

Table of contents
Preface 7
Prerequisites . 7
Conventions . 7
Acknowledgements . 7
Feedback and Errata . 8
Author info . 8
License . 8
Book version . 8

Introduction and Setup 9
Linux overview . 9
Linux Distros . 10
Access to Linux environment . 10
Setup . 11
Command Line Interface . 11
Chapters . 12
Resource lists . 12

Command Line Overview 13
Hello Command Line . 13
File System . 13
Absolute and Relative paths . 14
Shells and Terminal Emulators . 14
Unix Philosophy . 15
Command Structure . 16
Command Network . 16
Scripting . 17
Command Help . 18

man . 18
type . 19
help . 20
whatis and whereis . 20
ch . 21
Further Reading . 21

Shortcuts and Autocompletion . 21
Real world use cases . 22
Exercises . 23

Managing Files and Directories 25
Builtin and External commands . 25
pwd . 26
cd . 26
clear . 27
ls . 27
tree . 32
mkdir . 34
touch . 35
rm . 36
cp . 38

2

mv . 40
rename . 41
ln . 42
tar and gzip . 44
Exercises . 46

Shell Features 51
Quoting mechanisms . 51
Wildcards . 53
Brace Expansion . 56
Extended and Recursive globs . 57
set . 59
Pipelines . 59

tee . 60
Redirection . 60

Redirecting output . 61
Redirecting input . 62
Redirecting error . 63
Combining stdout and stderr . 63
Waiting for stdin . 64
Here Documents . 66
Here Strings . 66
Further Reading . 67

Grouping commands . 67
List control operators . 68
Command substitution . 69
Process substitution . 69
Exercises . 70

Viewing Part or Whole File Contents 75
cat . 75
tac . 76
less . 77
tail . 78
head . 79
Exercises . 80

Searching Files and Filenames 83
grep . 83

Common options . 83
Literal search . 83
Regular Expressions . 84
Regexp examples . 85
Line comparisons between files . 86
Perl Compatible Regular Expression . 86
Recursive search . 87
grep and xargs . 88
Further Reading . 89

find . 90
Filenames . 90
File type . 91

3

Depth . 92
Age . 93
Size . 93
Acting on matched files . 94
Multiple criteria . 95
Prune . 95
find and xargs . 96
Further Reading . 96

locate . 96
Exercises . 97

File Properties 103
wc . 103
du . 104
df . 105
stat . 106
touch . 107
file . 108
basename . 109
dirname . 109
chmod . 110
Exercises . 112

Managing Processes 116
Definitions . 116
Running jobs in background . 116
ps . 117
pgrep . 118
kill . 118
top . 120
free . 121
Further Reading . 121
Exercises . 121

Multipurpose Text Processing Tools 122
sed . 122

Substitution . 122
Inplace editing . 123
Filtering features . 123
Regexp substitution . 125
Further Reading . 125

awk . 126
Regexp filtering . 126
Awk special variables . 126
Default field processing . 126
Condition and Action . 127
Regexp field processing . 127
Record separators . 128
State machines . 128
Two files processing . 129
Removing duplicates . 130

4

Further Reading . 131
perl . 131

Basic one-liners . 131
Perl special variables . 132
Auto split . 132
Regexp field separator . 133
Powerful features . 133
Further Reading . 134

Exercises . 134

Sorting Stuff 141
sort . 141

Common options . 141
Default sort . 141
Numerical sort . 142
Unique sort . 142
Column sort . 142

uniq . 143
Common options . 143
Default uniq . 143
Unique and duplicate entries . 144
Prefix count . 144
Partial match . 145

comm . 145
join . 146
Exercises . 147

Comparing Files 150
cmp . 150
diff . 150

Common options . 150
Default diff . 151
Ignoring whitespaces . 151
Side-by-side output . 152
Further Reading . 152

Exercises . 152

Assorted Text Processing Tools 154
seq . 154
shuf . 155
cut . 156
column . 157
tr . 158
paste . 159
pr . 161
rev . 162
split . 163
csplit . 163
xargs . 165
Exercises . 166

5

Shell Scripting 171
Need for scripting . 171
Executable script . 171
Passing file argument to bash . 172
Sourcing script . 172
Comments . 173
Variables . 173
Arrays . 174
Parameter Expansion . 175
Command Line Arguments . 179
Conditional Expressions . 179

Options . 180
String comparisons . 180
Numeric comparisons . 182

Accepting user input interactively . 182
if then else . 183
for loop . 184
while loop . 185
Reading a file . 185
Functions . 186
Debugging . 188
shellcheck . 189
Resource lists . 189
Exercises . 190

Shell Customization 196
Environment Variables . 196
Aliases and Functions . 196
Config files . 198

.bashrc . 198

.inputrc . 199
Further Reading . 200

Readline shortcuts . 200
Tab completion . 200
Searching history . 200
Moving the cursor . 201
Deleting characters . 201
Clear screen . 201
Swap words and characters . 201
Insert arguments . 201
Further Reading . 201

Copy and paste . 202
Exercises . 202

6

Preface
This book aims to teach Linux command line tools and Shell Scripting for beginner to intermedi-
ate level users. The focus is towards managing your files and performing text processing tasks.
Topics like system administration and networking won’t be discussed, but some details might
get covered in future versions of this book.

Prerequisites
You should be familiar with basic computer usage, know fundamental terms like files and direc-
tories, how to install programs and so on. You should also be already comfortable with program-
ming basics like variables, loops and functions.

In terms of software, you should have access to the GNU bash shell and commonly used Linux
command line tools. This could be as part of a Linux distribution or via other means such as a
Virtual Machine, WSL (Windows Subsystem for Linux) and so on. More details about the working
environment will be discussed in the introductory chapters.

You are also expected to get comfortable with reading manuals, searching online, visiting exter-
nal links provided for further reading, tinkering with illustrated examples, asking for help when
you are stuck and so on. In other words, be proactive and curious instead of just consuming the
content passively.

See my curated list on Linux CLI and Shell Scripting for more learning resources.

Conventions
• Code snippets shown are copy pasted from the bash shell (version 5.0.17) and modified
for presentation purposes. Some commands are preceded by comments to provide context
and explanations, blank lines have been added to improve readability and so on.

• External links are provided throughout the book for you to explore certain topics in more
depth.

• The cli-computing repo has all the example files and scripts used in the book. The repo
also includes all the exercises as a single file, along with a separate solutions file. If you
are not familiar with git command, click the Code button on the webpage to get the
files.

• See the Setup section for instructions to create a working environment for following along
the contents presented in this book.

Acknowledgements
• GNU Manuals — documentation for command line tools and the bash shell
• stackoverflow and unix.stackexchange — for getting answers on pertinent questions re-
lated to CLI tools

• tex.stackexchange — for help on pandoc and tex related questions
• /r/commandline/, /r/linux4noobs/, /r/linuxquestions/ and /r/linux/ — helpful forums
• canva — cover image
• Warning and Info icons by Amada44 under public domain
• carbon — creating terminal screenshots with highlighted text
• oxipng, pngquant and svgcleaner — optimizing images

7

https://learnbyexample.github.io/curated_resources/linux_cli_scripting.html
https://github.com/learnbyexample/cli-computing
https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://github.com/learnbyexample/cli-computing/blob/master/exercises/exercises.md
https://github.com/learnbyexample/cli-computing/blob/master/exercises/exercise-solutions.md
https://www.gnu.org/manual/manual.html
https://stackoverflow.com/
https://unix.stackexchange.com/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://old.reddit.com/r/commandline
https://old.reddit.com/r/linux4noobs/
https://old.reddit.com/r/linuxquestions/
https://old.reddit.com/r/linux/
https://www.canva.com/
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://carbon.now.sh/
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner

Feedback and Errata
I would highly appreciate if you’d let me know how you felt about this book. It could be anything
from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects of the
book worked for you (or didn’t!) and so on. Reader feedback is essential and especially so for
self-published authors.

You can reach me via:

• Issue Manager: https://github.com/learnbyexample/cli-computing/issues
• E-mail: learnbyexample.net@gmail.com
• Twitter: https://twitter.com/learn_byexample

Author info
Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest lifestyle.
He accumulated vast wealth working as a Design Engineer at Analog Devices and retired from the
corporate world at the ripe age of twenty-eight. Unfortunately, he squandered his savings within
a few years and had to scramble trying to earn a living. Against all odds, selling programming
ebooks saved his lazy self from having to look for a job again. He can now afford all the fantasy
ebooks he wants to read and spends unhealthy amount of time browsing the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Researching
materials for his ebooks and everyday social media usage drowned his bookmarks, so he main-
tains curated resource lists for sanity sake. He is thankful for free learning resources and open
source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License

Code snippets are available under MIT License

Resources mentioned in the Acknowledgements section above are available under original li-
censes.

Book version
1.0

See Version_changes.md to track changes across book versions.

8

https://github.com/learnbyexample/cli-computing/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/cli-computing/blob/master/LICENSE
https://github.com/learnbyexample/cli-computing/blob/master/Version_changes.md

Introduction and Setup
Back in 2007, I had a rough beginning as a design engineer at a semiconductor company in terms
of utilizing software tools. Linux command line, Vim and Perl were all new to me. In addition to
learning about command line tools from colleagues and supervisors, I remember going through
and making notes in a photocopied book (unable to recall the title now).

The biggest pain points were not knowing about handy options (for example, grep --color to
highlight matching portions, find -exec to apply commands on filtered files, etc) and tools
(for example, xargs to workaround limitations of too many command line arguments). And
then there were tools like sed and awk with intimidating syntax. I’m at a loss to reason out
why I didn’t utilize shell scripts much. I stuck to Perl and Vim instead of learning such handy
tools. I also did not know about forums like stackoverflow and unix.stackexchange until after I
left my job in 2014.

I started collating what I knew about Linux command line tools when I got chances to conduct
scripting course workshops for college students. From 2016 to 2018, I started maintaining my
tutorials on Linux command line, Vim and scripting languages as GitHub repos. As you might
guess, I then started polishing these materials and published them as ebooks. This is an ongoing
process, with Computing from the Command Line being the thirteenth ebook.

This book aims to teach Linux command line tools and Shell Scripting for beginner to interme-
diate level users. Plenty of examples are provided to make it easier to understand a particular
tool and its various features. External links are provided for further reading. Important notes
and warnings are formatted to stand out from normal text.

Writing a book always has a few pleasant surprises for me. This time I learned handy options
like mkdir -m and chmod = , got better understanding of many shell features and so on. I’m
also planning to learn and present more command line tools for the next version of this book.

This chapter will give a brief introduction to Linux. You’ll also see suggestions and instructions
for setting up a command line environment to follow along the contents presented in this book.

Linux overview
Quoting selective parts from wikipedia:

Linux is a family of open-source Unix-like operating systems based on the Linux kernel, an
operating system kernel first released on September 17, 1991, by Linus Torvalds. Linux
is typically packaged in a Linux distribution.
Linux was originally developed for personal computers based on the Intel x86 architecture,
but has since been ported to more platforms than any other operating system. Because
of the dominance of the Linux-based Android on smartphones, Linux also has the largest
installed base of all general-purpose operating systems.
Linux is one of the most prominent examples of free and open-source software collab-
oration. The source code may be used, modified and distributed commercially or non-
commercially by anyone under the terms of its respective licenses, such as the GNU Gen-
eral Public License.

Apart from Linux exposure during my previous job, I’ve been using Linux as my desktop system
since 2014 and it is very well suited for my needs. Compared to my Windows experience, Linux
is light weight, secure, stable, fast and more importantly doesn’t force you to upgrade hardware.

9

https://stackoverflow.com/
https://unix.stackexchange.com/
https://learnbyexample.github.io/books/
https://en.wikipedia.org/wiki/Linux

Read the wikipedia article linked above for a more comprehensive coverage about Linux, where
it is used and so on.

Linux Distros
Quoting again from wikipedia:

A Linux distribution (often abbreviated as distro) is an operating system made from a soft-
ware collection that is based upon the Linux kernel and, often, a package management
system. Linux users usually obtain their operating system by downloading one of the
Linux distributions, which are available for a wide variety of systems ranging from embed-
ded devices (for example, OpenWrt) and personal computers (for example, Linux Mint) to
powerful supercomputers (for example, Rocks Cluster Distribution).

I use Ubuntu, which is beginner friendly. Here are some resources to help you choose a distro:

• /r/linux4noobs wiki — selection guide for noobs
• List of Linux distributions — general information about notable Linux distributions in the
form of a categorized list

• DistroWatch — website dedicated to talking about, reviewing and keeping up to date with
open source operating systems. This site particularly focuses on Linux distributions and
flavours of BSD, though other open source operating systems are sometimes discussed

• Light Weight Linux Distros — uses lower memory and/or has less processor-speed require-
ments than a more ”feature-rich” Linux distribution

Access to Linux environment
You’ll usually find installation instructions from the respective distro website you wish to install.
Alternatively, you can install Linux on a virtual machine or try it online. Here are some resources
to get you started:

• Install Ubuntu desktop
• How to run Ubuntu Desktop on a virtual machine using VirtualBox
• DistroTest — test a distro directly online without installation

If you are already on Windows or macOS, the following options can be used to get access to Linux
tools:

• Git for Windows — provides a Bash emulation used to run Git from the command line
• Windows Subsystem for Linux — compatibility layer for running Linux binary executables
natively on Windows

• brew — Package Manager for macOS (or Linux)

If you are completely new to command line usage, I’d recommend setting up
a virtual machine. Or perhaps, a secondary computer that you are free to experiment with.
Mistakes in command line can be more destructive compared to the graphical interface.
For example, a single space typo can result in data loss, leave your machine unusable, etc.

10

https://en.wikipedia.org/wiki/Linux_distribution
https://old.reddit.com/r/linux4noobs/wiki/distro_selection
https://en.wikipedia.org/wiki/List_of_Linux_distributions
https://distrowatch.com/
https://en.wikipedia.org/wiki/Light-weight_Linux_distribution
https://en.wikipedia.org/wiki/Virtual_machine
https://ubuntu.com/tutorials/install-ubuntu-desktop
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox
https://distrotest.net/index.php
https://git-scm.com/downloads
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://brew.sh/

Setup
To follow along the contents presented in this book, you’ll need files from my cli-computing repo.
Once you have access to a Linux environment, follow the instructions shown below. If all the
commands used below seem alien to you, wait until you reach the ls section (you’ll get a link
back to these instructions at that point).

To get the files, you can clone the cli-computing repo using the git command or download
a zip version. You may have to install the git command if you don’t already have it, for
example sudo apt install git on Debian-like systems. See https://git-scm.com/downloads
for other installation choices.

option 1: use git
$ git clone --depth 1 https://github.com/learnbyexample/cli-computing.git

option 2: download zip file
you can also use 'curl -OL' instead of 'wget'
$ wget https://github.com/learnbyexample/cli-computing/archive/refs/heads/master.zip
$ unzip master.zip
$ mv cli-computing-master cli-computing

Once you have the files, you’ll be able to follow along the commands presented in this book. For
example, you’ll need to execute the ls.sh script for the ls section.

$ cd cli-computing/example_files/scripts/
$ ls
cp.sh file.sh globs.sh ls.sh rm.sh tar.sh
du.sh find.sh grep.sh mv.sh stat.sh touch.sh

$ source ls.sh
$ ls -F
backups/ hello_world.py* ip.txt report.log todos/
errors.log hi* projects/ scripts@

For sections like the cat command, you’ll need to use the sample input files provided in the
text_files directory.

$ cd cli-computing/example_files/text_files/
$ cat greeting.txt
Hi there
Have a nice day

Command Line Interface
Command Line Interface (CLI) allows you to interact with the computer using text commands.
For example, the cd command helps you navigate to a particular directory. The ls com-
mand shows the contents of a directory. In a graphical environment, you’d use an explorer (file
manager) for navigation and directory contents are shown by default. Some tasks can be accom-
plished in both CLI and GUI environments, while some are suitable and effective only in one of
them.

Here are some advantages of using CLI tools over GUI programs:

• automation

11

https://github.com/learnbyexample/cli-computing
https://git-scm.com/downloads

• faster execution
• command invocations are repeatable
• easy to save solutions and share with others
• single environment compared to different UI/UX with graphical solutions
• common text interface allows tools to easily communicate with each other

And here are some disadvantages:

• steep learning curve
• syntax can get very complicated
• need to get comfortable with plenty of tools
• typos have a tendency to be more destructive

You can make use of features like command history, shortcuts and autocompletion to help with
plethora of commands and syntax issues. Consistent practice will help to get familiar with quirks
of the command line environment. Commands with destructive potential will usually include
options to allow manual confirmation and interactive usage, thus reducing or entirely avoiding
the impact of typos.

Chapters
Here’s the list of remaining chapters:

• Command Line Overview
• Managing Files and Directories
• Shell Features
• Viewing Part or Whole File Contents
• Searching Files and Filenames
• File Properties
• Managing Processes
• Multipurpose Text Processing Tools
• Sorting Stuff
• Comparing Files
• Assorted Text Processing Tools
• Shell Scripting
• Shell Customization

Resource lists
This book covers but a tiny portion of Linux command line usage. Topics like system adminis-
tration and networking aren’t discussed at all. Check out the following lists to learn about such
topics and discover cool tools:

• Linux curated resources — my collection of resources for Linux command line, shell script-
ing and other related topics

• Awesome Linux — list of awesome projects and resources that make Linux even more
awesome

• Arch wiki: list of applications — sorted by category, helps as a reference for those looking
for packages

12

https://learnbyexample.github.io/curated_resources/linux_cli_scripting.html
https://github.com/inputsh/awesome-linux
https://wiki.archlinux.org/title/List_of_applications

Command Line Overview
This chapter will help you take the first steps in the command line world. Apart from command
examples that you can try out, you’ll also learn a few essential things about working in a text
environment.

For newbies, the sudden paradigm shift to interacting with the computer using just text com-
mands can be overwhelming, especially for those accustomed to the graphical user interface
(GUI). After regular usage, things will start to look systematic and you might realize that GUI
is ill suited for repetitive tasks. With continuous use, recalling various commands will become
easier. Features like command line history, aliases, tab-completion and shortcuts will help too.

If you’ve used a scientific calculator, you’d know that it is handy with too many functionalities
cramped into a tiny screen and a plethora of multipurpose buttons. Command line environment
is something like that, but not limited just to mathematics. Frommanaging files to munging data,
from imagemanipulations to working with video, you’ll likely find a tool for almost any computing
task you can imagine. Always remember that command line tools appeared long before graphical
ones did. The rich history shows its weight in the form of robust tools and the availability of wide
variety of applications.

Hello Command Line
Open a Terminal Emulator and type the command as shown below. The $ followed by a
space character at the start is the simple command prompt that I use. It might be different
for you. The actual command to type is echo followed by a space, then the argument
'Hello Command Line' and finally press the Enter key to execute it. You should get the
argument echoed back to you as the command output.

$ echo 'Hello Command Line'
Hello Command Line

Here’s another simple illustration. This time, the command pwd is entered by itself (i.e. no
arguments). You should get your current location as the output. The / character separates
different parts of the location (more details in the upcoming sections).

$ pwd
/home/learnbyexample

Next, enter the exit command to quit the Terminal session.

$ exit

If you are completely new to the command line world, try out the above steps a few more times
until you feel comfortable with opening a Terminal Emulator, executing commands and quitting
the session. More details about the command structure, customizing command prompt, etc will
be discussed later.

File System
In Linux, directory structure starts with the / symbol, which is referred to as the root directory.
The man hier command gives description of the file system hierarchy. Here are some selected
examples:

• / This is the root directory. This is where the whole tree starts.

13

https://en.wikipedia.org/wiki/Terminal_emulator

• /bin This directory contains executable programs which are needed in single user mode
and to bring the system up or repair it.

• /home On machines with home directories for users, these are usually beneath this di-
rectory, directly or not. The structure of this directory depends on local administration
decisions (optional).

• /tmp This directory contains temporary files which may be deleted with no notice, such
as by a regular job or at system boot up.

• /usr This directory is usually mounted from a separate partition. It should hold only
shareable, read-only data, so that it can be mounted by various machines running Linux.

• /usr/bin This is the primary directory for executable programs. Most programs executed
by normal users which are not needed for booting or for repairing the system and which
are not installed locally should be placed in this directory.

• /usr/share This directory contains subdirectories with specific application data, that can
be shared among different architectures of the same OS.

Absolute and Relative paths
Quoting wikipedia:

An absolute or full path points to the same location in a file system regardless of the
current working directory. To do that, it must contain the root directory.

By contrast, a relative path starts from some given working directory, avoiding the need
to provide the full absolute path. A filename can be considered as a relative path based at
the current working directory. If the working directory is not the file’s parent directory, a
file not found error will result if the file is addressed by its name.

For example, /home/learnbyexample is an absolute path and ../design is a relative path.
You’ll learn how paths are used for performing tasks in the coming chapters.

Shells and Terminal Emulators
These terms are often used to interchangeably mean the same thing — a prompt to allow the
user to execute commands. However, they are quite different:

• Shell is a command line interpreter. Sets the syntax rules for invoking commands, pro-
vides operators to connect commands and redirect data, has scripting features like loops,
functions and so on

• Terminal is a text input/output environment. Responsible for visual details like font size,
color, etc

Some of the popular shells are bash , zsh and fish . This book will discuss only the
Bash shell. Some of the popular terminal emulators are GNOME Terminal, konsole, xterm and
alacritty.

Quoting from wikipedia: Unix shell:

14

https://en.wikipedia.org/wiki/Path_%28computing%29#Absolute_and_relative_paths
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/GNOME_Terminal
https://en.wikipedia.org/wiki/Konsole
https://en.wikipedia.org/wiki/Xterm
https://github.com/alacritty/alacritty
https://en.wikipedia.org/wiki/Unix_shell

A Unix shell is a command-line interpreter or shell that provides a command line user inter-
face for Unix-like operating systems. The shell is both an interactive command language
and a scripting language, and is used by the operating system to control the execution of
the system using shell scripts.
Users typically interact with a Unix shell using a terminal emulator; however, direct oper-
ation via serial hardware connections or Secure Shell are common for server systems. All
Unix shells provide filename wildcarding, piping, here documents, command substitution,
variables and control structures for condition-testing and iteration.

Shell features will be discussed in later sections and chapters. For now, open a terminal and try
out the following commands:

$ cat /etc/shells
/etc/shells: valid login shells
/bin/sh
/bin/dash
/bin/bash
/bin/rbash

$ echo "$SHELL"
/bin/bash

In the above example, the cat command is used to display the contents of a file and the echo
command is used to display the contents of a variable. SHELL is an environment variable
containing full path to the shell.

The output of the above commands might be different for you. And as mentioned
earlier, your command prompt might be different than $. For now, you can ignore it.
Or, you could type PS1='$ ' and press the Enter key to set the prompt for the current
session.

Further Reading

• unix.stackexchange: What is the exact difference between a ’terminal’, a ’shell’, a ’tty’ and
a ’console’?

• wikipedia: Comparison of command shells
• unix.stackexchange: Difference between login shell and non-login shell
• Features and differences between various shells
• Syntax comparison on different shells with examples
• Shell, choosing shell and changing default shells

Unix Philosophy
Quoting from wikipedia: Unix Philosophy:

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs to handle text streams, because that is a universal interface.

These principles do not strictly apply to all the command line tools, but it is good to be aware

15

https://unix.stackexchange.com/q/4126/109046
https://unix.stackexchange.com/q/4126/109046
https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://unix.stackexchange.com/q/38175/109046
http://www.faqs.org/faqs/unix-faq/shell/shell-differences/
https://hyperpolyglot.org/unix-shells
https://wiki.ubuntu.com/ChangingShells
https://en.wikipedia.org/wiki/Unix_philosophy

of them. As you get familiar with working from the command line, you’ll be able to appreciate
these guidelines better.

Command Structure
It is not necessary to fully understand the commands used in this chapter, just the broad strokes.
The examples are intended to help you get a feel for the basics of using command options and
arguments.

Command invocation without any options or arguments:

• clear clear the terminal screen
• date show the current date and time

Command with options (flags):

• ls -l list directory contents in a long listing format
• ls -la list directory contents including hidden files in long listing format

∘ two short options -l and -a are combined together here as -la
• df -h report file system disk space usage sizes in human readable format
• df --human-readable same as df -h but using long option instead of short option

Command with arguments:

• mkdir project create a directory named project in the current working directory
• man sort manual page for the sort command
• diff file1.txt file2.txt display differences between the two input files
• wget https://s.ntnu.no/bashguide.pdf download a file from the internet

∘ the link passed to wget in the above example is real, visit BashGuide for details

Command with both options and arguments:

• rm -r project remove (delete) the project directory recursively
• paste -sd, ip.txt serialize all lines from the input file to a single line using , as the
delimiter

Single quotes vs Double quotes:

• Single quotes preserves the literal value of each character within the quotes
• Double quotes preserves the literal value of all characters within the quotes, with the
exception of $, ` , \ , and, when history expansion is enabled, !

no character is special within single quotes
$ echo '$SHELL'
$SHELL

$ is special within double quotes, used to interpolate variable here
$ echo "Full path to the shell: $SHELL"
Full path to the shell: /bin/bash

More details and other types of quoting will be discussed in the Shell Features chapter.

Command Network
One of the Unix Philosophy seen earlier mentioned commands working together. The shell pro-
vides several ways to do so. A commonly used feature is redirecting the output of a command —

16

https://mywiki.wooledge.org/BashGuide

as input of another command, to be saved in a file and so on.

• to another command
∘ du -sh * | sort -h calculate size of files and folders in human-readable format
using du and then sort them using a tool specialized for that task

• to a file
∘ grep 'pass' *.log > pass_list.txt write the results to a file instead of displaying
on the terminal (if the file already exists, it gets overwritten)

∘ grep 'error' *.log >> errors.txt append the results to the given file (creates a
new file if necessary)

• to a variable
∘ d=$(date) save command output in a variable named d

Many more of such shell features will be discussed in later chapters.

Scripting
Not all operations can be completed using a one-liner from the terminal. In such cases, you can
save the instructions in a text file and then execute them. Open your favorite text editor and
write the three lines shown below:

$ cat cmds.sh
echo 'hello world'
echo 'how are you?'
seq 3

As an alternate to using a text editor, you can use either of the commands shown below to create
this file.

assuming 'echo' supports '-e' option in your environment
$ echo -e "echo 'hello world'\necho 'how are you?'\nseq 3" > cmds.sh

a more portable solution using the builtin 'printf' command
$ printf "echo 'hello world'\necho 'how are you?'\nseq 3\n" > cmds.sh

The script file is named cmds.sh and has three commands in three separate lines. One way to
execute the contents of this file is by using the source command:

$ source cmds.sh
hello world
how are you?
1
2
3

Your Linux distro is likely to have an easy to use graphical text editor such as gedit
and mousepad . See wiki.archlinux: text editors for a huge list of editors to choose from.

The Shell Scripting chapter will discuss scripting in more detail.

17

https://wiki.archlinux.org/title/List_of_applications#Text_editors

Command Help
Most distros for personal use come with documentation for commands already installed. Learn-
ing how to use manuals from the terminal is handy and there are ways to get specific information
as well.

man

The man command is an interface to view manuals from within the terminal itself. This uses
a pager (which is usually the less command) to display the contents. You could call these
commands as terminal user interface (TUI) applications. As an example, type man cat and you
should see something like the screenshot shown below:

Since the documentation has several lines that doesn’t completely fit within the terminal window,
you will get only the starting part of the manual. You have several options to navigate:

• ↑ and ↓ arrow keys to move up and down by a line
∘ you can also use k and j keys (same keys as those used in the Vim text editor)

• f and b keys to move forward and backward by a screenful of content
∘ Space key also moves forward by a screen

• mouse scroll moves up and down by a few lines
• g or Home go to the start of the manual
• G or End go to the end of the manual
• /pattern followed by Enter search for the given pattern in the forward direction
• ?pattern followed by Enter search for the given pattern in the backward direction
• n go to the next match
• N go to the previous match
• q quit

As you might have noticed in the screenshot above, you can use h for help about the less
command itself. Here are some useful tips related to documentation:

18

• man man gives information about the man command itself
• man bash will give you the manual page for the bash shell

∘ since this is very long, I’d recommend using the online GNU Bash manual
• man find | gvim - open the manual page in your favorite text editor
• man -k printf search the short descriptions in all the manual pages for the string

printf
∘ you can also use the apropos command instead of man -k

• wc --help many commands support the --help option to give succinct details like
options and syntax

∘ also, these details will be displayed on the terminal itself, no need to deal with pager
interface

See also unix.stackexchange: How do I use man pages to learn how to use commands?
and unix.stackexchange: colors in man pages.

The Linux manual pages are usually shortened version of the full documen-
tation. You can use the info command to view the complete documentation for GNU
tools. info is also a TUI application, but with different key configuration compared to
the man command. See GNU Manuals Online if you’d prefer to read them from a web
browser. You can also download them in formats like PDF for offline usage.

type

For certain operations, the shell provides its own set of commands, known as builtin commands.
The type command displays information about a command like its path, whether it is a builtin,
alias, function and so on.

$ type cd
cd is a shell builtin
$ type sed
sed is /bin/sed
$ type type
type is a shell builtin

multiple commands can be given as arguments
$ type pwd awk
pwd is a shell builtin
awk is /usr/bin/awk

As will be discussed in the Shell Customization chapter, you can create aliases to customize
command invocations. You can use the type command to reveal the nature of such aliases.
Here are some examples based on aliases I use:

$ type p
p is aliased to 'pwd'

$ type ls
ls is aliased to 'ls --color=auto'

19

https://www.gnu.org/software/bash/manual/
https://unix.stackexchange.com/q/193815/109046
https://unix.stackexchange.com/q/119/109046
https://www.gnu.org/manual/manual.html

The type command formats the command output with a backtick at the start and a single
quotes at the end. That doesn’t play well with syntax highlighting, so I’ve changed the backtick
to single quotes in the above illustration.

See also unix.stackexchange: What is the difference between a builtin command and
one that is not?

help

The help command provides documentation for builtin commands. Unlike the man command,
the entire text is displayed as the command output. A help page in the default format is shown
below. You can add -m option if you want the help content in a pseudo-manpage format.

$ help pwd
pwd: pwd [-LP]

Print the name of the current working directory.

Options:
-L print the value of $PWD if it names the current working directory
-P print the physical directory, without any symbolic links

By default, 'pwd' behaves as if '-L' were specified.

Exit Status:
Returns 0 unless an invalid option is given or the current directory
cannot be read.

You can use the -d option to get a short description of the command:

$ help -d compgen
compgen - Display possible completions depending on the options.

Use help help for documentation on the help command. If you use help without
any argument, it will display all the internally defined shell commands.

whatis and whereis

Here are some more ways to get specific information about commands:

• whatis displays one-line manual page descriptions
• whereis locates the binary, source, and manual page files for a command

$ whatis grep
grep (1) - print lines that match patterns

$ whereis awk
awk: /usr/bin/awk /usr/lib/x86_64-linux-gnu/awk /usr/share/awk
/usr/share/man/man1/awk.1.gz

20

https://unix.stackexchange.com/q/11454/109046
https://unix.stackexchange.com/q/11454/109046

ch

explainshell is a web app that shows the help text that matches each argument of the command
you type in the app. For example, a screenshot for tar -xzvf archive.tar.gz is shown below:

Inspired by this app, I wrote a Bash script ch to extract information from man and help pages.
Here are some examples:

$ ch ls -vX
ls - list directory contents

-v natural sort of (version) numbers within text

-X sort alphabetically by entry extension

$ ch type -a
type - Display information about command type.

-a display all locations containing an executable named NAME;
includes aliases, builtins, and functions, if and only if
the '-p' option is not also used

Further Reading

• Linux man pages — one of several websites that host man pages online
• ArchWiki — comprehensive documentation for Arch Linux and other distributions
• Debian Reference — broad overview of the Debian system, covers many aspects of system
administration through shell-command examples

Shortcuts and Autocompletion
There are several shortcuts you can use to be productive at the command line. These will be
discussed in the Shell Customization chapter. Here are some examples to give an idea:

• Ctrl+u delete everything to the left of the cursor
• Ctrl+k delete from the current character to the end of the line
• Ctrl+c abort the currently typed command

21

https://explainshell.com/
https://explainshell.com/explain?cmd=tar+-xzvf+archive.tar.gz
https://github.com/learnbyexample/command_help
https://www.mankier.com/
https://wiki.archlinux.org/title/Table_of_contents
https://www.debian.org/doc/manuals/debian-reference/

• Ctrl+l clear the terminal screen and move the prompt to the top, any characters typed
as part of the current command will be retained

• ↑ and ↓ arrow keys to navigate previously used commands from the history
∘ Ctrl+p and Ctrl+n can also be used instead of arrow keys
∘ you can modify the command before executing such lines from the history

The tab key helps you autocomplete commands, aliases, filenames and so on, depending on the
context. If there is only one possible completion, it will be done on single tab press. Otherwise,
you can press the tab key twice to get a list of possible matches (if there are any). Here’s an
example of completing a file path with multiple tab key presses at various stages. Not only does
it saves time, it also helps to avoid typos since you are simultaneously verifying the path.

pressing tab after typing '/e' will autocomplete to '/etc/'
$ ls /etc/

pressing tab after 'di' will autocomplete to 'dict'
$ ls /etc/dict
pressing tab twice will show all possible completions
$ ls /etc/dict
dictd/ dictionaries-common/

type 'i' and press tab to get 'dictionaries-common'
$ ls /etc/dictionaries-common/

type 'w' and press tab to get 'words'
$ ls /etc/dictionaries-common/words

The character at which the tab key is pressed in the above example has been cherry picked for
illustration purposes. The number of steps would increase if you try pressing tab after each
character. With experience, using the tab key for autocompletion will become a natural part of
your command line usage.

You can set an option to combine the features of single and double tab presses into a
single tab press. This will be discussed in the Shell Customization chapter.

Real world use cases
If the command line environment only had file managing features, I’d still use it. Given the wide
variety of applications available, I can’t imagine going back to using a different GUI application
for each use case. My primary work is writing ebooks, blog posts and recording videos. Here
are the major CLI tools I use:

• text processing using head , tail , sort , grep , sed , awk and so on (you’ll learn
about these commands in later chapters)

• git — version control
• pandoc — generating PDF/EPUB book versions from markdown files
• mdBook — web version of the books from markdown files
• zola — static site generator
• ImageMagick — image processing like resizing, adding borders, etc
• oxipng, pngquant and svgcleaner — optimizing images
• auto-editor — removing silent portions from video recordings

22

https://git-scm.com/
https://github.com/jgm/pandoc/
https://github.com/rust-lang/mdBook
https://github.com/getzola/zola
https://imagemagick.org/index.php
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner
https://github.com/WyattBlue/auto-editor

• FFmpeg — video processing, padding for example (FFmpeg is also a major part of the
auto-editor solution)

Some of these workflows require additional management, for which I write shell functions or
scripts. I do need GUI tools as well, for example, web browser, image viewer, PDF/EPUB viewers,
SimpleScreenRecorder and so on. Some of these can be handled from within the terminal too,
but I prefer GUI for such cases. I do launch some of them from the terminal, primarily for
providing the file or url to be opened.

You might wonder what advantage does the command line provide for processing images and
videos? Apart from being faster, the custom parameters (like border color, border size, quality
percentage, etc) are automatically saved as part of the scripts I create. After that, I can just use
a single call to the script instead of waiting for a GUI application to open, navigating to required
files, applying custom parameters, saving them after all the required processing is done, closing
the application, etc. Also, that single script can use as many tools as needed, whereas with GUI
you’ll have to repeat such steps with different applications.

Exercises

All the exercises are also collated together in one place at exercises.md. For
solutions, see exercise-solutions.md.

1) By default, is echo a shell builtin or external command on your system? What command
could you use to get an answer for this question?

2) What output do you get for the command shown below? Does the documentation help under-
stand the result?

$ echo apple 42 'banana 100'

3) Go through bash manual: Tilde Expansion. Is ~/projects a relative or an absolute path?
See this unix.stackexchange thread for answers.

4) Which key would you use to get help while the less command is active?

5)Howwould you bring the 50th line to the top of the screen while viewing a man page (assume
less command is the pager)?

6) What does the Ctrl+k shortcut do?

7) Briefly explain the role of the following shell operators:

a) |
b) >
c) >>

8) The whatis command displays one-line descriptions about commands. But it doesn’t seem
to work for whatis type . What should you use instead?

$ whatis cat
cat (1) - concatenate files and print on the standard output

$ whatis type
type: nothing appropriate.

23

https://github.com/FFmpeg/FFmpeg
https://github.com/MaartenBaert/ssr
https://github.com/learnbyexample/cli-computing/blob/master/exercises/exercises.md
https://github.com/learnbyexample/cli-computing/blob/master/exercises/exercise-solutions.md
https://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html
https://unix.stackexchange.com/q/221970/109046

???
type - Display information about command type.

9) What is the role of the /tmp directory?

10) Give an example each for absolute and relative paths.

11) When would you use the man -k command?

12) Are there any differences between man and info pages?

24

Managing Files and Directories
This chapter presents commands to do things that are typically handled by a file manager in GUI
(also known as file explorer). For example, viewing contents of a directory, navigating to other
directories, cut/copy/paste files, renaming and so on. Some of the commands used for these
purposes are provided by the shell itself.

As a good practice, make it a habit to go through the documentation of the commands you en-
counter. Getting used to looking up documentation from the command line will come in handy
whenever you are stuck. You can also learn and experiment with options you haven’t used yet.

The example_files directory has the scripts used in this chapter. See Setup section for
instructions to create the working environment.

Builtin and External commands
From bash manual: What is a shell?

Shells also provide a small set of built-in commands (builtins) implementing functionality
impossible or inconvenient to obtain via separate utilities. For example, cd , break ,
continue , and exec cannot be implemented outside of the shell because they directly
manipulate the shell itself. The history , getopts , kill , or pwd builtins, among
others, could be implemented in separate utilities, but they are more convenient to use as
builtin commands.

Many of the commands needed for everyday use are external commands, i.e. not part of the
shell. Some builtins, pwd for example, might also be available as external command on your
system (and these might have differences in features too). In such cases the builtin version will
be executed by default, which you can override by using the path of the external version.

You can use the type command to distinguish between builtin and external commands. The
type command is a shell builtin, and provides other features too (which will be discussed later).
You can use the -a option to get all details about the given command.

$ type -a cd
cd is a shell builtin

$ type -a ls
ls is /bin/ls

$ type -a pwd
pwd is a shell builtin
pwd is /bin/pwd

To look up documentation, use the help command for builtins and man for external
commands (or info for complete documentation, where applicable). Use help help
and man man for their own documentation.

25

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://www.gnu.org/software/bash/manual/bash.html#What-is-a-shell_003f

Typing just help will give the list of builtins, along with the command’s syntax.

pwd
pwd is a shell builtin command to get the current working directory. This helps to orient yourself
with respect to the filesystem. The absolute path printed is often handy to copy-paste elsewhere,
in a script for example. Some users prefer their terminal emulators and/or shell prompt to always
display the current working directory.

$ pwd
/home/learnbyexample

cd
cd is another shell builtin. This helps to change the current working directory. Here’s an
example of changing the current working directory using an absolute path:

$ pwd
/home/learnbyexample

specifying / at end of the path is optional
$ cd /etc
$ pwd
/etc

You can use - as an argument to go back to the previous working directory. Continuing from
the previous example:

$ cd -
/home/learnbyexample

Most commands will treat strings starting with - as a command option. You can use
-- to tell commands that all the following arguments should not be treated as options
even if they start with - . For example, if you have a folder named -oops in the current
working directory, you can use cd -- -oops to switch to that directory.

Relative paths are well, relative to the current working directory:

• . refers to the current directory
• .. refers to the directory one hierarchy above (i.e. parent directory)
• ../.. refers to the directory two hierarchies above and so on
• cd ./- will help you to switch to a directory named - in the current location

∘ you cannot use cd - since that’ll take you to the previous working directory

$ pwd
/home/learnbyexample

go one hierarchy above
$ cd ..
$ pwd

26

/home

change to 'learnbyexample' present in the current directory
'./' is optional in this case
$ cd ./learnbyexample
$ pwd
/home/learnbyexample

go two hierarchies above
$ cd ../..
$ pwd
/

You can switch to the home directory using cd or cd ~ or cd ~/ from anywhere in the
filesystem. This is determined by the value stored in the HOME shell variable. See also bash
manual: Tilde Expansion.

$ pwd
/
$ echo "$HOME"
/home/learnbyexample

$ cd
$ pwd
/home/learnbyexample

clear
You can use this command to clear the terminal screen. By default, the clear command will
move the prompt to the top of the terminal as well as try to remove the contents of the scrollback
buffer. You can use the -x option if you want to retain the scrollback buffer contents.

The Ctrl+l shortcut will also move the prompt line to the top of the terminal. It
will retain any text you’ve typed on the prompt line and scrollback buffer contents won’t
be cleared.

ls
When you use a file explorer GUI application, you’ll automatically see the directory contents. And
such GUI apps typically have features to show file size, differentiate between files and folders
and so on. ls is the equivalent command line tool with a plethora of options and functionality
related to viewing the contents of directories.

27

https://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

As mentioned earlier, the example_files directory has the scripts used in this chapter.
You can source the ls.sh script to follow along the examples shown in this section. See
Setup section if you haven’t yet created the working environment.

first, cd into the 'scripts' directory
$ cd cli-computing/example_files/scripts

$ ls
cp.sh file.sh globs.sh ls.sh rm.sh tar.sh
du.sh find.sh grep.sh mv.sh stat.sh touch.sh

'ls.sh' script will create a directory named 'ls_examples'
and automatically change to that directory as well
$ source ls.sh
$ pwd
/home/learnbyexample/cli-computing/example_files/scripts/ls_examples

By default, the current directory contents are displayed. You can pass one or more paths as
arguments. Here are some examples:

$ ls
backups hello_world.py ip.txt report.log todos
errors.log hi projects scripts

example with a single path argument
$ ls /sys
block class devices fs kernel power
bus dev firmware hypervisor module

multiple paths example
directory listings will be preceded by their names
$ ls projects backups ip.txt
ip.txt

backups:
bookmarks.html dot_files

projects:
calculator tictactoe

You can use the -1 option (1 as in numeric one, not the alphabet l which does something
else) to list the contents in a single column:

$ ls -1 backups
bookmarks.html
dot_files

The -F option appends a character to each filename indicating the file type (if it is other than
a regular file):

• / directory

28

https://github.com/learnbyexample/cli-computing/tree/master/example_files

• * executable file
• @ symbolic link
• | FIFO
• = socket
• > door

$ ls -F
backups/ hello_world.py* ip.txt report.log todos/
errors.log hi* projects/ scripts@

If you just need to distinguish between files and directories, you can use the -p option:

$ ls -p
backups/ hello_world.py ip.txt report.log todos/
errors.log hi projects/ scripts

You can also use the --color option to visually distinguish file types:

The -l option displays the contents using a long listing format. You’ll get details like file
permissions, ownership, size, timestamp and so on. The first character of the first column distin-
guishes file types as d for directories, - for regular files, l for symbolic links, etc. Under
each directory listing, the first line will display the total size of the entries (in terms of KB).

$ ls -l hi
-rwxrwxr-x 1 learnbyexample learnbyexample 21 Dec 5 2019 hi

you can add -G option to avoid the group column
$ ls -lG
total 7516
drwxrwxr-x 3 learnbyexample 4096 Feb 4 09:23 backups
-rw-rw-r-- 1 learnbyexample 12345 Jan 1 03:30 errors.log
-rwxrwxr-x 1 learnbyexample 42 Feb 29 2020 hello_world.py
-rwxrwxr-x 1 learnbyexample 21 Dec 5 2019 hi
-rw-rw-r-- 1 learnbyexample 10 Jul 21 2017 ip.txt
drwxrwxr-x 4 learnbyexample 4096 Mar 5 11:21 projects
-rw-rw-r-- 1 learnbyexample 7654321 Jan 1 01:01 report.log
lrwxrwxrwx 1 learnbyexample 13 May 7 15:17 scripts -> ../../scripts
drwxrwxr-x 2 learnbyexample 4096 Apr 6 13:19 todos

29

Note that the timestamps showing hours and minutes instead of year depends on
the relative difference with respect to the current time. So, for example, you might get
Feb 4 2022 instead of Feb 4 09:23 .

Use the -h option to show file sizes in human readable format (default is byte count).

$ ls -lG report.log
-rw-rw-r-- 1 learnbyexample 7654321 Jan 1 01:01 report.log

$ ls -lhG report.log
-rw-rw-r-- 1 learnbyexample 7.3M Jan 1 01:01 report.log

You can use the -s option instead of long listing if you only need allocated file sizes and names:

$ ls -1sh errors.log report.log
16K errors.log
7.4M report.log

There are several options for changing the order of listing:

• -t sorts by timestamp
• -S sorts by file size (not suitable for directories)
• -v version sorting (suitable for filenames with numbers in them)
• -X sorts by file extension (i.e. characters after the last . in the filename)
• -r reverse the listing order

$ ls -lGhtr
total 7.4M
-rw-rw-r-- 1 learnbyexample 10 Jul 21 2017 ip.txt
-rwxrwxr-x 1 learnbyexample 21 Dec 5 2019 hi
-rwxrwxr-x 1 learnbyexample 42 Feb 29 2020 hello_world.py
-rw-rw-r-- 1 learnbyexample 7.3M Jan 1 01:01 report.log
-rw-rw-r-- 1 learnbyexample 13K Jan 1 03:30 errors.log
drwxrwxr-x 3 learnbyexample 4.0K Feb 4 09:23 backups
drwxrwxr-x 4 learnbyexample 4.0K Mar 5 11:21 projects
drwxrwxr-x 2 learnbyexample 4.0K Apr 6 13:19 todos
lrwxrwxrwx 1 learnbyexample 13 May 7 15:17 scripts -> ../../scripts

Filenames starting with . are considered as hidden files and these are NOT shown by default.
You can use the -a option to view them. The -A option is similar, but doesn’t show the special
. and .. entries.

. and .. point to the current and parent directories
$ ls -aF backups/dot_files/
./ ../ .bashrc .inputrc .vimrc

-A will exclude . and ..
$ ls -A backups/dot_files/
.bashrc .inputrc .vimrc

The -R option recursively lists sub-directories as well:

30

$ ls -ARF
.:
backups/ hello_world.py* .hidden projects/ scripts@
errors.log hi* ip.txt report.log todos/

./backups:
bookmarks.html dot_files/

./backups/dot_files:

.bashrc .inputrc .vimrc

./projects:
calculator/ tictactoe/

./projects/calculator:
calc.sh

./projects/tictactoe:
game.py

./todos:
books.txt outing.txt

Often you’d want to list only specific files or directories based on some criteria, file extension
for example. The shell provides a matching technique called globs or wildcards. Some simple
examples are shown below (see wildcards section for more details).

* is a placeholder for zero or more characters:

*.py *.log will give filenames ending with '.py' or '.log'
$ echo *.py *.log
hello_world.py errors.log report.log

glob expansion can be prevented by using quotes
$ echo '*.py' *.log
*.py errors.log report.log

long list only files ending with '.log'
$ ls -lG *.log
-rw-rw-r-- 1 learnbyexample 12345 Jan 1 03:30 errors.log
-rw-rw-r-- 1 learnbyexample 7654321 Jan 1 01:01 report.log

[] helps you specify a set of characters to be matched once. For example, [ad] matches a
or d once. [c-i] matches a range of characters from c to i .

entries starting with 'c' to 'i'
$ echo [c-i]*
errors.log hello_world.py hi ip.txt

$ ls -1sh [c-i]*
16K errors.log
4.0K hello_world.py

31

4.0K hi
4.0K ip.txt

As shown in the above examples, globs are expanded by the shell. Beginners often
associate globs as something specific to the ls command, which is why I’ve deliberately
used echo as well in the above examples.

You can use the -d option to not show directory contents:

$ echo b*
backups
since backups is a directory, ls will show its contents
$ ls b*
bookmarks.html dot_files
-d will show the directory entry instead of its contents
$ ls -d b*
backups

a handy way to get only the directory entries
$ echo */
backups/ projects/ scripts/ todos/
$ ls -1d */
backups/
projects/
scripts/
todos/

I hope you have been judiciously taking notes, since there are just too many commands
and features. For example, note down all the options discussed in this section. And then
explore the output from the ls --help command.

Further Reading

• mywiki.wooledge: avoid parsing output of ls
• unix.stackexchange: why not parse ls?
• unix.stackexchange: What are ./ and ../ directories?

tree
The tree command displays the contents of a directory recursively, in a hierarchical manner.
Here’s a screenshot of using tree -a from the ls_examples sample directory seen in the
previous section. The -a option is used to show the hidden files as well.

32

https://mywiki.wooledge.org/ParsingLs
https://unix.stackexchange.com/q/128985/109046
https://unix.stackexchange.com/q/63081/109046

33

You might have to install this command. sudo apt install tree can be used to get
this command on Debian-like distributions.

mkdir
The mkdir command helps you to create new directories. You can pass one or more paths
along with the name of the directories you want to create. Quote the names if it can contain
shell special characters like space, * and so on.

Create a practice directory for this section:

$ mkdir practice_mkdir
$ cd practice_mkdir

Here’s an example of creating multiple directories:

$ mkdir reports 'low power adders'

$ ls -1
'low power adders'
reports

The -p option will help you to create multiple directory hierarchies in one shot:

error because 'a' and 'a/b' paths do not exist yet
$ mkdir a/b/c
mkdir: cannot create directory ‘a/b/c’: No such file or directory

-p is handy in such cases
$ mkdir -p a/b/c

$ tree
.
├── a
│ └── b
│ └── c
├── low power adders
└── reports

5 directories, 0 files

The -p option has another functionality too. It will not complain if the directory you are trying
to create already exists. This is especially helpful in shell scripts.

'reports' directory was already created in an earlier example
$ mkdir reports
mkdir: cannot create directory ‘reports’: File exists
exit status will reflect that something went wrong
$ echo $?
1

34

the -p option will override such errors
$ mkdir -p reports
$ echo $?
0

As seen in the examples above, you can check the exit status of the last executed command using
the $? special variable. 0 means everything went well and higher numbers indicate some
sort of failure has occurred (the details of which you can look up in the command’s manual).

Linux filenames can use any character other than / and the ASCII NUL character.
Quote the arguments if it contains characters like space, * , etc to prevent shell expansion.
Shell considers space as the argument separator, * is a wildcard character and so on. As
a good practice, use only alphabets, numbers and underscores for filenames, unless you
have some specific requirements. See also unix.stackexchange: Characters best avoided
in filenames.

You can delete the practice directory if you wish:

$ cd ..
$ rm -r practice_mkdir

touch
You’ll usually create files using a text editor or by redirecting the output of a command to a
file. For some cases, empty files are needed for testing purposes or to satisfy a particular build
process. A real world use case is the empty .nojekyll file for GitHub Pages.

The touch command’s main functionality is altering timestamps (which will be discussed in
the File Properties chapter). If a file doesn’t exist, touch will create an empty file using the
current timestamp. You can also pass more than one file argument if needed.

$ mkdir practice_touch
$ cd practice_touch

$ ls ip.txt
ls: cannot access 'ip.txt': No such file or directory

$ touch ip.txt

$ ls -s ip.txt
0 ip.txt

You can create an empty file using > ip.txt as well, but the redirection operator
will overwrite the file if it already exists.

35

https://unix.stackexchange.com/q/269093/109046
https://unix.stackexchange.com/q/269093/109046
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#static-site-generators

rm
The rm command will help you to delete files and directories. You can pass one or more paths
as arguments.

change to the 'scripts' directory and source the 'rm.sh' script
$ source rm.sh
$ ls -F
empty_dir/ hello.py loops.py projects/ read_only.txt reports/

delete files ending with .py
$ rm *.py
$ ls -F
empty_dir/ projects/ read_only.txt reports/

You’ll need to add the -r option to recursively delete directory contents. You can use rm -d
or the rmdir command to delete only empty directories.

-r is needed to delete directory contents recursively
$ rm reports
rm: cannot remove 'reports': Is a directory
$ rm -r reports
$ ls -F
empty_dir/ projects/ read_only.txt

delete empty directories, same as using the 'rmdir' command
$ rm -d empty_dir
you'll get an error if the directory is not empty
$ rm -d projects
rm: cannot remove 'projects': Directory not empty

Typos like misplaced space, wrong glob, etc could wipe out files not intended for deletion. Apart
from having backups and snapshots, you could also take some mitigating steps:

• using -i option to interactively delete each file
∘ you can also use -I option for lesser number of prompts

• using echo as a dry run to see how the glob expands
• using a trash command (see links below) instead of rm

Use y for confirmation and n to cancel deletion with -i or -I options. Here’s an example
of cancelling deletion:

$ rm -ri projects
rm: descend into directory 'projects'? n

$ ls -F
projects/ read_only.txt

And here’s an example of providing confirmation at each step of the deletion process:

$ tree projects
projects
├── calculator
│ └── calc.sh
└── tictactoe

36

└── game.py

2 directories, 2 files

$ rm -ri projects
rm: descend into directory 'projects'? y
rm: descend into directory 'projects/tictactoe'? y
rm: remove regular empty file 'projects/tictactoe/game.py'? y
rm: remove directory 'projects/tictactoe'? y
rm: descend into directory 'projects/calculator'? y
rm: remove regular empty file 'projects/calculator/calc.sh'? y
rm: remove directory 'projects/calculator'? y
rm: remove directory 'projects'? y

$ ls -F
read_only.txt

The -f option can be used to ignore complaints about non-existing files (somewhat similar to
the mkdir -p feature). It also helps to remove write protected files (provided you have appro-
priate permissions to delete those files). This option is especially useful for recursive deletion of
directories that have write protected files, .git/objects for example.

$ rm xyz.txt
rm: cannot remove 'xyz.txt': No such file or directory
$ echo $?
1
$ rm -f xyz.txt
$ echo $?
0

example for removing write protected files
you'll be asked for confirmation even without the -i/-I options
$ rm read_only.txt
rm: remove write-protected regular empty file 'read_only.txt'? n
with -f, files will be deleted without asking for confirmation
$ rm -f read_only.txt

Further Reading

• Use a trash command (for example, trash-cli on Ubuntu) so that deleted files can be
recovered later if needed

∘ see also unix.stackexchange: creating a simple trash command
• Files removed using rm can still be recovered with time and skill

∘ unix.stackexchange: recover deleted files
∘ unix.stackexchange: recovering accidentally deleted files

• Use commands like shred if you want to make it harder to recover deleted files
∘ wiki.archlinux: Securely wipe disk

• My curated list for git and related resources

37

https://unix.stackexchange.com/q/452496/109046
https://unix.stackexchange.com/q/80270/109046
https://unix.stackexchange.com/q/2677/109046
https://wiki.archlinux.org/title/Securely_wipe_disk
https://learnbyexample.github.io/curated_resources/git_and_github.html

cp
You can use the cp command to make copies of files and directories. With default syntax,
you have to specify the source first followed by the destination. To copy multiple items, the last
argument as destination can only be a directory. You’ll also need to use the -r option to copy
directories (similar to rm -r seen earlier).

change to the 'scripts' directory and source the 'cp.sh' script
$ source cp.sh
$ ls -F
backups/ reference/

recall that . is a relative path referring to the current directory
$ cp /usr/share/dict/words .
$ ls -F
backups/ reference/ words

error because -r is needed to copy directories
other file arguments (if present) will still be copied
$ cp /usr/share/dict .
cp: -r not specified; omitting directory '/usr/share/dict'
$ cp -r /usr/share/dict .
$ ls -F
backups/ dict/ reference/ words

By default, cp will overwrite an existing file of the same name in the destina-
tion directory. You can use the -i option to interactively confirm or deny overwriting
existing files. The -n option will prevent overwriting existing files without asking for
confirmation.

$ echo 'hello' > ip.txt
$ ls -F
backups/ dict/ ip.txt reference/ words
$ ls backups
ip.txt reports
$ cat backups/ip.txt
apple banana cherry
file will be overwritten without asking for confirmation!
$ cp ip.txt backups/
$ cat backups/ip.txt
hello

use -i to interactively confirm or deny overwriting
$ echo 'good morning' > ip.txt
$ cp -i ip.txt backups/
cp: overwrite 'backups/ip.txt'? n
$ cat backups/ip.txt
hello

use -n to prevent overwriting without needing confirmation

38

$ cp -n ip.txt backups/
$ cat backups/ip.txt
hello

If there’s a folder in the destination path with the same name as a folder being copied, the
contents will be merged. If there are files of identical names in such directories, the same rules
discussed above will apply.

$ tree backups
backups
├── ip.txt
└── reports

└── jan.log

1 directory, 2 files

$ mkdir reports
$ touch reports/dec.log
$ cp -r reports backups/
$ tree backups
backups
├── ip.txt
└── reports

├── dec.log
└── jan.log

1 directory, 3 files

Often, you’d want to copy a file (or a directory) under a different name. In such cases, you can
simply use a new name while specifying the destination.

copy 'words' file from source as 'words_ref.txt' at destination
$ cp /usr/share/dict/words words_ref.txt

copy 'words' file as 'words.txt' under the 'reference' directory
$ cp /usr/share/dict/words reference/words.txt

copy 'dict' directory as 'word_lists'
$ cp -r /usr/share/dict word_lists

As mentioned earlier, to copy multiple files and directories, you’ll have to specify the destination
directory as the last argument.

$ cp -r ~/.bashrc /usr/share/dict backups/

$ ls -AF backups
.bashrc dict/ ip.txt reports/

You can use the -t option if you want to specify the destination before the source paths (helpful
with find command for example, will be discussed later). Here are some more notable options:

• -u copy files from source only if they are newer or don’t exist in the destination
• -b and --backup options will allow you to create backup copies of files already existing

39

in the destination
• --preserve option will help you to copy files along with source file attributes like owner-
ship, timestamp, etc

Further Reading

• rsync a fast, versatile, remote (and local) file-copying tool
∘ rsync tutorial and examples

• syncthing — continuous file synchronization program

mv
You can use the mv command to move one or more files and directories from one location to
another. Unlike rm and cp , you do not need the -r option for directories.

Syntax for specifying the source and destination is same as seen earlier with cp . Here’s an
example of moving a directory into another directory:

change to the 'scripts' directory and source the 'mv.sh' script
$ source mv.sh
$ ls -F
backups/ dot_files/ hello.py ip.txt loops.py manuals/
$ ls -F backups
projects/

$ mv dot_files backups

$ ls -F
backups/ hello.py ip.txt loops.py manuals/
$ ls -F backups
dot_files/ projects/

Here’s an example for moving multiple files and directories to another directory:

$ mv *.py manuals backups

$ ls -F
backups/ ip.txt
$ ls -F backups
dot_files/ hello.py loops.py manuals/ projects/

When you are dealing with a single file or directory, you can also rename them:

within the same directory
$ mv ip.txt report.txt
$ ls -F
backups/ report.txt

between different directories
$ mv backups/dot_files rc_files
$ ls -F
backups/ rc_files/ report.txt
$ ls -F backups
hello.py loops.py manuals/ projects/

40

https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-local-and-remote-directories-on-a-vps
https://github.com/syncthing/syncthing

Here are some more notable options, some of which behave similar to those seen with the cp
command:

• -i interactively confirm or deny when the destination already has a file of the same name
• -n always deny overwriting of files
• -f always overwrite files
• -t specify the destination elsewhere instead of final argument
• -u move only if the files are newer or don’t exist in the destination
• -b and --backup options will allow you to create backup copies of files already existing
in the destination

• -v verbose option

rename
The mv command is useful for simple file renaming. rename helps when you need to modify
one or more filenames based on a pattern. There are different implementations of the rename
command, with wildly different set of features. See askubuntu: What’s the difference between
the different ”rename” commands? for details.

Perl implementation of the rename command will be discussed in this section. You’d need to
know regular expressions to use this command. Basic explanations will be given here, more
details can be found in the links mentioned at the end of this section. Here’s an example to
change the file extensions:

$ mkdir practice_rename
$ cd practice_rename
create sample files
$ touch caves.jpeg waterfall.JPEG flower.JPG

substitution command syntax is s/search/replace/flags
\. matches . character literally
e? matches e optionally (? is a quantifier to match 0 or 1 times)
$ anchors the match to the end of the input
i flag matches the input case-insensitively
$ rename 's/\.jpe?g$/.jpg/i' *

$ ls
caves.jpg flower.jpg waterfall.jpg
$ rm *.jpg

As a good practice, use the -n option to see how the files will be renamed before actually
renaming the files.

$ touch 1.png 3.png 25.png 100.png
$ ls
100.png 1.png 25.png 3.png

use -n option for sanity check
note that 100.png isn't part of the output, since it isn't affected
\d matches a digit character
\d+ matches 1 or more digits (+ is a quantifier to match 1 or more times)
e flag treats the replacement string as Perl code
$& is a backreference to the matched portion

41

https://askubuntu.com/questions/956010/whats-the-difference-between-the-different-rename-commands
https://askubuntu.com/questions/956010/whats-the-difference-between-the-different-rename-commands

$ rename -n 's/\d+/sprintf "%03d", $&/e' *.png
rename(1.png, 001.png)
rename(25.png, 025.png)
rename(3.png, 003.png)

remove -n option after sanity check to actually rename the files
$ rename 's/\d+/sprintf "%03d", $&/e' *.png
$ ls
001.png 003.png 025.png 100.png

If the new filename already exists, you’ll get an error, which you can override with -f option if
you wish. If you are passing filenames with path components in them, you can use the -d option
to affect only the filename portion. Otherwise, the logic you are using might affect directory
names as well.

$ mkdir projects
$ touch projects/toc.sh projects/reports.py

aim is to uppercase the non-extension part of the filename
[^.]+ matches 1 or more non '.' characters
\U changes the characters that follow to uppercase
$& is a backreference to the matched portion
$ rename -n -d 's/[^.]+/\U$&/' projects/*
rename(projects/reports.py, projects/REPORTS.py)
rename(projects/toc.sh, projects/TOC.sh)

without -d option, directory name will also be affected
$ rename -n 's/[^.]+/\U$&/' projects/*
rename(projects/reports.py, PROJECTS/REPORTS.py)
rename(projects/toc.sh, PROJECTS/TOC.sh)

Further Reading

• perldoc: Regexp tutorial
• See my Perl one-liners ebook for examples and more details about the Perl substitution
and rename commands

ln
The ln command helps you create a link to another file or directory within the same or different
location. There are two types of links — symbolic links and hard links. Symbolic links can point
to both files and directories. Here are some characteristics:

• if the original file is deleted or moved to another location, symbolic link will no longer work
• if the symbolic link is moved to another location, it will still work if the link was done using
absolute path (for relative path, it will depend on whether or not there’s another file with
the same name in that location)

• a symbolic link file has its own inode, permissions, timestamps, etc
• some commands will work the same when original file or the symbolic file is given as the
command line argument, while some require additional options (du -L for example)

Usage is similar to the cp command. You have to specify the source first followed by the

42

https://perldoc.perl.org/perlretut
https://github.com/learnbyexample/learn_perl_oneliners

destination (which is optional if it is the current working directory).

$ mkdir practice_ln
$ cd practice_ln

destination is optional for making a link in the current directory
-s option is needed to make symbolic links
$ ln -s /usr/share/dict/words

you can also rename the link if needed
$ ln -s /usr/share/dict/words words.txt
$ ls -1sF
total 0
0 words@
0 words.txt@

Long listing with ls -l will show the path connected to links. You can also use the readlink
command, which has features like resolving recursively to the canonical file.

to know which file the link points to
$ ls -lG words
lrwxrwxrwx 1 learnbyexample 21 Jul 9 13:41 words -> /usr/share/dict/words
$ readlink words
/usr/share/dict/words

the linked file may be another link
use -f option to get the original file
$ readlink -f words
/usr/share/dict/english

Hard links can only point to another file. You cannot use them for directories and the usage is
also restricted to within the same filesystem. The . and .. directories are exceptions, these
special purpose hard links are automatically created. Here are some more details about hard
links:

• once a hard link is created, there is no distinction between the two files other than their
paths. They have same inode, permissions, timestamps, etc

• hard links will continue working even if all the other hard links are deleted
• if a hard link is moved to another location, the links will still be in sync. Any change in one
of them will be reflected in all the other links

$ touch apple.txt
$ ln apple.txt banana.txt

the -i option gives inode
$ ls -1i apple.txt banana.txt
649140 banana.txt
649140 apple.txt

You can use unlink or rm commands to delete links.

Further Reading

43

• askubuntu: What is the difference between a hard link and a symbolic link?
• unix.stackexchange: What is the difference between symbolic and hard links?
• unix.stackexchange: What is a Superblock, Inode, Dentry and a File?

tar and gzip
tar is an archiving utility. Depending on the implementation, you can also use options to
compress the archive.

Here’s an example that creates a single archive file from multiple input files and directories:

change to the 'scripts' directory and source the 'tar.sh' script
$ source tar.sh
$ ls -F
projects/ report.log todos/

-c option creates a new archive, any existing archive will be overwritten
-f option allows to specify name of archive to be created
rest of the arguments are the files/directories to be archived
$ tar -cf bkp.tar report.log projects

$ ls -F
bkp.tar projects/ report.log todos/
$ ls -sh bkp.tar
7.4M bkp.tar

Once you have an archive file, you can then compress it using tools like gzip , bzip2 , xz ,
etc. In the below example, the command replaces the archive file with the compressed version
and adds a .gz suffix to indicate that gzip was the technique used.

the input '.tar' file will be overwritten with the compressed version
$ gzip bkp.tar

$ ls -F
bkp.tar.gz projects/ report.log todos/
$ ls -sh bkp.tar.gz
5.6M bkp.tar.gz

Use the -t option if you want to check the contents of the compressed file. This will work with
the uncompressed .tar version as well.

$ tar -tf bkp.tar.gz
report.log
projects/
projects/scripts/
projects/scripts/calc.sh
projects/errors.log

To uncompress .gz files, you can use gunzip or gzip -d . This will replace the compressed
version with the uncompressed archive file:

this '.gz' file will be overwritten with the uncompressed version
$ gunzip bkp.tar.gz

44

https://askubuntu.com/questions/108771/what-is-the-difference-between-a-hard-link-and-a-symbolic-link
https://unix.stackexchange.com/q/9575/109046
https://unix.stackexchange.com/q/4402/109046

$ ls -F
bkp.tar projects/ report.log todos/
$ ls -sh bkp.tar
7.4M bkp.tar

To extract the files from an archive, use tar along with the -x option:

$ mkdir test_extract
$ mv bkp.tar test_extract
$ cd test_extract
$ ls
bkp.tar

$ tar -xf bkp.tar
$ tree
.
├── bkp.tar
├── projects
│ ├── errors.log
│ └── scripts
│ └── calc.sh
└── report.log

2 directories, 4 files

$ cd ..
$ rm -r test_extract

With GNU tar , you can compress/uncompress along with the tar command instead of having
to use tools like gzip separately. For example, the -z option will use gzip , -j will use
bzip2 and -J will use xz . Use the -a option if you want tar to automatically select
the compression technique based on the extension provided.

$ ls -F
projects/ report.log todos/

-z option gives same compression as the gzip command
$ tar -zcf bkp.tar.gz report.log projects
$ ls -sh bkp.tar.gz
5.6M bkp.tar.gz

extract original files from compressed file
$ mkdir test_extract
$ cd test_extract
$ tar -zxf ../bkp.tar.gz
$ tree
.
├── projects
│ ├── errors.log
│ └── scripts
│ └── calc.sh

45

└── report.log

2 directories, 3 files

$ cd ..
$ rm -r test_extract

tar has lots and lots of options for various needs. Some are listed below, see documentation
for complete details.

• -v verbose option
• -r to append files to an existing archive
• --exclude= specify files to be ignored from archiving

There are also commands starting with z to work with compressed files, for example:

• zcat to display file contents of a compressed file
• zless to display file contents of a compressed file one screenful at a time
• zgrep to search compressed files

If you need to work with .zip files, use zip and unzip commands.

Further Reading

• unix.stackexchange: tar files with a sorted order
• superuser: gzip without tar? Why are they used together?
• unix.stackexchange: xz a directory with tar using maximum compression?

Exercises

The ls.sh script will be used for some of the exercises.

1) Which of these commands will always display the absolute path of the home directory?

a) pwd
b) echo "$PWD"
c) echo "$HOME"

2) The current working directory has a folder named -dash . How would you switch to that
directory?

a) cd -- -dash
b) cd -dash
c) cd ./-dash
d) cd \-dash
e) cd '-dash'
f) all of the above
g) only a) and c)

3)Given the directory structure as shown below, howwould you change to the todos directory?

46

https://unix.stackexchange.com/q/178127/109046
https://superuser.com/questions/252065/gzip-without-tar-why-are-they-used-together
https://unix.stackexchange.com/q/28976/109046

change to the 'scripts' directory and source the 'ls.sh' script
$ source ls.sh

$ ls -F
backups/ hello_world.py* ip.txt report.log todos/
errors.log hi* projects/ scripts@
$ cd projects
$ pwd
/home/learnbyexample/cli-computing/example_files/scripts/ls_examples/projects

???
$ pwd
/home/learnbyexample/cli-computing/example_files/scripts/ls_examples/todos

4) As per the scenario shown below, how would you change to the cli-computing directory
under the user’s home directory? And then, how would you go back to the previous working
directory?

$ pwd
/home/learnbyexample/all/projects/square_tictactoe

???
$ pwd
/home/learnbyexample/cli-computing

???
$ pwd
/home/learnbyexample/all/projects/square_tictactoe

5) How’d you list the contents of the current directory, one per line, along with the size of the
entries in human readable format?

change to the 'scripts' directory and source the 'ls.sh' script
$ source ls.sh

???
total 7.4M
4.0K backups
16K errors.log
4.0K hello_world.py
4.0K hi
4.0K ip.txt
4.0K projects
7.4M report.log

0 scripts
4.0K todos

6) Which ls command option would you use for version based sorting of entries?

7) Which ls command option would you use for sorting based on entry size?

8) Which ls command option would you use for sorting based on file extension?

47

9) What does the -G option of ls command do?

10) What does the -i option of ls command do?

11) List only the directories as one entry per line.
change to the 'scripts' directory and source the 'ls.sh' script
$ source ls.sh

???
backups/
projects/
scripts/
todos/

12) Assume that a regular file named notes already exists. What would happen if you use the
mkdir -p notes command?

$ ls -1F notes
notes

what would happen here?
$ mkdir -p notes

13) Use one or more commands to match the scenario shown below:
$ ls -1F
cost.txt

???

$ ls -1F
cost.txt
ghost/
quest/
toast/

14) Use one or more commands to match the scenario shown below:
start with an empty directory
$ ls -l
total 0

???

$ tree -F
.
├── hobbies/
│ ├── painting/
│ │ └── waterfall.bmp
│ ├── trekking/
│ │ └── himalayas.txt
│ └── writing/
└── shopping/

48

└── festival.xlsx

5 directories, 3 files

Don’t delete this directory, will be needed in a later exercise.

15) If directories to create already exist, which mkdir command option would you use to not
show an error?

16) Use one or more commands to match the scenario given below:
$ ls -1F
cost.txt
ghost/
quest/
toast/

???

$ ls -1F
quest/

17) What does the -f option of rm command do?

18) Which option would you use to interactively delete files using the rm command?

19) Can the files removed by rm easily be restored? Do you need to take some extra steps or
use special commands to make the files more difficult to recover?

20) Does your Linux distribution provide a tool to send deleted files to the trash (which would
help to recover deleted files)?

21) Which option would you use to interactively accept/prevent the cp command from over-
writing a file of the same name? And which option would prevent overwriting without needing
manual confirmation?

22) Does the cp command allow you to rename the file or directory being copied? If so, can
you rename multiple files/directories being copied?

23) What do the -u , -b and -t options of cp command do?

24) What’s the difference between the two commands shown below?
$ cp ip.txt op.txt

$ mv ip.txt op.txt

25) Which option would you use to interactively accept/prevent the mv command from over-
writing a file of the same name?

26) Use one or more commands to match the scenario shown below. You should have already
created this directory structure in an earlier exercise.

$ tree -F
.

49

├── hobbies/
│ ├── painting/
│ │ └── waterfall.bmp
│ ├── trekking/
│ │ └── himalayas.txt
│ └── writing/
└── shopping/

└── festival.xlsx

5 directories, 3 files

???

$ tree -F
.
├── hobbies/
│ ├── himalayas.txt
│ └── waterfall.bmp
└── shopping/

└── festival.xlsx

2 directories, 3 files

27) What does the -t option of mv command do?

28) Determine and implement the rename logic based on the filenames and expected output
shown below.

$ touch '(2020) report part 1.txt' 'analysis part 3 (2018).log'
$ ls -1
'(2020) report part 1.txt'
'analysis part 3 (2018).log'

???

$ ls -1
2020_report_part_1.txt
analysis_part_3_2018.log

29) Does the ln command follow the same order to specify source and destination as the cp
and mv commands?

30) Which tar option helps to compress archives based on filename extension? This option
can be used instead of -z for gzip , -j for bzip2 and -J for xz .

50

Shell Features
This chapter focuses on Bash shell features like quoting mechanisms, wildcards, redirections,
command grouping, process substitution, command substitution, etc. Others will be discussed
in later chapters.

The example_files directory has the scripts and sample input files used in this chapter.

Some of the examples in this chapter use commands that will be discussed in later
chapters. Basic description of what such commands do have been added here and you’ll
also see more examples in the rest of the chapters.

Quoting mechanisms
This section will quote (heh) the relevant definitions from the bash manual and provide some
examples for each of the four mechanisms.

1) Escape Character

A non-quoted backslash \ is the Bash escape character. It preserves the literal value of
the next character that follows, with the exception of newline.
metacharacter: A character that, when unquoted, separates words. A metacharacter is
a space, tab, newline, or one of the following characters: | , & , ; , (,) , < , or
> .

Here’s an example where unquoted shell metacharacter causes an error:

$ echo apple;cherry
apple
cherry: command not found

using '\;' helps you use ';' as an ordinary character
$ echo apple\;cherry
apple;cherry

And here’s an example where the subtler issue might not be apparent at first glance:

this will create two files named 'new' and 'file.txt'
aim was to create a single file named 'new file.txt'
$ touch new file.txt
$ ls new*txt
ls: cannot access 'new*txt': No such file or directory
$ rm file.txt new

escaping the space will create a single file named 'new file.txt'
$ touch new\ file.txt
$ ls new*txt
'new file.txt'
$ rm new\ file.txt

51

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://www.gnu.org/software/bash/manual/bash.html#Quoting

2) Single Quotes

Enclosing characters in single quotes (') preserves the literal value of each character
within the quotes. A single quote may not occur between single quotes, even when pre-
ceded by a backslash.

No character is special within single quoted strings. Here’s an example:

$ echo 'apple;cherry'
apple;cherry

You can place strings represented by different quoting mechanisms next to each other to con-
catenate them together. Here’s an example:

concatenation of four strings
1: '@fruits = '
2: \'
3: 'apple and banana'
4: \'
$ echo '@fruits = '\''apple and banana'\'
@fruits = 'apple and banana'

3) Double Quotes

Enclosing characters in double quotes (") preserves the literal value of all characters
within the quotes, with the exception of $, ` , \ , and, when history expansion is
enabled, ! .

Here’s an example showing variable interpolation within double quotes:

$ qty='5'

as seen earlier, no character is special within single quotes
$ echo 'I bought $qty apples'
I bought $qty apples

a typical use of double quotes is to enable variable interpolation
$ echo "I bought $qty apples"
I bought 5 apples

Unless you specifically want the shell to interpret the contents of a variable, you should always
quote the variable to avoid issues due to the presence of shell metacharacters.

$ f='new file.txt'

same as: echo 'apple banana' > new file.txt
$ echo 'apple banana' > $f
bash: $f: ambiguous redirect

same as: echo 'apple banana' > 'new file.txt'
$ echo 'apple banana' > "$f"
$ cat "$f"

52

apple banana
$ rm "$f"

See also unix.stackexchange: Why does my shell script choke on whitespace or other
special characters?.

4) ANSI-C Quoting

Words of the form $'string' are treated specially. The word expands to string, with
backslash-escaped characters replaced as specified by the ANSI C standard.

This form of quoting helps you use escape sequences like \t for tab, \n for newline and
so on. You can also represent characters using their codepoint values in octal and hexadecimal
formats.

can also use echo -e 'fig:\t42' or printf 'fig:\t42\n'
$ echo $'fig:\t42'
fig: 42

\x27 represents single quote character in hexadecimal format
$ echo $'@fruits = \x27apple and banana\x27'
@fruits = 'apple and banana'

'grep' helps you to filter lines based on the given pattern
but it doesn't recognize escapes like '\t' for tab characters
$ printf 'fig\t42\napple 100\nball\t20\n' | grep '\t'
in such cases, one workaround is use to ANSI-C quoting
$ printf 'fig\t42\napple 100\nball\t20\n' | grep $'\t'
fig 42
ball 20

printf is a shell builtin which you can use to format arguments (similar to C programming
language printf() function). This command will be used in many more examples to come.

See bash manual: ANSI-C Quoting for complete list of supported escape sequences.
See man ascii for a table of ASCII characters and their numerical representations.

Wildcards
It is relatively easy to specify complete filenames as command arguments when they are few in
number. And you could use features like tab completion and middle mouse button click (which
pastes the last highlighted text) to assist in such cases.

But what to do if you have to deal with tens and hundreds of files (or even more)? If applicable,
one way is to match all the files based on a common pattern in their filenames, for example
extensions like .py , .txt and so on. Wildcards (globs) will help in such cases. This feature
is provided by the shell, and thus individual commands need not worry about implementing them.

53

https://unix.stackexchange.com/q/131766/109046
https://unix.stackexchange.com/q/131766/109046
https://www.gnu.org/software/bash/manual/bash.html#ANSI_002dC-Quoting

Pattern matching supported by wildcards are somewhat similar to regular expressions, but there
are fundamental and syntactical differences between them.

Some of the commonly used wildcards are listed below:

• * match any character, zero or more times
∘ as a special case, * won’t match the starting . of hidden files unless the dotglob
shell option is set

• ? match any character exactly once
• [set149] match any of these characters once
• [^set149] match any characters except the given set of characters

∘ you can also use [!set149] to negate the character class
• [a-z] match a range of characters from a to z
• [0-9a-fA-F] match any hexadecimal character

And here are some examples:

change to the 'scripts' directory and source the 'globs.sh' script
$ source globs.sh
$ ls
100.sh f1.txt f4.txt hi.sh math.h report-02.log
42.txt f2_old.txt f7.txt ip.txt notes.txt report-04.log
calc.py f2.txt hello.py main.c report-00.log report-98.log

beginning with 'c' or 'h' or 't'
$ ls [cht]*
calc.py hello.py hi.sh

only hidden files and directories
$ ls -d .*
. .. .hidden .somerc

ending with '.c' or '.py'
$ ls *.c *.py
calc.py hello.py main.c

containing 'o' as well as 'x' or 'y' or 'z' afterwards
$ ls *o*[xyz]*
f2_old.txt hello.py notes.txt

ending with '.' and two more characters
$ ls *.??
100.sh calc.py hello.py hi.sh

shouldn't start with 'f' and ends with '.txt'
$ ls [^f]*.txt
42.txt ip.txt notes.txt

containing digits '1' to '5' and ending with 'log'
$ ls *[1-5]*log
report-02.log report-04.log

54

Since some characters are special inside the character class, you need special placement to treat
them as ordinary characters:

• - should be the first or the last character in the set
• ^ should be other than the first character
•] should be the first character

$ ls *[ns-]*
100.sh main.c report-00.log report-04.log
hi.sh notes.txt report-02.log report-98.log

$ touch 'a^b' 'mars[planet].txt'
$ rm -i *[]^]*
rm: remove regular empty file 'a^b'? y
rm: remove regular empty file 'mars[planet].txt'? y

A named character set is defined by a name enclosed between [: and :] and has to be
used within a character class [] , along with any other characters as needed.

Named set Description

[:digit:] [0-9]
[:lower:] [a-z]
[:upper:] [A-Z]
[:alpha:] [a-zA-Z]
[:alnum:] [0-9a-zA-Z]
[:word:] [0-9a-zA-Z_]
[:xdigit:] [0-9a-fA-F]
[:cntrl:] control characters — first 32 ASCII characters and 127th (DEL)
[:punct:] all the punctuation characters
[:graph:] [:alnum:] and [:punct:]
[:print:] [:alnum:] , [:punct:] and space
[:ascii:] all the ASCII characters
[:blank:] space and tab characters
[:space:] whitespace characters

starting with a digit character, same as: [0-9]*
$ ls [[:digit:]]*
100.sh 42.txt

starting with a digit character or 'c'
same as: [0-9c]*
$ ls [[:digit:]c]*
100.sh 42.txt calc.py

starting with a non-alphabet character
$ ls [^[:alpha:]]*
100.sh 42.txt

55

As mentioned before, you can use echo to test how the wildcards will expand before
using a command to act upon the matching files. For example, echo *.txt before using
commands like rm *.txt . One difference compared to ls is that echo will display
the wildcard as is instead of showing an error if there’s no match.

See bash manual: Pattern Matching for more details, information on locale stuff and
so on.

Brace Expansion
This is not a wildcard feature, you just get expanded strings. Brace expansion has two mecha-
nisms for reducing typing:

• taking out common portions among multiple strings
• generating a range of characters

Say you want to create two files named test_x.txt and test_y.txt . These two strings have
something in common at the start and the end. You can specify the unique portions as comma
separated strings within a pair of curly braces and put the common parts around the braces.
Multiple braces can be used as needed. Use echo for testing purposes.

$ mkdir practice_brace
$ cd practice_brace

same as: touch ip1.txt ip3.txt ip7.txt
$ touch ip{1,3,7}.txt
$ ls ip*txt
ip1.txt ip3.txt ip7.txt

same as: mv ip1.txt ip_a.txt
$ mv ip{1,_a}.txt
$ ls ip*txt
ip3.txt ip7.txt ip_a.txt

$ echo adders/{half,full}_adder.v
adders/half_adder.v adders/full_adder.v

$ echo file{0,1}.{txt,log}
file0.txt file0.log file1.txt file1.log

empty alternate is allowed too
$ echo file{,1}.txt
file.txt file1.txt

example with nested braces
$ echo file.{txt,log{,.bkp}}
file.txt file.log file.log.bkp

To generate a range, specify numbers or single characters separated by .. and an optional

56

https://www.gnu.org/software/bash/manual/bash.html#Pattern-Matching

third argument as the step value. Here are some examples:

$ echo {1..4}
1 2 3 4
$ echo {4..1}
4 3 2 1

$ echo {1..2}{a..b}
1a 1b 2a 2b

$ echo file{1..4}.txt
file1.txt file2.txt file3.txt file4.txt

$ echo file{1..10..2}.txt
file1.txt file3.txt file5.txt file7.txt file9.txt

$ echo file_{x..z}.txt
file_x.txt file_y.txt file_z.txt

$ echo {z..j..-3}
z w t q n k

'0' prefix
$ echo {008..10}
008 009 010

If the use of braces doesn’t match the expansion syntax, it will be left as is:

$ echo file{1}.txt
file{1}.txt

$ echo file{1-4}.txt
file{1-4}.txt

Extended and Recursive globs
From man bash :

Extended glob Description

?(pattern-list) Matches zero or one occurrence of the given patterns
*(pattern-list) Matches zero or more occurrences of the given patterns
+(pattern-list) Matches one or more occurrences of the given patterns
@(pattern-list) Matches one of the given patterns
!(pattern-list) Matches anything except one of the given patterns

Extended globs are disabled by default. You can use the shopt builtin to set/unset shell options
like extglob , globstar , etc. You can also check what is the current status of such options.

$ shopt extglob
extglob off

57

set extglob
$ shopt -s extglob
$ shopt extglob
extglob on

unset extglob
$ shopt -u extglob
$ shopt extglob
extglob off

Here are some examples, assuming extglob option has already been set:

change to the 'scripts' directory and source the 'globs.sh' script
$ source globs.sh
$ ls
100.sh f1.txt f4.txt hi.sh math.h report-02.log
42.txt f2_old.txt f7.txt ip.txt notes.txt report-04.log
calc.py f2.txt hello.py main.c report-00.log report-98.log

one or more digits followed by '.' and then zero or more characters
$ ls +([0-9]).*
100.sh 42.txt

same as: ls *.c *.sh
$ ls *.@(c|sh)
100.sh hi.sh main.c

not ending with '.txt'
$ ls !(*.txt)
100.sh hello.py main.c report-00.log report-04.log
calc.py hi.sh math.h report-02.log report-98.log

not ending with '.txt' or '.log'
$ ls *.!(txt|log)
100.sh calc.py hello.py hi.sh main.c math.h

If you enable the globstar option, you can recursively match filenames within a specified path.

change to the 'scripts' directory and source the 'ls.sh' script
$ source ls.sh

with 'find' command (this will be explained in a later chapter)
$ find -name '*.txt'
./todos/books.txt
./todos/outing.txt
./ip.txt

with 'globstar' enabled
$ shopt -s globstar
$ ls **/*.txt
ip.txt todos/books.txt todos/outing.txt

58

another example
$ ls -1 **/*.@(py|html)
backups/bookmarks.html
hello_world.py
projects/tictactoe/game.py

Add the shopt invocations to ~/.bashrc if you want these settings applied at
terminal startup. This will be discussed in the Shell Customization chapter.

set
The set builtin command helps you to set or unset values of shell options and positional
parameters. Here are some examples for shell options:

disables logging command history from this point onwards
$ set +o history
enable history logging
$ set -o history

use vi-style CLI editing interface
$ set -o vi
use emancs-style interface, this is usually the default
$ set -o emacs

You’ll see more examples (for example, set -x) in later chapters. See bash manual: Set Builtin
for documentation.

Pipelines
The pipe control operator | helps you connect the output of a command as the input of another
command. This operator vastly reduces the need for temporary intermediate files. As discussed
previously in the Unix Philosophy section, command line tools specialize in one task. If you can
break down a problem into smaller tasks, the pipe operator will come in handy often. Here are
some examples:

change to the 'scripts' directory and source the 'du.sh' script
$ source du.sh

list of files
$ ls
projects report.log todos
count the number of files
you can also use: printf '%q\n' * | wc -l
$ ls -q | wc -l
3

report size of files/folders in human readable format
and then sort them based on human readable sizes in ascending order
$ du -sh * | sort -h

59

https://www.gnu.org/software/bash/manual/bash.html#The-Set-Builtin

8.0K todos
48K projects
7.4M report.log

In the above examples, ls and du perform their own tasks of displaying list of files and
showing file sizes respectively. After that, the wc and sort commands take care of calculating
number of lines and sorting respectively. In such cases, the pipe operator saves you the trouble
of dealing with temporary data.

Note that the %q format specifier in printf helps you quote the arguments in a way that
is recognizable by the shell. The -q option for ls substitutes nongraphic characters in the
filenames with a ? character. Both of these are workarounds to prevent the counting process
from getting sidetracked due to characters like newline in the filenames.

The pipe control operator |& will be discussed later in this chapter.

tee

Sometimes, you might want to display the command output on the terminal as well as require
the results for later use. In such cases, you can use the tee command:

$ du -sh * | tee sizes.log
48K projects
7.4M report.log
8.0K todos

$ cat sizes.log
48K projects
7.4M report.log
8.0K todos

$ rm sizes.log

Redirection
From bash manual: Redirections:

Before a command is executed, its input and output may be redirected using a special nota-
tion interpreted by the shell. Redirection allows commands’ file handles to be duplicated,
opened, closed, made to refer to different files, and can change the files the command
reads from and writes to. Redirection may also be used to modify file handles in the cur-
rent shell execution environment.

There are three standard data streams:

• standard input (stdin — file descriptor 0)
• standard output (stdout — file descriptor 1)
• standard error (stderr — file descriptor 2)

Both standard output and error are displayed on the terminal by default. The stderr stream

60

https://www.gnu.org/software/bash/manual/bash.html#Redirections

is used when something goes wrong with the command usage. Each of these three streams have
a predefined file descriptor as mentioned above. In this section, you’ll see how to redirect these
three streams.

Redirections can be placed anywhere, but they are usually used at the start or end of
a command. For example, the following two commands are equivalent:

>op.txt grep 'error' report.log

grep 'error' report.log >op.txt

Space characters between the redirection operators and the filename are optional.

Redirecting output

You can use the > operator to redirect the standard output of a command to a file. A number
prefix can be added to the > operator to work with that particular file descriptor. Default is 1
(recall that the file descriptor for stdout is 1), so 1> and > perform the same operation.
Use >> to append the output to a file.

The filename provided to the > and >> operators will be created if a regular file of that name
doesn’t exist yet. If the file already exists, > will overwrite that file and >> will append
contents to that file.

change to the 'example_files/text_files' directory for this section

save first three lines of 'sample.txt' to 'op.txt'
$ head -n3 sample.txt > op.txt
$ cat op.txt
1) Hello World
2)
3) Hi there

append last two lines of 'sample.txt' to 'op.txt'
$ tail -n2 sample.txt >> op.txt
$ cat op.txt
1) Hello World
2)
3) Hi there
14) He he he
15) Adios amigo

$ rm op.txt

You can use /dev/null as a filename to discard the output, to provide an empty file
for a command, etc.

61

https://en.wikipedia.org/wiki/File_descriptor

You can use set noclobber to prevent overwriting if a file already exists. When the
noclobber option is set, you can still overwrite a file by using >| instead of the >
operator.

Redirecting input

Some commands like tr and datamash can only work with data from the standard input. This
isn’t an issue when you are piping data from another command, for example:

filter lines containing 'the' from the input file 'greeting.txt'
and then display the results in uppercase using the 'tr' command
$ grep 'the' greeting.txt | tr 'a-z' 'A-Z'
HI THERE

You can use the < redirection operator if you want to pass data from a file to such commands.
The default prefix here is 0 , which is the file descriptor for stdin data. Here’s an example:

$ tr 'a-z' 'A-Z' <greeting.txt
HI THERE
HAVE A NICE DAY

In some cases, a tool behaves differently when processing stdin data compared to file input.
Here’s an example with wc -l to report the total number of lines in the input:

line count, filename is part of the output as well
$ wc -l purchases.txt
8 purchases.txt

filename won't be part of the output for stdin data
helpful for assigning the number to a variable for scripting purposes
$ wc -l <purchases.txt
8

Sometimes, you need to pass stdin data as well as other file inputs to a command. In such
cases, you can use - to represent data from the standard input. Here’s an example:

$ cat scores.csv
Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

insert a column at the start
$ printf 'ID\n1\n2\n3' | paste -d, - scores.csv
ID,Name,Maths,Physics,Chemistry
1,Ith,100,100,100
2,Cy,97,98,95
3,Lin,78,83,80

Even though a command accepts file input directly as an argument, redirecting can help for
interactive usage. Here’s an example:

62

display only the third field
$ <scores.csv cut -d, -f3
Physics
100
98
83

later, you realize that you need the first field too
use 'up' arrow key to bring the previous command
and modify the argument easily at the end
if you had used cut -d, -f3 scores.csv instead,
you'd have to navigate past the filename to modify the argument
$ <scores.csv cut -d, -f1,3
Name,Physics
Ith,100
Cy,98
Lin,83

Don’t use cat filename | cmd for passing file content as stdin data, unless
you need to concatenate data from multiple input files. See wikipedia: UUOC and Useless
Use of Cat Award for more details.

Redirecting error

Recall that the file descriptor for stderr is 2 . So, you can use 2> to redirect standard
error to a file. Use 2>> if you need to append the contents. Here’s an example:

assume 'abcdxyz' doesn't exist as a shell command
$ abcdxyz
abcdxyz: command not found

the error in such cases will be part of the stderr stream, not stdout
so, you'll need to use 2> here
$ abcdxyz 2> cmderror.log
$ cat cmderror.log
abcdxyz: command not found

$ rm cmderror.log

Use /dev/null as a filename if you need to discard the results.

Combining stdout and stderr

Newer versions of Bash provide these handy shortcuts:

• &> redirect both stdout and stderr (overwrites an existing file)
• &>> redirect both stdout and stderr (appends to existing file)
• |& pipe both stdout and stderr as input to another command

63

https://en.wikipedia.org/wiki/Cat_(Unix)#Useless_use_of_cat
https://porkmail.org/era/unix/award.html
https://porkmail.org/era/unix/award.html

Here’s an example which assumes xyz.txt doesn’t exist, thus leading to errors:

using '>' will redirect only the stdout stream
stderr will be displayed on the terminal
$ grep 'log' file_size.txt xyz.txt > op.txt
grep: xyz.txt: No such file or directory

using '&>' will redirect both the stdout and stderr streams
$ grep 'log' file_size.txt xyz.txt &> op.txt
$ cat op.txt
file_size.txt:104K power.log
file_size.txt:746K report.log
grep: xyz.txt: No such file or directory

$ rm op.txt

And here’s an example with the |& operator:

filter lines containing 'log' from the given file arguments
and then filter lines containing 'or' from the combined stdout and stderr
$ grep 'log' file_size.txt xyz.txt |& grep 'or'
file_size.txt:746K report.log
grep: xyz.txt: No such file or directory

For earlier Bash versions, you’ll have to manually redirect the streams:

• 1>&2 redirects file descriptor 1 (stdout) to the file descriptor 2 (stderr)
• 2>&1 redirects file descriptor 2 (stderr) to the file descriptor 1 (stdout)

Here are some examples:

note that the order of redirections is important here
you can also use: 2> op.txt 1>&2
$ grep 'log' file_size.txt xyz.txt > op.txt 2>&1
$ cat op.txt
file_size.txt:104K power.log
file_size.txt:746K report.log
grep: xyz.txt: No such file or directory
$ rm op.txt

$ grep 'log' file_size.txt xyz.txt 2>&1 | grep 'or'
file_size.txt:746K report.log
grep: xyz.txt: No such file or directory

Waiting for stdin

Sometimes, you might mistype a command without providing input. And instead of getting an
error, you’ll see the cursor patiently waiting for something. This isn’t the shell hanging up on
you. The command is waiting for you to type data, so that it can perform its task.

Say, you typed cat and pressed the Enter key. Seeing the blinking cursor, you type some text
and press the Enter key again. You’ll see the text you just typed echoed back to you as stdout
(which is the functionality of the cat command). This will continue again and again, until you
tell the shell that you are done. How to do that? Press Ctrl+d on a fresh line or press Ctrl+d

64

twice at the end of a line. In the latter case, you’ll not get a newline character at the end of the
data.

press Enter key and Ctrl+d after typing all the required characters
$ cat
knock knock
knock knock
anybody here?
anybody here?

'tr' command here translates lowercase to uppercase
$ tr 'a-z' 'A-Z'
knock knock
KNOCK KNOCK
anybody here?
ANYBODY HERE?

Getting output immediately after each input line depends on the command’s function-
ality. Commands like sort and shuf will wait for the entire input data before producing
the output.

press Ctrl+d after the third input line
$ sort
lion
zebra
bee
bee
lion
zebra

Here’s an example which has output redirection as well:

press Ctrl+d after the line containing 'histogram'
filter lines containing 'is'
$ grep 'is' > op.txt
hi there
this is a sample line
have a nice day
histogram

$ cat op.txt
this is a sample line
histogram

$ rm op.txt

See also unix.stackexchange: difference between Ctrl+c and Ctrl+d.

65

https://unix.stackexchange.com/q/16333/109046

Here Documents

Here Documents is another way to provide stdin data. In this case, the termination condition
is a line matching a predefined string which is specified after the << redirection operator. This
is especially helpful for automation, since pressing Ctrl+d interactively isn’t desirable. Here’s
an example:

EOF is typically used as the special string
$ cat << 'EOF' > fruits.txt
> banana 2
> papaya 3
> mango 10
> EOF

$ cat fruits.txt
banana 2
papaya 3
mango 10
$ rm fruits.txt

In the above example, the termination string was enclosed in single quotes to prevent parameter
expansion, command substitution, etc. You can also use \string for this purpose. If you use
<<- instead of << , leading tab characters can be added at the start of input lines without
being part of the actual data.

Just like $ and a space represents the primary prompt (PS1 shell variable), >
and a space at the start of lines represents the secondary prompt PS2 (applicable for
multiline commands). Don’t type these characters when you use Here Documents in a
shell script.

See bash manual: Here Documents and stackoverflow: here documents for more ex-
amples and details.

Here Strings

This is similar to Here Documents, but the termination string isn’t used. The redirection operator
is <<< . Here are some examples:

$ tr 'a-z' 'A-Z' <<< hello
HELLO
$ tr 'a-z' 'A-Z' <<< 'hello world'
HELLO WORLD

$ greeting='hello world'
$ tr 'a-z' 'A-Z' > op.txt <<< "$greeting"
$ cat op.txt
HELLO WORLD
$ rm op.txt

66

https://www.gnu.org/software/bash/manual/bash.html#Here-Documents
https://stackoverflow.com/q/2953081/4082052

Further Reading

• Short introduction to shell redirection
• Illustrated Redirection Tutorial
• stackoverflow: Redirect a stream to another file descriptor using >&
• Difference between 2>&1 >foo and >foo 2>&1
• stackoverflow: Redirect and append both stdout and stderr to a file
• unix.stackexchange: Examples for <> redirection

Grouping commands
You can use (list) and { list; } compound commands to redirect content for several
commands. The former is executed in a subshell whereas the latter is executed in the current
shell context. Spaces around () are optional but necessary for the {} version. From bash
manual: Lists of Commands:

A list is a sequence of one or more pipelines separated by one of the operators ; , &
, && , or || , and optionally terminated by one of ; , & , or a newline.

Here are some examples of command groupings:

change to the 'example_files/text_files' directory for this section

the 'sed' command here gives the first line of the input
rest of the lines are then processed by the 'sort' command
thus, the header will always be the first line in the output
$ (sed -u '1q' ; sort) < scores.csv
Name,Maths,Physics,Chemistry
Cy,97,98,95
Ith,100,100,100
Lin,78,83,80

save first three and last two lines from 'sample.txt' to 'op.txt'
$ { head -n3 sample.txt; tail -n2 sample.txt; } > op.txt
$ cat op.txt
1) Hello World
2)
3) Hi there
14) He he he
15) Adios amigo
$ rm op.txt

You might wonder why the second command did not use < sample.txt instead of repeating
the filename twice. The reason is that some commands might read more than what is required
(for buffering purposes) and thus cause issues for the remaining commands. In the sed+sort
example, the -u option guarantees that sed will not to read more than the required data.
See unix.stackexchange: sort but keep header line at the top for more examples and details.

67

https://mywiki.wooledge.org/BashGuide/InputAndOutput#Redirection
https://wiki.bash-hackers.org/howto/redirection_tutorial
https://stackoverflow.com/q/818255/4082052
https://mywiki.wooledge.org/BashFAQ/055
https://stackoverflow.com/q/876239/4082052
https://unix.stackexchange.com/q/164391/109046
https://www.gnu.org/software/bash/manual/bash.html#Lists
https://www.gnu.org/software/bash/manual/bash.html#Lists
https://unix.stackexchange.com/q/11856/109046

You don’t need the () or {} groups to see the results of multiple commands on
the terminal. Just the ; separator between the commands would be enough. See also
bash manual: Command Execution Environment.

$ head -n1 sample.txt ; echo 'have a nice day'
1) Hello World
have a nice day

List control operators
You can use these operators to control the execution of the subsequent command depending on
the exit status of the first command. From bash manual: Lists of Commands:

AND and OR lists are sequences of one or more pipelines separated by the control opera-
tors && and || , respectively. AND and OR lists are executed with left associativity.

For AND list, the second command will be executed if and only if the first command exits with
0 status.

first command succeeds here, so the second command is also executed
$ echo 'hello' && echo 'have a nice day'
hello
have a nice day

assume 'abcdxyz' doesn't exist as a shell command
the second command will not be executed
$ abcdxyz && echo 'have a nice day'
abcdxyz: command not found

if you use ';' instead, the second command will still be executed
$ abcdxyz ; echo 'have a nice day'
abcdxyz: command not found
have a nice day

For OR list, the second command will be executed if and only if the first command does not exit
with 0 status.

since the first command succeeds, the second one won't run
$ echo 'hello' || echo 'have a nice day'
hello

assume 'abcdxyz' doesn't exist as a shell command
since the first command fails, the second one will run
$ abcdxyz || echo 'have a nice day'
abcdxyz: command not found
have a nice day

68

https://www.gnu.org/software/bash/manual/bash.html#Command-Execution-Environment
https://www.gnu.org/software/bash/manual/bash.html#Lists

Command substitution
Command substitution allows you to use the standard output of a command as part of another
command. Trailing newlines, if any, will be removed. You can use the newer and preferred syntax
$(command) or the older syntax `command` . Here are some examples:

sample input
$ printf 'hello\ntoday is: \n'
hello
today is:
append output from the 'date' command to the line containing 'today'
$ printf 'hello\ntoday is: \n' | sed '/today/ s/$/'"$(date +%A)"'/'
hello
today is: Monday

save the output of 'wc' command to a variable
same as: line_count=`wc -l <sample.txt`
$ line_count=$(wc -l <sample.txt)
$ echo "$line_count"
15

Here’s an example with nested substitutions:

dirname removes the trailing path component
$ dirname projects/tictactoe/game.py
projects/tictactoe
basename removes the leading directory component
$ basename projects/tictactoe
tictactoe

$ proj=$(basename $(dirname projects/tictactoe/game.py))
$ echo "$proj"
tictactoe

Difference between the two types of syntax is quoted below from bash manual: Command Sub-
stitution:

When the old-style backquote form of substitution is used, backslash retains its literal
meaning except when followed by $, ` , or \ . The first backquote not preceded by
a backslash terminates the command substitution. When using the $(command) form, all
characters between the parentheses make up the command; none are treated specially.
Command substitutions may be nested. To nest when using the backquoted form, escape
the inner backquotes with backslashes.

Process substitution
Instead of a file argument, you can use the output of commands with process substitution. The
syntax is <(list) . The shell will take care of passing a filename with the standard output of
those commands. Here’s an example:

change to the 'example_files/text_files' directory for this section

$ cat scores.csv

69

https://www.gnu.org/software/bash/manual/bash.html#Command-Substitution
https://www.gnu.org/software/bash/manual/bash.html#Command-Substitution

Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

can also use: paste -d, <(echo 'ID'; seq 3) scores.csv
$ paste -d, <(printf 'ID\n1\n2\n3') scores.csv
ID,Name,Maths,Physics,Chemistry
1,Ith,100,100,100
2,Cy,97,98,95
3,Lin,78,83,80

For the above example, you could also have used - to represent stdin piped data as seen in
an earlier section. Here’s an example where two substitutions are used. This essentially helps
you to avoid managing multiple temporary files, similar to how the | pipe operator helps for
single temporary file.

side-by-side view of sample input files
$ paste f1.txt f2.txt
1 1
2 hello
3 3
world 4

this command gives the common lines between two files
the files have to be sorted for the command to work properly
$ comm -12 <(sort f1.txt) <(sort f2.txt)
1
3

See this unix.stackexchange thread for examples with >(list) form.

Exercises

Use the globs.sh script for wildcards related exercises, unless otherwise mentioned.

Create a temporary directory for exercises that may require you to create some files.
You can delete such practice directories afterwards.

1) Use the echo command to display the text as shown below. Use appropriate quoting as
necessary.

???
that's great! $x = $y + $z

2) Use the echo command to display the values of the three variables in the format as shown
below.

70

https://unix.stackexchange.com/q/609375/109046

$ n1=10
$ n2=90
$ op=100

???
10 + 90 = 100

3) What will be the output of the command shown below?
$ echo $'\x22apple\x22: \x2710\x27'

4) List filenames starting with a digit character.
change to the 'scripts' directory and source the 'globs.sh' script
$ source globs.sh

???
100.sh 42.txt

5) List filenames whose extension do not begin with t or l . Assume extensions will have at
least one character.

???
100.sh calc.py hello.py hi.sh main.c math.h

6) List filenames whose extension only have a single character.
???
main.c math.h

7) List filenames whose extension is not txt .

???
100.sh hello.py main.c report-00.log report-04.log
calc.py hi.sh math.h report-02.log report-98.log

8) Describe the wildcard pattern used in the command shown below.
$ ls *[^[:word:]]*.*
report-00.log report-02.log report-04.log report-98.log

9) List filenames having only lowercase alphabets before the extension.
???
calc.py hello.py hi.sh ip.txt main.c math.h notes.txt

10) List filenames starting with ma or he or hi .

???
hello.py hi.sh main.c math.h

11) What commands would you use to get the outputs shown below? Assume that you do not
know the depth of sub-directories.

change to the 'scripts' directory and source the 'ls.sh' script
$ source ls.sh

filenames ending with '.txt'

71

???
ip.txt todos/books.txt todos/outing.txt

directories starting with 'c' or 'd' or 'g' or 'r' or 't'
???
backups/dot_files/
projects/calculator/
projects/tictactoe/
todos/

12) Create and change to an empty directory. Then, use brace expansion along with relevant
commands to get the results shown below.

???
$ ls report*
report_2020.txt report_2021.txt report_2022.txt

use 'cp' command here
???
$ ls report*
report_2020.txt report_2021.txt report_2021.txt.bkp report_2022.txt

13) What does the set builtin command do?

14) What does the | pipe operator do? And when would you add the tee command?

15) Can you infer what the following command does? Hint: see help printf .

$ printf '%s\n' apple car dragon
apple
car
dragon

16) Use brace expansion along with relevant commands and shell features to get the result
shown below. Hint: see previous question.

$ ls ip.txt
ls: cannot access 'ip.txt': No such file or directory

???
$ cat ip.txt
item_10
item_12
item_14
item_16
item_18
item_20

17) With ip.txt containing text as shown in the previous question, use brace expansion and
relevant commands to get the result shown below.

???
$ cat ip.txt
item_10

72

item_12
item_14
item_16
item_18
item_20
apple_1_banana_6
apple_1_banana_7
apple_1_banana_8
apple_2_banana_6
apple_2_banana_7
apple_2_banana_8
apple_3_banana_6
apple_3_banana_7
apple_3_banana_8

18) What are the differences between < and | shell operators, if any?

19) Which character is typically used to represent stdin data as a file argument?

20) What do the following operators do?

a) 1>
b) 2>
c) &>
d) &>>
e) |&

21) What will be the contents of op.txt if you use the following grep command?

press Ctrl+d after the line containing 'histogram'
$ grep 'hi' > op.txt
hi there
this is a sample line
have a nice day
histogram

$ cat op.txt

22) What will be the contents of op.txt if you use the following commands?

$ qty=42
$ cat << end > op.txt
> dragon
> unicorn
> apple $qty
> ice cream
> end

$ cat op.txt

23) Correct the command to get the expected output shown below.
$ books='cradle piranesi soulhome bastion'

73

something is wrong with this command
$ sed 's/\b\w/\u&/g' <<< '$books'
$Books

???
Cradle Piranesi Soulhome Bastion

24) Correct the command to get the expected output shown below.
something is wrong with this command
$ echo 'hello' ; seq 3 > op.txt
hello
$ cat op.txt
1
2
3

???
$ cat op.txt
hello
1
2
3

25) What will be the output of the following commands?
$ printf 'hello' | tr 'a-z' 'A-Z' && echo ' there'

$ printf 'hello' | tr 'a-z' 'A-Z' || echo ' there'

26) Correct the command(s) to get the expected output shown below.
something is wrong with these commands
$ nums=$(seq 3)
$ echo $nums
1 2 3

???
1
2
3

27) Will the following two commands produce equivalent output? If not, why not?
$ paste -d, <(seq 3) <(printf '%s\n' item_{1..3})

$ printf '%s\n' {1..3},item_{1..3}

74

Viewing Part or Whole File Contents
In this chapter, you’ll learn how to view contents of files from within the terminal. If the contents
are too long, you can choose to view one screenful at a time or get only the starting/ending
portions of the input. The commands used for these purposes also have other functionalities,
some of which will be discussed in this chapter as well.

The example_files directory has the sample input files used in this chapter.

cat
The cat command derives its name from concatenate. It is primarily used to combine the
contents of multiple files to be saved in a file or sent as input to another command.

Commonly used options are shown below:

• -n prefix line number and a tab character to each input line
• -b like -n but doesn’t number empty lines
• -s squeeze consecutive empty lines to a single empty line
• -v view special characters like NUL using the caret notation
• -e view special characters as well as mark the end of line
• -A includes -e and also helps to spot tab characters

Here are some examples to showcase cat ’s main utility. One or more files can be given as
arguments.

As mentioned earlier, the example_files directory has the sample input files used in
this chapter. You need to cd into the example_files/text_files directory to follow
along the examples shown in this chapter.

view contents of a single file
$ cat greeting.txt
Hi there
Have a nice day

another example
$ cat fruits.txt
banana
papaya
mango

concatenate multiple files
$ cat greeting.txt fruits.txt
Hi there
Have a nice day
banana
papaya
mango

To save the output of concatenation, use redirection:

75

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://en.wikipedia.org/wiki/ASCII_control_characters#Control_code_chart
https://github.com/learnbyexample/cli-computing/tree/master/example_files

$ cat greeting.txt fruits.txt > op.txt

$ cat op.txt
Hi there
Have a nice day
banana
papaya
mango

You can represent stdin data using - as a file argument. If file arguments are not present,
cat will read from stdin data if present or wait for interactive input. Note that - is also
supported by many more commands to indicate stdin data.

concatenate contents of 'greeting.txt' and 'stdin' data
$ echo 'apple banana cherry' | cat greeting.txt -
Hi there
Have a nice day
apple banana cherry

Using cat to view the contents of a file, to concatenate them, etc is well and good.
But, using cat when it is not needed is a bad habit that you should avoid. See wikipedia:
UUOC and Useless Use of Cat Award for more details.

cat also helps you spot special characters using the caret notation:

example for backspace and carriage return characters
$ printf 'car\bd\nbike\rp\n'
cad
pike
$ printf 'car\bd\nbike\rp\n' | cat -v
car^Hd
bike^Mp

example with tab characters and end-of-line marker
$ printf '1 2\t3\f4\v5 \n' | cat -A
1 2^I3^L4^K5 $

tac
You can concatenate files using tac as well, but the output will be printed in the reverse (line
wise). If you pass multiple input files, each file content will be reversed separately. Here are
some examples:

$ printf 'apple\nbanana\ncherry\n' | tac
cherry
banana
apple

won't be same as: cat greeting.txt fruits.txt | tac
$ tac greeting.txt fruits.txt
Have a nice day

76

https://en.wikipedia.org/wiki/Cat_(Unix)#Useless_use_of_cat
https://en.wikipedia.org/wiki/Cat_(Unix)#Useless_use_of_cat
https://porkmail.org/era/unix/award.html
https://en.wikipedia.org/wiki/ASCII_control_characters#Control_code_chart

Hi there
mango
papaya
banana

If the last line of input doesn’t end with a newline, the output will also not have that
newline character.

$ printf 'apple\nbanana\ncherry' | tac
cherrybanana
apple

less
The cat command is not suitable for viewing contents of large files in the terminal. The less
command automatically fits the content to the size of terminal, allows scrolling and has nifty
features for effective viewing. Usually, man command uses less as the pager to display
the documentation. The navigation options are similar to the Vim text editor.

Commonly used commands are given below. You can press the h key for builtin help.

• ↑ and ↓ arrow keys to move up and down by a line
∘ you can also use k and j keys (same keys as those used in the Vim text editor)

• f and b keys to move forward and backward by a screenful of content
∘ Space key also moves forward by a screen

• mouse scroll moves up and down by a few lines
• g or Home go to the start of the file
• G or End go to the end of the file
• /pattern followed by Enter search for the given pattern in the forward direction

∘ pattern refers to regular expressions and depends on the regex library in your system
∘ the flavor is Extended Regular Expressions (ERE) on my system
∘ see man re_format for more details

• ?pattern followed by Enter search for the given pattern in the backward direction
• n go to the next match
• N go to the previous match
• q quit

As an example, use less /usr/share/dict/words to open a dictionary file and practice the
commands discussed above. If your pager is set to less for manual pages, you can also try
something like man ls for practice.

Similar to the cat command, you can use the -s option to squeeze consecutive blank lines.
But unlike cat -n , you need to use less -N to prefix line numbers. The lowercase -n
option will turn off numbering.

Further Reading

• less command is an improved version of the more command
• unix.stackexchange: differences between most, more and less
• My Vim Reference Guide ebook

77

https://unix.stackexchange.com/q/604/109046
https://unix.stackexchange.com/q/81129/109046
https://github.com/learnbyexample/vim_reference

tail
By default, tail displays the last 10 lines of input file(s). If there are less than 10 lines in the
input, only those lines will be displayed. You can use the -n option to change the number of
lines displayed. By using tail -n +N , you can get all the lines starting from the N th line.

Here’s an example file that’ll be used for illustration purposes:

$ cat sample.txt
1) Hello World
2)
3) Hi there
4) How are you
5)
6) Just do-it
7) Believe it
8)
9) banana
10) papaya
11) mango
12)
13) Much ado about nothing
14) He he he
15) Adios amigo

Here are some examples with -n option:

last two lines (input has 15 lines)
$ tail -n2 sample.txt
14) He he he
15) Adios amigo

all lines starting from the 11th line
space between -n and +N is optional
$ tail -n +11 sample.txt
11) mango
12)
13) Much ado about nothing
14) He he he
15) Adios amigo

If you pass multiple input files, each file will be processed separately. By default, the output is
nicely formatted with filename headers and empty line separators which you can override with
the -q (quiet) option.

$ tail -n2 fruits.txt sample.txt
==> fruits.txt <==
papaya
banana

==> sample.txt <==
14) He he he
15) Adios amigo

78

The -c option works similar to the -n option, but with bytes instead of lines:

last three bytes
note that the input doesn't end with a newline character
$ printf 'apple pie' | tail -c3
pie

starting from the fifth byte
$ printf 'car\njeep\nbus\n' | tail -c +5
jeep
bus

Further Reading

• wikipedia: File monitoring with tail -f and -F options
• unix.stackexchange: How does the tail -f option work?
• How to deal with output buffering?

head
By default, head displays the first 10 lines of input file(s). If there are less than 10 lines in the
input, only those lines will be displayed. You can use the -n option to change the number of
lines displayed. By using head -n -N , you can get all the input lines except the last N lines.

first three lines
$ head -n3 sample.txt
1) Hello World
2)
3) Hi there

except the last 11 lines
$ head -n -11 sample.txt
1) Hello World
2)
3) Hi there
4) How are you

You can select a range of lines by combining both head and tail commands.

9th to 11th lines
same as: tail -n +9 sample.txt | head -n3
$ head -n11 sample.txt | tail -n +9
9) banana
10) papaya
11) mango

If you pass multiple input files, each file will be processed separately. By default, the output is
nicely formatted with filename headers and empty line separators which you can override with
the -q (quiet) option.

$ printf '1\n2\n' | head -n1 greeting.txt -
==> greeting.txt <==
Hi there

79

https://en.wikipedia.org/wiki/Tail_(Unix)#File_monitoring
https://unix.stackexchange.com/q/18760/109046
https://mywiki.wooledge.org/BashFAQ/009

==> standard input <==
1

The -c option works similar to the -n option, but with bytes instead of lines:

first three bytes
$ printf 'apple pie' | head -c3
app

excluding the last four bytes
$ printf 'car\njeep\nbus\n' | head -c -4
car
jeep

Exercises

Use example_files/text_files directory for input files used in the following exercises.

1) Which option(s) would you use to get the output shown below?
$ printf '\n\n\ndragon\n\n\nunicorn\n\n\n' | cat # ???

1 dragon

2 unicorn

2) Pass appropriate arguments to the cat command to get the output shown below.

$ cat greeting.txt
Hi there
Have a nice day

$ echo '42 apples and 100 bananas' | cat # ???
42 apples and 100 bananas
Hi there
Have a nice day

3) Will the two commands shown below produce the same output? If not, why not?
$ cat fruits.txt ip.txt | tac

$ tac fruits.txt ip.txt

4) Go through the manual for the tac command and use appropriate options and arguments
to get the output shown below.

$ cat blocks.txt
%=%=
apple
banana
%=%=

80

https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

brown
green

???
%=%=
brown
green
%=%=
apple
banana

5)What is the difference between less -n and less -N options? Do cat -n and less -n
have similar functionality?

6) Which command would you use to open another file from within an existing less session?
And which commands would you use to navigate between previous and next files?

7) Use appropriate commands and shell features to get the output shown below.
$ printf 'carpet\njeep\nbus\n'
carpet
jeep
bus

use the above 'printf' command for input data
$ c=# ???
$ echo "$c"
car

8) How would you display all the input lines except the first one?
$ printf 'apple\nfig\ncarpet\njeep\nbus\n' | # ???
fig
carpet
jeep
bus

9) Which command(s) would you use to get the output shown below?
$ cat fruits.txt
banana
papaya
mango
$ cat blocks.txt
%=%=
apple
banana
%=%=
brown
green

???
banana
papaya

81

%=%=
apple

10) Use a combination of head and tail commands to get the 11th to 14th characters from
the given input.

$ printf 'apple\nfig\ncarpet\njeep\nbus\n' | # ???
carp

11) Extract starting six bytes from the input files table.txt and fruits.txt .

???
brown banana

12) Extract last six bytes from the input files fruits.txt and table.txt .

???
mango
3.14

82

Searching Files and Filenames
This chapter will show how to search file contents based on literal strings or regular expressions.
After that, you’ll learn how to locate files based on their names and other properties like size,
last modified timestamp and so on.

The example_files directory has the scripts used in this chapter.

grep
Quoting from wikipedia:

grep is a command-line utility for searching plain-text data sets for lines that match a
regular expression. Its name comes from the ed command g/re/p (globally search a
regular expression and print), which has the same effect.

The grep command has lots and lots of features, so much so that I wrote a book about it. The
most common usage is filtering lines from the input using a regular expression (regexp).

Common options

Commonly used options are shown below. Examples will be discussed in later sections.

• --color=auto highlight the matching portions, filenames, line numbers, etc using colors
• -i ignore case while matching
• -v print only non-matching lines
• -n prefix line numbers for output lines
• -c display only the count of output lines
• -l print only the filenames matching the given expression
• -L print filenames not matching the pattern
• -w match pattern only as whole words
• -x match pattern only as whole lines
• -F interpret pattern as a fixed string (i.e. not a regular expression)
• -o print only matching parts
• -A N print matching line and N number of lines after the matched line
• -B N print matching line and N number of lines before the matched line
• -C N print matching line and N number of lines before and after the matched line
• -m N print a maximum of N matching lines
• -q no standard output, quit immediately if match found, useful in scripts
• -s suppress error messages, useful in scripts
• -r recursively search all files in the specified input folders (by default searches current
directory)

• -R like -r , but follows symbolic links as well
• -h do not prefix filename for matching lines (default behavior for single input file)
• -H prefix filename for matching lines (default behavior for multiple input files)

Literal search

The following examples would all be suited for -F option as these do not use regular expressions.
grep is smart enough to do the right thing in such cases.

83

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://en.wikipedia.org/wiki/Grep
https://github.com/learnbyexample/learn_gnugrep_ripgrep

lines containing 'an'
$ printf 'apple\nbanana\nmango\nfig\ntango\n' | grep 'an'
banana
mango
tango

case insensitive matching
$ printf 'Cat\ncut\ncOnCaT\nfour cats\n' | grep -i 'cat'
Cat
cOnCaT
four cats

match only whole words
$ printf 'par value\nheir apparent\ntar-par' | grep -w 'par'
par value
tar-par

count empty lines
$ printf 'hi\n\nhello\n\n\n\nbye\n' | grep -cx ''
4

matching line and two lines after
$ printf 'red\nblue\ngreen\nbrown\nyellow' | grep -A2 'blue'
blue
green
brown

Here’s an example with line numbers and matched portions in color:

Regular Expressions

By default, grep treats the search pattern as Basic Regular Expression (BRE)

• -G option can be used to specify explicitly that BRE is needed
• -E option will enable Extended Regular Expression (ERE)

∘ in GNU grep , BRE and ERE only differ in how metacharacters are specified, no
difference in features

• -F option will cause the search patterns to be treated literally
• -P if available, this option will enable Perl Compatible Regular Expression (PCRE)

The following reference is for Extended Regular Expressions.

84

Anchors

• ^ restricts the match to the start of the string
• $ restricts the match to the end of the string
• \< restricts the match to the start of word
• \> restricts the match to the end of word
• \b restricts the match to the start/end of words
• \B matches wherever \b doesn’t match

Dot metacharacter and Quantifiers

• . match any character, including the newline character
• ? match 0 or 1 times
• * match 0 or more times
• + match 1 or more times
• {m,n} match m to n times
• {m,} match at least m times
• {,n} match up to n times (including 0 times)
• {n} match exactly n times

Character classes

• [set123] match any of these characters once
• [^set123] match except any of these characters once
• [3-7AM-X] range of characters from 3 to 7 , A , another range from M to X
• \w similar to [a-zA-Z0-9_] for matching word characters
• \s similar to [\t\n\r\f\v] for matching whitespace characters
• \W match non-word characters
• \S match non-whitespace characters
• [[:digit:]] similar to [0-9]
• [[:alnum:]_] similar to \w

∘ see grep manual for full list
Alternation and Grouping

• pat1|pat2|pat3 match pat1 or pat2 or pat3
• () group patterns, a(b|c)d is same as abd|acd

∘ also serves as a capture group
• \N backreference, gives matched portion of N th capture group

∘ \1 backreference to the first capture group
∘ \2 backreference to the second capture group and so on up to \9

Quoting from the manual for BRE vs ERE differences:

In basic regular expressions the meta-characters ? , + , { , | , (, and) lose
their special meaning; instead use the backslashed versions \? , \+ , \{ , \| , \(,
and \) .

Regexp examples

lines ending with 'ar'
$ printf 'spared no one\npar\nspar\ndare' | grep 'ar$'

85

https://www.gnu.org/software/grep/manual/grep.html#Character-Classes-and-Bracket-Expressions

par
spar

extract 'part' or 'parrot' or 'parent' case insensitively
$ echo 'par apartment PARROT parent' | grep -ioE 'par(en|ro)?t'
part
PARROT
parent

extract quoted text
$ echo 'I like "mango" and "guava"' | grep -oE '"[^"]+"'
"mango"
"guava"

8 character lines having same 3 lowercase letters at start and end
$ grep -xE '([a-z]{3})..\1' /usr/share/dict/words
mesdames
respires
restores
testates

Line comparisons between files

The -f and -x options can be combined to get common lines between two files or the
difference when -v is used as well. Add -F if you want to treat the search strings literally
(recall that regexp is the default).

change to the 'scripts' directory and source the 'grep.sh' script
$ source grep.sh

common lines between two files
$ grep -Fxf colors_1 colors_2
yellow

lines present in colors_2 but not in colors_1
$ grep -Fvxf colors_1 colors_2
blue
black
dark green

lines present in colors_1 but not in colors_2
$ grep -Fvxf colors_2 colors_1
teal
light blue
brown

Perl Compatible Regular Expression

PCRE has many advanced features compared to BRE/ERE. Here are some examples:

86

numbers >= 100, uses possessive quantifiers
$ echo '0501 035 154 12 26 98234' | grep -oP '0*+\d{3,}'
0501
154
98234

extract digits only if preceded by =
$ echo '100 apple=42, fig=314 red:255' | grep -oP '=\K\d+'
42
314

all digits and optional hyphen combo from the start of the line
$ echo '123-87-593 42 fig 314-12-111' | grep -oP '\G\d+-?'
123-
87-
593

all whole words except 'bat' and 'map'
$ echo 'car2 bat cod map combat' | grep -oP '\b(bat|map)\b(*SKIP)(*F)|\w+'
car2
cod
combat

See man pcrepattern or PCRE online manual for documentation.

Recursive search

You can use the -r option to search recursively within the specified directories. By default, the
current directory will be searched. Use -R if you want symbolic links found within the input
directories to be followed as well. You do not need the -R option for specifying symbolic links
as arguments.

Here are some basic examples. Recursive search will work as if -H option was specified as
well, even if only one file was matched. Also, hidden files are included by default.

change to the 'scripts' directory and source the 'grep.sh' script
$ source grep.sh
$ ls -AF
backups/ colors_1 colors_2 .hidden projects/

recursively search in the 'backups' directory
$ grep -r 'clear' backups
backups/dot_files/.bash_aliases:alias c=clear
add -h option to prevent filename prefix in the output
$ grep -rh 'clear' backups
alias c=clear

by default, the current directory is used for recursive search
$ grep -rl 'clear'
.hidden
backups/dot_files/.bash_aliases

87

https://www.pcre.org/original/doc/html/pcrepattern.html

You can further prune the files to be searched using the include/exclude options. Note that these
options will work even if recursive search is not active.

Option Description

--include=GLOB search only files that match GLOB
--exclude=GLOB skip files that match GLOB
--exclude-from=FILE skip files that match any file pattern from FILE
--exclude-dir=GLOB skip directories that match GLOB

default recursive search
$ grep -r 'Hello'
projects/python/hello.py:print("Hello, Python!")
projects/shell/hello.sh:echo "Hello, Bash!"

limit the search to only filenames ending with '.py'
$ grep -r --include='*.py' 'Hello'
projects/python/hello.py:print("Hello, Python!")

alternatively, you can use shell globs instead of recursive+include/exclude
$ shopt -s globstar
$ grep -H 'Hello' **/*.py
projects/python/hello.py:print("Hello, Python!")

ripgrep is a recommended alternative to GNU grep with a highly optimized regexp
engine, parallel search, ignoring files based on .gitignore and so on.

grep and xargs

You can use the shell | operator to pass the output of a command as input to another command.
Suppose a command gives you a list of filenames and you want to pass this list as input arguments
to another command, what would you do? One solution is to use the xargs command. Here’s
a basic example (assuming filenames won’t conflict with shell metacharacters):

an example command producing a list of filenames
$ grep -rl 'clear'
.hidden
backups/dot_files/.bash_aliases

same as: head -n1 .hidden backups/dot_files/.bash_aliases
$ grep -rl 'clear' | xargs head -n1
==> .hidden <==
ghost

==> backups/dot_files/.bash_aliases <==
alias p=pwd

Characters like space, newline, semicolon, etc are special to the shell. So, filenames containing
these characters have to be properly quoted. Or, where applicable, you can use a list of filenames
separated by the ASCII NUL character (since filenames cannot have the NUL character). You

88

https://github.com/BurntSushi/ripgrep

can use grep -Z to separate the output with NUL and xargs -0 to treat the input as NUL
separated. Here’s an example:

consider this command that generates a list of filenames
$ grep -rl 'blue'
.hidden
colors_1
colors_2
backups/color list.txt

example to show issues due to filenames containing shell metacharacters
'backups/color list.txt' is treated as two different files
$ grep -rl 'blue' | xargs grep -l 'teal'
colors_2
grep: backups/color: No such file or directory
grep: list.txt: No such file or directory

use 'grep -Z' + 'xargs -0' combo for a robust solution
match files containing both 'blue' and 'teal'
$ grep -rlZ 'blue' | xargs -0 grep -l 'teal'
colors_1

Note that the command passed to xargs doesn’t accept custommade aliases and functions. So,
if you had aliased grep to grep --color=auto , don’t be surprised if the output isn’t colorized.
See unix.stackexchange: have xargs use alias instead of binary for details and workarounds.

You can use xargs -r to avoid running the command when the filename list doesn’t
have any non-blank character (i.e. when the list is empty).

there's no file containing 'violet'
so, xargs doesn't get any filename, but grep is still run
$ grep -rlZ 'violet' | xargs -0 grep -L 'brown'
(standard input)

using -r option avoids running the command in such cases
$ grep -rlZ 'violet' | xargs -r0 grep -L 'brown'

Do not use xargs -P to combine the output of parallel runs, as you are
likely to get a mangled result. The parallel command would be a better option. See
unix.stackexchange: xargs vs parallel for more details. See also unix.stackexchange:
when to use xargs.

Further Reading

• My ebook GNU GREP and RIPGREP
∘ See also my blog post GNU BRE/ERE cheatsheet

• Why GNU grep is fast
• unix.stackexchange: grep -r vs find+grep

89

https://unix.stackexchange.com/q/141367/109046
https://www.gnu.org/software/parallel/
https://unix.stackexchange.com/q/104778/109046
https://unix.stackexchange.com/q/24954/109046
https://unix.stackexchange.com/q/24954/109046
https://github.com/learnbyexample/learn_gnugrep_ripgrep
https://learnbyexample.github.io/gnu-bre-ere-cheatsheet/
https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://unix.stackexchange.com/q/131535/109046

find
The find command has comprehensive features to filter files and directories based on their
name, size, timestamp and so on. And more importantly, find helps you to perform actions on
such filtered files.

Filenames

By default, you’ll get every entry (including hidden ones) in the current directory and sub-
directories when you use find without any options or paths. To search within specific path(s),
they should be immediately mentioned after find , i.e. before any options.

change to the 'scripts' directory and source the 'find.sh' script
$ source find.sh
$ ls -F
backups/ hello_world.py* ip.txt report.log todos/
errors.log hi.sh* projects/ scripts@

$ cd projects
same as: find .
$ find
.
./.venv
./tictactoe
./tictactoe/game.py
./calculator
./calculator/calc.sh

$ cd ..
$ find todos
todos
todos/books.txt
todos/TRIP.txt
todos/wow.txt

Note that symbolic links won’t be followed by default. You can use -L option for
such cases.

To match filenames based on a particular criteria, you can use wildcards or regular expressions.
For wildcards, you can use -name or the case-insensitive version -iname . These will match
only the basename, so you’ll get a warning if you use / as part of the pattern. You can use
-path and -ipath if you need to include / as well in the pattern. Unlike grep , the glob
pattern is matched against the entire basename (as there are no start/end anchors in globs).

filenames ending with '.log'
'find .' indicates current working directory (CWD) as the path to search
$ find . -name '*.log'
./report.log
./backups/aug.log
./backups/jan.log
./errors.log

90

match filenames containing 'ip' case-insensitively
note the use of '*' on both sides of 'ip' to match the whole filename
. is optional when CWD is the only path to search
$ find -iname '*ip*'
./todos/TRIP.txt
./scripts
./ip.txt

names containing 'k' within 'backups' and 'todos' directories
$ find backups todos -name '*k*'
backups
backups/bookmarks.html
todos/books.txt

You can use the -not (or !) operator to invert the matching condition:

same as: find todos ! -name '*[A-Z]*'
$ find todos -not -name '*[A-Z]*'
todos
todos/books.txt
todos/wow.txt

You can use -regex and -iregex (case-insensitive) to match filenames based on regular
expressions. In this case, the pattern will match the entire path, so use of / is possible without
needing to use special options. The default regexp flavor is emacs which you can change by
using the -regextype option.

filename containing only uppercase alphabets and file extension is '.txt'
note the use of '.*/' to match the entire file path
$ find -regex '.*/[A-Z]+\.txt'
./todos/TRIP.txt

here 'egrep' flavor is being used
filename starting and ending with the same word character (case-insensitive)
and file extension is '.txt'
$ find -regextype egrep -iregex '.*/(\w).*\1\.txt'
./todos/wow.txt

File type

The -type option helps to filter files based on their types like regular file, directory, symbolic
link, etc.

regular files
$ find projects -type f
projects/tictactoe/game.py
projects/calculator/calc.sh

regular files that are hidden as well
$ find -type f -name '.*'
./.hidden
./backups/dot_files/.bashrc

91

./backups/dot_files/.inputrc

./backups/dot_files/.vimrc

directories
$ find projects -type d
projects
projects/.venv
projects/tictactoe
projects/calculator

symbolic links
$ find -type l
./scripts

You can use , to separate multiple file types. For example, -type f,l will match
both regular files and symbolic links.

Depth

The path being searched is considered as depth 0 , files within the search path are at depth 1
, files within a sub-directory are at depth 2 and so on. Note that these global options should
be specified before other kind of options like -type , -name , etc.

-maxdepth option restricts the search to the specified maximum depth:

non-hidden regular files only in the current directory
sub-directories will not be checked
-not -name '.*' can also be used instead of -name '[^.]*'
$ find -maxdepth 1 -type f -name '[^.]*'
./report.log
./hi.sh
./errors.log
./hello_world.py
./ip.txt

-mindepth option specifies the minimum depth:

recall that path being searched is considered as depth 0
and contents within the search path are at depth 1
$ find -mindepth 1 -maxdepth 1 -type d
./projects
./todos
./backups

$ find -mindepth 3 -type f
./projects/tictactoe/game.py
./projects/calculator/calc.sh
./backups/dot_files/.bashrc
./backups/dot_files/.inputrc
./backups/dot_files/.vimrc

92

Age

Consider the following file properties:

• a accessed
• c status changed
• m modified

The above prefixes need to be combined with time (based on 24 hour periods) or min (based
on minutes) options. For example, -mtime (24 hour) option checks for last modified timestamp
and -amin (minute) checks for last accessed timestamp. These options accept a number (inte-
ger or fractional) argument, that can be further prefixed by + or - symbols. Here are some
examples:

modified less than 24 hours ago
$ find -maxdepth 1 -type f -mtime 0
./hello_world.py
./ip.txt

accessed between 24 to 48 hours ago
$ find -maxdepth 1 -type f -atime 1
./ip.txt
accessed within the last 24 hours
$ find -maxdepth 1 -type f -atime -1
./hello_world.py
accessed within the last 48 hours
$ find -maxdepth 1 -type f -atime -2
./hello_world.py
./ip.txt

modified more than 20 days back
$ find -maxdepth 1 -type f -mtime +20
./.hidden
./report.log
./errors.log

The -daystart qualifier will measure time only from the beginning of the day. For
example, -daystart -mtime 1 will check the files that were modified yesterday.

Size

You can use the -size option to filter based on file sizes. By default, the number argument
will be considered as 512-byte blocks. You can use the suffix c to specify the size in bytes. The
suffixes k (kilo), M (mega) and G (giga) are calculated in powers of 1024.

greater than 10 * 1024 bytes
$ find -type f -size +10k
./report.log
./errors.log

greater than 9 bytes and less than 50 bytes

93

$ find -type f -size +9c -size -50c
./hi.sh
./hello_world.py
./ip.txt

exactly 10 bytes
$ find -type f -size 10c
./ip.txt

You can also use the -empty option instead of -size 0 .

Acting on matched files

The -exec option helps you to pass the matching files to another command. You can choose to
execute the command once for every file (by using \;) or just once for all the matching files
(by using +). However, if the number of files are too many, find will use more command
invocations as necessary. The ; character is escaped since it is a shell metacharacter (you can
also quote it as an alternative to escaping).

You need to use {} to represent the file(s) passed as argument(s) to the command being
executed. Here are some examples:

count the number of characters for each matching file
wc is called separately for each matching file
$ find -type f -size +9k -exec wc -c {} \;
1234567 ./report.log
54321 ./errors.log

here, both matching files are passed together to the wc command
$ find -type f -size +9k -exec wc -c {} +
1234567 ./report.log

54321 ./errors.log
1288888 total

As mentioned in the Managing Files and Directories chapter, the -t option for cp and mv
commands will help you specify the target directory before the source files. Here’s an example:

$ mkdir rc_files
$ find backups/dot_files -type f -exec cp -t rc_files {} +

$ find rc_files -type f
rc_files/.bashrc
rc_files/.inputrc
rc_files/.vimrc

$ rm -r rc_files

94

You can use the -delete option instead of calling the rm command to delete
the matching files. However, it cannot remove non-empty directories and there are other
gotchas to be considered. See the manual for more details.

Multiple criteria

You can specify multiple matching criteria such as -name , -size , -mtime , etc. You can use
operators between them and group them within \(and \) to construct complex expressions.

• -a or -and or absence of an operator means both expressions have to be satisfied
∘ second expression won’t be evaluated if the first one is false

• -o or -or means either of the expressions have to be satisfied
∘ second expression won’t be evaluated if the first one is true

• -not inverts the result of the expression
∘ you can also use ! but that might need escaping or quoting depending on the shell

names containing both 'x' and 'ip' in any order (case-insensitive)
$ find -iname '*x*' -iname '*ip*'
./todos/TRIP.txt
./ip.txt

names containing 'sc' or size greater than 10k
$ find -name '*sc*' -or -size +10k
./report.log
./scripts
./errors.log

except filenames containing 'o' or 'r' or 'txt'
$ find -type f -not \(-name '*[or]*' -or -name '*txt*' \)
./projects/tictactoe/game.py
./projects/calculator/calc.sh
./.hidden
./hi.sh

Prune

The -prune option is helpful when you want to prevent find from descending into specific
directories. By default, find will traverse all the files even if the given conditions will result
in throwing away those results from the output. So, using -prune not only helps in speeding
up the process, it could also help in cases where trying to access a file within the exclusion path
would’ve resulted in an error.

regular files ending with '.log'
$ find -type f -name '*.log'
./report.log
./backups/aug.log
./backups/jan.log
./errors.log

exclude the 'backups' directory

95

note the use of -path when '/' is needed in the pattern
$ find -type f -not -path './backups/*' -prune -name '*.log'
./report.log
./errors.log

Using -not -path '*/.git/*' -prune can be handy when dealing with Git based version con-
trol projects.

find and xargs

Similar to grep -Z and xargs -0 combination seen earlier, you can use find -print0 and
xargs -0 combination. The -exec option is sufficient for most use cases, but xargs -P (or
the parallel command) can be handy if you need parallel execution for performance reasons.

Here’s an example of passing filtered files to sed (stream editor, will be discussed in the
Multipurpose Text Processing Tools chapter):

$ find -name '*.log'
./report.log
./backups/aug.log
./backups/jan.log
./errors.log

for the filtered files, replace all occurrences of 'apple' with 'fig'
'sed -i' will edit the files inplace, so no output on the terminal
$ find -name '*.log' -print0 | xargs -r0 -n2 -P2 sed -i 's/apple/fig/g'

In the above example, -P2 is used to allow xargs to run two processes at a time (default
is one process). You can use -P0 to allow xargs to launch as many processes as possible.
The -n2 option is used to limit the number of file arguments passed to each sed call to 2
, otherwise xargs is likely to pass as many arguments as possible and thus reduce/negate the
effect of parallelism. Note that the values used for -n and -P in the above illustration are
just random examples, you’ll have to fine tune them for your particular use case.

Further Reading

• mywiki.wooledge: using find
• unix.stackexchange: find and tar example
• unix.stackexchange: Why is looping over find’s output bad practice?

locate
locate is a faster alternative to the find command for searching files by name. It is based
on a database, which gets updated by a cron job. So, newer files may be not present in results
unless you update the database. Use this command if it is available in your distro (for example,
sudo apt install mlocate on Debian-like systems) and you remember some part of filename.
Very useful if you have to search the entire filesystem in which case find command will take
a very long time compared to locate .

Here are some examples:

• locate 'power' print path of filenames containing power in the whole filesystem

96

https://www.gnu.org/software/parallel/
https://mywiki.wooledge.org/UsingFind
https://unix.stackexchange.com/q/282762/109046
https://unix.stackexchange.com/q/321697/109046
https://en.wikipedia.org/wiki/Cron

∘ implicitly, locate would change the string to *power* as no globbing characters
are present in the string specified

• locate -b '\power.log' print path matching the string power.log exactly at the end
of the path

∘ /home/learnbyexample/power.log matches
∘ /home/learnbyexample/lowpower.log' will not match since there are other charac-
ters at the start of the filename

∘ use of \ prevents the search string from implicitly being replaced by *power.log*
• locate -b '\proj_adder' the -b option is also handy to print only the matching direc-
tory name, otherwise every file under that folder would also be displayed

See also unix.stackexchange: pros and cons of find and locate.

Exercises

For grep exercises, use example_files/text_files directory for input files, unless oth-
erwise specified.

For find exercises, use the find.sh script, unless otherwise specified.

1) Display lines containing an from the input files blocks.txt , ip.txt and uniform.txt
. Show the results with and without filename prefix.

???
blocks.txt:banana
ip.txt:light orange
uniform.txt:mango

???
banana
light orange
mango

2) Display lines containing the whole word he from the sample.txt input file.

???
14) He he he

3) Match only whole lines containing car irrespective of case. The matching lines should be
displayed with line number prefix as well.

$ printf 'car\nscared\ntar car par\nCar\n' | grep # ???
1:car
4:Car

4) Display all lines from purchases.txt except those that contain tea .

???
coffee

97

https://unix.stackexchange.com/q/60205/109046
https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

washing powder
coffee
toothpaste
soap

5) Display all lines from sample.txt that contain do but not it .

???
13) Much ado about nothing

6) For the input file sample.txt , filter lines containing do and also display the line that
comes after such a matching line.

???
6) Just do-it
7) Believe it
--
13) Much ado about nothing
14) He he he

7) For the input file sample.txt , filter lines containing are or he as whole words as well as
the line that comes before such a matching line. Go through info grep or the online manual
and use appropriate options such that there’s no separator between the groups of matching lines
in the output.

???
3) Hi there
4) How are you
13) Much ado about nothing
14) He he he

8) Extract all pairs of () with/without text inside them, provided they do not contain ()
characters inside.

$ echo 'I got (12) apples' | grep # ???
(12)

$ echo '((2 +3)*5)=25 and (4.3/2*()' | grep # ???
(2 +3)
()

9) For the given input, match all lines that start with den or end with ly .

$ lines='reply\n1 dentist\n2 lonely\neden\nfly away\ndent\n'

$ printf '%b' "$lines" | grep # ???
reply
2 lonely
dent

10) Extract words starting with s and containing both e and t in any order.

$ words='sequoia subtle exhibit sets tests sit store_2'

$ echo "$words" | grep # ???

98

https://www.gnu.org/software/grep/manual/grep.html

subtle
sets
store_2

11) Extract all whole words having the same first and last word character.
$ echo 'oreo not a _oh_ pip roar took 22' | grep # ???
oreo
a
oh
pip
roar
22

12) Match all input lines containing *[5] literally.

$ printf '4*5]\n(9-2)*[5]\n[5]*3\nr*[5\n' | grep # ???
(9-2)*[5]

13)Match whole lines that start with hand and immediately followed by s or y or le or
no further character.

$ lines='handed\nhand\nhandy\nunhand\nhands\nhandle\nhandss\n'

$ printf '%b' "$lines" | grep # ???
hand
handy
hands
handle

14) Input lines have three or more fields separated by a , delimiter. Extract second field to
second last field. In other words, extract fields other than first and last.

$ printf 'apple,fig,cherry\ncat,dog,bat\n' | grep # ???
fig
dog

$ echo 'dragon,42,unicorn,3.14,shapeshifter\n' | grep # ???
42,unicorn,3.14

15) Recursively search for files containing ello .

change to the 'scripts' directory and source the 'grep.sh' script
$ source grep.sh

???
projects/python/hello.py
projects/shell/hello.sh
colors_1
colors_2

16) Search for files containing blue recursively, but do not search within the backups direc-
tory.

99

change to the 'scripts' directory and source the 'grep.sh' script
$ source grep.sh

???
.hidden
colors_1
colors_2

17) Search for files containing blue recursively, but not if the file also contains teal .

change to the 'scripts' directory and source the 'grep.sh' script
$ source grep.sh

???
.hidden
colors_2
backups/color list.txt

18) Find all regular files within the backups directory.

change to the 'scripts' directory and source the 'find.sh' script
$ source find.sh

???
backups/dot_files/.bashrc
backups/dot_files/.inputrc
backups/dot_files/.vimrc
backups/aug.log
backups/bookmarks.html
backups/jan.log

19) Find all regular files whose extension starts with p or s or v .

???
./projects/tictactoe/game.py
./projects/calculator/calc.sh
./hi.sh
./backups/dot_files/.vimrc
./hello_world.py

20) Find all regular files whose name do not have the lower case alphabets g to l .

???
./todos/TRIP.txt
./todos/wow.txt

21) Find all regular files whose path has at least one directory name starting with p or d .

???
./projects/tictactoe/game.py
./projects/calculator/calc.sh
./backups/dot_files/.bashrc
./backups/dot_files/.inputrc
./backups/dot_files/.vimrc

100

22) Find all directories whose name contains b or d .

???
./todos
./backups
./backups/dot_files

23) Find all hidden directories.
???
./projects/.venv

24) Find all regular files at exact depth of 2 .

???
./todos/books.txt
./todos/TRIP.txt
./todos/wow.txt
./backups/aug.log
./backups/bookmarks.html
./backups/jan.log

25) What’s the difference between find -mtime and find -atime ? And, what is the time
period these options work with?

26) Find all empty regular files.
???
./projects/tictactoe/game.py
./projects/calculator/calc.sh
./todos/books.txt
./todos/TRIP.txt
./todos/wow.txt
./backups/dot_files/.bashrc
./backups/dot_files/.inputrc
./backups/dot_files/.vimrc
./backups/aug.log
./backups/bookmarks.html
./backups/jan.log

27) Create a directory named filtered_files . Then, copy all regular files that are greater
than 1 byte in size but whose name don’t end with .log to this directory.

???
$ ls -A filtered_files
hello_world.py .hidden hi.sh ip.txt

28) Find all hidden files, but not if they are part of the filtered_files directory created
earlier.

???
./.hidden
./backups/dot_files/.bashrc
./backups/dot_files/.inputrc
./backups/dot_files/.vimrc

101

29) Delete the filtered_files directory created earlier. Then, go through the find manual
and figure out how to list only executable files.

???
./hi.sh
./hello_world.py

30) List at least one use case for piping the find output to the xargs command instead of
using the find -exec option.

31) How does the locate command work faster than the equivalent find command?

102

File Properties
In this chapter, you’ll learn how to view file details like line and word counts, file and disk sizes,
file types, extract parts of file path, etc. You’ll also learn how to change file properties like
timestamps and permissions.

The example_files directory has the scripts and sample input files used in this chapter.

wc
The wc command is typically used to count the number of lines, words and characters for the
given input(s). Here are some basic examples:

change to the 'example_files/text_files' directory
$ cat greeting.txt
Hi there
Have a nice day

by default, gives newline/word/byte count (in that order)
$ wc greeting.txt
2 6 25 greeting.txt

get only the specified counts
$ wc -l greeting.txt
2 greeting.txt
$ wc -w greeting.txt
6 greeting.txt
$ wc -c greeting.txt
25 greeting.txt
$ wc -wc greeting.txt
6 25 greeting.txt

Filename won’t be printed for stdin data. This is helpful to save the results in a variable for
scripting purposes.

$ wc -l <greeting.txt
2

Word count is based on whitespace separation. You can pre-process the input to prevent certain
non-whitespace characters to influence the results. tr can be used to remove a particular set
of characters (this command will be discussed in the Assorted Text Processing Tools chapter).

$ echo 'apple ; banana ; cherry' | wc -w
5

remove characters other than alphabets and whitespace
-d option is for deleting, -c option complements the given set
$ echo 'apple ; banana ; cherry' | tr -cd 'a-zA-Z[:space:]'
apple banana cherry
$ echo 'apple ; banana ; cherry' | tr -cd 'a-zA-Z[:space:]' | wc -w
3

103

https://github.com/learnbyexample/cli-computing/tree/master/example_files

If you pass multiple files to the wc command, the count values will be displayed separately for
each file. You’ll also get a summary at the end, which sums the respective count of all the input
files.

$ wc greeting.txt fruits.txt sample.txt
2 6 25 greeting.txt
3 3 20 fruits.txt

15 38 183 sample.txt
20 47 228 total

You can use the -L option to report the length of the longest line in the input (excluding the
newline character of a line). Note that -L won’t count non-printable characters and tabs
are converted to equivalent spaces. Multibyte characters and grapheme clusters will each be
counted as 1 (depending on the locale, they might become non-printable too).

$ echo 'apple' | wc -L
5

$ echo 'αλεπού cag̈e' | wc -L
11

$ wc -L <greeting.txt
15

Use -m option instead of -c if the input has multibyte characters.

$ printf 'αλεπού' | wc -c
12

$ printf 'αλεπού' | wc -m
6

du
The du command helps you estimate the size of files and directories.

By default, size is given in size in terms of 1024 bytes. All directories and sub-directories are
recursively reported, but files are ignored. You can use the -a option if files should also be
reported. du is one of the commands that require an explicit option (-L in this case) if you
want symbolic links to be followed.

change to the 'scripts' directory and source the 'du.sh' script
$ source du.sh

n * 1024 bytes
$ du
28 ./projects/scripts
48 ./projects
8 ./todos
7536 .

Use -s option to show the total directory size without descending into sub-directories. Add
-c option to also show total size at the end.

104

https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

$ du -s projects report.log
48 projects
7476 report.log

$ du -sc projects report.log
48 projects
7476 report.log
7524 total

Here are some examples to illustrate size formatting options:

number of bytes
$ du -b report.log
7654321 report.log

n * 1024 bytes
$ du -k report.log
7476 report.log

n * 1024 * 1024 bytes
$ du -m report.log
8 report.log

The -h option reports size in human readable format (uses power of 1024). Use --si option
to get results in powers of 1000 instead. If you use du -h , you can pipe the output to sort -h
for sorting purposes.

$ du -sh *
48K projects
7.4M report.log
8.0K todos

$ du -sh * | sort -h
8.0K todos
48K projects
7.4M report.log

df
The df command gives you the space usage of file systems. df without path arguments
will give information about all the currently mounted file systems. You can specify . to get
information only for the current filesystem:

$ df .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 98298500 58563816 34734748 63% /

Use -h option for human readable sizes. The -B option allows you to scale sizes by the
specified amount. Use --si for size in powers of 1000 instead of 1024.

$ df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 94G 56G 34G 63% /

105

Use the --output option to report only specific fields of interest:

$ df -h --output=size,used,file / /media/learnbyexample/projs
Size Used File
94G 56G /
92G 35G /media/learnbyexample/projs

'awk' here excludes first line and matches lines with first field >= 30
$ df -h --output=pcent,fstype,target | awk 'NR>1 && $1>=30'
63% ext3 /
38% ext4 /media/learnbyexample/projs
51% ext4 /media/learnbyexample/backups

stat
The stat command is useful to get details like file type, size, inode, permissions, last accessed
and modified timestamps, etc. You’ll get all of these details by default. The -c and --printf
options can be used to display only the required details in a particular format.

change to the 'scripts' directory and source the 'stat.sh' script
$ source stat.sh

%x gives last accessed timestamp
$ stat -c '%x' ip.txt
2022-06-01 13:25:18.693823117 +0530

%y gives last modified timestamp
$ stat -c '%y' ip.txt
2022-05-24 14:39:41.285714934 +0530

%s gives file size in bytes
\n is used to get a newline
%i gives the inode value
same as: stat --printf='%s\n%i\n' ip.txt
$ stat -c $'%s\n%i' ip.txt
10
787224

%N gives quoted filenames
if input is a link, path it points to is also displayed
$ stat -c '%N' words.txt
'words.txt' -> '/usr/share/dict/words'

You can also pass multiple file arguments:

%s gives file size in bytes
%n gives filenames
$ stat -c '%s %n' ip.txt hi.sh
10 ip.txt
21 hi.sh

106

The stat command should be preferred instead of parsing ls -l output for
file details. See mywiki.wooledge: avoid parsing output of ls and unix.stackexchange: why
not parse ls? for explanation and other alternatives.

touch
As mentioned earlier, the touch command helps you change the timestamps of files. You can
do so based on current timestamp, passing an argument, copying the value from another file and
so on.

By default, touch updates both access and modification timestamps to the current time. You
can use -a to change only access timestamp and -m to change only modification timestamp.

change to the 'scripts' directory and source the 'touch.sh' script
$ source touch.sh

last access and modification timestamps
$ stat -c $'%x\n%y' fruits.txt
2017-07-19 17:06:01.523308599 +0530
2017-07-13 13:54:03.576055933 +0530

update access and modification values to the current time
$ touch fruits.txt
$ stat -c $'%x\n%y' fruits.txt
2022-06-14 13:01:25.921205889 +0530
2022-06-14 13:01:25.921205889 +0530

You can use the -r option to copy timestamp information from one file to another. The -d
and -t options will allow you to specify timestamps directly as part of the command.

$ stat -c '%y' hi.sh
2022-06-14 13:00:46.170416890 +0530

copy modified timestamp from 'ip.txt' to 'hi.sh'
$ touch -m -r ip.txt hi.sh
$ stat -c '%y' hi.sh
2022-05-24 14:39:41.285714934 +0530

pass timestamp as an argument
$ touch -m -d '2000-01-01 00:00:01' hi.sh
$ stat -c '%y' hi.sh
2000-01-01 00:00:01.000000000 +0530

As seen in the Managing Files and Directories chapter, touch creates a new file if the target
file doesn’t exist yet. You can use the -c option to prevent this behavior.

$ ls report.txt
ls: cannot access 'report.txt': No such file or directory
$ touch report.txt
$ ls report.txt
report.txt

107

https://mywiki.wooledge.org/ParsingLs
https://unix.stackexchange.com/q/128985/109046
https://unix.stackexchange.com/q/128985/109046

$ touch -c xyz.txt
$ ls xyz.txt
ls: cannot access 'xyz.txt': No such file or directory

file
The file command helps you identify text encoding (ASCII, UTF-8, etc), whether the file is
executable and so on.

Here are some examples to show how the file command behaves for different types:

change to the 'scripts' directory and source the 'file.sh' script
$ source file.sh
$ ls -F
hi.sh* ip.txt moon.png sunrise.jpg

$ file ip.txt hi.sh
ip.txt: ASCII text
hi.sh: Bourne-Again shell script, ASCII text executable

$ printf 'αλεπού\n' | file -
/dev/stdin: UTF-8 Unicode text

$ printf 'hi\r\n' | file -
/dev/stdin: ASCII text, with CRLF line terminators

Example for image files:

output of 'sunrise.jpg' wrapped for illustration purposes
$ file sunrise.jpg moon.png
sunrise.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI), density

96x96, segment length 16, baseline, precision 8, 76x76, components 3
moon.png: PNG image data, 76 x 76, 8-bit colormap, non-interlaced

You can use the -b option to avoid filenames in the output:

$ file -b ip.txt
ASCII text

Here is an example of finding particular type of files, say image files.

assuming filenames do not contain ':' or newline characters
awk here helps to print the first field of lines containing 'image data'
$ find -type f -exec file {} + | awk -F: '/\<image data\>/{print $1}'
./sunset.jpg
./moon.png

See also identify command which ”describes the format and characteristics of one
or more image files”.

108

basename
By default, the basename command will remove the leading directory component from the
given path argument. Any trailing slashes will be removed before determining the portion to be
extracted.

$ basename /home/learnbyexample/example_files/scores.csv
scores.csv

quote the arguments as needed
$ basename 'path with spaces/report.log'
report.log

You can use the -s option to remove a suffix from the filename. Usually used to remove the
file extension.

$ basename -s'.csv' /home/learnbyexample/example_files/scores.csv
scores

suffix will be removed only once
$ basename -s'.txt' purchases.txt.txt
purchases.txt

The basename command requires -a or -s (which implies -a) to work with multiple
arguments.

$ basename -a /backups/jan_2021.tar.gz /home/learnbyexample/report.log
jan_2021.tar.gz
report.log

-a is implied when -s is used
$ basename -s'.txt' logs/purchases.txt logs/report.txt
purchases
report

dirname
By default, the dirname command removes the trailing path component (after removing any
trailing slashes).

$ dirname /home/learnbyexample/example_files/scores.csv
/home/learnbyexample/example_files

one or more trailing slashes will not affect the output
$ dirname /home/learnbyexample/example_files/
/home/learnbyexample

unlike basename, multiple arguments are accepted by default
$ dirname /home/learnbyexample/example_files/scores.csv ../report/backups/
/home/learnbyexample/example_files
../report

You can use shell features like command substitution to combine the effects of basename and
dirname commands.

109

extract the second last path component
$ basename $(dirname /home/learnbyexample/example_files/scores.csv)
example_files

chmod
You can use the chmod command to change file and directory permissions. Consider this
example:

$ mkdir practice_chmod
$ cd practice_chmod
$ echo 'learnbyexample' > ip.txt

this info can also be seen in the first column of 'ls -l' output
$ stat -c '%A' ip.txt
-rw-rw-r--

In the above output, the 10 characters displayed in the last line are related to file type and
permissions. First character indicates the file type. The most common ones are shown below:

• - regular file
• d directory
• l symbolic link

The other nine characters represent three sets of file permissions for user (u), group (g)
and others (o), in that order.

• user — file owner
• group — users having file access as part of a group
• others — everyone else

Only rwx file properties will be discussed in this section. For other types of properties, refer
to the coreutils manual: File permissions.

Permission reference table for files:

Character Meaning Value

r read 4
w write 2
x execute 1
- no permission 0

Here’s an example showing both rwx and numerical representations of a file’s permissions:

$ stat -c '%A' ip.txt
-rw-rw-r--

r(4) + w(2) + 0 = 6
r(4) + 0 + 0 = 4
$ stat -c '%a' ip.txt
664

110

https://www.gnu.org/software/coreutils/manual/coreutils.html#File-permissions

Note that the permissions are not straightforward to understand for directories. If a
directory only has the x permission, you can cd into it but you cannot read the contents
(using ls for example). If a directory only has the r permission, you cannot cd into it,
but you’ll be able to read the contents (along with ”cannot access” error). For this reason,
rx permissions are almost always enabled/disabled together. The w permission allows
you to add or remove contents, provided x is active.

Changing permissions for all three categories

You can provide numbers for ugo (in that order) to change permissions. This is best understood
with examples:

$ printf '#!/bin/bash\n\necho hi\n' > hi.sh
$ stat -c '%a %A' hi.sh
664 -rw-rw-r--

r(4) + w(2) + x(1) = 7
r(4) + 0 + x(1) = 5
$ chmod 755 hi.sh
$ stat -c '%a %A' hi.sh
755 -rwxr-xr-x

Here’s an example for a directory:

$ mkdir dot_files
$ stat -c '%a %A' dot_files
775 drwxrwxr-x

$ chmod 700 dot_files
$ stat -c '%a %A' dot_files
700 drwx------

You can also use mkdir -m instead of the mkdir+chmod combination seen above. The argument
to the -m option accepts the same syntax as chmod (including the format that’ll be discussed
next).

$ mkdir -m 750 backups
$ stat -c '%a %A' backups
750 drwxr-x---

You can use chmod -R to recursively change permissions. Use find+exec if you
want to apply changes only for files filtered by some criteria.

Changing permissions for specific categories

You can assign (=), add (+) or remove (-) permissions by using those symbols followed by
one or more rwx permissions. This depends on the umask value:

$ umask
0002

umask value of 0002 means:

111

• read and execute permissions without ugo prefix affects all the three categories
• write permissions without ugo prefix affects only user and group categories

Here are some examples without ugo prefixes:

remove execute permission for all three categories
$ chmod -x hi.sh

add write permission only for 'user' and 'group'
$ chmod +w ip.txt

$ touch sample.txt
$ chmod 702 sample.txt
give only read permission for all three categories
write/execute permissions, if any, will be removed
$ chmod =r sample.txt
$ stat -c '%a %A' sample.txt
444 -r--r--r--

give read and write permissions for 'user' and 'group'
and read permission for 'others'
execute permissions, if any, will be removed
$ chmod =rw hi.sh

Here are some examples with ugo prefixes. You can use a to refer to all the three categories.
For example, a+w is same as ugo+w .

remove read and write permissions only for 'others'
$ chmod o-rw sample.txt

add execute permission for 'group' and 'others'
$ chmod go+x hi.sh

give read and write permissions for all three categories
execute permissions, if any, will be removed
$ chmod a=rw hi.sh

You can use , to separate multiple permissions:

remove execute permission for 'group' and 'others'
remove write permission for 'others'
$ chmod go-x,o-w hi.sh

Further Reading

• Linux Permissions Primer
• unix.stackexchange: why chmod +w filename not giving write permission to other

Exercises

Use example_files/text_files directory for input files used in the following exercises,
unless otherwise specified.

112

https://danielmiessler.com/study/unixlinux_permissions/
https://unix.stackexchange.com/q/429421/109046
https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

Create a temporary directory for exercises that may require you to create some files
and directories. You can delete such practice directories afterwards.

1) Save the number of lines in the greeting.txt input file to the lines shell variable.

???
$ echo "$lines"
2

2) What do you think will be the output of the following command?
$ echo 'dragons:2 ; unicorns:10' | wc -w

3) Use appropriate options and arguments to get the output shown below.
$ printf 'apple\nbanana\ncherry' | wc # ???

15 183 sample.txt
2 19 -

17 202 total

4) Go through the wc manual and use appropriate options and arguments to get the output
shown below.

$ printf 'greeting.txt\0scores.csv' | wc # ???
2 6 25 greeting.txt
4 4 70 scores.csv
6 10 95 total

5) What is the difference between wc -c and wc -m options? And which option would you
use to get the longest line length?

6) Find filenames ending with .log and report their sizes in human readable format. Use
find+du combination for the first case and ls command (with appropriate shell features) for
the second case.

change to the 'scripts' directory and source the 'du.sh' script
$ source du.sh

??? find+du
16K ./projects/errors.log
7.4M ./report.log

??? ls and shell features
16K projects/errors.log
7.4M report.log

7) Report sizes of files/directories in the current path in powers of 1000 without descending
into sub-directories. Also, show a total at the end.

change to the 'scripts' directory and source the 'du.sh' script
$ source du.sh

???
50k projects

113

7.7M report.log
8.2k todos
7.8M total

8) What does the du --apparent-size option do?

9)When will you use the df command instead of du ? Which df command option will help
you to report only specific fields of interest?

10) Display the size of scores.csv and timings.txt files in the format shown below.

$ stat # ???
scores.csv: 70
timings.txt: 49

11) Which touch option will help you prevent file creation if it doesn’t exist yet?

12) Assume new_file.txt doesn’t exist in the current working directory. What would be the
output of the stat command shown below?

$ touch -t '202010052010.05' new_file.txt
$ stat -c '%y' new_file.txt
???

13) Is the following touch command valid? If so, what would be the output of the stat
command that follows?

change to the 'scripts' directory and source the 'touch.sh' script
$ source touch.sh

$ stat -c '%n: %y' fruits.txt
fruits.txt: 2017-07-13 13:54:03.576055933 +0530

$ touch -r fruits.txt f{1..3}.txt
$ stat -c '%n: %y' f*.txt
???

14) Use appropriate option(s) to get the output shown below.

$ printf 'αλεπού\n' | file -
/dev/stdin: UTF-8 Unicode text

$ printf 'αλεπού\n' | file # ???
UTF-8 Unicode text

15) Is the following command valid? If so, what would be the output?
$ basename -s.txt ~///test.txt///
???

16) Given the file path in the shell variable p , how’d you obtain the output shown below?

$ p='~/projects/square_tictactoe/python/game.py'
$ dirname # ???
~/projects/square_tictactoe

17) Explain what each of the characters mean in the following stat command’s output.

114

$ stat -c '%A' ../scripts/
drwxrwxr-x

18) What would be the output of the second stat command shown below?

$ touch new_file.txt
$ stat -c '%a %A' new_file.txt
664 -rw-rw-r--

$ chmod 546 new_file.txt
$ stat -c '%a %A' new_file.txt
???

19) How would you specify directory permissions using the mkdir command?

instead of this
$ mkdir back_up
$ chmod 750 back_up
$ stat -c '%a %A' back_up
750 drwxr-x---
$ rm -r back_up

do this
$ mkdir # ???
$ stat -c '%a %A' back_up
750 drwxr-x---

20) Change the file permission of book_list.txt to match the output of the second stat
command shown below. Don’t use the number 220 , specify the changes in terms of rwx
characters.

$ touch book_list.txt
$ stat -c '%a %A' book_list.txt
664 -rw-rw-r--

???
$ stat -c '%a %A' book_list.txt
220 --w--w----

21) Change the permissions of test_dir to match the output of the second stat command
shown below. Don’t use the number 757 , specify the changes in terms of rwx characters.

$ mkdir test_dir
$ stat -c '%a %A' test_dir
775 drwxrwxr-x

???
$ stat -c '%a %A' test_dir
757 drwxr-xrwx

115

Managing Processes
This chapter gives a basic overview of process management for interactive usage only. Handling
processes for other use cases, such as system administration, requires a more robust solution
(see mywiki.wooledge: Process Management to get started for such use cases).

Definitions
Here are some definitions that will be handy to know for this chapter’s contents:

• Program is a set of instructions written to perform a task
• Process is any running program
• Daemon are background processes
• Job is a process that is not a daemon

∘ i.e. jobs are interactive programs under user control

Running jobs in background
Some commands and scripts can take more than few minutes to complete, and you might still
need to continue using the shell. If you are not dependent on the current shell environment, you
could just open another shell instance and continue working.

Another option is to push the job to the background, either at the time of command invocation
itself or after the fact. Make sure to redirect standard output and error to avoid interfering with
your continued interactive usage. Appending an & character to the command will execute it
in the background.

$ tkdiff ip.txt ip.txt.bkp &
[1] 12726

In the above example, [1] refers to the job number and 12726 is the PID (process ID). You
can use the jobs and ps commands to track active jobs:

$ jobs
[1]+ Running tkdiff ip.txt ip.txt.bkp &

$ ps
PID TTY TIME CMD

9657 pts/1 00:00:00 bash
12726 pts/1 00:00:00 wish
12730 pts/1 00:00:00 ps

But what if you forgot to append & to the command? You can follow these steps:

• Ctrl+z — suspend the current running job
• bg — push the recently suspended job to the background
• continue using shell
• fg — bring the recently pushed background job to the foreground

∘ you can use fg %n to bring the n th job number to the foreground

Here’s a demo that you can try:

sleep for 30 seconds (used here for illustration purposes)
press Ctrl+z to suspend this job
you'll get the job number, status and the command in the output

116

https://mywiki.wooledge.org/ProcessManagement

$ sleep 30
^Z
[1]+ Stopped sleep 30

bg puts the job considered as the current by the shell to the background
$ bg
[1]+ sleep 30 &

use 'jobs' or 'ps' to check list of jobs
'+' after the job number is used to indicate the current job
$ jobs
[1]+ Running sleep 30 &
$ ps

PID TTY TIME CMD
2380 pts/0 00:00:00 bash
6160 pts/0 00:00:00 sleep
6162 pts/0 00:00:00 ps

fg brings the most recently pushed background job to the foreground
$ fg
sleep 30
$

jobs , bg and fg are shell builtins. See bash manual: Job Control for more
details. See also this tutorial on job control.

See also I want to run something in the background and then log out — screen ,
tmux , nohup , disown , etc.

ps
The ps command gives a snapshot of the current processes. A few examples were already seen
earlier in this chapter. Here’s an example with the -f option (full-format listing):

$ ps -f
UID PID PPID C STIME TTY TIME CMD
learnby+ 12299 12298 0 16:39 pts/0 00:00:00 bash
learnby+ 12311 12299 0 16:39 pts/0 00:00:00 ps -f

The fields in the above example are effective user ID (UID), process ID (PID), parent process ID
(PPID), processor utilization (C), starting time (STIME), controlling terminal (TTY), cumulative
CPU time (TIME) and command with all its arguments (CMD). You can use the -o option to
customize the fields you want. The --sort option will help you to sort based on specific fields.
See ps manual: Standard Format Specifiers for complete list of formats available.

The -e (or -A) option selects all processes. This option is typically used in combination with
grep for filtering:

117

https://www.gnu.org/software/bash/manual/bash.html#Job-Control
https://www.digitalocean.com/community/tutorials/how-to-use-bash-s-job-control-to-manage-foreground-and-background-processes
https://mywiki.wooledge.org/ProcessManagement#I_want_to_run_something_in_the_background_and_then_log_out.
https://www.mankier.com/1/ps#Standard_Format_Specifiers

$ ps -e | grep 'vim'
6195 ? 00:03:13 gvim

See also linuxjourney: ps tutorial.

pgrep
The pgrep command helps you filter processes based on their name and attributes. By default,
it matches against the process name, for example:

$ ps -e | grep 'vim'
2006 ? 00:00:27 gvim
3992 pts/2 00:00:00 vim

$ pgrep 'vim'
2006
3992

You can use the -l option to display the process name as well (PID is shown by default).

$ pgrep -l 'vim'
2006 gvim
3992 vim

To match the process name exactly (instead of matching anywhere), use the -x option.

$ pgrep -x 'vim'
3992

The -a option will list the full command line (the -l option seen earlier gives only the name,
not the arguments).

$ pgrep -a 'vim'
2006 gvim -p notes.txt src/managing-processes.md
3992 vim substitution.md

There are several more options like filtering based on effective UID, PPID, etc. See
pgrep manual for more details.

kill
Sometimes, a process might not be responding to your interaction, might be taking too long,
accidentally uses too much memory, and so on. You can use the kill command to manage
such processes.

As mentioned at the beginning of this chapter, these examples are suggested for interactive
processes initiated by you (other usage, for example in scripts, will require different strategies).
Be 100% sure before you attempt to send signals to manage processes.

You can pass signals by name or by their associated number. Use kill -l to get a full list
of signals. See also unix.stackexchange: List of Signals and unix.stackexchange: What causes
various signals to be sent?

118

https://linuxjourney.com/lesson/monitor-processes-ps-command
https://www.mankier.com/1/pgrep
https://unix.stackexchange.com/q/317492/109046
https://unix.stackexchange.com/q/6332/109046
https://unix.stackexchange.com/q/6332/109046

first 20 signals (out of 64) listed below
$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
...

You can use PID or job number to specify the process to which the signal has to be sent. By
default, SIGTERM (15) is sent, which is a polite way to ask the program to terminate. Here’s
an example:

'sleep' is used here to emulate a long running process
press Ctrl+z to suspend this command
$ sleep 100
^Z
[1]+ Stopped sleep 100

terminate job number 1
by default, SIGTERM is sent
$ kill %1
just press Enter
$
[1]+ Terminated sleep 100

Note that in the above example, pressing Ctrl+z actually sends the SIGTSTP (20) signal.
Programs usually handle such signals to find a safer spot to suspend. Pressing Ctrl+c sends
the SIGINT (2) signal, usually used to abort a process (depends on how the program handles
it). You can use Ctrl+\ to send SIGQUIT (3), typically used to ask the program to quit and
give a core dump. See also stackoverflow: gracefully shutdown processes.

Here’s an illustration to show how to pass signals by their names and numerical values:

$ sleep 100 &
[1] 10051

suspend the above job, similar to using Ctrl+z
-20 refers to the signal number 20, i.e. SIGTSTP
10051 is the PID
$ kill -20 10051

[1]+ Stopped sleep 100

resume the job in background
$ bg
[1]+ sleep 100 &

-s option allows you to specify signal by its name
'-s SIGTERM' is optional here, since that is the default
$ kill -s SIGTERM 10051
$
[1]+ Terminated sleep 100

119

https://en.wikipedia.org/wiki/Core_dump
https://stackoverflow.com/q/690415/4082052

If you need to terminate a process at all costs, you can use SIGKILL (9). This
is a signal that cannot be blocked by programs. Use Ctrl+z to suspend a runaway job
and then apply kill -9 instead of trying to abort such jobs using Ctrl+c . See also
unix.stackexchange: why kill -9 should be avoided.

Note that your system will likely have several different implementations of the kill
command. The shell builtin version was discussed in this section.

top
The top command displays processes in a tabular format along with information like PID,
process name, memory usage and so on. Here’s a sample screenshot:

This command opens an interactive session, and automatically updates the information being
displayed as well. You can press M (uppercase) to sort the processes by memory usage. Press
e repeatedly to display memory sizes in terms of mega/giga/etc. Press h for help and press
q to quit the session.

Press W (uppercase) to write the current settings to the toprc configuration file
and quit. The next time you use the top command, it will be displayed in the format that
was saved.

See also alternative implementations like htop and btop.

120

https://unix.stackexchange.com/q/8916/109046
https://github.com/htop-dev/htop/
https://github.com/aristocratos/btop

free
The free command displays information about your system memory. Here’s an example:

-h option shows the results in human readable format
$ free -h

total used free shared buff/cache available
Mem: 7.6Gi 2.4Gi 2.3Gi 267Mi 2.9Gi 4.7Gi
Swap: 3.6Gi 0B 3.6Gi

Further Reading
• mywiki.wooledge: Process Management
• ryanstutorials: Process Management
• digitalocean: Managing Linux Processes
• Linux ate my ram — Linux is borrowing unused memory for disk caching. This makes it
look like you are low on memory, but you are not! Everything is fine!

Exercises
1) How would you invoke a command to be executed in the background? And what would you
do to push a job to the background after it has already been launched? What commands can you
use to track active jobs?

2) What do + and - symbols next to job numbers indicate?

3) When would you use fg %n and bg %n instead of just fg and bg respectively?

4) Which option will help you customize the output fields needed for the ps command?

5) What’s the difference between pgrep -a and pgrep -l options?

6) If the job number is 2 , would you use kill %2 or kill 2 to send SIGTERM to that
process?

7) Which signal does the Ctrl+c shortcut send to the currently running process?

8) Which command helps you to continuously monitor processes, along with details like PID,
memory usage, etc?

9) Which key will help you manipulate kill tasks from within the top session?

10) What does the free command do?

121

https://mywiki.wooledge.org/ProcessManagement
https://ryanstutorials.net/linuxtutorial/processes.php
https://www.digitalocean.com/community/tutorials/how-to-use-ps-kill-and-nice-to-manage-processes-in-linux
https://www.linuxatemyram.com/

Multipurpose Text Processing Tools
Many CLI text processing tools have been in existence for about half a century. And newer
tools are being written to solve ever expanding text processing problems. Just knowing that a
particular tool exists or searching for a tool before attempting to write your own solution can
be a time saver. Also, popular tools are likely to be optimized for speed, hardened against bugs
from wide usage, discussed on forums, and so on.

grep was already covered in the Searching Files and Filenames chapter. In addition, sed ,
awk and perl are essential tools to solve a wide variety of text processing problems from the
command line. In this chapter, you’ll learn field processing, use regular expressions for search
and replace requirements, perform operations based on multiple lines and files, etc.

The examples presented in this chapter only cover some of the functionalities. I’ve
written separate books to cover these tools with more detailed explanations, examples
and exercises. See https://learnbyexample.github.io/books/ for links to these books.

The example_files directory has the sample input files used in this chapter.

sed
The command name sed is derived from stream editor. Here, stream refers to data being
passed via shell pipes. Thus, the command’s primary functionality is to act as a text editor for
stdin data with stdout as the output target. You can also edit file input and save the changes
back to the same file if needed.

Substitution

sed has various commands to manipulate text input. The substitute command is most com-
monly used, whose syntax is s/REGEXP/REPLACEMENT/FLAGS . Here are some basic examples:

for each input line, change only the first ',' to '-'
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/'
1-2,3,4
a-b,c,d

change all matches by adding the 'g' flag
$ printf '1,2,3,4\na,b,c,d\n' | sed 's/,/-/g'
1-2-3-4
a-b-c-d

Here’s an example with file input:

$ cat greeting.txt
Hi there
Have a nice day

change 'day' to 'weekend'
$ sed 's/day/weekend/g' greeting.txt

122

https://learnbyexample.github.io/books/
https://github.com/learnbyexample/cli-computing/tree/master/example_files

Hi there
Have a nice weekend

What if you want to issue multiple substitute commands (or use several other sed commands)?
It will depend on the command being used. Here’s an example where you can use the -e option
or separate the commands with a ; character.

change all occurrences of 'day' to 'weekend'
add '.' to the end of each line
$ sed 's/day/weekend/g; s/$/./' greeting.txt
Hi there.
Have a nice weekend.

same thing with -e option
$ sed -e 's/day/weekend/g' -e 's/$/./' greeting.txt
Hi there.
Have a nice weekend.

Inplace editing

You can use the -i option for inplace editing. Pass an argument to this option to save the
original input as a backup.

$ cat ip.txt
deep blue
light orange
blue delight

output from sed is written back to 'ip.txt'
original file is preserved in 'ip.txt.bkp'
$ sed -i.bkp 's/blue/green/g' ip.txt
$ cat ip.txt
deep green
light orange
green delight

Filtering features

sed also has features to filter the lines like grep . And you can apply other sed commands
for these filtered lines as needed.

-n disables automatic printing
'p' command prints the contents of pattern space
same as: grep 'at'
$ printf 'sea\neat\ndrop\n' | sed -n '/at/p'
eat

'd' command deletes the matching lines
same as: grep -v 'at'
$ printf 'sea\neat\ndrop\n' | sed '/at/d'
sea
drop

123

change commas to hyphens only if the input line contains '2'
$ printf '1,2,3,4\na,b,c,d\n' | sed '/2/ s/,/-/g'
1-2-3-4
a,b,c,d

change commas to hyphens if the input line does NOT contain '2'
$ printf '1,2,3,4\na,b,c,d\n' | sed '/2/! s/,/-/g'
1,2,3,4
a-b-c-d

You can use q and Q commands to quit sed once a matching line is found:

quit after a line containing 'st' is found
$ printf 'apple\nsea\neast\ndust' | sed '/st/q'
apple
sea
east

matching line won't be printed in this case
$ printf 'apple\nsea\neast\ndust' | sed '/st/Q'
apple
sea

Apart from regexp, filtering can also be done based on line numbers, address ranges, etc.

perform substitution only for the second line
use '$' instead of a number to indicate last input line
$ printf 'gates\nnot\nused\n' | sed '2 s/t/*/g'
gates
no*
used

address range example, same as: sed -n '3,8!p'
you can also use regexp to construct address ranges
$ seq 15 24 | sed '3,8d'
15
16
23
24

If you need to issue multiple commands for filtered lines, you can group those commands within
{} characters. Here’s an example:

for lines containing 'e', replace 's' with '*' and 't' with '='
note that the second line isn't changed as there's no 'e'
$ printf 'gates\nnot\nused\n' | sed '/e/{s/s/*/g; s/t/=/g}'
ga=e*
not
u*ed

124

Regexp substitution

Here are some regexp based substitution examples. The -E option enables ERE (default is
BRE). Most of the syntax discussed in the Regular Expressions section for the grep command
applies for sed as well.

replace all sequences of non-digit characters with '-'
$ echo 'Sample123string42with777numbers' | sed -E 's/[^0-9]+/-/g'
-123-42-777-

replace numbers >= 100 which can have optional leading zeros
$ echo '0501 035 154 12 26 98234' | sed -E 's/\b0*[1-9][0-9]{2,}\b/X/g'
X 035 X 12 26 X

reduce \\ to single \ and delete if it is a single \
$ echo '\[\] and \\w and \[a-zA-Z0-9_\]' | sed -E 's/(\\?)\\/\1/g'
[] and \w and [a-zA-Z0-9_]

remove two or more duplicate words that are separated by a space
\b prevents false matches like 'the theatre', 'sand and stone' etc
$ echo 'aa a a a 42 f_1 f_1 f_13.14' | sed -E 's/\b(\w+)(\1)+\b/\1/g'
aa a 42 f_1 f_13.14

& backreferences the matched portion
\u changes the next character to uppercase
$ echo 'hello there. how are you?' | sed 's/\b\w/\u&/g'
Hello There. How Are You?

replace only the third matching occurrence
$ echo 'apple:123:banana:fig' | sed 's/:/-/3'
apple:123:banana-fig
change all ':' to ',' only from the second occurrence
$ echo 'apple:123:banana:fig' | sed 's/:/,/2g'
apple:123,banana,fig

The / character is idiomatically used as the regexp delimiter. But any character other than
\ and the newline character can be used instead. This helps to avoid or reduce the need for
escaping delimiter characters.

$ echo '/home/learnbyexample/reports' | sed 's#/home/learnbyexample/#~/#'
~/reports

$ echo 'home path is:' | sed 's,$, '"$HOME"','
home path is: /home/learnbyexample

Further Reading

• My ebook GNU SED
∘ See also my blog post GNU BRE/ERE cheatsheet

• unix.stackexchange: common search and replace examples with sed and other tools

125

https://github.com/learnbyexample/learn_gnused
https://learnbyexample.github.io/gnu-bre-ere-cheatsheet/
https://unix.stackexchange.com/q/112023/109046

awk
awk is a programming language and primarily used for field based processing. awk also
provides filtering capabilities like those supported by grep and sed along with some more
nifty features. And similar to many command line utilities, awk can accept input from both
stdin and files.

Regexp filtering

To make it easier to use programming features from the command line, there are several short-
cuts, for example:

• awk '/regexp/' is a shortcut for awk '$0 ~ /regexp/{print $0}'
• awk '!/regexp/' is a shortcut for awk '$0 !~ /regexp/{print $0}'

same as: grep 'at' and sed -n '/at/p'
$ printf 'gate\napple\nwhat\nkite\n' | awk '/at/'
gate
what

same as: grep -v 'e' and sed -n '/e/!p'
$ printf 'gate\napple\nwhat\nkite\n' | awk '!/e/'
what

Awk special variables

Brief description for some of the special variables are given below:

• $0 contains input record content
• $1 first field
• $2 second field and so on
• FS input field separator
• OFS output field separator
• NF number of fields
• RS input record separator
• ORS output record separator
• NR number of records (i.e. line number)

Default field processing

awk automatically splits input into fields based on one or more sequence of space or tab or
newline characters. In addition, any of these three characters at the start or end of input gets
trimmed and won’t be part of field contents. The fields are accessible using $N where N is
the field number you need. You can also pass an expression instead of numeric literal to specify
the field required.

Here are some examples:

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

print the second field of each input line

126

$ awk '{print $2}' table.txt
bread
cake
banana

print lines only if the last field is a negative number
$ awk '$NF<0' table.txt
blue cake mug shirt -7

change 'b' to 'B' only for the first field
gsub() is like the sed substitution command with 'g' flag
use sub() when 'g' flag is not needed
$ awk '{gsub(/b/, "B", $1)} 1' table.txt
Brown bread mat hair 42
Blue cake mug shirt -7
yellow banana window shoes 3.14

Condition and Action

The examples so far have used a few different ways to construct a typical awk one-liner. If you
haven’t yet grasped the syntax, this generic structure might help:

awk 'cond1{action1} cond2{action2} ... condN{actionN}'

If a condition isn’t provided, the action is always executed. Within a block, you can provide
multiple statements separated by a semicolon character. If action isn’t provided, then by default,
contents of $0 variable is printed if the condition evaluates to true. When action isn’t present,
you can use semicolon to terminate the condition and start another condX{actionX} snippet.

You can use a BEGIN{} block when you need to execute something before the input is read and
an END{} block to execute something after all of the input has been processed.

$ seq 2 | awk 'BEGIN{print "---"} 1; END{print "%%%"}'

1
2
%%%

Regexp field processing

As seen earlier, awk automatically splits input into fields (based on space/tab/newline charac-
ters) which are accessible using $N where N is the field number you need. You can use the
-F option or FS variable to set a regexp based field separator. Use OFS variable to set the
output field separator.

$ echo 'goal:amazing:whistle:kwality' | awk -F: '{print $1}'
goal
$ echo 'Sample123string42with777numbers' | awk -F'[a-zA-Z]+' '{print $2}'
123

$ s='Sample123string42with777numbers'
-v option helps you set a value for the given variable

127

$ echo "$s" | awk -F'[0-9]+' -v OFS=, '{print $1, $(NF-1)}'
Sample,with

You can use FPAT to define what characters should make up the fields. FS splits the input
record whereas FPAT matches the fields. The below example finds fields that are enclosed
within double quotes or made up of non-comma characters.

$ s='eagle,"fox,42",bee,frog'
$ echo "$s" | awk -v FPAT='"[^"]*"|[^,]*' '{print $2}'
"fox,42"

Record separators

By default, newline is used as input and output record separators. You can change them using
the RS and ORS variables.

print records containing 'i' as well as 't'
$ printf 'Sample123string42with777numbers' | awk -v RS='[0-9]+' '/i/ && /t/'
string
with

empty RS is paragraph mode, uses two or more newlines as separator
$ printf 'apple\nbanana\nfig\n\n\n123\n456' | awk -v RS= 'NR==1'
apple
banana
fig

change ORS depending on some condition
$ seq 9 | awk '{ORS = NR%3 ? "-" : "\n"} 1'
1-2-3
4-5-6
7-8-9

State machines

The condX{actionX} shortcut makes it easy to code state machines concisely, which is useful
to solve problems that depend on contents of multiple records.

Here’s an example of printing the matching line as well as c number of lines that follow:

same as: grep --no-group-separator -A1 'blue'
print matching line as well as the one that follows it
$ printf 'red\nblue\ngreen\nteal\n' | awk -v c=1 '/blue/{n=c+1} n && n--'
blue
green

print matching line as well as two lines that follow
$ printf 'red\nblue\ngreen\nteal\n' | awk -v c=2 '/blue/{n=c+1} n && n--'
blue
green
teal

Consider the following input file that has records bounded by distinct markers (lines containing

128

start and end):

$ cat uniform.txt
mango
icecream
--start 1--
1234
6789
end 1
how are you
have a nice day
--start 2--
a
b
c
end 2
par,far,mar,tar

Here are some examples of processing such bounded records:

same as: sed -n '/start/,/end/p' uniform.txt
$ awk '/start/{f=1} f; /end/{f=0}' uniform.txt
--start 1--
1234
6789
end 1
--start 2--
a
b
c
end 2

you can re-arrange and invert the conditions to create other combinations
for example, exclude ending match
$ awk '/start/{f=1} /end/{f=0} f' uniform.txt
--start 1--
1234
6789
--start 2--
a
b
c

Here’s an example of printing two consecutive records only if the first record contains ar and
the second one contains nice :

$ awk 'p ~ /ar/ && /nice/{print p ORS $0} {p=$0}' uniform.txt
how are you
have a nice day

Two files processing

The key features used in the solution below:

129

• For two files as input, NR==FNR will be true only when the first file is being processed
∘ FNR is record number like NR but resets for each input file

• next will skip the rest of the code and fetch the next record
• a[$0] by itself is a valid statement. It will create an uninitialized element in array a
with $0 as the key (if the key doesn’t exist yet)

• $0 in a checks if the given string ($0 here) exists as a key in the array a

common lines, same as: grep -Fxf c1.txt c2.txt
$ awk 'NR==FNR{a[$0]; next} $0 in a' c1.txt c2.txt
Blue
Orange
Red
White

lines present in c2.txt but not in c1.txt
$ awk 'NR==FNR{a[$0]; next} !($0 in a)' c1.txt c2.txt
Black
Green
Pink

Note that the NR==FNR logic will fail if the first file is empty. See this
unix.stackexchange thread for workarounds.

Removing duplicates

awk '!a[$0]++' is one of the most famous awk one-liners. It eliminates line based duplicates
while retaining input order. The following example shows this feature in action along with an
illustration of how the logic works.

$ cat purchases.txt
coffee
tea
washing powder
coffee
toothpaste
tea
soap
tea

$ awk '{print +a[$0] "\t" $0; a[$0]++}' purchases.txt
0 coffee
0 tea
0 washing powder
1 coffee
0 toothpaste
1 tea
0 soap
2 tea

only those entries with zero in first column will be retained

130

https://unix.stackexchange.com/a/237110/109046
https://unix.stackexchange.com/a/237110/109046

$ awk '!a[$0]++' purchases.txt
coffee
tea
washing powder
toothpaste
soap

Further Reading

• My ebook GNU AWK
∘ See also my blog post GNU BRE/ERE cheatsheet

• Online gawk manual

perl
Perl is a scripting language with plenty of builtin features and a strong ecosystem. Perl one-liners
can be used for text processing, similar to grep , sed , awk and more. And similar to many
command line utilities, perl can accept input from both stdin and file arguments.

Basic one-liners

print all lines containing 'at'
same as: grep 'at' and sed -n '/at/p' and awk '/at/'
$ printf 'gate\napple\nwhat\nkite\n' | perl -ne 'print if /at/'
gate
what

print all lines NOT containing 'e'
same as: grep -v 'e' and sed -n '/e/!p' and awk '!/e/'
$ printf 'gate\napple\nwhat\nkite\n' | perl -ne 'print if !/e/'
what

The -e option accepts code as a command line argument. Many shortcuts are available to
reduce the amount of typing needed. In the above examples, a regular expression has been used
to filter the input. When the input string isn’t specified, the test is performed against special
variable $_ , which has the contents of the current input line. $_ is also the default argument
for many functions like print and length . To summarize:

• /REGEXP/FLAGS is a shortcut for $_ =~ m/REGEXP/FLAGS
• !/REGEXP/FLAGS is a shortcut for $_ !~ m/REGEXP/FLAGS

In the examples below, -p option is used instead of -n option. This helps to automatically
print the value of $_ after processing each input line.

same as: sed 's/:/-/' and awk '{sub(/:/, "-")} 1'
$ printf '1:2:3:4\na:b:c:d\n' | perl -pe 's/:/-/'
1-2:3:4
a-b:c:d

same as: sed 's/:/-/g' and awk '{gsub(/:/, "-")} 1'
$ printf '1:2:3:4\na:b:c:d\n' | perl -pe 's/:/-/g'

131

https://github.com/learnbyexample/learn_gnuawk
https://learnbyexample.github.io/gnu-bre-ere-cheatsheet/
https://www.gnu.org/software/gawk/manual/

1-2-3-4
a-b-c-d

Similar to sed , you can use the -i option for inplace editing.

Perl special variables

Brief description for some of the special variables are given below:

• $_ contains input record content
• @F array containing fields (with -a and -F options)

∘ $F[0] first field
∘ $F[1] second field and so on
∘ $F[-1] last field
∘ $F[-2] second last field and so on
∘ $#F index of the last field

• $. number of records (i.e. line number)
• $1 backreference to the first capture group
• $2 backreference to the second capture group and so on
• $& backreference to the entire matched portion

You’ll see examples using such variables in the sections to follow.

Auto split

Here are some examples based on specific fields rather than the entire line. The -a option
will cause the input line to be split based on whitespaces and the field contents can be accessed
using the @F special array variable. Leading and trailing whitespaces will be suppressed, so
there’s no possibility of empty fields.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

same as: awk '{print $2}' table.txt
$ perl -lane 'print $F[1]' table.txt
bread
cake
banana

same as: awk '$NF<0' table.txt
$ perl -lane 'print if $F[-1] < 0' table.txt
blue cake mug shirt -7

same as: awk '{gsub(/b/, "B", $1)} 1' table.txt
$ perl -lane '$F[0] =~ s/b/B/g; print "@F"' table.txt
Brown bread mat hair 42
Blue cake mug shirt -7
yellow banana window shoes 3.14

132

When you use an array within double quotes (like "@F" in the example above), the fields will
be printed with a space character in between. The join function is one of the ways to print
the contents of an array with a custom field separator. Here’s an example:

print contents of @F array with colon as the separator
$ perl -lane 'print join ":", @F' table.txt
brown:bread:mat:hair:42
blue:cake:mug:shirt:-7
yellow:banana:window:shoes:3.14

In the above examples, the -l option has been used to remove the record separator
(which is newline by default) from the input line. The record separator thus removed is
added back when the print function is used.

Regexp field separator

You can use the -F option to specify a regexp pattern for input field separation.

$ echo 'apple,banana,cherry' | perl -F, -lane 'print $F[1]'
banana

$ s='Sample123string42with777numbers'
$ echo "$s" | perl -F'\d+' -lane 'print join ",", @F'
Sample,string,with,numbers

Powerful features

I reach for Perl over grep , sed and awk when I need powerful regexp features and make
use of the vast builtin functions and libraries.

Here are some examples showing regexp features not present in BRE/ERE:

reverse lowercase alphabets at the end of input lines
'e' flag allows you to use Perl code in the replacement section
$ echo 'fig 42apples' | perl -pe 's/[a-z]+$/reverse $&/e'
fig 42selppa

replace arithmetic expressions with their results
$ echo '42*10 200+100 22/7' | perl -pe 's|\d+[+/*-]\d+|$&|gee'
420 300 3.14285714285714

exclude terms in the search pattern
$ s='orange apple appleseed'
$ echo "$s" | perl -pe 's#\bapple\b(*SKIP)(*F)|\w+#($&)#g'
(orange) apple (appleseed)

And here are some examples showing off builtin features:

filter fields containing 'in' or 'it' or 'is'
$ s='goal:amazing:42:whistle:kwality:3.14'
$ echo "$s" | perl -F: -lane 'print join ":", grep {/i[nts]/} @F'
amazing:whistle:kwality

133

sort numbers in ascending order
use {$b <=> $a} for descending order
$ echo '23 756 -983 5' | perl -lane 'print join " ", sort {$a <=> $b} @F'
-983 5 23 756

sort strings in ascending order
$ s='floor bat to dubious four'
$ echo "$s" | perl -lane 'print join ":", sort @F'
bat:dubious:floor:four:to

unique fields, maintains input order of elements
-M option helps you load modules
$ s='3,b,a,3,c,d,1,d,c,2,2,2,3,1,b'
$ echo "$s" | perl -MList::Util=uniq -F, -lane 'print join ",", uniq @F'
3,b,a,c,d,1,2

Further Reading

• perldoc: Perl introduction
• perldoc: Regexp tutorial
• My ebook Perl one-liners

Exercises

Use example_files/text_files directory for input files used in the following exercises.

1) Replace all occurrences of 0xA0 with 0x50 and 0xFF with 0x7F for the given input.

$ printf 'a1:0xA0, a2:0xA0A1\nb1:0xFF, b2:0xBE\n'
a1:0xA0, a2:0xA0A1
b1:0xFF, b2:0xBE

$ printf 'a1:0xA0, a2:0xA0A1\nb1:0xFF, b2:0xBE\n' | sed # ???
a1:0x50, a2:0x50A1
b1:0x7F, b2:0xBE

2) Remove only the third line from the given input.

$ seq 34 37 | # ???
34
35
37

3) For the input file sample.txt , display all lines that contain it but not do .

???
7) Believe it

4) For the input file purchases.txt , delete all lines containing tea . Also, replace all occur-
rences of coffee with milk . Write back the changes to the input file itself. The original

134

https://perldoc.perl.org/perlintro
https://perldoc.perl.org/perlretut
https://github.com/learnbyexample/learn_perl_oneliners
https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

contents should get saved to purchases.txt.orig . Afterwards, restore the contents from this
backup file.

make the changes
???
$ ls purchases*
purchases.txt purchases.txt.orig
$ cat purchases.txt
milk
washing powder
milk
toothpaste
soap

restore the contents
???
$ ls purchases*
purchases.txt
$ cat purchases.txt
coffee
tea
washing powder
coffee
toothpaste
tea
soap
tea

5) For the input file sample.txt , display all lines from the start of the file till the first occurrence
of are .

???
1) Hello World
2)
3) Hi there
4) How are you

6) Delete all groups of lines from a line containing start to a line containing end for the
uniform.txt input file.

???
mango
icecream
how are you
have a nice day
par,far,mar,tar

7) Replace all occurrences of 42 with [42] unless it is at the edge of a word.

$ echo 'hi42bye nice421423 bad42 cool_4242a 42c' | sed # ???
hi[42]bye nice[42]1[42]3 bad42 cool_[42][42]a 42c

8) Replace all whole words with X that start and end with the same word character.

135

$ echo 'oreo not a _a2_ roar took 22' | sed # ???
X not X X X took X

9) For the input file anchors.txt , convert markdown anchors to hyperlinks as shown below.

$ cat anchors.txt
Regular Expressions
Subexpression calls
The dot meta character

$ sed # ???
[Regular Expressions](#regular-expressions)
[Subexpression calls](#subexpression-calls)
[The dot meta character](#the-dot-meta-character)

10) Replace all occurrences of e with 3 except the first two matches.

$ echo 'asset sets tests site' | sed # ???
asset sets t3sts sit3

$ echo 'sample item teem eel' | sed # ???
sample item t33m 33l

11) The below sample strings use , as the delimiter and the field values can be empty as well.
Use sed to replace only the third field with 42 .

$ echo 'lion,,ant,road,neon' | sed # ???
lion,,42,road,neon
$ echo ',,,' | sed # ???
,,42,

12) For the input file table.txt , calculate and display the product of numbers in the last field
of each line. Consider space as the field separator for this file.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

???
-923.16

13) Extract the contents between () or)(from each of the input lines. Assume that the
() characters will be present only once every line.

$ printf 'apple(ice)pie\n(almond)pista\nyo)yoyo(yo\n'
apple(ice)pie
(almond)pista
yo)yoyo(yo

$ printf 'apple(ice)pie\n(almond)pista\nyo)yoyo(yo\n' | awk # ???
ice
almond
yoyo

136

14) For the input file scores.csv , display the Name and Physics fields in the format shown
below.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

???
Name:Physics
Ith:100
Cy:98
Lin:83

15) Extract and display third and first words in the format shown below.
$ echo '%whole(Hello)--{doubt}==ado==' | # ???
doubt:whole

$ echo 'just,\joint*,concession_42<=nice' | # ???
concession_42:just

16) For the input file scores.csv , add another column named GP which is calculated out of
100 by giving 50% weightage to Maths and 25% each for Physics and Chemistry .

$ awk # ???
Name,Maths,Physics,Chemistry,GP
Ith,100,100,100,100
Cy,97,98,95,96.75
Lin,78,83,80,79.75

17) From the para.txt input file, display all paragraphs containing any digit character.

$ cat para.txt
hi there
how are you

2 apples
12 bananas

blue sky
yellow sun
brown earth

$ awk # ???
2 apples
12 bananas

18) Input has the ASCII NUL character as the record separator. Change it to dot and newline
characters as shown below.

137

$ printf 'apple\npie\0banana\ncherry\0' | awk # ???
apple
pie.
banana
cherry.

19) For the input file sample.txt , print a matching line containing do only if you is found
two lines before. For example, if do is found on line number 10 and 8th line contains you ,
then 10th line should be printed.

???
6) Just do-it

20) For the input file blocks.txt , extract contents from a line containing exactly %=%= until
but not including the next such line. The block to be extracted is indicated by variable n passed
via the -v option.

$ cat blocks.txt
%=%=
apple
banana
%=%=
brown
green

$ awk -v n=1 # ???
%=%=
apple
banana
$ awk -v n=2 # ???
%=%=
brown
green

21) Display lines present in c1.txt but not in c2.txt using the awk command.

$ awk # ???
Brown
Purple
Teal

22) Display lines from scores.csv by matching the first field based on a list of names from the
names.txt file.

$ printf 'Ith\nLin\n' > names.txt

$ awk # ???
Ith,100,100,100
Lin,78,83,80

$ rm names.txt

23) Retain only the first copy of duplicate lines from the duplicates.txt input file. Use only
the contents of the last field for determining duplicates.

138

$ cat duplicates.txt
brown,toy,bread,42
dark red,ruby,rose,111
blue,ruby,water,333
dark red,sky,rose,555
yellow,toy,flower,333
white,sky,bread,111
light red,purse,rose,333

???
brown,toy,bread,42
dark red,ruby,rose,111
blue,ruby,water,333
dark red,sky,rose,555

24) For the input file table.txt , print input lines if the second field starts with b . Construct
solutions using awk and perl .

$ awk # ???
brown bread mat hair 42
yellow banana window shoes 3.14

$ perl # ???
brown bread mat hair 42
yellow banana window shoes 3.14

25) For the input file table.txt , retain only the second last field. Write back the changes
to the input file itself. The original contents should get saved to table.txt.bkp . Afterwards,
restore the contents from this backup file.

make the changes
$ perl # ???
$ ls table*
table.txt table.txt.bkp
$ cat table.txt
hair
shirt
shoes

restore the contents
???
$ ls table*
table.txt
$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

26) Reverse the first field contents of table.txt input file.

???
nworb bread mat hair 42

139

eulb cake mug shirt -7
wolley banana window shoes 3.14

27) Sort the given comma separated input lexicographically. Change the output field separator
to a : character.

$ ip='floor,bat,to,dubious,four'
$ echo "$ip" | perl # ???
bat:dubious:floor:four:to

28) Filter fields containing digit characters.
$ ip='5pearl 42 east 1337 raku_6 lion 3.14'
$ echo "$ip" | perl # ???
5pearl 42 1337 raku_6 3.14

29) The input shown below has several words ending with digit characters. Change the words
containing test to match the output shown below. That is, renumber the matching portions
to 1 , 2 , etc. Words not containing test should not be changed.

$ ip='test_12:test123\nanother_test_4,no_42\n'
$ printf '%b' "$ip"
test_12:test123
another_test_4,no_42

$ printf '%b' "$ip" | perl # ???
test_1:test2
another_test_3,no_42

30) For the input file table.txt , change contents of the third field to all uppercase. Construct
solutions using sed , awk and perl .

$ sed # ???
brown bread MAT hair 42
blue cake MUG shirt -7
yellow banana WINDOW shoes 3.14

$ awk # ???
brown bread MAT hair 42
blue cake MUG shirt -7
yellow banana WINDOW shoes 3.14

$ perl # ???
brown bread MAT hair 42
blue cake MUG shirt -7
yellow banana WINDOW shoes 3.14

140

Sorting Stuff
In this chapter, you’ll learn how to sort input based on various criteria. And then, you’ll learn
about tools that typically require sorted input for performing operations like finding unique en-
tries, comparing two files line wise and so on.

The example_files directory has the sample input files used in this chapter.

sort
As the name implies, this command is used to sort the contents of input files. Alphabetic sort and
numeric sort? Possible. How about sorting a particular column? Possible. Prioritized multiple
sorting order? Possible. Randomize? Unique? Lots of features supported by this powerful
command.

Common options

Commonly used options are shown below. Examples will be discussed in later sections.

• -n sort numerically
• -g general numeric sort
• -V version sort (aware of numbers within text)
• -h sort human readable numbers (ex: 4K, 3M, 12G, etc)
• -k sort via key (column sorting)
• -t single byte character as field separator (default is non-blank to blank transition)
• -u sort uniquely
• -R random sort
• -r reverse the sort output
• -o redirect sorted result to specified filename (ex: for inplace sorting)

Default sort

By default, sort orders the input lexicographically in ascending order. You can use the -r
option to reverse the results.

default sort
$ printf 'banana\ncherry\napple' | sort
apple
banana
cherry

sort and then display the results in reversed order
$ printf 'peace\nrest\nquiet' | sort -r
rest
quiet
peace

Use -f option if you want to ignore case. See also coreutils FAQ: Sort does not sort
in normal order!.

141

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://en.wikipedia.org/wiki/Lexicographic_order
https://www.gnu.org/software/coreutils/faq/#Sort-does-not-sort-in-normal-order_0021
https://www.gnu.org/software/coreutils/faq/#Sort-does-not-sort-in-normal-order_0021

Numerical sort

There are several ways to deal with input containing numbers:

$ printf '20\n2\n3' | sort -n
2
3
20

sorting human readable numbers
$ sort -hr file_size.txt
1.4G games
316M projects
746K report.log
104K power.log
20K sample.txt

version sort
$ sort -V timings.txt
3m20.058s
3m42.833s
4m3.083s
4m11.130s
5m35.363s

Unique sort

The -u option will keep only the first copy of lines that are deemed to be equal.

-f option ignores case differences
$ printf 'CAT\nbat\ncat\ncar\nbat\n' | sort -fu
bat
car
CAT

Column sort

The -k option allows you to sort based on specific column(s) instead of the entire input line. By
default, the empty string between non-blank and blank characters is considered as the separator.
This option accepts arguments in various ways. You can specify starting and ending column
numbers separated by a comma. If you specify only the starting column, the last column will be
used as the ending column. Usually you just want to sort by a single column, in which case the
same number is specified as both the starting and ending columns. Here’s an example:

$ cat shopping.txt
apple 50
toys 5
Pizza 2
mango 25
Banana 10

sort based on 2nd column numbers
$ sort -k2,2n shopping.txt

142

Pizza 2
toys 5
Banana 10
mango 25
apple 50

You can use the -t option to specify a single byte character as the field separator.
Use \0 to specify ASCII NUL as the separator.

Use the -s option to retain the original order of input lines when two or more lines
are deemed equal. You can still use multiple keys to specify your own tie breakers, -s
only prevents the last resort comparison.

uniq
This command helps you to identify and remove duplicates. Usually used with sorted inputs as
the comparison is made between adjacent lines only.

Common options

Commonly used options are shown below. Examples will be discussed in later sections.

• -u display only the unique entries
• -d display only the duplicate entries
• -D display all the copies of duplicates
• -c prefix count
• -i ignore case while determining duplicates
• -f skip first N fields

∘ field separation is based on one or more space/tab characters only
• -s skip first N characters
• -w restricts the comparison to the first N characters

Default uniq

By default, uniq retains only one copy of duplicate lines:

same as sort -u for this case
$ printf 'brown\nbrown\nbrown\ngreen\nbrown\nblue\nblue' | sort | uniq
blue
brown
green

can't use sort -n -u here
$ printf '2 balls\n13 pens\n2 pins\n13 pens\n' | sort -n | uniq
2 balls
2 pins
13 pens

143

Unique and duplicate entries

The -u option will display only the unique entries. That is, only if a line doesn’t occur more
than once.

$ cat purchases.txt
coffee
tea
washing powder
coffee
toothpaste
tea
soap
tea

$ sort purchases.txt | uniq -u
soap
toothpaste
washing powder

The -d option will display only the duplicate entries. That is, only if a line is seen more than
once. To display all the copies of duplicates, use the -D option.

$ sort purchases.txt | uniq -d
coffee
tea

$ sort purchases.txt | uniq -D
coffee
coffee
tea
tea
tea

Prefix count

If you want to know how many times a line has been repeated, use the -c option. This will be
added as a prefix.

$ sort purchases.txt | uniq -c
2 coffee
1 soap
3 tea
1 toothpaste
1 washing powder

$ sort purchases.txt | uniq -dc
2 coffee
3 tea

sorting by number of occurrences
$ sort purchases.txt | uniq -c | sort -nr

3 tea

144

2 coffee
1 washing powder
1 toothpaste
1 soap

Partial match

uniq has three options to change the matching criteria to partial parts of the input line. These
aren’t as powerful as the sort -k option, but they do come in handy for some use cases.

compare only first 2 characters
$ printf '1) apple\n1) almond\n2) banana\n3) cherry\n3) cup' | uniq -w2
1) apple
2) banana
3) cherry

-f1 skips first field
-s2 then skips two characters (including the blank character)
-w2 uses next two characters for comparison ('bl' and 'ch' in this example)
$ printf '2 @blue\n10 :black\n5 :cherry\n3 @chalk' | uniq -f1 -s2 -w2
2 @blue
5 :cherry

comm
The comm command finds common and unique lines between two sorted files. By default, you’ll
get a tabular output with three columns:

• first column has lines unique to the first file
• second column has lines unique to the second file
• third column has lines common to both the files

side by side view of already sorted sample files
$ paste c1.txt c2.txt
Blue Black
Brown Blue
Orange Green
Purple Orange
Red Pink
Teal Red
White White

default three column output
$ comm c1.txt c2.txt

Black
Blue

Brown
Green

Orange
Pink

Purple

145

Red
Teal

White

You can use one or more of the following options to suppress columns:

• -1 to suppress lines unique to the first file
• -2 to suppress lines unique to the second file
• -3 to suppress lines common to both the files

only the common lines
$ comm -12 c1.txt c2.txt
Blue
Orange
Red
White

lines unique to the second file
$ comm -13 c1.txt c2.txt
Black
Green
Pink

join
By default, join combines two files based on the first field content (also referred as key). Only
the lines with common keys will be part of the output.

The key field will be displayed first in the output (this distinction will come into play if the first
field isn’t the key). Rest of the line will have the remaining fields from the first and second files,
in that order. One or more blanks (space or tab) will be considered as the input field separator
and a single space will be used as the output field separator. If present, blank characters at the
start of the input lines will be ignored.

sample sorted input files
$ cat shopping_jan.txt
apple 10
banana 20
soap 3
tshirt 3
$ cat shopping_feb.txt
banana 15
fig 100
pen 2
soap 1

combine common lines based on the first field
$ join shopping_jan.txt shopping_feb.txt
banana 20 15
soap 3 1

146

Note that the collating order used for join should be same as the one used to sort
the input files. Use join -i to ignore case, similar to sort -f usage.

If a field value is present multiple times in the same input file, all possible combinations will be
present in the output. As shown below, join will also ensure to add a final newline character
even if not present in the input.

$ join <(printf 'a f1_x\na f1_y') <(printf 'a f2_x\na f2_y')
a f1_x f2_x
a f1_x f2_y
a f1_y f2_x
a f1_y f2_y

There are many more features such as specifying field delimiter, selecting specific
fields from each input file in a particular order, filling fields for non-matching lines and so
on. See join chapter from my Command line text processing with GNU Coreutils ebook for
explanations and examples.

Exercises

Use example_files/text_files directory for input files used in the following exercises.

1) Default sort doesn’t work for numbers. Correct the command used below:

wrong output
$ printf '100\n10\n20\n3000\n2.45\n' | sort
10
100
20
2.45
3000

expected output
$ printf '100\n10\n20\n3000\n2.45\n' | sort # ???
2.45
10
20
100
3000

2) Which sort option will help you ignore case?

$ printf 'Super\nover\nRUNE\ntea\n' | LC_ALL=C sort # ???
over
RUNE
Super
tea

147

https://learnbyexample.github.io/cli_text_processing_coreutils/join.html
https://github.com/learnbyexample/cli_text_processing_coreutils
https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

3) Go through the sort manual and use appropriate options to get the output shown below.

wrong output
$ printf '+120\n-1.53\n3.14e+4\n42.1e-2' | sort -n
-1.53
+120
3.14e+4
42.1e-2

expected output
$ printf '+120\n-1.53\n3.14e+4\n42.1e-2' | sort # ???
-1.53
42.1e-2
+120
3.14e+4

4) Sort the scores.csv file numerically in ascending order using the contents of the second
field. Header line should be preserved as the first line as shown below. Hint: see Shell Features
chapter.

???
Name,Maths,Physics,Chemistry
Lin,78,83,80
Cy,97,98,95
Ith,100,100,100

5) Sort the contents of duplicates.txt by the fourth column numbers in descending order.
Retain only the first copy of lines with the same number.

???
dark red,sky,rose,555
blue,ruby,water,333
dark red,ruby,rose,111
brown,toy,bread,42

6)Will uniq throw an error if the input is not sorted? What do you think will be the output for
the following input?

$ printf 'red\nred\nred\ngreen\nred\nblue\nblue' | uniq
???

7) Retain only unique entries based on the first two characters of the input lines. Sort the input
if necessary.

$ printf '3) cherry\n1) apple\n2) banana\n1) almond\n'
3) cherry
1) apple
2) banana
1) almond

$ printf '3) cherry\n1) apple\n2) banana\n1) almond\n' | # ???
2) banana
3) cherry

8) Count the number of times input lines are repeated and display the results in the format

148

shown below.

$ printf 'brown\nbrown\nbrown\ngreen\nbrown\nblue\nblue' | # ???
1 green
2 blue
4 brown

9) Display lines present in c1.txt but not in c2.txt using the comm command. Assume
that the input files are already sorted.

???
Brown
Purple
Teal

10) Use appropriate options to get the expected output shown below.
wrong usage, no output
$ join <(printf 'apple 2\nfig 5') <(printf 'Fig 10\nmango 4')

expected output
???
fig 5 10

11) What are the differences between sort -u and uniq -u options, if any?

149

Comparing Files
In this chapter, you’ll learn how to find and report differences between the contents of two files.

The example_files directory has the sample input files used in this chapter.

cmp
The cmp command is useful to compare text and binary files. If the two files are same, no
output is displayed and exit status is 0 . If there is a difference, it prints the first difference
with details like line number and byte location and the exit status will be 1 .

$ mkdir practice_cmp
$ cd practice_cmp
$ echo 'hello' > x1.txt
$ cp x{1,2}.txt
$ echo 'hello.' > x3.txt

files with same content
$ cmp x1.txt x2.txt
$ echo $?
0

files with differences
$ cmp x1.txt x3.txt
x1.txt x3.txt differ: byte 6, line 1
$ echo $?
1

Use the -s option to suppress the output when you just need the exit status. The
-i option will allow you to skip initial bytes from the input.

diff
Useful to find differences between text files. All the differences are printed, which might not be
desirable for long files.

Common options

Commonly used options are shown below. Examples will be discussed in later sections.

• -i ignore case while comparing
• -w ignore whitespaces
• -b ignore changes in the amount of whitespace
• -B ignore only blank lines
• -E ignore changes due to tab expansion
• -z ignore trailing whitespaces at the end of line
• -y two column output
• -r recursively compare files between the two directories specified

150

https://github.com/learnbyexample/cli-computing/tree/master/example_files

• -s convey message when two files are same
• -q report if files differ, not the details of differences

Default diff

By default, the diff output shows lines from the first file input prefixed with < and lines from
the second file input prefixed with > . A line containing --- is used as the group separator.
Each difference is prefixed by a command that indicates the differences (these commands are
understood by tools like patch).

change to the 'example_files/text_files' directory
side-by-side view of sample input files
$ paste f1.txt f2.txt
1 1
2 hello
3 3
world 4

$ diff f1.txt f2.txt
2c2
< 2

> hello
4c4
< world

> 4

$ diff <(seq 4) <(seq 5)
4a5
> 5

Ignoring whitespaces

There are several options to ignore specific whitespace characters during comparison. Here are
some examples:

ignore changes in the amount of whitespace
$ diff -b <(echo 'good day') <(echo 'good day')
$ echo $?
0

ignore all whitespaces
$ diff -w <(echo 'hi there ') <(echo ' hi there')
$ echo $?
0
$ diff -w <(echo 'hi there ') <(echo 'hithere')
$ echo $?
0

151

Side-by-side output

The -y option is handy to view the differences side-by-side. By default, all the input lines will
be present in the output and the line width is 130 print columns. You can use the -W option to
change the width when dealing with short input lines. The --suppress-common-lines helps to
focus only on the differences.

$ diff -y f1.txt f2.txt
1 1
2 | hello
3 3
world | 4

$ diff -W 60 --suppress-common-lines -y f1.txt f2.txt
2 | hello
world | 4

Further Reading

• gvimdiff edit two, three or four versions of a file with GVim and show differences
• GUI diff and merge tools

Exercises

Use example_files/text_files directory for input files used in the following exercises.

1)Which cmp option would you use if you just need the exit status reflecting whether the given
inputs are same or not?

2) Which cmp option would you use to skip initial bytes for comparison purposes? The below
example requires you to skip the first two bytes.

$ echo '1) apple' > x1.txt
$ echo '2. apple' > x2.txt
$ cmp x1.txt x2.txt
x1.txt x2.txt differ: byte 1, line 1

$ cmp # ???
$ echo $?
0

$ rm x[12].txt

3) What does the diff -d option do?

4) Which option will help you get colored output with diff ?

5) Use appropriate options to get the desired output shown below.
instead of this output
$ diff -W 40 --suppress-common-lines -y f1.txt f2.txt
2 | hello
world | 4

152

http://askubuntu.com/questions/2946/what-are-some-good-gui-diff-and-merge-applications-available-for-ubuntu
https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

get this output
$ diff # ???
1 (
2 | hello
3 (
world | 4

6) Use appropriate options to get the desired output shown below.
$ echo 'hello' > d1.txt
$ echo 'Hello' > d2.txt

instead of this output
$ diff d1.txt d2.txt
1c1
< hello

> Hello

get this output
$ diff # ???
Files d1.txt and d2.txt are identical

$ rm d[12].txt

153

Assorted Text Processing Tools
There are way too many specialized text processing tools. This chapter will discuss some of the
commands that haven’t been covered in the previous chapters.

The example_files directory has the sample input files used in this chapter.

seq
The seq command is a handy tool to generate a sequence of numbers in ascending or descend-
ing order. Both integer and floating-point numbers are supported. You can also customize the
formatting for numbers and the separator between them.

You need three numbers to generate an arithmetic progression — start, step and stop. When
you pass only a single number as the stop value, the default start and step values are assumed
to be 1 . Passing two numbers are considered as start and stop values (in that order).

start=1, step=1 and stop=3
$ seq 3
1
2
3

start=25434, step=1 and stop=25437
$ seq 25434 25437
25434
25435
25436
25437

start=-5, step=1 and stop=-3
$ seq -5 -3
-5
-4
-3

start=0.25, step=0.33 and stop=1.12
$ seq 0.25 0.33 1.12
0.25
0.58
0.91

By using a negative step value, you can generate sequences in descending order.

$ seq 3 -1 1
3
2
1

You can use the -s option to change the separator between the numbers of a sequence. A
single newline character is always the character added after the final number.

154

https://github.com/learnbyexample/cli-computing/tree/master/example_files

$ seq -s' - ' 4
1 - 2 - 3 - 4

$ seq -s: 1.2e2 0.752 1.22e2
120.000:120.752:121.504

The -w option will equalize the width of the output numbers using leading zeros. The largest
width between the start and stop values will be used.

$ seq -w 8 10
08
09
10

$ seq -w 0003
0001
0002
0003

You can use the -f option for printf style floating-point number formatting.

$ seq -f'%g' -s: 1 0.75 3
1:1.75:2.5

$ seq -f'%.4f' -s: 1 0.75 3
1.0000:1.7500:2.5000

$ seq -f'%.3e' 1.2e2 0.752 1.22e2
1.200e+02
1.208e+02
1.215e+02

shuf
By default, shuf will randomize the order of input lines. You can use the -n option to limit
the number of output lines.

$ printf 'apple\nbanana\ncherry\nfig\nmango' | shuf
banana
cherry
mango
apple
fig

$ printf 'apple\nbanana\ncherry\nfig\nmango' | shuf -n2
mango
cherry

You can use the -e option to specify multiple input lines as arguments to the command. The
-r option helps if you want to allow input lines to be repeated. This option is usually paired
with -n to limit the number of lines in the output.

155

$ shuf -n4 -r -e brown green blue
green
brown
blue
green

The -i option will help you generate random positive integers.

$ shuf -n3 -i 100-200
170
112
148

cut
cut is a handy tool for many field processing use cases. The features are limited compared to
awk and perl commands, but the reduced scope also leads to faster processing.

By default, cut splits the input content into fields based on the tab character, which you can
change using the -d option. The -f option allows you to select a desired field from each
input line. To extract multiple fields, specify the selections separated by the comma character.
By default, lines not containing the input delimiter will still be part of the output. You can use
the -s option to suppress such lines.

second field
$ printf 'apple\tbanana\tcherry\n' | cut -f2
banana

first and third field
$ printf 'apple\tbanana\tcherry\n' | cut -f1,3
apple cherry

setting -d automatically changes output delimiter as well
$ echo 'one;two;three;four;five' | cut -d';' -f2,5
two;five

You can use the - character to specify field ranges. The starting or ending field number can
be skipped, but not both.

2nd, 3rd and 4th fields
$ printf 'apple\tbanana\tcherry\tdates\n' | cut -f2-4
banana cherry dates

all fields from the start till the 3rd field
$ printf 'apple\tbanana\tcherry\tdates\n' | cut -f-3
apple banana cherry

1st field and all fields from the 3rd field till the end
$ printf 'apple\tbanana\tcherry\tdates\n' | cut -f1,3-
apple cherry dates

Use the --output-delimiter option to customize the output separator to any string of your
choice.

156

same as: tr '\t' ','
$ printf 'apple\tbanana\tcherry\n' | cut --output-delimiter=, -f1-
apple,banana,cherry

multicharacter example
$ echo 'one;two;three;four' | cut -d';' --output-delimiter=' : ' -f1,3-
one : three : four

The --complement option allows you to invert the field selections.

except second field
$ printf 'apple ball cat\n1 2 3 4 5' | cut --complement -d' ' -f2
apple cat
1 3 4 5

except first and third fields
$ printf 'apple ball cat\n1 2 3 4 5' | cut --complement -d' ' -f1,3
ball
2 4 5

You can use the -b or -c options to select specified bytes from each input line. The syntax is
same as the -f option. The -c option is intended for multibyte character selection, but for
now it works exactly as the -b option.

$ printf 'apple\tbanana\tcherry\n' | cut -c2,8,11
pan

$ printf 'apple\tbanana\tcherry\n' | cut -c2,8,11 --output-delimiter=-
p-a-n

$ printf 'apple\tbanana\tcherry\n' | cut --complement -c13-
apple banana

$ printf 'cat-bat\ndog:fog' | cut -c5-
bat
fog

column
The column command is a nifty tool to align input data column wise. By default, whitespace is
used as the input delimiter. Space character is used to align the output columns, so whitespace
characters like tab will get converted to spaces.

$ printf 'one two three\nfour five six\nseven eight nine\n'
one two three
four five six
seven eight nine

$ printf 'one two three\nfour five six\nseven eight nine\n' | column -t
one two three
four five six
seven eight nine

157

You can use the -s option to customize the input delimiter. Note that the output delimiter will
still be made up of spaces only.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

$ column -s, -t scores.csv
Name Maths Physics Chemistry
Ith 100 100 100
Cy 97 98 95
Lin 78 83 80

$ printf '1:-:2:-:3\napple:-:banana:-:cherry\n' | column -s:-: -t
1 2 3
apple banana cherry

Input should have a newline at the end, otherwise you’ll get an error:

$ printf '1 2 3\na b c' | column -t
column: line too long
1 2 3

tr
tr helps you to map one set of characters to another set of characters. Features like range,
repeats, character sets, squeeze, complement, etc makes it a must know text processing tool.

tr works only on stdin data, so you’ll need to use shell input redirection for file input. Here
are some basic examples:

'l' maps to '1', 'e' to '3', 't' to '7' and 's' to '5'
$ echo 'leet speak' | tr 'lets' '1375'
1337 5p3ak

example with shell metacharacters
$ echo 'apple;banana;cherry' | tr ';' ':'
apple:banana:cherry

swap case
$ echo 'Hello World' | tr 'a-zA-Z' 'A-Za-z'
hELLO wORLD

$ tr 'a-z' 'A-Z' <greeting.txt
HI THERE
HAVE A NICE DAY

You can use the -d option to specify a set of characters to be deleted. The -c option will
invert the first set of characters. Here are some examples:

158

$ echo '2021-08-12' | tr -d '-'
20210812

$ s='"Hi", there! How *are* you? All fine here.'
$ echo "$s" | tr -d '[:punct:]'
Hi there How are you All fine here

retain alphabets, whitespaces, period, exclamation and question mark
$ echo "$s" | tr -cd 'a-zA-Z.!?[:space:]'
Hi there! How are you? All fine here.

The -s option will squeeze consecutive repeated characters to a single copy of that character.

squeeze lowercase alphabets
$ echo 'hhoowwww aaaaaareeeeee yyouuuu!!' | tr -s 'a-z'
how are you!!

translate and squeeze
$ echo 'hhoowwww aaaaaareeeeee yyouuuu!!' | tr -s 'a-z' 'A-Z'
HOW ARE YOU!!

delete and squeeze
$ echo 'hhoowwww aaaaaareeeeee yyouuuu!!' | tr -sd '!' 'a-z'
how are you

squeeze other than lowercase alphabets
$ echo 'apple noon banana!!!!!' | tr -cs 'a-z'
apple noon banana!

paste
paste is typically used to merge two or more files column wise. It also has a handy feature for
serializing data. By default, paste adds a tab character between the corresponding lines of
input files.

$ cat colors_1.txt
Blue
Brown
Orange
Purple
$ cat colors_2.txt
Black
Blue
Green
Orange

$ paste colors_1.txt colors_2.txt
Blue Black
Brown Blue
Orange Green
Purple Orange

159

You can use the -d option to change the delimiter between the columns. The separator is
added even if the data has been exhausted for some of the input files.

$ paste -d'|' <(seq 3) <(seq 4 5) <(seq 6 8)
1|4|6
2|5|7
3||8

note that the space between -d and empty string is necessary here
$ paste -d '' <(seq 3) <(seq 6 8)
16
27
38

$ paste -d'\n' <(seq 11 12) <(seq 101 102)
11
101
12
102

You can use empty files to get multicharacter separation between the columns.

$ paste -d' : ' <(seq 3) /dev/null /dev/null <(seq 4 6)
1 : 4
2 : 5
3 : 6

If you use - multiple times, paste will consume a line from stdin data every time - is
encountered. This is different from using the same filename multiple times, in which case they
are treated as separate inputs.

five columns
$ seq 10 | paste -d: - - - - -
1:2:3:4:5
6:7:8:9:10

use redirection for file input
$ <colors_1.txt paste -d: - - -
Blue:Brown:Orange
Purple::

The -s option allows you to combine all the input lines from a file into a single line using the
given delimiter. Multiple input files are treated separately. paste will ensure to add a final
newline character even if it isn’t present in the input.

<colors_1.txt tr '\n' ',' will give you a trailing comma
$ paste -sd, colors_1.txt
Blue,Brown,Orange,Purple

multiple file example
$ paste -sd: colors_1.txt colors_2.txt
Blue:Brown:Orange:Purple
Black:Blue:Green:Orange

160

pr

Paginate or columnate FILE(s) for printing.

As stated in the above quote from the manual, the pr command is mainly used for those
two tasks. This section will discuss only the columnate features and some miscellaneous tasks.
Here’s a pagination example if you are interested in exploring further. The pr command will
add blank lines, a header and so on to make it suitable for printing.

$ pr greeting.txt | head -n8

2022-06-11 10:48 greeting.txt Page 1

Hi there
Have a nice day

The --columns and -a options can be used to merge the input lines in two different ways:

• split the input file and then merge them as columns
• merge consecutive lines, similar to the paste command

Here’s an example to get started. Note that -N is same as using --columns=N where N is the
number of columns you want in the output. The default page width is 72 , which means each
column can only have a maximum of 72/N characters (including the separator). Tab and space
characters will be used to fill the columns as needed. You can use the -J option to prevent
pr from truncating longer columns. The -t option is used here to turn off the pagination
features.

split input into three parts
each column width is 72/3 = 24 characters max
$ seq 9 | pr -3t
1 4 7
2 5 8
3 6 9

You can customize the separator using the -s option. The default is a tab character which
you can change to any other string value. The -s option also turns off line truncation, so -J
option isn’t needed.

tab separator
$ seq 9 | pr -3ts
1 4 7
2 5 8
3 6 9

custom separator
$ seq 9 | pr -3ts' : '
1 : 4 : 7
2 : 5 : 8
3 : 6 : 9

161

However, the default page width of 72 can still cause issues, which you can prevent by using
the -w option. The -w option overrides the effect of -s option on line truncation, so use
-J option as well unless you really need truncation.

$ seq 6 | pr -J -w10 -3ats'::::'
pr: page width too narrow

$ seq 6 | pr -J -w11 -3ats'::::'
1::::2::::3
4::::5::::6

Use the -a option to merge consecutive lines, similar to the paste command. One advan-
tage is that the -s option supports a string value, whereas with paste you’d need to use
workarounds to get multicharacter separation.

same as: paste -d: - - - -
$ seq 8 | pr -4ats:
1:2:3:4
5:6:7:8

unlike paste, pr doesn't add separators if the last row has less columns to fill
$ seq 10 | pr -4ats,
1,2,3,4
5,6,7,8
9,10

Two or more input files can be merged column wise using the -m option. As seen before, -t
is needed to ignore pagination features and -s can be used to customize the separator.

same as: paste -d' : ' <(seq 3) /dev/null /dev/null <(seq 4 6)
$ pr -mts' : ' <(seq 3) <(seq 4 6)
1 : 4
2 : 5
3 : 6

rev
The rev command reverses each input line character wise. Newline character won’t be added
to the end if it wasn’t present in the input. Here are some examples:

$ echo 'This is a sample text' | rev
txet elpmas a si sihT

$ printf 'apple\nbanana\ncherry\n' | rev
elppa
ananab
yrrehc

$ printf 'malayalam\nnoon\n' | rev
malayalam
noon

162

split
The split command is useful to divide the input into smaller parts based on number of lines,
bytes, file size, etc. You can also execute another command on the divided parts before saving
the results. An example use case is sending a large file as multiple parts as a workaround for
online transfer size limits.

By default, the split command divides the input 1000 lines at a time. Newline character is
the default line separator. You can pass a single file or stdin data as the input. Use cat if
you need to concatenate multiple input sources. By default, the output files will be named xaa
, xab , xac and so on (where x is the prefix). If the filenames are exhausted, two more
letters will be appended and the pattern will continue as needed. If the number of input lines is
not evenly divisible, the last file will contain less than 1000 lines.

divide input 1000 lines at a time
$ seq 10000 | split

output filenames
$ ls x*
xaa xab xac xad xae xaf xag xah xai xaj

preview of some of the output files
$ head -n1 xaa xab xae xaj
==> xaa <==
1

==> xab <==
1001

==> xae <==
4001

==> xaj <==
9001

For more examples, customization options and other details, see split chapter from
my Command line text processing with GNU Coreutils ebook.

csplit
The csplit command is useful to divide the input into smaller parts based on line numbers
and regular expression patterns.

You can split the input into two based on a particular line number. To do so, specify the line
number after the input source (filename or stdin data). The first output file will have the
input lines before the given line number and the second output file will have the rest of the
contents. By default, the output files will be named xx00 , xx01 , xx02 and so on (where
xx is the prefix). The numerical suffix will automatically use more digits if needed.

split input into two based on line number 2
-q option suppresses output showing number of bytes written for each file

163

https://learnbyexample.github.io/cli_text_processing_coreutils/split.html
https://github.com/learnbyexample/cli_text_processing_coreutils

$ seq 4 | csplit -q - 2

first output file will have the first line
second output file will have the rest
$ head xx*
==> xx00 <==
1

==> xx01 <==
2
3
4

You can also split the input based on a line matching the given regular expression. The output
produced will vary based on // or %% delimiters being used to surround the regexp. When
/regexp/ is used, output is similar to the line number based splitting. The first output file
will have the input lines before the first occurrence of a line matching the given regexp and the
second output file will have the rest of the contents.

Consider this sample input file:

$ cat purchases.txt
coffee
tea
washing powder
coffee
toothpaste
tea
soap
tea

Here’s an example of splitting the input file using the /regexp/ syntax:

match a line containing 't' followed by zero or more characters and then 'p'
'toothpaste' is the only match for this input file
$ csplit -q purchases.txt '/t.*p/'

$ head xx*
==> xx00 <==
coffee
tea
washing powder
coffee

==> xx01 <==
toothpaste
tea
soap
tea

When %regexp% is used, the lines occurring before the matching line won’t be part of the output.
Only the line matching the given regexp and the rest of the contents will be part of the single
output file.

164

$ csplit -q purchases.txt '%t.*p%'

$ cat xx00
toothpaste
tea
soap
tea

For more examples, customization options and other details, see csplit chapter from
my Command line text processing with GNU Coreutils ebook.

xargs
By default, xargs executes the echo command for the arguments extracted from stdin data
(or file input via the -a option). The -n option helps to customize howmany arguments should
be passed at a time. Together, these features can be used to reshape whitespace separated data
as shown in the examples below:

$ printf ' apple banana cherry\n\t\tdragon unicorn \n'
apple banana cherry

dragon unicorn
$ printf ' apple banana cherry\n\t\tdragon unicorn \n' | xargs -n2
apple banana
cherry dragon
unicorn

$ cat ip.txt
deep blue
light orange
blue delight
$ xargs -a ip.txt -n3
deep blue light
orange blue delight

You can use the -L option to specify how many input lines should be combined at a time:

same as: pr -3ats' ' or paste -d' ' - - -
$ seq 9 | xargs -L3
1 2 3
4 5 6
7 8 9

$ xargs -a ip.txt -L2
deep blue light orange
blue delight

you can also use -l instead of -L1
$ printf ' apple banana cherry\n\t\tdragon unicorn \n' | xargs -L1
apple banana cherry
dragon unicorn

165

https://learnbyexample.github.io/cli_text_processing_coreutils/csplit.html
https://github.com/learnbyexample/cli_text_processing_coreutils

Note that xargs -L1 is not the same as awk '{$1=$1} 1' since xargs will discard
blank lines. Also, trailing blank characters will cause the next line to be considered as part
of the current line. For example:

no trailing blanks
$ printf 'xerox apple\nregex go sea\n' | xargs -L1
xerox apple
regex go sea

with trailing blanks
$ printf 'xerox apple \nregex go sea\n' | xargs -L1
xerox apple regex go sea

Use -d option to change the input delimiter from whitespace to some other single character.
For example:

$ printf '1,2,3,4,5,6' | xargs -d, -n3
1 2 3
4 5 6

Exercises

Use example_files/text_files directory for input files used in the following exercises.

1) Generate the following sequence.
???
100
95
90
85
80

2) Is the sequence shown below possible to generate with seq ? If so, how?

???
01.5,02.5,03.5,04.5,05.5

3) Display three random words from /usr/share/dict/words (or equivalent dictionary word
file) containing s and e and t in any order. The output shown below is just an example.

???
supplemental
foresight
underestimates

4) Briefly describe the purpose of the shuf command options -i , -e and -r .

5) Why does the below command not work as expected? What other tools can you use in such
cases?

166

https://github.com/learnbyexample/cli-computing/tree/master/example_files/text_files

not working as expected
$ echo 'apple,banana,cherry,dates' | cut -d, -f3,1,3
apple,cherry

expected output
???
cherry,apple,cherry

6) Display except the second field in the format shown below. Can you construct two different
solutions?

$ echo 'apple,banana,cherry,dates' | cut # ???
apple cherry dates

$ echo '2,3,4,5,6,7,8' | cut # ???
2 4 5 6 7 8

7) Extract first three characters from the input lines as shown below. Can you also use the head
command for this purpose? If not, why not?

$ printf 'apple\nbanana\ncherry\ndates\n' | cut # ???
app
ban
che
dat

8) Display only the first and third columns of the scores.csv input file in the format as shown
below. Note that only space characters are present between the two columns, not tab.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

???
Name Physics
Ith 100
Cy 98
Lin 83

9) Display the contents of table.txt in the format shown below.

???
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

10) Implement ROT13 cipher using the tr command.

$ echo 'Hello World' | tr # ???
Uryyb Jbeyq
$ echo 'Uryyb Jbeyq' | tr # ???
Hello World

167

https://en.wikipedia.org/wiki/ROT13

11) Retain only alphabets, digits and whitespace characters.
$ echo 'Apple_42 cool,blue Dragon:army' | # ???
Apple42 coolblue Dragonarmy

12) Use tr to get the output shown below.

$ echo '!!hhoowwww !!aaaaaareeeeee!! yyouuuu!!' | tr # ???
how are you

13) paste -s works separately for multiple input files. How would you workaround this if you
needed to treat input as a single source?

this works individually for each input file
$ paste -sd, fruits.txt ip.txt
banana,papaya,mango
deep blue,light orange,blue delight

expected output
???
banana,papaya,mango,deep blue,light orange,blue delight

14) Use appropriate options to get the expected output shown below.
default output
$ paste fruits.txt ip.txt
banana deep blue
papaya light orange
mango blue delight

expected output
$ paste # ???
banana
deep blue
papaya
light orange
mango
blue delight

15) Use the pr command to get the expected output shown below.

$ seq -w 16 | pr # ???
01,02,03,04
05,06,07,08
09,10,11,12
13,14,15,16

$ seq -w 16 | pr # ???
01,05,09,13
02,06,10,14
03,07,11,15
04,08,12,16

16) Use the pr command to join the input files fruits.txt and ip.txt as shown below.

168

???
banana : deep blue
papaya : light orange
mango : blue delight

17) The cut command doesn’t support a way to choose the last N fields. Which tool presented
in this chapter can be combined to work with cut to get the output shown below?

last two characters from each line
$ printf 'apple\nbanana\ncherry\ndates\n' | # ???
le
na
ry
es

18) Go through split documentation and use appropriate options to get the output shown
below for the input file purchases.txt .

split input by 3 lines (max) at a time
???

$ head xa?
==> xaa <==
coffee
tea
washing powder

==> xab <==
coffee
toothpaste
tea

==> xac <==
soap
tea

$ rm xa?

19) Go through split documentation and use appropriate options to get the output shown
below.

$ echo 'apple,banana,cherry,dates' | split # ???

$ head xa?
==> xaa <==
apple,
==> xab <==
banana,
==> xac <==
cherry,
==> xad <==
dates

169

$ rm xa?

20) Split the input file purchases.txt such that the text before a line containing powder is
part of the first file and the rest are part of the second file as shown below.

???

$ head xx0?
==> xx00 <==
coffee
tea

==> xx01 <==
washing powder
coffee
toothpaste
tea
soap
tea

$ rm xx0?

21) Write a generic solution that transposes comma delimited data. Example input/output is
shown below. You can use any tool(s) presented in this book.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Ith,100,100,100
Cy,97,98,95
Lin,78,83,80

???
Name,Ith,Cy,Lin
Maths,100,97,78
Physics,100,98,83
Chemistry,100,95,80

22) Reshape the contents of table.txt to the expected output shown below.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

???
brown bread mat hair
42 blue cake mug
shirt -7 yellow banana
window shoes 3.14

170

Shell Scripting
This chapter will cover basics of shell scriptingwith bash . You’ll learn about declaring variables,
control structures, working with arguments passed to a script, getting user input and so on.

The example_files directory has all the shell scripts discussed in this chapter. However,
it is recommended that you type the scripts manually using your favorite text editor and
refer to the example_files/shell_scripting directory only if necessary.

Need for scripting
From wikipedia: Scripting language:

A scripting language or script language is a programming language for a runtime system
that automates the execution of tasks that would otherwise be performed individually by
a human operator. Scripting languages are usually interpreted at runtime rather than
compiled.

Typical scripting languages are intended to be very fast to learn and write in, either as
short source code files or interactively in a read–eval–print loop (REPL, language shell).
This generally implies relatively simple syntax and semantics; typically a ”script” (code
written in the scripting language) is executed from start to finish, as a ”script”, with no
explicit entry point.

From wikipedia: Shell script:

A shell script is a computer program designed to be run by the Unix shell, a command-line
interpreter. The various dialects of shell scripts are considered to be scripting languages.
Typical operations performed by shell scripts include file manipulation, program execution,
and printing text. A script which sets up the environment, runs the program, and does any
necessary cleanup or logging, is called a wrapper.

See also Difference between scripting and programming languages.

Executable script
There are several ways you can execute commands from a file. This section shows an example
of creating an executable script. Consider this sample script saved in a file named hello.sh :

#!/bin/bash

echo "Hello $USER"
echo "Today is $(date -u +%A)"
echo 'Have a nice day'

The first line in the above script has two parts:

• /bin/bash is the path of bash interpreter
∘ you can use type bash to get the path on your system

171

https://github.com/learnbyexample/cli-computing/tree/master/example_files
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Shell_script
https://stackoverflow.com/q/17253545/4082052

• #! is known as shebang or hashbang which directs the program loader to use the inter-
preter path provided

∘ see also stackoverflow: comparison between #!/usr/bin/env and #!/bin/bash?
∘ the # character starts a comment, #! is only special at the start of the script

Use chmod to add executable permission to the file and then run the script:

$ chmod +x hello.sh

$./hello.sh
Hello learnbyexample
Today is Wednesday
Have a nice day

If you want to use just the script name to execute it, the file has to be located in one of the
PATH folders. Otherwise, you’ll have to provide the script’s path (absolute or relative) in order
to execute it (as shown in the above illustration).

.sh is typically used as the file extension for shell scripts. It is also common to not
have an extension at all, especially for executable scripts.

Passing file argument to bash
You can also just pass a regular file as an argument to the bash command. In this case, the
shebang isn’t needed (though it wouldn’t cause any issues either, since it will be treated as a
comment).

$ cat greeting.sh
echo 'hello'
echo 'have a nice day'

$ bash greeting.sh
hello
have a nice day

Sourcing script
Yet another way to execute a script is to source it using the source (or .) builtin command.
A major difference from the previous methods is that the script is executed in the current shell
environment context instead of a sub-shell. A common use case is sourcing ~/.bashrc and
alias/functions (if they are saved in a separate file).

Here’s an example:

$ cat prev_cmd.sh
prev=$(fc -ln -2 | sed 's/^\s*//; q')
echo "$prev"

'echo' here is just a sample command for illustration purposes
$ echo 'hello'
hello
sourcing the script correctly gives the previous command

172

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://stackoverflow.com/q/21612980/4082052

$ source prev_cmd.sh
echo 'hello'

$ echo 'hello'
hello
no output when the script is executed in a sub-shell
$ bash prev_cmd.sh

fc is a builtin command to manipulate the history of commands you’ve used from
the terminal. See bash manual: History Builtins for more details.

Comments
Single line comments can be inserted after the # character, either at the start of a line or after
an instruction.

$ cat comments.sh
this is a comment on its own line
echo 'hello' # and this is a comment after a command

$ bash comments.sh
hello

See this unix.stackexchange thread for emulating multiline comments.

Variables
Here’s a basic example of assigning a variable and accessing its value:

$ name='learnbyexample'

$ echo "$name"
learnbyexample

As seen above, you need to use the $ prefix while accessing the value stored in a variable. You
can use ${variable} syntax to distinguish between the variable and other parts of the string.
Using appropriate quotes is recommended, unless otherwise necessary.

You can append to a variable by using the += operator. Here’s an example:

$ colors='blue'
$ echo "$colors"
blue

$ colors+=' green'
$ echo "$colors"
blue green

You can use the declare builtin to add attributes to variables. For example, the -i option for
treating the variable as an integer, -r option for readonly, etc. These attributes can change the

173

https://www.gnu.org/software/bash/manual/bash.html#Bash-History-Builtins
https://unix.stackexchange.com/q/37411/109046

behavior of operators like = and += for those variables. See bash manual: Shell-Parameters
and bash manual: declare for more details.

$ declare -i num=5
$ echo "$num"
5
$ num+=42
$ echo "$num"
47

$ declare -r color='brown'
$ echo "$color"
brown
$ color+=' green'
bash: color: readonly variable

Assigning variables is one of the most common source for errors. Unlike most
programming languages, spaces are not allowed around the = sign. That is because
space is a shell metacharacter. Another common issue is using quotes (or not) around the
value. Here are some examples:

$ num = 42
num: command not found

$ greeting=hello world
world: command not found
$ greeting='hello world'
$ echo "$greeting"
hello world

using quotes is NOT desirable here
$ dir_path=~/reports
$ echo "$dir_path"
/home/learnbyexample/reports
$ dir_path='~/reports'
$ echo "$dir_path"
~/reports

Arrays
From bash manual: Arrays:

Bash provides one-dimensional indexed and associative array variables. Any variable may
be used as an indexed array; the declare builtin will explicitly declare an array. There is
no maximum limit on the size of an array, nor any requirement that members be indexed or
assigned contiguously. Indexed arrays are referenced using integers and are zero-based;
associative arrays use arbitrary strings.

Here’s an example of assigning an indexed array and various ways of accessing the elements:

174

https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameters
https://www.gnu.org/software/bash/manual/bash.html#index-declare
https://www.gnu.org/software/bash/manual/bash.html#Arrays

$ fruits=('apple' 'fig' 'mango')

first element
$ echo "${fruits[0]}"
apple

last element
$ echo "${fruits[-1]}"
mango

all elements (example with for loop will be discussed later on)
$ echo "${fruits[@]}"
apple fig mango
$ printf '%s\n' "${fruits[@]}"
apple
fig
mango

Parameter Expansion
Bash provides several useful ways to extract and modify contents of parameters and variables
(including arrays). Some of these features will be discussed in this section.

1) Substring extraction using ${parameter:offset} syntax to get all characters from the given
index:

$ city='Lucknow'

all characters from index 4 onwards
indexing starts from 0
$ echo "${city:4}"
now

last two characters
space before the negative sign is compulsory here,
since ${parameter:-word} is a different feature
$ echo "${city: -2}"
ow

When applied to arrays, substring extraction will give you those elements:

$ fruits=('apple' 'fig' 'mango')

all elements from index 1
$ echo "${fruits[@]:1}"
fig mango

2) Substring extraction using ${parameter:offset:length} syntax to get specific number of
characters from the given index:

$ city='Lucknow'

175

4 characters starting from index 0
can also use: echo "${city::4}"
$ echo "${city:0:4}"
Luck

2 characters starting from index -4 (4th character from the end)
$ echo "${city: -4:2}"
kn

except last 2 characters
$ echo "${city::-2}"
Luckn

3) ${#parameter} will give you the length of the string and ${#array[@]} will give you the
number of elements in the array:

$ city='Lucknow'
$ echo "${#city}"
7

$ fruits=('apple' 'fig' 'mango')
$ echo "${#fruits[@]}"
3

4) ${parameter#glob} will remove the shortest match from the start of the string. You can
also use extended globs if enabled via shopt builtin. ${parameter##glob} will remove the
longest match from the start of the string. Here are some examples:

$ s='this is his life history'

shortest match is deleted
$ echo "${s#*is}"
is his life history
longest match is deleted
$ echo "${s##*is}"
tory

assuming extglob is enabled
$ echo "${s#+([^])}"
his is his life history
$ echo "${s##+([^])}"
is his life history

for arrays, the processing is applied to each element
$ fruits=('apple' 'fig' 'mango')
$ echo "${fruits[@]#*[aeiou]}"
pple g ngo

5) You can use ${parameter%glob} to remove the shortest match from the end of the string.
${parameter%%glob} will remove the longest match from the end of the string. Here are some
examples:

176

$ s='this is his life history'

$ echo "${s%is*}"
this is his life h
$ echo "${s%%is*}"
th

$ fruits=('apple' 'fig' 'mango')
$ echo "${fruits[@]%[aeiou]*}"
appl f mang

6) ${parameter/glob/string} replaces the first matching occurrence with the given replace-
ment string and ${parameter//glob/string} will replace all the matching occurrences. You
can leave out the /string portion when you want to delete the matching occurrences. The
glob will match the longest portion, similar to greedy behavior in regular expressions. Here
are some examples:

$ ip='this is a sample string'

first occurrence of 'is' is replaced with '123'
$ echo "${ip/is/123}"
th123 is a sample string
all occurrences of 'is' are replaced with '123'
$ echo "${ip//is/123}"
th123 123 a sample string

replace all occurrences of 'am' or 'in' with '-'
$ echo "${ip//@(am|in)/-}"
this is a s-ple str-g

matches from the first 'is' to the last 's' in the input
$ echo "${ip/is*s/ X }"
th X tring

deletes first occurrence of 's'
$ echo "${ip/s}"
thi is a sample string
deletes all occurrences of 's'
$ echo "${ip//s}"
thi i a ample tring

7) You can use ${parameter/#glob/string} to match only at the start of the string and
${parameter/%glob/string} to match only at the end of the string.

$ ip='spare'

remove only from the start of the string
$ echo "${ip/#sp}"
are
$ echo "${ip/#par}"
spare

177

example with replacement string
$ echo "${ip/#sp/fl}"
flare

remove only from the end of the string
$ echo "${ip/%re}"
spa
$ echo "${ip/%par}"
spare

8) ${parameter^glob} can change only the first character to uppercase if matched by the glob.
${parameter^^glob} changes all the matching characters to uppercase (anywhere in the input
string). You should provide a glob that only matches one character in length. If the glob is
omitted, entire parameter will be matched. These rules also apply to the lowercase and swap
case versions discussed later.

$ fruit='apple'

uppercase the first character
$ echo "${fruit^}"
Apple
uppercase the entire parameter
$ echo "${fruit^^}"
APPLE

first character doesn't match the 'g-z' range, so no change
$ echo "${fruit^[g-z]}"
apple
uppercase all letters in the 'g-z' range
$ echo "${fruit^^[g-z]}"
aPPLe
uppercase all letters in the 'a-e' or 'j-m' ranges
$ echo "${fruit^^[a-ej-m]}"
AppLE

this won't work since 'sky-' is not a single character
$ color='sky-rose'
$ echo "${color^^*-}"
sky-rose

9) To change the characters to lowercase, use , and ,, as shown below:

$ fruit='APPLE'

$ echo "${fruit,}"
aPPLE
$ echo "${fruit,,}"
apple

$ echo "${fruit,,[G-Z]}"
ApplE

178

10) To swap case, use ~ and ~~ as shown below. Note that this seems to be deprecated, since
it is no longer mentioned in the bash manual.

$ fruit='aPPle'

swap case only for the first character
$ echo "${fruit~}"
APPle
swap case for all the characters
$ echo "${fruit~~}"
AppLE

swap case for characters matching the given character set
$ echo "${fruit~~[g-zG-Z]}"
appLe

See bash manual: Shell Parameter Expansion for more details and other types of
expansions.

Command Line Arguments
Command line arguments passed to a script (or a function) are saved in positional parameters
starting with 1 , 2 , 3 etc. 0 contains the name of the shell or shell script. @ contains all
the positional parameters starting from 1 . Use # to get the number of positional parameters.
Similar to variables, you need to use a $ prefix to get the value stored in these parameters. If
the parameter number requires more than a single digit, you have to necessarily enclose them
in {} (for example, ${12} to get the value of the twelfth parameter).

Here’s an example script that accepts two arguments:

$ cat command_line_arguments.sh
echo "No. of lines in '$1' is $(wc -l < "$1")"
echo "No. of lines in '$2' is $(wc -l < "$2")"

$ seq 12 > 'test file.txt'

$ bash command_line_arguments.sh hello.sh test\ file.txt
No. of lines in 'hello.sh' is 5
No. of lines in 'test file.txt' is 12

Further Reading

• unix.stackexchange: shell script choking on whitespace or other special characters
• bash manual: Special Parameters

Conditional Expressions
You can test a condition within [[and]] to get a success (0) or failure (1 or higher)
exit status and take action accordingly. Bash provides several options and operators that you
can use. Space is required after [[and before]] for this compound command to function.

179

https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion
https://unix.stackexchange.com/q/131766/109046
https://www.gnu.org/software/bash/manual/bash.html#Special-Parameters

Operators ; , && and || will be used in this section to keep the examples terser.
if-else and other control structures will be discussed later.

Options

The -e option checks if the given path argument exists or not. Add a ! prefix to negate the
condition.

change to the 'example_files/shell_scripting' directory for this section

$ [[-e hello.sh]] && echo 'found' || echo 'not found'
found

$ [[-e xyz.txt]] && echo 'found' || echo 'not found'
not found

exit status
$ [[-e hello.sh]] ; echo $?
0
$ [[-e xyz.txt]] ; echo $?
1
$ [[! -e xyz.txt]] ; echo $?
0

You can use -d and -f to check if the path is a valid directory and file respectively. The -s
option checks if the file exists and its size is greater than zero. The -x option checks if the
file exists and is executable. See help test and bash manual: Conditional Expressions for a
complete list of such options.

String comparisons

• s1 = s2 or s1 == s2 checks if two strings are equal
∘ unquoted portions of s2 will be treated as a wildcard while testing against s1
∘ extglob would be considered as enabled for such comparisons

• s1 != s2 checks if strings are not equal
∘ unquoted portions of s2 will be treated as a wildcard while testing against s1
∘ extglob would be considered as enabled for such comparisons

• s1 < s2 checks if s1 sorts before s2 lexicographically
• s1 > s2 checks if s1 sorts after s2 lexicographically
• s1 =~ s2 checks if s1 matches the POSIX extended regular expression provided by

s2
∘ exit status will be 2 if s2 is not a valid regexp

Here are some examples for equal and not-equal comparisons:

$ fruit='apple'
$ [[$fruit == 'apple']] && echo 'true' || echo 'false'
true
$ [[$fruit == 'banana']] && echo 'true' || echo 'false'
false

180

https://www.gnu.org/software/bash/manual/bash.html#Bash-Conditional-Expressions

glob should be constructed to match the entire string
$ [[hello == h*]] && echo 'true' || echo 'false'
true
don't quote the glob!
$ [[hello == 'h*']] && echo 'true' || echo 'false'
false

another example to emphasize that the glob should match the entire string
$ [[hello == e*o]] && echo 'true' || echo 'false'
false
$ [[hello == *e*o]] && echo 'true' || echo 'false'
true

$ [[hello != *a*]] && echo 'true' || echo 'false'
true
$ [[hello != *e*]] && echo 'true' || echo 'false'
false

Here are some examples for greater-than and less-than comparisons:

$ [[apple < banana]] && echo 'true' || echo 'false'
true
$ [[par < part]] && echo 'true' || echo 'false'
true

$ [[mango > banana]] && echo 'true' || echo 'false'
true
$ [[sun > moon && fig < papaya]] && echo 'true' || echo 'false'
true

don't use this to compare numbers!
$ [[20 > 3]] && echo 'true' || echo 'false'
false
-gt and other such operators will be discussed later
$ [[20 -gt 3]] && echo 'true' || echo 'false'
true

Here are some examples for regexp comparison. You can use the special array BASH_REMATCH
to retrieve specific portions of the string that was matched. Index 0 gives entire matched
portion, 1 gives the portion matched by the first capture group and so on.

$ fruit='apple'
$ [[$fruit =~ ^a]] && echo 'true' || echo 'false'
true
$ [[$fruit =~ ^b]] && echo 'true' || echo 'false'
false

entire matched portion
$ [[$fruit =~ a..]] && echo "${BASH_REMATCH[0]}"
app
portion matched by the first capture group

181

$ [[$fruit =~ a(..)]] && echo "${BASH_REMATCH[1]}"
pp

Numeric comparisons

• n1 -eq n2 checks if two numbers are equal
• n1 -ne n2 checks if two numbers are not equal
• n1 -gt n2 checks if n1 is greater than n2
• n1 -ge n2 checks if n1 is greater than or equal to n2
• n1 -lt n2 checks if n1 is less than n2
• n1 -le n2 checks if n1 is less than or equal to n2

These operators support only integer comparisons.

$ [[20 -gt 3]] && echo 'true' || echo 'false'
true

$ n1='42'
$ n2='25'
$ [[$n1 -gt 30 && $n2 -lt 12]] && echo 'true' || echo 'false'
false

Numeric arithmetic operations and comparisons can also be performed within the ((and))
compound command. Here are some sample comparisons:

$ ((20 > 3)) && echo 'true' || echo 'false'

$ n1='42'
$ n2='25'
$ ((n1 > 30 && n2 < 12)) && echo 'true' || echo 'false'
false

Note that the $ prefix was not used for variables in the above example. See bash
manual: Shell Arithmetic for more details.

Accepting user input interactively
You can use the read builtin command to accept input from the user interactively. If multiple
variables are given as arguments to the read command, values will be assigned based on
whitespace separation by default. Any pending values will be assigned to the last variable. Here
are some examples:

press 'Enter' after the 'read' command
and also after you've finished entering the input
$ read color
light green
$ echo "$color"
light green

example with multiple variables
$ read fruit qty

182

https://www.gnu.org/software/bash/manual/bash.html#Shell-Arithmetic
https://www.gnu.org/software/bash/manual/bash.html#Shell-Arithmetic

apple 10
$ echo "${fruit}: ${qty}"
apple: 10

The -p option helps you to add a user prompt. Here is an example of getting two arguments
from the user:

$ cat user_input.sh
read -p 'Enter two integers separated by spaces: ' num1 num2
sum=$((num1 + num2))
echo "$num1 + $num2 = $sum"

$ bash user_input.sh
Enter two integers separated by spaces: -2 42
-2 + 42 = 40

You can use the -a option to assign an array, the -d option to specify a custom
delimiter instead of newline for terminating user input and so on. See help read and
bash manual: Builtins for more details.

if then else
The keywords needed to construct an if control structure are if , then , fi and optionally
else and elif . You can use compound commands like [[and ((to provide the test
condition. You can also directly use a command’s exit status. Here’s an example script:

$ cat if_then_else.sh
if (($# != 1)) ; then

echo 'Error! One file argument expected.' 1>&2
exit 1

else
if [[! -f $1]] ; then

printf 'Error! %q is not a valid file\n' "$1" 1>&2
exit 1

else
echo "No. of lines in '$1' is $(wc -l < "$1")"

fi
fi

1>&2 is used in the above script to redirect error messages to the stderr stream. Sample
script invocations are shown below:

$ bash if_then_else.sh
Error! One file argument expected.
$ echo $?
1

$ bash if_then_else.sh xyz.txt
Error! xyz.txt is not a valid file
$ echo $?
1

183

https://www.gnu.org/software/bash/manual/bash.html#Bash-Builtins

$ bash if_then_else.sh hello.sh
No. of lines in 'hello.sh' is 5
$ echo $?
0

Sometimes you just need to know if the intended command operation was successful or not and
then take an action depending on the outcome. In such cases, you can provide the command
directly after the if keyword. Note that stdout and stderr of the command will still be
active unless redirected or suppressed using appropriate options.

For example, the grep command supports -q option to suppress stdout . Here’s a script
using that feature:

$ cat search.sh
read -p 'Enter a search pattern: ' search

if grep -q "$search" hello.sh ; then
echo "match found"

else
echo "match not found"

fi

Sample invocations for the above script:

$ bash search.sh
Enter a search pattern: echo
match found

$ bash search.sh
Enter a search pattern: xyz
match not found

for loop
To construct a for loop, you’ll need the for , do and done keywords. Here are some
examples:

iterate over numbers generated using brace expansion
$ for num in {2..4}; do echo "$num"; done
2
3
4

iterate over files matched using wildcards
echo is used here for dry run testing
$ for file in [gh]*.sh; do echo mv "$file" "$file.bkp"; done
mv greeting.sh greeting.sh.bkp
mv hello.sh hello.sh.bkp

As seen in the above examples, the space separated arguments provided after the in key-
word are automatically assigned to the variable provided after the for keyword during each
iteration.

184

Here’s a modified example of the last example that accepts user provided command line argu-
ments:

$ cat for_loop.sh
for file in "$@"; do

echo mv "$file" "$file.bkp"
done

$ bash for_loop.sh [gh]*.sh
mv greeting.sh greeting.sh.bkp
mv hello.sh hello.sh.bkp

$ bash for_loop.sh report.log ip.txt fruits.txt
mv report.log report.log.bkp
mv ip.txt ip.txt.bkp
mv fruits.txt fruits.txt.bkp

Here’s an example of iterating over an array:

$ files=('report.log' 'pass_list.txt')
$ for f in "${files[@]}"; do echo "$f"; done
report.log
pass_list.txt

You can use continue and break to alter the loop flow depending on specific
conditions. See bash manual: Bourne Shell Builtins for more details.

for file; is same as for file in "$@"; since in "$@" is the default. I’d
recommend using the explicit version.

while loop
Here’s a simple while loop construct. You’ll see a more practical example later in this chapter.

$ cat while_loop.sh
i="$1"
while ((i > 0)) ; do

echo "$i"
((i--))

done

$ bash while_loop.sh 3
3
2
1

Reading a file
The while loop combined with the read builtin helps you to process the content of a file.
Here’s an example of reading input contents line by line:

185

https://www.gnu.org/software/bash/manual/bash.html#Bourne-Shell-Builtins

$ cat read_file_lines.sh
while IFS= read -r line; do

do something with each line
wc -l "$line"

done < "$1"

$ printf 'hello.sh\ngreeting.sh\n' > files.txt
$ bash read_file_lines.sh files.txt
5 hello.sh
2 greeting.sh

The intention in the above script is to treat each input line literally. So, the IFS (input field
separator) special variable is set to empty string to prevent stripping of leading and trailing
whitespaces. The -r option to the read builtin allows \ in input to be treated literally.
Note that the input filename is accepted as the first command line argument and redirected as
stdin to the while loop. You also need to make sure that the last line of input ends with a
newline character, otherwise the last line won’t be processed.

You can change IFS to split the input line into different fields and specify appropriate number
of variables to the read builtin. Here’s an example:

$ cat read_file_fields.sh
while IFS=' : ' read -r field1 field2; do

echo "$field2,$field1"
done < "$1"

$ bash read_file_fields.sh <(printf 'apple : 3\nfig : 100\n')
3,apple
100,fig

You can pass a number to the -n option for the read builtin to process the input that many
characters at a time. Here’s an example:

$ while read -r -n2 ip; do echo "$ip"; done <<< '\word'
\w
or
d

The xargs command can also be used for some of the cases discussed above. See
unix.stackexchange: parse each line of a text file as a command argument for examples.

Functions
From bash manual: Shell Functions:

Shell functions are a way to group commands for later execution using a single name for
the group. They are executed just like a ”regular” command. When the name of a shell
function is used as a simple command name, the list of commands associated with that
function name is executed. Shell functions are executed in the current shell context; no
new process is created to interpret them.

186

https://unix.stackexchange.com/q/149726/109046
https://www.gnu.org/software/bash/manual/bash.html#Shell-Functions

You can use either of the syntax shown below to declare functions:

fname () compound-command [redirections]

function fname [()] compound-command [redirections]

Arguments to functions are passed in the samemanner as those discussed earlier for shell scripts.
Here’s an example:

$ cat functions.sh
add_border ()
{

size='10'
color='grey'
if (($# == 1)) ; then

ip="$1"
elif (($# == 2)) ; then

if [[$1 =~ ^[0-9]+$]] ; then
size="$1"

else
color="$1"

fi
ip="$2"

else
size="$1"
color="$2"
ip="$3"

fi

op="${ip%.*}_border.${ip##*.}"
echo convert -border "$size" -bordercolor "$color" "$ip" "$op"

}

add_border flower.png
add_border 5 insect.png
add_border red lake.png
add_border 20 blue sky.png

In the above example, echo is used to display the command that will be executed. Remove
echo if you want this script to actually create new images with the given parameters. The
function accepts one to three arguments and uses default values when some of the arguments
are not passed. Here’s the output:

$ bash functions.sh
convert -border 10 -bordercolor grey flower.png flower_border.png
convert -border 5 -bordercolor grey insect.png insect_border.png
convert -border 10 -bordercolor red lake.png lake_border.png
convert -border 20 -bordercolor blue sky.png sky_border.png

187

Use mogrify instead of convert if you want to modify the input image inplace
instead of creating a new image. These image manipulation commands are part of the
ImageMagick suite. As an exercise, modify the above function to generate error if the
arguments passed do not match the expected usage. You can also accept output image
name (or perhaps a different suffix) as an additional argument.

The shell script and user defined functions (which in turn might call itself or another function)
can both have positional arguments. In such cases, the shell takes cares of restoring positional
arguments to the earlier state once a function completes its tasks.

Functions have exit status as well, which is based on the last executed command by default. You
can use the return builtin to provide your own custom exit status.

Debugging
You can use the following bash options for debugging purposes:

• -x print commands and their arguments as they are executed
• -v verbose option, print shell input lines as they are read

Here’s an example with bash -x option:

$ bash -x search.sh
+ read -p 'Enter a search pattern: ' search
Enter a search pattern: xyz
+ grep -q xyz hello.sh
+ echo 'match not found'
match not found

The lines starting with + show the command being executed with expanded values if applicable
(the search variable to grep -q for example). Multiple + will be used if there are multiple
expansions. Here’s how bash -xv would behave for the same script:

$ bash -xv search.sh
read -p 'Enter a search pattern: ' search
+ read -p 'Enter a search pattern: ' search
Enter a search pattern: xyz

if grep -q "$search" hello.sh ; then
echo "match found"

else
echo "match not found"

fi
+ grep -q xyz hello.sh
+ echo 'match not found'
match not found

You can also use set -x or set -v or set -xv from within the script to debug
from a particular point onwards. You can turn off such debugging by using + instead of
- as the option prefix (for example, set +x).

188

https://imagemagick.org/

shellcheck
shellcheck is a static analysis tool that gives warnings and suggestions for scripts. You can use
it online or install the tool for offline use. Given the various bash gotchas, this tool is highly
recommended for both beginners and advanced users.

Consider this script:

$ cat bad_script.sh
#!/bin/bash

greeting = 'hello world'
echo "$greeting"

Here’s how shellcheck reports the issue:

$ shellcheck bad_script.sh

In bad_script.sh line 3:
greeting = 'hello world'

^-- SC1068: Don't put spaces around the = in assignments
(or quote to make it literal).

For more information:
https://www.shellcheck.net/wiki/SC1068 -- Don't put spaces around the = in ...

If the script doesn’t have a shebang, you can use the -s option (shellcheck -s bash
for example) to specify the shell application.

Note that shellcheck will not catch all types of issues. And suggestions should
not be blindly accepted without understanding if that makes sense in the given context.

Resource lists
Here are some more learning resources:

Shell Scripting

• Bash Guide — aspires to teach good practice techniques for using Bash, and writing simple
scripts

• Bash Scripting Tutorial — solid foundation in how to write Bash scripts, to get the computer
to do complex, repetitive tasks for you

• bash-handbook — for those who want to learn Bash without diving in too deeply
• Serious Shell Programming — focuses on POSIX-compliant Bourne Shell for portability

Handy tools, tips and reference

• shellcheck — linting tool to avoid common mistakes and improve your script
• Bash reference cheatsheet — nicely formatted and explained well
• Bash scripting cheatsheet — quick reference to getting started with Bash scripting
• Comprehensive lists on mywiki.wooledge.org website:

∘ Bash FAQ

189

https://www.shellcheck.net/
https://mywiki.wooledge.org/BashGuide
https://ryanstutorials.net/bash-scripting-tutorial/
https://github.com/denysdovhan/bash-handbook
https://freebsdfrau.gitbook.io/serious-shell-programming/
https://www.shellcheck.net/
https://devmanual.gentoo.org/tools-reference/bash/index.html
https://devhints.io/bash
https://mywiki.wooledge.org/BashFAQ

∘ Bash Practices
∘ Bash Pitfalls

• Google shell style guide
• Reliability and robustness

∘ safe ways to do things in bash
∘ better scripting
∘ robust scripting

Specific topics

• Reading file(s)
∘ Reading file
∘ Loop through the lines of two files in parallel

• arrays
• nameref

∘ also see this FAQ
• getopts

∘ getopts tutorial
∘ handling command-line arguments
∘ stackoverflow: getopts example

• Sending and Trapping Signals

Exercises

Use a temporary working directory before attempting the exercises. You can delete
such practice directories afterwards.

1) What’s wrong with the script shown below? Also, will the error go away if you use
bash try.sh instead?

$ printf ' \n!#/bin/bash\n\necho hello\n' > try.sh
$ chmod +x try.sh
$./try.sh
./try.sh: line 2: !#/bin/bash: No such file or directory
hello

expected output
$./try.sh
hello

2) Will the command shown below work? If so, what would be the output?
$ echo echo hello | bash

3) When would you source a script instead of using bash or creating an executable using
shebang?

4) How would you display the contents of a variable with shake appended?

$ fruit='banana'

$ echo # ???
bananashake

190

https://mywiki.wooledge.org/BashGuide/Practices
https://mywiki.wooledge.org/BashPitfalls
https://google.github.io/styleguide/shellguide.html
https://github.com/anordal/shellharden/blob/master/how_to_do_things_safely_in_bash.md
https://robertmuth.blogspot.in/2012/08/better-bash-scripting-in-15-minutes.html
https://www.davidpashley.com/articles/writing-robust-shell-scripts/
https://mywiki.wooledge.org/BashFAQ/001
https://unix.stackexchange.com/q/82541/109046
https://mywiki.wooledge.org/BashGuide/Arrays
https://unix.stackexchange.com/q/288886/109046
https://mywiki.wooledge.org/BashFAQ/006
https://wiki.bash-hackers.org/howto/getopts_tutorial
https://mywiki.wooledge.org/BashFAQ/035
https://stackoverflow.com/q/16483119/4082052
https://mywiki.wooledge.org/SignalTrap

5) What changes would you make to the code shown below to get the expected output?
default behavior
$ n=100
$ n+=100
$ echo "$n"
100100

expected output
$ echo "$n"
200

6) Is the following code valid? If so, what would be the output of the echo command?

$ declare -a colors
$ colors[3]='green'
$ colors[1]='blue'

$ echo "${colors[@]}"
???

7) How would you get the last three characters of a variable’s contents?
$ fruit='banana'

???
ana

8) Will the second echo command give an error? If not, what will be the output?

$ fruits=('apple' 'fig' 'mango')
$ echo "${#fruits[@]}"
3

$ echo "${#fruits}"
???

9) For the given array, use parameter expansion to remove characters until first/last space.
$ colors=('green' 'dark brown' 'deep sky blue white')

remove till first space
$ printf '%s\n' # ???
green
brown
sky blue white

remove till last space
$ printf '%s\n' # ???
green
brown
white

10) Use parameter expansion to get the expected outputs shown below.

191

$ ip='apple:banana:cherry:dragon'

$ echo # ???
apple:banana:cherry

$ echo # ???
apple

11) Is it possible to achieve the expected outputs shown below using parameter expansion? If
so, how?

$ ip='apple:banana:cherry:dragon'

$ echo # ???
apple 42 dragon

$ echo # ???
fig:banana:cherry:dragon

$ echo # ???
apple:banana:cherry:end

12) For the given input, change case as per the expected outputs shown below.
$ ip='This is a Sample STRING'

$ echo # ???
THIS IS A SAMPLE STRING

$ echo # ???
this is a sample string

$ echo # ???
tHIS IS A sAMPLE string

13) Why does the conditional expression shown below fail?
$ touch ip.txt
$ [[-f ip.txt]] && echo 'file exists'
[[-f: command not found

14) What is the difference between == and =~ string comparison operators?

15) Why does the conditional expression used below show failed both times? Modify the
expressions such that the first one correctly says matched instead of failed .

$ f1='1234.txt'
$ f2='report_2.txt'

$ [[$f1 == '+([0-9]).txt']] && echo 'matched' || echo 'failed'
failed
$ [[$f2 == '+([0-9]).txt']] && echo 'matched' || echo 'failed'
failed

192

16) Extract the digits that follow a : character for the given variable contents.

$ item='chocolate:50'
???
50

$ item='50 apples, fig:100, books-12'
???
100

17) Modify the expression shown below to correctly report true instead of false .

$ num=12345
$ [[$num > 3]] && echo 'true' || echo 'false'
false

18) Write a shell script named array.sh that accepts array input from the user followed by
another input as index. Display the corresponding value at that index. Couple of examples are
shown below.

$ bash array.sh
enter array elements: apple banana cherry
enter array index: 1
element at index '1' is: banana

$ bash array.sh
enter array elements: dragon unicorn centaur
enter array index: -1
element at index '-1' is: centaur

19) Write a shell script named case.sh that accepts exactly two command line arguments.
The first argument can be lower , upper or swap and this should be used to transform the
contents of the second argument. Examples script invocations are shown below, including what
should happen if the command line arguments do not meet the script expectations.

$./case.sh upper 'how are you?'
HOW ARE YOU?

$./case.sh lower PineAPPLE
pineapple

$./case.sh swap 'HeLlo WoRlD'
hElLO wOrLd

$./case.sh lower
Error! Two arguments expected.
$ echo $?
1

$./case.sh upper apple fig
Error! Two arguments expected.

$./case.sh lowercase DRAGON
Error! 'lowercase' command not recognized.

193

$ echo $?
1

$./case.sh apple lower 2> /dev/null
$ echo $?
1

20) Write a shell script named loop.sh that displays the number of lines for each of the files
passed as command line arguments.

$ printf 'apple\nbanana\ncherry\n' > items_1.txt
$ printf 'dragon\nowl\nunicorn\ntroll\ncentaur\n' > items_2.txt

$ bash loop.sh items_1.txt
number of lines in 'items_1.txt' is: 3

$ bash loop.sh items_1.txt items_2.txt
number of lines in 'items_1.txt' is: 3
number of lines in 'items_2.txt' is: 5

21)Write a shell script named read_file.sh that reads a file line by line to be passed as argu-
ment to the paste -sd, command. Can you also write a solution using the xargs command
instead of a script?

$ printf 'apple\nbanana\ncherry\n' > items_1.txt
$ printf 'dragon\nowl\nunicorn\ntroll\ncentaur\n' > items_2.txt
$ printf 'items_1.txt\nitems_2.txt\n' > list.txt

$ bash read_file.sh list.txt
apple,banana,cherry
dragon,owl,unicorn,troll,centaur

$ xargs # ???
apple,banana,cherry
dragon,owl,unicorn,troll,centaur

22)Write a function named add_path which prefixes the path of the current working directory
to the arguments it receives and displays the results. Examples are shown below.

$ add_path() # ???

$ cd
$ pwd
/home/learnbyexample
$ add_path ip.txt report.log
/home/learnbyexample/ip.txt /home/learnbyexample/report.log

$ cd cli-computing
$ pwd
/home/learnbyexample/cli-computing
$ add_path f1
/home/learnbyexample/cli-computing/f1

194

23) What do the options bash -x and bash -v do?

24) What is shellcheck and when would you use it?

195

Shell Customization
This chapter will discuss some of the bash features that you can use to customize the command
line environment.

Environment Variables
From wikipedia: Environment variable:

An environment variable is a dynamic-named value that can affect the way running pro-
cesses will behave on a computer. They are part of the environment in which a process
runs. For example, a running process can query the value of the TEMP environment vari-
able to discover a suitable location to store temporary files, or theHOME orUSERPROFILE
variable to find the directory structure owned by the user running the process.

See bash manual: Shell Variables for complete list of bash variables. Some of them are pre-
sented below and some (HISTCONTROL for example) will be discussed later in this chapter.

• HOME The current user’s home directory; the default for the cd builtin command. The
value of this variable is also used by tilde expansion

• PS1 The primary prompt string. The default value is \s-\v\$
• PS2 The secondary prompt string. The default value is >
• PATH A colon-separated list of directories in which the shell looks for commands. A zero-
length (null) directory name in the value of PATH indicates the current directory. A null
directory name may appear as two adjacent colons, or as an initial or trailing colon

• PWD The current working directory as set by the cd builtin
• OLDPWD The previous working directory as set by the cd builtin
• SHELL This environment variable expands to the full pathname to the shell

You can use the printenv command to display the name and value of all the environment
variables. Providing arguments will display the values only for those variables.

$ printenv SHELL PWD HOME
/bin/bash
/home/learnbyexample/cli-computing
/home/learnbyexample

It is recommended to use lowercase for user defined variable names to avoid
potential conflict with environment variables. You might have noticed that I used only
lowercase names in the Shell Scripting chapter.

See also unix.stackexchange: How to correctly add a path to PATH?.

Aliases and Functions
To create an alias, use the appropriately named alias command. Without any arguments, it
will list all the currently defined aliases. If you want to know what an existing alias does, provide
one or more names as arguments. To actually create an alias, give a name, followed by =

196

https://en.wikipedia.org/wiki/Environment_variable
https://www.gnu.org/software/bash/manual/bash.html#Shell-Variables
https://unix.stackexchange.com/q/26047/109046

and then the command to be aliased. There should be no spaces around the = operator. Use
type name to check if that name is already taken by some command. Here are some examples:

mapping 'p' to the 'pwd' command
$ type p
bash: type: p: not found
$ alias p='pwd'
$ p
/home/learnbyexample/cli-computing

adding '--color=auto' to 'ls' invocation
$ type -a ls
ls is /bin/ls
$ alias ls='ls --color=auto'
$ type -a ls
ls is aliased to 'ls --color=auto'
ls is /bin/ls

Here’s how you can check what the above aliases do:

$ alias p ls
alias p='pwd'
alias ls='ls --color=auto'

As seen above, aliases have higher precedence compared to commands in the PATH.
You can use a \ prefix (for example \ls) if you want to avoid an alias and use the
original command. You can also use command ls instead of the escape character.

If you need to pass arguments to your custom commands, use a function (or write a shell script).
Here’s an example function:

prefix current path to the given arguments
$ ap() { for f in "$@"; do echo "$PWD/$f"; done; }

$ p
/home/learnbyexample
$ ap ip.txt mountain.jpg
/home/learnbyexample/ip.txt
/home/learnbyexample/mountain.jpg

The aliases and functions created above will be valid only for that particular shell
session. To load these shortcuts automatically, you need to add them to special files. See
the next section for details.

You can use the unalias command to remove an alias. For functions, use the unset -f
command.

$ unalias p

$ unset -f ap

197

$ type p ap
bash: type: p: not found
bash: type: ap: not found

Config files
You can add customizations to special configuration files so that those settings are automatically
loaded when you start an interactive shell session.

.bashrc

From bash manual: Startup Files:

When an interactive shell that is not a login shell is started, Bash reads and executes
commands from ~/.bashrc , if that file exists.

You’ll likely have a ~/.bashrc file provided by the Linux distro you’ve installed, with useful
settings like enabling bash programmable completion features, aliases and so on. I leave the
distro provided settings alone, unless they are related to aliases and shell options that I want to
customize.

Some of the shopt customizations I use are shown below. shopt was discussed briefly in the
Shell Features chapter. See bash manual: Shopt Builtin for more details.

append to history file instead of overwriting
shopt -s histappend

extended wildcard functionality
shopt -s extglob

helps to recursively match files within a specified path
shopt -s globstar

I prefer a simple prompt PS1='$ ' instead of fancy colors. See bash manual: Controlling
the Prompt for customization options. You can use bashrcgenerator to easily generate fancy
prompts. See also starship which is a minimal, blazing-fast, and infinitely customizable prompt
for any shell.

Some history customizations are shown below. See bash manual: History Facilities for more
details. See also unix.stackexchange: common history across sessions.

ignorespace prevents lines starting with space from being saved in history
erasedups deletes previous history entries matching the current one
HISTCONTROL=ignorespace:erasedups

maximum number of history lines in the current shell session
older entries will be overwritten if the size is exceeded
use negative number for unlimited size
HISTSIZE=2000

maximum number of lines in the history file
HISTFILESIZE=2000

198

https://www.gnu.org/software/bash/manual/bash.html#Bash-Startup-Files
https://www.gnu.org/software/bash/manual/bash.html#The-Shopt-Builtin
https://www.gnu.org/software/bash/manual/bash.html#Controlling-the-Prompt
https://www.gnu.org/software/bash/manual/bash.html#Controlling-the-Prompt
https://bashrcgenerator.com/
https://starship.rs/
https://www.gnu.org/software/bash/manual/bash.html#Bash-History-Facilities
https://unix.stackexchange.com/q/18212/109046

For aliases and functions, I use a separate file named ~/.bash_aliases to reduce clutter
in the .bashrc file. This is not a file that is loaded automatically, so you need to add
source ~/.bash_aliases command in the .bashrc file.

Some of my favorite aliases and functions are shown below. See my .bash_aliases file for more.

alias c='clear'
alias p='pwd'
alias e='exit'

alias c1='cd ../'
alias c2='cd ../../'
alias c3='cd ../../../'

alias ls='ls --color=auto'
alias l='ls -ltrhG'
alias la='l -A'

alias grep='grep --color=auto'

save last command in history to a reference file
alias sl='fc -ln -1 | sed "s/^\s*//" >> ~/.saved_cmds.txt'
alias slg='< ~/.saved_cmds.txt grep'

case insensitive file search
fs foo is same as find -iname '*foo*'
fs() { find -iname '*'"$1"'*' ; }

You can use source with .bashrc or .bash_aliases files as arguments to apply
changes from such files to the current shell session.

.inputrc

You can add custom key bindings to the ~/.inputrc file. See bash manual: Readline Init File
for more details.

A few examples from my ~/.inputrc file are shown below:

$ cat ~/.inputrc
use up/down arrow to match history based on starting text of the command
"\e[A": history-search-backward
"\e[B": history-search-forward

ignore case for filename matching and completion
set completion-ignore-case on

single Tab press will complete if there's only one match
multiple completions will be displayed otherwise
set show-all-if-ambiguous on

199

https://github.com/learnbyexample/scripting_course/blob/master/.bash_aliases
https://www.gnu.org/software/bash/manual/bash.html#Readline-Init-File

You can use bind -f ~/.inputrc or press Ctrl+x Ctrl+r to apply changes from
the .inputrc file to the current shell session.

Further Reading

• Sensible bash customizations
• Shell config subfiles
• unix.stackexchange: when to use alias, functions and scripts
• unix.stackexchange: what does rc in bashrc stand for

Readline shortcuts
Quoting from bash manual: Readline Interaction:

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections.

By default, command line editing bindings are styled after Emacs (a text editor). You can switch
to Vi mode (another text editor) if you wish. This section will discuss some of the often used
Emacs style key bindings.

Tab completion

The tab key helps you complete commands, aliases, filenames and so on, depending on the con-
text. If there is only one possible completion, it will be done on single tab press. Otherwise, you
can press the tab key twice to get a list of possible matches (if there are any).

Use set show-all-if-ambiguous on as seen earlier in the .inputrc section to combine the
single and double tab presses into a single action.

See bash manual: Programmable Completion for more details.

Searching history

You can use Ctrl+r to search command history. After pressing this key sequence, type charac-
ters you wish to match from history, then press the Esc key to return to the command prompt
or press Enter to execute the command.

You can press Ctrl+r repeatedly to move backwards through matching entries and Ctrl+s to
move forwards. If Ctrl+s is not working as expected, see unix.stackexchange: disable ctrl-s.

As discussed in the .inputrc section, you can use custom keymappings to search based on starting
characters of the command.

200

https://mrzool.cc/writing/sensible-bash/
https://blog.sanctum.geek.nz/shell-config-subfiles/
https://unix.stackexchange.com/q/30925/109046
https://unix.stackexchange.com/q/3467/109046
https://www.gnu.org/software/bash/manual/bash.html#Readline-Interaction
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/bash/manual/bash.html#Programmable-Completion
https://unix.stackexchange.com/q/332791/109046

Moving the cursor

The documentation usesMeta (M- prefix) and notes that this key is labeled as Alt on many
keyboards. The documentation also mentions that you can also use the Esc key for such
combinations.

• Alt+b move the cursor to the start of the current or previous word
• Alt+f move the cursor to the end of the next word
• Ctrl+a or Home move cursor to the beginning of the command line
• Ctrl+e or End move cursor to the end of the command line

One difference between Alt and Esc combinations is that you can keep pressing
b or f while holding the Alt key down. The Esc combinations are two different
key presses, whereas Alt has to be kept pressed down for the shortcut to take effect.

Deleting characters

• Alt+Backspace (or Esc+Backspace) delete backwards up to word boundary
• Ctrl+w delete backwards up to whitespace boundary
• Ctrl+u delete from the character before the cursor till the start of the line
• Ctrl+k delete from the cursor location to the end of the command line

Clear screen

• Ctrl+l preserve whatever is typed and clear the terminal screen

Note that Ctrl+l doesn’t try to remove the scrollback buffer altogether. Use the
clear command for that purpose.

Swap words and characters

• Alt+t (or Esc+t) swap the previous two words
• Ctrl+t swap the previous two characters

∘ for example, if you typed sp instead of ps , press Ctrl+t when the cursor is to
the right of sp

Insert arguments

• Alt+. (or Esc+.) insert the last argument from the previous command, multiple presses
will traverse through second last command and so on

∘ for example, if cat temp.txt was the last command used, pressing Alt+. will
insert temp.txt

∘ you can also use !$ to represent the last argument from the previous command

Further Reading

• bash manual: Bindable Readline Commands
• wiki.archlinux: Simpler introduction to Readline
• Efficient command line navigation

201

https://www.gnu.org/software/bash/manual/bash.html#Bindable-Readline-Commands
https://wiki.archlinux.org/title/readline
https://cupfullofcode.com/blog/2013/07/03/efficient-command-line-navigation/index.html

Copy and paste
Shortcuts for copy-paste operations in the terminal are shown below. You might be able to cus-
tomize these shortcuts in the terminal preferences.

• Shift+Ctrl+c copy the highlighted portion to the clipboard
• Shift+Ctrl+v paste clipboard contents
• Shift+Insert paste the last highlighted portion (not necessarily the clipboard contents)

You can also press middle mouse button instead of the Shift+Insert shortcut. This is not
limited to the terminal, works in many other applications too. You can use the xinput command
to enable/disable mouse button clicks. First, use xinput without any arguments and spot the
number corresponding to your mouse. As an example, assuming the device number is 11 , you
can use the following commands:

• xinput set-button-map 11 1 0 3 to disable middle button click
• xinput set-button-map 11 1 2 3 to enable middle button click

Exercises
1) Which command would you use to display the name and value of all or specific environment
variables?

2) If you add an alias for an already existing command (ls for example), how would you invoke
the original command instead of the alias?

3) Why doesn’t the alias shown below work? What would you use instead?
doesn't work as expected
$ alias ext='echo "${1##*.}"'
$ ext ip.txt
ip.txt

expected output
$ ext ip.txt
txt
$ ext scores.csv
csv
$ ext file.txt.txt
txt

4) How would you remove a particular alias/function definition for the current shell session?
$ alias hw='echo hello world'
$ hw
hello world
???
$ hw
hw: command not found

$ hw() { echo hello there ; }
$ hw
hello there
???

202

$ hw
hw: command not found

5) Write an alias and a function to display the contents of PATH environment variable on
separate lines by changing : to the newline character. Sample output is shown below.

$ echo "$PATH"
/usr/local/bin:/usr/bin:/bin:/usr/games

alias
$ a_p
/usr/local/bin
/usr/bin
/bin
/usr/games

function
$ f_p
/usr/local/bin
/usr/bin
/bin
/usr/games

6) Will a login shell read and execute ~/.bashrc automatically?

7)What should be the value assigned to HISTSIZE if you wish to have unlimited history entries?

8) What does the binding set completion-ignore-case on do?

9) Which shortcut helps you interactively search command history?

10) What do the shortcuts Alt+b and Alt+f do?

11) Are there differences between the Ctrl+l shortcut and the clear command?

12) Which shortcut will you use to delete characters before the cursor till the start of the line?

13) What do the shortcuts Alt+t and Ctrl+t do?

14) Is there any difference between Shift+Insert and Shift+Ctrl+v shortcuts?

203

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Introduction and Setup
	Linux overview
	Linux Distros
	Access to Linux environment
	Setup
	Command Line Interface
	Chapters
	Resource lists

	Command Line Overview
	Hello Command Line
	File System
	Absolute and Relative paths
	Shells and Terminal Emulators
	Unix Philosophy
	Command Structure
	Command Network
	Scripting
	Command Help
	man
	type
	help
	whatis and whereis
	ch
	Further Reading

	Shortcuts and Autocompletion
	Real world use cases
	Exercises

	Managing Files and Directories
	Builtin and External commands
	pwd
	cd
	clear
	ls
	tree
	mkdir
	touch
	rm
	cp
	mv
	rename
	ln
	tar and gzip
	Exercises

	Shell Features
	Quoting mechanisms
	Wildcards
	Brace Expansion
	Extended and Recursive globs
	set
	Pipelines
	tee

	Redirection
	Redirecting output
	Redirecting input
	Redirecting error
	Combining stdout and stderr
	Waiting for stdin
	Here Documents
	Here Strings
	Further Reading

	Grouping commands
	List control operators
	Command substitution
	Process substitution
	Exercises

	Viewing Part or Whole File Contents
	cat
	tac
	less
	tail
	head
	Exercises

	Searching Files and Filenames
	grep
	Common options
	Literal search
	Regular Expressions
	Regexp examples
	Line comparisons between files
	Perl Compatible Regular Expression
	Recursive search
	grep and xargs
	Further Reading

	find
	Filenames
	File type
	Depth
	Age
	Size
	Acting on matched files
	Multiple criteria
	Prune
	find and xargs
	Further Reading

	locate
	Exercises

	File Properties
	wc
	du
	df
	stat
	touch
	file
	basename
	dirname
	chmod
	Exercises

	Managing Processes
	Definitions
	Running jobs in background
	ps
	pgrep
	kill
	top
	free
	Further Reading
	Exercises

	Multipurpose Text Processing Tools
	sed
	Substitution
	Inplace editing
	Filtering features
	Regexp substitution
	Further Reading

	awk
	Regexp filtering
	Awk special variables
	Default field processing
	Condition and Action
	Regexp field processing
	Record separators
	State machines
	Two files processing
	Removing duplicates
	Further Reading

	perl
	Basic one-liners
	Perl special variables
	Auto split
	Regexp field separator
	Powerful features
	Further Reading

	Exercises

	Sorting Stuff
	sort
	Common options
	Default sort
	Numerical sort
	Unique sort
	Column sort

	uniq
	Common options
	Default uniq
	Unique and duplicate entries
	Prefix count
	Partial match

	comm
	join
	Exercises

	Comparing Files
	cmp
	diff
	Common options
	Default diff
	Ignoring whitespaces
	Side-by-side output
	Further Reading

	Exercises

	Assorted Text Processing Tools
	seq
	shuf
	cut
	column
	tr
	paste
	pr
	rev
	split
	csplit
	xargs
	Exercises

	Shell Scripting
	Need for scripting
	Executable script
	Passing file argument to bash
	Sourcing script
	Comments
	Variables
	Arrays
	Parameter Expansion
	Command Line Arguments
	Conditional Expressions
	Options
	String comparisons
	Numeric comparisons

	Accepting user input interactively
	if then else
	for loop
	while loop
	Reading a file
	Functions
	Debugging
	shellcheck
	Resource lists
	Exercises

	Shell Customization
	Environment Variables
	Aliases and Functions
	Config files
	.bashrc
	.inputrc
	Further Reading

	Readline shortcuts
	Tab completion
	Searching history
	Moving the cursor
	Deleting characters
	Clear screen
	Swap words and characters
	Insert arguments
	Further Reading

	Copy and paste
	Exercises

