

        return

    if (color == "GREEN"):

        RI.set_Front_LED_On(RI.right_G)

        RI.set_Front_LED_On(RI.left_G)

        return

    if (color == "BLUE"):

        RI.set_Front_LED_On(RI.right_B)

        RI.set_Front_LED_On(RI.left_B)

        return

 

STUCKBAND = 2.0

# check for stuck car by distance not changing

def checkForStuckCar(cd,p1,p2):

 

    if (abs(p1-cd) < STUCKBAND):

        if (abs(p2-cd) < STUCKBAND):

            return True

    return False

try:

    Quit = False

    turnCount = 0

    bothFrontLEDSOn("BLUE")

 

    previous2distance = 0

    previous1distance = 0

 

    while (Quit == False):

        current_distance = RI.fetchUltraDistance()

        if (current_distance >= CLOSE_DISTANCE ):

            bothFrontLEDSOn("BLUE")

            if (DEBUG):

                print("Continue straight ={:6.2f}cm"

                        .format(current_distance))

            if (current_distance > 300):

                # verify distance

                current_distance = RI.fetchUltraDistance()

                if (current_distance > 300):

                    # move faster

                    RI.motorForward(90,1.0)

            else:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



                RI.motorForward(90,0.50)

            turnCount = 0

 

        else:

            if (DEBUG):

                print("distance close enough so turn ={:6.2f}cm"

                        .format(current_distance))

            bothFrontLEDSOn("RED")

            # now determine which way to turn

            # turn = 0 turn left

            # turn = 1 turn right

            turn = randint(0,1)

 

            if (turn == 0): # turn left

                # we turn the wheels right since

                # we are backing up

                RI.wheelsRight()

            else:

                # turn right

 

                # we turn the wheels left since

                # we are backing up

                RI.wheelsLeft()

            time.sleep(0.5)

            RI.motorBackward(100,1.00)

            time.sleep(0.5)

            RI.wheelsMiddle()

            turnCount = turnCount+1

            print("Turn Count =", turnCount)

 

        # check for stuck car

        if (checkForStuckCar(current_distance,

              previous1distance, previous2distance)):

            # we are stuck.  Try back up and try Random turn

            bothFrontLEDSOn("RED")

            if (DEBUG):

                print("Stuck - Recovering ={:6.2f}cm"

                        .format(current_distance))

            RI.wheelsMiddle()

            RI.motorBackward(100,1.00)

 

            # now determine which way to turn

            # turn = 0 turn left

            # turn = 1 turn right

            turn = randint(0,1)

 

 

            if (turn == 0): # turn left

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



                # we turn the wheels right since

                # we are backing up

                RI.wheelsRight()

            else:

                # turn right

 

                # we turn the wheels left since

                # we are backing up

                RI.wheelsLeft()

            time.sleep(0.5)

            RI.motorBackward(100,2.00)

            time.sleep(0.5)

            RI.wheelsMiddle()

 

 

        # load state for distances

        previous2distance = previous1distance

        previous1distance = current_distance

 

        # Now check for stopping our program

        time.sleep(0.1)

        if (turnCount > REPEAT_TURN-1):

            bothFrontLEDSOn("RED")

            if (DEBUG):

                print("too many turns in a row")

            Quit = True

 

except KeyboardInterrupt:

    print("program interrupted")

 

print ("program finished")

This program seems more complex than our ultrasonic sensor program
presented earlier in the chapter, but it's not that much harder. We took the
same structure of the program (the while loop) and added several
features.

First, we added a clause to speed up the car when we are far away (over
300cm) from an obstacle. We also reread the distance to make sure we
are still 300cm away in case something had changed:

if (current_distance >= CLOSE_DISTANCE ):

    bothFrontLEDSOn("BLUE")

    if (DEBUG):

        print("Continue straight ={:6.2f}cm"

            .format(current_distance))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    if (current_distance > 300):

        # verify distance

        current_distance = RI.fetchUltraDistance()

        if (current_distance > 300):

            # move faster

            RI.motorForward(90,1.0)

    else:

        RI.motorForward(90,0.50)

    turnCount = 0

We continue to move in short little hops to move the robot closer to the
wall. When the robot gets within about 10cm of the wall, the program
decides to turn its front wheels in a random direction and backs up to try
a new direction to investigate:

if (DEBUG):

    print("distance close enough so turn ={:6.2f}cm"

        .format(current_distance))

bothFrontLEDSOn("RED")

now determine which way to turn

# turn = 0 turn left

# turn = 1 turn right

turn = randint(0,1)

if (turn == 0): # turn left

    # we turn the wheels right since

    # we are backing up

    RI.wheelsRight()

else:

    # turn right

    # we turn the wheels left since

    # we are backing up

    RI.wheelsLeft()

time.sleep(0.5)

RI.motorBackward(100,1.00)

time.sleep(0.5)

RI.wheelsMiddle()

turnCount = turnCount+1

print("Turn Count =", turnCount)

We ran the robot for quite a while with just this logic, but the robot
would get stuck if part of it was blocked, even though the ultrasonic
sensor was still picking up a distance of greater than 10cm.

To fix this problem, we added a running record of the past two ultrasonic
distance readings. If we had three readings +/− 2.0cm, the robot would

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



decide it was stuck and back up, turn randomly, and proceed again to
wandering. Worked like a champ:

if (checkForStuckCar(current_distance,

        previous1distance, previous2distance)):

    # we are stuck. Try back up and try Random turn

    bothFrontLEDSOn("RED")

    if (DEBUG):

        print("Stuck - Recovering ={:6.2f}cm"

            .format(current_distance))

    RI.wheelsMiddle()

    RI.motorBackward(100,1.00)

 

    # now determine which way to turn

    # turn = 0 turn left

    # turn = 1 turn right

    turn = randint(0,1)

 

    if (turn == 0): # turn left

        # we turn the wheels right since

        # we are backing up

        RI.wheelsRight()

    else:

        # turn right

 

        # we turn the wheels left since

        # we are backing up

        RI.wheelsLeft()

    time.sleep(0.5)

    RI.motorBackward(100,2.00)

    time.sleep(0.5)

    RI.wheelsMiddle()

We set the robot down in a room with furniture and a complex set of
walls and let it loose by typing sudo python3 robotBrain.py in a
terminal window. Here are the results from the console:

Simple Robot Brain

Continue straight =115.44cm

Continue straight =108.21cm

Continue straight =101.67cm

Continue straight = 95.67cm

Continue straight = 88.13cm

Continue straight = 79.85cm

Continue straight = 70.58cm

Continue straight = 63.89cm

Continue straight = 54.36cm

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Continue straight = 44.65cm

Continue straight = 36.88cm

Continue straight = 28.32cm

Continue straight = 21.10cm

distance close enough so turn = 11.33cm

Turn Count = 1

Continue straight = 33.75cm

Continue straight = 25.12cm

distance close enough so turn = 18.20cm

Turn Count = 1

Continue straight = 40.51cm

Continue straight = 33.45cm

Continue straight = 24.73cm

distance close enough so turn = 14.83cm

Turn Count = 1

Continue straight = 35.72cm

Continue straight = 26.13cm

distance close enough so turn = 18.56cm

Turn Count = 1

Continue straight = 43.63cm

Continue straight = 37.74cm

Continue straight = 27.33cm

Continue straight = 84.01cm

You can see the robot drive towards a wall and then turn several times to
find a way out and then continue on in the video at
https://youtu.be/U7_FJzRbsRw.

A BETTER ROBOT BRAIN ARCHITECTURE
If you look at the robotBrain.py software from a software architectural perspective, one
thing jumps out. The main part of the program is a single while loop that polls the
ultrasonic and then does one thing at a time (moves, turns, and so on) and then polls it
again. This polling and then moving leads to the somewhat jerky behavior of the robot
(move a little, sense, move a little, sense, and so on). Although this architecture is the
simplest we could use for our example, there are better, albeit more complicated, ways
of doing these motions that are beyond the scope of our project today. To improve this
program behavior, we again would turn to threads.

You can think of threads as separate programs that run at the same time and
communicate to each other by using semaphores and data queues. Semaphores and
data queues are simply methods by which a thread can communicate with other
threads accurately and consistently. Because multiple threads are running at the same
time, you have to be careful how they talk and exchange information. One thread may
supply old information to another thread or change data being used by another thread.
You also have to make sure that two threads aren't talking to the hardware at the same

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/U7_FJzRbsRw


time. Talking between threads is not complicated, if you follow the rules. For more on
threads, see Chapter 4 in this minibook.

A better architecture for our robot brain would be like this:

Motor thread: This thread controls the motors. It makes them run and stop on
command.

Sensor thread: This thread periodically reads the ultrasonic sensor (and any
other sensors you may have) so you always have the current distance
available.

Head thread: This thread controls the head servos by using commands from
the Command thread (described next).

Command thread: This thread is the brains of software. It takes current
information from the Sensor thread and sends commands out to the motors in
their respective thread.

This architecture leads to a much smoother operation of the robot. You can have the
motors running at the same time you're taking sensor values and sending commands.
This architecture is used in the Adeept software server.py file included with the PiCar-
B.

Overview of the Included Adeept
Software

The Adeept software supplied with the robot (see Figure 3-1) is
primarily a client/server model in which the client is a control panel on
another computer and the server runs on the Raspberry Pi on PiCar-B.
The control panel allows you to control the robot remotely and has a lot
of interesting features, such as object tracking using OpenCV and a
radarlike ultrasonic mapping capability. You can also see the video
coming from the robot and use that to navigate manually. We've
suggested not installing the Adeept software because it will interfere
with running your own Python software.

The software installation is complicated, so pay close attention to the
instructions.

The software is fun to use, but it doesn't require any actual
programming. The software is open source, so you can look inside to see

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



how Adeept is doing things. Be sure to check out server.py under the
Server directory and look at the way threading is used to get smooth
motion and sensing from the robot.

FIGURE 3-1: Adeept remote control software.

Where to Go from Here
You now have a small robot that can display complex behavior based on
its built-in ultrasonic sensor. You can enhance this robot by adding
sensors to the Raspberry Pi. (How about a laser distance finder? Bumper
sensors? Light conditions?) Add some of the motors you used in Book 6.
You can plug the Pi2Grover on top of the motor controller and use all the
Grove devices you have accumulated.

The sky is the limit!

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Chapter 4
Using Artificial Intelligence in

Robotics
IN THIS CHAPTER

 Understanding the use of AI in robotics
 Seeing how AI helps in robotics
 Using machine learning in our robot

“Artificial Intelligence (AI) is the theory and development of computer
systems able to perform tasks that normally require human intelligence,
such as visual perception, speech recognition, decision-making, and
translation between languages.”

—DICTIONARY.COM
So, AI is meant to replace people? Well, not really. Modern AI looks to
enhance machine intelligence in certain tasks that are normally
performed by people. Even saying “machine intelligence” is somewhat
of a misnomer because it's hard to claim that machines have intelligence
at all, at least as we think of intelligence in people.

Instead of the philosophical debate, let’s focus on this chapter's project,
which uses machine-learning AI. We apply the techniques of neural
networks to machine vision for our robotic car. In this way, the robot can
utilize the Pi camera to understand aspects of its environment.

 Making robots see is easy, but making them understand what
they are seeing is exceptionally hard. If you want to learn more
about computer vision using Python, check out Computer Vision

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Projects with OpenCV and Python 3 by Matthew Rever (Packt
Publishing).

 For a better understanding of the AI techniques in this chapter,
read Chapters 1 and 2 in Book 4.

This Chapter’s Projects: Going to
the Dogs

In this chapter, we show you how to build a machine-learning neural
network and train it to recognize cats versus dogs. (This is a skill all
robots should have.) To train the network, we use TensorFlow and a
1,000-image subset (500 cats and 500 dogs) of the 25,000 images of cats
and dogs in the Kaggle Cats and Dogs database.

TensorFlow is a Python package that supports neural networks and
machine learning based on matrices and flow graphs. TensorFlow is
similar to NumPy (a Python library that supports large multi-
dimensional arrays and a large collection of mathematical functions that
operate on these arrays), with one exception: TensorFlow is designed for
use in machine-learning and AI applications, so it has libraries and
functions designed for those specific applications.

The second project in this chapter uses machine vision to enable your
robot to look for a ball and then move toward it like a slow — and dumb
— dog. But it is still a good example of what you can do with machine
vision using Python.

 Refer to Book 4 for examples and information on using
TensorFlow in Python and on the Raspberry Pi.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Setting Up the First Project
For the Raspberry Pi, go to www.tensorflow.org/install/pip,
download TensorFlow, and install it according to the directions.

 Later, if you want to do more experiments with your machine-
learning software, download the full Cats and Dogs dataset from
www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data.
Another source of the full data is www.microsoft.com/en-
us/download/details.aspx?id=54765.

The truncated list of the Cats and Dogs dataset is located at
https://github.com/switchdoclabs/CatsAndDogsTruncatedData.
The list is about 65MB and is included with our software at
www.dummies.com/go/pythonaiofd2e.

To make sure that your data is structured for the example programs, run
the following command in your program directory to download all the
truncated data in the correct directory structures:

git clone https://github.com/switchdoclabs/CatsAndDogsTruncatedData.git

If you look under the CatsAndDogsTruncatedData directory after
executing this command, you'll see two directories. The train directory
contains the cat and dog images that you will use to train your neural
network. The validation directory contains unclassified images to test
your neural network after you've trained it.

Now that the data is ready, let's go train that network.

Machine Learning Using
TensorFlow

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.tensorflow.org/install/pip
https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data
https://www.microsoft.com/en-us/download/details.aspx?id=54765
https://github.com/switchdoclabs/CatsAndDogsTruncatedData
http://www.dummies.com/go/pythonaiofd2e
https://github.com/switchdoclabs/CatsAndDogsTruncatedData.git


Our goal in this section is to fully train our machine learning neural
network on the difference between cats and dogs, validate the test data,
and then save the trained neural network so we can use it on our robot.
Then the real fun will begin!

 When you run the following program, if you see ImportError:
No module named 'seaborn', type sudo pip3 install seaborn.

We started by using a simple two-layer neural network for our cats and
dogs machine-learning network. Many more complex networks are
available and may give better results, but we were hoping that this would
be good enough for our needs. Check out Book 4, Chapter 2 for
information on neural networks and TensorFlow.

Using a simple two-layer neural network on the cats and dog dataset did
not work well; we achieved about a 51 percent detection rate, and 50
percent is as good as guessing randomly. We needed a more complex
neural network that would work better on complex images, so we
decided to use a standard six-layer CNN (convolutional neural network)
instead. We then changed the model layers in our program to use the six-
level convolutional layer model. You just have to love how easy Keras
and TensorFlow make it to dramatically change the neural network.

CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNNs) work by scanning images and analyzing them
chunk by chunk, in a 5x5 pixel window that moves by a length of two pixels each time
until it spans the entire image. It's like looking at an image using a microscope; you see
only a small part of the picture at any one time, but eventually you scan the entire
picture. You then move on to the next image in the dataset. Each loop through all the
data is called an epoch.

Using a CNN neural network on the Raspberry Pi increased the single epoch time to
1,000 seconds versus 10 seconds on the simple two-layer network, which is 100 times
slower. And the analysis program has a CPU utilization of 352 percent, which means it's
using 3.5 cores on the Raspberry Pi, a machine that has only 4 cores. (You can think of
each core as a smaller computer.) This amounts to a very high CPU utilization of the

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Raspberry Pi 3B+. The little Raspberry Pi consumes almost 3.8W while running our
neural network, up from about 1.5W normally.

You can see the complexity of our new network by looking at the
model.summary() results:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d (Conv2D) (None, 150, 150, 32) 896

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 75, 75, 32) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 75, 75, 32) 9248

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 37, 37, 32) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 37, 37, 64) 18496

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 18, 18, 64) 0

_________________________________________________________________

dropout (Dropout) (None, 18, 18, 64) 0

_________________________________________________________________

flatten (Flatten) (None, 20736) 0

_________________________________________________________________

dense (Dense) (None, 64) 1327168

_________________________________________________________________

dropout_1 (Dropout) (None, 64) 0

_________________________________________________________________

dense_1 (Dense) (None, 2) 130

=================================================================

Total params: 1,355,938

Trainable params: 1,355,938

Non-trainable params: 0

The last lines are the most interesting. Our CNN has over 1.3 million
trainable parameters. Each of those parameters will be modified by our
training to produce our trained machine-learning program.

The code
The code to implement this TensorFlow training program is brief. Once
again, we see the power of Python libraries in hiding the complexity of
the parameter computations for our neural network:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



#import libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

from tensorflow.keras.preprocessing.image import ImageDataGenerator

 

from tensorflow.keras.layers import *

 

# load data

 

img_width = 150

img_height = 150

train_data_dir = 'data/train'

valid_data_dir = 'data/validation'

 

datagen = ImageDataGenerator(rescale = 1./255)

 

train_generator = datagen.flow_from:directory(

                directory=train_data_dir,

                target_size=(img_width,img_height),

                classes=['dogs','cats'],

                class_mode='binary',

                batch_size=16)

 

validation_generator = datagen.flow_from:directory(directory=valid_data_dir,

                target_size=(img_width,img_height),

                classes=['dogs','cats'],

                class_mode='binary',

                batch_size=32)

 

# build model

 

 

model = tf.keras.Sequential()

 

 

 

model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3), padding='same', 

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

 

model.add(Conv2D(32, (3, 3), padding='same', activation='relu'))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



model.add(MaxPooling2D(pool_size=(2, 2)))

 

model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))

model.add(MaxPooling2D(pool_size=(2, 2)))

 

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(2, activation='softmax'))

 

model.compile(optimizer=tf.train.AdamOptimizer(),

                              loss='sparse_categorical_crossentropy',

                              metrics=['accuracy'])

 

print (model.summary())

 

# train model

 

print('starting training….')

history = model.fit_generator(generator=train_generator,

        steps_per_epoch=2048 // 16,epochs=20,

        validation_data=validation_generator,validation_steps=832//16)

 

print('training finished!!')

 

# save coefficients

 

model.save("CatsVersusDogs.trained")

 

# Get training and test loss histories

training_loss = history.history['loss']

accuracy = history.history['acc']

# Create count of the number of epochs

epoch_count = range(1, len(training_loss) + 1)

 

# Visualize loss history

plt.figure(0)

plt.plot(epoch_count, training_loss, 'r--')

plt.plot(epoch_count, accuracy, 'b--')

plt.legend(['Training Loss', 'Accuracy'])

plt.xlabel('Epoch')

plt.ylabel('History')

plt.grid(True)

plt.show(block=True);

Save the code in a file called CatsVersusDogsTrain.py.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



How the code works
The CatsVersusDogsTrain.py code has 93 lines, and it's surprising what
we can do with so few lines of code. We will examine each of the major
blocks of code in the CatsVersusDogsTrain.py program in turn.

First, we import all the libraries:
#import libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import seaborn as sns

import tensorflow as tf

from tensorflow.python.framework import ops

from tensorflow.examples.tutorials.mnist import input_data

from PIL import Image

from tensorflow.keras.preprocessing.image import ImageDataGenerator

 

from tensorflow.keras.layers import *

Next, we massage the data into tensors (matrices) for training through
our neural network. The cat and dog images are stored in separate
directories under data. We change the images into a 150-by-150-pixel
format and then load the image data into the training generator in the
format needed by the neural network:

# load data

 

img_width = 150

img_height = 150

train_data_dir = 'data/train'

valid_data_dir = 'data/validation'

 

datagen = ImageDataGenerator(rescale = 1./255)

 

train_generator = datagen.flow_from:directory(

    directory=train_data_dir,

    target_size=(img_width,img_height),

    classes=['dogs','cats'],

    class_mode='binary',

    batch_size=16)

 

validation_generator = datagen.flow_from:directory(directory=valid_data_dir,

    target_size=(img_width,img_height),

    classes=['dogs','cats'],

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    class_mode='binary',

    batch_size=32)

Now we build the six-layer neural network that forms the basis of the
machine learning model:

# build model

 

model = tf.keras.Sequential()

The first layer is a 2D convolutional neural network that starts to extract
features from the photograph. We use RELU (rectified linear unit) as the
neuron activation function. RELU modifies the output from the summed
inputs of a neuron to present it to the neuron. For an easy-to-understand
introduction to RELU and activation functions in general, check out
https://machinelearningmastery.com/rectified-linear-

activation-function-for-deep-learning-neural-networks/.

model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3), padding='same', 

activation='relu'))

The next layer of our CNN, MaxPooling2D, combines the outputs found
in the previous layer:

model.add(MaxPooling2D(pool_size=(2, 2)))

Next, we add another two layers of convolutional neural networks, each
followed by a pooling layer. A pooling layer reduces the location
sensitivity of a specific feature (such as a cat's nose) by pooling the
information in a manner that increases the neural network's capability to
see the same feature in other locations in an image:

model.add(Conv2D(32, (3, 3), padding='same', activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))

model.add(MaxPooling2D(pool_size=(2, 2)))

One of the problems with neural networks is overfitting, when the
machine matches the data too closely such that the network won't match
any new, slightly different pictures. Dropout layers help here by
randomly setting some data to 0. We are removing 25 percent of the data
in this layer:

model.add(Dropout(0.25))

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/


Now we flatten the data into a one-dimensional array to present it to the
64 neurons in the network at the same time, and then use a final densely
connected 64-neuron layer:

model.add(Flatten())

model.add(Dense(64, activation='relu'))

Next, drop out another 50 percent of the input units to help with
overfitting. Again, this seems counterintuitive to remove 50 percent of
data after training, but it helps the network recognize pictures that aren't
in the training set and properly categorize them:

model.add(Dropout(0.5))

Our output layer, Cat or Dog (filast model.add in the code), has two
outputs. If the CNN finds a cat, the first output will be a 1 and the
second output will be a 0. If the CNN finds a dog, the first output will be
a 0 and the second output will be a 1:

model.add(Dense(2, activation='softmax'))

model.compile(optimizer=tf.train.AdamOptimizer(),

    loss='sparse_categorical_crossentropy',

    metrics=['accuracy'])

print (model.summary())

# train model

The neural network training on 1,000 cat and dog pictures takes about
five hours on a Raspberry Pi 3B+:

print('starting training….')

history = model.fit_generator(generator=train_generator,

    steps_per_epoch=2048 // 16,epochs=20,

    validation_data=validation_generator,validation_steps=832//16)

print('training finished!!')

This next line of code saves the trained neural network model for use
later, saving five hours per run! Saving the resulting training is normal
for a machine-learning system. Training takes a lot of time, but running
the model to categorize new images is fast.

# save coefficients

model.save("CatsVersusDogs.trained")

We use MatPlotLib to generate a graph that shows how accuracy
improves with each epoch:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# Get training and test loss histories

training_loss = history.history['loss']

accuracy = history.history['acc']

# Create count of the number of epochs

epoch_count = range(1, len(training_loss) + 1)

# Visualize loss history

plt.figure(0)

plt.plot(epoch_count, training_loss, 'r--')

plt.plot(epoch_count, accuracy, 'b--')

plt.legend(['Training Loss', 'Accuracy'])

plt.xlabel('Epoch')

plt.ylabel('History')

plt.grid(True)

plt.show(block=True);

The results
Now after all that neural network training, we can check out the results
of running our fully trained network.

 Install the h5py library before running this program by typing
the following. Otherwise, the save statement will not work:

sudo apt-get install python-h5py

Showtime! Run the following command in the terminal window:
python3 CatsVersusDogs.py

It takes about five hours on a Raspberry Pi 3B+ to generate 20 epochs of
training and save the results into the CatsVersusDogs.training file. A
snapshot of the last epoch follows:

Epoch 20/20

128/128 [==============================] - 894s 7s/step - loss: 0.0996 - acc: 

0.9609 - val_loss: 1.1069 - val_acc: 0.7356

training finished!!

 You can safely ignore warnings from TensorFlow, such as:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: compiletime 

version 3.4 of module 'tensorflow.python.framework.fast_tensor_util' does not 

match runtime version 3.5

return f(*args, **kwds)

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: builtins.type 

size changed, may indicate binary incompatibility. Expected 432, got 412

return f(*args, **kwds)

These warnings will be fixed in an upcoming version.

After the five-hour-long training, we achieved an accuracy of 96
percent! Pretty good. Figure 4-1 shows how the accuracy improved
during training. Remember that test directory of images not used for
training? We use those unused but known images for testing how well
we're doing.

FIGURE 4-1: Cats and dogs recognition accuracy per epoch.

The shape of the accuracy curve tells us that we might have slightly
improved the accuracy rate by running more epochs over several hours,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



but this is good enough for our example. Training loss is an indicator of
how many mistakes were made by the neural network during training.
Just running more epochs may not improve your accuracy. Eventually,
the network may become overfitted and the accuracy numbers will start
to go down. Just another example of why machine learning is still an art
and not a totally predictive science.

Testing the Trained Network
Time to do a test on a cat/dog image that is not in our training or
validation set. We're going to use the trained data from our neural
network training session to do a few “cat or dog?” determinations on
new pictures that the neural network has not seen.

We chose the cat picture shown in Figure 4-2 because it is a low-
contrast, low-quality picture, which should be harder to classify whereas
the dog picture, shown in Figure 4-3, is a high-quality picture.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-2: Panther the cat on salmon.

The code
The code to use the trained neural network to classify our pictures is
even simpler than the code to train the network. Create a file called
singleTestImage.py and insert the following code:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-3: Winston the dog.

#import libraries

import numpy as np

import tensorflow as tf

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



from tensorflow.python.framework import ops

from PIL import Image

 

print("import complete")

# load model

 

img_width = 150

img_height = 150

 

class_names = ["Dog", "Cat"]

 

model = tf.keras.models.load_model("CatsVersusDogs.trained",compile=True)

print (model.summary())

 

# do cat single image

#imageName = "Cat150x150.jpeg"

imageName = "Dress150x150.JPG"

testImg = Image.open(imageName)

testImg.load()

data = np.asarray( testImg, dtype="float" )

 

data = np.expand_dims(data, axis=0)

singlePrediction = model.predict(data, steps=1)

 

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

print(NumberElement)

print(Element)

print(singlePrediction)

 

print ("Our Network has concluded that the file '"

        +imageName+"' is a "+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

 

# do dog single image

imageName = "Dog150x150.JPG"

testImg = Image.open(imageName)

testImg.load()

data = np.asarray( testImg, dtype="float" )

 

data = np.expand_dims(data, axis=0)

singlePrediction = model.predict(data, steps=1)

 

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

print(NumberElement)

print(Element)

print(singlePrediction)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

print ("Our Network has concluded that the file '"

        +imageName+"' is a "+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

How the code works
The singleTestImage.py code uses the trained neural network that we
generated by the five-hour long training with the cats and dogs dataset
earlier in the chapter.

First, we import our libraries, as in the CatsVersusDogsTrain.py
program:

#import libraries

import numpy as np

import tensorflow as tf

from tensorflow.python.framework import ops

from PIL import Image

 

print("import complete")

# load model

img_width = 150

img_height = 150

Then we set up the class name array so we have classification names for
our images:

class_names = ["Dog", "Cat"]

In the following, we load the training data we generated previously for
the neural network machine-learning model, which includes all the
neural network layers we used in the training:

model = tf.keras.models.load_model(

    "CatsVersusDogs.trained",compile=True)

print (model.summary())

Now, we test a single cat image:
# do cat single image

imageName = "Cat150x150.jpeg"

testImg = Image.open(imageName)

testImg.load()

We then convert our test image to a NumPy array for analysis:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data = np.asarray( testImg, dtype="float" )

We then expand the dimensions of the array, because the predict
function looks for an array of images (although we are only giving the
program one image to look at):

data = np.expand_dims(data, axis=0)

Now, we predict whether we have a cat or dog based on our image:
singlePrediction = model.predict(data, steps=1)

We print out the raw data:
NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

print(NumberElement)

print(Element)

print(singlePrediction)

Then we interpret the prediction:
print ("Our Network has concluded that the file '"

    +imageName+"' is a "+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

Next, we do the same with a single dog image:
# do dog single image

imageName = "Dog150x150.JPG"

testImg = Image.open(imageName)

testImg.load()

data = np.asarray( testImg, dtype="float" )

data = np.expand_dims(data, axis=0)

singlePrediction = model.predict(data, steps=1)

NumberElement = singlePrediction.argmax()

Element = np.amax(singlePrediction)

print(NumberElement)

print(Element)

print(singlePrediction)

print ("Our Network has concluded that the file '"

    +imageName+"' is a "+class_names[NumberElement])

print (str(int(Element*100)) + "% Confidence Level")

The results
Save the code to singleTestImage.py and then run it:

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



sudo python3 singleTestImage.py.

Here are the results:
import complete

WARNING:tensorflow:No training configuration found in save file: the model 

was *not* compiled. Compile it manually.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d (Conv2D) (None, 150, 150, 32) 896

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 75, 75, 32) 0

_________________________________________________________________

conv2d_1 (Conv2D) (None, 75, 75, 32) 9248

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 37, 37, 32) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 37, 37, 64) 18496

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 18, 18, 64) 0

_________________________________________________________________

dropout (Dropout) (None, 18, 18, 64) 0

_________________________________________________________________

flatten (Flatten) (None, 20736) 0

_________________________________________________________________

dense (Dense) (None, 64) 1327168

_________________________________________________________________

dropout_1 (Dropout) (None, 64) 0

_________________________________________________________________

dense_1 (Dense) (None, 2) 130

=================================================================

Total params: 1,355,938

Trainable params: 1,355,938

Non-trainable params: 0

_________________________________________________________________

None

1

1.0

[[ 0. 1.]]

Our Network has concluded that the file 'Cat150x150.jpeg' is a Cat

100% Confidence Level

0

1.0

[[ 1. 0.]]

Our Network has concluded that the file 'Dog150x150.JPG' is a Dog

100% Confidence Level

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Well, this network worked very well. It identified both the cat and dog as
their respective species. See the 100 percent confidence intervals? (A
confidence interval is an indication from the neural network as to how
confident it is in its prediction.) The confidence numbers are actually
99.99 percent or something like that and are rounded to 100 percent by
the formatting.

Now that we have the trained model and have tested it with some
example images not contained in the training or validation set, it's time
to put the network into our robot and use the Pi camera for some dog and
cat investigation.

 A limitation of the way we built this neural network is that it is
looking at images of only cats and dogs and determining whether
the image is a cat or dog. The network classifies everything as
either a cat or a dog. If we were to build a more comprehensive
network, we would have to train it to differentiate three types of
things (between a cat, a dog, and a dress, for example). (See Figure
4-4.) We ran one more test of the network using the much-maligned
dress picture from Book 4.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-4: A picture of a dress?

As expected, the network got it wrong because we didn't teach it to
understand what a dress is:

Our Network has concluded that the file 'Dress150x150.JPG' is a Cat

 

100% Confidence Level

Note that the program reports a confidence level of 100%. It is probably
99.99% or so confident, but the cat-or-dog nature of the training will
place the image only in one or the other category so the confidence level

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



means little at this point. There's a lot more to the practice of teaching a
machine to learn in a general manner.

 If you get an error such as undefined symbol: cblas_sgemm
when running your program, try running your program using sudo
python3 singleTestImage.py.

Taking Cats and Dogs to Our Robot
Time to add a new experience to the last chapter's robot. We are going to
install the trained cats and dogs neural network on the PiCar-B robot and
use the onboard LEDs to display whether the onboard Pi camera is
looking at a cat or a dog.

As mentioned, our neural network classifies everything as a cat or a dog.
We will run a neural network classification of the camera image when
the ultrasonic sensor changes, which happens when a dog or a cat walks
in front of the robot.

John's cat would not cooperate, so we had to use a PowerPoint
presentation of various cats and dogs, as shown in Figure 4-5. The robot
is staring at the screen, which triggers the ultrasonic sensor.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-5: Robot vision neural network test setup.

The code

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



In the robotVision.py program, we run our trained neural network
every time the ultrasonic sensor detects something (a cat or dog, we
hope) in front of the robot:

#!/usr/bin/python3

#using a neural network with the Robot

 

#import libraries

import numpy as np

import tensorflow as tf

from tensorflow.python.framework import ops

from PIL import Image

 

 

import RobotInterface

import time

import picamera

 

 

print("import complete")

RI = RobotInterface.RobotInterface()

 

# load neural network model

 

img_width = 150

img_height = 150

 

 

class_names = ["Dog", "Cat"]

model = tf.keras.models.load_model("CatsVersusDogs.trained",compile=True)

 

 

 

RI.centerAllServos()

RI.allLEDSOff()

 

# Ignore distances greater than one meter

DISTANCE_TO_IGNORE = 1000.0

# How many times before the robot gives up

DETECT_DISTANCE = 60

 

def bothFrontLEDSOn(color):

    RI.allLEDSOff()

    if (color == "RED"):

        RI.set_Front_LED_On(RI.right_R)

        RI.set_Front_LED_On(RI.left_R)

        return

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    if (color == "GREEN"):

        RI.set_Front_LED_On(RI.right_G)

        RI.set_Front_LED_On(RI.left_G)

        return

    if (color == "BLUE"):

        RI.set_Front_LED_On(RI.right_B)

        RI.set_Front_LED_On(RI.left_B)

        return

 

 

def checkImageForCat(testImg):

 

    # check dog single image

    data = np.asarray( testImg, dtype="float" )

 

    data = np.expand_dims(data, axis=0)

    singlePrediction = model.predict(data, steps=1)

 

    print ("single Prediction =", singlePrediction)

    NumberElement = singlePrediction.argmax()

    Element = np.amax(singlePrediction)

 

    print ("Our Network has concluded that the file '"

        +imageName+"' is a "+class_names[NumberElement])

 

    return class_names[NumberElement]

 

 

try:

    print("starting sensing")

    Quit = False

    trigger_count = 0

    bothFrontLEDSOn("RED")

 

    #RI.headTiltPercent(70)

    camera = picamera.PiCamera()

    camera.resolution = (1024, 1024)

    camera.start_preview(fullscreen=False,

           window=(150,150,100,100))

    # Camera warm-up time

    time.sleep(2)

 

    while (Quit == False):

 

        current_distance = RI.fetchUltraDistance()

        print ("current_distance = ", current_distance)

        if (current_distance < DETECT_DISTANCE):

            trigger_count = trigger_count + 1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



            print("classifying image")

 

 

            camera.capture('FrontView.jpg')

            imageName = "FrontView.jpg"

            testImg = Image.open(imageName)

            new_image = testImg.resize((150, 150))

            new_image.save("FrontView150x150.jpg")

 

            if (checkImageForCat(new_image) == "Cat"):

                bothFrontLEDSOn("GREEN")

            else:

                bothFrontLEDSOn("BLUE")

 

 

            time.sleep(2.0)

            bothFrontLEDSOn("RED")

            time.sleep(7.0)

 

except KeyboardInterrupt:

        print("program interrupted")

 

print ("program finished")

How it works
Most of the preceding code is straightforward and similar to the robot
brain software presented earlier in the chapter. One part that deserves
mention, however, is our classifier function:

def checkImageForCat(testImg):

 

    # check dog single image

    data = np.asarray( testImg, dtype="float" )

 

    data = np.expand_dims(data, axis=0)

    singlePrediction = model.predict(data, steps=1)

 

    print ("single Prediction =", singlePrediction)

    NumberElement = singlePrediction.argmax()

    Element = np.amax(singlePrediction)

 

    print ("Our Network has concluded that the file '"

        +imageName+"' is a "+class_names[NumberElement])

 

    return class_names[NumberElement]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The checkImageForCat function takes the incoming test vision (taken by
the Pi camera and then resized into a 150x150-pixel image — the format
required by our neural network). See Figure 4-5.

The results
Save the program to a file called robotVision.py. Then, to get your
machine to start looking for cats, run the program by typing the
following:

sudo python3 robotVision.py

You should run this program on the Raspberry Pi GUI (either with a
monitor or using VNC) so you can see the small camera preview on the
screen. It's more interesting to see what the robot is seeing.

Here are some results from our test setup (refer to Figure 4-5):
current_distance = 20.05481719970703

classifying image

single Prediction = [[ 0. 1.]]

Our Network has concluded that the file 'FrontView.jpg' is a Cat

100.00% Confidence Level

current_distance = 20.038604736328125

classifying image

single Prediction = [[ 1. 0.]]

Our Network has concluded that the file 'FrontView.jpg' is a Dog

100.00% Confidence Level

current_distance = 19.977807998657227

Overall, the results were pretty good. We found variations in recognition
due to lighting, which wasn't a big surprise. Lighting is always a
problem. However, the network consistently identified one picture as a
dog that was actually a cat, as shown in Figure 4-6.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-6: The cat who is apparently a dog.

We suspect that the neural network was fooled by the folded ears, but
our neural network has 1.3 million parameters, and we can’t tell in any
particular place where it is going wrong. It's a giant statistical model.
After a while, you get a feel for what works and what doesn’t in machine
learning, but you are out of luck as far as figuring out exactly what this
network is doing wrong.

We had a nefarious plan here for a variant of this neural network. We
used this neural network to build a kit to use on a new project, the
Raspberry Pi–based MouseAir, to launch toy mice when the camera
spots a cat but not when it spots a dog. You can see the Pi camera at the
top-right corner of the Figure 4-7.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-7: MouseAir, an AI mouse-launching cat toy.

This project was a lot of fun and included servo motors, the Pi camera,
and spinning DC motors, as we discussed earlier in Book 6. Check out
these three YouTube videos to see the MouseAir system at work:

https://youtu.be/zZQLyIe2vAY

https://youtu.be/7Y6aKJuAlDc

https://youtu.be/hFZIE97heko

There isn’t space here to describe the details of the project, but more
than 40 customers built the kit and they got pretty good results. Our test
cat, Panther, refused to do anything but sit in front of the launcher —
unless he was hit, he didn’t even respond to the mouse.

Setting Up the Second Project

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://youtu.be/zZQLyIe2vAY
https://youtu.be/7Y6aKJuAlDc
https://youtu.be/hFZIE97heko


The chapter's second project uses OpenCV and the RobotInterface
Python library to build a new robot brain program that looks for a
specifically colored ball and then attempts to move toward the ball until
is within about 20cm of the ball. Like a not very smart dog.

To prepare for this project, install OpenCV on your Raspberry Pi by
typing the following commands in a terminal window:

sudo apt-get install libhdf5-dev libhdf5-serial-dev libhdf5-100

sudo apt-get install libqtgui4 libqtwebkit4 libqt4-test python3-pyqt5

sudo apt-get install libatlas-base-dev

sudo apt-get install libjasper-dev

wget https://bootstrap.pypa.io/get-pip.py

sudo python3 get-pip.py

sudo pip install opencv

sudo pip install opencv-contrib-python==4.1.0.25

Now you're ready to go!

The FindAndChaseTheBall.py
Python Program

In a lot of ways, the FindAndChaseTheBall program is the most complex
program in this book. We are using a sophisticated programming
technique called multithreading to get lots of things happening at the
same time.

Threads are multiple sections of the program can be run at the same
time. In any major operating system (such as the Raspberry Pi OS)
dozens of threads (also called processes) run at the same time doing
operating system functions such as running the display, managing the
disk, and handling memory. When we want to run a set of program code
(organized in a Python function) at the same time as other functions, we
write a thread. Using threads allows a much simpler program structure
than trying to interleave all the necessary code in a single sequential
block of code.

With our robot, we want to process individual video frames, steer the
robot, display on the Raspberry Pi GUI screen, and read distances all at

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the same time. We suggest that you take a few minutes and read this
great introduction to Python threads:
www.tutorialspoint.com/python3/python_multithreading.htm.

The communication between threads and the main program is one of the
most difficult parts of building threads. There are many potential races
between complex threads which can be addressed with programming
structures called semaphores and queues, a discussion of which is
beyond the scope of this book. But be aware that solutions to these
potential problems exist!

The structure of the program
The FindAndChaseTheBall.py file is approximately 320 lines long, so
we don't provide a full listing here. Instead, go to
www.dummies.com/go/pythonaiofd2e and download the software for
Book 7, Chapter 4.

In outline form, the FindAndChaseTheBall.py program does the
following:

1. Start the threads.
2. Display the video results.
3. Read the ultrasonic distance.
4. Look for the blue ball.
5. Figure out how to move toward the ball.
6. Move to the ball until it is 20cm (+/− 2cm) away.
7. Report what is going on to the screen.
8. Stay near the ball.

We have a main program (basically Step 1), which does very little. The
work of the program happens in three threads: the ultrasonic thread, the
video display thread, and the OpenCV frame analyzer thread. We discuss
each one of these threads next.

The ultrasonic thread

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.tutorialspoint.com/python3/python_multithreading.htm
http://www.dummies.com/go/pythonaiofd2e


The ultrasonic thread, dis_scan_thread(), is by far the simplest thread
of the program:

def dis_scan_thread():       #Get Ultrasonic scan distance

    global dis_data, dis_scan

    while 1:

        while  dis_scan:

            dis_data = RI.fetchUltraDistance()

            #print("dis_data=", dis_data)

            time.sleep(0.2)

        time.sleep(0.2)

Note that this thread never ends. That isn’t a requirement of a thread
(some worker threads finish their job and then quit), but it is typical of a
thread to never complete.

The thread uses the RobotInterface library (RI) to read one sample from
the ultrasonic sensor on the front of the robot. See the two global
variables at the top? The dis_data variable is the current distance, and
dis_scan allows other programs to turn scanning on and off.

The time.sleep(0.2) line tells the operating system to pause this thread
for 200msec and go ahead with other tasks. Without the sleep statement,
the thread would consume the entire single CPU core (the Raspberry
3B+ has four total CPU cores) and waste a bunch of processing power
(and real power) getting samples faster than required by our program.
Our robot does not move very far in 200msec, so getting distance
samples faster than 200msec doesn't make sense in our robot application.

The video display thread
The video display thread, video_thread(), is another fairly simple
thread. It has a socket, or pipeline, between this thread and the OpenCV
thread. A socket is a method for communicating between various
threads, even across networks. When you use a browser, you're
communicating with the server via sockets (80 for http, 443 for https)
that can span many networks. The socket is established in the first four
lines of the code:

def video_thread():

 

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



    context = zmq.Context()

    my_footage_socket = context.socket(zmq.SUB)

    my_footage_socket.bind('tcp://127.0.0.1:5555')

    my_footage_socket.setsockopt_string(zmq.SUBSCRIBE, np.unicode(''))

    while True:

        newframe = my_footage_socket.recv_string()

        img = base64.b64decode(newframe)

        npimg = np.frombuffer(img, dtype=np.uint8)

        source = cv2.imdecode(npimg, 1)

        cv2.imshow("Stream", source)

        cv2.waitKey(1)

We use the zmq library to package the data coming from the OpenCV
thread into a packet that contains a jpeg image file. The rest of the thread
displays on the screen the incoming video frame from the OpenCV
thread and then waits until it gets another frame. Note the While True:
statement, which means the thread never ends because the While loop
will never terminate.

The OpenCV frame analyzer thread
The OpenCV frame analyzer thread, opencv_thread(), does the
majority of the work of the program. It looks at each frame coming from
the Pi camera (at only 7 frames a second, by the way — you could do
more frames per second with a faster computer such as the Raspberry Pi
4). The thread does the following for each video frame coming from the
camera:

1. Look for the blue ball.
2. Figure out how to move toward the ball.
3. Move to the ball until it is 20cm (+/− 2cm) away.
4. Report what is going on to the screen.
5. Stay near the ball.

Wow! That's most of the work of the program. This function is long, so
let’s just look at some of the most interesting parts.

The OpenCV frame analysis

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



The OpenCV frame thread is looking at each new video frame coming
from the camera and performing analysis on the images in the video
frame looking for that pesky blue ball:

    for frame in camera.capture_continuous(rawCapture, format="bgr", 

use_video_port=True):

        image = frame.array

        cv2.line(image,(300,240),(340,240),(128,255,128),1)

        cv2.line(image,(320,220),(320,260),(128,255,128),1)

 

 

        if True:

            hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

            mask = cv2.inRange(hsv, colorLower, colorUpper)

            mask = cv2.erode(mask, None, iterations=2)

            mask = cv2.dilate(mask, None, iterations=2)

            cv2.imshow("OpenCV Mask", mask)

 

            cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

                cv2.CHAIN_APPROX_SIMPLE)[-2]

The for loop reads the frame from the Pi camera. Note that as long as
the camera is running, the loop never ends. The cv2.line statements
first draws a crosshair on the frame. This process is called overlaying,
and we use it several times in this thread to put text and information on
the screen (see Figure 4-8) as well as a bounding box on the target (the
ball, we hope).

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-8: The OpenCV processed frame.

Next, we create a mask (see Figure 4-9) to find the ball. The OpenCV
statements — cv2.cvtColor(), cv2.inRange(), cv2.erode(), and
cv2.dilate() — look for colors in the range of the ball color (blue in
our example), remove some obvious noise to improve the mask, and
then display the mask on the screen for the user to see. The mask
represents what OpenCV has detected in the appropriate color range and
is then used by the findContours() function to find some ball-like
objects to look at. We check out the biggest blue ball found, determine
the position in the video frame, and move the robot towards it.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-9: The OpenCV mask frame.

Moving the robot
Now that we've found a ball on the screen (assuming we have —
otherwise we keep scanning for one), we figure out the X, Y coordinates
on the screen (the upper-left corner of the picture is 0,0 and the lower-
right corner is 640x480), and then direct the head to point toward the
ball. If the ultrasonic distance numbers are above 20cm, we drive a little
towards the calculated direction of the ball and then move to the next
video frame to analyze.

Sound simple? It is, but it's still an ugly piece of code because we are
moving the head from side to side and up and down, turning the wheels,
and driving around. All at once.

if radius > 10:

    cv2.rectangle(image,(int(x-radius),int(y+radius)),(int(x+radius),int(y-

radius)),(255,255,255),1)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



 

    if X < 310:

        mu1 = int((320-X)/3)

        # scale mu1 to 50 (50 is the middle)

        mu1 = int((mu1/320.0)*50.0)

        hoz_mid_orig-=mu1

        if hoz_mid_orig < look_left_max:

            pass

        else:

            hoz_mid_orig = look_left_max

        #print("mu1 = ", mu1)

        #print("hoz_mid_orig=", hoz_mid_orig)

        RI.headTurnPercent(hoz_mid_orig)

The preceding section of code checks to see if the radius of the ball is
greater than 10 pixels on the screen. If so, it moves the head partially
towards the ball. We know the X coordinate of the ball from the
OpenCV function cv2.minEnclosingCircle() and the cv2.moments()
function. The center of the mask image is called the moment of the
image. Moment is borrowed from those pesky mechanical engineers and
in a sense represents the center of gravity of the mask image. (If the
image were a pure circle, the moment would be in the middle of the
circle.)

Looking around for the ball
The last section of code that you will examine pertains to what happens
if the robot has not spotted anything that looks like our blue ball target.
We want to do a little searching to find if that blue ball is lurking
somewhere we can't see. The simple algorithm we are using works well
enough for our example (although we could do a much better job of
searching):

                # this is the scan for target section of code

                #print("scanning for target")

                RI.stopMotor()

                #motor.motorStop()

                # we have nothing so start scanning

                RI.headTurnPercent(random.randint(0,100))

                RI.headTiltPercent(50)

                RI.wheelsPercent(100)

                # move back periodically to look around

                if (random.randint(0,3) == 1):

                        RI.motorBackward(motor_speed,scan_motor_duration)

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



If we don’t have a blue ball target, the head randomly scans by moving
the robot head and, every three scans, backs up and chooses a different
field of view. It’s interesting to watch the robot in action and try to figure
out better search strategies to implement in the code. Make your robot
smarter!

The Main Program
The main part of the FindAndChaseTheBall.py program initializes the
camera, starts the threads, and sets up the configuration variables. It also
brings the robot to a known state by zeroing all the servos and wheels.

The program's configuration
The following section of the main program sets the constants defining
the behavior of the robot:

##################################

# configuration variables

##################################

 

 

distance_stay  = 20 #stay away from target (cm)

distance_range = 2 # accept this error in distance_stay (cm)

dis_data = 0 # current ultrasonic range (cm)

 

# head turn (hoz) and tilt middles (vtr) - In percent

vtr_mid    = 50

hoz_mid    = 50

 

# where they start (head turn and tilt)

 

hoz_mid_orig= 50

vtr_mid_orig = 50

 

 

# sets the max and minimum numbers (in percent) for head tilt and head turn

look_up_max    = 100

look_down_max  = 0

look_right_max = 0

look_left_max  = 100

 

#motor speed variables - these may have to be tweaked

# depending on the kind of floor

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



# on which you are operating your robot.

 

motor_speed = 100

motor_duration = 0.40 # normal approach target duration

turn_motor_duration = 0.50 # during turn duration (needs to be a little 

longer)

scan_motor_duration = 0.50 # how long to back up during scan for

                           # target operations

First we set the distance parameters. The distance_stay variable is set
to 20cm with a +/− 2cm error in the distance_range variable. The error
bound of 2cm is important because our robot drive isn't very accurate
and will overshoot or undershoot the 20cm stay distance.

hoz_mid_orig and vt_mid_orig set the middle value (50%) for the
servo motors, all given in percent as we are using the percent driver
servo functions from the RobotInterface library.

The motor_speed and motor_duration numbers will change depending
on the surface and the battery strength. These numbers are for normal,
not flush, carpets. If you're using the robot on a non-carpeted area, use
lower values for the motor durations.

Setting the ball's color
To tell OpenCV the color of the ball, we use the HSV (hue, saturation,
value) colorspace. (Another way of looking at colors is using RGB.) We
set two values: colorLower and colorUpper. These reflect a color band
around the ball color (think blue or a little less blue):

    colorLower = (65, 66, 97)          #The HSVcolor that openCV will look 

for

    colorUpper = (131, 255, 255)       #bounds for the openCV search

Setting these HSV values require some experimentation to get right and
depend on the color of your ball and the lighting conditions. Lighting
conditions are the bane of every robot machine-vision project; making
your lighting consistent and sufficiently bright is difficult. People adapt
to differing lighting conditions easily, but robots don't.

To set your ball color correctly, place your ball in front of the robot and
start the following program, which is included in the Robot directory in

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



the software download:
sudo python3 testColor.py

The screen shown in Figure 4-10 appears. Note the mask screen to the
left, the video frame from the Pi camera in the middle, and then the mask
applied to the Pi camera video frame on the right.

FIGURE 4-10: Screen for the blue ball color configuration.

Adjust the upper two slide bars (representing the lower bound of the
color) until your object appears and then adjust the upper bound to
131,255,255. Experiment until you get a nice round mask. Don't be
surprised if you have to do this process again after you see your robot in
your lighting environment.

Time to do some ball chasing.

Chasing the ball

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Put the ball about 1 meter in front of the robot, as shown in Figure 4-11.
Then start the ball chase program by typing the following in a terminal
window:

sudo python3 FindAndChaseTheBall.py

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FIGURE 4-11: Raspberry Pi trying to chase the ball.

The robot starts looking around and tries to find the ball. After a few
seconds, you'll see two windows on your Pi screen. One window shows

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



you the Pi camera video frame, and the other shows you the OpenCV
mask generated to find your ball.

You will be amazed at how sophisticated the program seems — until it
starts doing stupid things. We will continue to tweak this program and
will post updates on the Python All-in-One Archives at
https://github.com/switchdoclabs/Python-All-In-One-Files-

Second-Edition.

To see a video of one of our tests, go to https://youtu.be/Copeil-
qT6U.

Program notes
Here are few program notes that we wanted to pass along:

A blue ball may not be the best choice for a ball in every
environment. Our robot was picking up the blue ball, but it also
headed to a window with a blue tint of light through the curtains, the
door to the SwitchDoc Labs laboratory (which has a grow light for
the Raspberry Pi SmartGardenSystem, with just enough blue light
reflected off the door), and even the overhead light. Not the smartest
robot dog in the world. Depending on your environment, a bright
green or yellow ball might be best. We suspect yellow would have
done well in our test environment.
The scanning algorithm for finding the ball is rudimentary. A much
better ball search algorithm would detect when the robot runs into
something and can no longer move forward.
A method for determining when the robot has fixated on something
that is not a ball (such as the window) would be helpful. Figure 4-12
illustrates the problem. You could generate a better image by doing
more geometry analysis and size/shape filtering to reject non-ball-
like things.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/switchdoclabs/Python-All-In-One-Files-Second-Edition
https://youtu.be/Copeil-qT6U


FIGURE 4-12: Missing balls for other targets.

Getting the robot to detect a ball and move towards it was fun. The fact
that the robot is not good at the task shows you the complexity of
dealing with a real environment and a machine vision system. The robot
and program could be improved with a lot of work and more sensors,
cameras, and even LIDAR (light detection and ranging), which would
make the program a lot more complicated.

OTHER TASKS FOR THE ROBOT
As part of a more sophisticated Python brain on the PiCar-B, you can do a number of
things with neural networks and other AI techniques. Here are a few examples:

Focus only on cats: Retrain the Cats and Dogs network to focus only on cats,
lumping everything else into a “not cat” category. You can use the neural
network your trained earlier in this chapter because the Cat and Dog training
image set tends to classify anything that doesn’t look like a cat as a dog.

Check if Santa is here: Grab a frame once in a while from the streaming video
from the Raspberry Pi and check with a neural network trained on Santa
images to determine whether Santa is here for Christmas. Impossible! No, wait.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



It’s been done in a cool series of articles at
www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/.

Use Alexa to control your robot: Use the power of the Amazon Alexa
program to order your robot around. If you'd like to see how to connect your
Raspberry Pi to Alexa to do this type of project, check out the ebook Voice
Time: Connecting Your Raspberry Pi to the Amazon Alexa by John Shovic.

Our robot has now been programmed to chase a ball, and that’s a good
way to end our robot dog saga. Woof!

AI and the Future of Robotics
We think that artificial intelligence is the future of robotics. As the
hardware becomes less expensive and the software techniques become
easier to use, there will be more and more uses for robots, not only in
manufacturing but in the home and on the road.

We expect to see new AI in many new consumer products in the coming
years. The only question we have is “How long before we have AI in my
toaster?” We’ll buy one when they come out.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/


Index

Symbols and Numerics
' symbol, 69
" symbol, 66

in keys, 188-190
in lists, 149-150
triple, 96-98

// operator, 72, 119

; symbol, 81

\ symbol, 69-70

+ symbol, 103, 345

# symbol, 65, 329

& symbol, 328

* symbol, 351-352

[ ] symbol, 61-62, 229

^ alignment character, 98

{ } symbol

in data dictionary, 308
in if statements, 132

in programming languages, 57-59
< alignment character, 98

< operator, 72, 128

<= operator, 72, 128

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



= operator, 72, 155

== operator

discussion, 72, 82, 128
spaces within, 129

> alignment character, 98

> operator, 72, 128

>= operator, 72, 128

3.3V power
Pi2Grover Raspberry Pi board, 495-496
on Raspberry Pi, 477, 482

5V power
Grove system and, 495-496
on Raspberry Pi, 477, 482, 553

%20 code, 333

28BYJ-48 ULN2003 5V stepper motor, 3, 560-561
2019 BMW X3s, 572-573
18650 3.7V LiPo 5000mAh batteries, 4, 581

A
<a> … </a> tag, 334-335

abs() function, 88

abstraction, 459
abs(x) function, 89

AC (alternating current), 541
activation functions, 363, 373, 415
actuators, 571-572, 577-578. See also motors

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Adafruit, 581
Adafruit Ultimate GPS, 506-507
Adafruit_i2c drivers, 521
ADAM (Adaptive Moment Estimation) optimization parameter, 391, 394-
395
ADC (analog digital converter)

on Arduinos, 481
discussion, 509
Grove 4-channel 16-bit, 522-523

add() method, 167

__add function, 344-345
addition operator, 71
Adeept Mars Rover PiCar-A, 4
Adeept Raspberry Pi PiCar-B. See Mars Rover PiCar-B robotics project
Advanced Micro Devices. See AMD

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



AI (artificial intelligence)
accelerators, 422, 424-425
algorithms

reinforcement learning, 401
supervised learning, 400
unsupervised learning, 400

in business, 362
cloud computing and

AWS, 427
Google Cloud, 427
IBM cloud, 427-428
Microsoft Azure, 428
overview, 425-426

current limitations of
natural language, 359, 437
overview, 361, 367
visual perception, 437

current state of, 399
decision-making operations and, 360
discussion, 1-2, 359-360, 631
facial ID recognition software, 366, 424
financial investments in, 362, 369
future of, 361, 666
general, 360
on graphics cards, 428-430

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



neurons in
activation function, 373
layers, 371-372
loss function, 373-374
overtraining, 373
overview, 370-371
weights and biases, 371-372

Python and, 9-10
on Raspberry Pi

adding hardware, 423-425
limitations, 421-423
overview, 421

recent Facebook experiment in, 359
resources, 419, 430-431
robotics and, 579, 666
smartphones and, 366
techniques

evolutionary computing, 363-364
ML, 363, 365
neural networks, 360, 362-363
TensorFlow, 366

AI (artificial intelligence) accelerators, 422, 424-425
AI machine vision robotics projects. See Cats and Dogs ML robotics
project; FindAndChaseTheBall program

AI Winter, 362, 372
air-quality measurements big data project, 473

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



algorithms
AI

reinforcement learning, 401
supervised learning, 400
unsupervised learning, 400

evolutionary computing and, 363-365
general AI, 360

alias, 62
alignment characters, 98
allLEDSOff() function, 608

alternating current (AC), 541
Amazon

Google Cloud platform and, 458
Raspberry Pi 3B+ on, 581

Amazon Alexa
Baxter coffee-making robot and, 575
cloud computing and, 426-427
discussion, 362, 365, 664
speech-to-text, 437

Amazon Cloud, 424
Amazon Echo, 426
Amazon Web Services. See AWS
AMD (Advanced Micro Devices)

GPUs, 423
specialized hardware from, 425

American Micro Systems, 361
American Standard Code for Information Interchange. See ASCII

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



ampersand symbol, 328
Anaconda Cloud, 17
Anaconda development environment, 15-18
Anaconda Extension Pack, 20-21
Anaconda Navigator

discussion, 18-19
exiting, 23
installing packages via, 348-349
modules in, 59-61
opening VS Code from, 19-21, 23, 32

analog digital converter. See ADC; Grove 4-channel 16-bit ADC
analog Grove connector, 499-500
analog signals, 502
anchor tag. See <img> tag; <span> … </span> tag

and Boolean operator, 73, 128

__and function, 344-345
Android smartphone

Blynk app dashboard for, 530-534
processing, 366

angular conversion functions, 91
anonymous functions

discussion, 209
example of, 210-215
lambda expression portion of, 209-210, 213-215

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



API (application programming interface)
robotics programming project

front LED functions, 604-606
general servo function, 613
main motor functions, 608-609
overview, 604
Pixel strip functions, 606-608
servo functions, 609-613

APIs (application programming interfaces)
from Google, 458
ParkMyRide, 427
posting to web via, 334
TensorFlow, 366
TensorFlow for R, 386

apostrophe, 69
append() method, 153-154, 165

Apple A14 Bionic chip, 366
Apple Numbers app, 290. See also CSV files
application programming interfaces. See APIs; names of specific APIs

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



applications. See also APIs
basics of building

comments, 64-66
opening Python app file, 64
overview, 63, 84
Python data types, 66-71
Python operator, 71-73
syntax, 79-83
variables, 74-79

discussion, 9, 37
error handling in

built-in exceptions, 263
creating exceptions, 263-267
else, 259-261

overview, 251-254, 257
preventing crashes, 257-259
specific exceptions, 255-257
try…else…except…finally, 261-262

try…except, 254-255

arbitrary number, 207-208
Arduino

base units, 494-495
data corruption compensation on, 587
discussion, 481
I2C interface support, 510
robotics limitations of, 579

Arduino Due, 494

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Arduino Mega, 494
Arduino Mini Pro LP, 495
arguments

in custom functions, 207-208
keyword, 203-204

arithmetic operators, 71-72
arrays. See lists
arrow module, 125

<article> … <article> tag, 334-337

artificial intelligence. See AI
artificial intelligence (AI) accelerators, 422, 424-425
Artificial Intelligence For Dummies (Mueller, Massaron), 419
Artificial Intelligence (Minsky), 361
ASCII (American Standard Code for Information Interchange)

in anonymous function, 210-213
discussion, 106-107, 143-144
limitations of, 279
raw bytes and, 277-278
space code, 333
special characters and, 284-285, 291, 322-325

associative arrays. See data dictionary
asterisk, 351-352

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



attributes
changing value of, 226-228
discussion, 56-57, 218
naming conventions, 223-225
of objects, 222-223
populating, 222-223

attribute:value pairs, 226-228
Auto Save, 43, 78
automobiles

electric motors in, 541
embedded systems in, 478
robots in, 572-573

autonomous robotics, 421
aware datetime, 121
AWS (Amazon Web Services)

Baxter coffee-making robot and, 575
cloud computing and, 426-427

B
backpropagation, 371-373
backslash character, 69-70
bad numbers, 67
base-2 numbers, 100-101
base-8 numbers, 100-101
base-10 numbers, 510

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



base-16 numbers
converting, 100-101
interface bus address and, 510, 513, 515

Baum, Frank, 571
Baxter coffee-making robot

computers inside, 575
discussion, 571-572, 574

BeautifulSoup module, 336-337

biases, 371-373
big data. See also data science

discussion, 2, 436-437, 441, 457
five-step process

1. capturing, 438
2. processing, 438-439
3. analysis, 439
4. communication, 440
5. maintenance, 440

Python packages used in
MatPlotLib, 444

NumPy, 442-443

Pandas, 441, 443
big data analytics, 440

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



big data science project. See also Google Cloud big data project
coding

code breakdown, 447-449
overview, 446-447

DataFrame in, 445
diamonds database, 444-445
discussion, 444
download code for, 441
MatPlotLib visualization

clarity count, 451-452
clarity versus size, 449-450
color count, 452-453
overview, 449

Pandas heat plots correlations, 453-455
software installation, 445

BigQuery API. See also Google Cloud big data project
abstraction, 459
cost, 459-460
discussion, 458
public datasets

Medicare, 460-464
OpenAQ, 473
overview, 459

registration, 460
setup and authentication, 460-463

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



binary files
copying, 287-289
discussion, 272, 287
RAM and, 288-289
reading, 287-289

binary numbers. See base-2 numbers
Bing search engine

searching for help with Python, 36
searching for Python cheat sheets, 36-37

bin(x) function, 89

biological evolution, 363
biological intelligence, 361
biological neurons, 360, 362
bits, 498
BlueMix cloud services. See IBM BlueMix cloud services
blueprint analogy, 217-220
Bluetooth

robotics communication, 577
small computers and, 481

Blynk app
dashboard for HDC1080 temperature and humidity sensor project

code breakdown, 536-538
installation, 531-534
overview, 530
Python modification, 534-536

discussion, 530
<body> … </body> tag, 334-335

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



BOM (byte order mark), 293
bool() function, 297

Boole, George, 70, 128
Boolean operators, 73, 128. See also decision-making operations
Booleans

converting CSV to, 297
discussion, 70-71, 87, 343
type() function and, 344

brackets. See square brackets
Broadcom Videocore-IV graphics processor

discussion, 421
NDAs, 423
on Raspberry Pi, 423
on Raspberry Pi 4B, 422

browsing. See web browsing
bugs

in robotics, 575
in software

highlighting, 82-83
overview, 251, 575

“Building a Cat Detector using Convolutional Neural Network” (Valkov),
431. See also Cats and Dogs ML robotics project
built-in methods, 249-250
bumper sensors, 629
bus routing, 363
byte order mark (BOM), 293

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



C
C programming language, 10
C# programming language, 10
C++ programming language

discussion, 10
programming robots in, 577
TensorFlow and, 386

cables, 3, 485. See also names of specific cables
camel case formatting, 75
camera CSI (camera serial interface), 480, 510
can only concatenate str (not “int”) to str error message, 160

Capek, Josef, 571
Capek, Karel, 571
cars. See automobiles
Cascading Style Sheets (CSS), 10, 37, 334
case-sensitivity

discussion, 236
in strings, 162
in syntax chart, 62
in variable names, 75

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Cats and Dogs ML (machine learning) robotics project. See also
FindAndChaseTheBall program

additional ideas for, 666
full dataset, 632-633
neural network test

code, 642-644
code breakdown, 644-646
overview, 642
results, 646-648

neural network training with TensorFlow
CNN model, 633-635
code, 635-640
overview, 632-633
results, 640-642

overview, 632
on Pi PiCar-B robot

code, 649-651
code breakdown, 652
overview, 648-649
results, 652-654

centerAllServos() function, 613

Centers for Medicare and Medicaid Services (CMS), 460
central processing unit. See CPU
CES (Consumer Electronic Show), 575
cheat sheets, 4, 36-37
cherry-picking, 439
Chollet, François, 419

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



chr() function, 107, 143-144

Chrome web browser. See Google Chrome web browser
Circuit Python, 579
class methods, 243-236
class variables, 233-234
__class__ function, 344-345
classes. See also custom classes

analogies, 218-220
attributes in, 217-220
discussion, 57, 343
inheritance in

base class method call, 246-247
creating base, 240-241
defining subclass, 241-243
overriding subclass default value, 243
overview, 238-240
subclass extra parameters, 243-246
using same name twice, 247-250

instances in, 217-220
methods in, 217-220
naming conventions, 223-225
types of

datetime.time, 114-116

datetime.timedelta, 116-120

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



clear() method

for data dictionary, 184
in data dictionary, 186
discussion, 158, 165

client, 328
close() method, 274

cloud computing
AI and

AWS, 427
Google Cloud, 427
IBM cloud, 427-428
Microsoft Azure, 428
overview, 425-426
resources, 430-431

discussion, 425-426
TensorFlow and, 385

cloud drive, 37
club analogy, 217-220
cmath module, 102

cmd.exe, 348-349

CMS (Centers for Medicare and Medicaid Services), 460
CNNs. See convolutional neural networks
cobots (collaborative robot), 571-572, 574-575
code blocks, 82-83
code editor, 13-14, 37
coding, 14, 197
Colab, 386

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



collaborative robot (cobots), 571-572, 574-575
color() function, 608

colors
HSV, 662-663
RGB, 605, 662
VS Code, 31

colorWipe() function, 607

command prompt, 15, 348-349
command thread, 628
commands

exit(), 35-36

help, 33-36

python, 32-33

comma-separated values files. See CSV files
comments

in applications, 64-66
in class code, 220
in custom classes, 220
in custom functions, 205
in functions, 197
indentations with, 136

comparison operators, 72, 127. See also decision-making operations
complex numbers, 68, 101-102
composite audio and video jack, 479
computational algorithms, 363
compute sticks. See USB processing sticks

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



computer clock, 110-111
computer science, 436. See also data science
Computer Vision Projects with OpenCV and Python 3 (Rever), 632
computers. See also embedded systems; Raspberry Pi; robotics; small
computers

discussion, 478
neural networks and, 362
in robots, 571-572, 576-577
small, 478, 481

concatenation, 99, 103
confidence interval, 647-648
connectors

GPIO pin
Arduinos, 481
Grove blue LED module, 487
Raspberry Pi, 482
Raspberry Pi 3B+, 479
Raspberry Pi PWM, 491

safety with, 477
Consumer Electronic Show (CES), 575
contextual coding, 274-277
continue statement

discussion, 141-142
repeating while loops with if and, 145-146

convolutional neural networks (CNNs)
in Cats and Dogs ML neural network training project, 633-635
discussion, 362, 412-415, 634

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



copy() method, 164-165, 184

core language, 59, 343
correlations, 439, 453-455
count() method, 159-160, 165

CPU (central processing unit)
Apple A14 Bionic chip, 366
cost of multicore, 430
GPU versus, 428-429
Raspberry Pi 3B+, 421
on Raspberry Pi 3B+, 479

credit card numbers, 328
CSS (Cascading Style Sheets), 10, 37, 334
CSV (comma-separated values) files

converting strings in, 293-295
converting to Boolean in, 297
converting to date in, 295-297
converting to floats in, 297-298
converting to integers in, 295
discussion, 254, 290-291, 299, 306
enumerate() function, 292-293, 302-303

Grove oxygen sensor project data in, 521
importing from

data dictionary, 303-306
objects, 300-303

opening, 291-292
Pandas package and, 443
saving scraped data as, 341-342

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



csv module, 291, 306

curly braces
in data dictionary, 308
in if statements, 132

in programming languages, 57-59

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



custom classes
attributes in, 217-220
comments in, 220
creating instances in

attribute default values, 227-228
attributes, 222-223
changing attribute values, 226
instance from class, 221-222
instances, 223-225
overview, 220-221

discussion, 217-220
empty classes and, 221
giving methods to

calling method by class name, 231-232
overview, 228-230
passing parameters, 230-231
using class methods, 234-235
using class variables, 232-234
using static methods, 236-237

inheritance in
adding extra parameters from subclass, 243-246
calling base class method, 246-247
creating base, 240-241
defining subclass, 241-243
overriding subclass default value, 243
overview, 238-240
using same name twice, 247-250

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



instances in, 217-220
methods in, 217-220
naming conventions, 223
objects and, 217-220

custom functions
arbitrary number of arguments in, 207-208
commenting in, 205
discussion, 195-197
kwargs in, 203-204
multiple values in lists in, 205-207
parameters in

multiple values in parameters, 201-203
optional parameters with defaults, 200-201
overview, 198-200

returning values in, 208-209
cutting-edge technologies, 9

D
dashboard, 530-531. See also Blynk app
data analytics

cherry-picking in, 439
data science versus, 440
difficulties in, 439
discussion, 375, 436-437, 440
statistical techniques in, 439

data corruption compensation, 587

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data dictionary
accessing, 175-176
converting CSV to, 303-306
creating, 174
curly braces in, 308
determining length of, 177
difference between lists and, 171-172
getting, 178-179
JSON comparable to, 307
keys in

adding keys, 180-181
changing key value, 179-180
looping, 182-183
multi-key dictionaries, 188-190
overview, 171-173
removing items, 185-188
searching for keys, 177-178

methods
clear() method, 184, 187

fromkeys() method, 190-192

get() method, 178-179, 184

overview, 183-184
pop() method, 184, 187

popitem() method, 187-188

setdefault() method, 190-192

multi-key, 188-190

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



mutability of, 179
nested, 193-194
print() function with, 175-176

SKU example of, 190-194
storage, 180
UPC example, 190-194

data graphs
data science and, 435
MatPlotLib and, 440, 444

data massaging, 443, 637-638
data queues, 627

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data science. See also big data
Anaconda and, 15
applications

financial services, 440
medical diagnoses, 435
medicine, 440
search engines, 435

big data and, 436-437
data analytics versus, 440
discussion, 1-2, 9-10
five steps in

1. capturing, 438
2. processing, 438-439
3. analysis, 439
4. communication, 440
5. maintenance, 440

programming languages, 23, 440
statistical techniques, 435
tools, 441, 443

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data science project
code breakdown, 446-449
DataFrame in, 445
diamonds database, 444-445
discussion, 444
MatPlotLib visualization

clarity count, 451-452
clarity versus size, 449-450
color count, 452-453
overview, 449

Pandas heat plots correlations, 453-455
software installation, 445

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data structures
lists

alphabetizing, 161-163
appending items to end, 153-154
assigning names, 149
changing items, 155
checking contents, 152
clearing out, 158
combining, 155-156
copying, 164-165
counting item frequency, 159-160
determining length, 153
displaying, 150
inserting items, 154
item index, 151, 160-161
long lists, 150
looping, 151-152
overview, 139-140, 149
position numbers, 150-151
quotation marks, 149-150
removing items, 156-158
reversing, 164
sorting, 161-163
strings, 150

sets, 167-169
tuples, 165-167

data transmission, 375

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



data types
categories of

Booleans, 70-71
numbers, 67-68
strings, 68-70

discussion, 66, 343
data visualization. See also MatPlotLib package

in big data science project
clarity count, 451-452
clarity versus size, 449-450
color count, 452-453
Fashion-MNIST project, 415-419
Google Cloud big data project, 471-472
overview, 449

discussion, 375
database, 307, 463-464
database tables. See spreadsheet apps
data-flow graph, 385-386
DataFrames

big data science project and, 445
discussion, 443

date() function, 162-163

dates
converting CSV to, 295-297
format strings for, 112-114
working with, 110-112

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



datetime module

aware, 121-122
for converting CSV to date, 295-297
discussion, 110-114
in lists, 162-163
näive, 121-122

datetime.now() data type

discussion, 118
grabbing time with, 123, 133

datetime.time data type, 114-116

datetime.timedelta data type, 116-120

dateutil.tz class, 122-125

daylight savings time (DST), 124-125
DC (direct current) motors

discussion, 541-542
downloading code for project on, 541
encoder feedback, 543
magnets in, 541-542
for projects in Book 6, 3
PWM for controlling, 584-585
servo motors, 543
small, 542-544
stepper, 543-544
where to purchase, 3

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



DC (direct current) motors project
I2C controller board

Grove I2C motor driver, 545-548
overview, 544-545
Python software, 548-551

parts list, 544-545
servo motors

overview, 551-555
Python software, 555-558

stepper motors
code breakdown, 567-568
overview, 558-560
Python software, 566-567
setup, 560-565

debugging, 45-46
decision trees, 365

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



decision-making operations
AI and, 360
discussion, 128
if statements in

elif, 133-136

else, 132-136

overview, 129-132
ternary operations, 135-136

for loop in

continuous, 141-142
force-stopping, 140-141
lists, 139-140
nesting loops, 142-143
number range, 136-138
overview, 136
strings, 138-139

while loop in

continuous, 145-146
force-stopping, 146-148
overview, 143-145

Deep Learning with Python (Chollet), 419
deep-learning software, 362, 372
del function

in data dictionary, 185-188
discussion, 158

Dell, 426

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



deoxyribonucleic acid (DNA) analogy, 217-220
deserialization, 310-311
Dickinson, John, 361
__dict__ method, 250

Dictionary.com, 359, 631
digital cameras, 573
digital Grove connector, 498-499
digital I2C (inter-integrated circuit), 510
digital I/O pins, 503
digital signal processor (DSP), 423
digital signals, 502
digital SPI (serial peripheral interface), 510
Dilovasi, Kocaeli, 473
dir() function

discussion, 344-345
modules and, 350

direct current motors. See DC motors
direct current motors project. See DC motors project
direct memory access (DMA) module, 587, 606
directories. See folders
display serial interface (DSI), 480
disruption, 573
division operator, 71
DMA (direct memory access) module, 587, 606
DNA (deoxyribonucleic acid) analogy, 217-220
docstrings, 66, 197
doctors, 435, 440

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



dollar signs
aligning, 98-100
replace() method and, 297-299

dot-com bubble, 362
double underscores. See dunder-named items
driver board, 3
dropout management, 415
DSI (display serial interface), 480
DSP (digital signal processor), 423
DST (daylight savings time), 124-125
DuckDuckGo search engine, 435
dunder-named items

discussion, 344-345
init, 221-222

Dutch tulip bulb market bubble, 362
duty cycle, 489-490

E
Easter egg

discussion, 53
Zen of Python, 53-54

eBay, 581
economic bubble, 362
edge computing, 423
Edge web browser

downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



editor. See code editor
electric automobiles, 541
electric motors. See DC motors
electromagnets, 542-543
elephants, 362
else statements

datetime.now() sample with, 133

discussion, 132-133
elif statements with, 133-135

in error handling, 259-261
multiple, 133-135
ternary operations with, 135-136

embedded systems, 478, 480, 576
employment opportunities, 9
empty classes, 221
encoder, 543, 560
encryption, 328
English language, 359
entropy, 407
enumerate() function

for counting lines in file, 282-283
for counting CSV rows, 292-293, 302-303

environment-sensing, 480-481. See also sensors; names of specific
hardware projects
epochs, 371-372, 634
equal to comparison operator, 72
error module, 331-332

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



errors. See also exceptions
abbreviations for, 258
in app environment, 251-254, 257
can only concatenate str, 160

general source of, 251
highlighting of, 82-83
index out of range, 151
readable message, 258-259
related to syntax, 79-81
simple signs of, 45-46

escape characters, 69-70
ESP32 boards, 587, 481
ESP8266 boards, 587, 481
Ethernet, 362, 479
evolutionary algorithms, 365
evolutionary computing, 363-364. See also AI
Excel. See Microsoft Excel

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



exceptions
discussion, 251-254, 257
handling

built-in exceptions, 263
creating exceptions, 263-267
else, 259-261

preventing app from crashing, 257-259
specific exceptions, 255-257
try…else…except…finally, 261-262

try…except, 254-255

from too many open files, 274
exclusive OR gate (XOR), 374
exit() command, 35-36

Explorer. See Internet Explorer web browser
exponent operator, 71-72
extend() method, 155-156, 165

extensions
Google Chrome HTTP Headers, 329-331
.ipynb filename, 26, 51

JSON filename, 309
Jupyter Notebook filename, 26
.py filename, 41-43

TensorBoard, 394
VS Code, 19-21

external databases, 150
external files, 150, 180

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



F
Facebook

API for posting, 334
high-velocity dataset, 437
POST response and, 330
statistics, 436-437

facial ID recognition software
AI and, 366
Intel NCS and, 424

false discovery rate, 457-458
False values

Booleans and, 70-71
type() function and, 344

Fashion-MNIST (Modified National Institute of Standards and
Technology) ML (machine language) project

CNN model code, 412-415
code breakdown, 405-407
dataset, 403
discussion, 401-402
external images testing, 409-412
MatPlotLib visualization, 415-419

network testing, 404-405
results, 407-408
single image test, 408-409
software environment setup, 402-403

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



feedback
in DC motors, 543
discussion, 560
from potentiometer, 582
in robotics project, 617-620

feed-forward input, 371
feedfoward() function, 380

female-to-Grove patch cables, 3
fetchUltraDistance() function, 606-608

FileNotFoundError, 252-254

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



files
append mode, 284-285
binary

copying, 287-289
opening, 278
overview, 272
reading, 287-289

closing, 274
CSV

converting strings, 293-295
converting to Boolean, 297
converting to date, 295-297
converting to floats, 297-298
converting to integers, 295
data dictionary importing, 303-306
objects importing, 300-303
opening, 291-292
overview, 254, 290-291, 299, 306

discussion, 271
exceptions from too many open, 274
.jpg graphic image, 277-278

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



looping through
appending versus overwriting, 284-285
one line at a time, 281, 283-284
overview, 281
readline() method, 281, 283-284

readlines() method, 281-283

seek() method for moving pointer, 286-287

tell() method for pointer location, 285-286

whole file, 281-283
opening

from application, 273-274
considerations, 278
contextual coding, 274-277

reading contents of
overview, 279
read() method, 279

read([size]) method, 279

readline() method, 279-281

readlines() method, 279-281

text, 271-272, 278
write mode, 284-285

financial services, 440

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



FindAndChaseTheBall program

discussion, 655
main program

chasing ball, 664
configuration, 661-662
notes, 664-666
overview, 661
setting ball color, 662-663

OpenCV frame analyzer thread
frame analysis, 658-659
looking for ball, 660-661
moving robot, 660
overview, 657-658

structure, 656
ultrasonic thread, 656-657
video display thread, 657

Finder app, 271
“fire and forget mode,” 426
Firebase. See Google Firebase Realtime Database
Firefox web browser, 15-17, 327
floating-point number

converting CSV to, 297-298
discussion, 68, 87, 343
type() function and, 344

float(x) function, 89

floor division operator, 71-72, 119
folders, 271

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



for loop statements

continuous, 141-142
in data dictionary, 182-183
discussion, 136
force-stopping, 140-141
for list loops, 139-140
nesting, 142-143
for number range loops, 136-138
for string loops, 138-139

format strings. See f-strings
format(x,y) function, 89

Forta, Ben, 464
FPGA (field-programmable gate arrays), 428
fromkeys() method, 184, 190-192

front LED functions, 605-606
f-strings

discussion, 93
formatting

alignment, 98-100
dollar amounts, 94-95
multiline output, 97-98
overview, 93-94
percentages, 95-96
width, 98-100

print() function with, 95-96

strings and, 99

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



functions. See also custom functions
anonymous

example, 210-215
lambda expression portion, 209-210, 213-215

built-in math, 89-90
calling, 195-196
code readability in, 198-199
comments in, 197
creating custom

arbitrary number of arguments, 207-208
commenting, 205
kwargs, 203-204
multiple values in lists, 205-207
multiple values in parameters, 201-203
optional parameters with defaults, 200-201
overview, 195-197
parameters, 198-200
returning values, 208-209

discussion, 87-89
importable math, 90-92
lambda, 209-210, 213-215
method versus, 230
nesting, 90
proper syntax for, 88-90
variables in, 198-200

G

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Game of Thrones, 362
Gartner, 436
general AI, 360
general purpose input-output (GPIO) libraries, 482-483
general purpose input-output pin connector. See GPIO pin connector
general servo function, 613
get() method, 178-179, 184

GET response, 329
gettz operator, 122-125

gigabit Ethernet, 422
Git, 19-20, 518
GitHub source repositories

discussion, 518
I2C device Python libraries, 515-517
TensorFlow and, 366

GMT (Greenwich Mean Time), 120
Go programming language, 386
good numbers, 67
Google

cloud computing and, 426
CMS and, 460
specialized hardware from, 425

Google Brain group, 366
Google Chrome HTTP Headers extension, 329-331

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Google Chrome web browser
discussion, 327
downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27
TensorBoard extension, 394

Google Cloud big data project
BigQuery

computer security, 459
overview, 458-459
registration, 460

discussion, 457-458
downloading code for, 457
Google Cloud Platform, 458
Medicare data

analysis, 467-471
code breakdown, 466-467
coding, 463-466
overview, 460
setup and authentication, 460-463
visualization, 471-472

OpenAQ database, 473
Google Cloud Platform

APIs, 458
discussion, 427, 458

Google Cloud Vision API (application programming interface), 427
Google Edge TPU (tensor processing unit) accelerator, 424-425

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Google Firebase Realtime Database
converting timestamps from, 317
discussion, 307
exporting to JSON from, 309
keyed files, 308-309
timestamp

mm/dd/yyyy date format, 316-317, 321-322
overview, 310, 316-317

Google Home, 362, 427
Google Research, 366
Google search engine

cloud computing and, 427
data science and, 435
discussion, 458
Python help, 36-37
website API posting help, 334

Google Sheets, 290. See also CSV files
Google trend searches, 10
GPIO (general purpose input-output) libraries, 482-483
GPIO (general purpose input-output) pin connector

on Arduinos, 481
digital, 509
Grove blue LED module and, 487
on Raspberry Pi, 482
on Raspberry Pi 3B+, 479
Raspberry Pi PWM, 491

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



GPU (graphics processing unit)
boards, 430
cost of multicore, 430
CPU versus, 428-429
four-core, 366
parallel computing and, 429
Raspberry Pi 3B+, 421, 479
tensors in, 429

graphic user interface. See GUI
graphics cards, 428-430
greater than comparison operator, 72
greater than or equal to comparison operator, 72
Greenwich Mean Time (GMT), 120
Griffin Bluetooth-enabled toaster, 575-576
Grove 4-channel 16-bit ADC (analog-to-digital converter), 522-523
Grove blue LED module

aligning with Raspberry Pi board, 486
discussion, 3, 483-484
GPIO pins and, 487

Grove cable, 3, 485
Grove HDC1080 I2C temperature and humidity sensor, 3, 502-503, 509-
510

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Grove HDC1080 I2C temperature and humidity sensor project
discussion, 511-515
Python libraries for reading

code breakdown, 518-519
mini humidity experiment, 517
overview, 515-517

Grove I2C motor driver, 544-548. See also DC motors project
Grove I2C sensor

discussion, 3, 6
drivers, 519-521
standard layout, 502-503

Grove male jumper patch cables, 3, 552
Grove oxygen sensor, 3, 522-523
Grove oxygen sensor project

code breakdown, 527-528
discussion, 521-522
equipment needed for

ADC converter, 522-523
Grove oxygen sensor, 522-523
setup, 524-526

interpreting result of, 528-529
Grove patch cable, 504-505
Grove serial interface. See Grove UART module

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Grove system
base units

Arduino base unit, 494-495
overview, 494
Pi2Grover Raspberry Pi board, 495-496
Raspberry Pi base unit, 495

discussion, 493
Grove cables in

example 1, 505-506
example 2, 506-507
overview, 503-505

Grove connectors in
analog Grove connector, 499-500
digital Grove connector, 498-499
Grove I2C sensor, 3, 502-503
Grove UART module, 500-501
overview, 496-497

voltage and, 498
Grove UART (universal asynchronous receiver/transmitter) module, 500-
501
Grove-4-male-pin-to-Grove-conversion cables, 3
Grove-connector-to-female-header-pins cable, 504, 560-561
Grove-connector-to-male-header-pins cable, 505
GUI (graphic user interface)

on headless Raspberry Pi, 402-403
on Linux OS, 481
for Python, 15

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Grove XBee wireless sockets, 501

H
hackers, 328
hard drive, 37
hardware. See also sensors; names of specific hardware projects

discussion, 477-478
environment-sensing, 480-481
projects

“Hello World,” 483-487
LED control, 487-489
PWM LED control, 489-491

Raspberry Pi
GPIO libraries, 482-483
GPIO pins, 482
overview, 478-480

safety with, 477
hardware acceleration, 365, 424-425
hardware interface, 509-510
hardware projects. See names of specific hardware projects
Haskell programming language, 386
HDC1080 temperature and humidity sensor. See Grove HDC1080 I2C
temperature and humidity sensor
HDMI, 479
head thread, 628

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



headless computing
discussion, 480
GUI, 402-403
on Raspberry Pi, 588-589

headTiltDown() function, 611

headTiltMiddle() function, 611

headTiltPercent() function, 611-612

headTiltUp() function, 611

headTurnLeft() function, 610

headTurnMiddle() function, 610

headTurnPercent() function, 610-611

headTurnRight() function, 610

heat plot, 453-455
“Hello World” physical computing project, 480, 483-487
“Hello World” Python project, 42-45
help() function, 345-347, 350

help() method, 249

help utility
entering, 33-35
exiting, 35-36
online, 36

heuristics, 363
hexadecimal numbers. See base-16 numbers
hex(x) function, 89

high-level mathematical functions, 442
high-variety dataset, 436

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



high-velocity dataset, 437
high-volume dataset, 436
Hollywood, 571
“How to easily Detect Objects with Deep Learning on Raspberry Pi”
(Jain), 431
HSV (hue, saturation, value) colorspace, 662-663
HTML (Hypertext Markup Language)

discussion, 10
on web page, 334-337
workspace, 37

HTTP (Hypertext Transfer Protocol)
discussion, 328, 330-331
errors, 333
status codes, 331

HTTP Error 403: Forbidden error code, 333
HTTP headers, 329-331
https protocols, 328-330

https://, 328, 458

http://, 328, 458

Hubble Space Telescope, 375
hue, saturation, value (HSV) colorspace, 662-663
human brain, 360, 362
human-level learning, 360, 365, 372. See also learning
human-readable content, 272, 287
hyperbolic function, 91
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



I
I2C (inter-integrated circuit) bus

address, 510, 513, 515
discussion, 503, 509-511
drivers, 519-521
protocol, 511
on Raspberry Pi, 511-512
registers, 519-521

I2C (inter-integrated circuit) temperature and humidity sensor project
discussion, 511-512
installation, 512-515
Python libraries for reading

code breakdown, 518-519
mini humidity experiment, 517
overview, 515-517

IAM (identity and access management) paradigm, 459
IBM BlueMix cloud services, 427
IBM cloud, 426-428
IBM SoftLayer data services, 427
IBM Watson AI group, 427, 571
ICD-10, 467-468
icons, 4, 18, 20, 31
identity and access management (IAM) paradigm, 459
IEEE Spectrum, 1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



if statements

curly braces in, 132
discussion, 129-132
elif statements with, 133-136

else statements with, 132-136

repeating while loops with continue and, 145-146

single versus multiple lines in, 130-132
for ternary operations, 135-136

images, 436, 573
imaginary numbers, 101-102
<img> tag, 335

import command, 59-62

indentations
with comments, 136
discussion, 57-59, 82, 196
with if statements, 129-130

in loops, 152
index() method, 160-161, 165

index out of range error, 151
inferences, 435

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



inheritance
adding extra parameters from subclass in, 243-246
calling base class method in, 246-247
creating base class in, 240-241
defining subclass in, 241-243
discussion, 238-240
overriding subclass default value in, 243
using same name twice in, 247-250

__init__ method, 221-222

insert() method, 154, 165

instance methods, 234-235
instance variables, 232-234
instances

in classes, 217-220
converting CSV to, 300-303
in custom classes

attribute default values, 227-228
attributes, 222-223
changing attribute values, 226
instance from class, 221-222
instances, 223-225
overview, 220-221

discussion, 56-57, 343
giving attributes to, 222-223

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



integers
converting CSV to, 295
discussion, 68, 87, 343
division of, 72

Intel, 425
Intel Neural Compute Stick (NCS), 424
Intel Neural Network chips, 428
Intel SMBus, 510
Intellisense text, 43, 197, 205-206
interface, 509-510
International Classification of Diseases 10th revision, 467-468

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Internet
computer clock and, 111
discussion, 327-328
encryption, 328
hackers, 328
HTTP headers, 328-331
https protocol, 328

Python and
JSON file for scraped data, 342
opening URL, 331-332
page parsing, 337
saving as CSV, 341-342
saving as JSON, 340
storage, 337-339
web posting, 333-334
web scraping, 334-337

role of URL in accessing, 328-329
Internet dashboard, 530-531. See also Blynk app
Internet Explorer web browser

discussion, 327
downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Internet of Things (IOT) devices
discussion, 426
MS Azure and, 428
robots versus, 572
small computers and, 481
statistics, 436

interpreters
choosing, 21
discussion, 13-15, 21, 367

int(x) function, 89

IOT devices. See Internet of Things devices
iPhone smartphone

Blynk app dashboard for, 530-534
processing, 366

.ipynb filename extension, 26, 51

is not operator, 72

is operator, 72

“Is Santa Claus Real?” (Vohra), 430
italics, 62
item index, 151, 160-161
items() method, 184

iterables, 164, 190, 205. See also lists

J
Jain, Sarthak, 431
Java, 10, 386

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



JavaScript code
discussion, 10, 307
parentheses in, 57-59
workspace, 37
written in Python, 58-59

jgarff driver, 606
.jpg graphic image filename, 277-278

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



JSON (JavaScript Object Notation)
comparable to data dictionary, 307
data organization, 307-310
data types, 311
deserialization of, 310-311
discussion, 307
dumping data to, 322-325
Excel data exported to, 307-308
filename extension, 309
Firebase data exported to, 309
keyed files, 309
key:value pairs

changing data, 320-321
Excel data conversion, 307-308
Python data dumps, 322-325
removing data from dictionary, 321-322

loading data from
changing data, 320-321
converting Firebase timestamps, 314-316
Excel to JSON date conversion, 313-314
keyed JSON from Python string, 319-320
looping keyed JSON, 314-316
overview, 312-313
removing data from dictionary, 321-322
unkeyed JSON, 314-316

saving scraped data as, 340, 342
serialization of, 310-311

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



json module, 311
json.dump() method, 322-325

json.dumps() method, 322-325

.json filename extention, 309

json.loads(), 318-320

Julia programming language, 23
Jupyter Notebook

coding in
adding Markdown text, 49-50
creating folders, 47-48
creating notebooks, 48
opening notebooks, 51
overview, 47
running code, 49
saving notebooks, 51
writing code, 49

discussion, 23-27
filename extension, 26

K
Kaggle website, 444-445
“Keras and deep learning on the Raspberry Pi” (Rosebrock), 430

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Keras neural network project
on TensorFlow

changing to three-layer neural network, 395-397
checking results, 392-395
code breakdown, 390-392
goal definition, 374
installation, 386
overview, 386-387
step 1: loading data, 388, 390
step 2: defining model and layers, 388, 391
step 3: compiling, 388, 391
step 4: fitting and training, 388, 392
step 5: evaluation, 388-390, 392

keyed JSON files
discussion, 308-309
looping through, 314-316
from Python string, 319-320

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



keys
in data dictionary

adding keys, 180-181
changing key value, 179-180
looping, 182-183
methods, 184-185
multi-key dictionaries, 188-190
overview, 171-173
removing items, 185-188
searching for keys, 177-178

quotation marks in, 188-190
keys() method, 184

key:value pairs
dictionary data and

adding keys, 180-181
changing keys, 180-181
dictionary length, 177
removing all key-value pairs, 186

discussion, 174, 226
JSON

changing data, 320-321
Excel data conversion, 307-308
Python data dumps, 322-325
removing data from dictionary, 321-322

methods, 184
keyword arguments, 203-204
keywords help topic, 34-35

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



kitchen appliances, 478, 480-481, 541, 572
kwargs, 203-204

L
lambda functions

currency example of, 213-215
discussion, 209-210

language translation, 360. See also natural language
large-array manipulation functions, 442
laser distance sensors, 629
learning, 360, 365, 372, 399. See also names of specific types of learning
LED control project, 487-489
left justification, 214-215
len() function, 104, 153, 167, 177

less than comparison operator, 72
less than or equal to comparison operator, 72
light bulbs, 478
lighting condition sensors, 629
line break command, 70
line breaks, 81
linear algebra, 366, 375. See also matrix mathematics
Linear Algebra For Dummies (Sterling), 366
linting, 55-56, 82-83

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Linux OS (operating system). See also Ubuntu OS
Anaconda on, 15-17
Google Edge TPU and, 424-425
installing NumPy on, 379

Raspberry Pi based on, 587
on small computers, 481
Windows-like GUI, 481

listname function, 150-152

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



lists
= symbol for assigning names to, 149
alphabetizing, 161-163
appending items to ends of, 153-154
changing items in, 155
checking contents of, 152
clearing out, 158
combining, 155-156
copying, 164-165
counting item frequency in, 159-160
determining length of, 153
difference between data dictionary and, 171-172
discussion, 139-140, 149
displaying, 150
inserting items into, 154
item index in, 151, 160-161
long, 150
looping through, 151-152
position numbers, 150-151
quotation marks in, 149-150
readability in, 162-163
removing items in, 156-158
reversing, 164
sorting, 161-163
strings in, 150

living things hierarchy, 239
.ljust() method, 214-215

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



local scope, 198
logarithmic functions, 91
logic analyzer, 559
logical operators, 128. See also decision-making operations
logistic regressions, 439
long-distance data transmission, 375
looping

discussion, 281
readline() method for, 281, 283-284

readlines() method for, 281-283

loss functions, 373-374, 394
low-velocity dataset, 437

M
Mac OS (operating system)

Anaconda on, 15-18
command prompt, 348-349
Finder app, 271
Terminal prompt, 31

Machine Learning For Dummies (Mueller, Massaron), 372, 419
machine learning. See ML
machine learning projects. See Cats and Dogs ML robotics project;
FindAndChaseTheBall program

machine vision, 575, 631-632. See also Cats and Dogs ML robotics
project; FindAndChaseTheBall program; visual perception

magic methods. See dunder-named items
magnets, 541-542

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



main motor functions, 608-609
Markdown, 25, 49-51
Marketing Week, 439

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Mars Rover PiCar-B robotics programming project
additional ideas for, 629
Adeept software installation, 628-629
code download, 601-602
coordinating motor movements with sensors, 617-621
discussion, 4, 601
Python brain code

close distance clause, 624-625
experiment results, 626-627
overview, 621-624
threads architecture, 627-628
ultrasonic distance sensor, 618-621
ultrasonic distance readings clause, 625-626
YouTube video of results, 627

Python interface
motorForward() function, 602

overview, 601-602
wheelsLeft() function, 602

wheelsPercent() function, 603

Robot Interface test, 613-616

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RobotInterface class
allLEDSOff() function, 608

centerAllServos() function, 613

color() function, 608

colorWipe() function, 607

fetchUltraDistance() function, 606-608

front LED functions, 605-606
general servo function, 613
headTiltDown() function, 611

headTiltMiddle() function, 611

headTiltPercent() function, 611-612

headTiltUp() function, 611

headTurnLeft() function, 610

headTurnMiddle() function, 610

headTurnPercent() function, 610-611

headTurnRight() function, 610

main motor functions, 608-609
motorBackward() function, 609

motorForward() function, 609

overview, 604-605
Pixel strip functions, 606-608
rainbowCycle() function, 607

servo functions, 609-613
set_Front_LED_Off() function, 606

set_Front_LED_On() function, 605-606

setPixelColor() function, 607-608

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



stopMotor() function, 609

theaterChaseRainbow() function, 607

ultrasonic distance sensor function, 608
wheelsLeft() function, 612

wheelsMiddle() function, 612

wheelsPercent() function, 612-613

wheelsRight() function, 612

ROS, 616-617
single movement, 603-604

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Mars Rover PiCar-B robotics project
assembly manual, 580, 590-591
building, 590-592
components

drive motor, 584-585
motor controller board, 582
overview, 581
Pi camera, 587-589
Pixel RGB programmable LEDs, 586-587
RGB LED, 585-586
servo motors, 582-584
ultrasonic sensor, 589-590

discussion, 579-580
parts list, 580-581
sudo halt for stopping Raspberry Pi, 592

testing
disabling Adeept software auto startup, 595
Pi camera video, 597-599
PiCar-B Python test code, 595-596
servo motors calibration, 592-595

tips, 591-592
marshalling format, 307
Massachusetts Institute of Technology (MIT), 361
Massaron, Luca, 372, 419
Material Icon theme, 31

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



math module

discussion, 90-92
installing, 350-352

math.acos(x) function, 91

math.atan2(y, x) function, 91

math.atan(x) function, 91

math.ceil(x) function, 91

math.cos(x) function, 91

math.degrees(x) function, 91

math.e function, 91

math.exp(x) function, 91

math.factorial(x) function, 91

math.floor() function, 91

math.isnan(x) function, 91

math.log(x,y) function, 91

math.pi function, 91

math.pow(x, y) function, 91

math.radians(x) function, 91

math.sin(x) function, 91

math.sqrt(x) function, 91

math.tan(x) function, 91

math.tau() function, 91

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



MatPlotLib package

data graphs and, 440
in data science project

clarity count, 451-452
clarity versus size, 449-450
color count, 452-453
overview, 449

discussion, 375, 441, 444
Grove oxygen sensor project data in, 521-522
installation, 415
output formats, 522
visualization with, 415-419, 444

matrices. See also linear algebra; tensors
DataFrames and, 443
discussion, 366, 375, 385, 425
GPU, 429
NumPy and, 442

online tutorials on, 442
terminology surrounding, 386

matrix mathematics, 366, 375
max(s) sequence operator, 105

max(x,y,z.) function, 89

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Medicare big data project
analysis, 467-471
code breakdown, 466-467
coding, 463-466
data visualization, 471-472
discussion, 457, 460
ICD-10 and, 468
setup and authentication, 460-463

medicine, 435, 440
megapixels, 587
memory wire, 577
metadata, 444
Metcalf, Robert, 362
method resolution order, 249

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



methods
for classes

calling method by class name, 231-232
class methods, 234-236
class variables, 232-234
naming conventions, 229
overview, 228-230
parameters, 230-231
static methods, 236-237

data dictionary
fromkeys() method, 190-192

get() method, 178-179, 184

overview, 183-184
setdefault() method, 190-192

discussion, 56-57, 218, 228
function versus, 230
manipulating strings with

alignment, 214-215
left justification, 214-215
overview, 107-109
right justification, 214-215

tuples and, 167
for working with lists, 165

micro USB (universal serial bus) port, 480
microSD card, 480
Microsoft, 458
Microsoft Azure, 426, 428, 430

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Microsoft Edge web browser
downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27

Microsoft Excel
BOM, 293
discussion, 290. See also CSV files
exporting to JSON from, 307-308
to JSON date conversion, 313-314
Pandas package and, 443
tutorial, 528

Microsoft Internet Explorer web browser
discussion, 327
downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27

middleware, 616
milliamps, 583
min(s) sequence operator, 105-106

Minsky, Marvin, 361-362, 369
MIT (Massachusetts Institute of Technology), 361

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



ML (machine learning). See also AI; neural network project
algorithms, 400-401
AWS tools and, 427
both art and science, 415
code for Book 4 Chapter 6, 400
decision trees in, 365
discussion, 1-2, 399, 421
evolutionary algorithms in, 365
evolutionary computing and, 363-364
Fashion-MNIST project

CNN model code, 412-415
code breakdown, 405-407
dataset, 403
external images testing, 409-412
MatPlotLib visualization, 415-419

network testing, 404-405
network training, 404
overview, 401-402
results, 407-408
single image test, 408-409
software environment setup, 402-403

goal definition, 400
GPUs and, 428-430
hardware acceleration in, 365
limitations, 367
local maxima in, 400
MS Azure tools for, 428

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



neural networks and, 363, 365
Python and, 9-10
resources, 419
statistical analysis in, 365, 429

ML projects. See Cats and Dogs ML robotics project;
FindAndChaseTheBall program

mm/dd/yyyy date format
conversion, 317, 321-322
discussion, 310, 316

modules. See also names of specific modules
creating, 352-355
discussion, 59-62
free, 59-60, 87
importing

overview, 349-352
syntax, 61-62

updating, 59-61
using an alias with, 62

modulus operator, 71-72
moment, 660
monitoring, 424
motor controller board, 582
motor thread, 628
motorBackward() function, 609

motorForward() function, 609

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



motors. See also actuators; DC motors
actuators versus, 577
discussion, 3, 480
magnets in, 541-542
Raspberry Pi and, 477
robotics project controller board, 582

“MouseAir – Using AI on the Raspberry Pi to Entertain your Cat”
(Shovic), 430
MouseAir project, 653-654
Mueller, John Paul, 372, 419
multi-key dictionaries, 188-190
multiplication operator, 71
multitasking, 491
multitasking preemptive operating system, 587

N
\n operator

discussion, 70
for multiline f-string output, 97-98

ñ character, 285
Naïve Bayes formula, 439
näive datetime, 121
nano text editor, 375
NASA (National Aeronautics and Space Administration), 375
National Oceanic and Atmospheric Agency (NOAA) database, 457, 459

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



natural language
AI difficulties with, 359, 437
discussion, 427

NDAs (nondisclosure agreements), 423
negated identity comparison operator, 72
negative feedback, 560
network connection, 572
Network News Transfer Protocol (NNTP), 111

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



neural network project. See also Cats and Dogs ML robotics project;
FindAndChaseTheBall program

downloadable code for, 369
goal definition, 374
NumPy

code breakdown, 378-382
overview, 375-378
running code, 382-385
truth table, 374

TensorFlow Keras neural network in
changing to three-layer neural network, 395-397
checking results, 392-395
code breakdown, 390-392
installation, 386
overview, 385-387
step 1: loading data, 388, 390
step 2: defining model and layers, 388, 391
step 3: compiling, 388, 391
step 4: fitting and training, 388, 392
step 5: evaluation, 388-390, 392

truth table, 374
XNOR gates and, 375

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



neural networks
architecture of two-layer, 370
attributes

activation function, 373
biases, 371-373
layers of neurons, 371-372
loss function, 373-374
overview, 370-371
weights, 371-372

discussion, 2, 360, 362-363, 369, 421
duplicating trained, 372
financial investments in, 362, 369
learning in

activation function, 373
backpropagation, 371-373
biases, 371-373
epochs, 371-372
feed-forward input, 371
loss function, 373-374
weights, 371-372

in ML, 365
renewed interest in, 369

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



neurons
in AI

activation function, 373
biases, 371-373
layers, 371-372
loss function, 373-374
overtraining, 373
overview, 370-371
weights, 371-372

in human brains, 360, 362
New Horizons space probe, 375
Newark, 581
NNTP (Network News Transfer Protocol), 111
NOAA (National Oceanic and Atmospheric Agency) database, 457, 459
nondisclosure agreements (NDAs), 423
non-Grove sensors, 513
nonrestrictive BSD license, 423
not Boolean operator, 73, 128

not equal to comparison operator, 72
Notepad, 290
now() operator, 122-123

Numbers. See Apple Numbers app

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



numbers
base-2, 100-101
base-8, 100-101
base-16, 100-101
calculations with functions, 87-92
complex, 68, 101-102
discussion, 67
floating-point, 68, 87, 343-344
formatting

alignment, 99-100
dollar amounts, 94-95
f-strings, 93-94
multiline format strings, 97-98
overview, 93
percentages, 95-96
width, 99-100

integer, 68
valid and invalid use of, 67

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



NumPy library

discussion, 441-443
example of, 442
installation, 443, 445
neural-net Python code

code breakdown, 378-382
goal definition, 374
overview, 373, 375-378
running code, 382-385
truth table, 374
XNOR gates, 375

Pandas package and, 441
tutorials for using, 442

NumPy Tutorial, 442
Nvidia, 425
Nvidia 256 Core GPU chip, 429
Nvidia GPUs (graphic processing unit), 423
NXP Semiconductors, 510

O
object identity comparison operator, 72
object-oriented programming (OOP), 56-57, 217-220
objects. See instances
octal numbers. See base-8 numbers
oct(x) function, 89

Olson Database, 121-122, 125
OneDrive, 37

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



ó character, 285
OOP (object-oriented programming), 56-57, 217-220
Oort Cloud, 375
open() method, 273-274

OpenAQ database, 473
OpenCV (Open Source Computer Vision) package, 588
OpenCV frame analyzer thread. See FindAndChaseTheBall program

open-drain lines, 510
Opera web browser, 327
operators. See decision-making operations; names of specific
mathematical operators
or Boolean operator, 73, 128

ord() function, 107

OS (operating system) Error exception, 317
overfitting, 639
overtraining, 373
oxygen sensor project

code breakdown, 527-528
discussion, 521-522
equipment needed for

ADC converter, 522-523
Grove oxygen sensor, 522-523
setup, 524-526

interpreting result of, 528-529

P
package manager, 348

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



packages, 14-15, 347-349. See also names of specific packages
Pandas package

in data science project, 453-455
DataFrames, 443, 445
discussion, 441, 443

Panther the cat, 642, 654
parallel computing, 363-364, 429
parameters

discussion, 88
in functions

multiple values, 201-203
optional parameters with defaults, 200-201

naming conventions, 224-225
parentheses, 57-59
ParkMyRide API (application programming interface), 427
parse module, 331-332

passwords, 328
PC (personal computer), 478
PCA9685 I2C chip, 583-584
PDF (Portable Document Format), 522

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



PEP 8 Guidelines
discussion, 54-55
error warnings in

deactivating, 83
example, 82-83
mouse hovering, 82-83
related to syntax, 79-81
wording, 82-83

on valid variable names, 75
whitespace recommendation, 73, 82

PEP 20 Guidelines, 54
perceptron, 362, 369
peripheral devices, 510
persistent data, 228
personal computer (PC), 478
Peters, Tim, 53-54
Phillips Hue, 478
photos, 436, 573

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



physical computing. See also hardware; sensors; names of specific
physical computing projects

discussion, 477-478
environment-sensing, 480-481
projects

“Hello World,” 483-487
LED control, 487-489
PWM LED control, 489-491

Raspberry Pi
GPIO libraries, 482-483
GPIO pins, 482
overview, 478-480

safety with, 477
pi, 350-352
Pi camera, 587-589
Pi2Grover board, 3, 483-485
Pi2Grover Grove interface board, 544-545
Pi2Grover Raspberry Pi board

discussion, 495-496
resistors in, 510
for servo project, 552
for stepper project, 560
voltage, 498

Pi2Grover Raspberry-Pi-to-Grove converter, 3, 513
PIP (Pip Installs Packages), 348-349
pip command, 61, 348

Pixel RGB programmable LEDs (light-emitting diodes), 586-587

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Pixel strip functions, 606-608
plotly package, 441
PNG (Portable Network Graphics), 522
pollution big data project, 473
pooling layer, 638-639
pop() method

for data dictionary, 184, 187
discussion, 156-158, 165

popitem() method, 184, 187-188

Portable Document Format (PDF), 522
Portable Network Graphics (PNG), 522
positive feedback, 560
POST response, 330
PostScript (PS), 522
potentiometer, 543, 582
pound sign, 65
powers functions, 91
PowerShell

discussion, 31, 45
to use PIP, 348-349

prime meridian, 120
print() function

data dictionary, 175-176
with f-strings, 95-96
for number conversion, 100-101

processes. See threads

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



programmer comments
in applications, 64-66
in class code, 220
in custom classes, 220
in custom functions, 205
in functions, 197
indentations with, 136

programming languages. See also names of specific programming
languages

curly braces in, 57-59
design, 53, 56-57
discussion, 10
parentheses in, 57-59
syntax in, 79-81
for web page design, 10

projects. See names of specific projects
property. See attributes
proprietary software, 577
protocols

https, 328-330

I2C bus, 330
PS (PostScript), 522

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



PWM (pulse width modulation)
data corruption compensation via, 587
discussion, 489-491
motor control via, 584-585
servo motor control via, 543, 552, 583-584
small DC motors and, 542-543

PWM (pulse width modulation) LED (light emitting diode) control
project, 489-491
Pycodestyle linting, 55
PyComms drivers, 521
PyLab package, 444
PyLint feature

activating, 55-56
deactivating, 83
error highlighting, 82-83

PyPi (Python Package Index), 348
.py filename extension, 41-43

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Python
accessing Internet with

JSON file for scraped data, 342
opening URL, 331-332
page parsing, 337
posting to web, 333-334
saving as CSV, 341-342
saving as JSON, 340
storage, 337-339
urllib library, 331-332

web posting, 333-334
web scraping, 334-337

app creation with, 37
built-in features

exceptions, 263
functions, 347
math, 89-90
strings, 107-109

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



coding in
creating folders, 39-41
editors, 13-15
indentations, 57-59
interpreters, 13-15
Jupyter Notebook, 23-27
.py file creation, 41-43

running code, 44-45
saving code, 43
saving work, 78
simple debugging, 45
simple exercise, 22-23
style, 54-55
VS Code, 19-23
writing code, 42-43

core language, 59, 343
data dumps to JSON, 322-325
data types

Booleans, 70-71
numbers, 67-68
overview, 66
strings, 68-70

design principles
overview, 217-220
PEPs, 54-56
readability, 54-55, 57-59
Zen of Python, 53-54

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



discussion, 9
easily learned, 10
exiting, 23
extensions

Google Chrome HTTP Headers, 329-331
.ipynb filename, 26, 51

JSON filename, 309
Jupyter Notebook filename, 26
.py filename, 41-43

TensorBoard, 394
VS Code, 19-21

interactive mode
cheat sheets, 36-37
entering commands, 33
entering interpreter, 32-33
getting version, 32
help command, 33-36
online help, 36
opening Terminal, 30-31
overview, 29-30

JavaScript code written in, 58-59

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



modules
alias, 61-62
creating, 352-355
free, 59-60
import syntax, 61-62
importing, 59-61, 349-352
overview, 59-61

NumPy neural network project

code breakdown, 378-382
overview, 369, 373, 375-378
running code, 382-385
truth table, 374
XNOR gates, 375

operators, 71-73
packages, 347-349
popularity of, 10-11
programming robots in, 577
Raspberry Pi support for, 481
requests library, 537
resources, 430

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



robotics brain project
Adeept software installation, 628-629
close distance clause, 624-625
experiment results, 626-627
overview, 621-624
threads architecture, 627-628
ultrasonic distance readings clause, 625-626
YouTube video of results, 627

standard library
built-in functions, 347
dir() function, 344-345

help() function, 345-347

json module, 311
overview, 343-344
resource, 346-347
USB processing sticks, 423-425

syntax
code blocks, 82
errors, 79-81
functions, 88-89
if statements, 129-130

individual lines of code, 81
module importation, 61-62
naming conventions, 81-82

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TensorFlow Keras neural network project
changing to three-layer neural network, 395-397
checking results, 392-395
code breakdown, 390-392
goal definition, 374
installation, 386
overview, 366, 385-387
step 1: loading data, 388, 390
step 2: defining model and layers, 388, 391
step 3: compiling, 388, 391
step 4: fitting and training, 388, 392
step 5: evaluation, 388-390, 392

terminology, 217-220
tools

Anaconda, 14-19
editors, 13-15
interpreters, 13-15, 21
overview, 13-14
VS Code, 14-19

urllib library, 331-332

versions
downloading, 13
getting version, 32
help, 36
naming conventions, 12-13
overview, 11
which to learn, 13

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



workspace, 37-39
Python All-in-One Archives, 664
Python Coding Style Guidelines, 55, 73
python command, 32-33

Python Enhancement Proposals (PEPs), 54. See also PEP 8 Guidelines;
PEP 20 Guidelines
Python NumPy — Introduction to ndarray [Part 1] tutorial, 442

Python Package Index (PyPi), 348
Python.org, 13, 54-55

Q
Qualcomm, 425
query string, 328
query-oriented languages, 464. See also BigQuery API; SQL tables
Quick2Wire drivers, 521
quotation marks

discussion, 66
in keys, 188-190
in lists, 149-150
triple, 96-98

R
R programming language, 23, 386, 440
rainbowCycle() function, 607

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RAM (random access memory)
in inexpensive computers, 478
on PCs, 478
Raspberry Pi 3B+, 422
reading binary files and, 287-289
readlines() method and, 281

rand() function, 380

range() statement, 138-139

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Raspberry Pi
AI on

adding hardware, 423-425
limitations, 421-423
overview, 421

Amazon Cloud and, 424
base units, 494-495
Blynk app smartphone dashboard and

code breakdown, 536-538
installation, 531-534
overview, 530
Python code modification, 534-536

cost, 478
data corruption compensation on, 587
discussion, 1-2, 478-480
GPIO libraries, 482-483
GPIO pins, 482
Grove oxygen sensor project

ADC converter, 522-523
code breakdown, 527-528
Grove oxygen sensor, 522-523
interpreting results, 528-529
overview, 521-522
setup, 524-526

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



hardware projects. See also names of specific hardware projects
“Hello World” project, 483-487
LED control, 487-489
PWM LED control, 489-491

HDC1080 temperature and humidity sensor project
overview, 512-515
Python libraries for reading, 515-519

high-level AI robotics applications on, 579
I2C interface sensor interface, 511-512
I2C interface support, 510
ideal for learning Python, 481
installing MatPlotLib on, 415

installing NumPy on, 379, 443, 445

installing Pandas on, 445
Kaggle diamonds database, 444-445
MatPlotLib visualization on, 415-419

motors, 477
multitasking on, 491
Pixel RGB serial stream, 587
power supply from, 553
Python support, 481
seaborn package on, 472
sensors, 477, 509-510
Stretch OS, 580
sudo halt for stopping, 592

USB processing sticks and, 423-425
VNC on, 402-403

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Raspberry Pi 3B+
composite audio/video jack on, 479
cost, 422, 478
CSI port on, 480
data corruption compensation on, 587
discussion, 478
DSI port, 480
Ethernet port, 479
Fashion-MNIST ML training and evaluation on, 407-408
fuse, 553
graphics stack, 423
multitasking on, 491
power supply from, 553
for robotics project, 581
specifications, 421-423, 479-480
starter kit, 2, 581

Raspberry Pi 4B
batteries, 2
coding in, 422
cost, 478
data corruption compensation on, 587
discussion, 407
for robotics project, 581
specifications, 422
starter kit, 2

Raspberry Pi A+, 587
Raspberry Pi camera, 587-589

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Raspberry Pi Foundation, 587-589
Raspberry Pi Starter Kit, 480
Raspberry Pi Zero

cost, 478
data corruption compensation on, 587
for robotics project, 581

Raspberry Pi Zero W, 587
Raspbian OS (operating system), 481
raw bytes, 277-278
RC (remote control) toys, 543, 558
read() method, 279

read([size]) method, 279

readability
in functions, 198-199
in lists, 151-152
lists, 162-163
in methods, 231-232
Python design principles and, 54-55, 57-59

readline() method

discussion, 279-281
for looping through files, 281, 283-284

readlines() method

discussion, 279-281
for looping through files, 281-283
RAM and, 281

real estate bubble, 362

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



“Real time Image Classifier on Raspberry Pi Using Inception
Framework” (Reddy), 431
real-time corruption, 587
rectified linear unit (RELU), 638
red green blue. See RGB
Reddy, Bapi, 431
redundant data, 375
Reed-Solomon error-correction algorithm, 375
regular expressions, 299
reinforcement learning, 400
relational operators. See comparison operators
RELU (rectified linear unit), 638
remote control (RC) toys, 543, 558
remove() method, 156-158, 165

replace() method, 297-299

request module, 331-332, 336-337

resistors, 510
response module, 331-332

REST (representational state transfer) software system, 458-459. See also
Google Cloud big data project
Rever, Matthew, 632
reverse() method, 164-165, 167

RGB (red green blue)
colorspace, 606, 662
LED, 585-586

right justification, 214-215
.rjust() method, 214-215

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



robot operating system (ROS), 575, 616-617
robotics

AI and, 581, 666
bugs in, 575
discussion, 1-2, 421, 571
embedded systems and, 576-577
evolutionary computing and, 363-364
motors in, 541
project supplies, 3-4
Python and, 9-10
rules of, 571, 575

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



robotics programming project
additional ideas for, 629
Adeept software installation, 628-629
code download, 601-602
coordinating motor movements with sensors, 617-621
discussion, 601
Python brain code

close distance clause, 624-625
experiment results, 626-627
overview, 621-624
threads architecture, 627-628
ultrasonic distance readings clause, 625-626
YouTube video of results, 627

Python interface
motorForward() function, 602

overview, 601-602
wheelsLeft() function, 602

wheelsPercent() function, 603

Robot Interface test, 613-616

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RobotInterface class
allLEDSOff() function, 608

centerAllServos() function, 613

color() function, 608

colorWipe() function, 607

fetchUltraDistance() function, 606-608

front LED functions, 605-606

general servo function, 613
headTiltDown() function, 611

headTiltMiddle() function, 611

headTiltPercent() function, 610-612

headTiltUp() function, 611

headTurnLeft() function, 610

headTurnMiddle() function, 610

headTurnRight() function, 610

main motor functions, 608-609
motorBackward() function, 609

motorForward() function, 609

overview, 604-605
Pixel strip functions, 606-608
rainbowCycle() function, 607

servo functions, 609-613
set_Front_LED_Off() function, 606

set_Front_LED_On() function, 605-606

setPixelColor() function, 607-608

stopMotor() function, 609

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



theaterChaseRainbow() function, 607

ultrasonic distance sensor function, 608
wheelsLeft() function, 612

wheelsMiddle() function, 612

wheelsPercent() function, 612-613

wheelsRight() function, 612

ROS, 616-617
single movement, 603-604

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



robotics project
assembly manual, 580, 590-591
building phase, 590-592
components of

drive motor, 584-585
motor controller board, 582
overview, 581
Pi camera, 587-589
Pixel RGB programmable LEDs, 586-587
RGB LED, 585-586
servo motors, 582-584
ultrasonic sensor, 589-590

discussion, 579-580
parts list, 580-581
sudo halt for stopping Raspberry Pi, 592

testing phase
disabling Adeept software auto startup, 595
Pi camera video, 597-599
PiCar-B Python test code, 595-596
servo motors calibration, 592-595

tips, 591-592

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



RobotInterface class
allLEDSOff() function, 608

centerAllServos() function, 613

color() function, 608

colorWipe() function, 607

discussion, 604-605
fetchUltraDistance() function, 606-608

front LED functions, 605-606
general servo function, 613
headTiltDown() function, 611

headTiltMiddle() function, 611

headTiltPercent() function, 611-612

headTiltUp() function, 611

headTurnLeft() function, 610

headTurnMiddle() function, 610
headTurnPercent() function, 610-611

headTurnRight() function, 610

main motor functions, 608-609
motorBackward() function, 609

motorForward() function, 609

Pixel strip functions, 606-608
rainbowCycle() function, 607

servo functions, 609-613
set_Front_LED_Off() function, 606

set_Front_LED_On() function, 605-606

setPixelColor() function, 607-608

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



stopMotor() function, 609

theaterChaseRainbow() function, 607

ultrasonic distance sensor function, 608
wheelsLeft() function, 612

wheelsMiddle() function, 612

wheelsPercent() function, 612-613

wheelsRight() function, 612

robotparser module, 331-332

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



robots. See also robotics
discussion, 571-572
IOT versus, 572
kinds of

Baxter coffee-making robot, 574-575
Griffin Bluetooth-enabled toaster, 575
overview, 572-573
Toasteroid Internet-connected toaster, 576
Wilkinson bread-making robot, 573-574

main parts of
actuators, 577
communications, 577
computers, 571, 576-577
motors, 577
overview, 576
sensors, 577

networked, 572
not like humans, 571-572
programming, 578
servo motors and, 551
stepper motors and, 568

ROS (robot operating system), 575, 616-617
Rosebrock, Adrian, 430
round() function, 88-89

R.U.R. – Rossum's Universal Robots (Capek), 571
Rust programming language, 386

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



S
s * n or n * s sequence operator, 105

s[i] sequence operator, 105

s[i:j] sequence operator, 105

s[i:j:k] sequence operator, 105

Safari web browser
discussion, 327
downloading Anaconda on, 15-17
Jupyter Notebook in, 24-27

safety, 477
SAMD21 boards, 481
Samsung smartphone, 366
SBC (single board computer), 478
Scalable Vector Graphics (SVG), 522
scalar, 386
s.capitalize() method, 107-109

scientists, 436
SciPy library, 375
SCL (serial clock line), 510
s.count(x,[y,z]) method, 107-109

s.count(x) sequence operator, 105

SDA (serial data line), 510
seaborn package

in data science project, 453-455
discussion, 441
on Raspberry Pi, 472

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



search engine, 334. See also names of specific search engines
Secure Shell (SSH) software, 480
security

hackers and, 328
https protocol and web, 328

seek() method, 286-287

self-driving automobiles, 426, 572
semaphores, 627
semicolon, 81
sensor thread, 628
sensors. See also names of specific sensor projects; names of specific
sensors

discussion, 480, 509, 539
I2C interface

overview, 509-511
Raspberry Pi, 511-512

in Raspberry Pi, 477
in Raspberry Pi PiCar-B, 617-621
in robotics, 577
SwitchDoc Labs HDC1080, 3
ultrasonic, 589-590

serial clock line (SCL), 510
serial data line (SDA), 510
serialization, 310-311

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



server
discussion, 327
headless, 402-403
web, 328

servo functions, 609-613
servo motors

discussion, 542-543, 551
potentiometer in, 543
project

code breakdown, 556-558
parts list, 552-553
Python software, 555-556
setup, 554

PWM for controlling
overview, 552
robotics project, 583-584

in RC toys, 543, 558
set_Front_LED_On() function, 605-606

setdefault() method

discussion, 184-185
fromkeys() method and, 190-192

setPixelColor() function, 607-608

sets, 167-169
settings.json file, 55-56

s.find(x,[y,z]) method, 107-109

SG90 micro servo motor, 3, 552, 582-583

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Sheets app. See Google Sheets
Shovic, John, 361, 363, 365, 430, 468, 616-617, 664
showexpiry() method, 246

SI1145 sunlight I2C sensor, 502-503
s.index(x,[y,z]) method, 107-109

s.index(x[, i[, j]]) sequence operator, 105

single board computer (SBC), 478
s.isalpha() method, 107-109

s.islower() method, 107-109

s.isnumeric() method, 107-109

s.isprintable() method, 107-109

s.istitle() method, 107-109

s.isupper() method, 107-109

SKU (stock-keeping unit), 190-194
s.lower() method, 107-109

s.lstrip() method, 107-109

small computers, 478, 481. See also Arduino; Raspberry Pi
small DC (direct current) motors, 542-543
smart city APIs (application programming interfaces), 427

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



smartphones
AI and, 366
Blynk app dashboard for

code breakdown, 536-538
installation, 531-534
overview, 530
Python code modification, 534-536

data produced by, 436
SMBus, 510, 521
Society of Mind, The (Minsky), 361
SoftLayer data services. See IBM SoftLayer data services
software interface, 509-510
sort() method, 161-163, 165, 167

sort(reverse=True) method, 165

source code, 334
spacecraft antennas, 363
spaces, 103-104
<span> … </span> tag, 335

special characters
discussion, 284-285
non-ASCII, 291

special variables. See dunder-named items
specialized hardware, 424-425
speech recognition, 360
speech-to-text, 427, 437
spreadsheet apps, 290, 306. See also CSV files; Google Sheets; Microsoft
Excel

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



SQL (Structured Query Language) tables
discussion, 464
Pandas package and, 443
tutorials, 464

SQL All In One For Dummies, 3rd Edition (Taylor), 464
SQL For Dummies, 9th Edition (Taylor), 464
SQL in 10 Minutes, 4th Edition (Forta), 464
sqrt() function, 90-91

square brackets
discussion, 229
in syntax chart, 61-62

square root function, 87, 90-91
s.replace(x,y) method, 107-109

s.rfind(x,[y,z]) method, 107-109

s.rindex() method, 107-109

s.rstrip() method, 107-109

SSH (Secure Shell) software, 480
s.strip() method, 107-109

s.swapcase() method, 107-109

Stack Overflow, 36
standard library

built-in functions, 347
dir() function, 344-345

discussion, 343-344
help() function, 345-347

resource for, 346-347

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



starter kits, 2, 480, 581
statistical analysis, 360, 365, 439
statistics, 435-437
Status ACT LED, 480
Status PWR LED, 480
stepper motor

discussion, 542-543, 558-559
project

backward stepping, 559
code breakdown, 567-568
forward stepping, 559
parts list, 560-561
Python software, 566-567
setup, 561-566

Sterling, Mary Jane, 366
s.title() method, 107-109

stochastic optimization, 391, 394, 406
stock-keeping unit (SKU), 190-194
stopMotor() function, 609

str objects, 107-109. See also strings

Stretch OS, 580
strftime, 113
string methods, 107-109

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



strings
aligning, 98-100
care with apostrophe in, 69
case-sensitivity, 162
converting CSV to, 293-295
discussion, 68, 87, 343
f-strings always precede, 99
lists in, 150
manipulating

alignment, 214-215
common operators, 105-107
concatenating, 99, 103-104
dates, 110-114
determining string length, 104
inserting spaces, 103-104
left justification, 214-215
methods, 109-110
right justification, 214-215
sequence operators, 105
time zones, 120-125
times, 110, 114-116
timespan, 116-120

quotation marks in, 68
strip() method, 297

Structured Query Language tables. See SQL tables
str(x) function, 89

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Style Guide for Python Code, 54. See also PEP 8 Guidelines; PEP 20
Guidelines
subclasses

adding extra parameters from, 243-246
defining, 241-243
overriding default value in, 243

subtraction operator, 71
sudo command, 488

sudo halt command, 513, 524, 592

Sum Squared Loss, 382-385
SunAirPlus unit, 505-506
sun-tracking solar panels, 544
super user do command, 488
supervised learning, 400
s.upper() method, 107-109

SVG (Scalable Vector Graphics), 522
SwitchDoc Labs HDC1080 sensor, 3, 513

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



syntax
code block, 82
in datetime module, 110-114

discussion, 79-80
errors in

example, 82-83
mouse hovering, 82-83
overview, 79-81
wording, 82-83

for functions, 88-90
with if statements, 129-130

for importing modules, 61-62
line breaks and, 81
naming conventions, 81-82
object.key, 171-173
proper, 80-81
semicolon and, 81
of str object methods, 107-109

syntax chart, 61-62

T
tabular data, 290, 306, 443
Taylor, Allen G., 464
TCP (Transmission Control Protocol)/IP (Internet Protocol) networks,
577
technology bubble. See dot-com bubble
telecommunications network, 362

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



tell() method, 285-286

temperature and humidity sensor project
discussion, 511-512
installation, 512-515
Python libraries for reading

code breakdown, 518-519
mini humidity experiment, 517
overview, 515-517

temperature-measuring devices, 510
tensor processing unit (TPU), 424-425
TensorBoard extension, 394

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



TensorFlow
discussion, 2, 366
GUI, 394
ML testing in Cats and Dogs project

code, 642-644
code breakdown, 644-646
overview, 642
results, 646-648

ML training in Cats and Dogs project
CNN model, 633-635
code, 635-640
overview, 632-633
results, 640-642

neural network project on Keras
changing to three-layer neural network, 395-397
checking results, 392-395
code breakdown, 390-392
installation, 386
overview, 386-387
step 1: loading data, 388, 390
step 2: defining model and layers, 388, 391
step 3: compiling, 388, 391
step 4: fitting and training, 388, 392
step 5: evaluation, 388-390, 392

third-party APIs, 386

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



tensors. See also linear algebra; matrix mathematics
DataFrames and, 443
discussion, 366, 375, 385, 425
GPU, 429
NumPy and, 442

online tutorials on, 442
terminology surrounding, 386

Terminal, 22-23, 30-31, 379
ternary operations, 135-136
Texas Instruments HDC2080 sensor chip, 513. See also Grove HDC1080
I2C temperature and humidity sensor
text. See strings
text analysis, 424
text files

discussion, 271-272
methods for reading, 279-281
opening, 274-278

TextEdit, 290
text-to-speech packages, 427
theaterChaseRainbow() function, 607

threads, 609, 627-628, 655
3D printers, 543, 568
three v's concept, 436-437
three-layer neural network, 395-397
time class, 114-116

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



time zones
computer clock and, 111
discussion, 120-122
working with, 122-125

timedelta class, 116-120

time-series data, 443
timespan, 116-120
timestamps

discussion, 110-114
format strings for, 112-113
proper syntax for, 110-114
times and, 114-116
working with, 110-112

toasters
embedded systems in, 478
Griffin Bluetooth-enabled, 575
as robots, 572

Toasteroid Internet-connected toaster, 576
today() method, 110-111

torque rating, 543
TPU (tensor processing unit), 424-425
training data, 400
training loss, 641-642
translation. See language translation
trial-and-error approach. See backpropagation
trigonometric functions, 91

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



True values

Booleans and, 70-71
type() function and, 344

truth table, 374
try…else…except…finally block, 261-262

try…except block, 254-255

tuples
add() method with, 167

discussion, 165-167
len() function with, 167

methods and, 167
reverse() method with, 167

sort() method with, 167

update() method with, 167

Turkey, 473
TWI (two-wire interface), 510
Twitter

API for posting, 334
POST response and, 330

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



two-layer neural network
architecture, 370
NumPy code for

code breakdown, 378-382
overview, 375-378
running code, 382-385
truth table, 374
XNOR gates, 375

two-wire interface (TWI), 510
type. See instances
type() function, 89, 344

tz database, 121-122

U
Ubuntu OS (operating system), 379. See also Linux OS
Ultima Thule, 375
ultrasonic distance sensor, 618-621
ultrasonic distance sensor function, 608
ultrasonic sensor, 589-590
ultrasonic thread, 656-657
Unicode Transformation Format, 8-bit. See UTF-8
uniform resource locator. See URL
universal asynchronous receiver/transmitter (UART) module, 500-501
Universal Product Code (UPC), 190-194
universal serial bus (USB) ports, 479
universal serial bus (USB) processing sticks, 423-425

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Universal Time Coordinated. See UTC
University of Idaho

Advanced Robotics class, 575
discussion, 361, 363
ParkMyRide API, 427
Reed-Solomon error-correction algorithm and, 375

unkeyed JSON files, 310, 318-319
unsupervised learning, 400
UPC (Universal Product Code), 190-194
update() method

with data dictionaries, 180-181, 184-185
with tuples, 167

URL (uniform resource locator)
in address bar, 30-31, 327-329
Python urllib library and, 331-332

spaces in, 333
urllib library

BeautifulSoup module, 336-337

discussion, 331-332
request module, 336-337

USB (universal serial bus) ports, 479
USB (universal serial bus) processing sticks, 423-425
user agent, 328
UTC (Universal Time Coordinated)

discussion, 120, 122-125
Firebase datetime and, 316-317

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



utc_now() operator, 123

UTF-8 (Unicode Transformation Format, 8-bit)
adding encoding from, 312
discussion, 279
raw bytes and, 278

V
Valkov, Venelin, 431
values() method, 184-185

variables
case-sensitivity in, 75
creating, 75-76
discussion, 74-75
displaying readable message via, 258-259
in functions, 198-200
manipulating, 76-78
valid names in, 75

vector, 386
very large scale integrated (VLSI) circuit, 361
video display thread, 657
video encoding, 423
virtual network computer. See VNC
visual perception

AI and, 360, 437
AWS tools and, 427
robotics and, 577

Visual Studio Code editor. See VS Code editor

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



visualization. See data visualization
VLSI (very large scale integrated) circuit, 361
VNC (virtual network computer)

on Raspberry Pi, 402-403, 588-589
viewer option, 597-598

Vohra, Varun, 430
voice recognition, 360
Voice Time (Shovic), 664
voltage

bits and, 498
discussion, 477, 497
signals and, 502

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



VS (Visual Studio) Code editor
# symbol in, 65
built-in debugger, 46-47
colors in, 31
discussion, 14
docstrings in, 66
exiting, 23
extensions, 19-21
icons, 31
Intellisense text in, 43, 197, 205-206, 225
Material Icon theme, 31
opening, 19-21, 23
opening app file in, 64
parameters syntax in, 225
preferences, 20, 31
quotation marks in, 66
running apps in, 78-79
running code in, 44-45
starting from Anaconda, 19-21, 23, 32
workspace, 37-39

W
W3Schools website, 464
Wachsmuth, Bill, 426
wafer-level chip-scale package (WLCSP), 513
Watson AI group. See IBM Watson AI group
Watson Personality Insights, 428

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Watson Studio, 428
WD (Western Digital), 426
web browsing. See also names of specific web browsers

programmatic
overview, 327
posting to web, 333-334
Python urllib library, 331-332

URL and, 327-331
web pages. See also Internet

discussion, 327-328
fragment in, 329
programming languages for, 10
scraping, 334-337
source code, 334

web scraping
discussion, 334-337
storing data from

CSV, 341-342
JSON, 340, 342

web server, 327
weights, 371-372
Western Digital (WD), 426
wheelsLeft() function, 612

wheelsMiddle() function, 612

wheelsPercent() function, 612-613

wheelsRight() function, 612

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



while loops

continuous, 145-146
force-stopping, 146-148
overview, 143-145
in remove function, 156

using if and continue to repeat, 145-146

whitespace, 73, 82
whole numbers. See integers
Wi-Fi

on Raspberry Pi 3B+, 479
robotics communication, 577
small computers and, 481

Wilkinson bread-making robot, 573-574
Windows Explorer app, 271
Windows OS (operating system)

Anaconda on, 15-18
command prompt, 348-349
Terminal prompt on, 30-31
Windows Explorer on, 271

Winston the dog, 642
Wizard of Oz, 571
WLCSP (wafer-level chip-scale package), 513
World Wide Web. See Internet

X
x in s sequence operator, 105

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



x not in s sequence operator, 105

xlrd module, 313-314

XNOR gate, 375
XOR (exclusive OR gate), 374

Y
YAML, 20-21
YouTube

FindAndChaseTheBall program video on, 664

help with Python from, 36
MouseAir project videos on, 654
PiCar-B test code video on, 595-596
video of Griffin Bluetooth-enabled, 576
video on ROS-controlled robot, 616-617

Z
Zen of Python (Peters), 53-56
Zulu time, 120

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



About the Authors
John Shovic has been working with software and electronics since he
talked his high school into letting him use their IBM 1130 computer for
the entire summer of 1973. That launched him into his lifelong love
affair with software. Dr. Shovic has founded multiple companies:
Advance Hardware Architectures; TriGeo Network Security; Blue Water
Technologies; InstiComm, LLC; and bankCDA. He has also served as a
professor of computer science at Eastern Washington University,
Washington State University, and the University of Idaho. Dr. Shovic has
given more than 70 invited talks and has published over 50 papers on a
variety of topics on Arduinos, Raspberry Pis, iBeacons, HIPAA, GLB,
computer security, computer forensics, embedded systems, and others.
Currently John is proud to be serving as a computer science faculty
member, specializing in robotics and artificial intelligence, at the
University of Idaho, Coeur d’Alene, Idaho, and is surrounded by a bunch
of students who are as excited about technology and computers as he is.

Alan Simpson is the author of more than 100 computer books on
databases, programming, and web development. His books have been
published throughout the world in over a dozen languages, and have sold
millions of copies. Alan left the writing world a few years ago to get out
of the ivory tower and into the real working world, first as a developer,
and now as a manager, of the apps and DBA team in his county
government’s IT department. Alan has been called a “master
communicator” throughout his extensive career, and his online courses
and YouTube videos continue to get rave reviews from his many
students and followers.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Authors' Acknowledgments
John Shovic: I would like thank the wonderful staff at Wiley and give
full credit to my co-author, Alan. Our technical reviewer, Rod Stephens,
did an excellent and thorough job. Our editor, Susan Pink, was the best
editor with whom I have every been associated. Thanks to my literary
agent Carol Jelen for encouraging me to pursue writing this book. I
would like to specifically thank the University of Idaho for their support
and suggestions, especially to Dr. Bob Rinker and Dean Larry Stauffer.
Great people, great university. Also, no book like this would be complete
without my thanking my fabulous students, especially Amanda, Mary,
Nikolai, and Doug, who inspire me every day and who had to listen to
the chapters of this book as I wrote them.

Alan Simpson: Many thanks to Steve Hayes and everyone else at Wiley
for offering me this great opportunity. Thanks to Susan Pink, my intrepid
editor. Thanks to my literary agents Carol Jelen and Margot Maley
Hutchinson of Waterside Productions. And thanks to my wife Susan for
her patience while I was working at all kinds of crazy hours.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Dedication
John Shovic: To my wife, Laurie. She has supported me in so many
ways including making sure my socks match in the morning. Thank you!

Alan Simpson: To Susan, Ashley, and Alec.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Publisher’s Acknowledgments
Executive Editor: Steve Hayes

Project Editor: Susan Pink

Copy Editor: Susan Pink

Proofreader: Debbye Butler

Technical Editor: Rod Stephens

Production Editor: Tamilmani Varadharaj

Cover Image: © spainter_vfx/ iStock /Getty Images

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr



Take Dummies with you
everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/
http://www.dummies.com/
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/


Subscribe to our newsletter

Create your own Dummies book cover

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/


WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://www.wiley.com/go/eula

	Title Page
	Copyright
	Introduction
	About This Book
	Foolish Assumptions
	What to Buy
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book 1: Getting Started
	Chapter 1: Starting with Python
	Why Python Is Hot
	Choosing the Right Python
	Tools for Success
	Writing Python in VS Code
	Using Jupyter Notebook for Coding

	Chapter 2: Interactive Mode, Getting Help, and Writing Apps
	Using Python's Interactive Mode
	Creating a Python Development Workspace
	Creating a Folder for Your Python Code
	Typing, Editing, and Debugging Python Code
	Writing Code in a Jupyter Notebook

	Chapter 3: Python Elements and Syntax
	The Zen of Python
	Introducing Object-Oriented Programming
	Discovering Why Indentations Count, Big Time
	Using Python Modules

	Chapter 4: Building Your First Python Application
	Opening the Python App File
	Typing and Using Python Comments
	Understanding Python Data Types
	Working with Python Operators
	Creating and Using Variables
	Understanding What Syntax Is and Why It Matters
	Putting Code Together


	Book 2: Understanding Python Building Blocks
	Chapter 1: Working with Numbers, Text, and Dates
	Calculating Numbers with Functions
	Still More Math Functions
	Formatting Numbers
	Grappling with Weirder Numbers
	Manipulating Strings
	Uncovering Dates and Times
	Accounting for Time Zones
	Working with Time Zones

	Chapter 2: Controlling the Action
	Main Operators for Controlling the Action
	Making Decisions with if
	Repeating a Process with for
	Looping with while

	Chapter 3: Speeding Along with Lists and Tuples
	Defining and Using Lists
	What's a Tuple and Who Cares?
	Working with Sets

	Chapter 4: Cruising Massive Data with Dictionaries
	Understanding Data Dictionaries
	Creating a Data Dictionary
	Looping through a Dictionary
	Data Dictionary Methods
	Copying a Dictionary
	Deleting Dictionary Items
	Having Fun with Multi-Key Dictionaries

	Chapter 5: Wrangling Bigger Chunks of Code
	Creating a Function
	Commenting a Function
	Passing Information to a Function
	Returning Values from Functions
	Unmasking Anonymous Functions

	Chapter 6: Doing Python with Class
	Mastering Classes and Objects
	Creating a Class
	Creating an Instance from a Class
	Giving an Object Its Attributes
	Giving a Class Methods
	Understanding Class Inheritance

	Chapter 7: Sidestepping Errors
	Understanding Exceptions
	Handling Errors Gracefully
	Being Specific about Exceptions
	Keeping Your App from Crashing
	Adding an else to the Mix
	Using try … except … else … finally
	Raising Your Own Exceptions


	Book 3: Working with Libraries
	Chapter 1: Working with External Files
	Understanding Text and Binary Files
	Opening and Closing Files
	Reading a File’s Contents
	Looping through a File
	Reading and Copying a Binary File
	Conquering CSV Files
	Converting from CSV to Objects and Dictionaries

	Chapter 2: Juggling JSON Data
	Organizing JSON Data
	Understanding Serialization
	Loading Data from JSON Files
	Dumping Python Data to JSON

	Chapter 3: Interacting with the Internet
	Seeing How the Web Works

	Chapter 4: Libraries, Packages, and Modules
	Understanding the Python Standard Library
	Exploring Python Packages
	Importing Python Modules
	Making Your Own Modules


	Book 4: Using Artificial Intelligence
	Chapter 1: Exploring Artificial Intelligence
	AI Is a Collection of Techniques
	Current Limitations of AI

	Chapter 2: Building a Neural Network
	Understanding Neural Networks
	Building a Simple Neural Network in Python
	Building a Python Neural Network in TensorFlow

	Chapter 3: Doing Machine Learning
	Learning by Looking for Solutions in All the Wrong Places
	Creating a Machine-Learning Network for Detecting Clothes Types
	Visualizing with MatPlotLib
	Learning More Machine Learning

	Chapter 4: Exploring AI
	Limitations of the Raspberry Pi and AI
	Adding Hardware AI to the Raspberry Pi
	AI in the Cloud
	AI on a Graphics Card
	Where to Go for More AI Fun in Python


	Book 5: Doing Data Science
	Chapter 1: Understanding the Five Areas of Data Science
	Working with Big, Big Data
	Cooking with Gas: The Five-Step Process of Data Science

	Chapter 2: Exploring Big Data
	Introducing NumPy, Pandas, and MatPlotLib
	Doing Your First Data Science Project

	Chapter 3: Using Big Data from Google Cloud
	What Is Big Data?
	Understanding Google Cloud and BigQuery
	Reading the Medicare Big Data
	Looking for the Most Polluted City in the World on an Hourly Basis


	Book 6: Talking to Hardware
	Chapter 1: Introducing Physical Computing
	Physical Computing Is Fun
	What Is a Raspberry Pi?
	Building Projects That Move and Sense the Environment
	Sensing the Environment with the Raspberry Pi
	Controlling an LED with Python
	But Wait, There's More

	Chapter 2: No Soldering! Using Grove Connectors for Building
	Working with the Grove System
	Grove Connectors
	Connecting with Grove Cables

	Chapter 3: Sensing the World
	Understanding I2C
	Measuring Oxygen and a Flame
	Building a Dashboard on Your Phone with Blynk
	Where to Go from Here

	Chapter 4: Making Things Move
	Exploring Electric Motors
	Controlling a DC Motor
	Running a Servo Motor
	Making a Stepper Motor Step


	Book 7: Building Robots
	Chapter 1: Introducing Robotics
	A Robot Is Not Always Like a Human
	Not Every Robot Has Arms or Wheels
	Understanding the Main Parts of a Robot
	Programming Robots

	Chapter 2: Building Your First Python Robot
	Introducing the Mars Rover PiCar-B
	Assembling the Robot
	Testing Your Robot

	Chapter 3: Programming Your Robot Rover
	Building a Simple, High-Level Python Interface
	Making a Single Move with Python
	Functions of the RobotInterface Class
	The Python Robot Interface Test
	Coordinating Motor Movements with Sensors
	Making a Python Brain for Our Robot
	Overview of the Included Adeept Software
	Where to Go from Here

	Chapter 4: Using Artificial Intelligence in Robotics
	This Chapter’s Projects: Going to the Dogs
	Setting Up the First Project
	Machine Learning Using TensorFlow
	Testing the Trained Network
	Taking Cats and Dogs to Our Robot
	Setting Up the Second Project
	The FindAndChaseTheBall.py Python Program
	The Main Program
	AI and the Future of Robotics


	Index
	About the Authors
	Connect with Dummies
	End User License Agreement

