“First Sobell taught people how to use Linux... FOURTH EDITION

now he teaches you the power of Linux.
A must-have book for anyone who wants
to take Linux to the next level.”

—Jon “maddog” Hall, Executive Director, Linux International

Linu

Commands, Editors, - . o
and Shell Programmlng

Discover the Power of Linux —
Covers macOS, too! .

““““““

» Learn from hundreds of realistic, high-quality examples,

all pBI;lt:lrI :rs 3 ::istigns of and become a true command-line guru ~)
Linux, including Ubuntu," » Covers MariaDB, DNF, and Python 3 v/ by

Fedora," openSUSE,"
Red Hat,’ Debian, Mageia,

» 300+ page reference section covers 102 utilities,
including macOS commands

Mint, Arch, Cent0S,
and mac0S

Mark G. Sobell

coauthored by Matthew Helmke

UTILITY INDEX

A light page number such as 456 indicates a brief mention. Page numbers followed by the letter t refer to tables.

SymBoLS chdir 419 F e2fsck 835 getopts 501-503
: (null) 486, 498 chgrp 121, 757-758 echo 61, 154,381, 419, getty 333
. (dot) 291, 493 chmod 102-104, 295, 457,458,476,812-813 glob 420

[[...]1 506
@ 396, 398, 400, 418
% 418

756-763
chmod (macOS)
1074-1076
chown 764-765

ed 56,166, 795
egrep 853, 854, 1044
elvis 166

emacs 222-278

grep 56, 148, 450, 462,
531,827,853-857

gunzip 66, 858-860, 997

gzip 66, 858-860, 997

alias 352,387, 418 chsh 287, 381 env 358, 483

alloc 418 cmp 766-767 eval 358,419,500 H hash 336

apropos 35 col 900 ex 166,175 hashstat 420

apt-get 1060-1064 comm 768-769 exec 416,419, 465, head 57, 861-862

ash see dash compress 65, 86, 859, 493-496 history 336, 337, 384,

aspell 449, 739-742 997,997 exit 382,407, 419, 434, 420

at 743-746 configure 770-771 477 hostname 53

atq 743-746 cp 53,97,131, expand 814-815

atrm 743-746 772-775 export 316, 481-482 | info 36-38, 158

atrun (macOS) 744 cpio 776-780, 823,826, expr 816-819 ispell see aspell

autoconf 771 860

awk see mawk cron 781-783 false 302 J jobs 30,152, 305, 420
crontab 781-783 fc 338-340 join 863-865

basename 463

bash see bash in
the Main index
(page 1141)

batch 743-746

D

curlftpfs 983-985
cut 369, 784-785

dash 287
date 62,329, 330, 331,

fg 151, 305, 419
fgrep 853, 854

file 60, 332,820-821
filetest 411, 419

find 390, 442, 822-827

(Kill 30,152, 424, 496,

499, 866-867, 949
killall 868-869

bg 151,306, 418 383, 472,787-789 finger 72, 828-829 | launchctl (macOS)

bind 350 dd 711,790-792 fmt 831-832 745, 870-871

bindkey 393, 394, 418 declare 315-316, 487 free 74 Idd 928

builtins 419, 504t df 793-794 fromdos 63 less 34,53, 148, 436,

bunzip2 65, 750-751 diff 59, 795-799 fsck 833-837 873-876

busybox 747-749 diff3 796 fsck (macOS) 801 let 370, 505

bzcat 65, 750-751 dircolors 888 ftp 838-843 Iftp 715

bzip2 64,750-751 dirs 307, 389, 419 fusermount 981-983 limit 420

bzip2recover 65, disktool (macOS) 801 In 113,116, 878-880
750-751 diskutil (macOS) g++ 850-854 local 357, 488

800-802 gawk 447,636-668, 1044 locale 328-330

cal 752 ditto (macOS) 803-804 gcc 846-850 locate 70

cat 52,138, 141, 145, dmesg 805 gdb 847 log 420
436, 710, 753754 dos2unix 63 getfacl 108-112 login 333, 420

cd 94,117,323, 419, dscl (macOS) 806-808 GetFilelnfo (macOS) logout 382, 407, 420
755-756 du 809-811 851-852 Ipg 56, 881-883

Continued on inside back cover

lpr 55,147, 881-883
Iporm 56, 881-883

Ipstat 55

Is 52,100, 119, 884-890
Is-F 407, 420

mac2unix 63

make 569, 892-897
man 33-35, 898-901
mawk see gawk

mc 902-908

mesg 76

mingetty 333

mkdir 93-94, 909
mkfs 911-913
mklost+found 836
mlocate 70

more 53, 874

mount 107

mv 54,97, 98, 914-915
mysqldump 625 S
ncal 752

nice 420,916-917

nl 918-919

nohup 420,920

notify 420

od 921-924

onintr 412, 420

open (macOS) 926-927
otool (macOS) 928-929

paste 930-931

pax 932-937

perldoc 531

pinfo 37

plutil (macOS) 938-939

popd 309, 420

port 1077

pr 940-941

printenv 420, 482

printf 942-945

ps 152,298,334, 476,
946-950

ps2pdf 200

pstree 334

pushd 308, 408, 421
pwck 660

pwd 89,117,129
pwgen 45

R read 451, 489-492,

492-493
readlink 120
readonly 315, 316
rehash 336, 421
renice 951
repeat 421
rm 52,118, 408, 953-954
rmdir 96, 955
rsync 690-700, 714
rtorrent 1065
run-parts 782

sched 421

scp 707,713-714 see
also OpenSSH in
the Main index
(page 1141)

screen 958-963

script 62

sdiff 796,797

sed 670-686

seq 367, 445

set 360, 396, 400, 421,
439,442,472, 484

setenv 396, 421, 481

setfacl 108-112

SetFile (macOS)
965-966

sftp 715

sh 287, 1086

shift 421, 436, 473

shopt 360

shred 954

sleep 477,967-968

sort 58, 147,374, 466,
969-977

source 291, 421

T

UTILITY INDEX

Continued from inside front cover

split 978-979

ssh 27,707,709-713
see also OpenSSH in
the Main index
(page 1141)

ssh-add 721

ssh-agent 720-721

ssh-copy-id 719

sshfs 981-983

ssh-import-id 705

ssh-keygen 718-720

stat 984-985

stop 421

strings 986

stty 29, 987-990

su 32

sudo 33

suspend 421

sysctl (macOS) 991

systemsetup (macOS)
332

U

vV

tac 683,753

tail 57,390, 992-994

tar 66-68, 303, 995-999

tee 149, 1000

telnet 1001-1002

Terminal (macOS) 1076

test 431-433, 434, 438,
441, Lk, 448, 453,
468-469, 1005-1007

time 405, 421

todos 63

top 1008-1010

touch 96, 143,751,
1012-1013

tput 452

tr 64, 146,292,785,
1014-1016

trap 452, 496-499

true 302, 498

tty 1017

tune2fs 1018-1019,
1020

type 489

X
Y

w

typeset see declare
tzconfig 331
tzselect 331

umask 422,1021-1022

unalias 353, 355, 387,
422

uname 709

uncompress 86, 997

unexpand 814-815

unhash 422

uniq 58, 1023-1024

unix2dos 63

unix2mac 63

unlimit 422

unset 314,422

unsetenv 397, 422

updatedb 70

uptime 73, 1008, 1025

vi 166

view 177
vile 166

vim 166-217
vimtutor 165

w 73,1025-1026

wait 422

wc 61,396,1027

whatis 36

where 422

whereis 69

which 69, 422,899,
1028-1029

who 71, 1030-1031

write 75, 1030

xargs 1032-1034

yum 1054-1060
yumdownloader 1058

zcat 66, 858-860
zdiff 860
zless 860

PRAISE FOR PREVIOUS EDITIONS OF A PRACTICAL GUIDE
70 LINUX®° COMMANDS, EDITORS, AND SHELL
PROGRAMMING

“This book is a very useful tool for anyone who wants to ‘look under the
hood’ so to speak, and really start putting the power of Linux to work.
What I find particularly frustrating about man pages is that they never
include examples. Sobell, on the other hand, outlines very clearly what
the command does and then gives several common, easy-to-understand
examples that make it a breeze to start shell programming on one’s own.
As with Sobell’s other works, this is simple, straight-forward, and easy to
read. It’s a great book and will stay on the shelf at easy arm’s reach for a
long time.”

—Ray Bartlett
Travel Writer

“QOverall I found this book to be quite excellent, and it has earned a spot
on the very front of my bookshelf. It covers the real ‘guts’ of Linux— the
command line and its utilities—and does so very well. Its strongest points
are the outstanding use of examples, and the Command Reference sec-
tion. Highly recommended for Linux users of all skill levels. Well done
to Mark Sobell and Prentice Hall for this outstanding book!”

—Dan Clough
Electronics Engineer and
Slackware Linux User

“Totally unlike most Linux books, this book avoids discussing everything
via GUI and jumps right into making the power of the command line
your friend.”

—Bjorn Tipling
Software Engineer
ask.com

“This book is the best distro-agnostic, foundational Linux reference I’ve
ever seen, out of dozens of Linux-related books I’'ve read. Finding this
book was a real stroke of luck. If you want to really understand how to
get things done at the command line, where the power and flexibility of
free UNIX-like OSes really live, this book is among the best tools you’ll
find toward that end.”

—Chad Perrin
Writer, TechRepublic

http://ask.com

“I moved to Linux from Windows XP a couple of years ago, and after
some distro hopping settled on Linux Mint. At age 69 I thought I might
be biting off more than I could chew, but thanks to much reading and the
help of a local LUG I am now quite at home with Linux at the GUI level.

“Now I want to learn more about the CLI and a few months ago bought
your book: A Practical Guide to Linux® Commands, Editors, and Shell
Programming, Second Edition.

“For me, this book is proving to be the foundation upon which my under-
standing of the CLI is being built. As a comparative ‘newbie’ to the Linux
world, I find your book a wonderful, easy-to-follow guide that I highly
recommend to other Linux users.”

—Jobn Nawell
COLUG (Central Queensland
Linux User Group)

“I have the second edition of A Practical Guide to Linux® Commands,
Editors, and Shell Programming and am a big fan. I used it while working
as a Cisco support engineer. I plan to get the third edition as soon as it is
released. We will be doing a ton of command-line work on literally 1000
boxes (IMS core nodes). I feel you have already given me a lot of tools with
the second edition. I want to get your new book as soon as possible. The
way you write works very well for my style of learning.”

—Robert Lingenfelter
Support Engineer, VoIP/IMS

PRAISE FOR OTHER BOOKS BY MARK G. SOBELL

“Since I’'m in an educational environment, I found the content of Sobell’s
book to be right on target and very helpful for anyone managing Linux
in the enterprise. His style of writing is very clear. He builds up to the
chapter exercises, which I find to be relevant to real-world scenarios a
user or admin would encounter. An IT/IS student would find this book a
valuable complement to their education. The vast amount of information
is extremely well balanced and Sobell manages to present the content
without complicated asides and meandering prose. This is a ‘must have’
for anyone managing Linux systems in a networked environment or any-
one running a Linux server. I would also highly recommend it to an
experienced computer user who is moving to the Linux platform.”

—Mary Norbury
IT Director
Barbara Davis Center
University of Colorado at Denver
from a review posted on slashdot.org

“T had the chance to use your UNIX books when I when was in college
years ago at Cal Poly, San Luis Obispo, CA. I have to say that your books
are among the best! They’re quality books that teach the theoretical
aspects and applications of the operating system.”

—Benton Chan
IS Engineer

“The book has more than lived up to my expectations from the many
reviews I read, even though it targets FC2. I have found something very
rare with your book: It doesn’t read like the standard technical text, it
reads more like a story. It’s a pleasure to read and hard to put down. Did
I say that?! :-)”

—David Hopkins
Business Process Architect

“Thanks for your work and for the book you wrote. There are really few
books that can help people to become more efficient administrators of
different workstations. We hope (in Russia) that you will continue bring-
ing us a new level of understanding of Linux/UNIX systems.”

—Anton Petukhov

http://slashdot.org

“Mark Sobell has written a book as approachable as it is authoritative.”

—Jeffrey Bianchine
Advocate, Author, Journalist

“Excellent reference book, well suited for the sysadmin of a Linux cluster,
or the owner of a PC contemplating installing a recent stable Linux.
Don’t be put off by the daunting heft of the book. Sobell has striven to
be as inclusive as possible, in trying to anticipate your system adminis-
tration needs.”

—Wes Boudville
Inventor

“A Practical Guide to Red Hat® Linux® is a brilliant book. Thank you
Mark Sobell.”

—C. Pozrikidis
University of California at San Diego

“This book presents the best overview of the Linux operating system that
I have found. . .. [It] should be very helpful and understandable no matter
what the reader’s background: traditional UNIX user, new Linux devo-
tee, or even Windows user. Each topic is presented in a clear, complete
fashion and very few assumptions are made about what the reader
knows. . . . The book is extremely useful as a reference, as it contains a
70-page glossary of terms and is very well indexed. It is organized in such
a way that the reader can focus on simple tasks without having to wade
through more advanced topics until they are ready.”

—Cam Marshall
Marshall Information Service LLC
Member of Front Range UNIX
Users Group [FRUUG]
Boulder, Colorado

“Conclusively, this is THE book to get if you are a new Linux user and you
just got into RH/Fedora world. There’s no other book that discusses so
many different topics and in such depth.”

—Eugenia Loli-Queru
Editor in Chief
OSNews.com

http://OSNews.com

“I currently own one of your books, A Practical Guide to Linux®. 1 believe
this book is one of the most comprehensive and, as the title says, practical
guides to Linux I have ever read. I consider myself a novice and I come
back to this book over and over again.”

—Albert J. Nguyen

“Thank you for writing a book to help me get away from Windows XP
and to never touch Windows Vista. The book is great; I am learning a lot
of new concepts and commands. Linux is definitely getting easier to use.”

—James Moritz

“I am so impressed by how Mark Sobell can approach a complex topic in
such an understandable manner. His command examples are especially
useful in providing a novice (or even an advanced) administrator with a
cookbook on how to accomplish real-world tasks on Linux. He is truly
an inspired technical writer!”

—George Vish 11
Senior Education Consultant
Hewlett-Packard Company

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a valu-
able resource for people of all technical levels.”

—Jobhn Dong
Ubuntu Forum Council Member
Backports Team Leader

“The JumpStart sections really offer a quick way to get things up and run-
ning, allowing you to dig into the details of the book later.”

—Scott Mann
Aztek Networks

“I would so love to be able to use this book to teach a class about not just
Ubuntu or Linux but about computers in general. It is thorough and well
written with good illustrations that explain important concepts for com-
puter usage.”

—Nathan Eckenrode
New York Local Community Team

“Ubuntu is gaining popularity at the rate alcohol did during Prohibition,
and it’s great to see a well-known author write a book on the latest and
greatest version. Not only does it contain Ubuntu-specific information,
but it also touches on general computer-related topics, which will help
the average computer user to better understand what’s going on in the
background. Great work, Mark!”

—Daniel R. Arfsten
Pro/ENGINEER Drafter/Designer

“I read a lot of Linux technical information every day, but I'm rarely
impressed by tech books. I usually prefer online information sources
instead. Mark Sobell’s books are a notable exception. They’re clearly
written, technically accurate, comprehensive, and actually enjoyable to
read.”

—Matthew Miller
Senior Systems Analyst/Administrator
BU Linux Project
Boston University Office
of Information Technology

“This is well-written, clear, comprehensive information for the Linux user
of any type, whether trying Ubuntu on for the first time and wanting to
know a little about it, or using the book as a very good reference when
doing something more complicated like setting up a server. This book’s
value goes well beyond its purchase price and it’ll make a great addition
to the Linux section of your bookshelf.”

—Linc Fessenden
Host of The LinuxLink TechShow
tllts.org

“The author has done a very good job at clarifying such a detail-oriented
operating system. I have extensive Unix and Windows experience and
this text does an excellent job at bridging the gaps between Linux, Win-
dows, and Unix. I highly recommend this book to both ‘newbs’ and
experienced users. Great job!”

—Mark Polczynski
Information Technology Consultant

“Your text, A Practical Guide to Ubuntu Linux®, Third Edition, is a well
constructed, informative, superbly written text. You deserve an award
for outstanding talent; unfortunately my name is not Pulitzer.”

—Harrison Donnelly
Physician

http://tllts.org

“When I first started working with Linux just a short ten years or so ago,
it was a little more difficult than now to get going. . . . Now, someone new
to the community has a vast array of resources available on the web, or
if they are inclined to begin with Ubuntu, they can literally find almost
every single thing they will need in the single volume of Mark Sobell’s A
Practical Guide to Ubuntu Linux®.

“I’m sure this sounds a bit like hyperbole. Everything a person would need
to know? Obviously not everything, but this book, weighing in at just
under 1200 pages, covers so much so thoroughly that there won’t be
much left out. From install to admin, networking, security, shell scripting,
package management, and a host of other topics, it is all there. GUI and
command-line tools are covered. There is not really any wasted space or
fluff, just a huge amount of information. There are screen shots when
appropriate but they do not take up an inordinate amount of space. This
book is information-dense.”

—JR Peck
Editor
GeekBook.org

“I have been wanting to make the jump to Linux but did not have the guts
to do so—until I saw your familiarly titled A Practical Guide to Red Hat®
Linux® at the bookstore. I picked up a copy and am eagerly looking for-
ward to regaining my freedom.”

—Carmine Stoffo
Machine and Process Designer
to pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am
finally understanding the true power of the command line. I am new to
Linux and your book is a treasure.”

—Juan Gonzalez

“Overall, A Practical Guide to Ubuniu Linux® by Mark G. Sobell pro-
vides all of the information a beginner to intermediate user of Linux
would need to be productive. The inclusion of the Live DVD of the Gutsy
Gibbon release of Ubuntu makes it easy for the user to test-drive Linux
without affecting his installed OS. I have no doubts that you will consider
this book money well spent.”

—Ray Lodato
Slashdot contributor
www.slashdot.org

http://GeekBook.org
http://www.slashdot.org

This page intentionally left blank

A PRACTICAL GUIDE TO LINUX* COMMANDS,
EDITORS, AND SHELL PROGRAMMING
FOURTH EDITION

MARK G. SOBELL
coavrnoreo sy MATTHEW HELMKE

vvAddison-Wesley

Boston e Colombus ® Indianapolis ® New York ® San Francisco ® Amsterdam e Cape Town

Dubai ® London e Madrid ® Milan ® Munich e Paris ¢ Montreal ® Toronto ® Delhi ¢ Mexico City
Sao Pauloe Sydney e Hong Kong ® Seoul ® Singapore ® Taipei ® Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 201795249

Copyright © 2018 Mark G. Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-477460-2
ISBN-10: 0-13-477460-4

117

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

For Sandra,
Sage, Sedona, Philip, and Evan.
Love you tons!

—Matthew Helmke

This page intentionally left blank

BRIEF CONTENTS

CONTENTS XV
PREFACE XXXV

1 WELCOME TO LINUX AND MACOS 1

PART | THE LINUX AND MACOS OPERATING SYSTEMS 21
2 GETTING STARTED 23

3 THEUTILITIES 49

4 THE FILESYSTEM 83

5 THE SHELL 127

PART Il THE EDITORS 163

6 THEvimEDITOR 165
7 THE emacs EDITOR 221

PART Ill THE SHELLS 283

8 THE BOURNE AGAIN SHELL (bash) 285
9 THE TC SHELL (tcsh) 379

PART IV PROGRAMMING TOOLS 427
10 PROGRAMMING THE BOURNE AGAIN SHELL (bash) 429
11 THE PERL SCRIPTING LANGUAGE 529

xiii

Xiv BRIEF CONTENTS

12 THE PYTHON PROGRAMMING LANGUAGE 577

13 THE MARIADB SQL DATABASE MANAGEMENT SYSTEM 609
14 THE AWK PATTERN PROCESSING LANGUAGE 635

15 THE sed EDITOR 669

PART V SECURE NETWORK UTILITIES 687
16 THE rsync SECURE CopPy UTILITY 689
17 THE OPENSSH SECURE COMMUNICATION UTILITIES 703

PART VI CoMMAND REFERENCE 729

COMMAND REFERENCE 731

PART VII APPENDIXES 1035
A REGULAR EXPRESSIONS 1037

B Hewp 1047

C KEEPING THE SYSTEM UP-TO-DATE 1053
D MmAcOS NoTes 1067

GLOSSARY 1081

FILE TREE INDEX 1135
uriLiry INDEx 1137
MAIN INDEX 1141

CONTENTS

PREFACE XXXV

CHAPTER 1: WELCOME TO LINUX AND MACOS 1

The History of UNIX and GNU-Linux 3
The Heritage of Linux: UNIX 3
Fade to 1983 3
Next Scene, 1991 4
The Code Is Free 35
Have Fun! 6

What Is So Good About Linux? 6
Why Linux Is Popular with Hardware Companies and Developers
Linux Is Portable 10
The C Programming Language 10

Overview of Linux 11
Linux Has a Kernel Programming Interface 12
Linux Can Support Many Users 12
Linux Can Run Many Tasks 12
Linux Provides a Secure Hierarchical Filesystem 12
The Shell: Command Interpreter and Programming Language 14
A Large Collection of Useful Utilities 15
Interprocess Communication 16
System Administration 16

Additional Features of Linux 16
GUIs: Graphical User Interfaces 16
(Inter)Networking Utilities 17
Software Development 18

Chapter Summary 18
Exercises 18

9

Xv

XVi CONTENTS

PART | THE LINUX AND MACOS OPERATING
SYSTEMS 21

CHAPTER 2: GETTING STARTED 23

Conventions Used in This Book 24
Logging In from a Terminal (Emulator) 26

Working from the Command Line 28
Which Shell Are You Running? 29
Correcting Mistakes 29
Repeating/Editing Command Lines 31
su/sudo: Curbing Your Power (root Privileges) 32

Where to Find Documentation 33
man: Displays the System Manual 33
apropos: Searches for a Keyword 35
info: Displays Information About Utilities 36
The —help Option 38
The bash help Command 39
Getting Help 39

More About Logging In and Passwords 42
What to Do If You Cannot Log In 43
Logging In Remotely: Terminal Emulators, ssh, and Dial-Up Connections 43
Using Virtual Consoles 44
Logging Out 44
Changing Your Password 44
Chapter Summary 46
Exercises 47

Advanced Exercises 48

CHAPTER 3: THE UTILITIES 49

Special Characters 50

Basic Utilities 51

Is: Lists the Names of Files 52

cat: Displays a Text File 52

rm: Deletes a File 52

less Is more: Display a Text File One Screen at a Time 53

hostname: Displays the System Name 53
Working with Files 53

cp: Copies a File 53

mv: Changes the Name of a File 54

lpr: Prints a File 55

grep: Searches for a String 56

CONTENTS Xvii

head: Displays the Beginning of a File 57
tail: Displays the End of a File 57
sort: Displays a File in Order 58
unig: Removes Duplicate Lines from a File 58
diff: Compares Two Files 59
file: Identifies the Contents of a File 60
| (Pipeline): Communicates Between Processes 60

Four More Utilities 61
echo: Displays Text 61
date: Displays the Time and Date 62
script: Records a Shell Session 62
unix2dos: Converts Linux Files to Windows and macOS Format 63

Compressing and Archiving Files 64
bzip2: Compresses a File 64
bzcat and bunzip2: Decompress a File 65
gzip: Compresses a File 66
tar: Packs and Unpacks Archives 66
Locating Utilities 69
which and whereis: Locate a Utility 69
locate: Searches for a File 70
Displaying User and System Information 71
who: Lists Users on the System 71
finger: Lists Users on the System 72
uptime: Displays System Load and Duration Information 73
w: Lists Users on the System 73
free: Displays Memory Usage Information 74
Communicating with Other Users 75
write: Sends a Message 75
mesg: Denies or Accepts Messages 76
Email 77
Chapter Summary 77
Exercises 80
Advanced Exercises 81

CHAPTER 4: THE FILESYSTEM 83

The Hierarchical Filesystem 84

Directory Files and Ordinary Files 85
Filenames 86
The Working Directory 89
Your Home Directory 89
Pathnames 90
Absolute Pathnames 90
Relative Pathnames 91

xviii CONTENTS

Working with Directories 92
mkdir: Creates a Directory 93
cd: Changes to Another Working Directory 94
rmdir: Deletes a Directory 96
Using Pathnames 96
mv, cp: Move or Copy Files 97
mv: Moves a Directory 98
Important Standard Directories and Files 98
Access Permissions 100
Is -1: Displays Permissions 100
chmod: Changes Access Permissions 102
Setuid and Setgid Permissions 104
Directory Access Permissions 10$

ACLs: Access Control Lists 106
Enabling ACLs 107
Working with Access Rules 108
Setting Default Rules for a Directory 110
Links 112
Hard Links 113
Symbolic Links 115
rm: Removes a Link 118
Dereferencing Symbolic Links 118
Chapter Summary 122
Exercises 124
Advanced Exercises 126

CHAPTER 5: THE SHELL 127

Special Characters 128

Ordinary Files and Directory Files 129
The Working Directory 129
Your Home Directory 129

The Command Line 130
A Simple Command 130
Syntax 130
Simple Commands 133
Processing the Command Line 134
Executing a Command 136
Editing the Command Line 137
Standard Input and Standard Output 137
The Screen as a File 138
The Keyboard and Screen as Standard Input and Standard Output 138
Redirection 140
Pipelines 145
Lists 149

Running a Command in the Background 150

CONTENTS XiX

Filename Generation/Pathname Expansion 152
The ? Special Character 153
The » Special Character 154
The [] Special Characters 155

Builtins 157

Chapter Summary 158
Utilities and Builtins Introduced in This Chapter 159

Exercises 159
Advanced Exercises 160

PART Il THE EDITORS 163

CHAPTER 6: THE vim EDITOR 165

History 166

Tutorial: Using vim to Create and Edit a File 167
Starting vim 167
Command and Input Modes 169
Entering Text 170
Getting Help 171
Ending the Editing Session 174
The compatible Parameter 174

Introduction to vim Features 175
Online Help 175
Terminology 175
Modes of Operation 175
The Display 176
Correcting Text as You Insert It 177
Work Buffer 177
Line Length and File Size 177
Windows 178
File Locks 178
Abnormal Termination of an Editing Session 179
Recovering Text After a Crash 179

Command Mode: Moving the Cursor 181
Moving the Cursor by Characters 182
Moving the Cursor to a Specific Character 182
Moving the Cursor by Words 182
Moving the Cursor by Lines 183
Moving the Cursor by Sentences and Paragraphs 183
Moving the Cursor Within the Screen 184
Viewing Different Parts of the Work Buffer 184

Input Mode 185
Inserting Text 185

XX CONTENTS

Appending Text 185

Opening a Line for Text 185

Replacing Text 185

Quoting Special Characters in Input Mode 186

Command Mode: Deleting and Changing Text 186
Undoing Changes 186
Deleting Characters 186
Deleting Text 187
Changing Text 188
Replacing Text 189
Changing Case 190

Searching and Substituting 190
Searching for a Character 190
Searching for a String 190
Substituting One String for Another 193
Miscellaneous Commands 197
Join 197
Status 197
. (Period) 197
Copying, Moving, and Deleting Text 197
The General-Purpose Buffer 198
Named Buffers 199
Numbered Buffers 199

Reading and Writing Files 200
Reading Files 200
Writing Files 200
Identifying the Current File 201

Setting Parameters 201
Setting Parameters from Within vim 201
Setting Parameters in a Startup File 202
The .vimrc Startup File 202
Parameters 202

Advanced Editing Techniques 206
Using Markers 206
Editing Other Files 207
Macros and Shortcuts 207
Executing Shell Commands from Within vim 208

Units of Measure 210
Character 210
Word 210
Blank-Delimited Word 211
Line 211
Sentence 211
Paragraph 212
Screen (Window) 213
Repeat Factor 213

CONTENTS XXi

Chapter Summary 213
Exercises 218
Advanced Exercises 219

CHAPTER 7: THE emacs EDITOR 221

History 222
Evolution 222
emacs Versus vim 223

Tutorial: Getting Started with emacs 224
Starting emacs 224
Exiting 226
Inserting Text 226
Deleting Characters 227
Moving the Cursor 228
Editing at the Cursor Position 230
Saving and Retrieving the Buffer 230
Basic Editing Commands 231
Keys: Notation and Use 231
Key Sequences and Commands 233
METAx: Running a Command Without a Key Binding 233
Numeric Arguments 233
Point and the Cursor 234
Scrolling Through a Buffer 234
Erasing Text 234
Searching for Text 235
Using the Menubar from the Keyboard 237

Online Help 238

Advanced Editing 240
Undoing Changes 240
Point, Mark, and Region 242
Cut and Paste: Yanking Killed Text 243
Inserting Special Characters 245
Global Buffer Commands 245
Visiting and Saving Files 247
Buffers 251
Windows 252
Foreground Shell Commands 254
Background Shell Commands 255
Major Modes: Language-Sensitive Editing 255
Selecting a Major Mode 256
Human-Language Modes 256
C Mode 259
Customizing Indention 262
Comments 263
Special-Purpose Modes 264

XXii

CONTENTS

Customizing emacs 265
The .emacs Startup File 266
Remapping Keys 267
A Sample .emacs File 269
More Information 270
Access to emacs 270

Chapter Summary 270
Exercises 279
Advanced Exercises 280

PART Il THE SHELLS 283

CHAPTER 8: THE BOURNE AGAIN SHELL (bash) 285

Background 286

Startup Files 288
Login Shells 288
Interactive Nonlogin Shells 289
Noninteractive Shells 289
Setting Up Startup Files 289
. (Dot) or source: Runs a Startup File in the Current Shell 290
Commands That Are Symbols 291
Redirecting Standard Error 292
Writing and Executing a Simple Shell Script 294
chmod: Makes a File Executable 295
#! Specifies a Shell 297
Begins a Comment 298
Executing a Shell Script 298

Control Operators: Separate and Group Commands 299
; and NEWLINE Separate Commands 300
| and & Separate Commands and Do Something Else 300
&& and Il Boolean Control Operators 301
() Groups Commands 302
\ Continues a Command 303

Job Control 304
jobs: Lists Jobs 305
fg: Brings a Job to the Foreground 305
Suspending a Job 306
bg: Sends a Job to the Background 306
Manipulating the Directory Stack 307
dirs: Displays the Stack 307
pushd: Pushes a Directory on the Stack 308
popd: Pops a Directory Off the Stack 309

CONTENTS XXiii

Parameters and Variables 310
User-Created Variables 312
Variable Attributes 315
Keyword Variables 317
Special Characters 325
Locale 326
Time 330
Processes 333
Process Structure 333
Process Identification 334
Executing a Command 335
History 336
Variables That Control History 336
Reexecuting and Editing Commands 338
The Readline Library 345
Aliases 352
Single Versus Double Quotation Marks in Aliases 353
Examples of Aliases 354
Functions 356
Controlling bash: Features and Options 359
bash Command-Line Options 359
Shell Features 360
Processing the Command Line 364
History Expansion 364
Alias Substitution 364
Parsing and Scanning the Command Line 364
Command-Line Expansion 364
Chapter Summary 374
Exercises 376
Advanced Exercises 378

CHAPTER 9: THE TC SHELL (tcsh) 379

Shell Scripts 380

Entering and Leaving the TC Shell 381
Startup Files 382
Features Common to the Bourne Again and TC Shells 383
Command-Line Expansion (Substitution) 384
Job Control 388
Filename Substitution 388
Manipulating the Directory Stack 389
Command Substitution 389
Redirecting Standard Error 389

Working with the Command Line 390
Word Completion 391

XXiv CONTENTS

Editing the Command Line 393
Correcting Spelling 394

Variables 396
Variable Substitution 396
String Variables 396
Arrays of String Variables 397
Numeric Variables 398
Braces 401
Special Variable Forms 401
tcsh Variables 402
Control Structures 408
if 409
goto 411
Interrupt Handling 412
if...then...else 413
foreach 414
while 416
break and continue 416
switch 417
Builtins 418
Chapter Summary 422
Exercises 423

Advanced Exercises 4235

PART IV PROGRAMMING TOOLS 427

CHAPTER 10: PROGRAMMING THE BOURNE AGAIN SHELL
(bash) 429

Control Structures 430
if...then 431
if...then...clse 435
if...then...clif 436
for...in 443
for 445
while 447
until 451
break and continue 453
case 454
select 460
Here Document 462
File Descriptors 464
Opening a File Descriptor 465
Duplicating a File Descriptor 465

CONTENTS XXV

File Descriptor Examples 465

Determining Whether a File Descriptor Is Associated with the Terminal 468
Parameters 470

Positional Parameters 470

Special Parameters 475

Variables 479
Shell Variables 479
Environment, Environment Variables, and Inheritance 480
Expanding Null and Unset Variables 485
Array Variables 486
Variables in Functions 488
Builtin Commands 489
type: Displays Information About a Command 489
read: Accepts User Input 489
exec: Executes a Command or Redirects File Descriptors 493
trap: Catches a Signal 496
kill: Aborts a Process 499
eval: Scans, Evaluates, and Executes a Command Line 500
getopts: Parses Options 501
A Partial List of Builtins 503

Expressions 505
Arithmetic Evaluation 505
Logical Evaluation (Conditional Expressions) 506
String Pattern Matching 507
Arithmetic Operators 508

Implicit Command-Line Continuation 512

Shell Programs 513
A Recursive Shell Script 514
The quiz Shell Script 517

Chapter Summary 523
Exercises 525
Advanced Exercises 527

CHAPTER 11: THE PERL SCRIPTING LANGUAGE 529

Introduction to Perl 530
More Information 531
Help 531
peridoc 531
Terminology 533

Running a Perl Program 534
Syntax 536
Variables 538
Scalar Variables 540
Array Variables 541
Hash Variables 544

XXvi CONTENTS

Control Structures 545
if/funless 546
if...else 548
if...elsif...else 549
foreach/for 549
last and next 551
while/until 552

Working with Files 554

Sort 558

Subroutines 559

Regular Expressions 562
Syntax and the =~ Operator 562

CPAN Modules 568
Examples 570

Chapter Summary 574
Exercises 574
Advanced Exercises 575

CHAPTER 12: THE PYTHON PROGRAMMING LANGUAGE 577

Introduction 578
Invoking Python 578
More Information 580
Writing to Standard Output and Reading from Standard Input 581
Functions and Methods 581

Scalar Variables, Lists, and Dictionaries 582
Scalar Variables 582
Lists 583
Dictionaries 587

Control Structures 588
if 589
if...else 589
if...elif...else 590
while 591
for 591
Reading from and Writing to Files 593
File Input and Output 593
Exception Handling 594
Pickle 596

Regular Expressions 597

Defining a Function 598

Using Libraries 599
Standard Library 599
Nonstandard Libraries 599

CONTENTS XXVii

SciPy and NumPy Libraries 600
Namespace 600
Importing a Module 601
Example of Importing a Function 602
Lambda Functions 603
List Comprehensions 604
Chapter Summary 605
Exercises 606
Advanced Exercises 606

CHAPTER 13: THE MARIADB SQL DATABASE MANAGEMENT
SYSTEM 609

History 610

Notes 611
Syntax and Conventions 612
More Information 614

Installing a MariaDB Server and Client 614
Fedora/RHEL (Red Hat Enterprise Linux) 614
Debian/Ubuntu/Mint 615
openSUSE 615
macOS 615

Client Options 615

Setting Up MariaDB 616
Assigning a Password to the MariaDB User Named root 616
Removing Anonymous Users 617
Running the Secure Installation Script 617
~/.my.cnf: Configures a MariaDB Client 617
~/.mysql_history: Stores Your MariaDB History 618

Creating a Database 618
Adding a User 619

Examples 620
Logging In 620
Creating a Table 621
Adding Data 622
Retrieving Data 623
Backing Up a Database 625
Modifying Data 626
Creating a Second Table 627
Joins 628

Chapter Summary 633
Exercises 633

xxviii CONTENTS

CHAPTER 14: THE AWK PATTERN PROCESSING LANGUAGE 635

Syntax 636
Arguments 636
Options 637
Notes 638
Language Basics 638
Patterns 638
Actions 639
Comments 639
Variables 639
Functions 640
Arithmetic Operators 641

Associative Arrays 642

printf 642
Control Structures 643

Examples 645

Advanced gawk Programming 662
getline: Controlling Input 662
Coprocess: Two-Way /O 665
Getting Input from a Network 666

Chapter Summary 667
Exercises 668
Advanced Exercises 668

CHAPTER 15: THE sed EDITOR 669

Syntax 670

Arguments 670

Options 670

Editor Basics 671
Addresses 671
Instructions 672
Control Structures 673
The Hold Space 674

Examples 674

Chapter Summary 685

Exercises 685

CONTENTS XXiX

PARTV SECURE NETWORK UTILITIES 687

CHAPTER 16: THE rsync SECURE CoPY UTILITY 689

Syntax 690
Arguments 690
Options 691
Notes 692
More Information 693

Examples 693
Using a Trailing Slash (/) on source-file 694
Removing Files 694
Copying Files to and from a Remote System 696
Mirroring a Directory 697
Making Backups 697
Restoring a File 700

Chapter Summary 700
Exercises 701

CHAPTER 17: THE OPENSSH SECURE COMMUNICATION
Utiuities 703

Introduction to OpenSSH 704
Files 704
More Information 706

Running the ssh, scp, and sftp OpenSSH Clients 706
Prerequisites 706
JumpStart I: Using ssh and scp to Connect to an OpenSSH Server 706
Configuring OpenSSH Clients 707
ssh: Logs in or Executes Commands on a Remote System 709
scp: Copies Files to and from a Remote System 713
sftp: A Secure FTP Client 715
~/.ssh/config and /etc/ssh/ssh_config Configuration Files 715

Setting Up an OpenSSH Server (sshd) 717
Prerequisites 717
Note 717
JumpStart II: Starting an OpenSSH Server 717
Authorized Keys: Automatic Login 717
Randomart Image 719
ssh-agent: Holds Your Private Keys 720
Command-Line Options 721
/etc/ssh/sshd_config Configuration File 722

Troubleshooting 724

CONTENTS

Tunneling/Port Forwarding 724
Forwarding X11 725
Port Forwarding 726

Chapter Summary 727
Exercises 728
Advanced Exercises 728

PART VI COMMAND REFERENCE 729

Utilities That Display and Manipulate Files 731
Network Utilities 732
Utilities That Display and Alter Status 733
Utilities That Are Programming Tools 734
Miscellaneous Utilities 734
Standard Multiplicative Suffixes 735
Common Options 736
The sample Utility 736
sample Brief description of what the utility does 737
aspell Checks a file for spelling errors 739
at Executes commands at a specified time 743
busybox Implements many standard utilities 747
bzip2 Compresses or decompresses files 750
cal Displays a calendar 752
cat Joins and displays files 753
cd Changes to another working directory 755
chgrp Changes the group associated with a file 757
chmod Changes the access mode (permissions) of a file 759

chown Changes the owner of a file and/or the group the file is associated
with 764

cmp Compares two files 766
comm Compares sorted files 768
configure Configures source code automatically 770
cp Copies files 772

cpio Creates an archive, restores files from an archive, or copies a directory
hierarchy 776

crontab Maintains crontab files 781
cut Selects characters or fields from input lines 784
date Displays or sets the system time and date 787
dd Converts and copies a file 790

CONTENTS XXXi

df Displays disk space usage 793
diff Displays the differences between two text files 795
diskutil Checks, modifies, and repairs local volumes 800
ditto Copies files and creates and unpacks archives 803
dmesg Displays kernel messages 805
dscl Displays and manages Directory Service information 806

du Displays information on disk usage by directory hierarchy and/or
file 809

echo Displays a message 812
expand/unexpand
Converts TABs to SPACEs and SPACEs to TABs 814
expr Evaluates an expression 816
file Displays the classification of a file 820
find Finds files based on criteria 822
finger Displays information about users 828
fmt Formats text very simply 831
fsck Checks and repairs a filesystem 833
ftp Transfers files over a network 838
gawk Searches for and processes patterns in a file 845
gcc Compiles C and C++ programs 846
GetFilelnfo Displays file attributes 851
grep Searches for a pattern in files 853
gzip Compresses or decompresses files 858
head Displays the beginning of a file 861
join Joins lines from two files based on a common field 863
kil Terminates a process by PID 866
killall Terminates a process by name 868
launchctl Controls the launchd daemon 870
less Displays text files, one screen at a time 873
In Makes a link to a file 878
lpr Sends files to printers 881
Is Displays information about one or more files 884
make Keeps a set of programs current 892
man Displays documentation for utilities 898

mc Manages files in a textual environment (aka Midnight
Commander) 902

mkdir Creates a directory 909
mkfs Creates a filesystem on a device 911
mv Renames or moves a file 914
nice Changes the priority of a command 916

XXXii CONTENTS

nl
nohup
od
open
otool
paste
pax

plutil
pr
printf
ps
renice
m
rmdir
rsync
scp
screen
sed
SetFile
sleep
sort
split
ssh

918

Runs a command that keeps running after you log out
Dumps the contents of a file 921

Opens files, directories, and URLs 926
Displays object, library, and executable files
930

Creates an archive, restores files from an archive, or copies a directory
hierarchy 932

Manipulates property list files
Paginates files for printing 940

Numbers lines from a file
920

928
Joins corresponding lines from files

938

Formats string and numeric data 942
Displays process status 946

Changes the priority of a process 951
Removes a file (deletes a link) 953

955
Securely copies files and directory hierarchies over a network 956

Removes directories

Securely copies one or more files to or from a remote system 957
Manages several textual windows 958
Edits a file noninteractively 964
Sets file attributes 965
Creates a process that sleeps for a specified interval
969

978

Securely runs a program or opens a shell on a remote system 980

967
Sorts and/or merges files
Divides a file into sections

sshfs/curlftpfs

stat
strings
stty
sysctl
tail

tar

tee
telnet
test
top
touch
tr

tty
tune2fs
umask

Mounts a directory on an OpenSSH or FTP server as a local
directory 981

Displays information about files 984

Displays strings of printable characters from files
987
Displays and alters kernel variables at runtime
992
Stores or retrieves files to/from an archive file 995

Copies standard input to standard output and one or more files

Connects to a remote computer over a network 1001

986
Displays or sets terminal parameters
991
Displays the last part (tail) of a file

1000

Evaluates an expression 1005

Dynamically displays process status 1008

Creates a file or changes a file’s access and/or modification time
1014

1017

Changes parameters on an ext2, ext3, or ext4 filesystem 1018
Specifies the file-creation permissions mask 1021

1012
Replaces specified characters
Displays the terminal pathname

CONTENTS XXXiii

unig Displays unique lines from a file 1023
w Displays information about local system users 1025

wc Displays the number of lines, words, and bytes in one or more
files 1027

which Shows where in PATH a utility is located 1028
who Displays information about logged-in users 1030
xargs Converts standard input to command lines 1032

PART VII APPENDIXES 1035

APPENDIX A: REGULAR EXPRESSIONS 1037

Characters 1038
Delimiters 1038
Simple Strings 1038

Special Characters 1038
Periods 1039
Brackets 1039
Asterisks 1040
Carets and Dollar Signs 1040
Quoting Special Characters 1041

Rules 1041
Longest Match Possible 1041
Empty Regular Expressions 1042

Bracketing Expressions 1042

The Replacement String 1042
Ampersand 1043
Quoted Digit 1043

Extended Regular Expressions 1043
Appendix Summary 1045

APPENDIX B: HELP 1047

Solving a Problem 1048

Finding Linux and macOS Related Information 1049
Mailing Lists 1049

Specifying a Terminal 1050

APPENDIX C: KEEPING THE SYSTEM UP-TO-DATE 1053

Using dnf 1054
Using dnf to Install, Remove, and Update Packages 1054
Other dnf Commands 1056

XXXiV CONTENTS

dnf Groups 1057
Downloading rpm Package Files Using dnf download 1058
Configuring dnf 1058
Using apt-get 1060
Using apt-get to Install, Remove, and Update Packages 1061
Using apt-get to Upgrade the System 1062
Other apt-get Commands 1062
Using apt Commands 1063
Repositories 1063
sources.list: Specifies Repositories for apt-get to Search 1063

BitTorrent 1064

APPENDIX D: MACOS NOTES 1067

Open Directory 1068

Filesystems 1069
Nondisk Filesystems 1069
Case Sensitivity 1070
/Volumes 1070

Extended Attributes 1070
File Forks 1071
File Attributes 1072
ACLs 1074

Activating the Terminal META Key 1076

Startup Files 1076

Remote Logins 1076

Many Utilities Do Not Respect Apple Human Interface Guidelines 1076
Installing Xcode and MacPorts 1077

macOS Implementation of Linux Features 1078

GLOSSARY 1081
FILE TREE INDEX 1135

UriLity INDEx 1137
MAIN INDEX 1141

Linux

mac0S

Command-line
interface (CLI)

Linux distributions

PREFACE

A Practical Guide to Linux® Commands, Editors, and Shell Programming, Fourth
Edition, explains how to work with the Linux operating system from the command
line. The first few chapters of this book build a foundation for learning about Linux.
The rest of the book covers more advanced topics and goes into more detail. This book
does not describe a particular release or distribution of Linux but rather pertains to
all recent versions of Linux.

This book also explains how to work with the UNIX/Linux foundation of macOS.
It looks “under the hood,” past the traditional GUI (graphical user interface) that
most people associate with the Macintosh, and explains how to use the powerful
command-line interface (CLI) that connects you directly to macOS. Where this book
refers to Linux, it implicitly refers to macOS as well and makes note of differences
between the two operating systems.

In the beginning there was the command-line (textual) interface, which enabled a user
to give Linux commands from the command line. There was no mouse to point with
or icons to drag and drop. Some programs, such as emacs, implemented rudimentary
windows using the very minimal graphics available in the ASCII character set.
Reverse video helped separate areas of the screen.

Linux was born and raised in this environment, so naturally all the original Linux
tools were invoked from the command line. The real power of Linux still lies in this
environment, which explains why many Linux professionals work exclusively from
the command line. Using clear descriptions and many examples, this book shows you
how to get the most out of your Linux system using the command-line interface.

A Linux distribution comprises the Linux kernel, utilities, and application programs.
Many distributions are available, including Ubuntu, Fedora, openSUSE, Red Hat,
Debian, Mageia, Arch, CentOS, Solus, and Mint. Although the distributions differ

XXXV

XXXVi

PREFACE

Overlap

Audience

Benefits

from one another in various ways, all of them rely on the Linux kernel, utilities, and
applications. This book is based on the code that is common to most distributions. As
a consequence you can use it regardless of which distribution you are running.

If you read one of Mark Sobell’s other books, A Practical Guide to Fedora™ and Red
Hat® Enterprise Linux, or A Practical Guide to Ubuntu Linux®, or Matthew
Helmke’s Ubuntu Unleashed or The Official Ubuntu Book, you will notice some over-
lap between those books and the one you are reading now. The books cover similar
information, presented from different perspectives and at different levels of depth
depending on the intended audience for each book.

This book is designed for a wide range of readers. It does not require programming
experience, although some experience using a computer is helpful. It is appropriate
for the following readers:

e Students taking a class in which they use Linux or macOS

® Power users who want to explore the power of Linux or macOS from the
command line

¢ Professionals who use Linux or macOS at work

¢ Beginning Macintosh users who want to know what UNIX/Linux is, why
everyone keeps saying it is important, and how to take advantage of it

¢ Experienced Macintosh users who want to know how to take advantage of
the power of UNIX/Linux that underlies macOS

e UNIX users who want to adapt their UNIX skills to the Linux or macOS
environment

e System administrators who need a deeper understanding of Linux or
macOS and the tools that are available to them, including the bash, Perl, and
Python scripting languages

® Web developers who need to understand Linux inside and out, including
Perl and Python

¢ Computer science students who are studying the Linux or macOS oper-
ating system

¢ Programmers who need to understand the Linux or macOS programming
environment

® Technical executives who want to get a grounding in Linux or macOS

A Practical Guide to Linux® Commands, Editors, and Shell Programming, Fourth
Edition, gives you a broad understanding of how to use Linux and macOS from the
command line. Regardless of your background, it offers the knowledge you need to get
on with your work: You will come away from this book with an understanding of how
to use Linux/macOS, and this text will remain a valuable reference for years to come.

PREFACE XXXvii

A large amount of free software has always been available for Macintosh systems. In
addition, the Macintosh shareware community is very active. By introducing the
UNIX/Linux aspects of macOS, this book throws open to Macintosh users the vast
store of free and low-cost software available for Linux and other UNIX-like systems.

In this book, Linux refers to Linux and mac0S

The UNIX operating system is the common ancestor of Linux and macOS. Although the GUIs
(graphical user interfaces) of these two operating systems differ significantly, the command-line
interfaces (CLIs) are very similar and in many cases identical. This book describes the CLIs of both
Linux and macQS. To make the content more readable, this book uses the term Linux to refer to
both Linux and macOS. It makes explicit note of where the two operating systems differ.

FEATURES OF THIS BOOK

This book is organized for ease of use in different situations. For example, you can read
it from cover to cover to learn command-line Linux from the ground up. Alternatively,
once you are comfortable using Linux, you can use this book as a reference: Look up
a topic of interest in the table of contents or index and read about it. Or refer to one
of the utilities covered in Part VI, “Command Reference.” You can also think of this
book as a catalog of Linux topics: Flip through the pages until a topic catches your eye.
The book also includes many pointers to Web sites where you can obtain additional
information: Consider the Internet to be an extension of this book.

A Practical Guide to Linux® Commands, Editors, and Shell Programming, Fourth
Edition, offers the following features:

¢ Optional sections allow you to read the book at different levels, returning
to more difficult material when you are ready to tackle it.

¢ Caution boxes highlight procedures that can easily go wrong, giving you
guidance before you run into trouble.

¢ Tip boxes highlight places in the text where you can save time by doing
something differently or when it might be useful or just interesting to have
additional information.

e Security boxes point out ways you can make a system more secure.

e Each chapter starts with a list of chapter objectives—a list of important
tasks you should be able to perform after reading the chapter.

¢ Concepts are illustrated by practical examples found throughout the book.

® The many useful URLs (Internet addresses) identify sites where you can
obtain software and information.

® Main, File Tree, and Utility indexes help you find what you are looking for
quickly; for easy access, the Utility index is reproduced on the insides of the
front and back covers.

XXxviii PREFACE

¢ Chapter summaries review the important points covered in each chapter.

® Review exercises are included at the end of each chapter for readers who
want to hone their skills. Answers to even-numbered exercises are posted
at www.sobell.com.

¢ Important GNU tools, including gcc, GNU Configure and Build System,
make, gzip, and many others, are described in detail.

e Pointers throughout the book provide help in obtaining online documentation
from many sources, including the local system and the Internet.

* Important command-line utilities that were developed by Apple specifically
for macOS are covered in detail, including diskutil, ditto, dscl, GetFilelnfo,
launchctl, otool, plutil, and SetFile.

¢ Descriptions of macOS extended attributes include file forks, file attri-
butes, attribute flags, and Access Control Lists (ACLs).

e Appendix D, “macOS Notes,” lists some differences between macOS and
Linux.

CONTENTS

This section describes the information that each chapter covers and explains how that
information can help you take advantage of the power of Linux. You might want to
review the table of contents for more detail.

¢ Chapter 1—Welcome to Linux and macOS
Presents background information on Linux and macOS. This chapter covers
the history of Linux, profiles the macOS Mach kernel, explains how the GNU
Project helped Linux get started, and discusses some of the important features
of Linux that distinguish it from other operating systems.

PART I: THE LINUX AND MACOS OPERATING SYSTEMS

Experienced users might want to skim Part |

Ifyou have used a UNIX/Linux system before, you might want to skim or skip some or all of the chapters
in Part I. All readers should take a look at “Conventions Used in This Book” (page 24), which explains
the typographic conventions that this book uses, and “Where to Find Documentation” (page 33), which
points you toward both local and remote sources of Linux documentation.

Part I introduces Linux and gets you started using it.

¢ Chapter 2—Getting Started
Explains the typographic conventions this book uses to make explanations
clearer and easier to read. This chapter provides basic information and

http://www.sobell.com

PREFACE XXXiX

explains how to log in, change your password, give Linux commands using
the shell, and find system documentation.

¢ Chapter 3—The Utilities
Explains the command-line interface (CLI) and briefly introduces more than
30 command-line utilities. Working through this chapter gives you a feel for
Linux and introduces some of the tools you will use day in, day out. Deeper
discussion of utilities is reserved for Part VI. The utilities covered in this
chapter include

+ grep, which searches through files for strings of characters;
+ unix2dos, which converts Linux text files to Windows format;
« tar, which creates archive files that can hold many other files;

« bzip2 and gzip, which compress files so that they take up less space on
disk and allow you to transfer them over a network more quickly; and

« diff, which displays the differences between two text files.

® Chapter 4—The Filesystem
Discusses the Linux hierarchical filesystem, covering files, filenames,
pathnames, working with directories, access permissions, and hard and
symbolic links. Understanding the filesystem allows you to organize your
data so that you can find information quickly. It also enables you to share
some of your files with other users while keeping other files private.

¢ Chapter 5—The Shell
Explains how to use shell features to make your work faster and easier. All
of the features covered in this chapter work with both bash and tcsh. This
chapter discusses

+ Using command-line options to modify the way a command works;

+ Making minor changes in a command line to redirect input to a command
so that it comes from a file instead of the keyboard;

+ Redirecting output from a command to go to a file instead of the screen;

+ Using pipelines to send the output of one utility directly to another utility
o you can solve problems right on the command line;

+ Running programs in the background so you can work on one task
while Linux is working on a different one; and

+ Using the shell to generate filenames to save time spent on typing and
help you when you do not remember the exact name of a file.

PART ll: THE EDITORS

Part II covers two classic, powerful Linux command-line text editors. Most Linux
distributions include the vim text editor, an “improved” version of the widely used vi

Xl PREFACE

editor, as well as the popular GNU emacs editor. Text editors enable you to create
and modify text files that can hold programs, shell scripts, memos, and input to text
formatting programs. Because Linux system administration involves editing text-
based configuration files, skilled Linux administrators are adept at using text editors.

¢ Chapter 6—The vim Editor
Starts with a tutorial on vim and then explains how to use many of the
advanced features of vim, including special characters in search strings, the
General-Purpose and Named buffers, parameters, markers, and execution
of commands from within vim. The chapter concludes with a summary of
vim commands.

¢ Chapter 7—The emacs Editor
Opens with a tutorial and then explains many of the features of the emacs
editor, as well as how to use the META, ALT, and ESCAPE keys. In addition, this
chapter covers key bindings, buffers, and incremental and complete
searching for both character strings and regular expressions. It details the
relationship between Point, the cursor, Mark, and Region. It also explains
how to take advantage of the extensive online help facilities available from
emacs. Other topics covered include cutting and pasting, using multiple
windows and frames, and working with emacs modes—specifically C
mode, which aids programmers in writing and debugging C code. Chapter 7
concludes with a summary of emacs commands.

PART lll: THE SHELLS

Part III goes into more detail about bash and introduces the TC Shell (icsh).

® Chapter 8—The Bourne Again Shell (bash)
Picks up where Chapter 5 left off, covering more advanced aspects of
working with a shell. For examples it uses the Bourne Again Shell—bash,
the shell used almost exclusively for system shell scripts. Chapter 8 describes
how to

o Use shell startup files, shell options, and shell features to customize the

shell;

+ Use job control to stop jobs and move jobs from the foreground to the
background, and vice versa;

+ Modify and reexecute commands using the shell history list;
+ Create aliases to customize commands;
+ Work with user-created and keyword variables in shell scripts;

+ Implement localization including discussions of the locale utility, the
LC_ variables, and internationalization;

+ Set up functions, which are similar to shell scripts but are executed
more quickly;

PREFACE

xli

+ Write and execute simple shell scripts; and

+ Redirect error messages so they go to a file instead of the screen.

¢ Chapter 9—The TC Shell (tcsh)
Describes tcsh and covers features common to and different between bash
and tcsh. This chapter explains how to

+ Run tcsh and change your default shell to tcsh;

+ Redirect error messages so they go to files instead of the screen;

« Use control structures to alter the flow of control within shell scripts;
+ Work with tcsh array and numeric variables; and

« Use shell builtin commands.

PART IV: PROGRAMMING TOOLS

Part IV covers important programming tools that are used extensively in Linux and

macOS system administration and general-purpose programming.

e Chapter 10—Programming the Bourne Again Shell (bash)
Continues where Chapter 8 left off, going into greater depth about
advanced shell programming using bash, with the discussion enhanced by
extensive examples. This chapter discusses

+ Control structures including if...then...else and case;

« Variables, with discussions of attributes, expanding null and unset
variables, array variables, and variables in functions;

+ Environment, including environment versus local variables, inheritance,
and process locality;

¢ Arithmetic and logical (Boolean) expressions; and

+ Some of the most useful shell builtin commands, including exec, trap,
and getopts.

Once you have mastered the basics of Linux, you can use your knowledge
to build more complex and specialized programs, using the shell as a pro-
gramming language.

Chapter 10 poses two complete shell programming problems and then
shows you how to solve them step by step. The first problem uses recursion
to create a hierarchy of directories. The second problem develops a quiz
program, shows you how to set up a shell script that interacts with a user,
and explains how the script processes data. (The examples in Part VI also
demonstrate many features of the utilities you can use in shell scripts.)

xlii

PREFACE

¢ Chapter 11—The Perl Scripting Language

Introduces the popular, feature-rich Perl programming language. This
chapter covers

« Perl help tools, including perldoc;

+ Perl variables and control structures;

« File handling;

« Regular expressions; and

o Installation and use of CPAN modules.

Many Linux administration scripts are written in Perl. After reading
Chapter 11 you will be able to better understand these scripts and start
writing your own. This chapter includes many examples of Perl scripts.

Chapter 12—The Python Programming Language
Introduces the flexible and friendly Python programming language. This
chapter covers

+ Python lists and dictionaries;

+ Python functions and methods you can use to write to and read from files;
+ Using pickle to store an object on disk;

+ Importing and using libraries;

+ Defining and using functions, including regular and Lambda functions;
+ Regular expressions; and

+ Using list comprehensions.

Many Linux tools are written in Python. Chapter 12 introduces Python,
including some basic object-oriented concepts, so you can read and
understand Python programs and write your own. This chapter includes
many examples of Python programs.

Chapter 13—The MariaDB SQL Database Management System
Introduces the widely used MariaDB/MySQL relational database manage-
ment system (RDBMS). This chapter covers

+ Relational database terminology;

o Installing the MariaDB client and server;
¢ Creating a database;

+ Adding a user;

¢ Creating and modifying tables;

+ Adding data to a database; and

+ Backing up and restoring a database.

PReFace xliii

¢ Chapter 14—The AWK Pattern Processing Language
Explains how to use the powerful AWK language to write programs that
filter data, write reports, and retrieve data from the Internet. The advanced
programming section describes how to set up two-way communication
with another program using a coprocess and how to obtain input over a
network instead of from a local file.

¢ Chapter 15—The sed Editor
Describes sed, the noninteractive stream editor that finds many applications
as a filter within shell scripts. This chapter discusses how to use sed’s buffers
to write simple yet powerful programs and includes many examples.

PART V: SECURE NETWORK UTILITIES

Part V describes two utilities you can use to work on a remote system and copy files
across a network securely.

¢ Chapter 16—The rsync Secure Copy Utility
Covers rsync, a secure utility that copies an ordinary file or directory hierarchy
locally or between the local system and a remote system. As you write pro-
grams, you can use this utility to back them up to another system.

e Chapter 17—The OpenSSH Secure Communication Utilities
Explains how to use the ssh, scp, and sftp utilities to communicate securely
over the Internet. This chapter covers the use of authorized keys that allow
you to log in on a remote system securely without a password, ssh-agent
that can hold your private keys while you are working, and forwarding X11
so you can run graphical programs remotely.

PART VI: COMMAND REFERENCE

Linux includes hundreds of utilities. Chapters 14, 15, 16, and 17 as well as Part VI
provide extensive examples of the use of over 100 of the most important utilities with
which you can solve problems without resorting to programming in C. If you are
already familiar with UNIX/Linux, this part of the book will be a valuable, easy-to-
use reference. If you are not an experienced user, it will serve as a useful supplement
while you are mastering the earlier sections of the book.

Although the descriptions of the utilities in Chapters 14, 15, 16, and 17 and Part VI are
presented in a format similar to that used by the Linux manual (man) pages, they are
much easier to read and understand. These utilities are included because you will work
with them day in, day out (for example, Is and cp), because they are powerful tools that
are especially useful in shell scripts (sort, paste, and test), because they help you work
with a Linux system (ps, kill, and fsck), or because they enable you to communicate with
other systems (ssh, scp, and ftp). Each utility description includes complete explanations
of its most useful options, differentiating between options supported under macOS and
those supported under Linux. The “Discussion” and “Notes” sections present tips and
tricks for taking full advantage of the utility’s power. The “Examples” sections demon-

xliv PREFACE

strate how to use these utilities in real life, alone and together with other utilities, to
generate reports, summarize data, and extract information. Take a look at the “Exam-
ples” sections for find (page 826), ftp (page 841), and sort (page 971) to see how
extensive these sections are. Some utilities, such as Midnight Commander (mc;
page 902) and screen (page 958), include extensive discussion sections and tutorials.

PART VII: APPENDIXES

Part VII includes the appendixes, the glossary, and three indexes.

¢ Appendix A—Regular Expressions
Explains how to use regular expressions to take advantage of the hidden
power of Linux. Many utilities, including grep, sed, vim, AWK, Perl, and
Python, accept regular expressions in place of simple strings of characters.
A single regular expression can match many simple strings.

¢ Appendix B—Help
Details the steps typically used to solve the problems you might encounter
when using a Linux system.

¢ Appendix C—Keeping the System Up-to-Date
Describes how to use tools to download software and keep a system current.
This appendix includes information on

+ dnf—Downloads software from the Internet, keeping a system up-to-date
and resolving dependencies as it goes.

+ apt-get—An alternative to dnf for keeping a system current.

¢ BitTorrent—Good for distributing large amounts of data such as Linux
installation CDs and DVDs.

¢ Appendix D—macOS Notes
A brief guide to macOS features and quirks that might be unfamiliar to
users who have been using Linux or other UNIX-like systems.

e Glossary
Defines more than 500 terms that pertain to the use of Linux and macOS.

¢ Indexes
Three indexes that make it easier to find what you are looking for quickly.
These indexes indicate where you can locate tables (page numbers followed
by the letter t) and definitions (italic page numbers). They also differentiate
between light and comprehensive coverage (page numbers in and
standard fonts, respectively).

o File Tree Index—Lists, in hierarchical fashion, most files mentioned in
this book. These files are also listed in the Main index.

+ Utility Index—Locates all utilities mentioned in this book. A page
number in a indicates a brief mention of the utility; use of

PREFACE Xlv

the regular font indicates more substantial coverage. The Utility index
is reproduced on the insides of the front and back covers.

¢ Main Index—Helps you find the information you want quickly.

SUPPLEMENTS

THANKS

The author’s home page (www.sobell.com) contains downloadable listings of the lon-
ger programs from this book as well as pointers to many interesting and useful Linux-
and macOS-related sites on the World Wide Web; a list of corrections to the book;
answers to even numbered exercises; and a solicitation for corrections, comments,
and suggestions.

Register your copy of A Practical Guide to Linux® Commands, Editors, and Shell
Programming, Fourth Edition, at informit.com/register for convenient access to
downloads, updates, and/or corrections as they become available (you must log in or
create a new account). Enter the product ISBN (9780134774602) and click Submit.
Once the process is complete, you will find any available bonus content under Reg-
istered Products. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

As this is my (Matthew’s) first edition of this book, I would like to begin by thanking
Mark Sobell for trusting me with his creation. You have gifted me an excellent foun-
dation and I am truly grateful. Enjoy your well-deserved retirement! I also want to
thank Debra Williams Cauley and Mark Taub for approaching both me and Mark
Sobell when he decided it was time to hand the book to someone else. Your trust in
me is appreciated and not taken lightly.

I take responsibility for any errors and omissions in this book. If you find one or just
have a comment, let me know (matthew@matthewhelmke.com), and I will fix it in the
next printing. I inherited a fabulous amount of well-vetted content, and I have tested
what is here while updating the text for this edition, but it is possible I have not done
so perfectly and am happy to receive your kind assistance and corrections where
needed.

The rest of this section is from Mark’s previous edition. I share his gratitude to and
appreciation of all who are mentioned here, many of whom have also worked with
me on this edition.

Matthew Helmke
North Liberty, lowa

http://www.sobell.com
http://informit.com/register
mailto:matthew@matthewhelmke.com

xlvi

PREFACE

(From the Third Edition, 2013)

First and foremost, I want to thank Mark L. Taub, Editor-in-Chief of the IT Profes-
sional Group at Pearson, who provided encouragement and support through the
hard parts of this project. Mark is unique in my 30 years of book writing experience:
an editor who works with the tools I write about. Because Mark runs Linux on his
home computer, we shared experiences as I wrote this book. Mark, your comments
and direction are invaluable; this book would not exist without your help. Thank
you, Mark T.

The production people at Pearson are wonderful to work with.: Julie Nahil, Full-Ser-
vice Production Manager, worked with me day-by-day during production of this
book, providing help and keeping everything on track, while John Fuller, Managing
Editor, kept the large view in focus. Thanks to Jill Hobbs, Copyeditor; and Audrey
Doyle, Proofreader, who made each page sparkle and found the mistakes I left behind.

Thanks also to the folks at Pearson who helped bring this book to life, especially Kim
Boedigheimer, Editorial Assistant, who attended to the many details involved in pub-
lishing this book; Heather Fox, Publicist; Stephane Nakib, Marketing Manager;
Cheryl Lenser, Senior Indexer; Sandra Schroeder, Design Manager; Chuti Prasertsith,
Cover Designer; and everyone else who worked behind the scenes to make this book
come into being.

I am also indebted to Denis Howe, Editor of The Free On-Line Dictionary of
Computing (FOLDOC). Denis has graciously permitted me to use entries from
his compilation; visit www.foldoc.org to look at this dictionary.

Special thanks go to Max Sobell, Intrepidus Group, for his extensive help writing the
Python chapter; Doug Hellmann, Senior Developer, DreamHost, for his careful and
insightful reviews of the Python chapter; and Angjoo Kanazawa, Graduate Student,
University of Maryland, College Park, for her helpful comments on this chapter.

Thanks to Graham Lee, Mobile App Developer and Software Security Consultant,
Agant, Ltd., and David Chisnall, University of Cambridge, for their reviews and
comments on the Mac-related sections of this book.

In his reviews, Jeffrey S. Haemer taught me many tricks of the bash trade. I had no
idea how many ways you could get bash to do your bidding. Jeffrey, you are a master;
thank you for your help.

In addition to her insightful comments on many sections, Jennifer Davis, Yahoo!
Sherpa Service Engineering Team Lead, used her thorough understanding of MySQL
to cause me to change many aspects of that chapter.

A big “thank you” to the folks who read through the drafts of the book and made
comments that caused me to refocus parts of the book where things were not clear
or were left out altogether: Michael Karpeles; Robert P. J. Day, Candy Strategies;
Gavin Knight, Noisebridge; Susan Lauber, Lauber System Solutions, Inc.; William
Skiba; Carlton “Cobolt” Sue; Rickard Korkko, Bolero AB; and Benjamin Schupak.

Thanks also to the following people who helped with my previous Linux books,
which provided a foundation for this book:

http://www.foldoc.org

PREFACE xlvii

Doug Hughes; Richard Woodbury, Site Reliability Engineer, Google; Max Sobell,
Intrepidus Group; Lennart Poettering, Red Hat, Inc.; George Vish II, Senior Education
Consultant, Hewlett-Packard; Matthew Miller, Senior Systems Analyst/Administrator,
BU Linux Project, Boston University Office of Information Technology; Garth Snyder;
Nathan Handler; Dick Seabrook, Emeritus Professor, Anne Arundel Community Col-
lege; Chris Karr, Audacious Software; Scott McCrea, Instructor, ITT Technical Schools;
John Dong, Ubuntu Developer, Forums Council Member; Andy Lester, author of Land
the Tech Job You Love: Why Skill and Luck Are Not Enough; Scott James Remnant,
Ubuntu Development Manager and Desktop Team Leader; David Chisnall, Swansea
University; Scott Mann, Aztek Networks; Thomas Achtemichuk, Mansueto Ventures;
Daniel R. Arfsten, Pro/Engineer Drafter/Designer; Chris Cooper, Senior Education
Consultant, Hewlett-Packard Education Services; Sameer Verma, Associate Professor
of Information Systems, San Francisco State University; Valerie Chau, Palomar College
and Programmers Guild; James Kratzer; Sean McAllister; Nathan Eckenrode, New
York Ubuntu Local Community Team; Christer Edwards; Nicolas Merline; Michael
Price; Mike Basinger, Ubuntu Community and Forums Council Member; Joe Barker,
Ubuntu Forums Staff Member; James Stockford, Systemateka, Inc.; Stephanie Troeth,
Book Oven; Doug Sheppard; Bryan Helvey, IT Director, OpenGeoSolutions; and Vann
Scott, Baker College of Flint.

Also, thanks to Jesse Keating, Fedora Project; Carsten Pfeiffer, Software Engineer
and KDE Developer; Aaron Weber, Ximian; Cristof Falk, Software Developer,
CritterDesign; Steve Elgersma, Computer Science Department, Princeton Univer-
sity; Scott Dier, University of Minnesota; Robert Haskins, Computer Net Works;
Lars Kellogg-Stedman, Harvard University; Jim A. Lola, Principal Systems Con-
sultant, Privateer Systems; Eric S. Raymond, Cofounder, Open Source Initiative;
Scott Mann; Randall Lechlitner, Independent Computer Consultant; Jason Wertz,
Computer Science Instructor, Montgomery County Community College; Justin
Howell, Solano Community College; Ed Sawicki, The Accelerated Learning Cen-
ter; David Mercer; Jeffrey Bianchine, Advocate, Author, Journalist; John Kennedy;
and Jim Dennis, Starshine Technical Services.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak,
Independent Consultant; Bart Schaefer, Chief Technical Officer, iPost; Michael J.
Jordan, Web Developer, Linux Online; Steven Gibson, Owner, SuperAnt.com; John
Viega, Founder and Chief Scientist, Secure Software; K. Rachael Treu, Internet
Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises;
Glen Wiley, Capital One Finances; Karel Baloun, Senior Software Engineer, Look-
smart; Matthew Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh
Simon, Consultant; Stan Isaacs; and Dr. Eric H. Herrin II, Vice President, Herrin
Software Development.

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald Hiller,
Graburn Technology; Charles A. Plater, Wayne State University; Bob Palowoda; Tom
Bialaski, Sun Microsystems; Roger Hartmuller, TIS Labs at Network Associates;
Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent; Steve Bellenot; Ray W.
Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

http://SuperAnt.com

xlviii

PREFACE

A Practical Guide to Linux® Commands, Editors, and Shell Programming, Fourth
Edition, is based in part on two of my previous UNIX books: UNIX System V: A
Practical Guide and A Practical Guide to the UNIX System. Many people helped me
with those books, and thanks here go to Pat Parseghian; Dr. Kathleen Hemenway;
Brian LaRose; Byron A. Jeff, Clark Atlanta University; Charles Stross; Jeff Gitlin,
Lucent Technologies; Kurt Hockenbury; Maury Bach, Intel Israel; Peter H. Salus;
Rahul Dave, University of Pennsylvania; Sean Walton, Intelligent Algorithmic Solu-
tions; Tim Segall, Computer Sciences Corporation; Behrouz Forouzan, DeAnza
College; Mike Keenan, Virginia Polytechnic Institute and State University; Mike
Johnson, Oregon State University; Jandelyn Plane, University of Maryland; Arnold
Robbins and Sathis Menon, Georgia Institute of Technology; Cliff Shaffer, Virginia
Polytechnic Institute and State University; and Steven Stepanek, California State Uni-
versity, Northridge, for reviewing this book.

I continue to be grateful to the many people who helped with the early editions of
my UNIX books. Special thanks are due to Roger Sippl, Laura King, and Roy
Harrington for introducing me to the UNIX system. My mother, Dr. Helen Sobell,
provided invaluable comments on the original manuscript at several junctures. Also,
thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph
Bentson, Bob Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff, Dr.
Mike Denny, Joe DiMartino, Dr. John Mashey, Diane Schulz, Robert Jung, Charles
Whitaker, Don Cragun, Brian Dougherty, Dr. Robert Fish, Guy Harris, Ping Liao,
Gary Lindgren, Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi,
Scooter Morris, Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott Weikart,
and Dr. Richard Curtis.

I take responsibility for any errors and omissions in this book. If you find one or just
have a comment, let me know (mgs@sobell.com), and I will fix it in the next printing.
My home page (www.sobell.com) contains a list of errors and credits those who
found them. It also offers copies of the longer scripts from the book and pointers to
interesting Linux pages on the Internet. You can follow me on Twitter at
twitter.com/marksobell.

Mark G. Sobell
San Francisco, California

mailto:mgs@sobell.com
http://www.sobell.com
http://twitter.com/marksobell

WELCOME TO LINUX
AND MACOS

IN THIS CHAPTER OBJECTIVES
The History of UNIX and After reading this chapter you should be able to:
GNU-Linux................... 3 . . .

» Discuss the history of UNIX, Linux, and the GNU
The Heritage of Linux: UNIX 3 project
Eelirt s 5 G Ao LIied oo . 9 » Explain what is meant by “free software” and list
Overview of Linux 11 characteristics of the GNU General Public License
Additional Features of Linux 16 » List characteristics of Linux and reasons the Linux

operating system is so popular

» Discuss three benefits of virtual machines over single
physical machines

2 CHAPTER1 WELCOME TO LINUX AND MACOS

Linux kernel

Free beer

Mach kernel

An operating system is the low-level software that schedules tasks, allocates storage,
and handles the interfaces to peripheral hardware, such as printers, disk drives, the
screen, keyboard, and mouse. An operating system has two main parts: the kernel
and the system programs. The kernel allocates machine resources—including mem-
ory, disk space, and CPU (page 1092) cycles—to all other programs that run on the
computer. The system programs include device drivers, libraries, utility programs,
shells (command interpreters), configuration scripts and files, application programs,
servers, and documentation. They perform higher-level housekeeping tasks, often
acting as servers in a client/server relationship. For Linux and macOS, many of the
libraries, servers, and utility programs were written by the GNU Project, which is dis-
cussed shortly.

The Linux kernel was developed by Finnish undergraduate student Linus Torvalds,
who used the Internet to make the source code immediately available to others for
free. Torvalds released Linux version 0.01 in September 1991.

The new operating system came together through a lot of hard work. Programmers
around the world were quick to extend the kernel and develop other tools, adding
functionality to match that already found in both BSD UNIX and System V UNIX
(SVR4) as well as new functionality. The name Linux is a combination of Linus
and UNIX.

The Linux operating system, which was developed through the cooperation of
numerous people around the world, is a product of the Internet and is a free (open
source; page 1113) operating system. In other words, all the source code is free. You
are free to study it, redistribute it, and modify it. As a result, the code is available free
of cost—no charge for the software, source, documentation, or support (via news-
groups, mailing lists, and other Internet resources). As the GNU Free Software
Definition (www.gnu.org/philosophy/free-sw.html) puts it:

“Free software” is a matter of liberty, not price. To understand the
concept, you should think of “free” as in “free speech,” not as in
“free beer.”

macOS runs the Mach kernel, which was developed at Carnegie Mellon Univer-
sity (CMU) and is free software. CMU concluded its work on the project in
1994, although other groups have continued this line of research. Much of the
macOS software is open source: The macOS kernel is based on Mach and
FreeBSD code; utilities come from BSD and the GNU project; and system pro-
grams come mostly from BSD code, although Apple has developed a number of
new programs.

Linux, mac0S, and UNIX

Linux and macQS are closely related to the UNIX operating system. This book describes Linux and
macOS. To make reading easier, this book talks about Linux when it means macQOS and Linux, and
points out where macOS behaves differently from Linux. For the same reason, this chapter fre-
quently uses the term Linux to describe both Linux and macOS features.

http://www.gnu.org/philosophy/free-sw.html

THE HisTORY OF UNIX AND GNU-LINUX 3

THE HISTORY OF UNIX AND GNU-LINUX

This section presents some background on the relationships between UNIX and

Linux and between GNU and Linux. Visit www.levenez.com/unix for an extensive
history of UNIX.

THE HERITAGE OF LINUX: UNIX

Berkeley UNIX
(BSD)

The UNIX system was developed by researchers who needed a set of modern com-
puting tools to help them with their projects. The system allowed a group of people
working together on a project to share selected data and programs while keeping
other information private.

Universities and colleges played a major role in furthering the popularity of the UNIX
operating system through the “four-year effect.” When the UNIX operating system
became widely available in 1975, Bell Labs offered it to educational institutions at
nominal cost. The schools, in turn, used it in their computer science programs, ensur-
ing that computer science students became familiar with it. Because UNIX was such
an advanced development system, the students became acclimated to a sophisticated
programming environment. As these students graduated and went into industry, they
expected to work in a similarly advanced environment. As more of them worked their
way up the ladder in the commercial world, the UNIX operating system found its way
into industry.

In addition to introducing students to the UNIX operating system, the Computer Sys-
tems Research Group (CSRG) at the University of California at Berkeley made
significant additions and changes to it. In fact, it made so many popular changes that
one version of the system is called the Berkeley Software Distribution (BSD) of the
UNIX system, or just Berkeley UNIX. The other major version is UNIX System V
(SVR4), which descended from versions developed and maintained by AT&T and
UNIX System Laboratories. macOS inherits much more strongly from the BSD
branch of the tree.

FADE TO 1983

Richard Stallman (www.stallman.org) announced' the GNU Project for creating an
operating system, both kernel and system programs, and presented the GNU Mani-
festo,? which begins as follows:

GNU, which stands for Gnu’s Not UNIX, is the name for the com-
plete UNIX-compatible software system which I am writing so that
I can give it away free to everyone who can use it.

1. www.gnu.org/gnu/initial-announcement.html
2. www.gnu.org/gnu/manifesto.html

http://www.levenez.com/unix
http://www.stallman.org
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/manifesto.html

4 CHAPTER1 WELCOME TO LINUX AND MACOS

Some years later, Stallman added a footnote to the preceding sentence when he real-
ized that it was creating confusion:

The wording here was careless. The intention was that nobody
would have to pay for *permission* to use the GNU system. But
the words don’t make this clear, and people often interpret them as
saying that copies of GNU should always be distributed at little or
no charge. That was never the intent; later on, the manifesto men-
tions the possibility of companies providing the service of distribu-
tion for a profit. Subsequently I have learned to distinguish
carefully between “free” in the sense of freedom and “free” in the
sense of price. Free software is software that users have the free-
dom to distribute and change. Some users may obtain copies at no
charge, while others pay to obtain copies—and if the funds help
support improving the software, so much the better. The important
thing is that everyone who has a copy has the freedom to cooperate
with others in using it.

In the manifesto, after explaining a little about the project and what has been accom-
plished so far, Stallman continues:

Why I Must Write GNU

I consider that the golden rule requires that if T like a program I must
share it with other people who like it. Software sellers want to divide
the users and conquer them, making each user agree not to share
with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a
software license agreement. For years I worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities,
but eventually they had gone too far: I could not remain in an insti-
tution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have
decided to put together a sufficient body of free software so that I
will be able to get along without any software that is not free. I have
resigned from the Al Lab to deny MIT any legal excuse to prevent
me from giving GNU away.

NEXT SCENE, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operating
system, except for the kernel, is complete. Richard Stallman later writes:

By the early ’90s we had put together the whole system aside from
the kernel (and we were also working on a kernel, the GNU Hurd,?

3. www.gnu.org/software/hurd/hurd.html

http://www.gnu.org/software/hurd/hurd.html

THE HisTORY OF UNIX AND GNU-LINUX 5

which runs on top of Mach*). Developing this kernel has been a lot
harder than we expected, and we are still working on finishing it.’

...[M]any believe that once Linus Torvalds finished writing the ker-
nel, his friends looked around for other free software, and for no
particular reason most everything necessary to make a UNIX-like
system was already available.

What they found was no accident—it was the GNU system. The
available free software® added up to a complete system because the
GNU Project had been working since 1984 to make one. The GNU
Manifesto had set forth the goal of developing a free UNIX-like sys-
tem, called GNU. The Initial Announcement of the GNU Project
also outlines some of the original plans for the GNU system. By the
time Linux was written, the [GNU] system was almost finished.”

Today the GNU “operating system” runs on top of the FreeBSD (www.freebsd.org)
and NetBSD (www.netbsd.org) kernels with complete Linux binary compatibility
and on top of Hurd pre-releases and Darwin (developer.apple.com/opensource) with-
out this compatibility.

THE CODE IS FREE

MINIX

The tradition of free software dates back to the days when UNIX was released to uni-
versities at nominal cost, which contributed to its portability and success. This
tradition eventually died as UNIX was commercialized and manufacturers came to
regard the source code as proprietary, making it effectively unavailable. Another
problem with the commercial versions of UNIX related to their complexity. As each
manufacturer tuned UNIX for a specific architecture, the operating system became
less portable and too unwieldy for teaching and experimentation.

Two professors created their own stripped-down UNIX look-alikes for educational
purposes: Doug Comer created XINU, and Andrew Tanenbaum created MINIX.
Linus Torvalds created Linux to counteract the shortcomings in MINIX. Every time
there was a choice between code simplicity and efficiency/features, Tanenbaum chose
simplicity (to make it easy to teach with MINIX), which meant this system lacked
many features people wanted. Linux went in the opposite direction.

You can obtain Linux at no cost over the Internet. You can also obtain the GNU code
via the U.S. mail at a modest cost for materials and shipping. You can support the
Free Software Foundation (www.fsf.org) by buying the same (GNU) code in higher-
priced packages, and you can buy commercial packaged releases of Linux (called

. www.gnu.org/software/hurd/microkernel/machgnumach.html
. www.gnu.org/software/hurd/hurd-and-linux.html

. www.gnu.org/philosophy/free-sw.html

. www.gnu.org/gnu/linux-and-gnu.html

NE RS

http://www.freebsd.org
http://www.netbsd.org
http://developer.apple.com/opensource
http://www.fsf.org
http://www.gnu.org/software/hurd/microkernel/machgnumach.html
http://www.gnu.org/software/hurd/hurd-and-linux.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/gnu/linux-and-gnu.html

6 CHAPTER1 WELCOME TO LINUX AND MACOS

GPL

HAVE FuN!

distributions), such as Fedora/Red Hat Enterprise Linux, openSUSE, Debian, and
Ubuntu, that include installation instructions, software, and support.

Linux and GNU software are distributed under the terms of the GNU General Public
License (GPL; www.gnu.org/licenses/licenses.html). The GPL says you have the right
to copy, modify, and redistribute the code covered by the agreement. When you redis-
tribute the code, however, you must also distribute the same license with the code,
thereby making the code and the license inseparable. If you download source code
from the Internet for an accounting program that is under the GPL and then modify
that code and redistribute an executable version of the program, you must also dis-
tribute the modified source code and the GPL agreement with it. Because this
arrangement is the reverse of the way a normal copyright works (it gives rights
instead of limiting them), it has been termed a copyleft. (This paragraph is not a legal
interpretation of the GPL; it is intended merely to give you an idea of how it works.
Refer to the GPL itself when you want to make use of it.)

Two key words for Linux are “Have Fun!” These words pop up in prompts and doc-
umentation. The UNIX—now Linux—culture is steeped in humor that can be seen
throughout the system. For example, less is more—GNU has replaced the UNIX pag-
ing utility named more with an improved utility named less. The utility to view
PostScript documents is named ghostscript, and one of several replacements for the vi
editor is named elvis. While machines with Intel processors have “Intel Inside” logos
on their outside, some Linux machines sport “Linux Inside” logos. And Torvalds
himself has been seen wearing a T-shirt bearing a “Linus Inside” logo.

WHAT IS SO Goob ABOUT LINUX?

Standards

In recent years Linux has emerged as a powerful and innovative UNIX work-alike.
Its popularity has surpassed that of its UNIX predecessors. Although it mimics UNIX
in many ways, the Linux operating system departs from UNIX in several significant
ways: The Linux kernel is implemented independently of both BSD and System V, the
continuing development of Linux is taking place through the combined efforts of
many capable individuals throughout the world, and Linux puts the power of UNIX
within easy reach of both business and personal computer users. Using the Internet,
today’s skilled programmers submit additions and improvements to the operating
system to Linus Torvalds, GNU, or one of the other authors of Linux.

In 1988, individuals from companies throughout the computer industry joined
together to develop the POSIX (Portable Operating System Interface for Computer
Environments) standard, which is based largely on the UNIX System V Interface
Definition (SVID) and other earlier standardization efforts. These efforts were
spurred by the U.S. government, which needed a standard computing environment
to minimize its training and procurement costs. Released in 1988, POSIX is a group

http://www.gnu.org/licenses/licenses.html

WHAT IS So Goop ABouUT LINux? 7

Applications

Peripherals

Software

Platforms

Emulators

Virtual machines

of IEEE standards that define the API (application programming interface), shell, and
utility interfaces for an operating system. Although aimed at UNIX-like systems, the
standards can apply to any compatible operating system. Now that these standards
have gained acceptance, software developers are able to develop applications that run
on all conforming versions of UNIX, Linux, and other operating systems.

A rich selection of applications is available for Linux—both free and commercial—
as well as a wide variety of tools: graphical, word processing, networking, security,
administration, Web server, and many others. Large software companies have
recently seen the benefit in supporting Linux and now have on-staff programmers
whose job it is to design and code the Linux kernel, GNU, KDE, or other software
that runs on Linux. For example, IBM (www.ibm.com/linux) is a major Linux sup-
porter. Linux conforms increasingly more closely to POSIX standards, and some
distributions and parts of others meet this standard. These developments indicate
that Linux is becoming mainstream and is respected as an attractive alternative to
other popular operating systems.

Another aspect of Linux that appeals to users is the amazing range of peripherals that is
supported and the speed with which support for new peripherals emerges. Linux often
supports a peripheral or interface card before any company does. Unfortunately
some types of peripherals—particularly proprietary graphics cards—lag in their sup-
port because the manufacturers do not release specifications or source code for
drivers in a timely manner, if at all.

Also important to users is the amount of software that is available—not just source
code (which needs to be compiled) but also prebuilt binaries that are easy to install
and ready to run. These programs include more than free software. Netscape, for
example, was available for Linux from the start and included Java support before it
was available from many commercial vendors. Its sibling Mozilla/Thunderbird/ Fire-
fox is now a viable browser, mail client, and newsreader, performing many other
functions as well.

Linux is not just for Intel-based platforms (which now include Apple computers): It
has been ported to and runs on the Power PC, including older Apple computers (ppc-
linux), Compaq’s (née Digital Equipment Corporation) Alpha-based machines,
MIPS-based machines, Motorola’s 68K-based machines, various 64-bit systems, and
IBM’s $/390. Nor is Linux just for single-processor machines: As of version 2.0, it
runs on multiple-processor machines (SMPs; page 1124). It also includes an O(1)
scheduler, which dramatically increases scalability on SMP systems.

Linux supports programs, called emulators, that run code intended for other operat-
ing systems. By using emulators you can run some DOS, Windows, and Macintosh
programs under Linux. For example, Wine (www.winehq.com) is an open-source
implementation of the Windows API that runs on top of the X Window System and
UNIX/Linux.

A virtual machine (VM or guest) appears to the user and to the software running on it
as a complete physical machine. It is, however, one of potentially many such VMs run-
ning on a single physical machine (the host). The software that provides the

http://www.ibm.com/linux
http://www.winehq.com

8 CHAPTER1 WELCOME TO LINUX AND MACOS

virtualization is called a virtual machine monitor (VMM) or hypervisor. Each VM can
run a different operating system from the other VMs. For example, on a single host you
could have VMs running Windows 7, Ubuntu 12.10, Ubuntu 13.04, and Fedora 17.

A multitasking operating system allows you to run many programs on a single phys-
ical system. Similarly, a hypervisor allows you to run many operating systems (VMs)
on a single physical system.

VMs provide many advantages over single, dedicated machines:

e Isolation—Each VM is isolated from the other VMs running on the same
host. Thus, if one VM crashes or is compromised, the others are not
affected.

e Security—When a single server system running several servers is compro-
mised, all servers are compromised. If each server is running on its own VM,
only the compromised server is affected; other servers remain secure.

® Power consumption—Using VMs, a single powerful machine can replace
many less powerful machines, thereby cutting power consumption.

* Development and support—Multiple VMs, each running a different version
of an operating system and/or different operating systems, can facilitate
development and support of software designed to run in many environ-
ments. With this organization you can easily test a product in different
environments before releasing it. Similarly, when a user submits a bug, you
can reproduce the bug in the same environment it occurred in.

* Servers—In some cases, different servers require different versions of system
libraries. In this instance, you can run each server on its own VM, all on a
single piece of hardware.

¢ Testing—Using VMs, you can experiment with cutting-edge releases of
operating systems and applications without concern for the base (stable)
system, all on a single machine.

e Networks—You can set up and test networks of systems on a single
machine.

¢ Sandboxes—A VM presents a sandbox—an area (system) that you can work
in without regard for the results of your work or for the need to clean up.

® Snapshots—You can take snapshots of a VM and return the VM to the state
it was in when you took the snapshot simply by reloading the VM from the
snapshot.

Xen Xen, which was created at the University of Cambridge and is now being developed
in the open-source community, is an open-source virtual machine monitor (VMM).
A VMM enables several virtual machines (VMs), each running an instance of a sep-
arate operating system, to run on a single computer. Xen introduces minimal
performance overhead when compared with running each of the operating systems

WHAT Is So Goobp ABouT LINUX? 9

VMware

KVM

Qemu

VirtualBox

natively. For more information on Xen, refer to the Xen home page at
www.cl.cam.ac.uk/research/srg/netos/xen and wiki.xen.org.

VMware, Inc. (www.vmware.com) offers VMware Server, a free, downloadable, pro-
prietary product you can install and run as an application under Linux. VMware
Server enables you to install several VMs, each running a different operating system,
including Windows and Linux. VMware also offers a free VMware player that
enables you to run VMs you create using VMware Server.

The Kernel-based Virtual Machine (KVM; www.linux-kvm.org and libvirt.org) is an
open-source VM and runs as part of the Linux kernel.

Qemu (wiki.qemu.org), written by Fabrice Bellard, is an open-source VMM that runs
as a user application with no CPU requirements. It can run code written for a differ-
ent CPU from that of the host machine.

VirtualBox (www.virtualbox.org) is a VM developed by Sun Microsystems. If you
want to run a virtual instance of Windows, you might want to investigate VirtualBox.

WHY LINUX IS POPULAR WITH HARDWARE COMPANIES
AND DEVELOPERS

Proprietary
operating systems

Generic operating
systems

Two trends in the computer industry set the stage for the growing popularity of
UNIX and Linux. First, advances in hardware technology created the need for an
operating system that could take advantage of available hardware power. In the mid-
1970s, minicomputers began challenging the large mainframe computers because, in
many applications, minicomputers could perform the same functions less expen-
sively. More recently, powerful 64-bit processor chips, plentiful and inexpensive
memory, and lower-priced hard disk storage have allowed hardware companies to
install multiuser operating systems on desktop computers.

Second, with the cost of hardware continually dropping, hardware manufacturers
could no longer afford to develop and support proprietary operating systems. A pro-
prietary operating system is one that is written and owned by the manufacturer of
the hardware (for example, DEC/Compaq owns VMS). Today’s manufacturers need
a generic operating system they can easily adapt to their machines.

A generic operating system is written outside of the company manufacturing the
hardware and is sold (UNIX, macOS, Windows) or given (Linux) to the manufac-
turer. Linux is a generic operating system because it runs on different types of
hardware produced by different manufacturers. Of course, if manufacturers can pay
only for development and avoid per-unit costs (which they have to pay to Microsoft
for each copy of Windows they sell), they are much better off. In turn, software devel-
opers need to keep the prices of their products down; they cannot afford to create
new versions of their products to run under many different proprietary operating sys-
tems. Like hardware manufacturers, software developers need a generic operating
system.

http://www.cl.cam.ac.uk/research/srg/netos/xen
http://wiki.xen.org
http://www.vmware.com
http://www.linux-kvm.org
http://libvirt.org
http://wiki.qemu.org
http://www.virtualbox.org

10 CHAPTER1 WELCOME TO LINUX AND MACOS

Although the UNIX system once met the needs of hardware companies and research-
ers for a generic operating system, over time it has become more proprietary as
manufacturers added support for their own specialized features and introduced new
software libraries and utilities. Linux emerged to serve both needs: It is a generic
operating system that takes advantage of available hardware power.

LINUX IS PORTABLE

A portable operating system is one that can run on many different machines. More
than 95 percent of the Linux operating system is written in the C programming lan-
guage, and C is portable because it is written in a higher-level, machine-independent
language. (The C compiler is written in C.)

Because Linux is portable, it can be adapted (ported) to different machines and can
meet special requirements. For example, Linux is used in embedded computers, such
as the ones found in cellphones, PDAs, and the cable boxes on top of many TVs. The
file structure takes full advantage of large, fast hard disks. Equally important, Linux
was originally designed as a multiuser operating system; it was not modified to serve
several users as an afterthought. Sharing the computer’s power among many users
and giving them the ability to share data and programs are central features of the
system.

Because it is adaptable and takes advantage of available hardware, Linux runs on
many different microprocessor-based systems as well as mainframes. The popularity
of the microprocessor-based hardware drives Linux; these microcomputers are get-
ting faster all the time at about the same price point. This widespread acceptance
benefits both users, who do not like having to learn a new operating system for each
vendor’s hardware, and system administrators, who like having a consistent software
environment.

The advent of a standard operating system has given a boost to the development of
the software industry. Now software manufacturers can afford to make one version
of a product available on machines from different manufacturers.

THE C PROGRAMMING LANGUAGE

Ken Thompson wrote the UNIX operating system in 1969 in PDP-7 assembly lan-
guage. Assembly language is machine-dependent: Programs written in assembly
language work on only one machine or, at best, on one family of machines. For this
reason, the original UNIX operating system could not easily be transported to run
on other machines: It was not portable.

To make UNIX portable, Thompson developed the B programming language, a
machine-independent language, from the BCPL language. Dennis Ritchie developed
the C programming language by modifying B and, with Thompson, rewrote UNIX
in C in 1973. Originally, C was touted as a “portable assembler.” The revised oper-
ating system could be transported more easily to run on other machines.

OVERVIEW OF LINUX 11

That development marked the start of C. Its roots reveal some of the reasons why it
is such a powerful tool. C can be used to write machine-independent programs. A pro-
grammer who designs a program to be portable can easily move it to any computer
that has a C compiler. C is also designed to compile into very efficient code. With the
advent of C, a programmer no longer had to resort to assembly language to produce
code that would run well (that is, quickly—although an assembler will always gener-
ate more efficient code than a high-level language).

C is a good systems language. You can write a compiler or an operating system in C.
It is a highly structured but not necessarily a high-level language. C allows a program-
mer to manipulate bits and bytes, as is necessary when writing an operating system.
At the same time, it has high-level constructs that allow for efficient, modular
programming.

In the late 1980s the American National Standards Institute (ANSI) defined a stan-
dard version of the C language, commonly referred to as ANSI C or C89 (for the year
the standard was published). Ten years later the C99 standard was published; it is
mostly supported by the GNU Project’s C compiler (named gcc). The original version
of the language is often referred to as Kernighan & Ritchie (or K&'R) C, named for
the authors of the book that first described the C language.

Another researcher at Bell Labs, Bjarne Stroustrup, created an object-oriented pro-
gramming language named C++, which is built on the foundation of C. Because
object-oriented programming is desired by many employers today, C++ is preferred
over C in many environments. Another language of choice is Objective-C, which was
used to write the first Web browser. The GNU Project’s C compiler supports C, C++,
and Objective-C.

OVERVIEW OF LINUX

The Linux operating system has many unique and powerful features. Like other
operating systems, it is a control program for computers. But like UNIX, it is also
a well-thought-out family of utility programs (Figure 1-1) and a set of tools that
allow users to connect and use these utilities to build systems and applications.

Database Mail and

i Management LG Message
Compilers L] Processors 3 _9 Shells

Systems Facilities

Linux Kernel

Hardware

Figure 1-1 A layered view of the Linux operating system

12 CHAPTER1 WELCOME TO LINUX AND MACOS

LINuUX HAS A KERNEL PROGRAMMING INTERFACE

The Linux kernel—the heart of the Linux operating system—is responsible for allo-
cating the computer’s resources and scheduling user jobs so each one gets its fair share
of system resources, including access to the CPU; peripheral devices, such as hard
disk, DVD, and tape storage; and printers. Programs interact with the kernel through
system calls, special functions with well-known names. A programmer can use a sin-
gle system call to interact with many kinds of devices. For example, there is one
write() system call, rather than many device-specific ones. When a program issues a
write() request, the kernel interprets the context and passes the request to the appro-
priate device. This flexibility allows old utilities to work with devices that did not
exist when the utilities were written. It also makes it possible to move programs to
new versions of the operating system without rewriting them (provided the new ver-
sion recognizes the same system calls).

LINuX CAN SUPPORT MANY USERS

Depending on the hardware and the types of tasks the computer performs, a Linux
system can support from 1 to more than 1,000 users, each concurrently running a dif-
ferent set of programs. The per-user cost of a computer that can be used by many
people at the same time is less than that of a computer that can be used by only a sin-
gle person at a time. It is less because one person cannot generally take advantage of
all the resources a computer has to offer. That is, no one can keep all the printers
going constantly, keep all the system memory in use, keep all the disks busy reading
and writing, keep the Internet connection in use, and keep all the terminals busy at
the same time. By contrast, a multiuser operating system allows many people to use
all of the system resources almost simultaneously. The use of costly resources can be
maximized, and the cost per user can be minimized—the primary objectives of a mul-
tiuser operating system.

LiNux CAN RUN MANY TASKS

Linux is a fully protected multitasking operating system, allowing each user to run
more than one job at a time. Processes can communicate with one another but remain
fully protected from one another, just as the kernel remains protected from all pro-
cesses. You can run several jobs in the background while giving all your attention to
the job being displayed on the screen, and you can switch back and forth between
jobs. If you are running the X Window System (page 16), you can run different pro-
grams in different windows on the same screen and watch all of them. This capability
helps users be more productive.

LINUX PROVIDES A SECURE HIERARCHICAL FILESYSTEM

A file is a collection of information, such as text for a memo or report, an accumu-
lation of sales figures, an image, a song, or an executable program. Each file is
stored under a unique identifier on a storage device, such as a hard disk. The Linux

OVERVIEW OF LINUXx 13

Standards

Links

Security

filesystem provides a structure whereby files are arranged under directories, which
are like folders or boxes. Each directory has a name and can hold other files and
directories. Directories, in turn, are arranged under other directories and so forth
in a treelike organization. This structure helps users keep track of large numbers
of files by grouping related files in directories. Each user has one primary directory
and as many subdirectories as required (Figure 1-2).

With the idea of making life easier for system administrators and software develop-
ers, a group got together over the Internet and developed the Linux Filesystem
Standard (FSSTND), which has since evolved into the Linux Filesystem Hierarchy
Standard (FHS). Before this standard was adopted, key programs were located in dif-
ferent places in different Linux distributions. Today you can sit down at a Linux
system and expect to find any given standard program at a consistent location
(page 98).

A link allows a given file to be accessed by means of two or more names. The alter-
native names can be located in the same directory as the original file or in another
directory. Links can make the same file appear in several users’ directories, enabling
those users to share the file easily. Windows uses the term shortcut in place of link to
describe this capability. Macintosh users will be more familiar with the term alias.
Under Linux, an alias is different from a link; it is a command macro feature provided
by the shell (page 352).

Like most multiuser operating systems, Linux allows users to protect their data from
access by other users. It also allows users to share selected data and programs with
certain other users by means of a simple but effective protection scheme. This level
of security is provided by file access permissions, which limit the users who can read
from, write to, or execute a file. Linux also implements ACLs (Access Control Lists),
which give users and administrators finer-grained control over file access

permissions.

‘ report ‘ ‘ log ‘

Figure 1-2 The Linux filesystem structure

14 CHAPTER1 WELCOME TO LINUX AND MACOS

THE SHELL: COMMAND INTERPRETER AND PROGRAMMING LANGUAGE

Shell scripts

Wildcards and
ambiguous file
references

In a textual environment, the shell—the command interpreter—acts as an interface
between you and the operating system. When you enter a command on the screen,
the shell interprets the command and calls the program you want. A number of shells
are available for Linux. The four most popular shells are

® The Bourne Again Shell (bash), an enhanced version of the original Bourne
Shell (an original UNIX shell).

® The Debian Almquist Shell (dash; page 287), a smaller version of bash with
fewer features. Many startup shell scripts call dash in place of bash to speed
the boot process.

® The TC Shell (tcsh; Chapter 9), an enhanced version of the C Shell, devel-
oped as part of BSD UNIX.

e The Z Shell (zsh), which incorporates features from a number of shells,
including the Korn Shell.

Because different users might prefer different shells, multiuser systems can have sev-
eral different shells in use at any given time. The choice of shells demonstrates one
of the advantages of the Linux operating system: the ability to provide a customized
interface for each user.

Besides performing its function of interpreting commands from a keyboard and send-
ing those commands to the operating system, the shell is a high-level programming
language. Shell commands can be arranged in a file for later execution. (Linux calls
these files shell scripts; Windows calls them batch files.) This flexibility allows users
to perform complex operations with relative ease, often by issuing short commands,
or to build with surprisingly little effort elaborate programs that perform highly com-
plex operations.

FILENAME GENERATION

When you type commands to be processed by the shell, you can construct patterns
using characters that have special meanings to the shell. These characters are called
wildcard characters. The patterns, which are called ambiguous file references, are a
kind of shorthand: Rather than typing in complete filenames, you can type patterns;
the shell expands these patterns into matching filenames. An ambiguous file reference
can save you the effort of typing in a long filename or a long series of similar file-
names. For example, the shell might expand the pattern maks* to make-3.80.tar.gz.
Patterns can also be useful when you know only part of a filename or cannot remem-
ber the exact spelling of a filename.

COMPLETION

In conjunction with the Readline library, the shell performs command, filename,
pathname, and variable completion: You type a prefix and press 748, and the shell lists
the items that begin with that prefix or completes the item if the prefix specifies a
unique item.

OVERVIEW OF LINux 15

DEVICE-INDEPENDENT INPUT AND OUTPUT

Redirection Devices (such as a printer or a terminal) and disk files appear as files to Linux pro-
grams. When you give a command to the Linux operating system, you can instruct
it to send the output to any one of several devices or files. This diversion is called
output redirection.

Device In a similar manner, a program’s input, which normally comes from a keyboard, can
independence be redirected so that it comes from a disk file instead. Input and output are device
independent; that is, they can be redirected to or from any appropriate device.

As an example, the cat utility normally displays the contents of a file on the screen.
When you run a cat command, you can easily cause its output to go to a disk file
instead of the screen.

SHELL FUNCTIONS

One of the most important features of the shell is that users can use it as a program-
ming language. Because the shell is an interpreter, it does not compile programs
written for it but rather interprets programs each time they are loaded from the disk.
Loading and interpreting programs can be time-consuming.

Many shells, including the Bourne Again Shell, support shell functions that the shell
holds in memory so it does not have to read them from the disk each time you execute
them. The shell also keeps functions in an internal format so it does not have to spend
as much time interpreting them.

JoB CONTROL

Job control is a shell feature that allows users to work on several jobs at once, switch-
ing back and forth between them as desired. When you start a job, it is frequently
run in the foreground so it is connected to the terminal. Using job control, you can
move the job you are working with to the background and continue running it there
while working on or observing another job in the foreground. If a background job
then needs your attention, you can move it to the foreground so it is once again
attached to the terminal. The concept of job control originated with BSD UNIX,
where it appeared in the C Shell.

A LARGE COLLECTION OF USEFUL UTILITIES

Linux includes a family of several hundred utility programs, often referred to as
commands. These utilities perform functions that are universally required by users.
The sort utility, for example, puts lists (or groups of lists) in alphabetical or numer-
ical order and can be used to sort lists by part number, last name, city, ZIP code,
telephone number, age, size, cost, and so forth. The sort utility is an important pro-
gramming tool that is part of the standard Linux system. Other utilities allow users
to create, display, print, copy, search, and delete files as well as to edit, format, and
typeset text. The man (for manual) and info utilities provide online documentation
for Linux.

16 CHAPTER1 WELCOME TO LINUX AND MACOS

INTERPROCESS COMMUNICATION

Pipelines and filters Linux enables users to establish both pipelines and filters on the command line. A
pipeline passes the output of one program to another program as input. A filter is a
special kind of pipeline that processes a stream of input data to yield a stream of out-
put data. A filter processes another program’s output, altering it as a result. The
filter’s output then becomes input to another program.

Pipelines and filters frequently join utilities to perform a specific task. For example,
you can use a pipeline to send the output of the sort utility to head (a filter that lists
the first ten lines of its input); you can then use another pipeline to send the output
of head to a third utility, lpr, that sends the data to a printer. Thus, in one command
line, you can use three utilities together to sort and print part of a file.

SYSTEM ADMINISTRATION

On a Linux system the system administrator is frequently the owner and only user
of the system. This person has many responsibilities. The first responsibility might be
to set up the system, install the software, and possibly edit configuration files. Once
the system is up and running, the system administrator is responsible for download-
ing and installing software (including upgrading the operating system); backing up
and restoring files; and managing such system facilities as printers, terminals, servers,
and a local network. The system administrator is also responsible for setting up
accounts for new users on a multiuser system, bringing the system up and down as
needed, monitoring the system, and taking care of any problems that arise.

ADDITIONAL FEATURES OF LINUX

The developers of Linux included features from BSD, System V, and Sun Microsys-
tems’ Solaris, as well as new features, in their operating system. Although most of the
tools found on UNIX exist for Linux, in some cases these tools have been replaced
by more modern counterparts. This section describes some of the popular tools and
features available under Linux.

GUISs: GRAPHICAL USER INTERFACES

The X Window System (also called X or X11) was developed in part by researchers
at MIT (Massachusetts Institute of Technology) and provides the foundation for the
GUISs available with Linux. Given a terminal or workstation screen that supports X,
a user can interact with the computer through multiple windows on the screen; dis-
play graphical information; or use special-purpose applications to draw pictures,
monitor processes, or preview formatted output. X is an across-the-network protocol
that allows a user to open a window on a workstation or computer system that is
remote from the CPU generating the window.

ADDITIONAL FEATURES OF LINUX 17

Aqua Most Macintosh users are familiar with Aqua, the standard macOS graphical inter-
face. Aqua is based on a rendering technology named Quartz and has a standard
look and feel for applications. By default, X11 is not installed on a Macintosh; you
can use XQuartz in its place (xquartz.macosforge.org/trac/wiki).

Desktop manager Usually two layers run on top of X: a desktop manager and a window manager. A
desktop manager is a picture-oriented user interface that enables you to interact with
system programs by manipulating icons instead of typing the corresponding com-
mands to a shell. Many Linux distributions run the GNOME desktop manager
(www.gnome.org) by default, but X can also run KDE (www.kde.org) and a number
of other desktop managers. macOS handles the desktop in Aqua, not in X11, so there
is no desktop manager under X11.

Window manager A window manager is a program that runs under the desktop manager and allows
you to open and close windows, run programs, and set up a mouse so it has different
effects depending on how and where you click it. The window manager also gives the
screen its personality. Whereas Microsoft Windows allows you to change the color
of key elements in a window, a window manager under X allows you to customize
the overall look and feel of the screen: You can change the way a window looks and
works (by giving it different borders, buttons, and scrollbars), set up virtual desktops,
create menus, and more. When you are working from the command line, you can
approximate a window manager by using Midnight Commander (mc; page 902).

Several popular window managers run under X and Linux. Many Linux distributions
provide both Metacity (the default under GNOME 2) and kwin (the default under
KDE). In addition to KDE, Fedora provides Mutter (the default under GNOME 3).
Mutter is short for Metacity Clutter (the graphics library is named Clutter). Other
window managers, such as Sawfish and WindowMaker, are also available.

Under macOS, most windows are managed by a Quartz layer, which applies the
Apple Aqua look and feel. For X11 applications only, this task is performed by
quartz-wm, which mimics the Apple Aqua look and feel so X11 applications on the
Mac desktop have the same appearance as native macOS applications.

(INTER)NETWORKING UTILITIES

Linux network support includes many utilities that enable you to access remote sys-
tems over a variety of networks. In addition to sending email to users on other
systems, you can access files on disks mounted on other computers as if they were
located on the local system, make your files available to other systems in a similar
manner, copy files back and forth, run programs on remote systems while displaying
the results on the local system, and perform many other operations across local area
networks (LANSs) and wide area networks (WANSs), including the Internet.

Layered on top of this network access is a wide range of application programs that
extend the computer’s resources around the globe. You can carry on conversations
with people throughout the world, gather information on a wide variety of subjects,
and download new software over the Internet quickly and reliably.

http://xquartz.macosforge.org/trac/wiki
http://www.gnome.org
http://www.kde.org

18 CHAPTER1 WELCOME TO LINUX AND MACOS

SOFTWARE DEVELOPMENT

One of Linux’s most impressive strengths is its rich software development environ-
ment. Linux supports compilers and interpreters for many computer languages.
Besides C and C++, languages available for Linux include Ada, Fortran, Java, Lisp,
Pascal, Perl, and Python. The bison utility generates parsing code that makes it easier
to write programs to build compilers (tools that parse files containing structured
information). The flex utility generates scanners (code that recognizes lexical patterns
in text). The make utility and the GNU Configure and Build System make it easier to
manage complex development projects. Source code management systems, such as
CVS, simplify version control. Several debuggers, including ups and gdb, can help you
track down and repair software defects. The GNU C compiler (gcc) works with the
gprof profiling utility to help programmers identify potential bottlenecks in a pro-
gram’s performance. The C compiler includes options to perform extensive checking
of C code, thereby making the code more portable and reducing debugging time.
Under macOS, Apple’s Xcode development environment provides a unified graphical
front end to most of these tools as well as other options and features.

CHAPTER SUMMARY

The Linux operating system grew out of the UNIX heritage to become a popular alter-
native to traditional systems (that is, Windows) available for microcomputer (PC)
hardware. UNIX users will find a familiar environment in Linux. Distributions of
Linux contain the expected complement of UNIX utilities, contributed by program-
mers around the world, including the set of tools developed as part of the GNU Project.
The Linux community is committed to the continued development of this system. Sup-
port for new microcomputer devices and features is added soon after the hardware
becomes available, and the tools available on Linux continue to be refined. Given the
many commercial software packages available to run on Linux platforms and the many
hardware manufacturers offering Linux on their systems, it is clear that the system has
evolved well beyond its origin as an undergraduate project to become an operating sys-
tem of choice for academic, commercial, professional, and personal use.

EXERCISES

1. What is free software? List three characteristics of free software.
2. Why is Linux popular? Why is it popular in academia?

3. What are multiuser systems? Why are they successful?

EXERCISES

19

. What is the Free Software Foundation/GNU? What is Linux? Which parts

of the Linux operating system did each provide? Who else has helped build
and refine this operating system?

In which language is Linux written? What does the language have to do
with the success of Linux?

6. What is a utility program?

What is a shell? How does it work with the kernel? With the user?

8. How can you use utility programs and a shell to create your own

10.
11.
12.
13.

applications?

Why is the Linux filesystem referred to as hierarchical?

What is the difference between a multiuser and a multitasking system?
Give an example of when you would want to use a multitasking system.
Approximately how many people wrote Linux? Why is this project unique?

What are the key terms of the GNU General Public License?

This page intentionally left blank

PART |

THE LINUX AND MACOS
OPERATING SYSTEMS

CHAPTER 2
GETTING STARTED 23

CHAPTER 3
THE UTILITIES 49

CHAPTER 4
THE FILESYSTEM 83

CHAPTER 5
THE SHELL 127

21

This page intentionally left blank

GETTING STARTED

OBJECTIVES

After reading this chapter you should be able to:

IN THIS CHAPTER

Conventions Used in This Book. .. 24

Logging In from a Terminal
(Emulator)ccoiiiiia.. 26

Working from the Command Line .. 28

su/sudo: Curbing Your Power (root

Privileges). . .o oveiiiiiiinn.. 32
man: Displays the System

Manual..................... 33
info: Displays Information About

Utilities. ... cooveieeinon.. 36
The ——help Option 38
HOWTOSovveeiennnnnnn. 41

What to Do If You Cannot Log In .. 43
Changing Your Password 44

» Log in on a Linux system using the textual interface
» Describe the advantages of the textual interface
» Correct typing mistakes on the command line

» Use kill to abort program execution using the termination
signal

» Repeat and edit previous command lines

» Understand the need to be careful when working with
root privileges

» Use man and info to display information about utilities

» Use the —-help option to display information about a
utility

» Change your password from the command line

23

24 CHAPTER 2 GETTING STARTED

One way or another you are sitting in front of a screen that is connected to a computer
running Linux. You might be working with a graphical user interface (GUI) or a textual
interface. This book is about the textual interface, also called the command-line interface
(CLI). If you are working with a GUIL, you will need to use a terminal emulator such as
xterm, Konsole, GNOME Terminal, Terminal (under macOS), or a virtual console
(page 44) to follow the examples in this book.

This chapter starts with a discussion of the typographical conventions used in this
book, followed by a section about logging in on the system. The next section introduces
the shell and explains how to fix mistakes on the command line and repeat previous
command lines. Next come a brief reminder about the powers of working with root
privileges and suggestions about how to avoid making mistakes that will make your
system inoperable or hard to work with. The chapter continues with a discussion about
where to find more information about Linux. It concludes with additional information
on logging in, including how to change your password.

Be sure to read the warning on page 32 about the dangers of misusing the powers of
working with root privileges. While heeding that warning, feel free to experiment with
the system: Give commands, create files, follow the examples in this book, and have fun.

CONVENTIONS USED IN THIS BOOK

macOS versions

Text and examples

Items you enter

Utility names

This book uses conventions to make its explanations shorter and clearer. The following
paragraphs describe these conventions.

References to macOS refer to version 10.12 (Sierra). Because the book focuses on the
underlying operating system, which changes little from one release of macOS to the
next, the text will remain relevant through several future releases.

The text is set in this type, whereas examples are shown in a monospaced font (also
called a fixed-width font):

$ cat practice
This is a small file I created
with a text editor.

Everything you enter at the keyboard is shown in a bold typeface. Within the text, this
bold typeface is used; within examples and screens, this one is used. In the previous
example, the dollar sign ($) on the first line is a prompt that Linux displays, so it is
not bold; the remainder of the first line is entered by a user, so it is bold.

Names of utilities are printed in this sans serif typeface. This book references the
emacs text editor and the Is utility or Is command (or just Is) but instructs you to enter
Is —a on the command line. In this way the text distinguishes between utilities, which
are programs, and the instructions you enter on the command line to invoke the
utilities.

CONVENTIONS USED IN THIS Book 25

Filenames

Character strings

Keys and characters

Prompts and RETURNS

Definitions

Filenames appear in a bold typeface. Examples are memo35, letter.1283, and reports.
Filenames might include uppercase and lowercase letters; however, Linux is case sen-
sitive (page 1088), so memo5, MEMOS, and Memo5 name three different files.

The default macOS filesystem, HFS+, is not case sensitive; under macOS, memoS3,
MEMOS, and MemoS5 refer to the same file. For more information refer to “Case
Sensitivity” on page 1070.

Within the text, characters and character strings are marked by putting them in a
bold typeface. This convention avoids the need for quotation marks or other delim-
iters before and after a string. An example is the following string, which is displayed
by the passwd utility: Sorry, passwords do not match.

This book uses SMALL CAPS for three kinds of items:

e Keyboard keys, such as the SPACE bar and the RETURN,! ESCAPE, and TAB keys.

¢ The characters that keys generate, such as the SPACEs generated by the SPACE
bar.

¢ Keyboard keys that you press simultaneously with the CONTROL key, such as
CONTROL-D. (Even though D is shown as an uppercase letter, you do not have
to press the SHIFT key; enter CONTROL-D by holding the CONTROL key down and
pressing d.)

Most examples include the shell prompi—the signal that Linux is waiting for a
command—as a dollar sign ($), a hashmark (#), or sometimes a percent sign (%).
The prompt does not appear in a bold typeface in this book because you do not
enter it. Do not type the prompt on the keyboard when you are experimenting with
examples from this book. If you do, the examples will not work.

Examples omit the RETURN keystroke that you must use to execute them. An example
of a command line is

$ vim memo.1204

To use this example as a model for running the vim text editor, enter the command
vim memo.1204 (some systems use vim.tiny in place of vim) and press the RETURN key.
(Press ESCAPE ZZ. to exit from vim; see page 167 for a vim tutorial.) This method of dis-
playing commands makes the examples in the book correspond to what appears on
the screen.

All glossary entries marked with forroc are courtesy of Denis Howe, editor of the Free
Online Dictionary of Computing (foldoc.org), and are used with permission. This site
is an ongoing work containing definitions, anecdotes, and trivia.

1. Different keyboards use different keys to move the cursor (page 1093) to the beginning of the next line.
This book always refers to the key that ends a line as the RETURN key. The keyboard you are using might
have a RET, NEWLINE, ENTER, RETURN, or some other key. Use the corresponding key on your keyboard each time
this book asks you to press RETURN.

http://foldoc.org

26 CHAPTER 2 GETTING STARTED

optional

URLs (Web
addresses)

Is output

Tip, caution, and
security boxes

OPTIONAL INFORMATION

Passages marked as optional appear in a gray box. This material is not central to the
ideas presented in the chapter and often involves more challenging concepts. A good
strategy when reading a chapter is to skip the optional sections and then return to
them when you are comfortable with the main ideas presented in the chapter. This is
an optional paragraph.

Web addresses, or URLs, have an implicit http:// prefix, unless ftp:// or https:// is
shown. You do not normally need to specify a prefix when the prefix is http://, but
you must use a prefix in a browser when you specify an FTP or secure HTTP site.
Thus you can specify a URL in a browser exactly as it is shown in this book.

This book uses the output of Is -1 commands, such as produced by including the
option —-time-style=iso. This option produces shorter lines, making the examples
more readable.

The following boxes highlight information that might be helpful while you are using
or administrating a Linux system.

This is a tip box

A tip box might help you avoid repeating a common mistake or might point toward additional
information.

This box warns you abhout something
A caution box warns you about a potential pitfall.

This box marks a security note

A security box highlights a potential security issue. These notes are usually intended for system
administrators, but some apply to all users.

LOGGING IN FROM A TERMINAL (EMULATOR)

Above the login prompt on a terminal, terminal emulator, or other textual device,
many systems display a message called issue (stored in the /etc/issue file). This mes-
sage usually identifies the version of Linux running on the system, the name of the
system, and the device you are logging in on. A sample issue message follows:

Fedora release 16 (Verne)
Kernel 3.3.2-6.fcl16.i686 on an 1686 (tty4)

The issue message is followed by a prompt to log in. Enter your username and
password in response to the system prompts. Make sure you enter your username
and password as they were specified when your account was set up; the routine
that verifies the username and password is case sensitive. Like most systems,
Linux does not display your password when you enter it. By default macOS does
not allow remote logins (page 1076).

LOGGING IN FROM A TERMINAL (EMULATOR) 27

The following example shows Max logging in on the system named tiny:

tiny login: max

Password:

Last login: Wed Mar 13 19:50:38 from pTum
[max@tiny max]$

If you are using a terminal (page 1128) and the screen does not display the login:
prompt, check whether the terminal is plugged in and turned on, and then press the
RETURN key a few times. If login: still does not appear, try pressing CONTROL-Q (Xon).

Did you log in last?

As you are logging in to a textual environment, after you enter your username and password, the
system displays information about the last login on this account, showing when it took place and
where it originated. You can use this information to determine whether anyone has accessed the
account since you last used it. If someone has, perhaps an unauthorized user has learned your
password and logged in as you. In the interest of maintaining security, advise the system admin-
istrator of any circumstances that make you suspicious and change your password.

If you are using a Mac, PC, another Linux system, or a workstation (page 1133),
open the program that runs ssh (secure; page 980), telnet (not secure; page 1001), or
whichever communications/emulation software you use to log in on the system, and
give it the name or IP address (page 1104) of the system you want to log in on.

telnet is not secure

One of the reasons telnet is not secure is that it sends your username and password over the network
in cleartext (page 1090) when you log in, allowing someone to capture your login information and log
in on your account. The ssh utility encrypts all information it sends over the network and, if available,
is a better choice than telnet. The ssh program has been implemented on many operating systems,
not just Linux. Many user interfaces to ssh include a terminal emulator.

Following is an example of logging in using ssh from a Linux system:

$ ssh max@tiny

max@tiny's password:

Permission denied, please try again.
max@tiny's password:

Last login: Wed Mar 13 21:21:49 2005 from plum
[max@tiny max]$

In the example Max mistyped his password, received an error message and another
prompt, and then retyped the password correctly. If your username is the same on
the system you are logging in from and the system you are logging in on, you can omit
your username and the following at sign (@). In the example, Max could have given
the command ssh tiny.

After you log in, the shell prompt (or just prompt) appears, indicating you have suc-
cessfully logged in; it shows the system is ready for you to give a command. The first
shell prompt might be preceded by a short message called the message of the day, or
motd, which is stored in the /etc/motd file.

28 CHAPTER 2 GETTING STARTED

The usual prompt is a dollar sign ($). Do not be concerned if you have a different
prompt; the examples in this book will work regardless of which prompt the system
displays. In the previous example, the $ prompt (last line) is preceded by the username
(max), an at sign (@), the system name (tiny), and the name of the directory Max is
working in (max). For information on how to change the prompt, refer to page 319
(bash) or page 403 (tcsh).

Make sure TERM is set correctly

The TERM shell variable establishes the pseudographical characteristics of a character-based
terminal or terminal emulator. Typically TERM is set for you—you do not have to set it manually.
If things on the screen do not look right, refer to “Specifying a Terminal” on page 1050.

WORKING FROM THE COMMAND LINE

Advantages
of the textual
interface

Pseudographical
interface

Before the introduction of the graphical user interface, UNIX and then Linux pro-
vided only a textual (command-line) interface. Today, a textual interface is available
when you log in from a terminal, a terminal emulator, or a textual virtual console,
or when you use ssh or telnet to log in on a system.

Although the concept might seem antiquated, the textual interface has a place in
modern computing. In some cases an administrator might use a command-line tool
either because a graphical equivalent does not exist or because the graphical tool is
not as powerful or flexible as the textual one. For example, chmod (pages 102
and 759) is more powerful and flexible than its GUI counterpart. Frequently, on a
server system, a graphical interface might not even be installed. The first reason for
this omission is that a GUI consumes a lot of system resources; on a server, those
resources are better dedicated to the main task of the server. Additionally, security
considerations mandate that a server system run as few tasks as possible because each
additional task can make the system more vulnerable to attack.

You can also write scripts using the textual interface. Using scripts, you can easily
reproduce tasks on multiple systems, enabling you to scale the tasks to larger environ-
ments. When you are the administrator of only a single system, using a GUI is often
the easiest way to configure the system. When you act as administrator for many sys-
tems, all of which need the same configuration installed or updated, a script can make
the task go more quickly. Writing a script using command-line tools is frequently easy,
whereas the same task can be difficult to impossible using graphical tools.

Before the introduction of GUIs, resourceful programmers created textual interfaces
that included graphical elements such as boxes, borders outlining rudimentary win-
dows, highlights, and, more recently, color. These textual interfaces, called
pseudographical interfaces, bridge the gap between textual and graphical interfaces.
The Midnight Commander file management utility (mc; page 902) is a good example
of a utility with a well-designed pseudographical interface.

WORKING FROM THE COMMAND LINE 29

WHICH SHELL ARE YOU RUNNING?

This book discusses both the Bourne Again Shell (bash) and the TC Shell (icsh). You
are probably running bash, but you might be running tcsh or another shell such as
the Z Shell (zsh). When you enter echo $0 and press RETURN in response to a shell
prompt (usually $ or %), the shell displays the name of the shell you are working
with. This command works because the shell expands $0 to the name of the program
you are running (page 470). This command might display output like this:

$ echo $0
-bash

Or the local system might display output like this:

$ echo $0
/bin/bash

Either way, this output shows you are running bash. If you are running a different
shell, the shell will display appropriate output.

CORRECTING MISTAKES

This section explains how to correct typographical and other errors you might make
while you are logged in on a textual display. Because the shell and most other utilities
do not interpret the command line or other text you enter until you press RETURN, you
can readily correct a typing mistake before you press RETURN.

You can correct such mistakes in several ways: Erase one character at a time, back
up a word at a time, or back up to the beginning of the line in one step. After you
press RETURN, it is too late to correct a mistake: At that point, you must either wait for
the command to run to completion or abort execution of the program (next page).

ERASING A CHARACTER

While entering characters from the keyboard, you can back up and erase a mistake
by pressing the erase key once for each character you want to delete. The erase key
backs over as many characters as you wish. It does not, in general, back up past the
beginning of the line.

The default erase key is BACKSPACE. If this key does not work, try pressing DEL or CONTROL-H.
If these keys do not work, give the following stty> command to set the erase and line
kill (see “Deleting a Line”) keys to their default values:

$ stty ek

2. The command stty is an abbreviation for set teletypewriter, the first terminal UNIX ran on. Today stty
is commonly thought of as meaning set terminal.

30 CHAPTER 2 GETTING STARTED

Alternatively, you can give the next command to reset most terminal parameters to a sane
value. If the RETURN key does not move the cursor to the next line, press CONTROL-J instead.

§ stty sane

See page 989 for more examples of using stty.

DELETING A WORD

You can delete a word you entered by pressing CONTROLW. A word is any sequence of
characters that does not contain a SPACE or TAB. When you press CONTROL-W, the cursor
moves left to the beginning of the current word (as you are entering a word) or the
previous word (when you have just entered a SPACE or TAB), removing the word.

CONTROL-Z suspends a program

Although it is not a way of correcting a mistake, you might press the suspend key (typically
CONTROL-Z) by mistake and wonder what happened. If you see a message containing the word
Stopped, you have just stopped your job using job control (page 151). If you give the command
fg to continue your job in the foreground, you should return to where you were before you pressed
the suspend key. For more information refer to “bg: Sends a Job to the Background” on page 306.

DELETING A LINE

Any time before you press RETURN, you can delete the line you are entering by pressing the
(line) kill key. When you press this key, the cursor moves to the left, erasing characters
as it goes, back to the beginning of the line. The default line kill key is CONTROL-U. If this
key does not work, try CONTROLX. If these keys do not work, give the stty command
described under “Erasing a Character.”

ABORTING EXECUTION

Sometimes you might want to terminate a running program. For example, you
might want to stop a program that is performing a lengthy task such as displaying
the contents of a file that is several hundred pages long or copying a large file that
is not the one you meant to copy.

To terminate a program from a textual display, press the interrupt key (CONTROL-C or
sometimes DELETE or DEL). When you press this key, the Linux operating system sends
a TERM (termination) signal to the program you are running and to the shell. Exactly
what effect this signal has depends on the program. Some programs stop execution
immediately, some ignore the signal, and some take other actions. When the shell
receives a TERM signal, it displays a prompt and waits for another command.

If these methods do not terminate the program, try sending the program a QUIT sig-
nal (CONTROLA). If all else fails, try pressing the suspend key (typically CONTROL-Z), giving
a jobs command to verify the number of the job running the program, and using kill
to abort the job. The job number is the number within the brackets at the left end of
the line displayed by jobs ([1]). In the next example, the kill command (pages 152
and 866) uses =TERM to send a TERM signal to the job specified by the job number,
which is preceded by a percent sign (%1). You can omit =TERM from the command,
as kill sends a TERM signal by default. Table 10-5 on page 496 lists some signals.

WORKING FROM THE COMMAND LINE 31

Use the KILL signal as a last resort

When the termination signal does not work, use the KILL signal (specify =KILL in place of -TERM
in the example). A running program cannot ignore a KILL signal; it is sure to abort the program.

Because a program receiving a KILL signal has no chance to clean up its open files before being
terminated, using KILL can corrupt application data. Use the KILL signal as a last resort. Before
using KILL, give a termination (TERM) or quit (QUIT) signal a full ten seconds to take effect.

$ bigjob

"

[1]+ Stopped bigjob
$ jobs

[1]+ Stopped bigjob
$ ki1l -TERM %1

[1]+ Killed bigjob

The kill command returns a prompt; you might need to press RETURN again to see the
confirmation message. For more information refer to “Running a Command in the
Background” on page 150.

REPEATING/EDITING COMMAND LINES

To repeat a previous command, press the UP ARROW key. Each time you press this key, the shell
displays an earlier command line. Press the DOWN ARROW key to browse through the command
lines in the other direction. To reexecute the displayed command line, press RETURN.

The RIGHT ARROW and LEFT ARROW keys move the cursor back and forth along the displayed
command line. At any point along the command line, you can add characters by typ-
ing them. Use the erase key (page 29) to remove characters from the command line.
Press RETURN to execute the modified command.

You can also repeat the previous command using !!. This technique is useful if you
forgot to use su (next page) to prefix a command. In this case, if you type su —c "!!",
the shell will run the previous command with root privileges. Or, if the local system
is set up to use sudo (next page), you can type sudo !! and the shell will run the pre-
vious command with root privileges.

The command *old*new” reruns the previous command, substituting the first occur-
rence of the string old with new. Also, on a command line, the shell replaces the
characters !$ with the last token (word) on the previous command line. The following
example shows the user correcting the filename meno to memo using *n”*m” and
then printing the file named memo by giving the command lIpr !$. The shell replaces
!$ with memo, the last token on the previous command line.

$ cat meno

cat: meno: No such file or directory
$ AnAmA

cat memo

This is the memo file.

$ 1pr 1§

Tpr memo

For information about more complex command-line editing, see page 338.

32 CHAPTER 2 GETTING STARTED

su/sudo: CURBING YOUR POWER (root PRIVILEGES)

UNIX and Linux systems have always had a privileged user named root. When you
are working as the root user (“working with root privileges”), you have extraor-
dinary systemwide powers. A user working with root privileges is sometimes
referred to as Superuser or administrator. When working with root privileges, you
can read from or write to almost any file on the system, execute programs that
ordinary users cannot, and more. On a multiuser system you might not be permit-
ted to gain root privileges and so might not be able to run certain programs.
Nevertheless, someone—the system administrator—can, and that person maintains
the system.

Do not experiment while you are working with root privileges

Feel free to experiment when you are nofworking with root privileges. When you are working with
root privileges, do only what you have to do and make sure you know exactly what you are doing.
After you have completed the task at hand, revert to working as yourself. When working with root
privileges, you can damage the system to such an extent that you will need to reinstall Linux to
get it working again.

With a conventional setup, you can gain root privileges in one of two ways. First, you
can log in as the user named root; when you do so you are working with root privi-
leges until you log out. Alternatively, while you are working as yourself, you can use
the su (substitute user) utility to execute a single command with root privileges or to
gain root privileges temporarily so you can execute several commands. Logging in as
root and running su to gain root privileges require you to enter the root password.
The following example shows how to use su to execute a single command:

$ 1s -1 /lost+found

1s: cannot open directory /lost+found: Permission denied
$ su -c '"Is -1 /lost+found'

Password: Enter the root password

total 0

$

The first command in the preceding example shows that a user who is not working
with root privileges is not permitted to list the files in the /lost+found directory: Is
displays an error message. The second command uses su with the —c (command)
option to execute the same command with root privileges. Single quotation marks
enclose the command to ensure the shell interprets the command properly. When the
command finishes executing (Is shows there are no files in the directory), the user no
longer has root privileges.

Without any arguments, su spawns a new shell running with root privileges. Typi-
cally the shell displays a hashmark (#) prompt when you are working with root
privileges. Give an exit command to return to the normal prompt and nonroot
privileges.

WHERE TO FIND DOCUMENTATION 33

$ su

Password: Enter the root password
1s -1 /lost+found

total @

exit

exit

$

Some distributions (e.g., Ubuntu) ship with the root account locked—there is no
root password—and rely on the sudo (www.sudo.ws) utility to allow users to work
with root privileges. The sudo utility requires you to enter your password (not the
root password) to gain root privileges. The following example allows the user to
gain root privileges to view the contents of the /lost+found directory:

$ sudo 1s -1 /lost+found

[sudo] password for sam: Enter your password
total 0
$

With an argument of —s, sudo spawns a new shell running with root privileges. Typ-
ically the shell displays a hashmark (#) prompt when you are working with root
privileges. Give an exit command to return to the normal prompt and nonroot
privileges.

$ sudo -s

[sudo] password for sam: EnterMPassword

1s -1 /lost+found

total @

exit

Togout
$

WHERE TO FIND DOCUMENTATION

Distributions of Linux typically do not come with hardcopy reference manuals. How-
ever, its online documentation has always been one of Linux’s strengths. The man (or
manual) and info pages have been available via the man and info utilities since early
releases of the operating system. Not surprisingly, with the ongoing growth of Linux
and the Internet, the sources of documentation have expanded as well. This section dis-
cusses some of the places you can look for information on Linux. See also Appendix B.

man: DISPLAYS THE SYSTEM MANUAL

The textual man (manual) utility displays (man) pages from the system documenta-
tion. This documentation is helpful when you know which utility you want to use but
have forgotten exactly how to use it. You can also refer to the man pages to get more
information about specific topics or to determine which features are available with
Linux. Because the descriptions in the system documentation are often terse, they are
most helpful if you already understand the basic

http://www.sudo.ws

CHAPTER 2 GETTING STARTED

To find out more about a utility, give the command man, followed by the name of
the utility. Figure 2-1 shows man displaying information about itself; the user entered
a man man command.

less (pager) The man utility sends its output through a pager—usually less (page 53), which

displays one screen of information at a time. When you display a manual page
using man, less displays a prompt [e.g., Manual page man(1) line 1] at the bottom
of the screen after it displays each screen of text and waits for you to take one of
the following steps:

® Press the SPACE bar to display another screen of text.

e Press PAGE UP, PAGE DOWN, UPARROW, or DOWNARROW to navigate the text.

® Press h (help) to display a list of less commands.

® Press q (quit) to stop less and cause the shell to display a prompt.

You can search for topics covered by man pages using the apropos utility (next page).

Manual sections Based on the FHS (Filesystem Hierarchy Standard; page 98), the Linux system man-
ual and the man pages are divided into ten sections, where each section describes
related tools:

1. User Commands

2. System Calls
3. Subroutines
4. Devices
5. File Formats
6. Games
7. Miscellaneous
8. System Administration
9. Kernel
10. New
MAN{ 1) Manual pager utils MAN(1)
NAME
man - an interface to the on-line reference manuals
SYNOPSIS
man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
locale] [-m system[,...]] [-M path] [-S list] [-e extension] [-i|-I]
[--regex|--wildcard] [--names-only] [-a] [-u] [--no-subpages] [-P
pager] [-r prompt] [-7] [-E encoding] [--no-hyphenation] [--no-justifi-
cation] [-p string]l [-t] [-Tldevice]] [-H[browser]] [-X[dpi]] [-Z]
[[section] page ...] ...
man -k [apropos options] regexp ...
man -K [-w|-W] [-S list] [-i|-I] [--regex] [section] term ...
man -f [whatis options] page ...
man -1 [-C file] [-d] [-D] [--warnings[=warninags]] [-R encoding] [-L
locale]l [-P pager] [-r prompt] [-7] [-E encoding] [-p string] [-t]
[-Tldevice]] [-H[browser]] [-X[dpi]] [-Z] file ...
man -w|-W [-C file] [-d] [-D] page ...
man -c¢ [-C file] [-d] [-D] pace ...
man [-hV]
DESCRIPTION
Manual page man(1l) line 1 (f

Figure 2-1 The man utility displaying information about itself

WHERE TO FIND DOCUMENTATION 35

This layout closely mimics the way the set of UNIX manuals has always been divided.
Unless you specify a manual section, man displays the earliest occurrence in the man-
ual of the word you specify on the command line. Most users find the information
they need in sections 1, 6, and 7; programmers and system administrators frequently
need to consult the other sections.

In some cases the manual contains entries for different tools with the same name. For
example, the following command displays the man page for the passwd utility from
section 1 of the system manual:

$ man passwd
To see the man page for the passwd file from section 5, enter this command:
$ man 5 passwd

The preceding command instructs man to look only in section 5 for the man page. In
documentation you might see this man page referred to as passwd(5). Use the —a
option (see the adjacent tip) to view all man pages for a given subject (press qRETURN
to display each subsequent man page). For example, give the command man -a
passwd to view all man pages for passwd.

Options

An option modifies the way a utility works. Options are usually specified as one or more letters
that are preceded by one or two hyphens. An option typically appears following the name of the
utility you are calling and a SPACE. Other arguments (page 1083) to the command follow the option
and a SPACE. For more information refer to “Options” on page 131.

apropos: SEARCHES FOR A KEYWORD

When you do not know the name of the command required to carry out a particular
task, you can use apropos with a keyword to search for it. This utility searches for
the keyword in the short description line of all man pages and displays those that con-
tain a match. The man utility, when called with the -k (keyword) option, provides the
same output as apropos.

The database apropos uses, named mandb or makewhatis, is not available when a sys-
tem is first installed but is built automatically by cron or crond (see crontab on
page 781 for a discussion of cron/crond).

The following example shows the output of apropos when you call it with the who
keyword. The output includes the name of each command, the section of the manual
that contains it, and the short description from the man page. This list includes the
utility you need (who) and identifies other, related tools you might find useful.

$ apropos who

at.allow (5) - determine who can submit jobs via at or batch
jwhois (1) - client for the whois service

w (1) - show who is logged on and what they are doing
who (1) - show who is logged on

who (1p) - display who is on the system

whoami (1) - print effective userid

36 CHAPTER2 GETTING STARTED

whatis

whois (1) - client for the whois service
whois.jwhois (1) - client for the whois service

The whatis utility is similar to apropos but finds only complete word matches for the
name of the utility:

$ whatis who
who (1p) - display who is on the system
who (1) - show who is Togged on

info: DISPLAYS INFORMATION ABOUT UTILITIES

The textual info utility (www.gnu.org/software/texinfo) is a menu-based hypertext
system developed by the GNU project (page 3) and distributed with Linux. It includes
a tutorial on itself (give the command info info) and documentation on many Linux
shells, utilities, and programs developed by the GNU project. Figure 2-2 shows the
screen that info displays when you give the command info coreutils (the coreutils soft-
ware package holds the Linux core utilities).

man and info display different information

The info utility displays more complete and up-to-date information on GNU utilities than does man.
When a man page displays abbreviated information on a utility that is covered by info, the man page
refers to info. The man utility frequently displays the only information available on non-GNU utilities.
When info displays information on non-GNU utilities, it is frequently a copy of the man page.

Because the information on this screen is drawn from an editable file, your display
might differ from the screens shown in this section. You can press any of the following
keys while the initial info screen is displayed:

¢ h or ? to list info commands

® SPACE to scroll through the display

File: coreutils.info, Node: Top, Next: Introduction, Up: (dir)

GNU Coreutils

ok o

IThis manual documents version 8.12 of the GNU core utilities, including
the standard programs for text and file manipulation.

Copyright (C) 1994-1996, 2000-2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts,
and with no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

¥ Menu:

¥ Introduction:: Caveats, overview, and authors
* Common options:: Common options

¥ Qutput of entire files:: cat tac nl od basebd

zz-Info: (coreutils.info)Top, 334 lines --Top

Welcaome tao Info version 4.13. Type h for help, m for menu item.

Figure 2-2 The initial screen displayed by the command info coreutils

http://www.gnu.org/software/texinfo

WHERE TO FIND DOCUMENTATION 37

¢ m followed by the name of the menu you want to display or a SPACE to display
a list of menus

® q or CONTROL-C to quit

The notation info uses to describe keyboard keys is the same notation emacs uses and
might not be familiar to you. For example, the notation C-h is the same as CONTROL-H.
Similarly, M-x means hold down the META or ALT key and press x. (On some systems
you need to press ESCAPE and then x to duplicate the function of METAX.) For more infor-
mation refer to “Keys: Notation and Use” on page 231.

After giving the command info coreutils, press the SPACE bar a few times to scroll
through the display. Type /sleepRETURN to search for the string sleep. When you type
/, the cursor moves to the bottom line of the window and displays Regexp search
[string]:, where string is the last string you searched for. Press RETURN to search for
string or enter the string you want to search for. Typing sleep displays sleep on that
line, and pressing RETURN displays the next occurrence of sleep.

You might find pinfo easier to use than info

The pinfo utility is similar to info but is more intuitive if you are not familiar with emacs editor
commands. This utility runs in a textual environment, as does info. When it is available, pinfo uses
color to make its interface easier to use. If pinfo is not installed on the system, install the pinfo
package as explained in Appendix C.

Now type /RETURN (or /sleepRETURN) to search for the next occurrence of sleep as shown
in Figure 2-3. The asterisk at the left end of the line indicates that this entry is a menu
item. Following the asterisk is the name of the menu item and a description of the item.

* su invocation:: Run a command with substitute user and group I
(o]
* timeout invocation:: Run a command with a time limit

Frocess control

* kill invocation:: Sending a signal to processes.
Delaying
[+ eep invocation:: Delay for a specified time

Numeric operations

*+ factor invocation:: Print prime factars
*+ seq invocation:: Print numeric sequences

File permissions

* Mode Structure:: Structure of file mode bits
+ Symbolic Modes: : Mhemonic representation of file mode bits
octal numbers

* Numeric Modes:: File mode bit

-Info: (coreutils.info.gz)Top, 334 lines

Figure 2-3 The screen displayed by the command info
coreutils after you type /sleepRETURN twice

38 CHAPTER 2 GETTING STARTED

Each menu item is a link to the info page that describes the item. To jump to that page,
search for or use the ARROW keys to move the cursor to the line containing the menu
item and press RETURN. With the cursor positioned as it is in Figure 2-3, press RETURN to
display information on sleep. Alternatively, you can type the name of the menu item
in a menu command to view the information: To display information on sleep, for
example, you can give the command m sleep, followed by RETURN. When you type m
(for menu), the cursor moves to the bottom line of the window (as it did when you
typed /) and displays Menu item:. Typing sleep displays sleep on that line, and press-
ing RETURN displays information about the menu item you specified.

Figure 2-5 shows the fop node of information on sleep. A node groups a set of infor-
mation you can scroll through by pressing the SPACE bar. To display the next node,
press n. Press p to display the previous node.

As you read through this book and learn about new utilities, you can use man or info
to find out more about those utilities. If the local system can print PostScript docu-
ments, you can print a manual page by using the man utility with the —t option. For
example, man -t cat | Ipr prints information about the cat utility. You can also use a
Web browser to display the documentation at one of the sites listed in Appendix B
and then print the desired information from the browser.

THE ——help OPTION

Another tool you can use in a textual environment is the ——help option. Most GNU
utilities provide a ——help option that displays information about the utility. A non-
GNU utility might use a —h or —help option to display information about itself.

File: coreutils.info, Node: sleep invaocation, Up: Delaying

25.1 "sleep': Delay for a specified time

“sleep' pauses for an amount of time specified by the sum of the values
of the command line arguments. Synopsis:

sleep NUMBER([smhd]. ..

Each argument is a number followed by an optional unit; the default
is seconds. The units are:

‘s
seconds

minutes

hours

-Info: (coreutils.info.g eep lnvocation, 41 lines --Top

Figure 2-4 The info page on the sleep utility

WHERE TO FIND DOCUMENTATION 39

$ cat --help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to standard output.

-A, --show-all equivalent to -vET

-b, --number-nonblank number nonempty output lines, overrides -n
-e equivalent to -vE

-E, --show-ends display $ at end of each line

If the information that ——help displays runs off the screen, send the output through
the less pager (page 34) using a pipeline (page 60):

$ 1s --help | less

THE bash help COMMAND

The bash help command displays information about bash commands, control struc-
tures, and other features. From the bash prompt, give the command help followed by
the keyword you are interested in. Following are some examples:

$ help help
help: help [-dms] [pattern ...]
Display information about builtin commands.

Displays brief summaries of builtin commands. If PATTERN is
specified, gives detailed help on all commands matching PATTERN,
otherwise the 1ist of help topics is printed.

$ help echo
echo: echo [-neE] [arg ...]
Write arguments to the standard output.

Display the ARGs on the standard output followed by a newline.

Options:
-n do not append a newline

$ help while
while: while COMMANDS; do COMMANDS; done
Execute commands as long as a test succeeds.

GETTING HELP

This section describes several methods you can use to get help with a Linux system
and lists some helpful Web sites. See also Appendix B.

FINDING HELP LOCALLY

fust/share/doc The /usr/src/linux/Documentation (present only if you install the kernel source code)
and /usr/share/doc directories often contain more detailed and different information

40 CHAPTER 2 GETTING STARTED

GNU

about a utility than either man or info provides. Frequently this information is meant
for people who will be compiling and modifying the utility, not just using it. These
directories hold thousands of files, each containing information on a separate topic.
As the following example shows, the names of most directories in /usr/share/doc end
in version numbers:

$ 1s /usr/share/doc

abrt-2.0.7 iw1100-firmware-39.31.5.1 openldap-2.4.26
accountsservice-0.6.15 iw13945-firmware-15.32.2.9 openobex-1.5
acl-2.2.51 iw14965-firmware-228.61.2.24 openssh-5.8p2
aic94xx-firmware-30 iw15000-firmware-8.83.5.1_1 openss1-1.0.0g
aisleriot-3.2.1 iw15150-firmware-8.24.2.2 openvpn-2.2.1
alsa-firmware-1.0.25 iw16000-firmware-9.221.4.1 orc-0.4.16
alsa-1ib-1.0.25 iw16000g2a-firmware-17.168.5.3 orca-3.2.1

Most of these directories hold a README file, which is a good place to start read-
ing about the utility or file the directory describes. Use an asterisk (%; page 154)
in place of the version number to make it easier to type the filename. The fol-
lowing README file for bzip2 (pages 64 and 750) explains how to compile the
source code:

$ cat /usr/share/doc/bzip2:/README
This is the README for bzip2/libzip2.
This version is fully compatible with the previous public releases.

Complete documentation is available in Postscript form (manual.ps),
PDF (manual.pdf) or html (manual.html). A plain-text version of the
manual page is available as bzip2.txt.

HOW TO BUILD -- UNIX

Type 'make'. This builds the Tibrary 1libbz2.a and then the programs
bzip2 and bzip2recover. Six self-tests are run. If the self-tests
complete ok, carry on to installation:

To install in /usr/local/bin, /usr/local/T1ib, /usr/local/man and
/usr/local/include, type

make install

USING THE INTERNET TO GET HELP

The Internet provides many helpful sites related to Linux and macOS. Aside from
sites that offer various forms of documentation, you can enter an error message from
a program you are having a problem with in a search engine such as Google
(www.google.com). The search will likely yield a post concerning your problem and
suggestions about how to solve it. See Figure 2-5.

GNU manuals are available at www.gnu.org/manual. In addition, you can visit the
GNU home page (www.gnu.org) to obtain other documentation and GNU resources.
Many of the GNU pages and resources are available in a variety of languages.

http://manual.html
http://www.google.com
http://www.gnu.org/manual
http://www.gnu.org

WHERE TO FIND DOCUMENTATION 41

The Linux
Documentation
Project

HOWTOs

cannot open directory /lost+found/: permission denied - Google Search - Mozilla Firefox

File Edit View History Bookmarks Tools Help

| 8 cannot open directory flost+fou... | 4 | i
s] google.com ~ (@& |*B -found/: PermissionQ,

+You Search YouTube News Gmail Documents Calendar More -

Images Maps Play

GU g{c cannat open directory /lost+found/: Permission denied [
Search
I Everything root may own that ext4 'Lost+Found folder...

t4-Lost-Found-folderftopic-533308..

Images
Maps Is: cannot open directory lost+found: Permission denied > norman@amdé4x2:/§ cd
| losttfound/ > bash: cd: lost+found/: Permission denied ...
Videos
cannot open directory .: Permission denied - | aunchpad Answers i
News https //answers launchpad net/ubuntu/+question/35135
Shopping Jun 3, 2008 — here is the exact issue | have trouble running "Is" on my own PC
alffed@altred-deskrop:~{ Is 1s: cannot open directory . Permission denied ...
More
solved] Can't open directory: permission denied (afier DVD mount ...
http s.archlinux .orgiviewtopic.phy 38
San Francisco, Feb 7, — "Can’t opel ion denied", or similar, | just
CA Uanslatetl error message. ~§ groups (\lsk wheel dbus hal v\[|EU audio ..

Change location

ww
All results wik linux.com/doku.php?id=using_lxterminal_as.. file..

Related searches ~ Onthe command tine of the terminzl you "cd” of "change directory. ...
t open directory /root: Permission denied (or Aost+found: ...

More search tools

E‘HE'JSH”!'E‘]DFE”]FD(” current-lock”: Permission denied
ner, gmup and everyone else (sometimes called "world"), respectively, for
bhos il i S Lo il L
[I >

Figure 2-5 Google reporting on an error message

The Linux Documentation Project (www.tldp.org; Figure 2-6), which has been around
for almost as long as Linux, houses a complete collection of guides, HOWTOs, FAQs,
man pages, and Linux magazines. The home page is available in English, Portuguese
(Brazilian), Spanish, Italian, Korean, and French. It is easy to use and supports local
text searches. This site also provides a complete set of links you can use to find almost
anything you want related to Linux (click Links in the Search box or go to
www.tldp.org/links). The links page includes sections on general information, events,
getting started, user groups, mailing lists, and newsgroups, with each section contain-
ing many subsections.

A HOWTO document explains in detail how to do something related to Linux—
from setting up a specialized piece of hardware to performing a system administra-
tion task to setting up specific networking software. Mini-HOWTOs offer shorter
explanations.

http://www.tldp.org
http://www.tldp.org/links

42 CHAPTER 2 GETTING STARTED

The Linux Documentation Project - Mozilla Firefox
File Edit View History Bookmarks Tools Help

The Linux Documentation Project | < | &

[T tidp.org

~ & | |88~ found/: Permission@| i

LDP Worldwide

20120403

The
Linux
D ocumentation
P l‘OjECt ~2J Portugués do Brasil

LDP Information

Author / Contribute

Weorkshop

LDP Wiki: The LDF Wiki is the entry point for any work in progress
Members | Authers | Visitors

Documents
HOWTOs: subject-specific help Search / Resources
|at updates | main index | browse b ‘7‘
category —
Guides: longer, in-depth books .
|atest updates / main index
FAQs: Frequen ked Questions

latest updates / main index
man pages: help on individual commands (200608 10)
Linux online magazine
Gazette:

Ar I

Purchase a Shirt and Donate to the LDP...

updates

Figure 2-6 The Linux Documentation Project home page

The Linux Documentation Project site houses most HOWTO and mini-HOWTO
documents. Use a Web browser to visit www.tldp.org, click HOWTOs, and pick the
index you want to use to find a HOWTO or mini-HOWTO. You can also use the LDP

search feature on its home page to find HOWTOs and other documents.

MORE ABOUT LOGGING IN AND PASSWORDS

Refer to “Logging In from a Terminal (Emulator)” on page 26 for information about
logging in. This section covers solutions to common login problems, logging in

remotely, virtual consoles, and changing your password.

Always use a password

Unless you are the only user of a system; the system is not connected to any other systems, the
Internet, or a modem; and you are the only one with physical access to the system, it is poor prac-

tice to maintain a user account without a password.

http://www.tldp.org

MORE ABOUT LOGGING IN AND PASSWORDS 43

WHAT 70 DO IF YOU CANNOT LOG IN

If you enter either your username or your password incorrectly, the system displays
an error message after you enter both your username and your password. This mes-
sage indicates that you have entered either the username or the password incorrectly
or that they are not valid. It does not differentiate between an unacceptable username
and an unacceptable password—a strategy meant to discourage unauthorized people
from guessing names and passwords to gain access to the system.

Following are some common reasons why logins fail:

¢ The username and password are case sensitive. Make sure the CAPS LOCK key
is off and enter your username and password exactly as specified or as you
set them up.

® You are not logging in on the right machine. The login/password combina-
tion might not be valid if you are trying to log in on the wrong machine.
On a larger, networked system, you might have to specify the machine you
want to connect to before you can log in.

* Your username is not valid. The login/password combination might not be
valid if you have not been set up as a user.

¢ A filesystem is full. When a filesystem critical to the login process is full, it
might appear as though you have logged in successfully, but after a moment
the login prompt reappears. In this situation you must boot the system in
rescue/recovery mode and delete some files.

® The account is disabled. On some systems, the root account is disabled by
default. An administrator might disable other accounts. Often the root
account is not allowed to log in over a network: In this case, log in as yourself
and then gain root privileges using su/sudo.

Refer to “Changing Your Password” on page 44 if you want to change your
password.

LOGGING IN REMOTELY: TERMINAL EMULATORS, ssh, AND
DIAL-UP CONNECTIONS

When you are not using a console, terminal, or other device connected directly to the
Linux system you are logging in on, you are probably connected to the Linux system
using terminal emulation software on another system. Running on the local system,
this software connects to the remote Linux system via a network (Ethernet, asynchro-
nous phone line, PPP, or other type) and allows you to log in.

Make sure TERM is set correctly

No matter how you connect, make sure the TERM variable is set to the type of terminal your
emulator is emulating. For more information refer to “Specifying a Terminal” on page 1050.

44 CHAPTER 2 GETTING STARTED

When you log in via a dial-up line, the connection is straightforward: You instruct
the local emulator program to contact the remote Linux system, it dials the phone,
and the remote system displays a login prompt. When you log in via a directly con-
nected network, you use either ssh (secure; page 703) or telnet (not secure;
page 1001) to connect to the remote system. The ssh program has been implemented
on many operating systems, not just Linux. Many user interfaces to ssh include a ter-
minal emulator. From an Apple, Windows, or UNIX machine, open the program that
runs ssh and give it the name or IP address of the system you want to log in on.

USING VIRTUAL CONSOLES

When running Linux on a personal computer, you will frequently work with the display
and keyboard attached to the computer. Using this physical console, you can access as
many as 63 virtual consoles (also called virtual terminals). Some are set up to allow log-
ins; others act as graphical displays. To switch between virtual consoles, hold the CONTROL
and ALT keys down and press the function key that corresponds to the console you want
to view. For example, CONTROL-ALT-F5 displays the fifth virtual console.

By default, five or six virtual consoles are active and have textual login sessions run-
ning. When you want to use both textual and graphical interfaces, you can set up a
textual session on one virtual console and a graphical session on another.

LOGGING OuT

To log out from a character-based interface, press CONTROL-D in response to the shell
prompt. This action sends the shell an EOF (end of file). Alternatively, you can give
the command exit. Exiting from a shell does not end a graphical session; it just exits
from the shell you are working with. For example, exiting from the shell that
GNOME terminal provides closes the GNOME terminal window.

CHANGING YOUR PASSWORD

If someone else assigned you a password, it is a good idea to give yourself a new one.
For security reasons, passwords you enter are not displayed by any utility.

Protect your password

Do not allow someone to find out your password: Do not put your password in a file that is not
encrypted, allow someone to watch you type your password, or give your password to someone
you do not know (a system administrator never needs to know your password). You can always
write your password down and keep it in a safe, private place.

Choose a password that is difficult to guess

Do not use phone numbers, names of pets or kids, birthdays, words from a dictionary (not even
aforeign language), and so forth. Do not use permutations of these items or a [33t-speak variation
of a word: Modern dictionary crackers might also try these permutations.

MORE ABOUT LOGGING IN AND PASSWORDS 45

Secure passwords

Include nonalphanumeric characters in your password

Automated password cracking tools first try using alphabetic and numeric characters when they
try to guess your password. Including at least one character such as @ or # in a password
increases the amount of time it takes for one of these tools to crack your password.

Differentiate between important and less important passwords

It is a good idea to differentiate between important and less important passwords. For example,
Web site passwords for blogs or download access are not very important; it is acceptable to use
the same password for these types of sites. However, your login, mail server, and bank account
Web site passwords are critical: Never use these passwords for an unimportant Web site and use
a different password for each of these accounts.

To be relatively secure, a password should contain a combination of numbers, upper-
case and lowercase letters, and punctuation characters. It should also meet the
following criteria:

® Must be at least six characters long (or longer if the system administrator
sets it up that way). Seven or eight characters is a good compromise between
being easy to remember and being secure.

¢ Should not be a word in a dictionary of any language, no matter how
seemingly obscure.

e Should not be the name of a person, place, pet, or other thing that might be
discovered easily.

¢ Should contain at least two letters and one digit or punctuation character.

¢ Should not be your username, the reverse of your username, or your
username shifted by one or more characters.

Only the first item is mandatory. Avoid using control characters (such as CONTROL-H)
because they might have a special meaning to the system, making it impossible for
you to log in. If you are changing your password, the new password should differ
from the old one by at least three characters. Changing the case of a character does
not make it count as a different character.

pwgen helps you pick a password

The pwgen utility (install the pwgen package as explained in Appendix C) generates a list of
almost random passwords. With a little imagination, you can pronounce, and therefore remember,
some of these passwords.

To change your password, give the command passwd. The first item passwd asks for
is your current (old) password. This password is verified to ensure that an unautho-
rized user is not trying to alter your password. Then the system requests a new
password.

46 CHAPTER 2 GETTING STARTED

CHAPTER

$ passwd

Changing password for user sam.

Changing password for sam.

(current) UNIX password:

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

After you enter your new password, the system asks you to retype it to make sure you
did not make a mistake when you entered it the first time. If the new password is the
same both times you enter it, your password is changed. If the passwords differ, it
means that you made an error in one of them, and the system displays this error
message:

Sorry, passwords do not match

If your password is not long enough, the system displays the following message:
BAD PASSWORD: it is too short

When it is too simple, the system displays this message:
BAD PASSWORD: it is too simplistic/systematic

After several failures, the system displays an error message and displays a prompt.
At this point you need to run passwd again.

mac0S: passwd does not change your Keychain password

Under macQS, the passwd utility changes your login password, but does not change your Key-
chain password. The Keychain password is used by various graphical applications. You can
change the Keychain password using the Keychain Access application.

When you successfully change your password, you change the way you log in. If you
forget your password, someone working with root privileges can run passwd to
change it and tell you your new password.

Working with root privileges (use su/sudo [page 32]) you can assign a new password
to any user on the system without knowing the user’s old password. Use this tech-
nique when a user forgets his password:

passwd sam
Changing password for user sam.
New password:

SUMMARY

As with many operating systems, your access to a Linux system is authorized when
you log in. You enter your username in response to the login: prompt, followed by a
password. You can use passwd to change your password while you are logged in.

EXERCISES 47

Choose a password that is difficult to guess and that conforms to the criteria imposed
by the system administrator.

The system administrator is responsible for maintaining the system. On a single-user
system, you are the system administrator. On a small, multiuser system, you or
another user will act as the system administrator, or this job might be shared. On a
large, multiuser system or network of systems, there is frequently a full-time system
administrator. When extra privileges are required to perform certain system tasks, the
system administrator gains root privileges by logging in as root or by running su or
sudo. On a multiuser system, several trusted users might be allowed to gain root
privileges.

Do not work with root privileges as a matter of course. When you have to do some-
thing that requires root privileges, work with root privileges for only as long as you
need to; revert to working as yourself as soon as possible.

The man utility provides online documentation on system utilities. This utility is helpful
both to new Linux users and to experienced users who must often delve into the system
documentation for information on the fine points of a utility’s behavior. The apropos
utility can help you search for utilities. The info utility helps the beginner and the expert
alike. It includes documentation on many Linux utilities. Some utilities, when called
with the ——help option, provide brief documentation on themselves.

EXERCISES

1. The following message is displayed when you attempt to log in with an
incorrect username or an incorrect password:

Login incorrect

This message does not indicate whether your username, your password, or
both are invalid. Why does it not tell you this information?

2. Give three examples of poor password choices. What is wrong with each?
Include one that is too short. Give the error message the system displays.

Is fido an acceptable password? Give several reasons why or why not.
4. What would you do if you could not log in?

Try to change your password to dog. What happens? Now change it to a
more secure password. What makes that password relatively secure?

6. How would you display a list of utilities that compress files?

How would you repeat the second preceding command line, edit it, and
then execute it?

8. Briefly, what information does the ——help option display for the tar utility?
How would you display this information one screen at a time?

48 CHAPTER 2 GETTING STARTED

ADVANCED EXERCISES

9.

10.

11.

12.

13.

How would you display the man page for shadow in section 5 of the system
manual?

How would you change your login shell to tcsh without using root
privileges?

How many man pages are in the Devices subsection of the system manual?
(Hint: Devices is a subsection of Special Files.)

The example on page 35 shows that man pages for passwd appear in sec-
tions 1 and 5 of the system manual. Explain how you can use man to
determine which sections of the system manual contain a manual page with
a given name.

How would you find out which Linux utilities create and work with archive
files?

IN THIS CHAPTER

Special Characters

Basic Utilities

less Is more: Display a Text File

One ScreenataTime
Working with Files.
lpr: PrintsaFile...............

| (Pipeline): Communicates

Between Processes

Compressing and Archiving Files ..

Displaying User and System

Information

64

THE UTILITIES

OBJECTIVES

After reading this chapter you should be able to:

» List special characters and methods of preventing the
shell from interpreting these characters

» Use basic utilities to list files and display text files
» Copy, move, and remove files

» Search, sort, print, and compare text files

» String commands together using a pipeline

» Compress, decompress, and archive files

» Locate utilities on the system

» Display information about users

» Communicate with other users

49

50 CHAPTER 3 THE UTILITIES

When Linus Torvalds introduced Linux and for a long time thereafter, Linux did not
have a graphical user interface (GUI): It ran on character-based terminals only, using
a command-line interface (CLI), also referred to as a textual interface. All the tools
ran from a command line. Today the Linux GUI is important, but many people—
especially system administrators—run many command-line utilities. Command-line
utilities are often faster, more powerful, or more complete than their GUI counter-
parts. Sometimes there is no GUI counterpart to a textual utility; some people just
prefer the hands-on feeling of the command line.

When you work with a command-line interface, you are working with a shell
(Chapters 5, 8, and 10). Before you start working with a shell, it is important that
you understand something about the characters that are special to the shell, so this
chapter starts with a discussion of special characters. The chapter then describes
five basic utilities: Is, cat, rm, less, and hostname. It continues by describing several
other file manipulation utilities as well as utilities that compress and decompress
files, pack and unpack archive files, locate utilities, display system information,
communicate with other users, and print files.

SPECIAL CHARACTERS

Whitespace

Quoting special
characters

Backslash

Single quotation
marks

Special characters, which have a special meaning to the shell, are discussed in “Filename
Generation/Pathname Expansion” on page 152. These characters are mentioned here so
you can avoid accidentally using them as regular characters until you understand how the
shell interprets them. Avoid using any of the following characters in a filename (even
though emacs and some other programs do) because they make the file harder to refer-
ence on the command line:

&l x?2 " "V LT ()S<>{}#/\!~

Although not considered special characters, RETURN, SPACE, and TAB have special meanings
to the shell. RETURN usually ends a command line and initiates execution of a command.
The SPACE and TAB characters separate tokens (elements) on the command line and are
collectively known as whitespace or blanks.

If you need to use a character that has a special meaning to the shell as a regular char-
acter, you can gquote (or escape) it. When you quote a special character, you prevent
the shell from giving it special meaning. The shell treats a quoted special character
as a regular character. However, a slash (/) is always a separator in a pathname, even
when you quote it.

To quote a character, precede it with a backslash (\). When two or more special char-
acters appear together, you must precede each with a backslash (for example, you
would enter * 3% as *:*). You can quote a backslash just as you would quote any
other special character—by preceding it with a backslash (\\).

Another way of quoting special characters is to enclose them between single quota-
tion marks: '* %', You can quote many special and regular characters between a pair

BAasic UTiLITIES 51

optional

of single quotation marks: 'This is a special character: >'. The regular characters are
interpreted as usual, and the shell also interprets the special characters as regular
characters.

The only way to quote the erase character (CONTROL-H), the line kill character (CONTROL-U),
and other control characters (try CONTROL-M) is by preceding each with a CONTROL-V. Single
quotation marks and backslashes do not work. Try the following:

$ echo 'xxxxxxCONTROL-U'
$ echo xXXXXXCONTROL-VCONTROL-U

Although you cannot see the CONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo (page 61)
through a pipeline (page 60) to od (octal display; page 921) to display CONTROL-U as
octal 25 (025):

$ echo xXXXXXCONTROL-VCONTROL-U | od -c
0000000 X X X X X X 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

BASIC UTILITIES

Folder/directory

One of the advantages of Linux is that it comes with thousands of utilities that per-
form myriad functions. You will use utilities whenever you work with Linux, whether
you use them directly by name from the command line or indirectly from a menu or
icon. The following sections discuss some of the most basic and important utilities;
these utilities are available from a CLI. Some of the more important utilities are also
available from a GUI; others are available only from a GUI.

Run these utilities from a command line

This chapter describes command-line, or textual, utilities. You can experiment with these utilities
from a terminal, a terminal emulator within a GUI, or a virtual console.

The term directory is used extensively in the next sections. A directory is a resource
that can hold files. On other operating systems, including Windows and macOS,
and frequently when speaking about a Linux GUI, a directory is referred to as a
folder. That is a good analogy: A traditional manila folder holds files just as a direc-
tory does.

In this chapter you work in your home directory

When you log in on the system, you are working in your home directory. In this chapter that is the
only directory you use: All the files you create in this chapter are in your home directory. Chapter 4
goes into more detail about directories.

52 CHAPTER 3 THE UTILITIES

Is: LiIsTS THE NAMES OF FILES

Using the editor of your choice, create a small file named practice. (A tutorial on the
vim editor appears on page 167 and a tutorial on emacs appears on page 224.) After
exiting from the editor, you can use the Is (list) utility to display a list of the names
of the files in your home directory. In the first command in Figure 3-1, Is lists the
name of the practice file. (You might also see files that the system or a program cre-
ated automatically.) Subsequent commands in Figure 3-1 display the contents of the
file and remove the file. These commands are described next.

cat: DISPLAYS A TEXT FILE

The cat utility displays the contents of a text file. The name of the command is derived
from catenate, which means to join together, one after the other. (Figure 5-8 on
page 141 shows how to use cat to string together the contents of three files.)

A convenient way to display the contents of a file on the screen is by giving the com-
mand cat, followed by a SPACE and the name of the file. Figure 3-1 shows cat displaying
the contents of practice. This figure shows the difference between the Is and cat utilities:
The Is utility displays the name of a file, whereas cat displays the contents of a file.

rm: DELETES A FILE

The rm (remove) utility deletes a file. Figure 3-1 shows rm deleting the file named prac-
tice. After rm deletes the file, Is and cat show that practice is no longer in the directory.

A safer way of removing files

You can use the interactive form of rm to make sure you delete only the file(s) you intend to delete.
When you follow rm with the —i option (see page 35 for a tip on options) and the name of the file
you want to delete, rm prompts you with the name of the file and waits for you to respond with y
(ves) before it deletes the file. It does not delete the file if you respond with a string that begins with
a character other thany. Under some distributions, the —i option is set up by default for the root user:
$ rm -i toollist
rm: remove regular file 'toollist'? y
Optional: You can create an alias (page 352) for rm —i and put it in your startup file (page 89) so
rm always runs in interactive mode.

$ 1s

practice

$ cat practice

This is a small file that I created

with a text editor.

$ rm practice

$ 1s

$ cat practice

cat: practice: No such file or directory
$

Figure 3-1 Using Is, cat, and rm on the file named practice

WORKING WITH FILES 53

The Is utility does not list its filename, and cat says that no such file exists. Use rm care-
fully. Refer to page 953 or give the command info coreutils 'rm invocation' for more
information. If you are running macOS, see “Many Utilities Do Not Respect Apple
Human Interface Guidelines” on page 1076.

less Is more: DISPLAY A TEXT FILE ONE SCREEN AT A TIME

Pagers When you want to view a file that is longer than one screen, you can use either the less
utility or the more utility. Each of these utilities pauses after displaying a screen of text;
press the SPACE bar to display the next screen of text. Because these utilities show one
page at a time, they are called pagers. Although less and more are very similar, they
have subtle differences. At the end of the file, for example, less displays an END mes-
sage and waits for you to press q before returning you to the shell. In contrast, more
returns you directly to the shell. While using both utilities you can press h to display a
Help screen that lists commands you can use while paging through a file. Give the com-
mands less practice and more practice in place of the cat command in Figure 3-1 to
see how these commands work. Use the command less /etc/services instead if you want
to experiment with a longer file. Refer to page 873 for more information on less.

hostname: DISPLAYS THE SYSTEM NAME

The hostname utility displays the name of the system you are working on. Use this
utility if you are not sure that you are logged in on the correct machine.

$ hostname
guava

WORKING WITH FILES

This section describes utilities that copy, move, print, search through, display, sort,
compare, and identify files. If you are running macOS, see “Resource forks” on
page 1071.

Filename completion

After you enter one or more letters of a filename (following a command) on a command line, press
TAB, and the shell will complete as much of the filename as it can. When only one filename starts with
the characters you entered, the shell completes the filename and places a SPACE after it. You can keep
typing or you can press RETURN to execute the command at this point. When the characters you
entered do not uniquely identify a filename, the shell completes what it can and waits for more input.
If pressing TAB does not change the display, press TAB again (bash; page 348) or CONTROL-D (tcsh;
“Word Completion” on page 391) to display a list of possible completions.

cp: COPIES A FILE

The cp (copy) utility (Figure 3-2, next page) makes a copy of a file. This utility can
copy any file, including text and executable program (binary) files. You can use cp to
make a backup copy of a file or a copy to experiment with.

54 CHAPTER3 THE UTILITIES

The cp command line uses the following syntax to specify source and destination
files:

cp source-file destination-file

The source-file is the name of the file that cp will copy. The destination-file is the
name cp assigns to the resulting (new) copy of the file.

The cp command line in Figure 3-2 copies the file named memo to memo.copy. The
period is part of the filename—just another character. The initial Is command shows
that memo is the only file in the directory. After the cp command, a second Is shows
two files in the directory, memo and memo.copy.

Sometimes it is useful to incorporate the date into the name of a copy of a file. The
following example includes the date January 30 (0130) in the copied file:

$ cp memo memo.0130

Although it has no significance to Linux, including the date in this way can help you
find a version of a file you created on a certain date. Including the date can also help
you avoid overwriting existing files by providing a unique filename each day. For
more information refer to “Filenames” on page 86.

Use scp (page 713) or ftp (page 838) when you need to copy a file from one system
to another on a network.

cp can destroy a file

If the destination-file exists before you give a cp command, cp overwrites it. Because cp over-
writes (and destroys the contents of) an existing destination-file without warning, you must take
care not to cause cp to overwrite a file that you need. The cp —i (interactive) option prompts you
before it overwrites a file. See page 35 for a tip on options.

The following example assumes the file named orange.2 exists before you give the cp command.
The user answers y to overwrite the file.

$ cp -i orange orange.2
cp: overwrite 'orange.2'?y

mv: CHANGES THE NAME OF A FILE

The mv (move) utility can rename a file without making a copy of it. The mv command
line specifies an existing file and a new filename using the same syntax as cp:

$ 1s

memo

$ mv memo memo.0130
$ 1s

memo.0130

Figure 3-2 mv renames a file

WORKING WITH FILES 55

mv existing-filename new-filename

The command line in Figure 3-2 changes the name of the file memo to memo.0130.
The initial Is command shows that memo is the only file in the directory. After you
give the mv command, memo.0130 is the only file in the directory. Compare this
result to that of the cp example in Figure 3-2.

The mv utility can be used for more than changing the name of a file; refer to “mv,
cp: Move or Copy Files” on page 97 and to the mv info page.

mv can destroy a file

Just as cp can destroy a file, so can mv. Also like cp, mv has a —i (interactive) option. See the
caution box labeled “cp can destroy a file.”

lpr: PRINTS A FILE

The Ipr (line printer) utility places one or more files in a print queue for printing.
Linux provides print queues so only one job is printed on a given printer at a time.
A queue allows several people or jobs to send output simultaneously to a single
printer with the expected results. For systems that have access to more than one
printer, you can use Ipstat —p to display a list of available printers. Use the —P option
to instruct lpr to place the file in the queue for a specific printer—even one that is con-
nected to another system on the network. The following command prints the file
named report:

$ 1pr report

Because this command does not specify a printer, the output goes to the default
printer, which is the printer when you have only one printer.

The next command line prints the same file on the printer named mailroom:
$ 1pr -P mailroom report

You can send more than one file to the printer with a single command. The following
command line prints three files on the printer named laser1:

$ 1pr -P laserl 05.txt 108.txt 12.txt

$ 1s

memo

$ cp memo memo.copy
$ 1s

memo memo.copy

Figure 3-3 cp copies a file

56 CHAPTER 3 THE UTILITIES

lpg You can see which jobs are in the print queue by giving an Ipstat —o command or by
using the Ipq utility:

$ Tpq

1p is ready and printing

Rank Owner Job Files Total Size
active max 86 (standard input) 954061 bytes

lprm In this example, Max has one job that is being printed; no other jobs are in the queue.
You can use the job number (86 in this case) with the Iprm utility to remove the job
from the print queue and stop it from printing:

$ 1prm 86

grep: SEARCHES FOR A STRING

The grep! utility searches through one or more files to see whether any contain a
specified string of characters. This utility does not change the file it searches but
simply displays each line that contains the string.

The grep command in Figure 3-4 searches through the memo file for lines that contain
the string credit and displays the single line that meets this criterion. If memo contained
such words as discredit, creditor, or accreditation, grep would have displayed those
lines as well because they contain the string it was searching for. The —-w (words) option
causes grep to match only whole words. Although you do not need to enclose the string
you are searching for in single quotation marks, doing so allows you to put SPACEs and
special characters in the search string.

$ cat memo

Helen:

In our meeting on June 6 we
discussed the issue of credit.
Have you had any further thoughts
about it?

Max

$ grep 'credit' memo
discussed the issue of credit.

Figure 3-4 grep searches for a string

1. Originally the name grep was a play on an ed (an original UNIX editor, available on most distributions)
command: g/re/p. In this command g stands for global, re is a regular expression delimited by slashes, and
p means print.

WORKING WITH FILES 57

The grep utility can do much more than search for a simple string in a single file. Refer
to page 853 and Appendix A for more information.

head: DISPLAYS THE BEGINNING OF A FILE

By default the head utility displays the first ten lines of a file. You can use head to help
you remember what a particular file contains. For example, if you have a file named
months that lists the 12 months of the year in calendar order, one to a line, then head
displays Jan through Oct (Figure 3-5).

This utility can display any number of lines, so you can use it to look at only the first
line of a file, at a full screen, or even more. To specify the number of lines displayed,
include a hyphen followed by the number of lines you want head to display. For
example, the following command displays only the first line of months:

$ head -1 months
Jan

The head utility can also display parts of a file based on a count of blocks or characters
rather than lines. Refer to page 861 for more information on head.

tail: DISPLAYS THE END OF A FILE

The tail utility is similar to head but by default displays the last ten lines of a file.
Depending on how you invoke it, this utility can display fewer or more than ten lines.
Alternatively, you can use a count of blocks or characters rather than lines to display

$ head months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

$ tail -5 months
Aug
Sep
Oct
Nov
Dec

Figure 3-5 head displays the first ten lines of a file

58 CHAPTER 3 THE UTILITIES

parts of a file. The tail command in Figure 3-5 displays the last five lines (Aug through

Dec) of the months file.

You can monitor lines as they are added to the end of the growing file named logfile

by using the following command:

$ tail -f logfile

Press the interrupt key (usually CONTROL-C) to stop tail and display the shell prompt.

Refer to page 992 for more information on tail.

sort: DISPLAYS A FILE IN ORDER

The sort utility displays the contents of a file in order by lines; it does not change the

original file.

Figure 3-6 shows cat displaying the file named days, which contains the name of each
day of the week on a separate line in calendar order. The sort utility then displays the

file in alphabetical order.

The sort utility is useful for putting lists in order. The —u option generates a sorted
list in which each line is unique (no duplicates). The —n option puts a list of numbers

in numerical order. Refer to page 969 for more information on sort.

unigq: REMOVES DUPLICATE LINES FROM A FILE

The uniq (unique) utility displays a file, skipping adjacent duplicate lines; it does not
change the original file. If a file contains a list of names and has two successive entries

for the same person, uniq skips the extra line (Figure 3-7).

$ cat days
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

$ sort days
Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

Figure 3-6 sort displays the lines of a file in order

WORKING WITH FILES 59

If a file is sorted before it is processed by unig, this utility ensures that no two lines
in the file are the same. (Of course, sort can do that all by itself with the —u option.)
Refer to page 1023 for more information on unig.

diff: ComPARES Two FILES

The diff (difference) utility compares two files and displays a list of the differences
between them. This utility does not change either file; it is useful when you want to com-
pare two versions of a letter or a report, or two versions of the source code for a
program.

The diff utility with the —u (unified output format) option first displays two lines
indicating which of the files you are comparing will be denoted by a plus sign (+)
and which by a minus sign (-). In Figure 3-8, a minus sign indicates the colors.1 file;
a plus sign indicates the colors.2 file.

$ cat dups
Cathy

Fred

Joe

John

Mary

Mary

Paula

$ uniq dups
Cathy

Fred

Joe

John

Mary

Paula

Figure 3-7 unig removes duplicate lines

$ diff -u colors.1l colors.2
--- colors.1 2018-04-05 10:12:12.322528610 -0700
+++ colors.2 2018-04-05 10:12:18.420531033 -0700
@@ -1,6 +1,5 @@
red
+bTue
green
yellow
-pink
-purple
orange

Figure 3-8 diff displaying the unified output format

60 CHAPTER 3 THE UTILITIES

The diff —-u command breaks long, multiline text into hunks. Each hunk is preceded
by a line starting and ending with two at signs (@@). This hunk identifier indicates the
starting line number and the number of lines from each file for this hunk. In Figure 3-8,
the hunk covers the section of the colors.1 file (indicated by a minus sign) from the first
line through the sixth line. The +1,5 then indicates the hunk covers colors.2 from the
first line through the fifth line.

Following these header lines, diff —u displays each line of text with a leading minus
sign, a leading plus sign, or a SPACE. A leading minus sign indicates the line occurs only
in the file denoted by the minus sign. A leading plus sign indicates the line occurs only
in the file denoted by the plus sign. A line that begins with a SPACE (neither a plus sign
nor a minus sign) occurs in both files in the same location. Refer to page 795 for more
information on diff.

file: IDENTIFIES THE CONTENTS OF A FILE

You can use the file utility to learn about the contents of any file on a Linux system
without having to open and examine the file yourself. In the following example, file
reports that letter_e.bz2 contains data that was compressed using the bzip2 utility
(page 64):

$ file letter_e.bz2
letter_e.bz2: bzip2 compressed data, block size = 900k

Next, file reports on two more files:

$ file memo zach.jpg
memo: ASCIT text
zach.jpg: JPEG image data, ... resolution (DPI), 72 x 72

Refer to page 820 for more information on file.

| (PIPELINE): COMMUNICATES BETWEEN PROCESSES

Because pipelines are integral to the functioning of a Linux system, this chapter
introduces them for use in examples. Pipelines are covered in detail beginning on
page 145. Pipelines do not work with macOS resource forks; they work with data
forks only.

A pipeline (denoted by a pipe symbol that is written as a vertical bar [l] on the com-
mand line and appears as a solid or broken vertical line on a keyboard) takes the
output of one utility and sends that output as input to another utility. More accu-
rately, a pipeline takes standard output of one process and redirects it to become
standard input of another process. See page 137 for more information on standard
output and standard input.

FOUR MORE UTILITIES 61

Some utilities, such as head, can accept input from a file named on the command line
or, via a pipeline, from standard input. In the following command line, sort processes
the months file (Figure 3-5, page 57); using a pipeline, the shell sends the output from
sort to the input of head, which displays the first four months of the sorted list:

$ sort months | head -4
Apr
Aug
Dec
Feb

wc The next command line displays the number of files in a directory. The wec (word count)
utility with the —w (words) option displays the number of words in its standard input
or in a file you specify on the command line:

$1s | wc -w
14

You can also use a pipeline to send output of a program to the printer:

$ tail months | 1pr

FOUR MORE UTILITIES

The echo and date utilities are two of the most frequently used members of the large
collection of Linux utilities. The script utility records part of a session in a file, and
unix2dos makes a copy of a Linux text file that can be read on a machine running
either Windows or macOS.

echo: DISPLAYS TEXT

The echo utility copies the characters you type on the command line following echo
to the screen. Figure 3-9 shows some echo commands. The last command shows what
the shell does with an unquoted asterisk (%) on the command line: It expands the
asterisk into a list of filenames in the directory.

$ 1s

memo memo.0714 practice
$ echo Hi

Hi

$ echo This is a sentence.
This is a sentence.

$ echo star: =

star: memo memo.@714 practice

$

Figure 3-9 echo copies the command line (but not the word echo) to the screen

62 CHAPTER 3 THE UTILITIES

optional

The echo utility is a good tool for learning about the shell and other Linux utilities.
Some examples on page 154 use echo to illustrate how special characters, such as the
asterisk, work. Throughout Chapters 5, 8, and 10, echo helps explain how shell vari-
ables work and how you can send messages from shell scripts to the screen. Refer to
page 812 for more information on echo.

You can use echo to create a simple file by redirecting its output to a file:

$ echo 'My new file.' > myfile
$ cat myfile
My new file.

The greater than (>) sign tells the shell to redirect the output of echo to the file named
myfile instead of to the screen. For more information refer to “Redirecting Standard
Output” on page 140.

date: DISPLAYS THE TIME AND DATE

The date utility displays the current date and time:

$ date
Tue Apr 3 10:14:41 PDT 2018

The following example shows how you can specify the format and contents of the
output of date:

$ date +"%A %B %d"
Tuesday April 03

Refer to page 787 for more information on date.

scfipt: RECORDS A SHELL SESSION

The script utility records all or part of a login session, including your input and the
system’s responses. This utility is useful only from character-based devices, such as a
terminal or a terminal emulator. It does capture a session with vim; however, because
vim uses control characters to position the cursor and display different typefaces, such
as bold, the output will be difficult to read and might not be useful. When you cat a
file that has captured a vim session, the session quickly passes before your eyes.

By default script captures the session in a file named typescript. To specify a different
filename, follow the script command with a SPACE and the filename. To append to a
file, use the —a option after script but before the filename; otherwise, script overwrites
an existing file. Following is a session being recorded by script:

$ script

Script started, file is typescript

$ 1s -1 /bin | head -5

-rwxr-xr-x. 1 root root 123 02-07 17:32 alsaunmute
-rwxr-xr-x. 1 root root 25948 02-08 03:46 arch
Trwxrwxrwx. 1 root root 4 02-25 16:52 awk -> gawk

FOUR MORE UTILITIES 63

unix2dos:
FORMAT

unix2dos,
unix2mac

dos2unix,
mac2unix

-rwxr-xr-x. 1 root root 25088 02-08 03:46 basename
$ exit

exit

Script done, file 1is typescript

Use the exit command to terminate a script session. You can then view the file you created
using cat, less, more, or an editor. Following is the file created by the preceding script
command:

$ cat typescript
Script started on Tue 03 Apr 2018 10:16:36 AM PDT
$ 1s -1 /bin | head -5

-rwxr-xr-x. 1 root root 123 02-07 17:32 alsaunmute
-rwxr-xr-x. 1 root root 25948 02-08 03:46 arch
Trwxrwxrwx. 1 root root 4 02-25 16:52 awk -> gawk
-rwxr-xr-x. 1 root root 25088 02-08 03:46 basename

$ exit

exit

Script done on Tue 03 Apr 2018 10:16:50 AM PDT

If you will be editing the file, you can use dos2unix (next) to eliminate from the
typescript file the AM characters that appear at the ends of the lines. Refer to the
script man page for more information.

CONVERTS LINUX FILES TO WINDOWS AND MACOS

If you want to share a text file you created on a Linux system with someone on a Win-
dows or macOS system, you need to convert the file for the person on the other
system to read it easily. The unix2dos utility converts a Linux text file so it can be read
on a Windows machine; use unix2mac to convert a Linux file so it can be read on a
Macintosh system. This utility is part of the dos2unix software package. Some dis-
tributions use todos in place of unix2dos; todos is part of the tofrodos software
package and has no Macintosh-specific conversion utility. If you are using unix2dos,
enter the following command to convert a file named memo.txt (created with a text
editor) to a DOS-format file (use unix2mac to convert to a Macintosh-format file):

$ unix2dos memo.txt

You can now email the file as an attachment to someone on a Windows or macOS
system. This utility overwrites the original file.

The dos2unix (or fromdos) utility converts Windows files so they can be read on a
Linux system (use mac2unix to convert from a Macintosh system):

$ dos2unix memo.txt

See the dos2unix man page for more information.

64 CHAPTER 3 THE UTILITIES

tr

You can also use tr (translate; page 1014) to change a Windows or macOS text file
into a Linux text file. In the following example, the —d (delete) option causes tr to
remove RETURNs (represented by \r) as it makes a copy of the file:

$ cat memo | tr -d '\r' > memo.txt

The greater than (>) symbol redirects the standard output of tr to the file named
memo.txt. For more information refer to “Redirecting Standard Output” on
page 140. Converting a file the other way without using unix2dos is not as easy.

COMPRESSING AND ARCHIVING FILES

Large files use more disk space and take longer to transfer over a network than
smaller files. To reduce these factors you can compress a file without losing any of
the information it holds. Similarly, a single archive of several files packed into a larger
file is easier to manipulate, upload, download, and email than multiple files. You
might frequently download compressed, archived files from the Internet. The utilities
described in this section compress and decompress files, and pack and unpack
archives.

bzip2: COMPRESSES A FILE

.bz2 filename
extension

The bzip2 utility compresses a file by analyzing it and recoding it more efficiently. The
new version of the file looks completely different. In fact, because the new file con-
tains many nonprinting characters, you cannot view it directly. The bzip2 utility
works particularly well on files that contain a lot of repeated information, such as
text and image data, although most image data is already in a compressed format.

The following example shows a boring file. Each of the 8,000 lines of the letter_e file
contains 72 €’s and a NEWLINE character that marks the end of the line. The file occupies
more than half a megabyte of disk storage.

$1s -1
-rw-rw-r--. 1 sam pubs 584000 03-01 22:31 letter_e

The -1 (long) option causes Is to display more information about a file. Here it shows
that letter_e is 584,000 bytes long. The —v (verbose) option causes bzip2 to report
how much it was able to reduce the size of the file. In this case it shrank the file by
99.99 percent:

$ bzip2 -v letter_e

letter_e: 11680.00:1, 0.001 bits/byte, 99.99% saved, 584000 in, 50 out.
$1s -1

-rw-rw-r--. 1 sam pubs 50 03-01 22:31 letter_e.bz2

Now the file is only 50 bytes long. The bzip2 utility also renamed the file, appending
.bz2 to its name. This naming convention reminds you that the file is compressed; you
would not want to display or print it, for example, without first decompressing it.

COMPRESSING AND ARCHIVING FILES 65

The bzip2 utility does not change the modification date associated with the file, even
though it completely changes the file’s contents.

Keep the original file by using the -k option

The bzip2 utility and its counterpart, bunzip2, remove the original file when they compress or
decompress a file. Use the —k (keep) option to keep the original file.

In the following, more realistic example, the file zach.jpg contains a computer graphics
image:

$1s -1
-rw-r--r--. 1 sam pubs 33287 03-01 22:40 zach.jpg

The bzip2 utility can reduce the size of the file by only 28 percent because the image
is already in a compressed format:

$ bzip2 -v zach.jpg
zach.jpg: 1.391:1, 5.749 bits/byte, 28.13% saved, 33287 1in, 23922 out.

$1s -1
-rw-r--r--. 1 sam pubs 23922 03-01 22:40 zach.jpg.bz2

Refer to page 750, www.bzip.org, and the Bzip2 mini-HOWTO (see page 41 for
instructions on obtaining this document) for more information.

bzcat AND bunzip2: DECOMPRESS A FILE

bzcat

bunzip

bzip2recover

The bzcat utility displays a file that has been compressed with bzip2. The equivalent
of cat for .bz2 files, bzcat decompresses the compressed data and displays the decom-
pressed data. Like cat, bzcat does not change the source file. The pipe symbol in the
following example redirects the output of bzcat so that instead of being displayed on
the screen it becomes the input to head, which displays the first two lines of the file:

$ bzcat letter_e.bz2 | head -2
ceceeeceeeeceeEeEEEEERRERERREREEEERERREREREEREREEREREEREECRREREREEREREEEE
eeeeceeeceeeeeeeeeEEEEREEREREEREREEREREEREREEREREEREREEEEEEREEREREEREREEEE

After bzcat is run, the contents of letter_e.bz2 is unchanged; the file is still stored on
the disk in compressed form.

The bunzip2 utility restores a file that has been compressed with bzip2:

$ bunzip2 letter_e.bz2

$ 1s -1

-rw-rw-r--. 1 sam pubs 584000 03-01 22:31 Tetter_e
$ bunzip2 zach.jpg.bz2

$ 1s -1

-rw-r--r--. 1 sam pubs 33287 03-01 22:40 zach.jpg

The bzip2recover utility supports limited data recovery from media errors. Give the
command bzip2recover followed by the name of the compressed, corrupted file from
which you want to try to recover data.

http://www.bzip.org

66 CHAPTER 3 THE UTILITIES

gzip: COMPRESSES A FILE

gunzip and zcat

compress

The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and operation
are very similar to those of bzip2. A file compressed by gzip is marked with a .gz file-
name extension. Linux stores manual pages in gzip format to save disk space;
likewise, files you download from the Internet are frequently in gzip format. Use gzip,
gunzip, and zcat just as you would use bzip2, bunzip2, and bzcat, respectively. Refer to
page 858 for more information on gzip.

The compress utility can also compress files, albeit not as well as gzip. This utility
marks a file it has compressed by adding .Z to its name.

gzip versus zip

Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack
and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to a Windows system. The zip utility constructs a zip archive,
whereas unzip unpacks zip archives. The zip and unzip utilities are compatible with PKZIP, a
Windows program that compresses and archives files.

tar: PACKS AND UNPACKS ARCHIVES

The tar utility performs many functions. Its name is short for tape archive, as its orig-
inal function was to create and read archive and backup tapes. Today it is used to
create a single file (called a tar file, archive, or tarball) from multiple files or directory
hierarchies and to extract files from a tar file. The cpio (page 776) and pax (page 932)
utilities perform a similar function.

In the following example, the first Is shows the sizes of the files g, b, and d. Next, tar
uses the —c (create), —v (verbose), and —f (write to or read from a file) options to create
an archive named all.tar from these files. Each line of output displays the name of the
file tar is appending to the archive it is creating.

The tar utility adds overhead when it creates an archive. The next command shows
that the archive file all.tar occupies more than 9,700 bytes, whereas the sum of the
sizes of the three files is about 6,000 bytes. This overhead is more appreciable on
smaller files, such as the ones in this example:

$1s -1 gbd

-rw-r--r--. 1 zach other 1178 08-20 14:16 b

-rw-r--r--. 1 zach zach 3783 08-20 14:17 d
-rw-r--r--. 1 zach zach 1302 08-20 14:16 g

$ tar -cvf all.tar g b d
¢]
b
d

$ 1s -1 all.tar
-rw-r--r--. 1 zach zach 9728 08-20 14:17 all.tar

COMPRESSING AND ARCHIVING FILES 67

$ tar -tvf all.tar

-rw-r--r-- zach /zach 1302 2018-08-20 14:16 g
-rw-r--r-- zach /other 1178 2018-08-20 14:16 b
-rw-r--r-- zach /zach 3783 2018-08-20 14:17 d

The final command in the preceding example uses the —t option to display a table of
contents for the archive. Use —x in place of —t to extract files from a tar archive. Omit
the —v option if you want tar to do its work silently.?

You can use bzip2, compress, or gzip to compress tar files, making them easier to store
and handle. Many files you download from the Internet will already be in one of these
formats. Files that have been processed by tar and compressed by bzip2 frequently
have a filename extension of .tar.bz2 or .tbz. Those processed by tar and gzip have an
extension of .tar.gz or .tgz, whereas files processed by tar and compress use .tar.Z as
the extension.

You can unpack a tarred and gzipped file in two steps. (Follow the same procedure if
the file was compressed by bzip2, but use bunzip2 instead of gunzip.) The next example
shows how to unpack the GNU make utility after it has been downloaded
(ftp.gnu.org/pub/gnu/make/make-3.82.tar.gz):

$ 1s -1 mak:
-rw-r--r--. 1 sam pubs 1712747 04-05 10:43 make-3.82.tar.gz

$ gunzip mak:
$ 1s -1 mak:
-rw-r--r--. 1 sam pubs 6338560 04-05 10:43 make-3.82.tar

$ tar -xvf maks
make-3.82/
make-3.82/vmsfunctions.c
make-3.82/getopt.h
make-3.82/make.1

make-3.82/README.0S2
make-3.82/remote-cstms.c

The first command lists the downloaded tarred and gzipped file: make-3.82.tar.gz
(about 1.7 megabytes). The asterisk (%) in the filename matches any characters
in any filenames (page 154), so Is displays a list of files whose names begin with
mak; in this case there is only one. Using an asterisk saves typing and can improve
accuracy with long filenames. The gunzip command decompresses the file and
yields make-3.82.tar (no .gz extension), which is about 6.3 megabytes. The tar com-
mand creates the make-3.82 directory in the working directory and unpacks the files
into it.

2. Although the original UNIX tar did not use a leading hyphen to indicate an option on the command
line, the GNU/Linux version accepts hyphens but works as well without them. This book precedes tar
options with a hyphen for consistency with most other utilities.

http://ftp.gnu.org/pub/gnu/make/make-

68 CHAPTER 3 THE UTILITIES

optional

$ 1s -1d mak:=
drwxr-xr-x. 8 sam pubs 4096 2018-07-27 make-3.82
-rw-r--r--. 1 sam pubs 6338560 04-05 10:43 make-3.82.tar

$ 1s -1 make-3.82

-rw-r--r--. 1 sam pubs 53838 2018-07-27 ABOUT-NLS
-rw-r--r--. 1 sam pubs 4783 2018-07-12 acinclude.m4
-rw-r--r--. 1 sam pubs 36990 2018-07-27 aclocal.m4
-rw-r--r--. 1 sam pubs 14231 2002-10-14 alloca.c

-rw-r--r--. 1 sam pubs 18391 2018-07-12 vmsjobs.c
-rw-r--r--. 1 sam pubs 17905 2018-07-19 vpath.c
drwxr-xr-x. 6 sam pubs 4096 2018-07-27 w32

After tar extracts the files from the archive, the working directory contains two files
whose names start with mak: make-3.82.tar and make-3.82. The —d (directory) option
causes Is to display only file and directory names, not the contents of directories as it
normally does. The final Is command shows the files and directories in the make-3.82
directory. Refer to page 995 for more information on tar.

tar: the —x option might extract a lot of files

Some tar archives contain many files. To list the files in the archive without unpacking them, run
tar with the tf options followed by the name of the tar file. In some cases you might want to create
a new directory (mkdir [page 93]), move the tar file into that directory, and expand it there. That
way the unpacked files will not mingle with existing files, and no confusion will occur. This strategy
also makes it easier to delete the extracted files. Depending on how they were created, some tar
files automatically create a new directory and put the files into it; the =t option indicates where tar
will place the files you extract.

tar: the —x option can overwrite files

The =x option to tar overwrites a file that has the same filename as a file you are extracting. Follow
the suggestion in the preceding caution box to avoid overwriting files.

You can combine the gunzip and tar commands on one command line using a pipe
symbol (1), which redirects the output of gunzip so it becomes the input to tar:

$ gunzip -c make-3.82.tar.gz | tar -xvf -

The —c option causes gunzip to send its output through the pipeline instead of creating
a file. The final hyphen (=) causes tar to read from standard input. Refer to “Pipelines”
(page 145), gzip (pages 66 and 858), and tar (page 995) for more information about
how this command line works.

A simpler solution is to use the —z option to tar. This option causes tar to call gunzip (or
gzip when you are creating an archive) directly and simplifies the preceding command
line to

$ tar -xvzf make-3.82.tar.gz

In a similar manner, the —j option calls bzip2 or bunzip2.

LOCATING UTILITIES 69

LOCATING UTILITIES

The whereis and locate utilities can help you find a command whose name you have
forgotten or whose location you do not know. When multiple copies of a utility or
program are present, which tells you which copy you will run. The locate utility
searches for files on the local system.

which AND whereis: LOCATE A UTILITY

which

whereis

When you give Linux a command, the shell searches a list of directories for a program
with that name. This list of directories is called a search path. For information on
how to change the search path, refer to “PATH: Where the Shell Looks for Programs”
on page 318. If you do not change the search path, the shell searches only a standard
set of directories and then stops searching. However, other directories on the system
might also contain useful utilities.

The which utility locates utilities by displaying the full pathname of the file for the util-
ity. (Chapter 4 contains more information on pathnames and the structure of the
Linux filesystem.) The local system might include several utilities that have the same
name. When you type the name of a utility, the shell searches for the utility in your
search path and runs the first one it finds. You can find out which copy of the utility
the shell will run by using which. In the following example, which reports the location
of the tar utility:

$ which tar
/bin/tar

The which utility can be helpful when a utility seems to be working in unexpected
ways. By running which, you might discover that you are running a nonstandard
version of a tool or a different one from the one you expected. (“Important Stan-
dard Directories and Files” on page 98 provides a list of standard locations for
executable files.) For example, if tar is not working properly and you find that you
are running /usr/local/bin/tar instead of /bin/tar, you might suspect the local ver-
sion is broken.

The whereis utility searches for files related to a utility by looking in standard locations
instead of using your search path. For example, you can find the locations for files
related to tar:

$ whereis tar
tar: /bin/tar /usr/share/man/manl/tar.l.gz

70 CHAPTER 3 THE UTILITIES

In this example whereis finds two references to tar: the tar utility file and the (compressed)
tar man page.

which versus whereis

Given the name of a utility, which looks through the directories in your search path (page 318) in
order and locates the utility. If your search path includes more than one utility with the specified
name, which displays the name of only the first one (the one you would run).

The whereis utility looks through a list of standard directories and works independently of your
search path. Use whereis to locate a binary (executable) file, any manual pages, and source code
for a program you specify; whereis displays all the files it finds.

which, whereis, and builtin commands

Both the which and whereis utilities report only the names for utilities as they are found on the
disk; they do not report shell builtins (utilities that are built into a shell; page 157). When you use
whereis to try to find where the echo command (which exists as both a utility program and a
shell builtin) is kept, it displays the following information:

$ whereis echo

echo: /bin/echo /usr/share/man/manl/echo.l.gz
The whereis utility does not display the echo builtin. Even the which utility reports the wrong
information;

$ which echo
/bin/echo

Under bash you can use the type builtin (page 489) to determine whether a command is a builtin:

$ type echo
echo is a shell builtin

locate: SEARCHES FOR A FILE

The locate utility (locate package; some distributions use mlocate) searches for files
on the local system:

$ locate 1init
/boot/initramfs-2.6.38-0.rc5.gitl.1.fcl15.1686.1img
/boot/initrd-plymouth.img

/etc/gdbinit

/etc/gdbinit.d

/etc/init

/etc/init.d

Before you can use locate (mlocate), the updatedb utility must build or update the locate
(mlocate) database. Typically the database is updated once a day by a cron script
(page 781).

DISPLAYING USER AND SYSTEM INFORMATION 71

DISPLAYING USER AND SYSTEM INFORMATION

This section covers utilities that provide information about who is using the system,
what those users are doing, and how the system is running.

To find out who is using the local system, you can employ one of several utilities that
vary in the details they provide and the options they support. The oldest utility, who,
produces a list of users who are logged in on the local system, the device each person
is using, and the time each person logged in.

The w and finger utilities show more detail, such as each user’s full name and the com-
mand line each user is running. The finger utility can retrieve information about users
on remote systems. Table 3-1 on page 74 summarizes the output of these utilities.

who: LISTS USERS ON THE SYSTEM

The who utility displays a list of users who are logged in on the local system. In
Figure 3-10 the first column who displays shows that Sam, Max, and Zach are
logged in. (Max is logged in from two locations.) The second column shows the
name of the device that each user’s terminal, workstation, or terminal emulator is
connected to. The third column shows the date and time the user logged in. An
optional fourth column shows (in parentheses) the name of the system a remote
user logged in from.

The information who displays is useful when you want to communicate with a user
on the local system. When the user is logged in, you can use write (page 75) to estab-
lish communication immediately. If who does not list the user or if you do not need
to communicate immediately, you can send email to that person (page 77).

If the output of who scrolls off the screen, you can redirect the output using a pipe
symbol (I; page 60) so it becomes the input to less, which displays the output one
screen at a time. You can also use a pipe symbol to redirect the output through grep
to look for a specific name.

If you need to find out which terminal you are using or what time you logged in, you
can use the command who am i:

$ who am 1

max pts/4 2018-07-25 17:27 (guava)
$ who

sam tty4 2018-07-25 17:18

max tty2 2018-07-25 16:42

zach ttyl 2018-07-25 16:39

max pts/4 2018-07-25 17:27 (guava)

Figure 3-10 who lists who is logged in

72 CHAPTER 3 THE UTILITIES

finger: LISTS USERS ON THE SYSTEM

The finger utility displays a list of users who are logged in on the local system and, in
some cases, information about remote systems and users. In addition to usernames, fin-
ger supplies each user’s full name along with information about which device the user’s
terminal is connected to, how recently the user typed something on the keyboard, when
the user logged in, and contact information. If the user has logged in over the network,
the name of the remote system is shown as the user’s office. For example, in Figure 3-11
Max is logged in from the remote system named guava. The asterisks (*) in front of
the device names in the Tty column indicate the user has blocked messages sent directly
to his terminal (refer to “mesg: Denies or Accepts Messages” on page 76).

finger can be a security risk

On systems where security is a concern, the system administrator might disable finger because
it can reveal information that can help a malicious user break into a system. macOS disables
remote finger support by default.

You can also use finger to learn more about an individual by specifying a username
on the command line. In Figure 3-12 on the next page, finger displays detailed infor-
mation about Max: He is logged in and actively using one of his terminals (tty2), and
he has not typed at his other terminal (pts/4) for 3 minutes and 7 seconds. You also
learn from finger that if you want to set up a meeting with Max, you should contact
Sam at extension 1693.

$ finger

Login Name Tty Idle Login Time Office ...
max Max Wild xtty?2 Jul 25 16:42

max Max Wild pts/4 3 Jul 25 17:27 (guava)
sam Sam the Great =xtty4 29 Jul 25 17:18

zach Zach Brill =ttyl 1:07 Jul 25 16:39

Figure 3-11 finger I: lists who is logged in

$ finger max
Login: max Name: Max Wild
Directory: /home/max Shell: /bin/tcsh
On since Wed Jul 25 16:42 (PDT) on tty2 (messages off)
On since Wed Jul 25 17:27 (PDT) on pts/4 from guava
3 minutes 7 seconds idle

New mail received Wed Jul 25 17:16 2018 (PDT)

Unread since Wed Jul 25 16:44 2018 (PDT)
Plan:
I will be at a conference in Hawaii next week.
If you need to see me, contact Sam, x1693.

Figure 3-12 finger II: lists details about one user

DiSPLAYING USER AND SYSTEM INFORMATION 73

.plan and .project Most of the information in Figure 3-12 was collected by finger from system files. The
information shown after the heading Plan:, however, was supplied by Max. The finger
utility searched for a file named .plan in Max’s home directory and displayed its con-
tents. (Filenames that begin with a period, such as .plan, are not normally listed by
Is and are called hidden filenames [page 88].)

You might find it helpful to create a .plan file for yourself; it can contain any informa-
tion you choose, such as your schedule, interests, phone number, or address. In a similar
manner, finger displays the contents of the .project and .pgpkey files in your home
directory. If Max had not been logged in, finger would have reported only his user infor-
mation, the last time he logged in, the last time he read his email, and his plan.

You can also use finger to display a user’s username. For example, on a system with
a user named Helen Simpson, you might know that Helen’s last name is Simpson but
might not guess her username is hls. The finger utility, which is not case sensitive, can
search for information on Helen using her first or last name. The following com-
mands find the information you seek as well as information on other users whose
names are Helen or Simpson:

$ finger HELEN
Login: hls Name: Helen Simpson.

$ finger simpson
Login: hls Name: Helen Simpson.

uptime: DISPLAYS SYSTEM LOAD AND DURATION INFORMATION

The uptime utility displays a single line that includes the time of day, the period of time
the computer has been running (in days, hours, and minutes), the number of users
logged in, and the load average (how busy the system is). The three load average num-
bers represent the number of jobs waiting to run, averaged over the past 1, 5, and 15
minutes.

$ uptime
09:49:14 up 2 days, 23:13, 3 users, Toad average: 0.00, 0.01, 0.05

w: LISTS USERS ON THE SYSTEM

The first line the w utility displays is the same as the output of uptime (above). Following
that line, w displays a list of the users who are logged in. As discussed in the section on
who, the information that w displays is useful when you want to communicate with
someone at your installation.

The first column in Figure 3-13 shows that Max, Zach, and Sam are logged in. The
second column shows the name of the device file each user’s terminal is connected to.
The third column shows the system that a remote user is logged in from. The fourth
column shows the time each user logged in. The fifth column indicates how long each
user has been idle (how much time has elapsed since the user pressed a key on the
keyboard). The next two columns identify how much computer processor time each

74 CHAPTER 3 THE UTILITIES

user has used during this login session and on the task that user is running. The last
column shows the command each user is running. Table 3-1 compares the w, who, and
finger utilities.

$w

17:47:35 up 1 day, 8:10, 6 users, Tload average: 0.34, 0.23, 0.26
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

sam ttyd - 17:18 29:14m 0.20s 0.00s vi memo
max tty2 - 16:42 0.00s 0.20s 0.07s w
zach ttyl - 16:39 1:07 0.05s 0.00s run_bdgt
max pts/4 guava 17:27 3:10m 0.24s 0.24s -bash

Figure 3-13 The w utility

Comparison of w, who, and finger

Information displayed w who finger
Username X X X
Terminal-line identification (tty) X X X
Login time (and day for old logins) X

Login date and time X X
Idle time X X
Program the user is executing X

Location the user logged in from X
CPU time used X

Full name (or other information from /etc/passwd) X
User-supplied vanity information X
System uptime and load average X

free: DISPLAYS MEMORY USAGE INFORMATION

The free utility displays the amount of physical (RAM) and swap (swap space on the
disk; page 1127) memory in the local system. It displays columns for total, used, and
free memory as well as for kernel buffers. The column labeled shared is obsolete. This
utility is not available under macOS; vm_stat performs a similar function.

In the following example, the —m option causes free to display memory sizes in mega-
bytes and the —t option adds the line labeled Total to the end of the output. You can
cause free to display memory sizes in gigabytes (-g), megabytes (-m), kilobytes (-k;
the default), or bytes (-b). See the free man page for additional options.

COMMUNICATING WITH OTHER USERS 75

$ free -mt

total used free shared buffers cached
Mem: 2013 748 1264 0 110 383
-/+ buffers/cache: 254 1759
Swap: 2044 0 2044
Total: 4058 748 3309

One of the ways Linux takes advantage of free memory is to allocate memory it is
not otherwise using to buffers (page 1087) and cache (page 1088). Thus, the value
on the Mem line in the free column will be small and is not representative of the total
available memory when the kernel is working properly. As the kernel needs more
memory, it reallocates memory it had allocated to buffers and cache.

The —/+ buffers/cache line gives values assuming memory used for buffers and cache
is free memory. The value in the used column on this line assumes buffers and cache
(110 + 383 =493 on the Mem line) are freed; thus, the value in the used column is
254 (~748 — 493) while the value in the free column value increases to 1759
(~1,264 + 493). Unlike the value in the free column on the Mem line, as the value
in the free column on the —/+ buffers/cache line approaches zero, the system is truly
running out of memory.

The Swap line displays the total, used, and free amounts of swap space.

COMMUNICATING WITH OTHER USERS

The utilities discussed in this section enable you to exchange messages and files with
other users either interactively or through email.

write: SENDS A MESSAGE

The write utility sends a message to another user who is logged in. When you and
another user use write to send messages to each other, you establish two-way
communication. Initially a write command (Figure 3-14) displays a banner on the
other user’s terminal, saying that you are about to send a message.

The syntax of a write command line is
write username [terminal]

The username is the username of the user you want to communicate with. The terminal
is an optional device name that is useful if the user is logged in more than once. You can
display the usernames and device names of all users who are logged in on the local system
by using who, w, or finger.

$ write max
Hi Max, are you there? o

Figure 3-14 The write utility I

76 CHAPTER 3 THE UTILITIES

To establish two-way communication with another user, you and the other user must
each execute write, specifying the other’s username as the username. The write utility
then copies text, line by line, from one keyboard/display to the other (Figure 3-15).
Sometimes it helps to establish a convention, such as typing o (for “over”) when you
are ready for the other person to type and typing oo (for “over and out”) when you
are ready to end the conversation. When you want to stop communicating with the
other user, press CONTROL-D at the beginning of a line. Pressing CONTROL-D tells write to quit,
displays EOF (end of file) on the other user’s terminal, and returns you to the shell.
The other user must do the same.

If the Message from banner appears on your screen and obscures something you are
working on, press CONTROL-L or CONTROL-R to refresh the screen and remove the banner.
Then you can clean up, exit from your work, and respond to the person who is writ-
ing to you. You have to remember who is writing to you, however, because the banner
will no longer appear on the screen.

mesg: DENIES OR ACCEPTS MESSAGES

If messages to your screen are blocked, give the following mesg command to allow
other users to send you messages:

$ mesg y

If Max had not given this command before Zach tried to send him a message, Zach
might have seen the following message:

$ write max
write: max has messages disabled

You can block messages by entering mesg n. Give the command mesg by itself to display
is y (for “yes, messages are allowed”) or is n (for “no, messages are not allowed”).

If you have messages blocked and you write to another user, write displays the following
message because even if you are allowed to write to another user, the user will not be
able to respond to you:

$ write max
write: you have write permission turned off.

$ write max
Hi Max, are you there? o

Message from max@guava on pts/4 at 18:23 ...
Yes Zach, I'm here. o

Figure 3-15 The write utility II

CHAPTER SUMMARY 77

EMAIL

Network addresses

CHAPTER

Email enables you to communicate with users on the local system as well as those on
the network. If you are connected to the Internet, you can communicate electronically
with users around the world.

Email utilities differ from write in that they can send a message when the recipient is
not logged in. In this case the email is stored until the recipient reads it. These utilities
can also send the same message to more than one user at a time.

Many email programs are available for Linux, including the original character-based
mail program, Mozilla/Thunderbird, pine, mail through emacs, KMail, and evolution.
Another popular graphical email program is sylpheed (sylpheed.sraoss.jp/en).

Two programs are available that can make any email program easier to use and more
secure. The procmail program (www.procmail.org) creates and maintains email servers
and mailing lists; preprocesses email by sorting it into appropriate files and directories;
starts various programs depending on the characteristics of incoming email; forwards
email; and so on. The GNU Privacy Guard (GPG or GNUpg) encrypts and decrypts
email making it almost impossible for an unauthorized person to read.

If the local system is part of a LAN, you can generally send email to and receive email
from users on other systems on the LAN by using their usernames. Someone sending
Max email on the Internet would need to specify his domain name (page 1095) along
with his username. Use this address to send email to the author of this book:
mgs@sobell.com.

SUMMARY

The utilities introduced in this chapter are a small but powerful subset of the many
utilities available on a typical system. Because you will use them frequently and
because they are integral to the following chapters, it is important that you become
comfortable using them.

The utilities listed in Table 3-2 manipulate, display, compare, and print files.

File utilities
Utility Function
cp Copies one or more files (page 53)
diff Displays the differences between two files (page 59)
file Displays information about the contents of a file (page 60)

grep Searches file(s) for a string (page 56)

http://sylpheed.sraoss.jp/en
http://www.procmail.org
mailto:mgs@sobell.com

78 CHAPTER 3 THE UTILITIES

Utility
head
Ipq
Ipr
Iprm
mv
sort
tail

uniq

File utilities (continued)

Function

Displays the lines at the beginning of a file (page 57)
Displays a list of jobs in the print queue (page 56)

Places file(s) in the print queue (page 55)

Removes a job from the print queue (page 56)

Renames a file or moves file(s) to another directory (page 54)
Puts a file in order by lines (page 58)

Displays the lines at the end of a file (page 57)

Displays the contents of a file, skipping adjacent duplicate lines (page 58)

To reduce the amount of disk space a file occupies, you can compress it using
the bzip2 utility. Compression works especially well on files that contain pat-
terns, as do most text files, but reduces the size of almost all files. The inverse
of bzip2—bunzip2—restores a file to its original, decompressed form. Table 3-3
lists utilities that compress and decompress files. The bzip2 utility is the most effi-

cient of these.

Utility
bunzip2
bzcat
bzip2
compress

gunzip

9zip
unzip

zcat

Zip

(De)compression utilities

Function

Returns a file compressed with bzip2 to its original size and format (page 65)
Displays a file compressed with bzip2 (page 65)

Compresses a file (page 64)

Compresses a file (not as well as bzip2 or gzip; page 66)

Returns a file compressed with gzip or compress to its original size and
format (page 66)

Compresses a file (not as well as bzip2; page 66)
Unpacks zip archives, which are compatible with Windows PKZIP
Displays a file compressed with gzip (page 66)

Constructs zip archives, which are compatible with Windows PKZIP

CHAPTER SUMMARY 79

An archive is a file, frequently compressed, that contains a group of files. The tar
utility (Table 3-4) packs and unpacks archives. The filename extensions .tar.bz2,
.tar.gz, and .tgz identify compressed tar archive files and are often seen on software
packages obtained over the Internet.

Archive utility
Utility Function
tar Creates or extracts files from an archive file (page 66)
The utilities listed in Table 3-5 determine the location of a utility on the local system.

For example, they can display the pathname of a utility or a list of C++ compilers
available on the local system.

Location utilities

Utility Function

locate/mlocate Searches for files on the local system (page 70)

whereis Displays the full pathnames of a utility, source code, or man page
(page 69)

which Displays the full pathname of a command you can run (page 69)

Table 3-6 lists utilities that display information about the local system and other users.
You can easily learn a user’s full name, login status, login shell, and other information
maintained by the system.

User and system information utilities

Utility Function

finger Displays detailed information about users, including their full names (page 72)
free Displays memory usage information (page 74)

hostname Displays the name of the local system (page 53)

uptime Displays system load and duration information (page 73)

w Displays detailed information about users who are logged in on the local

system (page 73)

who Displays information about users who are logged in on the local system
(page 71)

80 CHAPTER3 THE UTILITIES

The utilities shown in Table 3-7 can help you stay in touch with other users on the
local network.

User communication utilities

Utility Function
mesg Permits or denies messages sent by write (page 76)
write Sends a message to another user who is logged in (page 75)

Table 3-8 lists miscellaneous utilities.

Miscellaneous utilities

Utility Function

date Displays the current date and time (page 62)

echo Copies its arguments (page 1083) to the screen (page 61)
EXERCISES

1. Which commands can you use to determine who is logged in on a specific
terminal?

2. How can you keep other users from using write to communicate with you?
Why would you want to?

3. What happens when you give the following commands if the file named
done already exists?

$ cp to_do done
$ mv to_do done

4. How can you find out which utilities are available on your system for edit-
ing files? Which utilities are available for editing on your system?

5. How can you find the phone number for Ace Electronics in a file named
phone that contains a list of names and phone numbers? Which command
can you use to display the entire file in alphabetical order? How can you dis-
play the file without any adjacent duplicate lines? How can you display the
file without any duplicate lines?

6. What happens when you use diff to compare two binary files that are not
identical? (You can use gzip to create the binary files.) Explain why the diff
output for binary files is different from the diff output for ASCII files.

7. Create a .plan file in your home directory. Does finger display the contents
of your .plan file?

ADVANCED EXERCISES

81

10.

11.

What is the result of giving the which utility the name of a command that
resides in a directory that is #o# in your search path?

Are any of the utilities discussed in this chapter located in more than one
directory on the local system? If so, which ones?

Experiment by calling the file utility with the names of files in /usr/bin. How
many different types of files are there?

Which command can you use to look at the first few lines of a file named
status.report? Which command can you use to look at the end of the file?

ADVANCED EXERCISES

12.

13.

14.

15.

16.

Re-create the colors.1 and colors.2 files used in Figure 3-8 on page 59. Test
your files by running diff —u on them. Does diff display the same results as
in the figure?

Try giving these two commands:

$ echo cat
$ cat echo

Explain the differences between the output of each command.

Repeat exercise 5 using the file phone.gz, a compressed version of the list
of names and phone numbers. Consider more than one approach to answer
each question and explain how you made your choices.

Find or create files that

a. gzip compresses by more than 80 percent.
b. gzip compresses by less than 10 percent.
c. Get larger when compressed with gzip.

d. Use Is -1 to determine the sizes of the files in question. Can you charac-
terize the files in a, b, and ¢?

Older email programs were not able to handle binary files. Suppose you are
emailing a file that has been compressed with gzip, which produces a binary
file, and the recipient is using an old email program. Refer to the man page
on uuencode, which converts a binary file to ASCII. Learn about the utility
and how to use it.

a. Convert a compressed file to ASCII using uuencode. Is the encoded file
larger or smaller than the compressed file? Explain. (If uuencode is not on
the local system, you can install it using one of the tools described in
Appendix C; it is part of the sharutils package.)

b. Would it ever make sense to use uuencode on a file before compressing
it? Explain.

This page intentionally left blank

IN THIS CHAPTER

The Hierarchical Filesystem 84
Directory Files and Ordinary Files .. 85
The Working Directory 89
Your Home Directory. 89
Pathnames 90
Relative Pathnames 91
Working with Directories 92
Access Permissions 100
ACLs: Access Control Lists 106
Hard Links................... 113
Symbolic Links 115

Dereferencing Symbolic Links ... 118

THE FILESYSTEM

OBJECTIVES

After reading this chapter you should be able to:

» Define hierarchical filesystem, ordinary file, directory
file, home directory, working directory, and parent
directory

» List best practices for filenames
» Determine the name of the working directory

» Explain the difference between absolute and relative
pathnames

» Create and remove directories

» List files in a directory, remove files from a directory,
and copy and move files between directories

» List and describe the uses of standard Linux directories
and files

» Display and interpret file and directory ownership and
permissions

» Modify file and directory permissions
» Expand access control using ACLs

» Describe the uses, differences, and methods of creating
hard links and symbolic links

83

84 CHAPTER 4 THE FILESYSTEM

A filesystem is a set of data structures (page 1093) that usually resides on part of a
disk and holds directories of files. Filesystems store user and system data that are the
basis of users’ work on the system and the system’s existence. This chapter discusses
the organization and terminology of the Linux filesystem, defines ordinary and direc-
tory files, and explains the rules for naming them. It also shows how to create and
delete directories, move through the filesystem, and use absolute and relative path-
names to access files in various directories. It includes a discussion of important files
and directories as well as file access permissions and ACLs (Access Control Lists),
which allow you to share selected files with specified users. It concludes with a dis-
cussion of hard and symbolic links, which can make a single file appear in more than
one directory.

In addition to reading this chapter, you can refer to the df, fsck, mkfs, and tune2fs util-
ities in Part VII for more information on filesystems. If you are running macOS, see
“Filesystems” on page 1069.

THE HIERARCHICAL FILESYSTEM

Family tree

Directory tree

A hierarchical (page 1101) structure frequently takes the shape of a pyramid. One
example of this type of structure is found by tracing a family’s lineage: A couple has
a child, who might in turn have several children, each of whom might have more chil-
dren. This hierarchical structure is called a family tree (Figure 4-1).

Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a
set of connected files. This structure allows you to organize files so you can easily find
any particular one. On a standard Linux system, each user starts with one directory,

Grandparent

‘ Aunt ‘ ‘ Mom ‘ ‘ Uncle ‘

‘ Sister ‘ ‘ Brother ‘ ‘ Self ‘
‘ Daughter 1 ‘ ‘ Daughter 2 ‘

‘Grandchild 1 ‘ ‘Grandchild 2‘

Figure 4-1 A secretary’s directories

DIRECTORY FILES AND ORDINARY FILES 85

to which the user can add subdirectories to any desired level. By creating multiple lev-
els of subdirectories, a user can expand the structure as needed.

Subdirectories Typically each subdirectory is dedicated to a single subject, such as a person, project,
or event. The subject dictates whether a subdirectory should be subdivided further.
For example, Figure 4-2 shows a secretary’s subdirectory named correspond. This
directory contains three subdirectories: business, memos, and personal. The business
directory contains files that store each letter the secretary types. If you expect many
letters to go to one client, as is the case with milk_co, you can dedicate a subdirectory
to that client.

One major strength of the Linux filesystem is its ability to adapt to users’ needs. You
can take advantage of this strength by strategically organizing your files so they are
most convenient and useful for you.

DIRECTORY FILES AND ORDINARY FILES

Like a family tree, the tree representing the filesystem is usually pictured upside down
with its root at the top. Figures 4-2 and 4-3 (on the next page) show that the tree
“grows” downward from the root with paths connecting the root to each of the other
files. At the end of each path is either an ordinary file or a directory file. Special files,
which can also appear at the ends of paths, provide access to operating system features.
Ordinary files, or simply files, appear at the ends of paths that cannot support other
paths. Directory files, also referred to as directories or folders, are the points that other
paths can branch off from. (Figures 4-2 and 4-3 show some empty directories.) When
you refer to the tree, up is toward the root and down is away from the root. Directories
directly connected by a path are called parents (closer to the root) and children (far-
therlar one. On a standard Linux system, each user starts from the root). A pathname

correspond

personal

letter_1 ‘ ‘ letter_2 ‘

Figure 4-2 A secretary’s directories

86 CHAPTER 4 THE FILESYSTEM

‘Ordinary File‘ ‘Ordinary File‘ @

Ordinary File

‘Ordinary File‘ ‘Ordinary File‘

Figure 4-3 Directories and ordinary files

is a series of names that trace a path along branches from one file to another. See
page 90 for more information about pathnames.

FILENAMES

Every file has a filename. The maximum length of a filename varies with the type of
filesystem; Linux supports several types of filesystems. Most modern filesystems
allow files with names up to 255 characters long; however, some filesystems restrict
filenames to fewer characters. Although you can use almost any character in a file-
name, you will avoid confusion if you choose characters from the following list:

® Uppercase letters (A-Z)

® Lowercase letters (a—z)

¢ Numbers (0-9)

e Underscore (_)

e Period (.)

e Comma (,)
Like the children of one parent, no two files in the same directory can have the same
name. (Parents give their children different names because it makes good sense, but

Linux requires it.) Files in different directories, like the children of different parents,
can have the same name.

The filenames you choose should mean something. Too often a directory is filled with
important files with such unhelpful names as hold1, wombat, and junk, not to men-
tion foo and foobar. Such names are poor choices because they do not help you recall
what you stored in a file. The following filenames conform to the suggested syntax
and convey information about the contents of the file:

DIRECTORY FILES AND ORDINARY FILES 87

Filename length

Case sensitivity

e correspond
® january

e davis

® reports

* 2001

® acct_payable

When you share your files with users on other systems, you might need to make long
filenames differ within the first few characters. Systems running DOS or older ver-
sions of Windows have an 8-character filename body length limit and a 3-character
filename extension length limit. Some UNIX systems have a 14-character limit, and
older Macintosh systems have a 31-character limit. If you keep filenames short, they
are easy to type; later you can add extensions to them without exceeding the shorter
limits imposed by some filesystems. The disadvantage of short filenames is that they
are typically less descriptive than long filenames.

Long filenames enable you to assign descriptive names to files. To help you select
among files without typing entire filenames, shells support filename completion. For
more information about this feature, see the “Filename completion” tip on page 53.

You can use uppercase and/or lowercase letters within filenames, but be careful:
Many filesystems are case sensitive. For example, the popular ext family of filesys-
tems and the UFS filesystem are case sensitive, so files named JANUARY, January,
and january refer to three distinct files. The FAT family of filesystems (used mostly
for removable media) is not case sensitive, so those three filenames represent the same
file. The HFS+ filesystem, which is the default macOS filesystem, is case preserving
but not case sensitive; refer to “Case Sensitivity” on page 1070 for more information.

Do not use SPACEs within filenames

Although Linux allows you to use SPACES within filenames, it is a poor idea. Because a SPACE is a
special character, you must quote it on a command line. Quoting a character on a command line
can be difficult for a novice user and cumbersome for an experienced user. Use periods or under-
scores instead of SPACES: joe.05.04.26, new_stuff.

If you are working with a filename that includes a SPACE, such as a file from another operating sys-
tem, you must quote the SPACE on the command line by preceding it with a backslash or by placing
quotation marks on either side of the filename. The two following commands send the file named
my file to the printer:

$ 1pr my\ file
$ 1pr "my file"

FILENAME EXTENSIONS

A filename extension is the part of the filename that follows an embedded period. In
the filenames listed in Table 4-1 on the next page, filename extensions help describe
the contents of the file. Some programs, such as the C programming language com-
piler, default to specific filename extensions; in most cases, however, filename

88 CHAPTER 4 THE FILESYSTEM

extensions are optional. Use extensions freely to make filenames easy to understand.
If you like, you can use several periods within the same filename—for example,
notes.4.10.54 or files.tar.gz. Under macOS, some applications use filename exten-

sions to identify files, but many use type codes and creator codes (page 1073).

Filename extensions

Filename with extension
compute.c

compute.o

compute

memo.0410.txt
memo.pdf

memo.ps

memo.Z

memo.gz

memo.tgz or memo.tar.gz

memo.hz2

memo.html

photo.gif, photo.jpg,
photo.jpeg, photo.bmp,
photo.tif, or photo.tiff

Meaning of extension

A C programming language source file

The object code file for compute.c

The executable file for compute.c

A text file

A PDF file; view with xpdf or kpdf under a GUI

A PostScript file; view with ghostscript or kpdf under a GUI

A file compressed with compress (page 66); use
uncompress 0or gunzip (page 66) to decompress

A file compressed with gzip (page 66); view with zcat or
decompress with gunzip (both on page 66)

Atar (page 66) archive of files compressed with gzip (page 66)

A file compressed with bzip2 (page 64); view with bzcat or
decompress with bunzip2 (both on page 65)

A file meant to be viewed using a Web browser, such as Firefox

A file containing graphical information, such as a picture

HIDDEN FILENAMES

A filename that begins with a period is called a hidden filename (or a hidden file or
sometimes an invisible file) because Is does not normally display it. Use the command
Is —a to display all filenames, including hidden ones. Names of startup files (next
page) usually begin with a period so they are hidden and do not clutter a directory
listing. Two special hidden entries—single and double periods (. and ..)—appear in
every directory (page 95).

http://compute.cA

DIRECTORY FILES AND ORDINARY FILES 89

THE WORKING DIRECTORY

pwd While you are logged in on a character-based interface to a Linux system, you are
always associated with a directory. The directory you are associated with is called the
working directory or current directory. Sometimes this association is referred to in a
physical sense: “You are in (or working in) the zach directory.” The pwd (print work-
ing directory) builtin displays the pathname of the working directory.

YOUR HOME DIRECTORY

When you first log in on a system or start a terminal emulator window, the working
directory is your home directory. To display the pathname of your home directory,
use pwd just after you log in (Figure 4-4). Linux home directories are typically located
in /home while macOS home directories are located in /Users.

When called without arguments, the Is utility displays a list of the files in the working
directory. Because your home directory has been the only working directory you have
used so far, Is has always displayed a list of files in your home directory. (All the files
you have created up to this point were created in your home directory.)

STARTUP FILES

Startup files, which appear in your home directory, give the shell and other programs
information about you and your preferences. Under macOS these files are called con-
figuration files or preference files (page 1076). Frequently one of these files tells the
shell what kind of terminal you are using (page 1050) and executes the stty (set ter-
minal) utility to establish the erase (page 29) and line kill (page 30) keys.

Either you or the system administrator can put a shell startup file containing shell
commands in your home directory. The shell executes the commands in this file each
time you log in. Because the startup files have hidden filenames (filenames that begin
with a period; page 88), you must use the Is —a command to see whether one is in your
home directory. See page 288 (bash) and page 382 (tcsh) for more information about
startup files.

Togin: max

Password:

Last login: Wed Oct 20 11:14:21 from 172.16.192.150
$ pwd

/home/max

Figure 4-4 Logging in and displaying the pathname of your home directory

90 CHAPTER 4 THE FILESYSTEM

PATHNAMES

Every file has a pathname, which is a trail from a directory through part of the direc-
tory hierarchy to an ordinary file or a directory. Within a pathname, a slash (/)
following (to the right of) a filename indicates that the file is a directory file. The
file following (to the right of) the slash can be an ordinary file or a directory file.
The simplest pathname is a simple filename, which points to a file in the working
directory. This section discusses absolute and relative pathnames and explains how
to use each.

ABSOLUTE PATHNAMES

/ (root) The root directory of the filesystem hierarchy does not have a name; it is referred to
as the root directory and is represented by a slash (/) standing alone or at the left end
of a pathname.

An absolute pathname starts with a slash (/), which represents the root directory. The
slash is followed by the name of a file located in the root directory. An absolute path-
name can continue, tracing a path through all intermediate directories, to the file
identified by the pathname. String all the filenames in the path together, following
each directory with a slash (/). This string of filenames is called an absolute pathname
because it locates a file absolutely by tracing a path from the root directory to the file.
Typically the absolute pathname of a directory does not include the trailing slash,
although that format can be used to emphasize that the pathname specifies a direc-
tory (e.g., /home/zach/). The part of a pathname following the final slash is called a
simple filename, filename, or basename. Figure 4-5 shows the absolute pathnames of
directories and ordinary files in part of a filesystem hierarchy.

/home/hls/notes

/home/zach

/home/hls/bin/lo
’/— g

‘ report ‘ ‘ log ‘

Figure 4-5 Absolute pathnames

PATHNAMES 91

Using an absolute pathname, you can list or otherwise work with any file on the local
system, assuming you have permission to do so, regardless of the working directory
at the time you give the command. For example, Sam can give the following com-
mand while working in his home directory to list the files in the /etc/ssh directory:

$ pwd

/home/sam

$ 1s /etc/ssh

moduTi ssh_host_dsa_key ssh_host_key.pub
ssh_config ssh_host_dsa_key.pub ssh_host_rsa_key
sshd_config ssh_host_key ssh_host_rsa_key.pub

~ (TILDE) IN PATHNAMES

In another form of absolute pathname, the shell expands the characters ~/ (a tilde fol-
lowed by a slash) at the start of a pathname into the pathname of your home
directory. Using this shortcut, you can display your .bashrc startup file (page 289) by
using the following command no matter which directory is the working directory:

$ less ~/.bashrc

A tilde quickly references paths that start with your or someone else’s home directory.
The shell expands a tilde followed by a username at the beginning of a pathname into
the pathname of that user’s home directory. For example, assuming he has permission
to do so, Max can examine Sam’s .bashrc file by using the following command:

$ less ~sam/.bashrc

Refer to “Tilde Expansion” on page 368 for more information.

RELATIVE PATHNAMES

A relative pathname traces a path from the working directory to a file. The pathname
is relative to the working directory. Any pathname that does not begin with the root
directory (represented by /) or a tilde (~) is a relative pathname. Like absolute path-
names, relative pathnames can trace a path through many directories. The simplest
relative pathname is a simple filename, which identifies a file in the working direc-
tory. The examples in the next sections use absolute and relative pathnames.

SIGNIFICANCE OF THE WORKING DIRECTORY

To access any file in the working directory, you need only a simple filename. To access
a file in another directory, you must use a pathname. Typing a long pathname is
tedious and increases the chance of making a mistake. This possibility is less likely
under a GUI, where you click filenames or icons. You can choose a working directory
for any particular task to reduce the need for long pathnames. Your choice of a work-

92 CHAPTER 4 THE FILESYSTEM

ing directory does not allow you to do anything you could not do otherwise; it just
makes some operations easier.Refer to Figure 4-6 as you read this paragraph. Files

When using a relative pathname, know which directory is the working directory

The location of the file you are accessing with a relative pathname is dependent on (is relative to)
the working directory. Always make sure you know which directory is the working directory before
you use a relative pathname. Use pwd to verify the name of the directory. If you are creating a file
using vim and you are not where you think you are in the file hierarchy, the new file will end up in
an unexpected location.

It does not matter which directory is the working directory when you use an absolute pathname.
Thus, the following command always edits a file named goals in your home directory:

$ vim ~/goals

that are children of the working directory can be referenced by simple filenames.
Grandchildren of the working directory can be referenced by short relative path-
names: two filenames separated by a slash. When you manipulate files in a large
directory structure, using short relative pathnames can save you time and aggrava-
tion. If you choose a working directory that contains the files used most often for a
particular task, you need to use fewer long, cumbersome pathnames.

WORKING WITH DIRECTORIES

This section discusses how to create directories (mkdir), switch between directories
(cd), remove directories (rmdir), use pathnames to make your work easier, and move
and copy files and directories between directories. It concludes with brief descriptions
of important standard directories and files in the Linux filesystem.

.. (parent of the
working directory)

. (working directory)

notes

‘ report ‘ ’ log ‘

Figure 4-6 Relative pathnames

WORKING WITH DIRECTORIES 93

mkdir: CREATES A DIRECTORY

The mkdir utility creates a directory. The argument (page 1083) to mkdir is the path-
name of the new directory. The following examples develop the directory structure
shown in Figure 4-7. In the figure, the directories that are added appear lighter than
the others and are connected by dashes.

In Figure 4-8, pwd shows that Max is working in his home directory (/home/max), and
Is shows the names of the files in his home directory: demo, names, and temp. Using mkdir,
Max creates a directory named literature as a child of his home directory. He uses a rela-
tive pathname (a simple filename) because he wants the literature directory to be a child
of the working directory. Max could have used an absolute pathname to create the same
directory: mkdir /home/max/literature, mkdir ~max/literature, or mkdir ~/literature.

The second Is in Figure 4-8 verifies the presence of the new directory. The -F
option to Is displays a slash after the name of each directory and an asterisk after
each executable file (shell script, utility, or application). When you call it with an
argument that is the name of a directory, Is lists the contents of that directory. The
final Is displays nothing because there are no files in the literature directory.

The following commands show two ways for Max to create the promo directory as
a child of the newly created literature directory. The first way checks that /home/max
is the working directory and uses a relative pathname:

$ pwd
/home/max
$ mkdir Titerature/promo

names ‘ | temp ‘ literature

promo

Figure 4-7 The file structure developed in the examples

94 CHAPTER 4 THE FILESYSTEM

$ pwd

/home/max

$ 1s

demo names temp
$ mkdir literature

$ 1s
demo Tliterature names temp
$ 1s -F

demo Tliterature/ names temp
$ 1s literature
$

Figure 4-8 The mkdir utility

The second way uses an absolute pathname:
$ mkdir /home/max/11iterature/promo

Use the —p (parents) option to mkdir to create both the literature and promo directories
using one command:

$ pwd

/home/max

$ 1s

demo names temp

$ mkdir -p literature/promo

or

$ mkdir -p /home/max/1iterature/promo

cd: CHANGES TO ANOTHER WORKING DIRECTORY

Using cd (change directory) makes another directory the working directory; it does
not change the contents of the working directory. Figure 4-9 shows two ways to make
the /home/max/literature directory the working directory, as verified by pwd. First,
Max uses cd with an absolute pathname to make literature his working directory—
it does not matter which is the working directory when you give a command with an
absolute pathname.

A pwd command confirms the change Max made. When used without an argument,
cd makes your home directory the working directory, as it was when you logged in.
The second cd command in Figure 4-9 does not have an argument, so it makes Max’s
home directory the working directory. Finally, knowing that he is working in his home
directory, Max uses a simple filename to make the literature directory his working
directory (cd literature) and confirms the change using pwd.

WORKING WITH DIRECTORIES 95

$ cd /home/max/11iterature
$ pwd
/home/max/11iterature

$ cd

$ pwd

/home/max

$ cd literature

$ pwd
/home/max/11iterature

Figure 4-9 cd changes the working directory

THE . AND .. DIRECTORY ENTRIES

The mkdir utility automatically puts two entries in each directory it creates: a single
period (.) and a double period (..). The . is synonymous with the pathname of the-
working directory and can be used in its place; the .. is synonymous with the
pathname of the parent of the working directory. These entries are hidden because
their filenames begin with a period.

With the literature directory as the working directory, the following example uses ..
three times: first to list the contents of the parent directory (/home/max), second to
copy the memoA file to the parent directory, and third to list the contents of the par-
ent directory again.

$ pwd

/home/max/1iterature

$1s ..

demo Tliterature names temp

$ cp memoA ..

$1s ..

demo Tliterature memoA names temp

After using cd to make promo (a subdirectory of literature) his working directory,
Max can use a relative pathname to call vim to edit a file in his home directory.

$ cd promo
$ vim ../../names

You can use an absolute or relative pathname or a simple filename virtually anywhere
a utility or program requires a filename or pathname. This usage holds true for Is,
vim, mkdir, rm, and most other utilities.

The working directory versus your home directory

The working directory is not the same as your home directory. Your home directory remains the
same for the duration of your session and usually from session to session. Immediately after you
log in, you are always working in the same directory: your home directory.

Unlike your home directory, the working directory can change as often as you like. You have no
set working directory, which explains why some people refer to it as the current directory. When
you log in and until you change directories using cd, your home directory is the working directory.
If you were to change directories to Sam’s home directory, then Sam’s home directory would be
the working directory.

96 CHAPTER 4 THE FILESYSTEM

rmdir: DELETES A DIRECTORY

The rmdir (remove directory) utility deletes a directory. You cannot delete the
working directory or a directory that contains files other than the . and .. entries.
If you need to delete a directory that has files in it, first use rm to delete the files
and then delete the directory. You do not have to (nor can you) delete the . and ..
entries; rmdir removes them automatically. The following command deletes the
promo directory:

$ rmdir /home/max/11iterature/promo

The rm utility has a —r option (rm —r filename) that recursively deletes files, including
directories, within a directory and also deletes the directory itself.

Use rm —r carefully, if at all

Although rm -r is a handy command, you must use it carefully. Do not use it with an ambiguous
file reference such as =. It is frighteningly easy to wipe out the contents of your entire home direc-
tory with a single short command.

USING PATHNAMES

touch Use a text editor to create a file named letter if you want to experiment with the
examples that follow. Alternatively, you can use touch (page 1012) to create an empty

file:

$ cd

$ pwd
/home/max

$ touch letter

With /home/max as the working directory, the following example uses cp with a rel-
ative pathname to copy the file named letter to the /home/max/literature/promo
directory. (You will need to create promo again if you deleted it earlier.) The copy of
the file has the simple filename letter.0210:

$ cp letter literature/promo/letter.0210

If Max does not change to another directory, he can use vim as shown to edit the copy
of the file he just made:

$ vim literature/promo/letter.0210

If Max does not want to use a long pathname to specify the file, he can use cd to make
promo the working directory before using vim:

$ cd Titerature/promo

$ pwd
/home/max/11iterature/promo
$ vim letter.0210

WORKING WITH DIRECTORIES 97

To make the parent of the working directory the new working directory, Max can
give the following command, which takes advantage of the .. directory entry:

$cd ..
$ pwd
/home/max/11iterature

mv, cp: MOVE OR COPY FILES

Chapter 3 discussed the use of mv to rename files. However, mv works even more gen-
erally: You can use this utility to move files from one directory to another (change
the pathname of a file) as well as to change a simple filename. When used to move
one or more files to a new directory, the mv command has this syntax:

mv existing-file-list directory

If the working directory is /home/max, Max can use the following command to move
the files names and temp from the working directory to the literature directory:

$ mv names temp Titerature

This command changes the absolute pathnames of the names and temp files from
/home/max/names and /home/max/temp to /home/max/literature/names and
/home/max/literature/temp, respectively (Figure 4-10). Like most utilities, mv
accepts either absolute or relative pathnames.

As you create more files, you will need to create new directories using mkdir to keep
the files organized. The mv utility is a useful tool for moving files from one directory
to another as you extend your directory hierarchy.

The cp utility works in the same way mv does, except it makes copies of the existing-
file-list in the specified directory.

>

home

names temp @

‘ names —‘ { temp ‘

Figure 4-10 Using mv to move names and temp

98 CHAPTER 4 THE FILESYSTEM

mv: MOVES A DIRECTORY

Just as it moves ordinary files from one directory to another, so mv can move direc-
tories. The syntax is similar except you specify one or more directories, not ordinary
files, to move:

mu existing-directory-list new-directory

If new-directory does not exist, the existing-directory-list must contain just one direc-
tory name, which mv changes to new-directory (mv renames the directory). Although
you can rename directories using mv, you cannot copy their contents with cp unless
you use the —r (recursive) option. Refer to the explanations of cpio (page 776), pax
(page 932), and tar (page 995) for other ways to copy and move directories.

IMPORTANT STANDARD DIRECTORIES AND FILES

Originally files on a Linux system were not located in standard places within the direc-
tory hierarchy. The scattered files made it difficult to document and maintain a Linux
system and just about impossible for someone to release a software package that
would compile and run on all Linux systems. The first standard for the Linux filesys-
tem, the FSSTND (Linux Filesystem Standard), was released early in 1994. In early
1995 work was started on a broader standard covering many UNIX-like systems: FHS
(Linux Filesystem Hierarchy Standard; www.pathname.com/ths). More recently FHS
has been incorporated in LSB (Linux Standard Base; wiki.linuxfounda-
tion.org/lsb/start), a workgroup of FSG (Free Standards Group). Finally, FSG
combined with Open Source Development Labs (OSDL) to form the Linux Founda-
tion (www.linuxfoundation.org). Figure 4-11 shows the locations of some important
directories and files as specified by FHS. The significance of many of these directories
will become clear as you continue reading.

The following list describes the directories shown in Figure 4-11, some of the direc-
tories specified by FHS, and some other directories. Most distributions do not use all
the directories specified by FHS. Be aware that you cannot always determine the
function of a directory by its name. For example, although /opt stores add-on soft-
ware, /etc/opt stores configuration files for the software in /opt.

/ Root The root directory, present in all Linux filesystem structures, is the ancestor of
all files in the filesystem. It does not have a name and is represented by a slash (/)
standing alone or at the left end of a pathname.

Figure 4-11 A typical FHS-based Linux filesystem structure

http://www.pathname.com/fhs
http://wiki.linuxfounda-tion.org/lsb/start
http://wiki.linuxfounda-tion.org/lsb/start
http://www.linuxfoundation.org

WORKING WITH DIRECTORIES 99

/bin

/boot
/dev

/etc

/etc/opt
/etc/X11

/home

/lib
/lib/modules
/mnt

/opt

/proc

/root

/run

/sbin

/sys
/tmp
/Users

/usr

/usr/bin

/usr/games

/usr/include

Essential command binaries Holds the files needed to bring the system up and run it
when it first comes up in single-user/recovery mode.

Static files of the boot loader Contains all the files needed to boot the system.

Device files Contains all the files that represent peripheral devices, such as disk drives,
terminals, and printers. Previously this directory was filled with all possible devices.
The udev utility provides a dynamic device directory that enables /dev to contain only
devices that are present on the system.

Machine-local system configuration files Holds administrative, configuration, and
other system files. macOS uses Open Directory (page 1068) in place of /etc/passwd.

Configuration files for add-on software packages kept in /opt
Machine-local configuration files for the X Window System

User home directories Each user’s home directory is typically one of many sub-
directories of the /home directory. As an example, assuming that users’ directories are
under /home, the absolute pathname of Zach’s home directory is /home/zach. Under
macOS, user home directories are typically located in /Users.

Shared libraries

Loadable kernel modules

Mount point for temporarily mounting filesystems
Add-on (optional) software packages

Kernel and process information virtual filesystem
Home directory for the root account

Runtime data A tmpfs filesystem (mounted, but stored in RAM) that holds startup
files previously hidden in /dev and other directories. For more information see
lists.fedoraproject.org/pipermail/devel/2011-March/150031.html.

Essential system binaries Utilities used for system administration are stored in /sbin
and /usr/sbin. The /sbin directory includes utilities needed during the booting pro-
cess, and /usr/sbin holds utilities used after the system is up and running.

Device pseudofilesystem
Temporary files

User home directories Under macOS, each user’s home directory is typically one of
many subdirectories of the /Users directory. Linux typically stores home directories in
/home.

Second major hierarchy Traditionally includes subdirectories that contain informa-
tion used by the system. Files in /usr subdirectories do not change often and can be
shared by several systems.

Most user commands Contains the standard Linux utility programs—that is, binaries
that are not needed in single-user/recovery mode.

Games and educational programs

Header files included by C programs

http://lists.fedoraproject.org/pipermail/devel/2011-March/150031.html

100 CHAPTER 4

THE FILESYSTEM

/usr/lib

/usr/local

/usr/sbin

/usr/share

/usr/share/doc
/usr/share/info
/usr/share/man

/ust/src

/var

/var/log

/var/spool

Libraries

Local hierarchy Holds locally important files and directories that are added to the
system. Subdirectories can include bin, games, include, lib, sbin, share, and src.

Nonvital system administration binaries See /sbin.

Architecture-independent data Subdirectories can include dict, doc, games, info,
locale, man, misc, terminfo, and zoneinfo.

Documentation

GNU info system’s primary directory
Online manuals

Source code

Variable data Files with contents that vary as the system runs are kept in sub-
directories under /var. The most common examples are temporary files, system log
files, spooled files, and user mailbox files. Subdirectories can include cache, lib, lock,
log, mail, opt, run, spool, tmp, and yp.

Log files Contains lastlog (a record of the last login by each user), messages (system
messages from syslogd), and wtmp (a record of all logins/logouts), among other
log files.

Spooled application data Contains anacron, at, cron, Ilpd, mail, mqueue, samba, and
other directories. The file /var/mail is typically a link to /var/spool/mail.

ACCESS PERMISSIONS

Most distributions support two methods of controlling who can access a file and how
they can access it: traditional access permissions and ACLs (Access Control Lists).
This section describes traditional access permissions. See page 106 for a discussion
of ACLs, which provide finer-grained control of access permissions than do tradi-
tional access permissions.

Three types of users can access a file: the owner of the file (owner), a member of a
group that the file is associated with (group), and everyone else (other). A user can
attempt to access an ordinary file in three ways: by trying to read from, write to, or
execute it.

s —1: DISPLAYS PERMISSIONS

When you call Is with the -1 option and the name of one or more ordinary files, Is
displays a line of information about the file(s). See “Is output” on page 26 for infor-
mation about the format of the display this book uses. The following example
displays information for two files. The file letter.0210 contains the text of a letter, and

Access PERmISSIONS 101

check_spell contains a shell script, a program written in a high-level shell program-
ming language:

$ 1s -1 check_spell letter.0210
-rwxr-xr-x. 1 sam pubs 766 03-21 14:02 check_spell
-rw-r--r--. 1 sam pubs 6193 02-10 14:22 letter.0210

From left to right, the lines that an Is -1 command displays contain the following
information (refer to Figure 4-12):

¢ The type of file (first character)

e The file’s access permissions (the next nine characters)

e The ACL flag (present if the file has an ACL; page 106)

® The number of links to the file (page 112)

¢ The name of the owner of the file (usually the person who created the file)
¢ The name of the group the file is associated with

¢ The size of the file in characters (bytes)

¢ The date and time the file was created or last modified

® The name of the file

The type of file (first column) for letter.0210 is a hyphen (-) because it is an ordinary
file (directory files have a d in this column; see Table VI-21 on page 887).

The next three characters shown specify the access permissions for the owner of the
file: r indicates read permission, w indicates write permission, and x indicates execute
permission. A — in a column indicates that the owner does not have the permission
that could have appeared in that position.

In a similar manner the next three characters represent permissions for the group, and
the final three characters represent permissions for other (everyone else). In the pre-
ceding example, Sam, the owner of letter.0210, can read from and write to the file,
whereas the group and others can only read from the file, and no one is allowed to
execute it. Although execute permission can be allowed for any file, it does not make
sense to assign execute permission to a file that contains a document such as a letter.

S

¢ o8 N

; %

S &F ® S 3
S 9@ Ny & L 2 §
¢ 5 s & & e 0 §
N No o £ 8 S Y AN L
~ £Q ¥ ~v O Y) Q3 «

-rwxr-xr-x+ 1 sam pubs 2048 06-10 10:44 memo
Figure 4-12 The columns displayed by the Is -1 command

102 CHAPTER4 THE FILESYSTEM

The check_spell file is an executable shell script, so execute permission is appropriate
for it. (The owner, group, and others have execute permission.) For more information
refer to “Discussion” on page 887.

chmod: CHANGES ACCESS PERMISSIONS

The Linux file access permission scheme lets you give other users access to the files
you want to share yet keep your private files confidential. You can allow other users
to read from and write to a file (handy if you are one of several people working on
a joint project). You can allow others only to read from a file (perhaps a project spec-
ification you are proposing). Or you can allow others only to write to a file (similar
to an inbox or mailbox, where you want others to be able to send you mail but do
not want them to read your mail). Similarly, you can protect entire directories from
being scanned (covered shortly).

A user with root privileges can access any file on the system

There is an exception to the access permissions described in this section. Anyone who can gain root
privileges has full access to allfiles, regardless of the file’s owner or access permissions. Of course,
if the file is encrypted, read access does not mean the person reading the file can understand what
is in the file.

The owner of a file controls which users have permission to access the file and how
those users can access it. When you own a file, you can use the chmod (change mode)
utility to change access permissions for that file. You can specify symbolic (relative)
or numeric (absolute) arguments to chmod.

SYMBOLIC ARGUMENTS TO chmod

The following example, which uses symbolic arguments to chmod, adds (+) read and
write permissions (rw) for all (a) users:

$ 1s -1 letter.0210

-rw-r----- . 1 sam pubs 6193 02-10 14:22 Tetter.0210
$ chmod a+rw letter.0210

$ 1s -1 letter.0210

-rw-rw-rw-. 1 sam pubs 6193 02-10 14:22 letter.0210

You must have read permission to execute a shell script

Because a shell needs to read a shell script (a text file containing shell commands) before it can
execute the commands within that script, you must have read permission for the file containing
the script to execute it. You also need execute permission to execute a shell script directly from
the command line. In contrast, binary (program) files do not need to be read; they are executed
directly. You need only execute permission to run a binary program.

AcCCESS PERMISSIONS 103

Using symbolic arguments with chmod modifies existing permissions; the change a
given argument makes depends on (is relative to) the existing permissions. In the next
example, chmod removes (=) read (r) and execute (x) permissions for other (o) users.
The owner and group permissions are not affected.

$ 1s -1 check_spell

-rwxr-xr-x. 1 sam pubs 766 03-21 14:02 check_spell
$ chmod o-rx check_spell

$ 1s -1 check_spell

-rwxr-x---. 1 sam pubs 766 03-21 14:02 check_spell

In addition to a (all) and o (other), you can use g (group) and u (user, although user
refers to the owner of the file who might or might not be the user of the file at any
given time) in the argument to chmod. For example, chmod a+x adds execute permis-
sion for all users (other, group, and owner), and chmod go-rwx removes all
permissions for all but the owner of the file.

chmod: o for other, u for owner

When using chmod, many people assume that the o stands for owner; it does not. The o stands
for other, whereas u stands for owner (user). The acronym UGO (user-group-other) might help
you remember how permissions are named.

NUMERIC ARGUMENTS TO chmod

You can also use numeric arguments to specify permissions with chmod. In place of
the letters and symbols specifying permissions used in the previous examples,
numeric arguments comprise three octal digits. (A fourth, leading digit controls
setuid and setgid permissions and is discussed next.) The first digit specifies permis-
sions for the owner, the second for the group, and the third for other users. A 1 gives
the specified user(s) execute permission, a 2 gives write permission, and a 4 gives read
permission. Construct the digit representing the permissions for the owner, group, or
others by ORing (adding) the appropriate values as shown in the following examples.
Using numeric arguments sets file permissions absolutely; it does not modify existing
permissions as symbolic arguments do.

In the following example, chmod changes permissions so only the owner of the file
can read from and write to the file, regardless of how permissions were previously
set. The 6 in the first position gives the owner read (4) and write (2) permissions. The
0s remove all permissions for the group and other users.

$ chmod 600 letter.0210
$ 1s -1 letter.0210
-rw-----——- . 1 sam pubs 6193 02-10 14:22 letter.0210

Next, 7 (4 + 2 + 1) gives the owner read, write, and execute permissions. The 5 (4 + 1)
gives the group and other users read and execute permissions:

104 CHAPTER4 THE FILESYSTEM

$ chmod 755 check_spell
$ 1s -1 check_spell
-rwxr-xr-x. 1 sam pubs 766 03-21 14:02 check_spell

Refer to Table 4-2 for more examples of numeric permissions.

Examples of numeric permission specifications

Mode Meaning

777 Owner, group, and others can read, write, and execute file

755 Owner can read, write, and execute file; group and others can read and
execute file

71 Owner can read, write, and execute file; group and others can execute file

644 Owner can read and write file; group and others can read file

640 Owner can read and write file; group can read file; others cannot access file

Refer to page 295 for more information on using chmod to make a file executable and
to page 759 for more information on absolute arguments and chmod in general.

SETUID AND SETGID PERMISSIONS

When you execute a file that has setuid (set user ID) permission, the process exe-
cuting the file takes on the privileges of the file’s owner. For example, if you run a
setuid program that removes all files in a directory, you can remove files in any of
the file owner’s directories, even if you do not normally have permission to do so.
In a similar manner, setgid (set group ID) permission gives the process executing the
file the privileges of the group the file is associated with.

Minimize use of setuid and setgid programs owned by root

Executable files that are setuid and owned by root have root privileges when they run, even if they
are not run by root. This type of program is very powerful because it can do anything that root can
do (and that the program is designed to do). Similarly, executable files that are setgid and belong
to the group root have extensive privileges.

Because of the power they hold and their potential for destruction, it is wise to avoid indiscrimi-
nately creating and using setuid programs owned by reot and setgid programs belonging to the
group root. Because of their inherent dangers, many sites minimize the use of these programs on
their systems. One necessary setuid program is passwd.

The following example shows a user working with root privileges and using symbolic
arguments to chmod to give one program setuid privileges and another program set-
gid privileges. The Is -1 output (page 100) shows thesetuid permission by displaying
an s in the owner’s executable position and setgid permission by displaying an s in
the group’s executable position:

ACCESS PERMISSIONS 105

1s -1 myprog:
-rwxr-xr-x. 1 root pubs 362804 03-21 15:38 myprogl
-rwxr-xr-x. 1 root pubs 189960 03-21 15:38 myprog2

chmod u+s myprogl
chmod g+s myprog2

1s -1 myprog:
-rwsr-xr-x. 1 root pubs 362804 03-21 15:38 myprogl
-rwxr-sr-x. 1 root pubs 189960 03-21 15:38 myprog2

The next example uses numeric arguments to chmod to make the same changes. When
you use four digits to specify permissions, setting the first digit to 1 sets the sticky bit
(page 1126), setting it to 2 specifies setgid permissions, and setting it to 4 specifies
setuid permissions:

1s -1 myprog:
-rwxr-xr-x. 1 root pubs 362804 03-21 15:38 myprogl
-rwxr-xr-x. 1 root pubs 189960 03-21 15:38 myprog2

chmod 4755 myprogl
chmod 2755 myprog2

1s -1 myprog:
-rwsr-xr-x. 1 root pubs 362804 03-21 15:38 myprogl
-rwxr-sr-x. 1 root pubs 189960 03-21 15:38 myprog2

Do not give shell scripts setuid/setgid permission

Never give shell scripts setuid or setgid permission. Several techniques for subverting files with
these permissions are well known.

DIRECTORY ACCESS PERMISSIONS

Access permissions have slightly different meanings when they are applied to directo-
ries. Although the three types of users can read from or write to a directory, the
directory cannot be executed. Execute permission is redefined for a directory: It means
that you can cd into the directory and/or examine files that you have permission to
read from in the directory. It has nothing to do with executing a file.

When you have only execute permission for a directory, you can use Is to list a file
in the directory if you know its name. You cannot use Is to list the contents of the
directory. In the following exchange, Zach first verifies that he is logged in as him-
self. He then checks the permissions on Max’s info directory. You can view the access
permissions associated with a directory by running Is with the —d (directory) and the
-1 (long) options:

$ who am i

zach pts/7 Aug 21 10:02

$ 1s -1d /home/max/info
drwx----- X. 2 max pubs 4096 08-21 09:31 /home/max/info

106 CHAPTER 4 THE FILESYSTEM

$ 1s -1 /home/max/info
1s: /home/max/info: Permission denied

The d at the left end of the line that Is displays indicates /home/max/info is a direc-
tory. Max has read, write, and execute permissions; members of the pubs group have
no access permissions; and other users have execute permission only, indicated by the
x at the right end of the permissions. Because Zach does not have read permission
for the directory, the Is -1 command returns an error.

When Zach specifies the names of the files he wants information about, he is not read-
ing new directory information but rather searching for specific information, which he
is allowed to do with execute access to the directory. He has read permission for notes
s0 he has no problem using cat to display the file. He cannot display financial because
he does not have read permission for it:

$ 1s -1 /home/max/info/financial /home/max/info/notes
-rW---———- . 1 max pubs 34 08-21 09:31 /home/max/info/financial
-rw-r--r--. 1 max pubs 30 08-21 09:32 /home/max/info/notes

$ cat /home/max/info/notes

This is the file named notes.

$ cat /home/max/info/financial

cat: /home/max/info/financial: Permission denied

Next, Max gives others read access to his info directory:
$ chmod o+r /home/max/info

When Zach checks his access permissions on info, he finds he has both read and execute
access to the directory. Now Is -1 displays the contents of the info directory, but he still
cannot read financial. (This restriction is an issue of file permissions, not directory per-
missions.) Finally, Zach tries to create a file named newfile using touch (page 1012). If
Max were to give him write permission to the info directory, Zach would be able to cre-
ate new files in it:

$ 1s -1d /home/max/info

drwx---r-x. 2 max pubs 4096 08-21 09:31 /home/max/info

$ 1s -1 /home/max/info

-rW-----—~ . 1 max pubs 34 08-21 09:31 financial

-rw-r--r--. 1 max pubs 30 08-21 09:32 notes

$ cat /home/max/info/financial

cat: financial: Permission denied

$ touch /home/max/info/newfile

touch: cannot touch '/home/max/info/newfile': Permission denied

ACLs: Access CONTROL LISTS

ACLs (Access Control Lists) provide finer-grained control over which users can
access specific directories and files than do traditional permissions (page 100).
Using ACLs you can specify the ways in which each of several users can access a

ACLs: Access CONTRoL LisTs 107

directory or file. Because ACLs can reduce performance, do not enable them on
filesystems that hold system files, where the traditional Linux permissions are suf-
ficient. Also, be careful when moving, copying, or archiving files: Not all utilities
preserve ACLs. In addition, you cannot copy ACLs to filesystems that do not sup-
port ACLs.

An ACL comprises a set of rules. A rule specifies how a specific user or group can
access the file that the ACL is associated with. There are two kinds of rules: access
rules and default rules. (The documentation refers to access ACLs and default ACLs,
even though there is only one type of ACL: There is one type of list [ACL] and there
are two types of rules an ACL can contain.)

An access rule specifies access information for a single file or directory. A default ACL
pertains to a directory only; it specifies default access information (an ACL) for any
file in the directory that is not given an explicit ACL.

Most utilities do not preserve ACLs

When used with the —p (preserve) or —a (archive) option, cp preserves ACLs when it copies files.
The mv utility also preserves ACLs. When you use cp with the —p or —a option and it is not able
to copy ACLs, and in the case where mv is unable to preserve ACLS, the utility performs the oper-
ation and issues an error message:

$ mv report /tmp

mv: preserving permissions for '/tmp/report': Operation not supported
Other utilities, such as tar, cpio, and dump, do not support ACLs. You can use cp with the —a
option to copy directory hierarchies, including ACLs.

You can never copy ACLs to a filesystem that does not support AGLs or to a filesystem that does
not have AGL support turned on.

ENABLING ACLS

remount option

The following explanation of how to enable ACLs pertains to Linux. See page 1074
if you are running macOS.

The acl package must be installed before you can use ACLs. Most Linux distributions
officially support ACLs on ext2, ext3, and ext4 filesystems only, although informal
support for ACLs is available on other filesystems. To use ACLs on an ext2/ext3/ext4
filesystem, you must mount the device with the acl option (no_acl is the default). For
example, if you want to mount the device represented by /home so you can use ACLs
on files in /home, you can add acl to its options list in /etc/fstab:

$ grep home /etc/fstab

LABEL=/home /home ext4 defaults,acl 12
After changing fstab, you need to remount /home before you can use ACLs. If no one
else is using the system, you can unmount it and mount it again (working with root
privileges) as long as the working directory is not in the /home hierarchy. Alterna-
tively, you can use the remount option to mount to remount /home while the device is
in use:

108 CHAPTER4 THE FILESYSTEM

mount -v -o remount /home
/dev/sda3 on /home type ext4 (rw,acl)

WORKING WITH ACCESS RULES

The setfacl utility modifies a file’s ACL and getfacl displays a file’s ACL. These utilities
are available under Linux only. If you are running macOS you must use chmod as
explained on page 1074. When you use getfacl to obtain information about a file that
does not have an ACL, it displays some of the same information as an Is -1 command,
albeit in a different format:

$ 1s -1 report
-rw-r--r--. 1 max pubs 9537 01-12 23:17 report

$ getfacl report
file: report
owner: max

group: pubs

user::rw-
group::r--
other::r--

The first three lines of the getfacl output comprise the header; they specify the name
of the file, the owner of the file, and the group the file is associated with. For more
information refer to “Is —1: Displays Permissions” on page 100. The ——omit-header
(or just ——omit) option causes getfacl not to display the header:

$ getfacl --omit-header report

user::rw-
group::r--
other::r--

In the line that starts with user, the two colons (::) with no name between them indi-
cate that the line specifies the permissions for the owner of the file. Similarly, the two
adjacent colons in the group line indicate the line specifies permissions for the group
the file is associated with. The two colons following other are for consistency: No
name can be associated with other.

The setfacl ——modify (or -m) option adds or modifies one or more rules in a file’s ACL
using the following syntax:

setfacl ——modify ugo:name:permissions file-list

where ugo can be either u, g, or o to indicate that the command sets file permissions
for a user, a group, or all other users, respectively; name is the name of the user or
group that permissions are being set for; permissions is the permissions in either sym-
bolic or absolute format; and file-list is the list of files the permissions are to be
applied to. You must omit #ame when you specify permissions for other users (o).
Symbolic permissions use letters to represent file permissions (rwx, r—x, and so on),
whereas absolute permissions use an octal number. While chmod uses three sets of
permissions or three octal numbers (one each for the owner, group, and other users),
setfacl uses a single set of permissions or a single octal number to represent the per-
missions being granted to the user or group represented by ugo and name. See the

ACLs: Access CONTRoOL LisTs 109

optional

discussion of chmod on pages 102 and 759 for more information about symbolic and
absolute representations of file permissions.

For example, both of the following commands add a rule to the ACL for the report
file that gives Sam read and write permission to that file:

$ setfacl --modify u:sam:rw- report
or

$ setfacl --modify u:sam:6 report

$ getfacl report
file: report

owner: max

group: pubs
user::rw-
user:sam:rw-
group::r--
mask::rw-
other::r--

The line containing user:sam:rw— shows that the user named sam has read and write

access (rw-) to the file. See page 100 for an explanation of how to read access permis-
sions. See the following optional section for a description of the line that starts with mask.

When a file has an ACL, Is -1 displays a plus sign (+) following the permissions, even
if the ACL is empty:

$ 1s -1 report
-rw-rw-r--+ 1 max pubs 9537 01-12 23:17 report

EFFECTIVE RIGHTS MASK

The line in the output of getfacl that starts with mask specifies the effective rights
mask. This mask limits the effective permissions granted to ACL groups and users.
It does not affect the owner of the file or the group the file is associated with. In other
words, it does not affect traditional Linux permissions. However, because setfacl
always sets the effective rights mask to the least restrictive ACL permissions for the
file, the mask has no effect unless you set it explicitly after you set up an ACL for the
file. You can set the mask by specifying mask in place of #go and by not specifying
a name in a setfacl command.

The following example sets the effective rights mask to read for the report file:
$ setfacl -m mask::r-- report

The mask line in the following getfacl output shows the effective rights mask set to
read (r—-). The line that displays Sam’s file access permissions shows them still set to
read and write. However, the comment at the right end of the line shows that his
effective permission is read.

$ getfacl report
file: report

owner: max

group: pubs

110 CHAPTER4 THE FILESYSTEM

user::rw-
user:sam:rw- #effective:r--
group::r--
mask::r--
other::r--

As the next example shows, setfacl can modify ACL rules and can set more than one
ACL rule at a time:

$ setfacl -m u:sam:r--,u:zach:rw- report

$ getfacl --omit-header report
user::rw-

user:sam:r--

user:zach:rw-

group::r--
mask: :rw-
other::r--

The —x option removes ACL rules for a user or a group. It has no effect on permis-
sions for the owner of the file or the group that the file is associated with. The next
example shows setfacl removing the rule that gives Sam permission to access the file:

$ setfacl -x u:sam report

$ getfacl --omit-header report
user::rw-

user:zach:rw-

group::r--

mask: : rw-

other::r--

You must not specify permissions when you use the —x option. Instead, specify only
the ugo and name. The -b option, followed by a filename only, removes all ACL rules
and the ACL itself from the file or directory you specify.

Both setfacl and getfacl have many options. Use the ——help option to display brief lists
of options or refer to the man pages for details.

SETTING DEFAULT RULES FOR A DIRECTORY

The following example shows that the dir directory initially has no ACL. The setfacl
command uses the —d (default) option to add two default rules to the ACL for dir.
These rules apply to all files in the dir directory that do not have explicit ACLs. The
rules give members of the pubs group read and execute permissions and give mem-
bers of the adm group read, write, and execute permissions.

$ 1s -1d dir

drwx------ . 2 max pubs 4096 02-12 23:15 dir
$ getfacl dir

file: dir

owner: max

group: pubs

user::rwx

group::---

ACLs: Access CONTROL LisTs 111

other::---
$ setfacl -d -m g:pubs:r-x,g:adm:rwx dir

The following Is command shows that the dir directory now has an ACL, as indicated
by the + to the right of the permissions. Each of the default rules that getfacl displays
starts with default:. The first two default rules and the last default rule specify the per-
missions for the owner of the file, the group that the file is associated with, and all
other users. These three rules specify the traditional Linux permissions and take pre-
cedence over other ACL rules. The third and fourth rules specify the permissions for
the pubs and adm groups. Next is the default effective rights mask.

$ 1s -1d dir
drwx------ + 2 max pubs 4096 02-12 23:15 dir
$ getfacl dir

file: dir

owner: max

group: pubs
user::rwx

group::---

other::---
default:user: :rwx
default:group::---
default:group:pubs:r-x
default:group:adm: rwx
defauTlt:mask: : rwx
default:other::---

Remember that the default rules pertain to files held in the directory that are not
assigned ACLs explicitly. You can also specify access rules for the directory itself.

When you create a file within a directory that has default rules in its ACL, the effec-
tive rights mask for that file is created based on the file’s permissions. In some cases
the mask can override default ACL rules.

In the next example, touch creates a file named new in the dir directory. The Is com-
mand shows this file has an ACL. Based on the value of umask (page 1021), both the
owner and the group that the file is associated with have read and write permissions
for the file. The effective rights mask is set to read and write so that the effective per-
mission for pubs is read and the effective permissions for adm are read and write.
Neither group has execute permission.

$ cd dir

$ touch new

$ 1s -1 new

-rw-rw----+ 1 max pubs @ 02-13 00:39 new
$ getfacl --omit new

user::rw-
group::---
group:pubs:r-x #effective:r--
group:adm: rwx #effective:rw-
mask: :rw-

other::---

112 CHAPTER4 THE FILESYSTEM

LINKS

If you change the file’s traditional permissions to read, write, and execute for the
owner and the group, the effective rights mask changes to read, write, and execute,
and the groups specified by the default rules gain execute access to the file.

$ chmod 770 new

$ 1s -1 new

-rwxrwx---+ 1 max pubs 0 02-13 00:39 new
$ getfacl --omit new

user::rwx

group::---

group:pubs:r-x

group:adm: rwx

mask: : rwx

other::---

A link is a pointer to a file. Each time you create a file using vim, touch, cp, or by some
other means, you are putting a pointer in a directory. This pointer associates a file-
name with a place on the disk. When you specify a filename in a command, you are
indirectly pointing to the place on the disk that holds the information you want.

Sharing files can be useful when two or more people are working on the same project
and need to share some information. You can make it easy for other users to access
one of your files by creating additional links to the file.

To share a file with another user, first give the user permission to read from and write
to the file (page 102). You might also have to change the access permissions of the
parent directory of the file to give the user read, write, or execute permission
(page 105). When the permissions are appropriately set, the user can create a link to
the file so each of you can access the file from your separate directory hierarchies.

correspond

personal business

‘ to_do H to_do H to_do H personal H memos H business

Links\% . j)

Figure 4-13 Using links to cross-classify files

Links 113

A link can also be useful to a single user with a large directory hierarchy. You can create
links to cross-classify files in your directory hierarchy, using different classifications for
different tasks. For example, if you have the file layout depicted in Figure 4-2 on
page 85, a file named to_do might appear in each subdirectory of the correspond direc-
tory—that is, in personal, memos, and business. If you find it difficult to keep track of
everything you need to do, you can create a separate directory named to_do in the cor-
respond directory. You can then link each subdirectory’s to-do list into that directory.
For example, you could link the file named to_do in the memos directory to a file
named memos in the to_do directory. This set of links is shown in Figure 4-13.

Although it might sound complicated, this technique keeps all your to-do lists conve-
niently in one place. The appropriate list is easily accessible in the task-related directory
when you are busy composing letters, writing memos, or handling personal business.

About the discussion of hard links

Two kinds of links exist: hard links and symbolic (soft) links. Hard links are older and becoming
outdated. The section on hard links is marked as optional; you can skip it, although it discusses
inodes and gives you insight into the structure of the filesystem.

optional
HARD LINKS

A hard link to a file appears as another file. If the file appears in the same directory
as the linked-to file, the links must have different filenames because two files in the
same directory cannot have the same name. You can create a hard link to a file only
from within the filesystem that holds the file.

In: CREATES A HARD LINK

The In (link) utility (without the —s or ——symbolic option) creates a hard link to an
existing file using the following syntax:

In existing-file new-link

‘ memo ‘ ‘ ‘ ‘ planning ‘

/home/max/letter and /home/zach/d:aftx

Figure 4-14 Two links to the same file: /home/max/letter and /home/zach/draft

114 CHAPTER 4 THE FILESYSTEM

The next command shows Zach making the link shown in Figure 4-14 by creating a
new link named /home/max/letter to an existing file named draft in Zach’s home
directory:

$ pwd
/home/zach
$ 1n draft /home/max/letter

The new link appears in the /home/max directory with the filename letter. In practice,
Max might need to change directory permissions so Zach will be able to create the
link. Even though /home/max/letter appears in Max’s directory, Zach is the owner
of the file because he created it.

The In utility creates an additional pointer to an existing file, but it does 7ot make
another copy of the file. Because there is only one file, the file status information—
such as access permissions, owner, and the time the file was last modified—is the
same for all links; only the filenames differ. When Zach modifies /home/zach/draft,
for example, Max sees the changes in /home/max/letter.

cp VERSUS |n

The following commands verify that In does not make an additional copy of a file.
Create a file, use In to make an additional link to the file, change the contents of the
file through one link, and verify the change through the other link:

$ cat file_a

This is file A.

$ In file_a file_b
$ cat file_b

This is file A.

$ vim file_b

$ cat file_b
This is file B after the change.
$ cat file_a
This is file B after the change.

If you try the same experiment using cp instead of In and change a copy of the file,
the difference between the two utilities will become clearer. After you change a copy
of a file, the two files are different:

$ cat file_c

This is file C.

$ cp file_c file_d
$ cat file_d

This is file C.

$ vim file_d

$ cat file_d

This is file D after the change.
$ cat file_c

This is file C.

LINks 115

Is and link counts

Is and inodes

You can use Is with the -1 option, followed by the names of the files you want to com-
pare, to confirm that the status information is the same for two links to the same file
and is different for files that are not linked. In the following example, the 2 in the
links field (just to the left of max) shows there are two links to file_a and file_b (from
the previous example):

$ 1s -1 file_a file_b file_c file_d

-rw-r--r--. 2 max pubs 33 05-24 10:52 file_a
-rw-r--r--. 2 max pubs 33 05-24 10:52 file_b
-rw-r--r--. 1 max pubs 16 05-24 10:55 file_c
-rw-r--r--. 1 max pubs 33 05-24 10:57 file_d

Although it is easy to guess which files are linked to one another in this example, Is
does not explicitly tell you.

Use Is with the —i option to determine without a doubt which files are linked. Use the
-1 option to list the inode (page 1103) number for each file. An inode is the control
structure for a file. (HFS+, the default filesystem under macOS, does not have inodes
but, through an elaborate scheme, appears to have inodes.) If the two filenames have
the same inode number, they share the same control structure and are links to the
same file. Conversely, when two filenames have different inode numbers, they are dif-
ferent files. The following example shows that file_a and file_b have the same inode
number and that file_c and file_d have different inode numbers:

$ 1s -i file_a file_b file_c file_d
3534 file_a 3534 file_b 5800 file_c 7328 file_d

All links to a file are of equal value: The operating system cannot distinguish the order
in which multiple links were created. When a file has two links, you can remove either
one and still access the file through the remaining link. You can remove the link used
to create the file, for example, and as long as one link remains, still access the file
through that link.

SYMBOLIC LINKS

Dereferencing
symbolic links

Advantages of
symbolic links

In addition to hard links, Linux supports symbolic links, also called soft links or
symlinks. A hard link is a pointer to a file (the directory entry points to the inode),
whereas a symbolic link is an indirect pointer to a file (the directory entry contains
the pathname of the pointed-to file—a pointer to the hard link to the file).

To dereference a symbolic link means to follow the link to the target file rather than
work with the link itself. See page 118 for information on dereferencing symbolic links.

Symbolic links were developed because of the limitations inherent in hard links. You
cannot create a hard link to a directory, but you can create a symbolic link to a directory.

In many cases the Linux file hierarchy encompasses several filesystems. Because each
filesystem keeps separate control information (that is, separate inode tables or filesys-
tem structures) for the files it holds, it is not possible to create hard links between files
in different filesystems. A symbolic link can point to any file, regardless of where it
is located in the file structure, but a hard link to a file must be in the same filesystem

116 CHAPTER4 THE FILESYSTEM

as the other hard link(s) to the file. When you create links only among files in your
home directory, you will not notice this limitation.

A major advantage of a symbolic link is that it can point to a nonexistent file. This
ability is useful if you need a link to a file that is periodically removed and re-created.
A hard link keeps pointing to a “removed” file, which the link keeps alive even after
a new file is created. In contrast, a symbolic link always points to the newly created
file and does not interfere when you delete the old file. For example, a symbolic link
could point to a file that gets checked in and out under a source code control system,
a .o file that is re-created by the C compiler each time you run make, or a log file that
is repeatedly archived.

Although they are more general than hard links, symbolic links have some disadvan-
tages. Whereas all hard links to a file have equal status, symbolic links do not have
the same status as hard links. When a file has multiple hard links, it is analogous to
a person having multiple full legal names, as many married women do. In contrast,
symbolic links are analogous to nicknames. Anyone can have one or more nick-
names, but these nicknames have a lesser status than legal names. The following
sections describe some of the peculiarities of symbolic links.

[n: CREATES SYMBOLIC LINKS

The In utility with the ——symbolic (or —s) option creates a symbolic link. The follow-
ing example creates a symbolic link /tmp/s3 to the file sum in Max’s home directory.
When you use an Is -l command to look at the symbolic link, Is displays the name of
the link and the name of the file it points to. The first character of the listing is 1 (for
link). The size of a symbolic link is the number of characters in the target pathname.

$ Tn --symbolic /home/max/sum /tmp/s3

$ 1s -1 /home/max/sum /tmp/s3

-rw-rw-r--. 1 max pubs 38 06-12 09:51 /home/max/sum
Trwxrwxrwx. 1 max pubs 13 06-12 09:52 /tmp/s3 -> /home/max/sum
$ cat /tmp/s3

This 1is sum.

The sizes and times of the last modifications of the two files are different. Unlike a
hard link, a symbolic link to a file does not have the same status information as the
file itself.

LINks 117

optional

You can also use In to create a symbolic link to a directory. When you use the ——sym-
bolic option, In works as expected whether the file you are creating a link to is an
ordinary file or a directory.

Use absolute pathnames with symbolic links

Symbolic links are literal and are not aware of directories. A link that points to a relative pathname,
which includes simple filenames, assumes the relative pathname is relative to the directory that
the link was created in (not the directory the link was created from). In the following example, the
link points to the file named sum in the /tmp directory. Because no such file exists, cat gives an
error message:

$ pwd

/home/max

$ Tn --symbolic sum /tmp/s4

$ 1s -1 /home/max/sum /tmp/s4

Trwxrwxrwx. 1 max pubs 3 06-12 10:13 /tmp/s4 -> sum

-rw-rw-r--. 1 max pubs 38 06-12 09:51 /home/max/sum

$ cat /tmp/s4

cat: /tmp/s4: No such file or directory

cd AND SYmBoOLIC LINKS

When you use a symbolic link as an argument to cd to change directories, the results
can be confusing, particularly if you did not realize that you were using a symbolic link.

If you use cd to change to a directory that is represented by a symbolic link, the pwd
shell builtin (page 157) lists the name of the symbolic link. The pwd utility (/bin/pwd)
lists the name of the linked-to directory, not the link, regardless of how you got there.
You can also use the pwd builtin with the —P (physical) option to display the linked-
to directory. This option displays a pathname that does not contain symbolic links.

$ In -s /home/max/grades /tmp/grades.old

$ pwd

/home/max

$ cd /tmp/grades.old

$ pwd

/tmp/grades.old

$ /bin/pwd

/home/max/grades

$ pwd -P

/home/max/grades
When you change directories back to the parent, you end up in the directory holding
the symbolic link (unless you use the —P option to cd):

$cd ..

$ pwd

/tmp

$ /bin/pwd

/tmp
Under macOS, /tmp is a symbolic link to /private/tmp. When you are running
macOS, after you give the c¢d .. command in the previous example, the working direc-
tory is /private/tmp.

118 CHAPTER4 THE FILESYSTEM

rm: REMOVES A LINK

When you create a file, there is one hard link to it. You can then delete the file or,
using more accurate terminology, remove the link using the rm utility. When you
remove the last hard link to a file, you can no longer access the information stored
there, and the operating system releases the space the file occupied on the disk for use
by other files. This space is released even if symbolic links to the file remain. When
there is more than one hard link to a file, you can remove a hard link and still access
the file from any remaining link. Unlike DOS and Windows, Linux does not provide
an easy way to undelete a file once you have removed it. A skilled hacker, however,
can sometimes piece the file together with time and effort.

When you remove all hard links to a file, you will not be able to access the file through
a symbolic link. In the following example, cat reports that the file total does not exist
because it is a symbolic link to a file that has been removed:

$ 1s -1 sum

-rw-r--r--. 1 max pubs 981 05-24 11:05 sum

$ Tn -s sum total

$ rm sum

$ cat total

cat: total: No such file or directory

$ 1s -1 total

Trwxrwxrwx. 1 max pubs 6 05-24 11:09 total -> sum

When you remove a file, be sure to remove all symbolic links to it. Remove a symbolic
link in the same way you remove other files:

$ rm total

DEREFERENCING SYMBOLIC LINKS

A filename points at a file. A symbolic link is a file whose name refers to another file
(a target file) without pointing directly at the target file: It is a reference to the target
file. See page 115 for more information on symbolic links.

To dereference a symbolic link means to follow the link to the target file rather than
work with the link itself. When you dereference a symbolic link, you end up with a
pointer to the file (the filename of the target file). The term no-dereference is a double
negative: It means reference. To no-dereference a symbolic link means to work with
the link itself (do not dereference the symbolic link).

Many utilities have dereference and no-dereference options, usually invoked by the
-L (——dereference) option and the P (——no-dereference) option, respectively. Some
utilities, such as chgrp, cp, and Is, also have a partial dereference option that is usually
invoked by -H. With a -H option, a utility dereferences files listed on the command
line only, not files found by traversing the hierarchy of a directory listed on the com-
mand line.

Links 119

No options

-L (--dereference)

This section explains the —L (-—dereference) and —H (partial dereference) options
twice, once using Is and then using chgrp. It also covers the chgrp =P (——no-dereference)
option.

DEREFERENCING SYMBOLIC LINKS USING Is

Most utilities default to no-dereference, although many do not have an explicit
no-dereference option. For example, the GNU Is utility, which is used in most
Linux distributions, does not have a —P (——no-dereference) option, although the
BSD Is utility, which is used in macOS, does.

In the following example, Is with the -1 option displays information about the files
in the working directory and does not dereference the sam.memo symbolic link; it
displays the symbolic link including the pathname of the file the link points to (the
target file). The first character of the sam.memo line is an 1, indicating the line
describes a symbolic link; Max created the symbolic link and owns it.

$1s -1

-rw-r--r--. 1 max pubs 1129 04-10 15:53 memoD

-rw-r--r--. 1 max pubs 14198 04-10 15:56 memoE
Trwxrwxrwx. 1 max pubs 19 04-10 15:57 sam.memo -> /home/max/sam/memoA

The next command specifies on the command line the file the symbolic link points
to (the target file) and displays information about that file. The file type, permissions,
owner, and time for the file are different from that of the link. Sam created the file
and owns it.

$ 1s -1 /home/max/sam/memoA

-rw-r--r--. 1 sam sam 2126 04-10 15:54 /home/max/sam/memoA
Next, the —-L (——dereference) option to Is displays information about the files in the
working directory and dereferences the sam.memo symbolic link; it displays the file
the link points to (the target file). The first character of the sam.memo line is a —, indi-
cating the line describes a regular file. The command displays the same information
about memoA as the preceding command, except it displays the name of the link
(sam.memo), not that of the target file (memoA).

$ 1s -1L

-rw-r--r--. 1 max pubs 1129 04-10 15:53 memoD
-rw-r--r--. 1 max pubs 14198 04-10 15:56 memoE
-rw-r--r--. 1 sam sam 2126 04-10 15:54 sam.memo

When you do not specify a symbolic link as an argument to Is, the —-H (partial deref-

erence; this short option has no long version) option displays the same information
as the -1 option.

$ 1s -TH

-rw-r--r--. 1 max pubs 1129 04-10 15:53 memoD

-rw-r--r--. 1 max pubs 14198 04-10 15:56 memoE

Trwxrwxrwx. 1 max pubs 19 04-10 15:57 sam.memo -> /home/max/sam/memoA

When you specify a symbolic link as an argument to Is, the —H option causes Is to
dereference the symbolic link; it displays information about the file the link points to

120 CHAPTER 4

THE FILESYSTEM

optional
readlink

No options

(the target file; memoA in the example). As with —L, it refers to the file by the name
of the symbolic link.

$ 1s -1H sam.memo
-rw-r--r--. 1 sam sam 2126 04-10 15:54 sam.memo

In the next example, the shell expands the * to a list of the names of the files in the
working directory and passes that list to Is. Specifying an ambiguous file reference
that expands to a symbolic link produces the same results as explicitly specifying the
symbolic link (because Is does not know it was called with an ambiguous file refer-
ence, it just sees the list of files the shell passes to it).

$ 1s -1H =

-rw-r--r--. 1 max pubs 1129 04-10 15:53 memoD
-rw-r--r--. 1 max pubs 14198 04-10 15:56 memoE
-rw-r--r--. 1 sam sam 2126 04-10 15:54 sam.memo

The readlink utility displays the absolute pathname of a file, dereferencing symbolic
links when needed. With the —f (——canonicalize) option, readlink follows nested sym-
bolic links; all links except the last must exist. Following is an example:

$ 1s -1 /etc/alternatives/mta-mailq

Trwxrwxrwx. 1 root root 23 01-11 15:35 /etc/alternatives/mta-mailq ->
/Jusr/bin/mailq.sendmail

$ 1s -1 /usr/bin/mailq.sendmail

Trwxrwxrwx. 1 root root 25 01-11 15:32 /usr/bin/mailq.sendmail ->
../sbin/sendmail.sendmail

$ readlink -f /etc/alternatives/mta-mailq
/usr/sbin/sendmail.sendmail

DEREFERENCING SYMBOLIC LINKS USING chgrp

The following examples demonstrate the difference between the -H and L options,
this time using chgrp. Initially all files and directories in the working directory are
associated with the zach group:

$ 1s -1R
-rw-r--r-- 1 zach zach 102 07-02 12:31 bb

drwxr-xr-x 2 zach zach 4096 07-02 15:34 dirl
drwxr-xr-x 2 zach zach 4096 07-02 15:33 dir4

L/dirl:
-rw-r--r-- 1 zach zach 102 07-02 12:32 dd
Trwxrwxrwx 1 zach zach 7 07-02 15:33 dir4.1link -> ../dir4

L/dird:

Links 121

-H

-rw-r--r-- 1 zach zach 125 07-02 15:33 gg
-rw-r--r-- 1 zach zach 375 07-02 15:33 hh

When you call chgrp with the -R and —H options (when used with chrgp, -H does not
work without -R), chgrp dereferences only symbolic links you list on the command
line and those in directories you list on the command line. The chgrp utility changes
the group association of the files these links point to. It does not dereference symbolic
links it finds as it descends directory hierarchies, nor does it change symbolic links
themselves. While descending the dir1 hierarchy, chgrp does not change dir4.link, but
it does change dir4, the directory dir4.link points to.

$ chgrp -RH pubs bb dirl
$ 1s -1R

-rw-r--r-- 1 zach pubs 102 07-02 12:31 bb
drwxr-xr-x 2 zach pubs 4096 07-02 15:34 dirl
drwxr-xr-x 2 zach pubs 4096 07-02 15:33 dir4

./dirl:
-rw-r--r-- 1 zach pubs 102 07-02 12:32 dd
Trwxrwxrwx 1 zach zach 7 07-02 15:33 dir4.1link -> ../dir4

./dird:
-rw-r--r-- 1 zach zach 125 07-02 15:33 gg
-rw-r--r-- 1 zach zach 375 07-02 15:33 hh

The -H option under mac0S

The chgrp —H option works slightly differently under macQS than it does under Linux. Under
macOS, chgrp —RH changes the group of the symbolic link it finds in a directory listed on the com-
mand line and does not change the file the link points to. (It does not dereference the symbolic
link.) When you run the preceding example under macQOS, the group association of dir4 is not
changed, but the group association of dird.link is.

If your program depends on how the —H option functions with a utility under macOS, test the
option with that utility to determine exactly how it works.

When you call chgrp with the —-R and -L options (when used with chgrp, =L does not
work without —R), chgrp dereferences all symbolic links: those you list on the com-
mand line and those it finds as it descends the directory hierarchy. It does not change
the symbolic links themselves. This command changes the files in the directory
dir4.link points to:

$ chgrp -RL pubs bb dirl

$ 1s -1R

-rw-r--r-- 1 zach pubs 102 07-02 12:31 bb
drwxr-xr-x 2 zach pubs 4096 07-02 15:34 dirl
drwxr-xr-x 2 zach pubs 4096 07-02 15:33 dir4

./dirl:

122 CHAPTER4 THE FILESYSTEM

-rw-r--r-- 1 zach pubs 102 07-02 12:32 dd
Trwxrwxrwx 1 zach zach 7 07-02 15:33 dir4.1link -> ../dir4

./dir4:
-rw-r--r-- 1 zach pubs 125 07-02 15:33 gg
-rw-r--r-- 1 zach pubs 375 07-02 15:33 hh

-P When you call chgrp with the —R and -P options (when used with chgrp, =P does not
work without —R), chgrp does not dereference symbolic links. It does change the
group of the symbolic link itself.

$ 1s -1 bb=
-rw-r--r-- 1 zach zach 102 07-02 12:31 bb
Trwxrwxrwx 1 zach zach 2 07-02 16:02 bb.1ink -> bb

$ chgrp -PR pubs bb.11ink

$ 1s -1 bb=
-rw-r--r-- 1 zach zach 102 07-02 12:31 bb
Trwxrwxrwx 1 zach pubs 2 07-02 16:02 bb.1link -> bb

CHAPTER SUMMARY

Linux has a hierarchical, or treelike, file structure that makes it possible to organize
files so you can find them quickly and easily. The file structure contains directory files
and ordinary files. Directories contain other files, including other directories; ordi-
nary files generally contain text, programs, or images. The ancestor of all files is the
root directory and is represented by / standing alone or at the left end of a pathname.

Most Linux filesystems support 255-character filenames. Nonetheless, it is a good
idea to keep filenames simple and intuitive. Filename extensions can help make file-
names more meaningful.

When you are logged in, you are always associated with a working directory. Your
home directory is the working directory from the time you log in until you use cd to
change directories.

An absolute pathname starts with the root directory and contains all the filenames
that trace a path to a given file. The pathname starts with a slash, representing the
root directory, and contains additional slashes following each of the directories in the
path, except for the last directory in the case of a path that points to a directory file.

A relative pathname is similar to an absolute pathname but traces the path starting
from the working directory. A simple filename is the last element of a pathname and
is a form of a relative pathname; it represents a file in the working directory.

A Linux filesystem contains many important directories, including /usr/bin, which
stores most of the Linux utilities, and /dev, which stores device files, many of which

CHAPTER SUMMARY 123

represent physical pieces of hardware. An important standard Linux file is
/etc/passwd; it contains information about users, such as a user’s ID and full name.

Among the attributes associated with each file are access permissions. They deter-
mine who can access the file and how the file may be accessed. Three groups of users
can potentially access the file: the owner, the members of a group, and all other users.
An ordinary file can be accessed in three ways: read, write, and execute. The Is utility
with the -1 option displays these permissions. For directories, execute access is rede-
fined to mean that the directory can be searched.

The owner of a file or a user working with root privileges can use the chmod utility
to change the access permissions of a file. This utility specifies read, write, and exe-
cute permissions for the file’s owner, the group, and all other users on the system.

ACLs (Access Control Lists) provide finer-grained control over which users can
access specific directories and files than do traditional permissions. Using ACLs you
can specify the ways in which each of several users can access a directory or file. Few
utilities preserve ACLs when working with files.

An ordinary file stores user data, such as textual information, programs, or images.
A directory is a standard-format disk file that stores information, including names,
about ordinary files and other directory files. An inode is a data structure, stored on
disk, that defines a file’s existence and is identified by an inode number. A directory
relates each of the filenames it stores to an inode.

A link is a pointer to a file. You can have several links to a file so you can share the
file with other users or have the file appear in more than one directory. Because only
one copy of a file with multiple links exists, changing the file through any one link
causes the changes to appear in all the links. Hard links cannot link directories or
span filesystems, whereas symbolic links can.

Table 4-3 summarizes the utilities introduced in this chapter.

Utilities introduced in Chapter 4

Utility Function

cd Associates you with another working directory (page 94)
chmod Changes access permissions on a file (page 102)

getfacl Displays a file’s ACL (page 108)

In Makes a link to an existing file (page 113)

mkdir Creates a directory (page 93)

pwd Displays the pathname of the working directory (page 89)
rmdir Deletes a directory (page 96)

setfacl Modifies a file’s ACL (page 108)

124 CHAPTER4 THE FILESYSTEM

EXERCISES

Is each of the following an absolute pathname, a relative pathname, or a
simple filename?

a. milk_co

b. correspond/business/milk_co

c. /home/max

d. /home/max/literature/promo

e ..

f. letter.0210

List the commands you can use to perform these operations:
a. Make your home directory the working directory

b. Identify the working directory

If the working directory is /home/max with a subdirectory named
literature, give three sets of commands you can use to create a subdirectory
named classics under literature. Also give several sets of commands you can
use to remove the classics directory and its contents.

The df utility displays all mounted filesystems along with information about
each. Use the df utility with the —h (human-readable) option to answer the
following questions:

a. How many filesystems are mounted on the local system?
b. Which filesystem stores your home directory?

¢. Assuming your answer to exercise 4a is two or more, attempt to create a
hard link to a file on another filesystem. What error message is displayed?
What happens when you attempt to create a symbolic link to the file
instead?

Suppose you have a file that is linked to a file owned by another user. How
can you ensure that changes to the file are no longer shared?

. You should have read permission for the /etc/passwd file. To answer the fol-

lowing questions, use cat or less to display /etc/passwd. Look at the fields
of information in /etc/passwd for the users on the local system.

a. Which character is used to separate fields in /etc/passwd?
b. How many fields are used to describe each user?

c. How many users are on the local system?

EXERCISES 125

10.

d. How many different login shells are in use on your system? (Hint: Look

at the last field.)

e. The second field of /etc/passwd stores user passwords in encoded form.
If the password field contains an x, your system uses shadow passwords
and stores the encoded passwords elsewhere. Does your system use
shadow passwords?

If /home/zach/draft and /home/max/letter are links to the same file and the
following sequence of events occurs, what will be the date in the opening of
the letter?

a. Max gives the command vim letter.
b. Zach gives the command vim draft.

c. Zach changes the date in the opening of the letter to January 31, writes
the file, and exits from vim.

d. Max changes the date to February 1, writes the file, and exits from vim.

Suppose a user belongs to a group that has all permissions on a file named
jobs_list, but the user, as the owner of the file, has no permissions. Describe
which operations, if any, the user/owner can perform on jobs_list. Which
command can the user/owner give that will grant the user/owner all permis-
sions on the file?

Does the root directory have any subdirectories you cannot search as an
ordinary user? Does the root directory have any subdirectories you cannot
read as a regular user? Explain.

Assume you are given the directory structure shown in Figure 4-2 on
page 85 and the following directory permissions:

d--X--x--- 3 zach pubs 512 2018-03-10 15:16 business
drwxr-xr-x 2 zach pubs 512 2018-03-10 15:16 business/miTlk_co

For each category of permissions—owner, group, and other—what happens
when you run each of the following commands? Assume the working direc-
tory is the parent of correspond and that the file cheese_co is readable by
everyone.

a. cd correspond/business/milk_co
b. Is -1 correspond/business

c. cat correspond/business/cheese_co

126 CHAPTER4 THE FILESYSTEM

ADVANCED EXERCISES

11.

12.

13.

14.

15.

16.

17.

18.

What is an inode? What happens to the inode when you move a file within
a filesystem?

What does the .. entry in a directory point to? What does this entry point
to in the root (/) directory?

How can you create a file named —i? Which techniques do not work, and
why do they not work? How can you remove the file named -i?

Suppose the working directory contains a single file named andor. What
error message is displayed when you run the following command line?

$ mv andor and\/or

Under what circumstances is it possible to run the command without pro-
ducing an error?

The Is —i command displays a filename preceded by the inode number of the
file (page 115). Write a command to output inode/filename pairs for the
files in the working directory, sorted by inode number. (Hint: Use a
pipeline.)

Do you think the system administrator has access to a program that can
decode user passwords? Why or why not? (See exercise 6.)

Is it possible to distinguish a file from a hard link to a file? That is, given a
filename, can you tell whether it was created using an In command?
Explain.

Explain the error messages displayed in the following sequence of
commands:

$1s -1

drwxrwxr-x. 2 max pubs 1024 03-02 17:57 dirtmp
$ 1s dirtmp

$ rmdir dirtmp

rmdir: dirtmp: Directory not empty

$ rm dirtmp/=

rm: No match.

IN THIS CHAPTER

The Working Directory 129
Your Home Directory........... 129
The Command Line............ 130
Standard Input and Standard

Output ..., 137
Redirection 140
Pipelines 145

Running a Command in the
Background 150

kill: Aborting a Background Job. .. 152

Filename Generation/Pathname
Expansion 152

Builtins, 157

THE SHELL

OBJECTIVES

After reading this chapter you should be able to:

» List special characters and methods of preventing the
shell from interpreting these characters

» Describe a simple command

» Understand command-line syntax and run commands
that include options and arguments

» Explain how the shell interprets the command line

» Redirect output of a command to a file, overwriting
the file or appending to it

» Redirect input for a command so it comes from a file
» Connect commands using a pipeline
» Run commands in the background

» Use special characters as wildcards to generate
filenames

» Explain the difference between a stand-alone utility
and a shell builtin

127

128 CHAPTER S

THE SHELL

This chapter takes a close look at the shell and explains how to use some of its features.
It discusses command-line syntax and describes how the shell processes a command line
and initiates execution of a program. This chapter also explains how to redirect input
to and output from a command, construct pipelines and filters on the command line,
and run a command in the background. The final section covers filename expansion and
explains how you can use this feature in your everyday work.

Except as noted, everything in this chapter applies to the Bourne Again (bash) and
TC (tcsh) Shells. The exact wording of the shell output differs from shell to shell:
What the shell you are using displays might differ slightly from what appears in this
book. For shell-specific information, refer to Chapters 8 (bash) and 9 (tcsh).
Chapter 10 covers writing and executing bash shell scripts.

SPECIAL CHARACTERS

Whitespace

Quoting special
characters

Backslash

Single quotation
marks

Special characters, which have a special meaning to the shell, are discussed in “File-
name Generation/Pathname Expansion” on page 152. These characters are
mentioned here so you can avoid accidentally using them as regular characters until
you understand how the shell interprets them. Avoid using any of the following
characters in a filename (even though emacs and some other programs do) because
they make the file harder to reference on the command line:

& lx2 """ VT ()S<>{}r#/\!~

Although not considered special characters, RETURN, SPACE, and TAB have special mean-
ings to the shell. RETURN usually ends a command line and initiates execution of a
command. The SPACE and TAB characters separate tokens (elements) on the command
line and are collectively known as whitespace or blanks.

If you need to use a character that has a special meaning to the shell as a regular char-
acter, you can gquote (or escape) it. When you quote a special character, you prevent
the shell from giving it special meaning. The shell treats a quoted special character
as a regular character. However, a slash (/) is always a separator in a pathname, even
when you quote it.

To quote a character, precede it with a backslash (\). When two or more special
characters appear together, you must precede each with a backslash (e.g., you
would enter * % as *\%*). You can quote a backslash just as you would quote any
other special character—by preceding it with a backslash (\\).

Another way of quoting special characters is to enclose them between single quota-
tion marks: '* %', You can quote many special and regular characters between a pair
of single quotation marks: 'This is a special character: >'. The regular characters are
interpreted as usual, and the shell also interprets the special characters as regular
characters.

ORDINARY FILES AND DIRECTORY FILES 129

The only way to quote the erase character (CONTROL-H), the line kill character (CONTROL-U),
and other control characters (try CONTROL-M) is by preceding each with a CONTROL-V. Single
quotation marks and backslashes do not work. Try the following:

$ echo 'xXxXXXxXCONTROL-U'
$ echo XxXXXXXCONTROL-VCONTROL-U

optional Although you cannot see the cONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo
(page 812) through a pipeline (page 145) to od (octal display; page 921) to display
CONTROL-U as octal 25 (025):

$ echo xxXXXXCONTROL-VCONTROL-U | od -c
0000000 X X X X X X 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

ORDINARY FILES AND DIRECTORY FILES

Ordinary files, or simply files, are files that can hold documents, pictures, programs,
and other kinds of data. Directory files, also referred to as directories or folders, can
hold ordinary files and other directory files.

THE WORKING DIRECTORY

pwd While you are logged in on a character-based interface to a Linux system, you are

always associated with a directory. The directory you are associated with is called the
working directory or current directory. Sometimes this association is referred to in a
physical sense: “You are in (or working in) the zach directory.” The pwd (print working
directory) builtin displays the pathname of the working directory.

Togin: max

Password:

Last login: Wed Oct 20 11:14:21 from 172.16.192.150

$ pwd

/home/max

YOUR HOME DIRECTORY

When you first log in on a Linux system or start a terminal emulator window, the
working directory is your home directory. To display the pathname of your home
directory, use pwd just after you log in.

130 CHAPTER 5

THE SHELL

THE COMMAND LINE

Command

Command line

This book uses the term command to refer to both the characters you type on the
command line and the program that action invokes.

A command line comprises a simple command (below), a pipeline (page 145), or a
list (page 149).

A SIMPLE COMMAND

SYNTAX

Usage message

The shell executes a program when you enter a command in response to its prompt.
For example, when you give an Is command, the shell executes the utility program
named Is. You can cause the shell to execute other types of programs—such as shell
scripts, application programs, and programs you have written—in the same way. The
line that contains the command, including any arguments, is called a simple command.
The following sections discuss simple commands; see page 133 for a more technical
and complete description of a simple command.

Command-line syntax dictates the ordering and separation of the elements on a
command line. When you press the RETURN key after entering a command, the shell
scans the command line for proper syntax. The syntax for a simple command is

command [argl] [arg2] ... [argn] RETURN

Whitespace (any combination of SPACEs and/or TABs) must separate elements on the com-
mand line. The command is the name of the command, arg1 through argn are
arguments, and RETURN is the keystroke that terminates the command line. The brackets
in the command-line syntax indicate that the arguments they enclose are optional. Not
all commands require arguments: Some commands do not allow arguments; other
commands allow a variable number of arguments; and still others require a specific
number of arguments. Options, a special kind of argument, are usually preceded by one
or two hyphens (-).

CoMMAND NAME

Some useful Linux command lines consist of only the name of the command without
any arguments. For example, Is by itself lists the contents of the working directory.
Commands that require arguments typically give a short error message, called a usage
message, when you use them without arguments, with incorrect arguments, or with
the wrong number of arguments.

For example, the mkdir (make directory) utility requires an argument that specifies the
name of the directory you want it to create. Without this argument, it displays a usage
message (operand is another term for “argument”):

THE COMMAND LINE 131

Token

Combining options

$ mkdir
mkdir: missing operand
Try 'mkdir --help' for more information.

ARGUMENTS

On the command line each sequence of nonblank characters is called a token or
word. An argument is a token that a command acts on (e.g., a filename, a string of
characters, a number). For example, the argument to a vim or emacs command is the
name of the file you want to edit.

The following command line uses cp to copy the file named temp to tempcopy:
$ cp temp tempcopy

Arguments are numbered starting with the command itself, which is argument zero.
In this example, cp is argument zero, temp is argument one, and tempcopy is argu-
ment two. The cp utility requires at least two arguments on the command line.
Argument one is the name of an existing file. In this case, argument two is the name
of the file that cp is creating or overwriting. Here, the arguments are not optional;
both arguments must be present for the command to work. When you do not supply
the right number or kind of arguments, cp displays a usage message. Try typing cp
and then pressing RETURN.

OPTIONS

An option is an argument that modifies the effects of a command. These arguments
are called options because they are usually optional. You can frequently specify more
than one option, modifying the command in several ways. Options are specific to and
interpreted by the program that the command line calls, not the shell.

By convention, options are separate arguments that follow the name of the command
and usually precede other arguments, such as filenames. Many utilities require options
to be prefixed with a single hyphen. However, this requirement is specific to the utility
and not the shell. GNU long (multicharacter) program options are frequently prefixed
with two hyphens. For example, ——help generates a (sometimes extensive) usage
message.

The first command in Figure 5-1 shows the output of an Is command without any
options. By default, Is lists the contents of the working directory in alphabetical order,
vertically sorted in columns. Next, the —r (reverse order; because this is a GNU utility,
you can also specify ——reverse) option causes the Is utility to display the list of files
in reverse alphabetical order, still sorted in columns. The —x option causes Is to dis-
play the list of files in horizontally sorted rows.

When you need to use several options, you can usually group multiple single-letter
options into one argument that starts with a single hyphen; do not put SPACEs between
the options. You cannot combine options that are preceded by two hyphens in this
way. Specific rules for combining options depend on the program you are running.

132 CHAPTER S

THE SHELL

Option arguments

Figure 5-1 shows both the —r and —x options with the Is utility. Together these options
generate a list of filenames in horizontally sorted rows in reverse alphabetical order.
Most utilities allow you to list options in any order; thus, Is —xr produces the same
results as Is —rx. The command Is —x —r also generates the same list.

The ——help option

Many utilities display a (sometimes extensive) help message when you call them with an argument
of —=help. All utilities developed by the GNU Project (page 3) accept this option. Following is the
help message displayed by the bzip2 compression utility (page 64):

$ bzip2 --help
bzip2, a block-sorting file compressor. Version 1.0.6, 6-Sept-2010.

usage: bunzip2 [flags and input files in any order]

-h --help print this message

-d --decompress force decompression

-z --compress force compression

-k --keep keep (don't delete) input files
-f --force overwrite existing output files

If invoked as 'bzip2', default action is to compress.
as 'bunzip2', default action is to decompress.
as 'bzcat', default action is to decompress to stdout.

Some utilities have options that require arguments. These arguments are not
optional. For example, the gcc utility (C compiler) has a —o (output) option that must
be followed by the name you want to give the executable file that gcc generates. Typ-
ically, an argument to an option is separated from its option letter by a SPACE:

$ gcc -o prog prog.c

Some utilities sometimes require an equal sign between an option and its argument.
For example, you can specify the width of output from diff in two ways:

$ 1s
hold mark names oldstuff temp zach
house max office personal test

$1s -r

zach temp oldstuff names mark hold

test personal office max house

$ 1s -x

hold house mark max names office
oldstuff personal temp test zach

$ 1s -rx

zach test temp personal oldstuff office
names max mark house hold

Figure 5-1 Using options

THE COMMAND LINE 133

Arguments that start
with a hyphen

optional

$ diff -W 60 filea fileb
or

$ diff --width=60 filea fileb

Displaying readable file sizes: the —h option

Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you
are dealing with smaller files, but the numbers can be difficult to read when you are working with
file sizes that are measured in gigabytes or terabytes. Use the —=h (or ——human-readable) option
to display file sizes in kilobytes, megabytes, gigabytes, and terabytes. Experiment with the df =h
(disk free) and Is =lh commands.

Another convention allows utilities to work with arguments, such as filenames, that
start with a hyphen. If a file named -1 is in the working directory, the following
command is ambiguous:

$ 1s -1

This command could be a request to display a long listing of all files in the working direc-
tory (-l option) or a request for a listing of the file named 1. The Is utility interprets it as
the former. Avoid creating a file whose name begins with a hyphen. If you do create such
a file, many utilities follow the convention that a —— argument (two consecutive hyphens)
indicates the end of the options (and the beginning of the arguments). To disambiguate
the preceding command, you can type

$ 1s -- -1

Using two consecutive hyphens to indicate the end of the options is a convention, not
a hard-and-fast rule, and a number of utilities do not follow it (e.g., find). Following
this convention makes it easier for users to work with a program you write.

For utilities that do not follow this convention, there are other ways to specify a file-
name that begins with a hyphen. You can use a period to refer to the working
directory and a slash to indicate the following filename refers to a file in the working
directory:

$1s ./-1
You can also specify the absolute pathname of the file:

$ 1s /home/max/-1

SIMPLE COMMANDS

This section expands on the discussion of command-line syntax starting on page 130.

A simple command comprises zero or more variable assignments followed by a com-
mand line. It is terminated by a control operator (e.g., &, ;, |, NEWLINE; page 299). A
simple command has the following syntax:

[name=value ...] command-line

134 CHAPTER S

THE SHELL

Placing a variable
in the environment
of a child

The shell assigns a value to each name and places it in the environment (page 480)
of the program that command-line calls so it is available to the called program and
its children as a variable. The shell evaluates the name=value pairs from left to right,
so if name appears more than once in this list, the rightmost value takes precedence.
The command-line might include redirection operators such as > and < (page 140).
The exit status (page 477) of a simple command is its return value. Under tcsh you
must use env (page 483) to place variables in the environment of a called program
without declaring them in the calling shell.

The following commands demonstrate how you can assign a value to a name (vari-
able) and place that name in the environment of a child program; the variable is not
available to the interactive shell you are running (the parent program). The script
named echo_ee displays the value of the variable named ee. The first call to echo_ee
shows ee is not set in the child shell running the script. When the call to echo_ee is
preceded by assigning a value to ee, the script displays the value of ee in the child
shell. The final command shows ee has not been set in the interactive shell.

$ cat echo_ee
echo "The value of the ee variable is: $ee"

$./echo_ee

The value of the ee variable is:

$ ee=88 ./echo_ee

The value of the ee variable is: 88
$ echo $ee

$

PROCESSING THE COMMAND LINE

Parsing the
command line

As you enter a command line, the tty device driver (part of the Linux kernel) examines
each character to see whether it must take immediate action. When you press CONTROL-H
(to erase a character) or CONTROL-U (to kill a line), the device driver immediately adjusts
the command line as required; the shell never sees the character(s) you erased or the line
you killed. Often a similar adjustment occurs when you press CONTROL-W (to erase a
word). When the character you entered does not require immediate action, the device
driver stores the character in a buffer and waits for additional characters. When you
press RETURN, the device driver passes the command line to the shell for processing.

When the shell processes a command line, it looks at the line as a whole and parses
(breaks) it into its component parts (Figure 5-2). Next, the shell looks for the name of
the command. Usually the name of the command is the first item on the command line
after the prompt (argument zero). The shell takes the first characters on the command
line up to the first blank (TAB or SPACE) and then looks for a command with that name.
The command name (the first token) can be specified on the command line either as a
simple filename or as a pathname. For example, you can call the Is command in either
of the following ways:

THE COMMAND LINE 135

optional

Absolute versus
relative pathnames

$1s
or

$ /bin/1s

The shell does not require the name of the program to appear first on the command
line. Thus, you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and standard
output going to the file named bb. When the shell recognizes the redirect symbols
(page 140), it processes them and their arguments before finding the name of the program
that the command line is calling. This is a properly structured—albeit rarely encountered
and possibly confusing—command line.

From the command line, there are three ways you can specify the name of a file you
want the shell to execute: as an absolute pathname (starts with a slash [/]; page 90),
as a relative pathname (includes a slash but does not start with a slash; page 91), or
as a simple filename (no slash). When you specify the name of a file for the shell to
execute in either of the first two ways (the pathname includes a slash), the shell looks
in the specified directory for a file with the specified name that you have permission

|

Get first word
and save as
command name

<
-

Y

Get more
NEWLINE — of the
no command line

yes
Y

Does
program
exist?

Display

Execute program not found

— Issue prompt /:

Figure 5-2 Processing the command line

136 CHAPTERS

THE SHELL

to execute. When you specify a simple filename (no slash), the shell searches through
a list of directories for a filename that matches the specified name and for which you
have execute permission. The shell does not look through all directories but only the
ones specified by the variable named PATH. Refer to page 318 (bash) or page 403
(tcsh) for more information on PATH. Also refer to the discussion of the which and
whereis utilities on page 69.

When it cannot find the file, bash displays the following message:

$ abc
bash: abc: command not found...

Some systems are set up to suggest where you might be able to find the program you
tried to run. One reason the shell might not be able to find the executable file is that
it is not in a directory listed in the PATH variable. Under bash the following com-
mand temporarily adds the working directory (.) to PATH:

$ PATH=$PATH:.
For security reasons, it is poor practice to add the working directory to PATH per-
manently; see the following tip and the one on page 319.
When the shell finds the file but cannot execute it (i.e., because you do not have execute

permission for the file), it displays a message similar to

$ def
bash: ./def: Permission denied

See “Is —I: Displays Permissions” on page 100 for information on displaying access
permissions for a file and “chmod: Changes Access Permissions” on page 102 for
instructions on how to change file access permissions.

Try giving a command as ./command

You can always execute an executable file in the working directory by prepending ./ to the name of
the file. Because ./filename is a relative pathname, the shell does not consult PATH when looking
for filename. For example, if myprog is an executable file in the working directory, you can execute
it using the following command (regardless of how PATH is set):

$./myprog

EXECUTING A COMMAND

Process If it finds an executable file with the name specified on the command line, the shell

starts a new process. A process is the execution of a command by Linux (page 333).
The shell makes each command-line argument, including options and the name of the
command, available to the called program. While the command is executing, the shell
waits for the process to finish. At this point the shell is in an inactive state named
sleep. When the program finishes execution, it passes its exit status (page 477) to the
shell. The shell then returns to an active state (wakes up), issues a prompt, and waits
for another command.

STANDARD INPUT AND STANDARD OuTPUT 137

The shell does not
process arguments

Because the shell does not process command-line arguments but merely passes them to
the called program, the shell has no way of knowing whether a particular option or
other argument is valid for a given program. Any error or usage messages about options
or arguments come from the program itself. Some utilities ignore bad options.

EDITING THE COMMAND LINE

You can repeat and edit previous commands and edit the current command line. See
page 31, page 338 (bash), and page 393 (tcsh) for more information.

STANDARD INPUT AND STANDARD QUTPUT

optional

Standard output is a place to which a program can send information (e.g., text). The
program never “knows” where the information it sends to standard output is going
(Figure 5-3). The information can go to a printer, an ordinary file, or the screen. The
following sections show that by default the shell directs standard output from a com-
mand to the screen! and describe how you can cause the shell to redirect this output
to another file.

Standard input is a place a program gets information from; by default, the shell
directs standard input from the keyboard. As with standard output, the program
never “knows” where the information comes from. The following sections explain
how to redirect standard input to a command so it comes from an ordinary file
instead of from the keyboard.

In addition to standard input and standard output, a running program has a place to
send error messages: standard error. By default, the shell directs standard error to the
screen. Refer to page 292 (bash) and page 389 (tcsh) for more information on redi-
recting standard error.

By convention, a process expects that the program that called it (frequently the shell)
has set up standard input, standard output, and standard error so the process can use
them immediately. The called process does not have to know which files or devices
are connected to standard input, standard output, or standard error.

Standard
output
Standard
pancert— [Gomman |
Standard
error

Figure 5-3 The command does not know where standard input comes from or
where standard output and standard error go

1. This book uses the term screen to refer to a screen, terminal emulator window, or workstation—in other
words, to the device that the shell displays its prompt and messages on.

138 CHAPTER 5

THE SHELL

However, a process can query the kernel to get information about the device that
standard input, standard output, or standard error is connected to. For example, the
Is utility displays output in multiple columns when the output goes to the screen, but
generates a single column of output when the output is redirected to a file or another
program. The Is utility uses the isatty() system call to determine if output is going to
the screen (a tty). In addition, Is can use another system call to determine the width
of the screen it is sending output to; with this information it can modify its output to
fit the screen. Compare the output of Is by itself and when you send it through a pipe-
line to less. See page 468 for information on how you can determine if standard input
and standard output of shell scripts is going to/coming from the terminal.

THE SCREEN AS A FILE

Device file

Chapter 4 introduced ordinary files, directory files, and hard and soft links. Linux
has an additional type of file: a device file. A device file resides in the file structure,
usually in the /dev directory, and represents a peripheral device, such as a terminal,
printer, or disk drive.

The device name the who utility displays following a username is the filename of the
terminal that user is working on. For example, when who displays the device name
pts/4, the pathname of the terminal is /dev/pts/4. When you work with multiple win-
dows, each window has its own device name. You can also use the tty utility to display
the name of the device that you give the command from. Although you would not nor-
mally have occasion to do so, you can read from and write to this file as though it were
a text file. Reading from the device file that represents the terminal you are using reads
what you enter on the keyboard; writing to it displays what you write on the screen.

THE KEYBOARD AND SCREEN AS STANDARD INPUT AND
STANDARD OQUTPUT

cat

After you log in, the shell directs standard output of commands you enter to the
device file that represents the terminal (Figure 5-4). Directing output in this manner
causes it to appear on the screen. The shell also directs standard input to come from
the same file, so commands receive as input anything you type on the keyboard.

The cat utility provides a good example of the way the keyboard and screen function
as standard input and standard output, respectively. When you run cat, it copies a file
to standard output. Because the shell directs standard output to the screen, cat displays
the file on the screen.

Up to this point cat has taken its input from the filename (argument) you specify on
the command line. When you do not give cat an argument (that is, when you give the
command cat followed immediately by RETURN), cat takes its input from standard
input. Thus, when called without an argument, cat copies standard input to standard
output, one line at a time.

STANDARD INPUT AND STANDARD OUTPUT 139

To see how cat works, type cat and press RETURN in response to the shell prompt.
Nothing happens. Enter a line of text and press RETURN. The same line appears just
under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). Figure 5-5 shows this exchange.

controd The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
signals EOF - coNTROL-D causes the tty device driver to send an EOF (end of file) signal to cat. This
signal indicates to cat that it has reached the end of standard input and there is no
more text for it to copy. The cat utility then finishes execution and returns control to

the shell, which displays a prompt.

»]

A

Standard
input

Standard
output

[|EUE
Shell

\
Command

Figure 5-4 By default, standard input comes from the keyboard, and
standard output goes to the screen

$ cat

This is a 1ine of text.

This is a line of text.

Cat keeps copying 1lines of text

Cat keeps copying lines of text

until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a Tine.

of a Tine.

CONTROL-D

$

Figure 5-5 The cat utility copies standard input to standard output

140 CHAPTER S

THE SHELL

REDIRECTION

The term redirection encompasses the various ways you can cause the shell to alter where
standard input of a command comes from and where standard output goes to. By default,
the shell associates standard input and standard output of a command with the keyboard
and the screen. You can cause the shell to redirect standard input or standard output of
any command by associating the input or output with a command or file other than the
device file representing the keyboard or the screen. This section demonstrates how to
redirect input/output from/to text files and utilities.

REDIRECTING STANDARD OUTPUT

The redirect output symbol (>) instructs the shell to redirect the output of a command
to the specified file instead of to the screen (Figure 5-6). The syntax of a command
line that redirects output is

command [arguments] > filename

where command is any executable program (e.g., an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the
shell redirects the output to.

Figure 5-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 5-5, where standard input and standard output are associated with the key-
board and screen. The input in Figure 5-7 comes from the keyboard. The redirect
output symbol on the command line causes the shell to associate cat’s standard output
with the sample.txt file specified following this symbol.

Redirecting output can destroy a file |

Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and destroy
its contents. For more information see the tip “Redirecting output can destroy a file 11’ on
page 143.

Standard
input

Standard
output

Command

Figure 5-6 Redirecting standard output

STANDARD INPUT AND STANDARD OuTPUT 141

After giving the command and typing the text shown in Figure 5-7, the sample.txt file
contains the text you entered. You can use cat with an argument of sample.txt to dis-
play this file. The next section shows another way to use cat to display the file.

Figure 5-7 shows that redirecting standard output from cat is a handy way to create
a file without using an editor. The drawback is that once you enter a line and press
RETURN, you cannot edit the text until after you finish creating the file. While you are
entering a line, the erase and kill keys work to delete text on that line. This procedure
is useful for creating short, simple files.

Figure 5-8 shows how to run cat and use the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into one
larger file. The first three commands display the contents of three files: stationery,
tape, and pens. The next command shows cat with three filenames as arguments.
When you call it with more than one filename, cat copies the files, one at a time, to
standard output. This command redirects standard output to the file supply_orders.
The final cat command shows that supply_orders contains the contents of the three
original files.

$ cat > sample.txt

This text is being entered at the keyboard and
cat is copying it to a file.

Press CONTROL-D to indicate the

end of file.

CONTROL-D

$

Figure 5-7 cat with its output redirected

$ cat stationery
2,000 sheets letterhead ordered: October 7

$ cat tape
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
$ cat pens
12 doz. black pens ordered: October 4

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: October 7

1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

Figure 5-8 Using cat to catenate files

142 CHAPTER S

THE SHELL

Utilities that take
input from a file or
standard input

REDIRECTING STANDARD INPUT

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 5-9). The syntax of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the shell
redirects the input from.

Figure 5-10 shows cat with its input redirected from the supply_orders file created in
Figure 5-8 and standard output going to the screen. This setup causes cat to display
the supply_orders file on the screen. The system automatically supplies an EOF signal
at the end of an ordinary file.

»]
'

[(})
%/ Standard
-

output

Standard
input

Command

Figure 5-9 Redirecting standard input

$ date > whoson

$ cat whoson

Tues Mar 27 14:31:18 PST 2018
$ who >> whoson

$ cat whoson

Tues Mar 27 14:31:18 PST 2018

sam ttyl 2018-03-27 05:00(:0)

max pts/4 2018-03-27 12:23(:0.0)

max pts/5 2018-03-27 12:33(:0.0)

zach pts/7 2018-03-26 08:45 (172.16.192.1)

Figure 5-10 Redirecting and appending output

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of utilities that function in this manner. Other members of this class of utilities
include Ipr, sort, grep, and Perl. These utilities first examine the command line that

STANDARD INPUT AND STANDARD OUTPUT 143

bash

tcsh

called them. If the command line includes a filename as an argument, the utility takes
its input from the specified file. If no filename argument is present, the utility takes
its input from standard input. It is the utility or program—not the shell or operating
system—that functions in this manner.

Redirecting output can destroy a file

Depending on which shell you are using and how the environment is set up, a command such as
the following can yield undesired results:

$ cat orange pear > orange

cat: orange: input file 1is output file
Although cat displays an error message, the shell destroys the contents of the existing orange file.
The new orange file will have the same contents as pear because the first action the shell takes
when it sees the redirection symbol (>) is to remove the contents of the original orange file. If you
want to catenate two files into one, use cat to put the two files into a temporary file and then use
mv to rename the temporary file:

$ cat orange pear > temp

$ mv temp orange
What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and ¢ for the word apple and redirect the output from grep (page 56)
to the file a.output. Unfortunately, the user enters the filename as a output, omitting the period
and inserting a SPACE in its place:

$ grep apple a b c > a output

grep: output: No such file or directory
The shell obediently removes the contents of a and then calls grep. The error message could take
amoment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it might take a while to realize that you have destroyed the contents of a.

noclobber: PREVENTS OVERWRITING FILES

The shell provides the noclobber feature, which prevents you from overwriting a file
using redirection. Enable this feature by setting noclobber using the command set —o
noclobber. The same command with +o unsets noclobber. Under tcsh use set noclobber
and unset noclobber. With noclobber set, if you redirect output to an existing file,
theshell displays an error message and does not execute the command. Run under bash
and tcsh, the following examples create a file using touch, set noclobber, attempt to
redirect the output from echo to the newly created file, unset noclobber, and perform
the same redirection:

$ touch tmp

$ set -o noclobber

$ echo "hi there" > tmp

-bash: tmp: cannot overwrite existing file
$ set +0 noclobber

$ echo "hi there" > tmp

tcsh $ touch tmp

tcsh $ set noclobber

tcsh § echo "hi there" > tmp
tmp: File exists.

tcsh $ unset noclobber

tcsh § echo "hi there" > tmp

144 CHAPTER S

THE SHELL

You can override noclobber by putting a pipe symbol (tcsh uses an exclamation point)
after the redirect symbol (>l). In the following example, the user creates a file by redi-
recting the output of date. Next, the user sets the noclobber variable and redirects
output to the same file again. The shell displays an error message. Then the user
places a pipe symbol after the redirect symbol, and the shell allows the user to over-
write the file.

$ date > tmp2

$ set -o noclobber

$ date > tmp2

-bash: tmp2: cannot overwrite existing file
$ date >| tmp2

For more information on using noclobber under tcsh, refer to page 407.
Do not trust noclobber

Appending output is simpler than the two-step procedure described in the preceding caution box
but you must be careful to include both greater than signs. If you accidentally use only one greater
than sign and the noclobber feature is not set, the shell will overwrite the orange file. Even if you
have the noclobber feature turned on, it is a good idea to keep backup copies of the files you are
manipulating in case you make a mistake.

Although it protects you from overwriting a file using redirection, noclobber does not stop you
from overwriting a file using cp or mv. These utilities include the —i (interactive) option that helps
protect you from this type of mistake by verifying your intentions when you try to overwrite a file.
For more information see the tip “cp can destroy a file” on page 54.

APPENDING STANDARD OUTPUT TO A FILE

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving existing information intact. This symbol provides a convenient way
of catenating two files into one. The following commands demonstrate the action of
the append output symbol. The second command accomplishes the catenation
described in the preceding caution box:

$ cat orange

this is orange

$ cat pear >> orange

$ cat orange

this is orange

this is pear

The first command displays the contents of the orange file. The second command

appends the contents of the pear file to the orange file. The final command displays
the result.

Figure 5-10 shows how to create a file that contains the date and time (the output from
date), followed by a list of who is logged in (the output from who). The first command
in the example redirects the output from date to the file named whoson. Then cat displays

STANDARD INPUT AND STANDARD OUTPUT 145

PIPELINES

the file. The next command appends the output from who to the whoson file. Finally, cat
displays the file containing the output of both utilities.

/dev/null: MAKING DATA DISAPPEAR

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output you do not want to keep or see to /dev/null, and the output will
disappear without a trace:

$ echo "hi there" > /dev/null
$

Reading from /dev/null yields a null string. The following command truncates the
file named messages to zero length while preserving the ownership and permissions

of the file:

$ 1s -1h messages

-rw-rw-r--. 1 sam pubs 125K 03-16 14:30 messages
$ cat /dev/null > messages

$ 1s -1h messages

-rw-rw-r--. 1 sam pubs @ 03-16 14:32 messages

A pipeline consists of one or more commands separated by a pipe symbol (I). The
shell connects standard output (and optionally standard error) of the command pre-
ceding the pipe symbol to standard input of the command following the pipe symbol.
A pipeline has the same effect as redirecting standard output of one command to a
file and then using that file as standard input to another command. A pipeline does
away with separate commands and the intermediate file. The syntax of a pipeline is

command_a [arguments| | command_b [arguments]

The preceding command line uses a pipeline to effect the same result as the following
three commands:

command_a [arguments| > temp
command_b [arguments| < temp
rm temp

$ cat < supply_orders
2,000 sheets letterhead ordered: October 7

1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

Figure 5-11 cat with its input redirected

146 CHAPTERS

THE SHELL

optional

tr

In the preceding sequence of commands, the first line redirects standard output
from command_a to an intermediate file named temp. The second line redirects
standard input for command_b to come from temp. The final line deletes temp. The
pipeline syntax is not only easier to type but also is more efficient because it does
not create a temporary file.

More precisely, a bash pipeline comprises one or more simple commands (page 133)
separated by a | or & control operator. A pipeline has the syntax:

[time] [!] commandl ||| 1& command2 ... |

where time is an optional utility that summarizes the system resources used by the
pipeline, ! logically negates the exit status returned by the pipeline, and the com-
mands are simple commands (page 133) separated by | or |&. The | control operator
sends standard output of command1 to standard input of command2. The |& con-
trol operator is short for 2>&1 | (see “Sending errors through a pipeline” on
page 293) and sends standard output and standard error of command1 to standard
input of command2. The exit status of a pipeline is the exit status of the last simple
command unless pipefail (page 363) is set, in which case the exit status is the right-
most simple command that failed (returned a nonzero exit status) or zero if all simple
commands completed successfully.

EXAMPLES OF PIPELINES

You can include in a pipeline any utility that accepts input either from a file specified
on the command line or from standard input. You can also include utilities that
accept input only from standard input. For example, the tr (translate; page 1014) util-
ity takes its input from standard input only. In its simplest usage tr has the syntax:

tr string1 string2

The tr utility accepts input from standard input and looks for characters that match
one of the characters in string1. Upon finding a match, it translates the matched char-
acter in string1 to the corresponding character in string2. That is, the first character
in string1 translates into the first character in string2, and so forth. The tr utility sends
its output to standard output. In both of the following tr commands, tr displays the
contents of the abstract file with the letters a, b, and c translated into A, B, and C,
respectively:

$ cat abstract
I took a cab today!

cat abstract | tr abc ABC
took A CAB todAy!

tr abc ABC < abstract
took A CAB todAy!

H & H e

STANDARD INPUT AND STANDARD OUTPUT 147

Ipr

sort

The tr utility does not change the contents of the original file; it cannot change the
original file because it does not “know” the source of its input.

The lpr (line printer) utility accepts input from either a file or standard input. When
you type the name of a file following Ipr on the command line, it places that file in
the print queue. When you do not specify a filename on the command line, Ipr takes
input from standard input. This feature enables you to use a pipeline to redirect input
to lpr. The first set of commands in Figure 5-12 shows how you can use Is and lpr with
an intermediate file (temp) to send a list of the files in the working directory to the
printer. If the temp file exists, the first command overwrites its contents. The second
set of commands uses a pipeline to send the same list (with the exception of temp) to
the printer.

The commands in Figure 5-13 redirect the output from the who utility to temp and
then display this file in sorted order. The sort utility (page 58) takes its input from the
file specified on the command line or, when a file is not specified, from standard
input; it sends its output to standard output. The sort command line in Figure 5-13
takes its input from standard input, which is redirected (<) to come from temp. The
output sort sends to the screen lists the users in sorted (alphabetical) order. Because
sort can take its input from standard input or from a file named on the command line,
omitting the < symbol from Figure 5-13 yields the same result.

$ 1s > temp
$ 1pr temp
$ rm temp
or

$1s | 1pr
Figure 5-12 A pipeline

$ who > temp
$ sort < temp

max pts/4 2018-03-24 12:23
max pts/5 2018-03-24 12:33
sam ttyl 2018-03-24 05:00
zach pts/7 2018-03-23 08:45
$ rm temp

Figure 5-13 Using a temporary file to store intermediate results

148 CHAPTER S

THE SHELL

grep

less and more

optional

Figure 5-14 achieves the same result without creating the temp file. Using a pipeline,
the shell redirects the output from who to the input of sort. The sort utility takes input
from standard input because no filename follows it on the command line.

When many people are using the system and you want information about only one of
them, you can send the output from who to grep (pages 56 and 853) using a pipeline.
The grep utility displays the line containing the string you specify—sam in the following
example.

$ who | grep sam

sam ttyl 2018-03-24 05:00
Another way of handling output that is too long to fit on the screen, such as a list of
files in a crowded directory, is to use a pipeline to send the output through less or
more (both on page 53).

$ 1s | less

The less utility displays text one screen at a time. To view another screen of text, press
the SPACE bar. To view one more line, press RETURN. Press h for help and q to quit.

The pipe symbol (I) implies continuation. Thus, the following command line

$ who | grep 'sam
sam ttyl 2018-03-24 05:00

is the same as these command lines:

$ who |
> grep 'sam'
sam ttyl 2018-03-24 05:00

When the shell parses a line that ends with a pipe symbol, it requires more input
before it can execute the command line. In an interactive environment, it issues a
secondary prompt (>; page 321) as shown above. Within a shell script, it processes
the next line as a continuation of the line that ends with the pipe symbol. See
page 512 for information about control operators and implicit command-line
continuation.

$ who | sort

max pts/4 2018-03-24 12:23
max pts/5 2018-03-24 12:33
sam ttyl 2018-03-24 05:00
zach pts/7 2018-03-23 08:45

Figure 5-14 A pipeline doing the work of a temporary file

STANDARD INPUT AND STANDARD OUTPUT 149

tee

optional
LisTS

$ who | tee who.out | grep sam

sam ttyl 2018-03-24 05:00
$ cat who.out

sam ttyl 2018-03-24 05:00
max pts/4 2018-03-24 12:23
max pts/5 2018-03-24 12:33
zach pts/7 2018 -03-23 08:45

Figure 5-15 tee sends its output to a file and to standard output

FILTERS

A filter is a command that processes an input stream of data to produce an output
stream of data. A command line that includes a filter uses a pipe symbol to connect
standard output of one command to standard input of the filter. Another pipe symbol
connects standard output of the filter to standard input of another command. Not
all utilities can be used as filters.

In the following example, sort is a filter, taking standard input from standard output
of who and using a pipe symbol to redirect standard output to standard input of Ipr.
This command line sends the sorted output of who to the printer:

$ who | sort | Tpr

The preceding example demonstrates the power of the shell combined with the ver-
satility of Linux utilities. The three utilities who, sort, and Ipr were not designed to
work with one another, but they all use standard input and standard output in the
conventional way. By using the shell to handle input and output, you can piece stan-
dard utilities together on the command line to achieve the results you want.

The tee utility copies its standard input both to a file and to standard output. This
utility is aptly named: It takes a single stream of input and sends the output in two
directions. In Figure 5-15 the output of who is sent via a pipeline to standard input
of tee. The tee utility saves a copy of standard input in a file named who.out and
also sends a copy to standard output. Standard output of tee goes via a pipeline
to standard input of grep, which displays only those lines containing the string
sam. Use tee with the —a (append) option to cause it to append to a file instead of
overwriting it.

A list is one or more pipelines (including simple commands), each separated from the
next by one of the following control operators: ;, &, & &, or ll. The & & and Il control
operators have equal precedence; they are followed by ; and &, which have equal pre-
cedence. The ; control operator is covered on page 300 and & on page 300. See

150 CHAPTER S

THE SHELL

page 512 for information about control operators and implicit command-line
continuation.

An AND list has the syntax:
pipelinel & & pipeline2

where pipeline2 is executed if and only if pipelinel returns a true (zero) exit status.
In the following example, the first command in the list fails (and displays an error
message) so the shell does not execute the second command (cd /newdir; because it
is not executed, it does not display an error message):

$ mkdir /newdir && cd /newdir
mkdir: cannot create directory '/newdir': Permission denied

The exit status of AND and OR lists is the exit status of the last command in the list
that is executed. The exit status of the preceding list is false because mkdir was the
last command executed and it failed.

An OR list has the syntax:
pipelinel || pipeline2

where pipeline2 is executed if and only if pipelinel returns a false (nonzero) exit
status. In the next example, the first command (ping tests the connection to a
remote machine and sends standard output and standard error to /dev/null) in the list fails
so the shell executes the second command (it displays a message). If the first com-
mand had completed successfully, the shell would not have executed the second
command (and would not have displayed the message). The list returns an exit
status of true.

$ ping -cl station &>/dev/null || echo "station 1is down"
station is down

For more information refer to “&8& and || Boolean Control Operators” on page 301.

RUNNING A COMMAND IN THE BACKGROUND

Foreground

Jobs

All commands up to this point have been run in the foreground. When you run a com-
mand in the foreground, the shell waits for it to finish before displaying another
prompt and allowing you to continue. When you run a command in the background,
you do not have to wait for the command to finish before running another command.

A job is another name for a process running a pipeline (which can be a simple com-
mand). You can have only one foreground job on a screen, but you can have many
background jobs. By running more than one job at a time, you are using one of
Linux’s features: multitasking. Running a command in the background can be useful

RUNNING A COMMAND IN THE BACKGROUND 151

Job number,
PID number

CONTROL-Z
and bg

fg

when the command will run for a long time and does not need supervision. It leaves
the screen free so you can use it for other work.

To run a command in the background, type an ampersand (&; a control operator)
just before the RETURN that ends the command line. The shell assigns a small number
to the job and displays this job number between brackets. Following the job number,
the shell displays the process identification (PID) number—a larger number assigned
by the operating system. Each of these numbers identifies the command running in
the background. The shell then displays another prompt, and you can enter another
command. When the background job finishes, the shell displays a message giving
both the job number and the command line used to run the command.

The following example runs in the background; it is a pipeline that sends the output
of Is to lpr, which sends it to the printer.

$1s -1 | 1pr &
[1] 22092
$

The [1] following the command line indicates that the shell has assigned job number
1 to this job. The 22092 is the PID number of the first command in the job. (The
TC Shell shows PID numbers for all commands in a job.) When this background
job completes execution, you see the message

[1]+ Done s -1 | 1pr

(In place of Is -1, the shell might display something similar to Is ——color=auto —1. This
difference is due to the fact that Is is aliased [page 352] to Is ——color=auto.)

MOVING A JOB FROM THE FOREGROUND TO THE BACKGROUND

You can suspend a foreground job (stop it from running) by pressing the suspend key,
usually CONTROL-Z. The shell then stops the process and disconnects standard input from
the keyboard. It does, however, still send standard output and standard error to the
screen. You can put a suspended job in the background and restart it by using the bg
command followed by the job number. You do not need to specify the job number
when there is only one suspended job.

Redirect the output of a job you run in the background to keep it from interfering
with whatever you are working on in the foreground (on the screen). Refer to
“Control Operators: Separate and Group Commands” on page 299 for more detail
about background tasks.

Only the foreground job can take input from the keyboard. To connect the keyboard
to a program running in the background, you must bring the program to the fore-
ground. To do so, type fg without any arguments when only one job is in the
background. When more than one job is in the background, type fg, or a percent sign
(%), followed by the number of the job you want to bring to the foreground. The

152 CHAPTERS5 THE SHELL

shell displays the command you used to start the job (promptme in the following
example), and you can enter input the program requires to continue.

$ fg 1
promptme

kill: ABORTING A BACKGROUND JOB

The interrupt key (usually CONTROL-C) cannot abort a background process because the
keyboard is not attached to the job; you must use kill (page 866) for this purpose. Fol-
low kill on the command line with either the PID number of the process you want to
abort or a percent sign (%) followed by the job number.

Determining the If you forget a PID number, you can use the ps (process status) utility (page 334) to
PID ofaprocess display it. The following example runs a find command in the background, uses ps to
using s display the PID number of the process, and aborts the job using kill:

$ find / -name memo55 > mem.out &

[1] 18228

$ ps | grep find

18228 pts/10 00:00:01 find

$ ki1l 18228

[1]+ Terminated find / -name memo55 > mem.out

$

Determining the If you forget a job number, you can use the jobs command to display a list of jobs
numberofajob that includes job numbers. The next example is similar to the previous one except it
Using jobs yses the job number instead of the PID number to identify the job to be killed. Some-
times the message saying the job is terminated does not appear until you press RETURN

after the RETURN that executes the kill command.

$ find / -name memo55 > mem.out &
[1] 18236

$ bigjob &
[2] 18237

$ jobs

[1]1- Running find / -name memo55 > mem.out &
[2]+ Running bigjob &

$ kill %1

$ RETURN

[1]- Terminated find / -name memo55 > mem.out

$

FILENAME GENERATION/PATHNAME EXPANSION

Wildcards, globbing When you specify an abbreviated filename that contains special characters, also called
metacharacters, the shell can generate filenames that match the names of existing files.
These special characters are also referred to as wildcards because they act much as the

FILENAME GENERATION/PATHNAME EXPANSION 153

jokers do in a deck of cards. When one of these characters appears in an argument on
the command line, the shell expands that argument in sorted order into a list of filenames
and passes the list to the program called by the command line. Filenames that contain
these special characters are called ambiguous file references because they do not refer to
one specific file. The process the shell performs on these filenames is called pathname
expansion or globbing.

Ambiguous file references can quickly refer to a group of files with similar names,
saving the effort of typing the names individually. They can also help find a file whose
name you do not remember in its entirety. If no filename matches the ambiguous file
reference, the shell generally passes the unexpanded reference—special characters and
all—to the command. See “Brace Expansion” on page 366 for a technique that gen-
erates strings that do not necessarily match filenames.

THE ? SPECIAL CHARACTER

The question mark (?) is a special character that causes the shell to generate filenames.
It matches any single character in the name of an existing file. The following command
uses this special character in an argument to the Ipr utility:

$ 1pr memo?

The shell expands the memo? argument and generates a list of files in the working
directory that have names composed of memo followed by any single character. The
shell then passes this list to Ipr. The Ipr utility never “knows” the shell generated the file-
names it was called with. If no filename matches the ambiguous file reference, the shell
passes the string itself (memo?) to lpr or, if it is set up to do so, passes a null string (see
nullglob on page 363).

The following example uses Is first to display the names of all files in the working
directory and then to display the filenames that memo? matches:

$1s
mem memol2 memo9 memomax newmemo5
memo memo5 memoa memos

$ 1s memo?
memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12,
memomax, or newmemo3. You can also use a question mark in the middle of an
ambiguous file reference:

$ 1s
7may4report may4report mayqreport may_report
mayl4report may4report.79 mayreport may .report

$ 1s may?report
may4report maygreport may_report may.report

154 CHAPTERS5 THE SHELL

echo You can use echo and Is to practice generating filenames. The echo utility displays the
arguments the shell passes to it:

$ echo may?report
may4report mayqreport may_report may.report

The shell first expands the ambiguous file reference into a list of files in the working
directory that match the string may?report. It then passes this list to echo, as though
you had entered the list of filenames as arguments to echo. The echo utility displays
the list of filenames.

A question mark does not match a leading period (one that indicates a hidden filename;
page 88). When you want to match filenames that begin with a period, you must
explicitly include the period in the ambiguous file reference.

THE *+ SPECIAL CHARACTER

The asterisk (%) performs a function similar to that of the question mark but matches
any number of characters, including zero characters, in a filename. The following
example first shows all files in the working directory and then shows commands that
display all the filenames that begin with the string memo, end with the string mo, and
contain the string alx:

$ 1s
amemo memalx memo.0612 memoalx.0620 memorandum sallymemo
mem memo memoa memoalx.keep memosally user.memo

$ echo memo:
memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally

$ echo *mo
amemo memo sallymemo user.memo

$ echo =alx:

memalx memoalx.0620 memoalx.keep
The ambiguous file reference memo* does not match amemo, mem, sallymemo, or
user.memo. Like the question mark, an asterisk does 7ot match a leading period in a
filename.

The —a option causes Is to display hidden filenames (page 88). The command echo *
does not display . (the working directory), .. (the parent of the working directory),
.aaa, or .profile. In contrast, the command echo . displays only those four names:

$1s
aaa memo.0612 memo.sally report sally.0612 saturday thurs

$1s -a
aaa memo.0612 .profile sally.0612 thurs
.aaa memo.sally report saturday

$ echo =

FILENAME GENERATION/PATHNAME EXPANSION 155

aaa memo.0612 memo.sally report sally.0612 saturday thurs

$ echo .=
.aaa .profile
In the following example, .p* does not match memo.0612, private, reminder, or
report. The Is .* command causes Is to list .private and .profile in addition to the con-
tents of the . directory (the working directory) and the .. directory (the parent of the
working directory). When called with the same argument, echo displays the names
of files (including directories) in the working directory that begin with a dot (.) but
not the contents of directories.

$1s -a
memo.0612 private .private .profile reminder report

$ echo .p=

.private .profile

$1s .=

.private .profile

memo.0612 private reminder report
$ echo .=

.private .profile

You can plan to take advantage of ambiguous file references when you establish
conventions for naming files. For example, when you end the names of all text files
with .txt, you can reference that group of files with *.txt. The next command uses
this convention to send all text files in the working directory to the printer. The
ampersand causes Ipr to run in the background.

$ 1pr =.txt &

The shell expands ambiguous file references

The shell does the expansion when it processes an ambiguous file reference, not the program
that the shell runs. In the examples in this section, the utilities (Is, cat, echo, lpr) never see the
ambiguous file references. The shell expands the ambiguous file references and passes a list of
ordinary filenames to the utility. In the previous examples, echo demonstrates this fact because
it simply displays its arguments; it never displays the ambiguous file reference.

THE [| SPECIAL CHARACTERS

A pair of brackets surrounding one or more characters causes the shell to match
filenames containing the individual characters within the brackets. Whereas memo?
matches memo followed by any character, memo[17a] is more restrictive: It matches
only memol, memo7, and memoa. The brackets define a character class that
includes all the characters within the brackets. (GNU calls this a character list; a

156 CHAPTERS

THE SHELL

GNU character class is something different.) The shell expands an argument that
includes a character-class definition by substituting each member of the character
class, one at a time, in place of the brackets and their contents. The shell then passes
the list of matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename.
The brackets and their contents are like a question mark that substitutes only the
members of the character class.

The first of the following commands lists the names of all files in the working directory
that begin with a, e, i, 0, or u. The second command displays the contents of the files
named page2.txt, page4.txt, page6.txt, and page8.txt.

$ echo [aeiou]:
$ less page[2468].txt

A hyphen within brackets defines a range of characters within a character-class defi-
nition. For example, [6-9] represents [6789], [a—z] represents all lowercase letters in
English, and [a—zA-Z] represents all letters, both uppercase and lowercase, in
English.

The following command lines show three ways to print the files named part0, part1,
part2, part3, and part5. Each of these command lines causes the shell to call lpr with
five filenames:

$ 1pr part@ partl part2 part3 part5
$ 1pr part[01235]
$ 1pr part[0-35]

The first command line explicitly specifies the five filenames. The second and third
command lines use ambiguous file references, incorporating character-class defini-
tions. The shell expands the argument on the second command line to include all files
that have names beginning with part and ending with any of the characters in the
character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The third
command line also uses a character-class definition but defines the character class to
be all characters in the range 0-3 plus 5.

The following command line prints 39 files, part0 through part38:
$ 1pr part[0-9] part[12][0-9] part3[0-8]

The first of the following commands lists the files in the working directory whose
names start with a through m. The second lists files whose names end with x, y, or z.

$ echo [a-m]=

BuiLTINS 157

$ echo *[x-z]

optional When an exclamation point (!) or a caret (*) immediately follows the opening bracket
([) that starts a character-class definition, the character class matches any character
not between the brackets. Thus [Atsq]* matches any filename that does #ot begin
with t, s, or q.

The following examples show that *[~ab] matches filenames that do not end with
the letter a or b and that [Ab-d]* matches filenames that do not begin with b, ¢, or d.

$ 1s
aa ab ac ad ba bb bc bd cc dd

$ 1s =[Aab]
ac ad bc bd cc dd

$ 1s [/\b—d]f:
aa ab ac ad

You can cause a character class to match a hyphen (-) or a closing bracket (]) by placing
it immediately before the final (closing) bracket.

The next example demonstrates that the Is utility cannot interpret ambiguous file ref-
erences. First, Is is called with an argument of ?o0ld. The shell expands ?0ld into a
matching filename, hold, and passes that name to Is. The second command is the same
as the first, except the ? is quoted (by preceding it with a backslash [\]; refer to “Special
Characters” on page 50). Because the ? is quoted, the shell does not recognize it as a
special character and passes it to Is. The Is utility generates an error message saying
that it cannot find a file named ?0ld (because there is no file named ?old).

$ 1s 2old
hold

$ 1s \?0ld
1s: ?01d: No such file or directory

Like most utilities and programs, Is cannot interpret ambiguous file references; that
work is left to the shell.

BUILTINS

A builtin is a utility (also called a command) that is built into a shell. Each of the
shells has its own set of builtins. When it runs a builtin, the shell does not fork a new
process. Consequently, builtins run more quickly and can affect the environment of
the current shell. Because builtins are used in the same way as utilities, you will not
typically be aware of whether a utility is built into the shell or is a stand-alone utility.

For example, echo is a shell builtin. It is also a stand-alone utility. The shell always
executes a shell builtin before trying to find a command or utility with the same

158 CHAPTER 5

THE SHELL

Listing bash
builtins

Getting help with
bash builtins

Listing tcsh builtins

name. See page 489 for an in-depth discussion of builtin commands, page 503 for a
list of bash builtins, and page 418 for a list of tcsh builtins.

To display a list of bash builtins, give the command info bash shell builtin. To display
a page with information on each builtin, move the cursor to the Bash Builtins line
and press RETURN. Alternatively, you can view the builtins man page.

You can use the bash help command to display information about bash builtins. See
page 39 for more information.

To list tesh builtins, give the command man tesh to display the tcsh man page and then
search for the second occurrence of Builtin commands by using the following two
commands: /Builtin commands (search for the string) and n (search for the next
occurrence of the string).

CHAPTER SUMMARY

The shell is the Linux command interpreter. It scans the command line for proper syn-
tax, picking out the command name and arguments. The name of the command is
argument zero. The first argument is argument one, the second is argument two, and
so on. Many programs use options to modify the effects of a command. Most Linux
utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the
same name as the command. When it does, the shell executes the program. When it
does not, the shell tells you it cannot find or execute the program. If the command is
a simple filename, the shell searches the directories listed in the PATH variable to
locate the command.

When it executes a command, the shell assigns one file or device to the command’s
standard input and another file to its standard output. By default, the shell causes a
command’s standard input to come from the keyboard and its standard output to go
to the screen. You can instruct the shell to redirect a command’s standard input from
or standard output to any file or device. You can also connect standard output of one
command to standard input of another command to form a pipeline. A filter is a com-
mand that reads its standard input from standard output of one command and writes
its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for the command to finish
before it displays a prompt and allows you to continue. When you put an ampersand
(&) at the end of a command line, the shell executes the command in the background
and displays another prompt immediately. Run slow commands in the background
when you want to enter other commands at the shell prompt. The jobs builtin dis-
plays a list of suspended jobs and jobs running in the background and includes the
job number of each.

The shell interprets special characters on a command line to generate filenames. A
reference that uses special characters (wildcards) to abbreviate a list of one or more
filenames is called an ambiguous file reference. A question mark represents any single

EXERCISES 159

character, and an asterisk represents zero or more characters. A single character
might also be represented by a character class: a list of characters within brackets.

A builtin is a utility that is built into a shell. Each shell has its own set of builtins.
When it runs a builtin, the shell does not fork a new process. Consequently builtins

run

more quickly and can affect the environment of the current shell.

UTILITIES AND BUILTINS INTRODUCED IN THIS CHAPTER

Table 5-1 lists the utilities introduced in this chapter.

New utilities
Utility Function
tr Maps one string of characters to another (page 146)
tee Sends standard input to both a file and standard output (page 149)
bg Moves a process to the background (page 151)
fg Moves a process to the foreground (page 151)
jobs Displays a list of suspended jobs and jobs running in the background (page 152)
EXERCISES
1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?
2. Using sort as a filter, rewrite the following sequence of commands:
$ sort list > temp
$ 1pr temp
$ rm temp
3. What is a PID number? Why are these numbers useful when you run processes
in the background? Which utility displays the PID numbers of the commands
you are running?
4. Assume the following files are in the working directory:

$1s
intro notesb ref2 sectionl section3 section4b
notesa refl ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express
filenames with as few characters as possible.

a. List all files that begin with section.
b. List the section1, section2, and section3 files only.

c. List the intro file only.

160 CHAPTER5 THE SHELL

d. List the section1, section3, refl, and ref3 files.
5. Refer to Part VII or the info or man pages to determine which command will
a. Display the number of lines in its standard input that contain the word aor A.

b. Display only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in reverse alphabetical order.
d. Send a list of files in the working directory to the printer, sorted by size.
6. Give a command to

a. Redirect standard output from a sort command to a file named
phone_list. Assume the input file is named numbers.

b. Translate all occurrences of the characters [and { to the character (, and
all occurrences of the characters] and } to the character), in the file
permdemos.c. (Hint: Refer to tr on page 1014.)

c. Create a file named book that contains the contents of two other files:
partl and part2.

7. Thelprand sort utilities accept input either from a file named on the command
line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.
8. Give an example of a command that uses grep

a. With both input and output redirected.

b. With only input redirected.

¢. With only output redirected.

d. Within a pipeline.

In which of the preceding cases is grep used as a filter?

9. Explain the following error message. Which filenames would a subsequent
Is command display?
$1s
abc abd abe abf abg abh

$ rm abc ab:
rm: cannot remove 'abc': No such file or directory

ADVANCED EXERCISES

10. When you use the redirect output symbol (>) on a command line, the shell
creates the output file immediately, before the command is executed.
Demonstrate that this is true.

ADVANCED EXERCISES 161

11.

12.

13.

14.

15.

16.

In experimenting with variables, Max accidentally deletes his PATH variable.
He decides he does not need the PATH variable. Discuss some of the problems
he could soon encounter and explain the reasons for these problems. How
could he easily return PATH to its original value?

Assume permissions on a file allow you to write to the file but not to delete it.
a. Give a command to empty the file without invoking an editor.

b. Explain how you might have permission to modify a file that you cannot
delete.

If you accidentally create a filename that contains a nonprinting character,
such as a CONTROL character, how can you remove the file?

Why does the noclobber variable 7ot protect you from overwriting an
existing file with cp or mv?

Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not recommended practice. If you
want to experiment, create a file and work in a directory that contains only
your experimental file.)

Create a file named answer and give the following command:
$ > answers.0102 < answer cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

This page intentionally left blank

PART Il
THE EDITORS

CHAPTER 6
THE vim EDITOR 165

CHAPTER 7
THE emacs EDITOR 221

163

This page intentionally left blank

IN THIS CHAPTER

Tutorial: Using vim to Create

and EditaFile
Introduction to vim Features

OnlineHelp.................

Command Mode: Moving the

InputMode

Command Mode: Deleting and

Changing Text
Searching and Substituting

Copying, Moving, and

Deleting Text
The General-Purpose Buffer. . ..
Reading and Writing Files.
The .vimrc Startup File

THE vim EDITOR

OBJECTIVES
After reading this chapter you should be able to:
167 . .
» Use vim to create and edit a file
175
s » View vim online help
» Explain the difference between Command and Input
181 modes
05 » Explain the purpose of the Work buffer

» List the commands that open a line above the cursor,
186 append text to the end of a line, move the cursor to the
first line of the file, and move the cursor to the middle

L line of the screen
197 » Describe Last Line mode and list some commands that
use this mode
198 ,
» Describe how to set and move the cursor to a marker
200
02 » List the commands that move the cursor backward and

forward by characters and words
» Describe how to read a file into the Work buffer

» Explain how to search backward and forward for text
and how to repeat that search

165

166 CHAPTER 6 THE vim EDITOR

HISTORY

vi clones

This chapter begins with a history and description of vi, the original, powerful,
sometimes cryptic, interactive, visually oriented text editor. The chapter continues
with a tutorial that explains how to use vim (vi improved—a vi clone supplied with
or available for most Linux distributions) to create and edit a file. Much of the
tutorial and the balance of the chapter apply to vi and other vi clones. Following
the tutorial, the chapter delves into the details of many vim commands and explains
how to use parameters to customize vim to meet your needs. It concludes with a
quick reference/summary of vim commands.

Before vi was developed, the standard UNIX system editor was ed (available on most
Linux systems), a line-oriented editor that made it difficult to see the context of your
editing. Next came ex,! a superset of ed. The most notable advantage that ex has over
ed is a display-editing facility that allows you to work with a full screen of text instead
of just a line. While using ex, you can bring up the display-editing facility by giving
a vi (Visual mode) command. People used this display-editing facility so extensively
that the developers of ex made it possible to start the editor with the display-editing
facility already running, rather than having to start ex and then give a vi command.
Appropriately, they named the program vi. You can call the Visual mode from ex, and
you can go back to ex while you are using vi. Start by running ex; give a vi command
to switch to Visual mode, and give a Q command while in Visual mode to use ex. The
quit command exits from ex.

Linux offers a number of versions, or clones, of vi. The most popular of these clones
are elvis (elvis.the-little-red-haired-girl.org), nvi (an implementation of the original vi
editor by Keith Bostic), vile (invisible-island.net/vile/vile.html), and vim
(www.vim.org). Each clone offers additional features beyond those provided by the
original vi.

The examples in this book are based on vim. Several Linux distributions support
multiple versions of vim. For example, Fedora provides /bin/vi, a minimal build of
vim that is compact and faster to load but offers fewer features, and /usr/bin/vim,
a full-featured version of vim.

If you use one of the clones other than vim, or vi itself, you might notice slight dif-
ferences from the examples presented in this chapter. The vim editor is compatible
with almost all vi commands and runs on many platforms, including Windows,
Macintosh, OS/2, UNIX, and Linux. Refer to the vim home page (www.vim.org) for
more information and a very useful Tips section.

1. The ex program is usually a link to vi, which is a version of vim on some systems.

http://elvis.the-little-red-haired-girl.org
http://invisible-island.net/vile/vile.html
http://www.vim.org
http://www.vim.org

TuToRIAL: USING vim TO CREATE AND EDIT A FILE 167

What vim is not

Reading this chapter

The vim editor is not a text formatting program. It does not justify margins or provide
the output formatting features of a sophisticated word processing system such as
LibreOffice Writer (www.libreoffice.org). Rather, vim is a sophisticated text editor
meant to be used to write code (C, HTML, Java, and so on), short notes, and input
to a text formatting system, such as groff or troff. You can use fmt (page 831) to min-
imally format a text file you create with vim.

Because vim is so large and powerful, this chapter describes only some of its features.
Nonetheless, if vim is completely new to you, you might find even this limited set of
commands overwhelming. The vim editor provides a variety of ways to accomplish
most editing tasks. A useful strategy for learning vim is to begin by learning a subset
of commands to accomplish basic editing tasks. Then, as you become more comfort-
able with the editor, you can learn other commands that enable you to edit a file more
quickly and efficiently. The following tutorial section introduces a basic, useful set of
vim commands and features that will enable you to create and edit a file.

TUTORIAL: USING vim TO CREATE AND EDIT A FILE

vimtutor

Specifying a
terminal

This section explains how to start vim, enter text, move the cursor, correct text, save
the file to the disk, and exit from vim. The tutorial discusses three of the modes of
operation of vim and explains how to switch from one mode to another.

In addition to working with this tutorial, you might want to try vim’s instructional
program, vimtutor. Enter its name as a command to run it.

vimtutor and vim help files are not installed by default

To run vimtutor and to get help as described on page 171, you must install the vim-enhanced or
vim-runtime package. See Appendix C for instructions.

Because vim takes advantage of features that are specific to various kinds of terminals,
you must tell it what type of terminal or terminal emulator you are using. On many
systems, and usually when you work on a terminal emulator, your terminal type is
set automatically. If you need to specify your terminal type explicitly, refer to “Spec-
ifying a Terminal” on page 1050.

STARTING Vim

Start vim with the following command to create and edit a file named practice (you
might need to use the command vi or vim.tiny in place of vim):

$ vim practice

When you press RETURN, the command line disappears, and the screen looks similar to
the one shown in Figure 6-1.

http://www.libreoffice.org

168 CHAPTER 6

THE vim EDITOR

Problem

Emergency exit

The tildes (~) at the left of the screen indicate the file is empty. They disappear as you
add lines of text to the file. If the screen looks like a distorted version of the one shown
in Figure 6-1, the terminal type is probably not set correctly (see “Problem,” next).

The vi command might run vim
On some systems the command vi runs vim in vi-compatible mode (page 174).

The practice file is new, so it contains no text. The vim editor displays a message
similar to the one shown in Figure 6-1 on the status (bottom) line of the terminal
to indicate you are creating and editing a new file. When you edit an existing file,
vim displays the first few lines of the file and gives status information about the file
on the status line.

If you start vim with a terminal type that is not in the terminfo database, vim displays
an error message and waits for you to press RETURN or sets the terminal type to ansi,
which works on many terminals.

To reset the terminal type, press ESCAPE and then give the following command to exit
from vim and display the shell prompt:

:q!

When you enter the colon (:), vim moves the cursor to the bottom line of the screen.
The characters q! tell vim to quit without saving your work. (You will not ordinarily
exit from vim this way because you typically want to save your work.) You must press-
RETURN after you give this command. When the shell displays its prompt, refer to
“Specifying a Terminal” on page 1050 and start vim again. If you start vim without
a filename, it displays information about itself (Figure 6-2).

T 1 ¢t 1111ttt t1t @ittt ttrtetrtreq: il

"practice" [New File] 0,0-1 All

Figure 6-1 Starting vim

TuToRIAL: USING vim TO CREATE AND EDITA FILE 169

VIM - Vi IMproved

version 7.3.315
by Bram Moolenaar et al.
Modified by <bugzilla@redhat.com>
Vim is open source and freely distributable

Sponsor Vim development!
type :help sponsor<Enter> for information

type :q<Enters> to exit
type :help<Enter> or <Fl> for on-line help
type :help version7<Enter> for version info

T Tt 1ttt ¢ttt ¢ttt ittt

Figure 6-2 Starting vim without a filename

COMMAND AND INPUT MODES

Last Line mode

vim is case
sensitive

Two of vim’s modes of operation are Command mode (also called Normal mode) and
Input mode (Figure 6-3). While vim is in Command mode, you can give vim com-
mands. For example, you can delete text or exit from vim. You can also command
vim to enter Input mode. In Input mode, vim accepts anything you enter as text and
displays it on the screen. Press ESCAPE to return vim to Command mode. By default the
vim editor keeps you informed about which mode it is in: It displays INSERT at the
lower-left corner of the screen while it is in Insert mode.

The following command causes vim to display line numbers next to the text you are
editing:

:set number RETURN

The colon (:) in the preceding command puts vim into another mode, Last Line mode.
While in this mode, vim keeps the cursor on the bottom line of the screen. When you
finish entering the command by pressing RETURN, vim restores the cursor to its place in
the text. Give the command :set nonumber RETURN to turn off line numbering.

When you give vim a command, remember that the editor is case sensitive. In other
words, vim interprets the same letter as two different commands, depending on
whether you enter an uppercase or lowercase character. Beware of the CAPSLOCK (SHIFT-
Lock) key. If you set this key to enter uppercase text while you are in Input mode and
then exit to Command mode, vim interprets your commands as uppercase letters. It
can be confusing when this happens because vim does not appear to be executing the
commands you are entering.

170 CHAPTER 6 THE vim EDITOR

Command
mode

RETURN

Insert,
Append,
Open,
Replace,
Change

ESCAPE

Figure 6-3 Modes in vim

ENTERING TEXT

i/a (Input mode) When you start vim, you must put it in Input mode before you can enter text. To put vim
in Input mode, press the i (insert before cursor) key or the a (append after cursor) key.

If you are not sure whether vim is in Input mode, press the ESCAPE key; vim returns to Com-
mand mode if it is in Input mode or beeps, flashes, or does nothing if it is already in
Command mode. You can put vim back in Input mode by pressing the i or a key again.

While vim is in Input mode, you can enter text by typing on the keyboard. If the text
does not appear on the screen as you type, vim is not in Input mode.

To continue with this tutorial, enter the sample paragraph shown in Figure 6-4, press-
ing the RETURN key at the end of each line. If you do not press RETURN before the cursor
reaches the right side of the screen or window, vim wraps the text so that it appears to
start a new line. Physical lines will not correspond to programmatic (logical) lines in
this situation, so editing will be more difficult. While you are using vim, you can cor-
rect typing mistakes. If you notice a mistake on the line you are entering, you can
correct it before you continue (page 172). You can correct other mistakes later. When
you finish entering the paragraph, press ESCAPE to return vim to Command mode.

TuTORIAL: USING vim TO CREATE AND EDIT A FILE

171

If you are not sure whether vim is in Input mode, press the ESCAPE
key; vim returns to Command mode if it was in Input mode or beeps,
flashes, or does nothing if it is already in Command mode. You can
put vim back in Input mode by pressing the i or a key again.ll

Tt 11 tt1tt ittt

- INSERT --

Figure 6-4 Entering text with vim

GETTING HELP

You must have the vim-runtime package installed to use vim’s help system; see

Appendix C.

To get help while you are using vim, enter the command :help [feature] followed by
RETURN. The editor must be in Command mode when you enter this command. The
colon moves the cursor to the last line of the screen. If you type :help, vim displays
an introduction to vim Help (Figure 6-5). Each dark band near the bottom of the
screen names the file that is displayed above it. (Each area of the screen that displays
a file, such as the two areas shown in Figure 6-5, is a vim “window.”) The help.txt
file occupies most of the screen (the upper window) in Figure 6-5. The file that is

melp.txt For

Move around:

Close this window:
Get out of Vim:

Jump to a subject:
With the mouse:

Jump back:

Get specific help:

WHAT PREPEND EXAMPLE
Normal mode command (nothing) thelp x
help.txt [Help][RO] 1,1 Top)|
put vim back in Input mode by pressing the i or a key again.
practice [+] 4,60 Bot

“help.txt" [readonly] 221L, 8239C

Last change: 2010 Jul 20
VIM - main help file

Use the cursor keys, or "h" to go left, h 1
"j" to go down, "k" to go up, "l" to go right. j
Use ":q<Enter>".

Use ":gal<Enter>" (careful, all changes are lost!).

Position the curseor on a tag (e.g.) and hit CTRL-].
":set mouse=a" to enable the mouse (in xterm or GUI).
Double-click the left mouse button on a tag, e.g.

Type CTRL-T or CTRL-0 (repeat to ge further back).

It is possible to go directly to whatever you want help

on, by giving an argument to the command .

It is possible to further specify the context:
help-context

Figure 6-5 The main vim Help screen

172 CHAPTER 6 THE vim EDITOR

being edited (practice) occupies a few lines in the lower portion of the screen (the
lower window).

Read through the introduction to Help by scrolling the text as you read. Press j or the
DOWN ARROW key to move the cursor down one line at a time; press CONTROL-D or CONTROL-U
to scroll the cursor down or up half a window at a time. Give the command :q to close
the Help window.

You can display information about the insert commands by giving the command
:help insert while vim is in Command mode (Figure 6-6).

CORRECTING TEXT AS YOU INSERT IT

The keys that back up and correct a shell command line serve the same functions
when vim is in Input mode. These keys include the erase, line kill, and word kill keys
(usually CONTROL-H, CONTROL-U, and CONTROL-W, respectively). Although vim might not
remove deleted text from the screen as you back up over it using one of these keys,
the editor does remove it when you type over the text or press RETURN.

MOVING THE CURSOR

You need to be able to move the cursor on the screen so you can delete, insert, and
correct text. While vim is in Command mode, the RETURN key, the SPACEbar, and the ARROW
keys move the cursor. If you prefer to keep your hand closer to the center of the key-
board, if your terminal does not have ARROW keys, or if the emulator you are using does
not support them, you can use the h, j, k, and 1 (lowercase “1”) keys to move the cur-
sor left, down, up, and right, respectively.

<insert> or i fnsert <Insert>
i Insert text before the cursor [count] times.
When using CTRL-0 in Insert mode the count

is not supported.

I Insert text before the first non-blank in the line
[count] times,
When the 'H' flag is present in and the

line only contains blanks, insert start just before
the last blank.

gl
gl Insert text in column 1 [count] times. {not in Vi}

ai
gi Insert text in the same position as where Insert mode
was stopped last time in the current buffer.
This uses the mark, It's different from "°
when the mark is past the end of the line.
insert.txt.gz [Help][RO] 1697,20-53 89%|
put vim back in Input mode by pressing the i or a key again.

in

"insert.txt.gz" [readonly][noeol] 105L, 24781C

Figure 6-6 Help with insert commands

TUuTORIAL: USING vim TO CREATE AND EDITAFILE 173

X (Delete character)
dw (Delete word)
dd (Delete line)

u (Undo)

:redo (Redo)

i (Insert)
a (Append)

0/0 (Open)

DELETING TEXT

You can delete a single character by moving the cursor until it is over the character
you want to delete and then giving the command x. You can delete a word by posi-
tioning the cursor on the first letter of the word and then giving the command dw
(Delete word). You can delete a line of text by moving the cursor until it is anywhere
on the line and then giving the command dd.

UNDOING MISTAKES

If you delete a character, line, or word by mistake or give any command you want to
reverse, give the command u (Undo) immediately after the command you want to
undo. The vim editor will restore the text to the way it was before you gave the last
command. If you give the u command again, vim will undo the command you gave
before the one it just undid. You can use this technique to back up over many of your
actions. With the compatible parameter (page 174) set, however, vim can undo only
the most recent change.

If you undo a command you did not mean to undo, give a Redo command: CONTROL-R
or :redo (followed by a RETURN). The vim editor will redo the undone command. As
with the Undo command, you can give the Redo command many times in a row.

ENTERING ADDITIONAL TEXT

When you want to insert new text within existing text, move the cursor so it is on
the character that follows the new text you plan to enter. Then give the i (Insert) com-
mand to put vim in Input mode, enter the new text, and press ESCAPE to return vim to
Command mode. Alternatively, you can position the cursor on the character that pre-
cedes the new text and use the a (Append) command.

To enter one or more lines, position the cursor on the line above where you want the
new text to go. Give the command o (Open). The vim editor opens a blank line below
the line the cursor was on, puts the cursor on the new, empty line, and goes into Input
mode. Enter the new text, ending each line with a RETURN. When you are finished enter-
ing text, press ESCAPE to return vim to Command mode. The O command works in the
same way o works, except it opens a blank line above the line the cursor is on.

CORRECTING TEXT

To correct text, use dd, dw, or x to remove the incorrect text. Then, use either i, a, o,
or O to insert the correct text.

For example, to change the word pressing to hitting in Figure 6-4 on page 171, you
might use the ARROW keys to move the cursor until it is on top of the p in pressing. Then
give the command dw to delete the word pressing. Put vim in Input mode by giving
an i command, enter the word hitting followed by a SPACE, and press ESCAPE. The word
is changed, and vim is in Command mode, waiting for another command. A short-

174 CHAPTER6 THE vim EDITOR

hand for the two commands dw followed by the i command is cw (Change word).
The command cw puts vim into Input mode.

Page breaks for the printer

CONTROL-L tells the printer to skip to the top of the next page. You can enter this character anywhere
in a document by pressing CONTROL-L while you are in Input mode. If AL does not appear, press
CONTROL-V before CONTROL-L.

ENDING THE EDITING SESSION

While you are editing, vim keeps the edited text in an area named the Work buffer.
When you finish editing, you must write out the contents of the Work buffer to a disk
file so the edited text is saved and available when you next want it.

Make sure vim is in Command mode and use the ZZ command (you must use upper-
case Zs) to write the newly entered text to the disk and end the editing session. After
you give the ZZ command, vim returns control to the shell. You can exit with :q! if
you do not want to save your work.

Do not confuse ZZ with CONTROL-Z

When you exit from vim with ZZ, make sure that you type ZZ and not CONTROL-Z (typically the
suspend key). When you press CONTROL-Z, vim disappears from your screen, almost as though
you had exited from it. In fact, vim will continue running in the background with your work
unsaved. Refer to “Job Control” on page 304. If you try to start editing the same file with a new
vim command, vim displays a message about a swap file.

THE compatible PARAMETER

The compatible parameter makes vim more compatible with vi. By default this
parameter is not set. To get started with vim, you can ignore this parameter.

Setting the compatible parameter changes many aspects of how vim works. For
example, when the compatible parameter is set, the Undo command (page 173) can
undo only the most recent change; in contrast, with the compatible parameter
unset, you can call Undo repeatedly to undo many changes. This chapter notes
when the compatible parameter affects a command. To obtain more details on the
compatible parameter, give the command :help compatible RETURN. To display a com-
plete list of vim’s differences from the original vi, use :help vi-diff RETURN. See page 171
for a discussion of the help command.

From the command line use the —C option to set the compatible parameter and the —
N option to unset it.

INTRODUCTION TO vim FEATURES 175

INTRODUCTION TO vim FEATURES

This section covers online help, modes of operation, the Work buffer, emergency pro-
cedures, and other vim features. To see which features are incorporated in a particular
build, give a vim command followed by the —version option.

ONLINE HELP

As covered briefly earlier, vim provides help while you are using it. Give the command
:help feature to display information about feature. As you scroll through the various
help texts, you will see words with a bar on either side, such as ltutorl. These words
are active links: Move the cursor on top of an active link and press CONTROL-] to jump
to the linked text. Use CONTROL-o (lowercase “0”) to jump back to where you were in
the help text. You can also use the active link words in place of feature. For example,
you might see the reference Icreditsl; you could enter :help credits RETURN to read more
about credits. Enter :q! to close a help window.

Some common features that you might want to investigate by using the help system
are insert, delete, and opening-window. Although opening-window is not intuitive,
you will get to know the names of features as you spend more time with vim. You
can also give the command :help doc-file-list to view a complete list of the help files.
Although vim is a free program, the author requests that you donate the money you
would have spent on similar software to help the children in Uganda (give the com-
mand :help iccf for more information).

TERMINOLOGY

Current character
Current line

Status line

This chapter uses the following terms:
The character the cursor is on.
The line the cursor is on.

The last or bottom line of the screen. This line is reserved for Last Line mode and
status information. Text you are editing does not appear on this line.

MODES OF OPERATION

The vim editor is part of the ex editor, which has five modes of operation:
¢ ex Command mode
¢ ex Input mode
¢ vim Command mode
¢ vim Input mode

¢ vim Last Line mode

176 CHAPTER 6 THE vim EDITOR

While in Command mode, vim accepts keystrokes as commands, responding to each
command as you enter it. It does not display the characters you type in this mode.
While in Input mode, vim accepts and displays keystrokes as text that it eventually
puts into the file you are editing. All commands that start with a colon (:) put vim in
Last Line mode. The colon moves the cursor to the status line of the screen, where
you enter the rest of the command.

In addition to the position of the cursor, there is another important difference
between Last Line mode and Command mode. When you give a command in Com-
mand mode, you do not terminate the command with a RETURN. In contrast, you must
terminate all Last Line mode commands with a RETURN.

You do not normally use the ex modes. When this chapter refers to Input and
Command modes, it means the vim modes, not the ex modes.

When an editing session begins, vim is in Command mode. Several commands, includ-
ing Insert and Append, put vim in Input mode. When you press the ESCAPE key, vim
always reverts to Command mode.

The Change and Replace commands combine the Command and Input modes. The
Change command deletes the text you want to change and puts vim in Input mode so
you can insert new text. The Replace command deletes the character(s) you overwrite
and inserts the new one(s) you enter. Figure 6-3 on page 170 shows the modes and
the methods for changing between them.

Watch the mode and the CAPS LOCK key

Almost anything you type in Command mode means something to vim. If you think vim is in Input
mode when it is in Command mode, typing in text can produce confusing results. When you are
learning to use vim, make sure the showmode parameter (page 205) is set (it is by default) to
remind you which mode you are using. You might also find it useful to turn on the status line by
giving a :set laststatus=2 command (page 204).

Also keep your eye on the CAPS LOCK key. In Command mode, typing uppercase letters produces
different results than typing lowercase ones. It can be disorienting to give commands and have
vim give the “wrong” responses.

THE DISPLAY

The vim editor uses the status line and several symbols to give information about what
is happening during an editing session.

STATUS LINE

The vim editor displays status information on the bottom line of the display area. This
information includes error messages, information about the deletion or addition of
blocks of text, and file status information. In addition, vim displays Last Line mode
commands on the status line.

REDRAWING THE SCREEN

Sometimes the screen might become garbled or overwritten. When vim puts charac-
ters on the screen, it sometimes leaves @ on a line instead of deleting the line. When

INTRODUCTION TO vim FEATURES 177

output from a program becomes intermixed with the display of the Work buffer,
things can get even more confusing. The output does not become part of the Work
buffer but affects only the display. If the screen gets overwritten, press ESCAPE to make
sure vim is in Command mode, and press CONTROL-L to redraw (refresh) the screen.

TILDE (~) SYmBoL

If the end of the file is displayed on the screen, vim marks lines that would appear past
the end of the file with a tilde (~) at the left of the screen. When you start editing a new
file, the vim editor marks each line on the screen (except the first line) with this symbol.

CORRECTING TEXT AS YOU INSERT IT

While vim is in Input mode, you can use the erase and line kill keys to back up over
text so you can correct it. You can also use CONTROL-W to back up over words.

WORK BUFFER

The vim editor does all its work in the Work buffer. At the beginning of an editing
session, vim reads the file you are editing from the disk into the Work buffer. During
the editing session, it makes all changes to this copy of the file but does not change
the file on the disk until you write the contents of the Work buffer back to the disk.
Normally when you end an editing session, you tell vim to write the contents of the
Work buffer, which makes the changes to the text final. When you edit a new file,
vim creates the file when it writes the contents of the Work buffer to the disk, usually
at the end of the editing session.

Storing the text you are editing in the Work buffer has both advantages and disad-
vantages. If you accidentally end an editing session without writing out the contents
of the Work buffer, your work is lost. However, if you unintentionally make some
major changes (such as deleting the entire contents of the Work buffer), you can end
the editing session without implementing the changes.

To look at a file but not to change it while you are working with vim, you can use the
view utility:

$ view filename

Calling the view utility is the same as calling the vim editor with the -R (readonly)
option. Once you have invoked the editor in this way, you cannot write the contents
of the Work buffer back to the file whose name appeared on the command line. You
can always write the Work buffer out to a file with a different name. If you have
installed mec (Midnight Commander; page 902), the view command calls mcview and
not vim.

LINE LENGTH AND FILE SI1ZE

The vim editor operates on files of any format, provided the length of a single line
(that is, the characters between two NEWLINE characters) can fit into available memory.
The total length of the file is limited only by available disk space and memory.

178 CHAPTER 6

THE vim EDITOR

WINDOWS

The vim editor allows you to open, close, and hide multiple windows, each of which
allows you to edit a different file. Most of the window commands consist of CONTROL-W fol-
lowed by another letter. For example, CONTROL-W s opens another window (splits the screen)
that is editing the same file. CONTROL-W n opens a second window that is editing an empty
file. CONTROL-W w moves the cursor between windows, and CONTROL-W q (or :q) quits (closes)
a window. Give the command :help windows to display a complete list of windows
commands.

FILE LOCKS

When you edit an existing file, vim displays the first few lines of the file, gives status
information about the file on the status line, and locks the file. When you try to open
a locked file with vim, you will see a message similar to the one shown in Figure 6-7.
You will see this type of message in two scenarios: when you try to edit a file that
someone is already editing (perhaps you are editing it in another window, in the back-
ground, or on another terminal) and when you try to edit a file that you were editing
when vim or the system crashed.

Although it is advisable to follow the instructions that vim displays, a second user can
edit a file and write it out with a different filename. Refer to the next sections for
more information.

E325: ATTENTION
Found a swap file by the name ".practice.swp"
ownhed by: sam dated: Tue May 1 16:56:40 2012
file name: ~sam/practice
modified: YES
user name: sam host name: guava
process ID: 3721 (still running)
While opening file "practice"
dated: Thu May 10 17:19:27 2012
NEWER than swap file!

(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.

If this is the case, use ":recover™ or "vim -r practice”

to recover the changes (see ":help recovery").

If you did this already, delete the swap file ".practice.swp"
to avoid this message.

Swap file ".practice.swp" already exists!
[0]pen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort:[l

Figure 6-7 Attempting to open a locked file

INTRODUCTION TO vim FEATURES 179

ABNORMAL TERMINATION OF AN EDITING SESSION

You can end an editing session in one of two ways: When you exit from vim, you can
save the changes you made during the editing session or you can abandon those
changes. You can use the ZZ or :wq command from Command mode to save the
changes and exit from vim (see “Ending the Editing Session” on page 174).

To end an editing session without writing out the contents of the Work buffer, give
the following command:

:q!
Use the :q! command cautiously. When you use this command to end an editing ses-
sion, vim does not preserve the contents of the Work buffer, so you will lose any work

you did since the last time you wrote the Work buffer to disk. The next time you edit
or use the file, it will appear as it did the last time you wrote the Work buffer to disk.

Sometimes you might find that you created or edited a file but vim will not let you
exit. For example, if you forgot to specify a filename when you first called vim, you
will get a message saying No file name when you give a ZZ command. If vim does
not let you exit normally, you can use the Write command (:w) to name the file and
write it to disk before you quit vim. Give the following command, substituting the
name of the file for filename (remember to follow the command with a RETURN):

w filename

After you give the Write command, you can use :q to quit using vim. You do not need
to include the exclamation point (as in q!); it is necessary only when you have made
changes since the last time you wrote the Work buffer to disk. Refer to page 200 for
more information about the Write command.

When you cannot write to a file

It might be necessary to write a file using :w filename if you do not have write permission for the
file you are editing. If you give a ZZ command and see the message “filename" is read only, you
do not have write permission for the file. Use the Write command with a temporary filename to
write the file to disk under a different filename. If you do not have write permission for the working
directory, however, vim might not be able to write the file to the disk. Give the command again,
using an absolute pathname of a dummy (nonexistent) file in your home directory in place of the
filename. (For example, Max might give the command :w /home/max/tempor :w ~/temp.)

If vim reports File exists, you will need to use :w! filename to overwrite the existing file (make
sure you want to overwrite the file). Refer to page 201.

RECOVERING TEXT AFTER A CRASH

The vim editor temporarily stores the file you are working on in a swap file. If the
system crashes while you are editing a file with vim, you can often recover its text
from the swap file. When you attempt to edit a file that has a swap file, you will see
a message similar to the one shown in Figure 6-7 on page 178. If someone else is
editing the file, quit or open the file as a readonly file.

180 CHAPTER6 THE vim EDITOR

In the following example, Max uses the —r option to check whether the swap file
exists for a file named memo, which he was editing when the system crashed:

$ vim -r
Swap files found:
In current directory:

1. .party.swp
owned by: max dated: Fri Jan 26 11:36:44 2018
file name: ~max/party
modified: YES
user name: max host name: coffee
process ID: 18439
2. .memo. swp
owned by: max dated: Fri Mar 23 17:14:05 2018
file name: ~max/memo
modified: no
user name: max host name: coffee

process ID:

27733 (still running)

In directory ~/tmp:

-- none --
directory /var/tmp:
-- none --

In directory /tmp:

-- hone --

In

With the —r option, vim displays a list of swap files it has saved (some might be old).
If your work was saved, give the same command followed by a SPACE and the name of
the file. You will then be editing a recent copy of your Work buffer. Give the command
:w filename immediately to save the salvaged copy of the Work buffer to disk under
a name different from the original file; then check the recovered file to make sure it is
OK. Following is Max’s exchange with vim as he recovers memo. Subsequently, he
deletes the swap file:

$ vim -r memo

Using swap file ".memo.swp"

Original file "~/memo"

Recovery completed. You should check if everything is OK.
(You might want to write out this file under another name
and run diff with the original file to check for changes)
Delete the .swp file afterwards.

Hit ENTER or type command to continue
W memo2

:q

$ rm .memo.swp

You must recover files on the system you were using

The recovery feature of vim is specific to the system you were using when the crash occurred. If
you are running on a cluster, you must log in on the system you were using before the crash to
use the =r option successfully.

COMMAND MoDE: MoVING THE CURSOR 181

COMMAND MODE: MOVING THE CURSOR

Long lines

While vim is in Command mode, you can position the cursor over any character on
the screen. You can also display a different portion of the Work buffer on the screen.
By manipulating the screen and cursor position, you can place the cursor on any char-
acter in the Work buffer.

You can move the cursor forward or backward through the text. As illustrated in
Figure 6-8, forward means toward the right and bottom of the screen and the end of
the file. Backward means toward the left and top of the screen and the beginning of
the file. When you use a command that moves the cursor forward past the end (right)
of a line, the cursor generally moves to the beginning (left) of the next line. When you
move it backward past the beginning of a line, the cursor generally moves to the end
of the previous line.

Sometimes a line in the Work buffer might be too long to appear as a single line on
the screen. In such a case vim wraps the current line onto the next line (unless you set
the nowrap option [page 204]).

You can move the cursor through the text by any Unit of Measure (that is, character,
word, line, sentence, paragraph, or screen). If you precede a cursor-movement com-
mand with a number, called a Repeat Factor, the cursor moves that number of units
through the text. Refer to pages 210 through page 213 for precise definitions of
these terms.

e

Backward

Backward Forward

pJEMIO

|
Figure 6-8 Forward and backward

182 CHAPTER6 THE vim EDITOR

MOVING THE CURSOR BY CHARACTERS

I/h The SPACE bar moves the cursor forward, one character at a time, toward the right side
of the screen. The 1 (lowercase “1”) key and the RIGHT ARROW key (Figure 6-9) do the
same thing. For example, the command 7 SPACE or 71 moves the cursor seven charac-
ters to the right. These keys cannot move the cursor past the end of the current line
to the beginning of the next line. The h and LEFT ARROW keys are similar to the 1 and
RIGHT ARROW keys but work in the opposite direction.

MOVING THE CURSOR TO A SPECIFIC CHARACTER

f#/F You can move the cursor to the next occurrence of a specified character on the current
line by using the Find command. For example, the following command moves the
cursor from its current position to the next occurrence of the character a, if one
appears on the same line:

fa

You can also find the previous occurrence by using a capital F. The following com-
mand moves the cursor to the position of the closest previous a in the current line:

Fa

A semicolon (;) repeats the last Find command.

MOVING THE CURSOR BY WORDS

wW The w (word) key moves the cursor forward to the first letter of the next word
(Figure 6-10). Groups of punctuation count as words. This command goes to the
next line if the next word is located there. The command 15w moves the cursor to
the first character of the fifteenth subsequent word.

JEm sl

Figure 6-9 Moving the cursor by characters

? f
belief|,| [fjeally.| [Tt

Figure 6-10 Moving the cursor by words

COMMAND MoDE: MoVING THE CURSOR 183

The W key is similar to the w key but moves the cursor by blank-delimited words,
including punctuation, as it skips forward. (Refer to “Blank-Delimited Word” on
page 211.)

b/B The b (back) key moves the cursor backward to the first letter of the previous word.

e/E The B key moves the cursor backward by blank-delimited words. Similarly, the e key
moves the cursor to the end of the next word; E moves it to the end of the next blank-
delimited word.

MOVING THE CURSOR BY LINES

i’k The RETURN key moves the cursor to the beginning of the next line; the j and DOWN ARROW
keys move the cursor down one line to the character just below the current character
(Figure 6-11). If no character appears immediately below the current character, the
cursor moves to the end of the next line. The cursor will not move past the last line
of text in the work buffer.

The k and UP ARROW keys are similar to the j and DOWN ARROW keys but work in the oppo-
site direction. The minus (-) key is similar to the RETURN key but works in the opposite
direction.

MOVING THE CURSOR BY SENTENCES AND PARAGRAPHS

)/ The) and } keys move the cursor forward to the beginning of the next sentence or

YU the next paragraph, respectively (Figure 6-12). The (and { keys move the cursor
backward to the beginning of the current sentence or paragraph, respectively. You
can find more information on sentences and paragraphs starting on page 211.

Figure 6-11 Moving the cursor by lines

184 CHAPTER 6

THE vim EDITOR

The Bourne Again Shell (bash) and TC Shell (tcsh) are command
interpreters and high-level programming languages. As command
interpreters, they processes commands you enter on the command

IE Line in response to a prompt. When you use the shell as a
brogramming language, it processes commands stored in files

called shell scripts. Like other languages, s

variables and control flow ¢ 7g., for loops and
if statemen

When you use a shell as a command interpreter, you can customize

the environment you work in. You can make your prompt display
the name of the working directory, create a function or an alias
for cp that keeps it from overwriting certain kinds : f

take advantage of keyword variables t aspects of how
the shell works, and so on. Ttan also write shell scripts

Wﬂnﬂ—’yhing from a one-line script that

CLII‘SOI‘—’ ores a long, complex command to a longer script that runs

a set of rePurtS,WMn—/
the job is done. She scripts are themselves

brograms; they do not just run other programs. Chapter 10 has

some examples of these types of scripts.
Most system shell scripts are w
(or dash). If you will ever work in single-user/recovery

Lo i

mode—-when you boot the system or perform system maintenance,
Yadministration, or repair work, for example--it is a good idea
“shelltext" 27L, 1431C 16,27-25 Top

Figure 6-12 Moving the cursor by sentences, paragraphs, H, M, and L

MOVING THE CURSOR WITHIN THE SCREEN

H/M/L

The H (home) key positions the cursor at the left end of the top line of the screen,
the M (middle) key moves the cursor to the middle line, and the L (lower) key moves
it to the bottom line (Figure 6-12).

VIEWING DIFFERENT PARTS OF THE WORK BUFFER

CONTROL-D
CONTROL-U

CONTROL-F
CONTROL-B

Line numbers (G)

The screen displays a portion of the text that is in the Work buffer. You can display
the text preceding or following the text on the screen by scrolling the display. You
can also display a portion of the Work buffer based on a line number.

Press CONTROL-D to scroll the screen down (forward) through the file so that vim displays
half a screen of new text. Use CONTROL-U to scroll the screen up (backward) by the same
amount. If you precede either of these commands with a number, vim scrolls that
number of lines each time you press CONTROL-D or CONTROL-U for the rest of the session
(unless you again change the number of lines to scroll). See page 205 for a discussion
of the scroll parameter.

The CONTROL-F (forward) and CONTROL-B (backward) keys display almost a whole screen
of new text, leaving a couple of lines from the previous screen for continuity. On
many keyboards you can use the PAGE DOWN and PAGE UP keys in place of CONTROLF and
CONTROL-B, respectively.

When you enter a line number followed by G (goto), vim positions the cursor on that
line in the Work buffer. If you press G without a number, vim positions the cursor on
the last line in the Work buffer. Line numbers are implicit; the file does not need to
have actual line numbers for this command to work. Refer to “Line numbers” on
page 204 if you want vim to display line numbers.

INPUT MODE 185

INPUT MODE

The Insert, Append, Open, Change, and Replace commands put vim in Input mode.
While vim is in this mode, you can put new text into the Work buffer. To return vim
to Command mode when you finish entering text, press the ESCAPE key. Refer to “Show
mode” on page 205 if you want vim to remind you when it is in Input mode (it does

by default).

INSERTING TEXT

Insert (i) The i (Insert) command puts vim in Input mode and places the text you enter before

the current character. The I command places text at the beginning of the current line
(Figure 6-13). Although the i and I commands sometimes overwrite text on the
screen, the characters in the Work buffer are not changed; only the display is affected.
The overwritten text is redisplayed when you press ESCAPE and vim returns to Com-
mand mode. Use i or I to insert a few characters or words into existing text or to insert
text in a new file.

APPENDING TEXT

Append (a/A) The a (Append) command is similar to the i command, except that it places the text

you enter after the current character (Figure 6-13). The A command places the text
after the last character on the current line.

OPENING A LINE FOR TEXT

Open (0/0) The o (Open) and O commands open a blank line within existing text, place the cur-

sor at the beginning of the new (blank) line, and put vim in Input mode. The O
command opens a line above the current line; the 0 command opens one below the
current line. Use these commands when you are entering several new lines within
existing text.

REPLACING TEXT

Replace (R) The r and R (Replace) commands cause the new text you enter to overwrite (replace)

existing text. The single character you enter following an r command overwrites the
current character. After you enter that character, vim returns to Command mode—
you do not need to press the ESCAPE key.

This 'is% 'Eof text.

Figure 6-13 Thel, i, a, and A commands

186 CHAPTER 6 THE vim EDITOR

The R command causes all subsequent characters to overwrite existing text until you
press ESCAPE to return vim to Command mode.

Replacing TABs

The Replace commands might appear to behave strangely when you replace TAB characters. TAB
characters can appear as several SPACEs—until you try to replace them. A TAB is one character and
is replaced by a single character. Refer to “Invisible characters” on page 204 for information on
displaying TABS as visible characters.

QUOTING SPECIAL CHARACTERS IN INPUT MODE

coNTROLY - While you are in Input mode, you can use the Quote command, CONTROL-V, to enter any
character into the text, including characters that normally have special meaning to
vim. Among these characters are CONTROL-L (or CONTROLR), which redraws the screen;
CONTROL-W, which backs the cursor up a word to the left; CONTROL-M, which enters a NEWLINE;
and ESCAPE, which ends Input mode.

To insert one of these characters into the text, type CONTROLV followed by the character.
CONTROLV quotes the single character that follows it. For example, to insert the
sequence ESCAPE[2] into a file you are creating in vim, you would type the character
sequence CONTROL-VESCAPE[2]. This character sequence clears the screen of a DEC VT-
100 and other similar terminals. Although you would not ordinarily want to type this
sequence into a document, you might want to use it or another ESCAPE sequence in a
shell script you are creating in vim. Refer to Chapter 10 for information about writing
shell scripts.

COMMAND MODE: DELETING AND CHANGING TEXT

This section describes the commands to delete and replace, or change, text in the doc-
ument you are editing. The Undo command is covered here because it allows you to
restore deleted or changed text.

UNDOING CHANGES

Undo (wU) The u command (Undo) restores text that you just deleted or changed by mistake. A
single Undo command restores only the most recently deleted text. If you delete a line
and then change a word, the first Undo restores only the changed word; you have to
give a second Undo command to restore the deleted line. With the compatible param-
eter (page 174) set, vim can undo only the most recent change. The U command
restores the last line you changed to the way it was before you started changing it,
even after several changes.

DELETING CHARACTERS

Delete character The x command deletes the current character. You can precede the x command by a
(WX) Repeat Factor (page 213) to delete several characters on the current line, starting

COMMAND MoODE: DELETING AND CHANGING TEXT 187

with the current character. The X command deletes the character to the left of the
cursor.

DELETING TEXT

Delete (d/D) The d (Delete) command removes text from the Work buffer. The amount of text that
d removes depends on the Repeat Factor and the Unit of Measure (page 210). After
the text is deleted, vim is still in Command mode.

Use dd to delete a single line

The command d RETURN deletes two lines: the current line and the following one. Use dd to delete
just the current line, or precede dd by a Repeat Factor (page 213) to delete several lines.

You can delete from the current cursor position up to a specific character on the same
line. To delete up to the next semicolon (;), give the command dt; (see page 190 for
more information on the t command). To delete the remainder of the current line, use
D or d$. Table 6-1 lists some Delete commands. Each command, except the last
group that starts with dd, deletes from/to the current character.

Exchange characters and lines

Iftwo characters are out of order, position the cursor on the first character and give the commands
Xp.

If two lines are out of order, position the cursor on the first line and give the commands ddp.
See page 198 for more information on the Put commands.

Delete command examples

Command Result

dl Deletes current character (same as the x command)

do Deletes from beginning of line

da» Deletes from first character of line (not including leading SPACES or TABS)
dw Deletes to end of word

d3w Deletes to end of third word

db Deletes from beginning of word

dW Deletes to end of blank-delimited word

dB Deletes from beginning of blank-delimited word

d7B Deletes from seventh previous beginning of blank-delimited word
d4) Deletes to end of fourth sentence

d(Deletes from beginning of sentence

188 CHAPTER6 THE vim EDITOR

Delete command examples (continued)

Command Result

d} Deletes to end of paragraph

df Deletes from beginning of paragraph

d7{ Deletes from seventh paragraph preceding beginning of paragraph
d/text Deletes up to next occurrence of word text

dfe Deletes on current line up to and including next occurrence of character ¢
dte Deletes on current line up to next occurrence of ¢

D Deletes to end of line

d$ Deletes to end of line

dd Deletes current line

5dd Deletes five lines starting with current line

dL Deletes through last line on screen

dH Deletes from first line on screen

dG Deletes through end of Work buffer

d1G Deletes from beginning of Work buffer

CHANGING TEXT

Change (¢/C) The ¢ (Change) command replaces existing text with new text. The new text does not
have to occupy the same space as the existing text. You can change a word to several
words, a line to several lines, or a paragraph to a single character. The C command
replaces the text from the cursor position to the end of the line.

The ¢ command deletes the amount of text specified by the Repeat Factor and the
Unit of Measure (page 210) and puts vim in Input mode. When you finish entering
the new text and press ESCAPE, the old word, line, sentence, or paragraph is changed to
the new one. Pressing ESCAPE without entering new text deletes the specified text (that
is, it replaces the specified text with nothing).

Table 6-2 lists some Change commands. Except for the last two, each command
changes text from/to the current character.

dw works differently from cw

The dw command deletes all characters through (including) the SPACE at the end of a word. The
cw command changes only the characters in the word, leaving the trailing SPACE intact.

COMMAND MODE: DELETING AND CHANGING TEXT

189

Command
cl
cw
c3w
ch
cw
cB
c7B
c$
c0
c)
cd)
6(
c}
of
c/{
cte
C
cc

5cc

REPLACING TEXT

Change command examples

Result

Changes current character

Changes to end of word

Changes to end of third word

Changes from beginning of word

Changes to end of blank-delimited word

Changes from beginning of blank-delimited word
Changes from beginning of seventh previous blank-delimited word
Changes to end of line

Changes from beginning of line

Changes to end of sentence

Changes to end of fourth sentence

Changes from beginning of sentence

Changes to end of paragraph

Changes from beginning of paragraph

Changes from beginning of seventh preceding paragraph
Changes on current line up to next occurrence of ¢
Changes to end of line

Changes current line

Changes five lines starting with current line

Substitute (s/8) The s and S (Substitute) commands also replace existing text with new text
(Table 6-3). The s command deletes the current character and puts vim into Input
mode. It has the effect of replacing the current character with whatever you type until
you press ESCAPE. The S command does the same thing as the cc command: It changes
the current line. The s command replaces characters only on the current line. If you
specify a Repeat Factor before an s command and this action would replace more
characters than are present on the current line, s changes characters only to the end
of the line (same as C).

190 CHAPTER6 THE vim EDITOR

Substitute command examples

Command Result

S Substitutes one or more characters for current character

S Substitutes one or more characters for current line

5s Substitutes one or more characters for five characters, starting with current
character

CHANGING CASE

The tilde (~) character changes the case of the current character from uppercase to
lowercase, or vice versa. You can precede the tilde with a number to specify the num-
ber of characters you want the command to affect. For example, the command 5~
transposes the next five characters starting with the character under the cursor, but
will not transpose characters past the end of the current line.

SEARCHING AND SUBSTITUTING

Searching for and replacing a character, a string of text, or a string that is matched
by a regular expression is a key feature of any editor. The vim editor provides simple
commands for searching for a character on the current line. It also provides more
complex commands for searching for—and optionally substituting for—single and
multiple occurrences of strings or regular expressions anywhere in the Work buffer.

SEARCHING FOR A CHARACTER

Find (f/F)

Find (UT)

You can search for and move the cursor to the next occurrence of a specified charac-
ter on the current line using the f (Find) command. Refer to “Moving the Cursor to
a Specific Character” on page 182.

The next two commands are used in the same manner as the Find commands. The
lowercase t command places the cursor on the character before the next occurrence
of the specified character. The T command places the cursor on the character after
the previous occurrence of the specified character.

A semicolon (;) repeats the last f, F, t, or T command.

You can combine these search commands with other commands. For example, the
command d2fq deletes the text from the current character to the second occurrence
of the letter q on the current line.

SEARCHING FOR A STRING

Search (//?)

The vim editor can search backward or forward through the Work buffer to find a
string of text or a string that matches a regular expression (Appendix A). To find the
next occurrence of a string (forward), press the forward slash (/) key, enter the text

SEARCHING AND SUBSTITUTING 191

Next (n/N)

you want to find (called the search string), and press RETURN. When you press the slash
key, vim displays a slash on the status line. As you enter the string of text, it is also
displayed on the status line. When you press RETURN, vim searches for the string. If this
search is successful, vim positions the cursor on the first character of the string. If you
use a question mark (?) in place of the forward slash, vim searches for the previous
occurrence of the string. If you need to include a forward slash in a forward search
or a question mark in a backward search, you must quote it by preceding it with a

backslash (\).

Two distinct ways of quoting characters

You use CONTROL-V to quote special characters in text that you are entering into a file (page 186).
This section discusses the use of a backslash (\) to quote special characters in a search string.
The two techniques of quoting characters are not interchangeable.

The N and n keys repeat the last search but do not require you to reenter the search
string. The n key repeats the original search exactly, and the N key repeats the search
in the opposite direction of the original search.

If you are searching forward and vim does not find the search string before it gets to
the end of the Work buffer, the editor typically wraps around and continues the
search at the beginning of the Work buffer. During a backward search, vim wraps
around from the beginning of the Work buffer to the end. Also, vim normally per-
forms case-sensitive searches. Refer to “Wrap scan” (page 206) and “Ignore case in
searches” (page 204) for information about how to change these search parameters.

NORMAL VERSUS INCREMENTAL SEARCHES

When vim performs a normal search (its default behavior), you enter a slash or ques-
tion mark followed by the search string and press RETURN. The vim editor then moves
the cursor to the next or previous occurrence of the string you are searching for.

When vim performs an incremental search, you enter a slash or question mark. As
you enter each character of the search string, vim moves the highlight to the next
or previous occurrence of the string you have entered so far. When the highlight is
on the string you are searching for, you must press RETURN to move the cursor to the
highlighted string. If the string you enter does not match any text, vim does not
highlight anything.

The type of search that vim performs depends on the incsearch parameter (page 204).
Give the command :set incsearch to turn on incremental searching; use noincsearch
to turn it off. When you set the compatible parameter (page 174), vim turns off incre-
mental searching.

SPECIAL CHARACTERS IN SEARCH STRINGS

Because the search string is a regular expression, some characters take on a special
meaning within the search string. The following paragraphs list some of these char-
acters. See also “Extended Regular Expressions” on page 1043.

192 CHAPTER 6 THE vim EDITOR

The first two items in the following list (* and $) always have their special meanings
within a search string unless you quote them by preceding them with a backslash (\).
You can turn off the special meanings within a search string for the rest of the items
in the list by setting the nomagic parameter. For more information refer to “Allow
special characters in searches” on page 203.

N BEGINNING-OF-LINE INDICATOR

When the first character in a search string is a caret (also called a circumflex), it
matches the beginning of a line. For example, the command /~the finds the next line
that begins with the string the.

$ END-OF-LINE INDICATOR

A dollar sign matches the end of a line. For example, the command /!$ finds the next
line that ends with an exclamation point and / $ matches the next line that ends with
a SPACE.

ANY-CHARACTER INDICATOR
A period matches any character, anywhere in the search string. For example, the com-
mand /l..e finds line, followed, like, included, all memory, or any other word or
character string that contains an 1 followed by any two characters and an e. To search
for a period, use a backslash to quote the period (\.).

\> END-OF-WORD INDICATOR

This pair of characters matches the end of a word. For example, the command /s\>
finds the next word that ends with an s. Whereas a backslash (\) is typically used to
turn off the special meaning of a character, the character sequence \> has a special
meaning, while > alone does not.

\< BEGINNING-OF-WORD INDICATOR

This pair of characters matches the beginning of a word. For example, the com-
mand /\<The finds the next word that begins with the string The. The beginning-
of-word indicator uses the backslash in the same, atypical way as the end-of-word
indicator.

* ZERO OR MORE OCCURRENCES

This character is a modifier that will match zero or more occurrences of the character
immediately preceding it. For example, the command /dis*m will match the string
di followed by zero or more s characters followed by an m. Examples of successful
matches would include dim, or dism, and dissm.

[l CHARACTER-CLASS DEFINITION

Brackets surrounding two or more characters match any single character located
between the brackets. For example, the command /dis[ck] finds the next occurrence
of either disk or disc.

SEARCHING AND SUBSTITUTING 193

There are two special characters you can use within a character-class definition.
Using a caret (*) as the first character following the left bracket defines the character
class to be any except the following characters. A hyphen between two characters
indicates a range of characters. Refer to the examples in Table 6-4.

Search string
/and

[\<and\>

/AThe

/"[0-91[0-9])

[\<[adr]

/MA-Za-7]

Search examples

What it finds

Finds the next occurrence of the string and
Examples: sand and standard slander andiron

Finds the next occurrence of the word and
Example: and

Finds the next line that starts with The

Examples:

The...

There . . .

Finds the next line that starts with a two-digit number followed by a right
parenthesis

Examples:

77)...

01)...

15)...

Finds the next word that starts with a, d, orr
Examples: apple drive road argument right

Finds the next line that starts with an uppercase or lowercase letter
Examples:

will not find a line starting with the number7. . .

Dear Mr. Jones . . .

in the middle of a sentence like this . . .

SUBSTITUTING ONE STRING FOR ANOTHER

A Substitute command combines the effects of a Search command and a Change
command. That is, it searches for a string (regular expression) just as the / command
does, allowing the same special characters discussed in the previous section. When
it finds the string or matches the regular expression, the Substitute command

194 CHAPTER6 THE vim EDITOR

changes the string or regular expression it matches. The syntax of the Substitute
command is

:[g][address|s/search-string/replacement-string[/option]

As with all commands that begin with a colon, vim executes a Substitute command
from the status line.

THE SUBSTITUTE ADDRESS

If you do not specify an address, Substitute searches only the current line. If you use
a single line number as the address, Substitute searches that line. If the address is two
line numbers separated by a comma, Substitute searches those lines and the lines
between them. Refer to “Line numbers” on page 204 if you want vim to display line
numbers. Wherever a line number is allowed in the address, you might also use an
addpress string enclosed between slashes. The vim editor operates on the next line that
the address string matches. When you precede the first slash of the address string
with the letter g (for global), vim operates on all lines in the file that the address string
matches. (This g is not the same as the one that goes at the end of the Substitute com-
mand to cause multiple replacements on a single line; see “Searching for and
Replacing Strings”).

Within the address, a period represents the current line, a dollar sign represents the
last line in the Work buffer, and a percent sign represents the entire Work buffer. You
can perform address arithmetic using plus and minus signs. Table 6-5 shows some
examples of addresses.

Addresses
Address Portion of Work buffer addressed
5 Line 5
77,100 Lines 77 through 100 inclusive
1,. Beginning of Work buffer through current line
) Current line through end of Work buffer
1,% Entire Work buffer
% Entire Work buffer
/pine/ The next line containing the word pine
g/pine/ All lines containing the word pine
..+10 Current line through tenth following line (11 lines in all)

SEARCHING FOR AND REPLACING STRINGS

An s comes after the address in the command syntax, indicating that this is a Substi-
tute command. A delimiter follows the s, marking the beginning of the search-string.

SEARCHING AND SUBSTITUTING 195

Although the examples in this book use a forward slash, you can use as a delimiter
any character that is not a letter, number, blank, or backslash. You must use the same
delimiter at the end of the search-string.

Next comes the search-string. It has the same format as the search string in the / com-
mand and can include the same special characters (page 191). (The search-string is
a regular expression; refer to Appendix A for more information.) Another delimiter
marks the end of the search-string and the beginning of the replacement-string.

The replacement-string replaces the text matched by the search-string and is typically
followed by the delimiter character. You can omit the final delimiter when no option
follows the replacement-string; a final delimiter is required if an option is present.

Several characters have special meanings in the search-string, and other characters
have special meanings in the replacement-string. For example, an ampersand (&) in
the replacement-string represents the text that was matched by the search-string. A
backslash in the replacement-string quotes the character that follows it. Refer to
Table 6-6 and Appendix A.

Search and replace examples
Command Result

:s/bigger/biggest/ Replaces the first occurrence of the string bigger on the current line
with higgest

Example:
bigger = higgest

:1,.s/Ch 1/Ch 2/g Replaces every occurrence of the string Ch 1, before or on the
current line, with the string Ch 2

Examples:

Ch1= Ch2

Ch12= (Ch22

:1,$s/ten/10/g Replaces every occurrence of the string ten with the string 10

Examples:

ten= 10

often = of10

tenant = 10ant

:g/chapter/s/ten/10/ Replaces the first occurrence of the string ten with the string 10 on
all lines containing the word chapter

Examples:
chapter ten = chapter 10
chapters will often = chapters will of10

196 CHAPTER 6 THE vim EDITOR

Search and replace examples (continued)

Command Result

:%s/\<ten\>/10/g Replaces every occurrence of the word ten with the string 10
Example:
ten=> 10

..,.+10s/every/each/g Replaces every occurrence of the string every with the string each
on the current line through the tenth following line
Examples:
every = each
everything = eachthing

:s/\<short\>/"&"/ Replaces the word short on the current line with "short" (enclosed
within quotation marks)
Example:
the shortest of the short = the shortest of the "short"

Normally, the Substitute command replaces only the first occurrence of any text that
matches the search-string on a line. If you want a global substitution—that is, if you
want to replace all matching occurrences of text on a line—append the g (global)
option after the delimiter that ends the replacement-string. A useful option, ¢ (check),
causes vim to ask whether you would like to make the change each time it finds text
that matches the search-string. Pressing y replaces the search-string, q terminates the
command, 1 (last) makes the replacement and quits, a (all) makes all remaining
replacements, and n continues the search without making that replacement.

The address string need not be the same as the search-string. For example,
:/candle/s/wick/flame/

substitutes flame for the first occurrence of wick on the next line that contains the
string candle. Similarly,

:g/candle/s/wick/flame/

performs the same substitution for the first occurrence of wick on each line of the file
containing the string candle and

:g/candle/s/wick/flame/g
performs the same substitution for all occurrences of wick on each line that contains
the string candle.

If the search-string is the same as the address, you can leave the search-string blank.
For example, the command :/candle/s//lamp/ is equivalent to the command
:/candle/s/candle/lamp/.

COPYING, MOVING, AND DELETING TEXT 197

MISCELLANEOUS COMMANDS

JOIN

Join (J)

STATUS

Status (ConTROL-G)

. (PERIOD)

Repeat last
command (.)

COPYING,

This section describes three commands that do not fit naturally into any other
groups.

The J (Join) command joins the line below the current line to the end of the current
line, inserting a SPACE between what was previously two lines and leaving the cursor
on this SPACE. If the current line ends with a period, vim inserts two SPACEs.

You can always “unjoin” (break) a line into two lines by replacing the SPACE or SPACES
where you want to break the line with a RETURN.

The Status command, CONTROL-G, displays the name of the file you are editing, infor-
mation about whether the file has been modified or is a readonly file, the number
of the current line, the total number of lines in the Work buffer, and the percentage
of the Work buffer preceding the current line. You can also use :f to display status
information. Following is a sample status line:

"/usr/share/dict/words" [readonly] Tine 28501 of 98569 --28%-- col 1

The . (period) command repeats the most recent command that made a change. If you
had just given a d2w command (delete the next two words), for example, the . com-
mand would delete the next two words. If you had just inserted text, the . command
would repeat the insertion of the same text. This command is useful if you want to
change some occurrences of a word or phrase in the Work buffer. Search for the first
occurrence of the word (use /) and then make the change you want (use cw). You can
then use n to search for the next occurrence of the word and . to make the same
change to it. If you do not want to make the change, give the n command again to
find the next occurrence.

MOVING, AND DELETING TEXT

The vim editor has a General-Purpose buffer and 26 Named buffers that can hold text
during an editing session. These buffers are useful if you want to move or copy a por-
tion of text to another location in the Work buffer. A combination of the Delete and
Put commands removes text from one location in the Work buffer and places it in
another location in the Work buffer. The Yank and Put commands copy text to
another location in the Work buffer without changing the original text.

198 CHAPTER6 THE vim EDITOR

THE GENERAL-PURPOSE BUFFER

Yank (y/Y)

Put (p/P)

The vim editor stores the text that you most recently changed, deleted, or yanked
(covered below) in the General-Purpose buffer. The Undo command retrieves text
from the General-Purpose buffer when it restores text.

COPYING TEXT TO THE BUFFER

The Yank command (y) is identical to the Delete (d) command except that it does not
delete text from the Work buffer. The vim editor places a copy of the yanked text in the
General-Purpose buffer. You can then use a Put command to place another copy of it
elsewhere in the Work buffer. Use the Yank command just as you use the Delete com-
mand. The uppercase Y command yanks an entire line into the General-Purpose buffer.

Use yy to yank one line

Just as d RETURN deletes two lines, so y RETURN yanks two lines. Use the yy command to yank and
dd to delete the current line.

D works differently from Y

The D command (page 187) does not work in the same manner as the Y command. Whereas the
D deletes to the end of the line, Y yanks the entire line regardless of the cursor position.

COPYING TEXT FROM THE BUFFER

The Put commands, p and P, copy text from the General-Purpose buffer to the Work
buffer. When you delete or yank characters or words into the General-Purpose buffer,
p inserts them after the current character, and P inserts them before this character. If
you delete or yank lines, sentences, or paragraphs, P inserts the contents of the
General-Purpose buffer before the current line, and p inserts them after the current
line.

Put commands do not destroy the contents of the General-Purpose buffer. Thus you
can place the same text at several points within the file by giving one Delete or Yank
command and several Put commands.

DELETING TEXT COPIES IT INTO THE BUFFER

Any of the Delete commands described earlier in this chapter (page 186) place the
deleted text in the General-Purpose buffer. Just as you can use the Undo command
to put the deleted text back where it came from, so you can use a Put command to
put the deleted text at another location in the Work buffer.

Suppose you delete a word from the middle of a sentence by giving the dw command
and then move the cursor to a SPACE between two words and give a p command; vim
places the word you just deleted at the new location. If you delete a line using the dd
command and then move the cursor to the line below the line where you want the
deleted line to appear and give a P command, vim places the line at the new location.

COPYING, MOVING, AND DELETING TEXT 199

optional
NAMED BUFFERS

You can use a Named buffer with any of the Delete, Yank, or Put commands. Each
of the 26 Named buffers is named by a letter of the alphabet. Each Named buffer can
store a different block of text and you can recall each block as needed. Unlike the
General-Purpose buffer, vim does not change the contents of a Named buffer unless
you issue a command that specifically overwrites that buffer. The vim editor main-
tains the contents of the Named buffers throughout an editing session.

The vim editor stores text in a Named buffer if you precede a Delete or Yank com-
mand with a double quotation mark (") and a buffer name (for example, "kyy
yanks a copy of the current line into buffer k). You can put information from the
Work buffer into a Named buffer in two ways. First, if you give the name of the
buffer as a lowercase letter, vim overwrites the contents of the buffer when it deletes
or yanks text into the buffer. Second, if you use an uppercase letter for the buffer
name, vim appends the newly deleted or yanked text to the end of the buffer. This
feature enables you to collect blocks of text from various sections of a file and
deposit them at one place in the file with a single command. Named buffers are also
useful when you are moving a section of a file and do not want to give a Put com-
mand immediately after the corresponding Delete command, and when you want
to insert a paragraph, sentence, or phrase repeatedly in a document.

If you have one sentence you use throughout a document, you can yank that sen-
tence into a Named buffer and put it wherever you need it by using the following
procedure: After entering the first occurrence of the sentence and pressing ESCAPE to
return to Command mode, leave the cursor on the line containing the sentence. (The
sentence must appear on a line or lines by itself for this procedure to work.) Then
yank the sentence into Named buffer a by giving the "ayy command (or "alyy if
the sentence takes up two lines). Now anytime you need the sentence, you can return
to Command mode and give the command "ap to put a copy of the sentence below
the current line.

This technique provides a quick and easy way to insert text that you use frequently
in a document. For example, if you were editing a legal document, you might store
the phrase The Plaintiff alleges that the Defendant in a Named buffer to save yourself
the trouble of typing it every time you want to use it. Similarly, if you were creating
a letter that frequently used a long company name, such as National Standards Insti-
tute, you might put it into a Named buffer.

NUMBERED BUFFERS

In addition to the 26 Named buffers and 1 General-Purpose buffer, 9 Numbered buf-
fers are available. They are, in one sense, readonly buffers. The vim editor fills them
with the nine most recently deleted chunks of text that are at least one line long. The
most recently deleted text is held in "1, the next most recent in "2, and so on. If

200 CHAPTER6 THE Vvim EDITOR

you delete a block of text and then give other vim commands so that you cannot
reclaim the deleted text with an Undo command, you can use " 1p to paste the most
recently deleted chunk of text below the location of the cursor. If you have deleted
several blocks of text and want to reclaim a specific one, proceed as follows: Paste
the contents of the first buffer with "1p. If the first buffer does not hold the text you
are looking for, undo the paste operation with u and then give the period (.) com-
mand to repeat the previous command. The Numbered buffers work in a unique
way with the period command: Instead of pasting the contents of buffer "1, the
period command pastes the contents of the next buffer ("2). Another u and period
would replace the contents of buffer "2 with that of buffer "3, and so on through
the nine buffers.

READING AND WRITING FILES

Exit (ZZ) The vim editor reads a disk file into the Work buffer when you specify a filename on
the command line you use to call vim. A ZZ command that terminates an editing ses-
sion writes the contents of the Work buffer back to the disk file. This section discusses
other ways of reading text into the Work buffer and writing it to a file.

READING FILES

Read (:f) The Read command reads a file into the Work buffer. The new file does not overwrite
any text in the Work buffer but rather is positioned following the single address you
specify (or the current line if you do not specify an address). You can use an address
of 0 to read the file into the beginning of the Work buffer. The Read command has
the following syntax:

:[address]r [filename]

As with other commands that begin with a colon, when you enter the colon it appears
on the status line. The filename is the pathname of the file that you want to read and
must be terminated by RETURN. If you omit the filename, vim reads from the disk the
file you are editing.

WRITING FILES

Write tw) The Write command writes part or all of the Work buffer to a file. You can specify
an address to write part of the Work buffer and a filename to specify a file to receive
the text. If you do not specify an address or filename, vim writes the entire contents
of the Work buffer to the file you are editing, updating the file on the disk.

During a long editing session, it is a good idea to use the Write command occasion-
ally. If a problem develops later, a recent copy of the Work buffer is then safe on the
disk. If you use a :q! command to exit from vim, the disk file reflects the version of
the Work buffer at the time you last used a Write command.

SETTING PARAMETERS 201

The Write command has two syntaxes:

:laddress|w(!] [filename]

:laddress|w>> filename

The second syntax appends text to an existing file. The address specifies the portion
of the Work buffer vim will write to the file. The address follows the form of the
address that the Substitute command uses (page 194). If you do not specify an
addpress, vim writes the entire contents of the Work buffer. The optional filename is
the pathname of the file you are writing to. If you do not specify a filename, vim
writes to the file you are editing.

w! Because the Write command can quickly destroy a large amount of work, vim
demands that you enter an exclamation point (!) following the w as a safeguard
against accidentally overwriting a file. The only times you do not need an exclama-
tion point are when you are writing out the entire contents of the Work buffer to
the file being edited (using no address and no filename) and when you are writing
part or all of the Work buffer to a new file. When you are writing part of the file
to the file being edited or when you are overwriting another file, you must use an
exclamation point.

IDENTIFYING THE CURRENT FILE

The File command (:f) provides the same information as the Status command (CONTROL-G;
page 197). The filename the File command displays is the one the Write command uses
if you give a :w command without a filename.

SETTING PARAMETERS

You can tailor the vim editor to your needs and habits by setting vim parameters.
Parameters perform such functions as displaying line numbers, automatically insert-
ing RETURNs, and establishing incremental and nonstandard searches.

You can set parameters in several ways. For example, you can set them to establish
the environment for the current editing session while you are using vim. Alternatively,
you can set the parameters in your ~/.bash_profile (bash) or ~/.tcshrc (tcsh) shell
startup file or in the vim startup file, ~/.vimrc. When you set the parameters in any
of these files, the same customized environment will be available each time vim starts
and you can begin editing immediately.

SETTING PARAMETERS FROM WITHIN vim

To set a parameter while you are using vim, enter a colon (:), the word set, a SPACE,
and the parameter (refer to “Parameters” on the next page). The command appears
on the status line as you type it and takes effect when you press RETURN. The following
command establishes incremental searches for the current editing session:

:set incsearch

202 CHAPTER 6 THE Vvim EDITOR

SETTING PARAMETERS IN A STARTUP FILE

VIMINIT If you are using bash, you can put a line with the following syntax in your ~/.bash_-
profile startup file (page 288):

export VIMINIT=set param1 param?2 ...'

Replace param1 and param2 with parameters selected from Table 6-7. VIMINIT is
a shell variable that vim reads. The following statement causes vim to ignore the case
of characters in searches, display line numbers, use the TC Shell to execute Linux
commands, and wrap text 15 characters from the right edge of the screen:

export VIMINIT='set ignorecase number shell=/bin/tcsh wrapmargin=15"'

If you use the parameter abbreviations, it looks like this:
export VIMINIT='set ic nu sh=/bin/tcsh wm=15"

If you are using tcsh, put the following line in your ~/.tcshrc startup file (page 382):
setenv VIMINIT 'set param1 param?2 ...'

Again, replace param1 and param2 with parameters from Table 6-7. The values
between the single quotation marks are the same as those shown in the preceding
examples.

THE .vimrc STARTUP FILE

Instead of setting vim parameters in your shell startup file, you can create a ~/.vimrc
file in your home directory and set the parameters there. Creating a .vimrc file causes
vim to start with the compatible parameter unset (page 174). Lines in a .vimrc file fol-
low this syntax:

set paraml param?2 ...

Following are examples of .vimrc files that perform the same function as VIMINIT
described previously:

$ cat ~/.vimrc

set ignorecase

set number

set shell=/bin/tcsh
set wrapmargin=15

$ cat ~/.vimrc
set ic nu sh=/bin/tcsh wm=15

Parameters set by the VIMINIT variable take precedence over those set in the
.vimrec file.

PARAMETERS

Table 6-7 lists some of the most useful vim parameters. The vim editor displays a com-
plete list of parameters and indicates how they are currently set when you give the
command :set all followed by a RETURN. The command :set RETURN displays a list of

SETTING PARAMETERS 203

options that are set to values other than their default values. Two classes of param-
eters exist: those that contain an equal sign (and can take on a value) and those that
are optionally prefixed with no (switches that are on or off). You can change the sense
of a switch parameter by giving the command :set [no]param. For example, give the
command :set number (or :set nonumber) to turn on (or off) line numbering. To
change the value of a parameter that takes on a value (and uses an equal sign), give
a command such as :set shiftwidth=15.

Most parameters have abbreviations—for example, nu for number, nonu for
nonumber, and sw for shiftwidth. The abbreviations are listed in the left column of
Table 6-7, following the name of the parameter.

Parameters
Parameter Effect
Allow special Refer to “Special Characters in Search Strings” on page 191. By
characters in searches default the following characters have special meanings when used in
magic a search string:

[1

When you set the nomagic parameter, these characters no longer
have special meanings. The magic parameter restores their special
meanings.

The » and $ characters always have special meanings within search
strings, regardless of how you set this parameter.

Automatic indention The automatic indention feature works with the shiftwidth parameter
; ; to provide a regular set of indentions for programs or tabular
autoindent, ai :) X . .
material. This feature is off by default. You can turn it on by setting
autoindent and turn it off by setting noautoindent.

When automatic indention is on and vim is in Input mode, pressing
CONTROL-T moves the cursor from the left margin (or an indention) to
the next indention position, pressing RETURN moves the cursor to the
left side of the next line under the first character of the previous line,
and pressing CONTROL-D backs up over indention positions. The

CONTROL-T and CONTROL-D keys work only before text is placed on a line.

Automatic write By default vim asks you before writing out the Work buffer when you

autowrite, aw have not explicitly told it to do so (as when you give a :n command
to edit the next file). The autowrite option causes vim to write the
Work buffer automatically when you use commands, such as :n, to
edit to another file. You can disable this parameter by setting the
noautowrite or noaw option.

Flash The vim editor normally causes the terminal to beep when you give

flash, fl an invalid command or press ESCAPE when it is in Command mode.
Setting the parameter flash causes the terminal to flash instead of
beep. Set noflash to cause it to beep. Not all terminals and emulators
support this parameter.

204 CHAPTER 6 THE vim EDITOR

Parameters (continued)

Parameter

Ignore case in searches
ignorecase, ic

Incremental search
incsearch, is

Invisible characters
list

Status line
laststatus=n, Is=n

Line numbers
number, nu

Line wrap
wrap

Line wrap margin
wrapmargin=nn, wm=nn

Effect

The vim editor normally performs case-sensitive searches,
differentiating between uppercase and lowercase letters. It performs
case-insensitive searches when you set the ignorecase parameter.
Set noignorecase to restore case-sensitive searches.

Referto “Normal Versus Incremental Searches” on page 191. By default
vim does not perform incremental searches. To cause vim to perform
incremental searches, set the parameter incsearch. To cause vim not
to perform incremental searches, set the parameter noincsearch.

To cause vim to display each TAB as Al and to mark the end of each
line witha $, set the list parameter. To display TABs as whitespace and
not mark ends of lines, set nolist.

This parameter displays a status line that shows the name of the file
you are editing, a [+] if the file has been changed since it was last
written out, and the position of the cursor. When setting the
parameter laststatus=n, nequal to 0 (zero) turns off the status line,
1 displays the status line when at least two vim windows are
displayed, and 2 always displays the status line.

The vim editor does not normally display the line number associated
with each line. To display line numbers, set the parameter number. To
cause line numbers not to be displayed, set the parameter nonumber.

Line numbers are not part of the file, are not stored with the file, and
are not displayed when the file is printed. They appear on the screen
only while you are using vim.

The line wrap controls how vim displays lines that are too long to fit
on the screen. To cause vim to wrap long lines and continue them
on the next line, set wrap (set by default). If you set nowrap, vim
truncates long lines at the right edge of the screen.

The line wrap margin causes vim to break the text that you are
inserting at approximately the specified number of characters from
the right margin. The vim editor breaks the text by inserting a NEWLINE
character at the closest blank-delimited word boundary. Setting the
line wrap margin is handy if you want all the text lines to be
approximately the same length. This feature relieves you of the need
to remember to press RETURN to end each line of input.

When setting the parameter wrapmargin=nn, nn is the number of
characters from the right side of the screen where you want vim to
break the text. This number is not the column width of the text but
rather the distance from the end of the text to the right edge of the
screen. Setting the wrap margin to 0 (zero) turns this feature off. By
default the line wrap margin is off (set to 0).

SETTING PARAMETERS 205

Parameters (continued)

Parameter

Report
report=nn

Scroll
scroll=nn, scr=nn

Shell
shell=path, sh=path

Shift width
shiftwidth=nn, sw=nn

Show match
showmatch, sm

Show mode
showmode, smd

Effect

This parameter causes vim to display a report on the status line
whenever you make a change that affects at least nn lines. For
example, if report is set to 7 and you delete seven lines, vim displays
the message 7 lines deleted. When you delete six or fewer lines, vim
does not display a message. The default for report is 5.

This parameter controls the number of lines that CONTROL-D and
CONTROL-U (page 184) scroll text on the screen. By default scroll is set
to half the window height.

There are two ways to change the value of scroll. First you can enter
a number before pressing CONTROL-D Or CONTROL-U; vim sets scroll to
that number. Alternatively, you can set scroll explicitly with
scroll=nn, where nnis the number of lines you want to scroll with
each CONTROL-D Or CONTROL-U command.

While you are using vim, you can cause it to spawn a new shell. You
can either create an interactive shell (if you want to run several
commands) or run a single command. The shell parameter
determines which shell vim invokes. By default vim sets the shell
parameter to your login shell. To change it, set the parameter
shell=path, where pathis the absolute pathname of the shell you want
to use.

This parameter controls the functioning of CONTROL-T and CONTROL-D
in Input mode when automatic indention is on (see “Automatic
indention” in this table). When setting the parameter shiftwidth=nn,
nnis the spacing of the indention positions (8 by default). Setting the
shift width is similar to setting the TAB stops on a typewriter; with
shiftwidth, however, the distance between TAB stops remains
constant.

This parameter is useful for programmers who are working in
languages that use braces ({}) or parentheses as expression
delimiters (Lisp, C, Tcl, and so on). When showmatch is set and you
are entering code (in Input mode) and type a closing brace or
parenthesis, the cursor jumps briefly to the matching opening brace
or parenthesis (that is, the preceding corresponding element at the
same nesting level). After it highlights the matching element, the
cursor resumes its previous position. When you type a right brace or
parenthesis that does not have a match, vim beeps. Use
noshowmatch to turn off automatic matching.

Set the parameter showmode to display the mode in the lower-right
corner of the screen when vim is in Input mode (default). Set
noshowmode to cause vim not to display the mode.

206 CHAPTER6 THE vim EDITOR

Parameters (continued)

Parameter Effect
vi compatibility Refer to “The compatible Parameter” on page 174. By default, vim
compatible, cp does not attempt to be compatible with vi. To cause vim to be

compatible with vi, set the parameter compatible. To cause vim not
to be compatible with vi, set the parameter nocompatible.

Wrap scan By default, when a search for the next occurrence of a search string

wrapscan, ws reaches the end of the Work buffer, vim continues the search at the
beginning of the Work buffer. The reverse is true with a search for the
previous occurrence of a search string. The nowrapscan parameter
stops the search at either end of the Work buffer. Set the wrapscan
parameter if you want searches to wrap around the ends of the Work
buffer.

ADVANCED EDITING TECHNIQUES

This section presents several commands you might find useful once you have become
comfortable using vim.

optional
USING MARKERS

While you are using vim, you can set and use markers to make addressing more con-
venient. Set a marker by giving the command me¢, where ¢ is any character. (Letters
are preferred because some characters, such as a single quotation mark, have special
meanings when used as markers.) The vim editor does not preserve markers when you
exit from vim.

Once you have set a marker, you can use it in a manner similar to a line number. You
can move the cursor to the beginning of a line that contains a marker by preceding
the marker name with a single quotation mark. For example, to set marker t, position
the cursor on the line you want to mark and give the command mt. During the
remainder of this editing session, unless you reset marker t or delete the line it marks,
you can return to the beginning of the line you marked by giving the command ' t.

You can delete all text from the current line through the line containing marker r with
the following command:

d'r

You can use a back tick (', also called a grave accent or reverse single quotation
mark) to go to the exact position of the marker on the line. After setting marker t,
you can move the cursor to the location of this marker (not the beginning of the line

ADVANCED EDITING TECHNIQUES 207

that holds the marker) with the command * t. The following command deletes all the
text from the current line up to the character where the marker r was placed; the rest
of the line containing the marker remains intact:

d'r

You can use markers in addresses of commands instead of line numbers. The follow-
ing command replaces all occurrences of The with THE on all lines starting from
marker m to the current line (marker m must precede the current line):

:'m,.s/The/THE/g

EDITING OTHER FILES

e#

‘rew

The following command causes vim to edit the file you specify with filename:
:e[!] [filename]

If you want to save the contents of the Work buffer, you must write it out (using :w)
before you give this command. If you do not want to save the contents of the Work
buffer, vim insists you use an exclamation point to acknowledge that you will lose the
work you did since the last time you wrote out the Work buffer. If you do not supply
a filename, vim edits the file you are working on.

The command :e! starts an editing session over again. This command returns the
Work buffer to the state it was in the last time you wrote it out or, if you have not
written it out, the state it was in when you started editing the file. It is useful when
you make mistakes while editing a file and decide that it would be easier to start over
than to fix the mistakes.

Because the :e command does not destroy the contents of the General-Purpose or
Named buffers, you can store text from one file in a buffer, use a :e command to edit
a second file, and put text from the buffer in the second file.

The command :e# closes the current file and opens the last file you were editing,
placing the cursor on the line that it was on when you last closed the file. If you do
not save the file you are working on before you give this command, vim prompts
you to do so. Setting the autowrite parameter (page 203) will not stop vim from
prompting you.

The :e# command can help you copy blocks of text from one file to another. When
you call vim with the names of several files as arguments, you can use :n to edit the
next file, :e# to edit the file you just edited, and :rew to rewind the sequence of files
so that you are editing the first file again. As you move between files, you can copy
text from one file into a buffer and paste that text into another file. You can use :n!
to force vim to close a file without writing out changes before it opens the next file.

MACROS AND SHORTCUTS

:map

The vim editor allows you to create both macros and shortcuts. The :map command
defines a key or sequence of keys that perform some action in Command mode. The

208 CHAPTER 6

THE vim EDITOR

:abbrev

following command maps CONTROL-X to the commands that will find the next left
bracket on the current line (f[), delete all characters from that bracket to the next
right bracket (df]) on the same line, delete the next character (x), move the cursor
down two lines (2j), and finally move the cursor to the beginning of the line (0):

:map AX f[df]x2j0

Although you can use ESCAPE and CONTROL sequences, it is a good idea to avoid remap-
ping characters or sequences that are vim commands. Type :map by itself to see a list
of the current mappings. You might need to use CONTROL-V (page 186) to quote some of
the characters you want to enter into the :map string.

The :abbrev command is similar to :map but creates abbreviations you can use while
in Input mode. When you are in Input mode and type a string you have defined with
:abbrev, followed by a SPACE, vim replaces the string and the SPACE with the characters
you specified when you defined the string. For ease of use, avoid common sequences
of characters when creating abbreviations. The following command defines ZZ as an
abbreviation for Sam the Great:

:abbrev ZZ Sam the Great

Even though ZZ is a vim command, it is used only in Command mode. It has no special
meaning in Input mode, where you use abbreviations.

EXECUTING SHELL COMMANDS FROM WITHIN vim

:sh

You can execute shell commands in several ways while you are using vim. For
instance, you can spawn a new interactive shell by giving the following command and
pressing RETURN:

:sh
The vim shell parameter (page 205) determines which shell is spawned (usually bash
or tcsh). By default shell is the same as your login shell.
After you have finished your work in the shell, you can return to vim by exiting from
the shell (press CONTROL-D or give an exit command).
If :sh does not work correctly

The :sh command might behave strangely depending on how the shell has been configured. You
might get warnings with the :sh command or it might even hang. Experiment with the :sh com-
mand to be sure it works correctly with your configuration. If it does not, you might want to set
the vim shell parameter to another shell before using :sh. For example, the following command
causes vim to use tcsh with the :sh command:

:set shell=/bin/tcsh

You might need to change the SHELL environment variable after starting :sh to show the correct
shell.

ADVANCED EDITING TECHNIQUES 209

leommand

Neommand

Edit only one copy of a file

When you create a new shell by giving the command :sh, remember you are still using vim. A com-
mon mistake is to try to edit the same file from the new shell, forgetting that vim is already editing
the file from a different shell. Because you can lose information by editing the same file from two
instances of an editor, vim warns you when you make this mistake. Refer to “File Locks” on
page 178 to see an example of the message that vim displays.

You can execute a shell command line from vim by giving the following command,
replacing command with the command line you want to execute and terminating the
command with a RETURN:

:lcommand

The vim editor spawns a new shell that executes the command. When the command
runs to completion, the newly spawned shell returns control to the editor.

You can execute a command from vim and have it replace the current line with the
output from the command. If you do not want to replace any text, put the cursor on
a blank line before giving the following command:

!lcommand

Nothing happens when you enter the first exclamation point. When you enter the sec-
ond one, vim moves the cursor to the status line and allows you to enter the command
you want to execute. Because this command puts vim in Last Line mode, you must
end the command with a RETURN (as you would end most shell commands).

You can also execute a command from vim with standard input to the command
coming from all or part of the file you are editing and standard output from the
command replacing the input in the file you are editing. This type of command is
handy for sorting a list in place within a file.

To specify the block of text that will become standard input for the command, move
the cursor to one end of the block of text. Then enter an exclamation point followed
by a command that would normally move the cursor to the other end of the block of
text. For example, if the cursor is at the beginning of the file and you want to specify
the whole file, give the command !G. If you want to specify the part of the file
between the cursor and marker b, give the command ! ' b. After you give the cursor-
movement command, vim displays an exclamation point on the status line and waits
for you to enter a shell command.

To sort a list of names in a file, move the cursor to the beginning of the list and set
marker q with an mq command. Then move the cursor to the end of the list and give
the following command:

1'gsort

Press RETURN and wait. After a few seconds, the sorted list should replace the original
list on the screen. If the command did not behave as expected, you can usually undo
the change with a u command. Refer to page 969 for more information on sort.

210 CHAPTER 6 THE Vvim EDITOR

! can destroy a file

If you enter the wrong command or mistype a command, you can destroy a file (for example, if
the command hangs or stops vim from working). For this reason it is a good idea to save your
file before using this command. The Undo command (page 186) can be a lifesaver. A :el com-
mand (page 207) will get rid of the changes, returning the buffer to the state it was in last time
you saved it.

As with the :sh command, the default shell might not work properly with the ! command. You
might want to test the shell with a sample file before executing this command with your real work.
If the default shell does not work properly, change the shell parameter.

UNITS OF MEASURE

Many vim commands operate on a block of text—ranging from one character to
many paragraphs. You specify the size of a block of text with a Unit of Measure. You
can specify multiple Units of Measure by preceding a Unit of Measure with a Repeat
Factor (page 213). This section defines the various Units of Measure.

CHARACTER

WORD

A character is one character—visible or not, printable or not—including SPACEs and
TABs. Some examples of characters are

a qg A . 5 R - > TAB SPACE

A word, similar to a word in the English language, is a string of one or more charac-
ters bounded on both sides by any combination of one or more of the following
elements: a punctuation mark, SPACE, TAB, numeral, or NEWLINE. In addition, vim considers
each group of punctuation marks to be a word (Table 6-8).

Words
Word count Text
1 pear
pear!
pear!)

pear!) The

AW DD

pear!) "The

11 This is a short, concise 1line (no frills).

UNITS OF MEASURE 211

BLANK-DELIMITED WORD

A blank-delimited word is the same as a word but includes adjacent punctuation.
Blank-delimited words are separated by one or more of the following elements: either
a SPACE, TAB, or NEWLINE (Table 6-9).

Blank-delimited words
Word count Text
1 pear
1 pear!
1 pear!)
pear!) The
pear!) "The

[o= 2NN \C TR\ G]

This is a short, concise line (no frills).

LINE

A line is a string of characters bounded by NEWLINEs that is not necessarily displayed as
a single physical line on the screen. You can enter a very long single (logical) line that
wraps around (continues on the next physical line) several times or disappears off the
right edge of the display. It is a good idea to avoid creating long logical lines; ideally,
you would terminate lines with a RETURN before they reach the right side of the screen.
Terminating lines in this manner ensures that each physical line contains one logical
line and avoids confusion when you edit and format text. Some commands do not
appear to work properly on physical lines that are longer than the width of the screen.
For example, with the cursor on a long logical line that wraps around several physical
lines, pressing RETURN once appears to move the cursor down more than one line. You
can use fmt (page 831) to break long logical lines into shorter ones.

SENTENCE

A sentence is an English sentence or the equivalent. A sentence starts at the end of
the previous sentence and ends with a period, exclamation point, or question mark,
followed by two SPACEs or a NEWLINE (Table 6-10).

Sentences
Sentence count Text
One: only one SPACE That's it. This is one sentence.
after the first period

and a NEWLINE after the
second period

212 CHAPTER 6 THE Vvim EDITOR

Sentences (continued)

Sentence count Text

Two: two SPACES after That's it. This is two sentences.
the first period and a

NEWLINE after the

second period

Three: two SPACES after What? Three sentences? One line!
the first two question
marks and a NEWLINE
after the exclamation

point
One: NEWLINE after the This sentence takes
period up a total of
three T1ines.
PARAGRAPH

A paragraph is preceded and followed by one or more blank lines. A blank line is
composed of two NEWLINE characters in a row (Table 6-11).

Paragraphs
Paragraph count Text

One: blank line before
and after text One paragraph

One: blank line before
and after text This might appear to be
more than one paragraph.
Just because there are
two indentions does not mean
it qualifies as two paragraphs.

Three: three blocks of
text separated by blank Even though 1in
lines

English this is only
one sentence,

vim considers it to be
three paragraphs.

CHAPTER SUMMARY 213

ScREEN (WINDOW)

Under vim, a screen or terminal emulator window can display one or more logical
windows of information. A window displays all or part of a Work buffer. Figure 6-5
on page 171 shows a screen with two windows.

REPEAT FACTOR

A number that precedes a Unit of Measure (page 210) is a Repeat Factor. Just as the
5 in 5 inches causes you to consider 5 inches as a single Unit of Measure, so a Repeat
Factor causes vim to group more than one Unit of Measure and consider it as a single
Unit of Measure. For example, the command w moves the cursor forward 1 word,
the command 5w moves it forward 5 words, and the command 250w moves it for-
ward 250 words. If you do not specify a Repeat Factor, vim assumes a Repeat Factor
of 1. If the Repeat Factor would move the cursor past the end of the file, the cursor
is left at the end of the file.

CHAPTER SUMMARY

This summary of vim includes all the commands covered in this chapter, plus a few
more. Table 6-12 lists some of the ways you can call vim from the command line.

Calling vim
Command Result
vim filename Edits filename starting at line 1
vim +n filename Edits filename starting at line n
vim + filename Edits filename starting at the last line

vim +/pattern filename Edits filename starting at the first line containing patfern

vim - filename Recovers filename after a system crash

vim -R filename Edits filename readonly (same as opening the file with view)

You must be in Command mode to use commands that move the cursor by Units of

Measure (Table 6-13). You can use these Units of Measure with Change, Delete, and
Yank commands. Each of these commands can be preceded by a Repeat Factor.

Moving the cursor by Units of Measure
Command Moves the cursor

SPACE, I (ell), or Space to the right
RIGHT ARROW

h or LEFT ARROW Space to the left
w Word to the right

214 CHAPTER 6 THE vim EDITOR

Moving the cursor by Units of Measure (continued)

Command Moves the cursor

w Blank-delimited word to the right

b Word to the left

B Blank-delimited word to the left

$ End of line

e End of word to the right

E End of blank-delimited word to the right

0 (zero) Beginning of line (cannot be used with a Repeat Factor)
RETURN Beginning of next line

j or DOWN ARROW Down one line
- Beginning of previous line

k or UP ARROW Up one line

) End of sentence

(Beginning of sentence

} End of paragraph

{ Beginning of paragraph

% Move to matching brace of same type at same nesting level

Table 6-14 shows the commands that enable you to view different parts of the Work

buffer.

Viewing the Work buffer
Command Moves the cursor
CONTROL-D Forward one-half window
CONTROL-U Backward one-half window
CONTROL-F or Forward one window
PAGE DOWN
CONTROL-B or Backward one window
PAGE UP
nG To line n (without n, to the last line)
H To top of window
M To middle of window

L To bottom of window

CHAPTER SUMMARY 215

The commands in Table 6-15 enable you to add text to the buffer. All these com-
mands, except r, leave vim in Input mode. You must press ESCAPE to return to
Command mode.

Adding text

Command Adds text

i Before cursor

Before first nonblank character on line

a After cursor

A At end of line

0 Opens a line below current line

0 Opens a line above current line

r Replaces current character (no ESCAPE needed)

R Replaces characters, starting with current character (overwrite until ESCAPE)

Table 6-16 lists commands that delete and change text. In this table M is a Unit of
Measure that you can precede with a Repeat Factor, # is an optional Repeat Factor,
and c is any character.

Deleting and changing text

Command Result

nx Deletes the number of characters specified by n, starting with the current
character

nX Deletes n characters before the current character, starting with the character
preceding the current character

dm Deletes text specified by M

ndd Deletes nlines

dic Deletes to the next character ¢ on the current line

D Deletes to end of the line

n~ Changes case of the next n characters

The following commands leave vim in Input mode. You must press ESCAPE to return to
Command mode.

ns Substitutes n characters

S Substitutes for the entire line

216 CHAPTER6 THE vim EDITOR

Deleting and changing text (continued)

Command Result

cM Changes text specified by M

nee Changes nlines

cte Changes to the next character ¢ on the current line
C Changes to end of line

Table 6-17 lists search commands. Here, rexp is a regular expression that can be a
simple string of characters.

Searching
Command Result
/reXpRETURN Searches forward for rexp
?rexp RETURN Searches backward for rexp
n Repeats original search exactly
N Repeats original search, in the opposite direction
/RETURN Repeats original search forward
?RETURN Repeats original search backward
fe Positions the cursor on the next character ¢ on the current line
Fc Positions the cursor on the previous character ¢ on the current line
te Positions the cursor on the character before (to the left of) the next character

c¢on the current line

Te Positions the cursor on the character after (to the right of) the previous
character ¢ on the current line

; Repeats the last f, F, t, or T command

The syntax of a Substitute command is
:[address|s/search-string/replacement-string[/g]

where address is one line number or two line numbers separated by a comma. A
. (period) represents the current line, $ represents the last line, and % represents
the entire file. You can use a marker or a search string in place of a line number.
The search-string is a regular expression that can be a simple string of characters.
The replacement-string is the replacement string. A g indicates a global replace-
ment (more than one replacement per line).

CHAPTER SUMMARY 217

Table 6-18 lists miscellaneous vim commands.

Miscellaneous commands

Command Result

J Joins the current line and the following line
Repeats the most recent command that made a change

‘w filename Writes the contents of the Work buffer to filename (or to the current file if there
is no filename)

:q Quits vim

77 Writes the contents of the Work buffer to the current file and quits vim

:f or CONTROL-G Displays the filename, status, current line number, number of lines in the Work
buffer, and percentage of the Work buffer preceding the current line

CONTROL-V Inserts the next character literally even if it is a vim command (use in Input mode)

Table 6-19 lists commands that yank and put text. In this table M is a Unit of Mea-
sure that you can precede with a Repeat Factor and # is a Repeat Factor. You can
precede any of these commands with the name of a buffer using the form "x, where
x is the name of the buffer (a—z).

Yanking and putting text

Command Result
ym Yanks text specified by M
nyy Yanks nlines

Yanks to end of line
P Puts text before or above
p Puts text after or below

Table 6-20 lists advanced vim commands.
Advanced commands
Command Result
mx Sets marker x, where xis a letter from a to z.

' '(twosingle Moves cursor back to its previous location.
quotation marks)

"X Moves cursor to line with marker x.

‘X Moves cursor to character with marker x.

218 CHAPTER 6 THE Vvim EDITOR

Advanced commands (continued)

:e filename

Command
n

.rew

:sh
:leommand
eommand

EXERCISES

Edits filename, requiring you to write changes to the current file (with :w or
autowrite) before editing the new file. Use :e! filename to discard changes to
the current file. Use :e! without a filename to discard changes to the current
file and start editing the saved version of the current file.

Result

Edits the next file when vim is started with multiple filename arguments.
Requires you to write changes to the current file (with :w or autowrite) before
editing the next file. Use :n! to discard changes to the current file and edit the
next file.

Rewinds the filename list when vim is started with multiple filename
arguments and starts editing with the first file. Requires you to write changes
to the current file (with :w or autowrite) before editing the first file. Use :rew!
to discard changes to the current file and edit the first file.

Starts a shell. Exit from the shell to return to vim.
Starts a shell and executes command.

Starts a shell, executes ecommand, and places output in the Work buffer,
replacing the current line.

1. How can you cause vim to enter Input mode? How can you make vim revert
to Command mode?

2. What is the Work buffer? Name two ways of writing the contents of the
Work buffer to the disk.

3. Suppose that you are editing a file that contains the following paragraph
and the cursor is on the second tilde (~):

The vim editor has a command, tilde (~),

that changes Towercase letters to

uppercase, and vice versa.

The ~ command works with a Unit of Measure or
a Repeat Factor, so you can change

the case of more than one character at a time.

How can you

a. Move the cursor to the end of the paragraph?

b. Move the cursor to the beginning of the word Unit?

¢. Change the word character to letter?

ADVANCED EXERCISES 219

4. While working in vim, with the cursor positioned on the first letter of a
word, you give the command x followed by p. Explain what happens.

5. What are the differences between the following commands?
a.iandI
b.aand A
c.oand O
d.rand R
e.uand U

6. Which command would you use to search backward through the Work buf-
fer for lines that start with the word it?

7. Which command substitutes all occurrences of the phrase this week with the
phrase next week?

8. Consider the following scenario: You start vim to edit an existing file. You
make many changes to the file and then realize that you deleted a critical
section of the file early in your editing session. You want to get that section
back but do not want to lose all the other changes you made. What would
you do?

9. How can you move the current line to the beginning of the file?

10. Use vim to create the letter_e file of €’s used on page 64. Use as few vim
commands as possible. Which vim commands did you use?

ADVANCED EXERCISES

11. Which commands can you use to take a paragraph from one file and insert
it in a second file?

12. Create a file that contains the following list, and then execute commands
from within vim to sort the list and display it in two columns. (Hint: Refer
to page 940 for more information on pr.)

Command mode

Input mode

Last Line mode
Work buffer
General-Purpose buffer
Named buffer
Regular Expression
Search String
Replacement String
Startup File
Repeat Factor

220 CHAPTER 6 THE Vvim EDITOR

13.
14.

15.

How do the Named buffers differ from the General-Purpose buffer?

Assume that your version of vim does not support multiple Undo com-
mands. If you delete a line of text, then delete a second line, and then a third
line, which commands would you use to recover the first two lines that you

deleted?

Which command would you use to swap the words hither and yon on any
line with any number of words between them? (You need not worry about
special punctuation, just uppercase and lowercase letters and spaces.)

IN THIS CHAPTER

XS0 0000000000000000000¢ 224
Basic Editing Commands....... 231
OnlineHelp.................. 238
Advanced Editing 240
Major Modes: Language-Sensitive

Editing ... 255
Customizingemacs 265

THE emacs EDITOR

OBJECTIVES

After reading this chapter you should be able to:

» Use emacs to create and edit a file
» Save and retrieve the buffer
» Use emacs online help

» Describe how to move the cursor by characters, words,
lines, and paragraphs

» List the commands that move the cursor backward and
forward by characters and words

» Explain how to search backward and forward for text
and what an incremental search is

» Describe emacs key notation
» Split a window

» Describe the process of undoing changes

221

222 CHAPTER7 THE emacs EDITOR

HISTORY

In 1956, the Lisp (List processing) language was developed at MIT by John
McCarthy. In its original conception, Lisp had only a few scalar (atomic) data
types and only one data structure (page 1093): a list. Lists could contain atomic
data or other lists. Lisp supported recursion and nonnumeric data (exciting con-
cepts in those Fortran and COBOL days) and, in the Cambridge culture at least,
was once the favored implementation language. Richard Stallman and Guy Steele
were part of this MIT Lisp culture. In 1975 they collaborated on emacs, which
Stallman maintained by himself for a long time. This chapter discusses the emacs
editor as implemented by the Free Software Foundation (GNU), version 23. The
emacs home page is www.gnu.org/software/emacs.

The emacs editor was prototyped as a series of extension commands or macros for
the late 1960s text editor TECO (Text Editor and COrrector). Its acronymic name,
Editor MACroS, reflects this origin, although there have been many humorous rein-
terpretations, including ESCAPEMETAALT CONTROLSHIFT, Emacs Makes All Computing Simple,
and the unkind translation Eight Megabytes And Constantly Swapping.

EVOLUTION

Over time emacs has grown and evolved through more than 20 major revisions to
the mainstream GNU version. The emacs editor, which is coded in C, contains a com-
plete Lisp interpreter and fully supports the X Window System and mouse
interaction. The original TECO macros are long gone, but emacs is still very much a
work in progress. Over the years, Emacs has received significant internationalization
upgrades: an extended UTF-8 internal character set four times bigger than Unicode,
along with fonts and keyboard input methods for more than 30 languages. Also, the
user interface is moving in the direction of a WYSIWYG (what you see is what you
get) word processor, which makes it easier for beginners to use the editor.

The emacs editor has always been considerably more than a text editor. Not having been
developed originally in a UNIX environment, it does not adhere to the UNIX/Linux phi-
losophy. Whereas a UNIX/Linux utility is typically designed to do one thing and to
be used in conjunction with other utilities, emacs is designed to “do it all.” Taking
advantage of the underlying programming language (Lisp), emacs users tend to cus-
tomize and extend the editor rather than to use existing utilities or create new
general-purpose tools. Instead, they share their ~/.emacs (customization) files.

Well before the emergence of the X Window System, Stallman put a great deal of
thought and effort into designing a window-oriented work environment, and he used
emacs as his research vehicle. Over time he built facilities within emacs for reading
and composing email messages, reading and posting netnews, giving shell commands,
compiling programs and analyzing error messages, running and debugging these pro-
grams, and playing games. Eventually it became possible to enter the emacs
environment and not come out all day, switching from window to window and from

http://www.gnu.org/software/emacs

HisTory 223

file to file. If you had only an ordinary serial, character-based terminal, emacs gave
you tremendous leverage.

In an X Window System environment, emacs does not need to control the whole
display. Instead, it usually operates only one or two windows. The original,
character-based work environment is still available and is covered in this chapter.

As a language-sensitive editor, emacs has special features that you can turn on to help
edit text, nroff, TeX, Lisp, C, Fortran, and so on. These feature sets are called modes,
but they are not related to the Command and Input modes found in vi, vim, and other
editors. Because you never need to switch emacs between Input and Command
modes, emacs is a modeless editor.

emacs VERSUS vim

See en.wikipedia.org/wiki/Editor_war for an interesting discussion of the ongoing
editor wars; or search the Web for emacs vs vi.

Like vim, emacs is a display editor: It displays on the screen the text you are editing
and changes the display as you type each command or insert new text. Unlike vim,
emacs does not require you to keep track of whether you are in Command mode or
Insert mode: Commands always use CONTROL or other special keys. The emacs editor
inserts ordinary characters into the text you are editing (as opposed to using ordinary
characters as commands), another trait of modeless editing. For many people this
approach is convenient and natural.

As with vim, you use emacs to edit a file in a work area, or buffer, and have the option
of writing this buffer back to the file on the disk when you are finished. With emacs,
however, you can have many work buffers and switch among them without having
to write the buffer out and read it back in. Furthermore, you can display multiple buf-
fers at one time, each in its own window within emacs. This way of displaying files
is often helpful when you are cutting and pasting text or when you want C declara-
tions visible while editing related code in another part of a file.

Like vim, emacs has a rich, extensive command set for moving about in the buffer and
altering text. This command set is not “cast in concrete”—you can change or cus-
tomize commands at any time. Any key can be coupled (bound) to any command to
match a particular keyboard better or to fulfill a personal whim. Usually key bindings
are set in the ~/.emacs startup file, but they can also be changed interactively during
a session. All the key bindings described in this chapter are standard on the current
versions of GNU emacs.

Too many key bindings
If you change too many key bindings, you might produce a command set that you will not remember
or that will make it impossible for you to return to the standard bindings in the same session.

Finally, and very unlike vim, emacs allows you to use Lisp to write new commands
or override old ones. Stallman calls this feature online extensibility, but it would take

http://en.wikipedia.org/wiki/Editor_war

224 CHAPTER 7 THE emacs EDITOR

a gutsy Lisp guru to write and debug a new command while editing text. It is much
more common to add debugged commands to the .emacs file, where they are loaded
when you start emacs. Experienced emacs users often write modes, or environments,
that are conditionally loaded by emacs for specific tasks. For more information on
the .emacs file, see page 266.

The screen and emacs windows

In this chapter, the term screen denotes a character-based terminal screen or a terminal emulator
window in a graphical environment. The term window refers to an emacs window within a screen.

emacs and the X Window System

Since version 19, GNU emacs has fully embraced the X Window System environment. If you start
emacs from a terminal emulator window running in a graphical environment, you will bring up
the X interface (GUI) to emacs. This book does not cover the graphical interface; use the —nw
option when you start emacs to bring up the textual interface in any environment. See “Starting
emacs” below.

TUTORIAL: GETTING STARTED WITH emacs

The emacs editor has many, many features, and there are many ways to use it. Its
complete manual includes more than 35 chapters. Nevertheless, you can do a con-
siderable amount of meaningful work with a relatively small subset of the commands.
This section describes a simple editing session, explaining how to start and exit from
emacs and how to move the cursor and delete text. Coverage of some issues is post-
poned or simplified in the interest of clarity.

emacs online tutorial

The emacs editor provides an online tutorial. After starting emacs, press CONTROL-H t to start the
tutorial. Press CONTROL-X CONTROL-G to exit from emacs. If you have more than one emacs window
open, see the tip “Closing the help window” on page 238.

STARTING emacs

To edit a file named sample using emacs as a text-based editor, enter the following
command:

$ emacs -nw -q sample

The -nw option, which must be the first option on the emacs command line, tells
emacs not to use its X interface (GUI). The —q option tells emacs not to read the
~/.emacs startup file. Not reading this file guarantees that emacs will behave in a
standard manner and can be useful for beginners or for other users who want to
bypass a .emacs file.

The preceding command starts emacs, reads the file named sample into a buffer, and
displays its contents on the screen or window. If no file has this name, emacs displays

TUTORIAL: GETTING STARTED WITH emacs 225

a blank screen with (New File) at the bottom (Figure 7-1). If the file exists, emacs
displays the file and a different message (Figure 7-2 , page 226). If you start emacs
without naming a file on the command line, it displays a welcome screen that
includes usage information and a list of basic commands.

Initially, emacs displays a single window. At the top of the window is a reverse-video
menubar that you can access using a mouse or keyboard. From the keyboard, F10, META-*
(back tick), or METAx tmm-menubar RETURN displays the Menubar Completion List window.
For more information refer to “Using the Menubar from the Keyboard” on page 237.

At the bottom of the emacs window is a reverse-video titlebar called the Mode Line.
At a minimum, the Mode Line shows which buffer the window is viewing, whether
the buffer has been changed, which major and minor modes are in effect, and how
far down the buffer the window is positioned. When multiple windows appear on the
screen, one Mode Line appears in each window. At the bottom of the screen, emacs
leaves a single line open. This Echo Area and Minibuffer line (they coexist on one
line) is used for messages and special one-line commands.

The emacs manual

The emacs manual is available from within emacs. While you are running emacs, give the com-
mand CONTROL-H r. Then use the ARROW keys to scroll to the section you want to view and press
RETURN. Alternatively, type m (which moves the cursor to the Minibuffer) followed by the name of
the section (menu) you want to view. Type TAB to cause emacs to complete the menu name; menu
completion works similarly to pathname completion (page 248). See page 238 for a tip on closing
the help window and for more information about online help.

For example, to view the Minibuffer section of the online manual, give the command CONTROL-H ¢
m minibuffer RETURN. You can also give the command CONTROL-H ¥ m min TAB RETURN.

File Edit Options Buffers Tools Help

UUU -F1 sample
(New flle)

Position of
window in buffer

(Fundamental) ------=---ccemomommcecea e

Echo Area/
Mlnlbuffer

ALl L1

Figure 7-1 The emacs new file screen

226 CHAPTER7 THE emacs EDITOR

EXITING

If you make an error while you are typing in the Minibuffer, emacs displays the error
message in the Echo Area. The error message overwrites the command you were typ-
ing, but emacs restores the command in a few seconds. The brief display of the error
messages gives you time to read it before you continue typing the command from
where you left off. More detailed information is available from the Minibuffer menu
of the emacs online manual (see the preceding tip).

A cursor is either in the window or in the Minibuffer. All input and nearly all editing
take place at the cursor. As you type ordinary characters, emacs inserts them at the
cursor position. If characters are under the cursor or to its right, they are pushed to
the right as you type, so no characters are lost.

The command to exit from emacs is CONTROL-X CONTROL-C. You can give this command at
almost any time (in some modes you might have to press CONTROL-G first). It stops emacs
gracefully, asking if you want to keep the changes you made during the editing session.

If you want to cancel a half-typed command or stop a running command before it is
done, press CONTROL-G. The emacs editor displays Quit in the Echo Area and waits for
another command.

INSERTING TEXT

Typing an ordinary (printing) character pushes the cursor and any characters to the
right of the cursor one position to the right and inserts the new character in the space
opened by moving the characters.

File Edit Options Buffers Tools Help
elcome to GNU Emacs, one component of the GNU/Linux operating systenm.

Get help C-h (Hold down CTRL and press h)

Emacs manual C-h r Browse manuals C-h i
Emacs tutorial C-h t Undo changes C-xu
Buy manuals C-h RET Exit Emacs C-x C-c
Activate menubar M-°

("C-' means use the CTRL key. °‘M-' means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.)
Useful tasks:

Visit New File Open Home Directory
Customize Startup Open *scratch* huffer

GNU Emacs 23.3.1 (i386-redhat-linux-gnu, GTK+ Version 2.24.8)
of 2012-01-13 on x86-17.phx2.fedoraproject.org
Copyright (C) 2011 Free Software Foundation, Inc.

GNU Emacs comes with ABSOLUTELY NO WARRANTY; type C-h C-w for full details.
Emacs is Free Software--Free as in Freedom--so you can redistribute copies
of Emacs and modify it; type C-h C-c to see the conditions.
Type C-h C-o for information on getting the latest version.

-UUU:%%--F1 *GNU Emacs* ALl L1 (Fundamental)

For information about GNU Emacs and the GNU system, type C-h C-a.

Figure 7-2 The emacs welcome screen

TUTORIAL: GETTING STARTED WITH emacs 227

DELETING CHARACTERS

Depending on the keyboard and the emacs startup file, different keys might delete
characters in different ways. CONTROL-D typically deletes the character under the cursor,
as do DELETE and DEL. BACKSPACE typically deletes the character to the left of the cursor.
Try each of these keys and see what it does.

More about deleting characters

If the instructions described in this section do not work, read the emacs info section on deletion.
Give this command from a shell prompt:

$ info emacs

From info give the command m deletion to display a document that describes in detail how to
delete small amounts of text. Use the SPACE bar to scroll through the document. Type q to exit from
info. You can read the same information in the emacs online manual (CONTROL-H r; page 225)

Start emacs and type a few lines of text. If you make a mistake, correct the error using
the deletion characters discussed previously. The RETURN key inserts an invisible end-
of-line character in the buffer and returns the cursor to the left margin, one line down.
It is possible to back up past the start of a line and up to the end of the previous line.
Figure shows a sample buffer.

Use the ARROW keys

Sometimes the easiest way to move the cursor is by using the LEFT ARROW, RIGHT ARROW, UP ARROW,
and DOWN ARROW keys.

File Edit Options Buffers Tools Help
ver time emacs has grown and evolved through more than 20 major revisions

to the mainstream GNU version. The emacs editor, which is coded in C,
contains a complete Lisp interpreter and fully supports the X Window
System and mouse interaction. The original TECO macros are long gone, but
emacs is still very much a work in progress. Version 22 has significant
internationalization upgrades: an extended UTF-8 internal character

set four times bigger than Unicode, along with fonts and keyboard input
methods for more than 30 languages. Also, the user interface is moving in
the direction of a WYSIWYG (what you see is what you get) word processor,
which makes it easier for beginners to use the editor.

The emacs editor has always been considerably more than a text editor. Not
having been developed originally in a UNIX environment, it does not

adhere to the UNIX/Linux philosophy. Whereas a UNIX/Linux utility is
typically designed to do one thing and to be used in conjunction with
other utilities, emacs is designed to “do it all."” Taking advantage

of the underlying programming language (Lisp), emacs users tend to
customize and extend the editor rather than to use existing utilities

or create new general-purpose tools. Instead they share their ~/.emacs
(customization) files.

-UUU;----F1 sample All L1 (Fundamental)

For information about GNU Emacs and the GNU system, type C-h C-a.

Figure 7-3 Sample buffer

228 CHAPTER7

THE emacs EDITOR

MOVING THE CURSOR

CONTROL-F

CONTROL-B

METAA

META-b

CONTROL-A
CONTROL-E

CONTROL-P
CONTROL-N

You can position the cursor over any character in the emacs window and move the
window so it displays any portion of the buffer. You can move the cursor forward or
backward through the text (Figure 6-8, page 181) by various textual units—for
example, characters, words, sentences, lines, and paragraphs. Any of the cursor-
movement commands can be preceded by a repetition count (CONTROL-U followed by a
numeric argument), which causes the cursor to move that number of textual units
through the text. Refer to page 233 for a discussion of numeric arguments.

MOVING THE CURSOR BY CHARACTERS

Pressing the RIGHT ARROW key or CONTROLF moves the cursor forward (to the right) one
character. If the cursor is at the end of a line, these commands wrap it to the beginning
of the next line. For example, the command CONTROL-U7 CONTROL-F moves the cursor seven
characters forward.

Pressing the LEFT ARROW key or CONTROL-B moves the cursor backward (to the left) one char-
acter. For example, the command CONTROL-U7 CONTROL-B moves the cursor seven characters
backward. The command CONTROL-B works in a manner similar to CONTROL-F (Figure 7-4).

MoVING THE CURSOR BY WORDS

Pressing METAf moves the cursor forward one word. To invoke this command, hold
down the META or ALT key while you press f. If the keyboard you are using does not have
either of these keys, press ESCAPE, release it, and then press f. This command leaves the
cursor on the first character that is not part of the word the cursor started on. The com-
mand CONTROL-U 4 META-f moves the cursor forward one space past the end of the fourth
word. For more information refer to “Keys: Notation and Use” on page 231.

Pressing METAb moves the cursor backward one word, leaving the cursor on the first
letter of the word it started on. If the cursor was on the first letter of a word, META-b
moves the cursor to the first letter of the preceding word. The command METAb works
in a manner similar to METAf (Figure 7-5).

MoVING THE CURSOR BY LINES

Pressing CONTROL-A moves the cursor to the beginning of the line it is on; CONTROL-E moves
it to the end. Pressing the UP ARROW key or CONTROL-P moves the cursor up one line to
the position directly above where the cursor started; pressing the DowN ARROW key or
CONTROL-N moves it down. As with the other cursor-movement keys, you can precede
CONTROL-P and CONTROL-N with CONTROL-U and a numeric argument to move the cursor up
or down multiple lines. You can also use pairs of these commands to move the cursor

CONTROL-B| | CONTROL-F

- -
- Lt

Figure 7-4 Moving the cursor by characters

TUTORIAL: GETTING STARTED WITH emacs 229

META-a, META-€
META-{, META-}

META-r

up to the beginning of the previous line, down to the end of the following line, and
so on (Figure 7-6).

MOVING THE CURSOR BY SENTENCES, PARAGRAPHS, AND
WINDOW POSITION

Pressing META-a moves the cursor to the beginning of the sentence the cursor is on; META
moves the cursor to the end. META{ moves the cursor to the beginning of the paragraph
the cursor is on; METAd moves it to the end. (Sentences and paragraphs are defined starting
on page 257.) You can precede any of these commands with a repetition count (CONTROL-U
followed by a numeric argument) to move the cursor by that many sentences or
paragraphs.

Pressing METAr moves the cursor to the beginning of the middle line of the window. You
can precede this command with CONTROL-U and a line number (here CONTROL-U does not
indicate a repetition count but rather a screen line number). The command CONTROL-U O
METAT moves the cursor to the beginning of the top line (line zero) in the window. The
command CONTROL-U— (minus sign) moves the cursor to the beginning of the last line of
the window (Figure 7-7, next page).

belief, [feally. It

Figure 7-5 Moving the cursor by words

CONTROL-P

CONTROL-P
CONTROL-A

CONTROL-P
CONTROL-E

conmoeAlWith thEir—[]

CONTROL-N
CONTROL-A

CONTROL-N
CONTROL-E

CONTROL-N

Figure 7-6 Moving the cursor by lines

230 CHAPTER7 THE emacs EDITOR

CONTROL-U
0 META-r
META-r

fOver time emacs has grown and evolved through more than 20 major revisions
to the mainstream GNU version. The emacs editor, which is coded in C,
contains a complete Lisp interpreter and fully supports the X Window META_{
System and mouse interaction. The original TECO macros are long gone, but
emacs is still very much a work in progress. Version 22 has significant
internationalization upgrades: an extended UTF-8 internal
set four times bigger than Unicode, along wit hd keyboard input
methods for more than 30 langua 7 the user interface is moving in
the direction of a what you see is what you get) word processor,
which m tt—€asier for beginners to use the editor. META-a

The emacs editor has always been considerably more than a text i g
lhaving been developed originally in a UNIX envir l does not
tadhere to the UNIX/Linux philosophy. €as a UNIX/Linux utility is

typically designed to do one thi Ho be used in conjunction with
other utiliti S designed to “do it a'll."@%
Cursor/ e underlying programming language (Lisp), emacs users tend to META-e

CONTROL-U
- META-r

customize and extend the editor rather than to use existing utilities
or create new general-purpose tools. Instead they share their ~/.emacs
(customization) files.

Well before the emergence i System, Stallman put a
great deal of thought and effort into designing a win —ori
renvironment, and he used emacs as his research vehicle. Over time he META-}

IHHI

-UUU:----F1 sample Top L15 (Fundamental)

Figure 7-7 Moving the cursor by sentences, paragraphs, and window position

EDITING AT THE CURSOR POSITION

Deleting text

Entering text requires no commands once you position the cursor in the window at
the location you want to enter text. When you type text, emacs displays that text at
the position of the cursor. Any text under or to the right of the cursor is pushed to
the right. If you type enough characters so the text would extend past the right edge
of the window, emacs displays a backslash (\) near the right edge of the window and
wraps the text to the next line. The backslash appears on the screen but is not saved
as part of the file and is never printed. Although you can create an arbitrarily long
line, some Linux tools have problems with text files containing such lines. To split a
line into two lines, position the cursor at the location you want to split the line and
press RETURN.

Pressing BACKSPACE removes characters to the left of the cursor. The cursor and the
remainder of the text on this line both move to the left each time you press BACKSPACE.
To join a line with the line above it, position the cursor on the first character of the
second line and press BACKSPACE.

Press CONTROL-D to delete the character under the cursor. The cursor remains stationary,
but the remainder of the text on the line moves left to replace the deleted character.
See the tip “More about deleting characters” on page 227 if either of these keys does
not work as described here.

SAVING AND RETRIEVING THE BUFFER

No matter what changes you make to a buffer during an emacs session, the associated
file does not change until you save the buffer. If you leave emacs without saving the
buffer (emacs allows you to do so if you are persistent), the file is not changed and
emacs discards the work you did during the session.

BAsic EDITING COMMANDS 231

Backups As it writes a buffer’s edited contents back to the file, emacs might optionally first
make a backup of the original file. You can choose to make no backups, one level of
backup (default), or an arbitrary number of levels of backups. The level one backup
filenames are formed by appending a tilde (~) to the original filename. The multilevel
backups have .~n~ appended to the filename, where # is the sequential backup num-
ber, starting with 1. The version-control variable dictates how emacs saves backups.
See page 266 for instructions on assigning a value to an emacs variable.

Saving the buffer The command CONTROL-X CONTROL-S saves the current buffer in its associated file. The

emacs editor confirms a successful save by displaying an appropriate message in the
Echo Area.

Visiting another file When you are editing a file with emacs and want to edit another file (emacs documen-
tation refers to editing a file as visiting a file), you can copy the new file into a new emacs
buffer by giving the command CONTROL-X CONTROL-F. The emacs editor prompts for a file-
name, reads that file into a new buffer, and displays that buffer in the current window.
Having two files open in one editing session is more convenient than exiting from
emacs, returning to the shell, and then starting a new copy of emacs to edit a second file.

Visiting a file with CONTROL-X CONTROL-F

When you give the command CONTROL-X CONTROL-F to visit a file, emacs displays the pathname of
the directory in which it assumes the file is located. Normally it displays the pathname of the work-
ing directory, but in some situations emacs displays a different pathname, such as the pathname
of your home directory. Edit this pathname if it is not pointing to the correct directory. This com-
mand provides pathname completion (page 248).

BASIC EDITING COMMANDS

This section takes a more detailed look at the fundamental emacs editing commands.
It covers editing a single file in a single emacs window.

KEYs: NOTATION AND USE

Although emacs has been internationalized, its keyboard input is still an evolved and
extended ASCII code, usually with one keystroke producing one byte. ASCII key-
boards have a typewriter-style SHIFT key and a CONTROL key. Some keyboards also have
a MeTA (diamond or ALT) key that controls the eighth bit. It takes seven bits to describe
an ASCII character; the eighth bit of an eight-bit byte can be used to communicate
additional information. Because so much of the emacs command set is in the non-
printing CONTROL or META case, Stallman was one of the first to develop a nonnumeric
notation for describing keystrokes.

His solution, which is still used in the emacs community, is clear and unambiguous
(Table 7-1). It uses the capital letters C and M to denote holding down the CONTROL and
META (or ALT) keys, respectively, and a few simple acronyms for the most common spe-
cial characters, such as RET (this book uses RETURN), LFD (LINEFEED), DEL (DELETE), ESC (ESCAPE),

232 CHAPTER7 THE emacs EDITOR

SPC (SPACE), and TAB. Most emacs documentation, including the online help, uses this

notation.
emacs key notation
Character Classic emacs notation
(lowercase) a a
(uppercase) SHIFT-a A
CONTROL-a C-a
CONTROL-A C-a (do not use SHIFT), equivalent to CONTROL-a
META-a M-a
META-A M-A (do use SHIFT), different from M-a
CONTROL-META-a C-M-a
META-CONTROL-a M-C-a (not used frequently)

The emacs use of keys had some problems. Many keyboards had no META key, and
some operating systems discarded the META bit. In addition, the emacs command set
clashes with the increasingly outdated XON-XOFF flow control, which also uses
CONTROL-S and CONTROL-Q.

Under macOS, most keyboards do not have a META or ALT key. See page 1076 for an
explanation of how to set up the OPTION key to perform the same functions as the META
key on a Macintosh.

The missing META key issue was resolved by making an optional two-key sequence
starting with ESCAPE equate to a META character. If the keyboard you are using does
not have a META or ALT key, you can use the two-key ESCAPE sequence by pressing the
ESCAPE key, releasing it, and then pressing the key following the META key in this book.
For example, you can type ESCAPE a instead of META-a or type ESCAPE CONTROL-A instead of
CONTROL-META-a.

Stallman considers XON-XOFF flow control to be a historical issue, and has no
plans to change the emacs command set. However, the online help emacs FAQ offers
several workarounds for this issue.

The notation used in this hook

This book uses an uppercase letter following the CONTROL key and a lowercase letter following the
META key. In either case you do not have to hold down the SHIFT key while entering a CONTROL or
META character. Although the META uppercase character (that is, META-A) is a different character, it
is usually set up to cause no action or to have the same effect as its lowercase counterpart.

BAsic EDITING COMMANDS 233

KEY SEQUENCES AND COMMANDS

In emacs the relationship between key sequences (one or more keys that you press
together or in sequence to issue an emacs command) and commands is very flexible,
and there is considerable opportunity for exercising your personal preference. You
can translate and remap key sequences to other commands and replace or reprogram
commands.

Although most emacs documentation glosses over the details and talks about key-
strokes as though they were the commands, it is important to recognize that the
underlying machinery remains separate from the key sequences and to understand
that you can change the behavior of the key sequences and the commands. For more
information refer to “Customizing emacs” on page 265.

METAx: RUNNING A COMMAND WITHOUT A KEY BINDING

Smart completion

The emacs keymaps (the tables, or vectors, that emacs uses to translate key sequences
into commands [page 267]) are very crowded, and often it is not possible to bind
every command to a key sequence. You can execute any command by name by pre-
ceding it with METAx. When you press METAx, the emacs editor prompts you for a
command in the Echo Area. After you enter the command name and press RETURN, it
executes the command.

When a command has no common key sequence, it is sometimes described as METAx
command-name. The emacs editor provides smart completion for most answers it
prompts for. After you type part of a response to a prompt, press SPACE or TAB to cause
emacs to complete, if possible, to the end of the current word or the whole command,
respectively. Forcing a completion past the last unambiguous point or typing a ques-
tion mark (?) opens a Completion List window that displays a list of alternatives.
Smart completion works in a manner similar to pathname completion (page 248).

NUMERIC ARGUMENTS

CONTROL-U

Some of the emacs editing commands accept a numeric argument as a repetition
count. Place this argument immediately before the key sequence for the command.
The absence of an argument almost always means a count of 1. Even an ordinary
alphabetic character can have a numeric argument, which means “insert this many
times.” Use either of the following techniques to give a numeric argument to a
command:

® Press META with each digit (0-9) or the minus sign (-). For example, to insert
10 z characters, type META-1 META-OZ.

e Use CONTROL-U to begin a string of digits, including the minus sign. For example,
to move the cursor forward 20 words, type CONTROL-U 20 META-.

For convenience, CONTROL-U defaults to multiply by 4 when you do not follow it with a
string of one or more digits. For example, entering CONTROL-U r means insert rrrr (4 *
1), whereas CONTROL-U CONTROL-U r means insert rrrrrrrrrrrrrrer (4 * 4 % 1), For quick par-

234 CHAPTER 7

THE emacs EDITOR

tial scrolling of a tall window, you might find it convenient to use repeated sequences
of CONTROL-U CONTROL-V to scroll down 4 lines, CONTROL-UMETA- to scroll up 4 lines, CONTROL-U
CONTROL-UCONTROL-V to scroll down 16 lines, or CONTROL-UCONTROL-UMETA~ to scroll up 16 lines.

POINT AND THE CURSOR

Point is the place in a buffer where editing takes place and is where the cursor is posi-
tioned. Strictly speaking, Point is at the left edge of the cursor—think of it as lying
between two characters.

Each window has its own Point, but there is only one cursor. When the cursor is in
a window, moving the cursor also moves Point. Switching the cursor out of a window
does not change that window’s Point; it is in the same place when you switch the cur-
sor back to that window.

All of the cursor-movement commands described previously also move Point.

SCROLLING THROUGH A BUFFER

CONTROL-V
META-v

CONTROL-L

META-<
META->

A buffer is likely to be much larger than the window through which it is viewed, so
you need a way of moving the display of the buffer contents up or down so as to posi-
tion the interesting part in the window. Scrolling forward refers to moving the text
upward, with new lines entering at the bottom of the window. Press CONTROL-V or the
PAGE DOWN key to scroll forward one window (minus two lines for context). Scrolling
backward refers to moving the text downward, with new lines entering at the top of
the window. Press METAv or the PAGE UP key to scroll backward one window (again leav-
ing two lines for context). Pressing CONTROL-L clears the screen and repaints it, moving
the line the cursor is on to the middle line of the window. This command is useful if
the screen becomes garbled.

A numeric argument to CONTROLV or METAv means “scroll that many lines”; for example,
CONTROL-U 10 CONTROL-V means scroll forward ten lines. A numeric argument to CONTROL-L
means “scroll the text so the cursor is on that line of the window,” where 0 means
the top line and —1 means the bottom line, just above the Mode Line. Scrolling occurs
automatically if you exceed the window limits when pressing CONTROL-P or CONTROL-N.

You can move the cursor to the beginning of the buffer with META< or to the end of
the buffer with META-.

ERASING TEXT

Delete versus Kkill

META-d
CONTROL-K

When you erase text you can discard it or move it into a holding area and optionally
bring it back later. The term delete means permanently discard, and the term kill
means move to a holding area. The holding area, called the Kill Ring, can hold several
pieces of killed text. You can use the text in the Kill Ring in many ways (refer to “Cut
and Paste: Yanking Killed Text” on page 243).

The META-dcommand kills from the cursor forward to the end of the current word.Sim-
ilarly, conTROL kills from the cursor forward to the end of the current line. It does not
delete the line-ending LINEFEED character unless Point and the cursor are just to the left

BAsic EDITING COMMANDS 235

of the LINEFEED. This setup allows you to reach the left end of a line with CONTROL-A, kill
the whole line with CONTROLK, and then immediately type a replacement line without
having to reopen a hole for the new line. Another consequence is that, from the begin-
ning of the line, it takes the command CONTROL-K CONTROL-K (or CONTROL-U 2 CONTROLK) to kill
the text and close the hole.

SEARCHING FOR TEXT

CONTROL-S
CONTROL-R

The emacs editor allows you to search for text in the following ways:

e Incrementally for a character string
e Incrementally for a regular expression (possible but uncommon)
e For a complete character string

e For a complete regular expression (Appendix A)

You can run each of the four types of searches either forward or backward in the
buffer.

The complete searches behave in the same manner as searches carried out in other
editors. Searching begins only when the search string is complete. In contrast, an
incremental search begins when you type the first character of the search string and
keeps going as you enter additional characters. Initially, this approach might sound
confusing, but it is surprisingly useful.

INCREMENTAL SEARCHES

A single command selects the direction of and starts an incremental search. CONTROL-S
starts a forward incremental search and CONTROL-R starts a reverse incremental search.

When you start an incremental search, emacs prompts you with I-search: in the Echo
Area. When you enter a character, it immediately searches for that character in the
buffer. If it finds that character, emacs moves Point and cursor to that position so you
can see the search progress. If the search fails, emacs tells you so.

After you enter each character of the search string, you can take one of several actions
depending on the result of the search to that point. The following paragraphs list
results and corresponding actions:

® The search finds the string you are looking for, leaving the cursor positioned
just to its right. You can stop the search and leave the cursor in its new posi-
tion by pressing RETURN. (Any emacs command not related to searching will
also stop the search but remembering exactly which ones apply can be dif-
ficult. For a new user, RETURN is safer.)

® The search finds a string but it is not the one you are looking for. You can
refine the search string by adding another letter, press CONTROL-R or CONTROL-S
to look for the next occurrence of this search string, or press RETURN to stop
the search and leave the cursor where it is.

236

CHAPTER 7 THE emacs EDITOR

CONTROL-S RETURN
CONTROL-R RETURN

® The search hits the beginning or end of the buffer and reports Failing
I-Search. You can proceed in one of the following ways:

+ If you mistyped the search string, press BACKSPACE as needed to remove
characters from the search string. The text and cursor in the window
jump backward in step as you remove characters.

+ If you want to wrap past the beginning or end of the buffer and con-
tinue searching, you can force a wrap by pressing CONTROL-R or CONTROL-S.

« If the search has not found the string you are looking for but you want
to leave the cursor at its current position, press RETURN to stop the search.

+ If the search has gone wrong and you just want to get back to where
you started, press CONTROL-G (the quit character). From an unsuccessful
search, a single CONTROL-G backs out all the characters in the search string
that could not be found. If this action returns you to a place you wish
to continue searching from, you can add characters to the search string
again. If you do not want to continue the search from that position,
pressing CONTROL-G a second time stops the search and leaves the cursor
where it was initially.

NONINCREMENTAL SEARCHES

commands wraps past the end of the buffer.

REGULAR EXPRESSION SEARCHES

You can perform both incremental and nonincremental regular expression searching
in emacs. Use the commands listed in Table 7-2 to begin a regular expression search.

Searching for regular expressions

Command Result

META-CONTROL-s Incrementally searches forward for a reqular expression;
prompts for a regular expression one character at a time

META-CONTROL-r Incrementally searches backward for a regular expression;
prompts for a regular expression one character at a time

META-CONTROL-s RETURN Prompts for and then searches forward for a complete regular
expression

META-CONTROL-r RETURN Prompts for and then searches backward fora complete regular

expression

If you prefer that your searches succeed or fail without showing all the intermediate
results, you can give the nonincremental command CONTROL-S RETURN to search forward
or CONTROL-R RETURN to search backward. Searching does not begin until you enter a
search string in response to the emacs prompt and press RETURN again. Neither of these

BAsic EDITING COMMANDS 237

USING THE MENUBAR FROM THE KEYBOARD

This section describes how to use the keyboard to make selections from the emacs
menubar (Figure 7-1, page 225). In a graphical environment you can also use a
mouse for this purpose. The menubar selections are appropriate to the Major mode
emacs is in (see “Major Modes: Language-Sensitive Editing” on page 255). For
example, when you are editing a C program, the menubar includes a C menu that
holds commands specific to editing and indenting C programs.

To make a selection from the menubar, first press the F0 function key, META-* (back
tick), or METAx tmm-menubar RETURN. The emacs editor displays the Menubar Comple-
tion List window populated with the top-level menubar selections (File, Edit,
Options, and so on), with the current selection displayed in the Minibuffer.
Figure 7-8 shows the Menubar Completion List window with File as the current
selection in the Minibuffer.

With the Menubar Completion List window open, you can perform any of the following
actions:

¢ Cancel the menu selection by pressing CONTROL-G Or ESCAPE ESCAPE ESCAPE. The
display returns to the state it was in before you opened the Menubar
Completion List window.

¢ Use the UPARROW and DOWNARROW keys to display successive menu selections in
the Minibuffer. Press RETURN to choose the displayed selection.

Over time emacs has grown and evolved through more than 20 major revisions
to the mainstream GNU version. The emacs editor, which is coded in C,
contains a complete Lisp interpreter and fully supports the X Window
System and mouse interaction. The original TECO macros are long gone, but
emacs is still very much a work in progress. Version 22 has significant
internationalization upgrades: an extended UTF-8 internal character

set four times bhigger than Unicode, along with fonts and keyboard input
methods for more than 30 languages. Also, the user interface is moving in
the direction of a WYSIWYG (what you see is what you get) word processor,
which makes it easier for beginners to use the editor.

-UUU:----F1 sample Top L1 (Fundamental)

Press PageUp key to reach this buffer from the minibuffer

Alternatively, you can use Up/Down keys (or your History keys) to change
the item in the minibuffer, and press RET when you are done, or press the
marked letters to pick up your choice. Type C-g or ESC ESC ESC to cancel.
In this buffer, type RET to select the completion near point.

Possible completions are:
f==>File e==>Edit o==>0ptions
b==>Buffers t==>Tools h==>Help

-UUU:%*--F1 *Completions* All L1 (Completion List)

Menu bar (up/down to change, PgUp to menu): f==>File|

Figure 7-8 The top-level Menubar Completion List window

238 CHAPTER7 THE emacs EDITOR

¢ Type the one-character abbreviation of a selection as shown in the Menubar
Completion List window to choose the selection. You do not need to press
RETURN.

® Press PAGE UP or META to move the cursor to the Menubar Completion List
window. Use the ARROW keys to move the cursor between selections. Press
RETURN to choose the selection the cursor is on. You can type ESCAPE ESCAPE ESCAPE
to back out of this window and return the cursor to the Minibuffer.

When you make a choice from the top-level menu, emacs displays the corresponding
second-level menu in the Menubar Completion List window. Repeat one of the pre-
ceding actions to make a selection from this menu. When you make a final selection,
emacs closes the Menubar Completion List window and takes the action you
selected. More information is available from the Menu Bar menu of the emacs online
manual (see the tip on page 225).

ONLINE HELP

contRoL-H The emacs help system is always available. With the default key bindings, you can
start it with CONTROL-H. The help system then prompts you for a one-letter help com-
mand. If you do not know which help command you want, type ? or CONTROL-H to
switch the current window to a list of help commands, each with a one-line descrip-
tion; emacs again requests a one-letter help command. If you decide you do not want
help after all, type CONTROL-G to cancel the help request and return to the former buffer.

If the help output is only a single line, it appears in the Echo Area. If it is more than
one line, the output appears in its own window. Use CONTROLV and METAv to scroll for-
ward and backward through the buffer (page 234). You can move the cursor between
windows with CONTROL-X 0 (lowercase “0”). See page 252 for a discussion of working
with multiple windows.

Closing the help window

To delete the help window while the cursor is in the window that holds the text you are editing,
type CONTROL-X 1 (one). Alternatively, you can move the cursor to the help window (CONTROL-X 0

[lowercase “0”]) and type CONTROL-X 0 (zero) to delete the current window.

If help displays a window that occupies the entire screen, as is the case with CONTROL-H n (emacs
news) and CONTROL-H t (emacs tutorial), you can kill the help buffer by pressing CONTROL-X k or
switch buffers by pressing CONTROL-X b (both discussed on page 251).

On many terminals the BACKSPACE or LEFT ARROW key generates CONTROL-H. If you forget that
you are using emacs and try to back over a few characters, you might unintentionally
enter the help system. This action does not pose a danger to the buffer you are editing,
but it can be unsettling to lose the window contents and not have a clear picture of how
to restore it. While you are being prompted for the type of help you want, you can type
CONTROL-G to remove the prompt and return to editing the buffer. Some users elect to put
help on a different key (page 267). Table 7-3 lists some of the help commands.

ONLINE HELP 239

Help commands

Command

CONTROL-H a

CONTROL-H b

CONTROL-H ¢ key-sequence

CONTROL-H f

CONTROL-H i

CONTROL-H k key-sequence

CONTROL-H | (lowercase “I”)

CONTROL-H m

CONTROL-H N

CONTROL-H r
CONTROL-H t
CONTROL-H v

CONTROL-H w

Type of help offered

Prompts for a string and displays a list of commands whose
names contain that string.

Displays a long table of the key bindings in effect.

Displays the name of the command bound to key-sequence.
Multiple key sequences are allowed. For a long key sequence
where only the first part is recognized, the command describes
the first part and quietly inserts the unrecognized part into the
buffer. This can happen with three-character function keys (1,
F2, and so on, on the keyboard) that generate character
sequences such as ESCAPE [SHIFT.

Prompts for the name of a Lisp function and displays the
documentation for it. Because commands are Lisp functions,
you can use a command name with this command.

Displays the top info (page 225) menu where you can browse
for emacs or other documentation.

Displays the name and documentation of the command bound
to key-sequence. (See the notes on CONTROL-H ¢.)

Displays the last 100 characters typed. The record is kept after
the first-stage keyboard translation. If you have customized the
keyboard translation table, you must make a mental reverse
translation.

Displays the documentation and special key bindings for the
current Major mode (Text, C, Fundamental, and so on,
[page 256]).

Displays the emacs news file, which lists recent changes to
emacs, ordered with the most recent changes first.

Displays the emacs manual.
Runs an emacs tutorial session.

Prompts for a Lisp variable name and displays the
documentation for that variable.

Prompts for a command name and identifies any key sequence
bound to that command. Multiple key sequences are allowed.
(See the notes on CONTROL-H ¢.)

240 CHAPTER7 THE emacs EDITOR

optional As this abridged presentation makes clear, you can use the help system to browse
through the emacs internal Lisp system. For the curious, following is Stallman’s list
of strings that match many names in the Lisp system. To get a view of the internal
functionality of emacs, you can use any of these strings with CONTROL-H a (help system
list of commands) or METAx apropos (prompts for a string and lists variables whose
names contain that string).

backward dir insert previous view
beginning down kill region what
buffer end line register window
case file list screen word
change fill mark search yank
char find mode sentence

defun forward next set

delete goto page Sexp

describe indent paragraph up

ADVANCED EDITING

The basic emacs commands suffice for many editing tasks but the serious user will
quickly discover the need for more power. This section presents some of the more
advanced emacs capabilities.

UNDOING CHANGES

An editing session begins when you read a file into an emacs buffer. At that point the
buffer content matches the file exactly. As you insert text and give editing commands,
the buffer content becomes increasingly more different from the file. If you are satisfied
with the changes, you can write the altered buffer back out to the file and end the session.

Near the left end of the Mode Line (Figure 7-1, page 225) is an indicator that shows
the modification state of the buffer displayed in the window. The three possible states

.,

are —— (not modified), ** (modified), and % % (readonly).

The emacs editor keeps a record of all keys you have pressed (text and commands)
since the beginning of the editing session, up to a limit currently set at 20,000 char-
acters. If you are within this limit, it is possible to undo the entire session for this

ADVANCED EDITING 241

buffer, one change at a time. If you have multiple buffers (page 251), each buffer has
its own undo record.

Undoing is considered so important that it has a backup key sequence, in case a key-
board cannot easily handle the primary sequence. The two sequences are CONTROL-_
(underscore, which on old ASR-33 TTY keyboards was LEFTARROW) and CONTROL-X u.
When you type CONTROL-_, emacs undoes the last command and moves the cursor to
the position of the change in the buffer so you can see what happened. If you type
CONTROL-_ a second time, the next-to-last command is undone, and so on. If you keep
typing CONTROL- , eventually the buffer will be returned to its original unmodified state
and the ** Mode Line indicator will change to ——.

When you break the string of Undo commands by typing text or giving any command
except Undo, all reverse changes you made during the string of undos become a part
of the change record and can themselves be undone. This strategy offers a way to redo
some or all of the undo operations. If you decide you backed up too far, type a com-
mand (something innocuous that does not change the buffer, such as CONTROLF), and
begin undoing your changes in reverse. Table 7-4 lists some examples of Undo
commands.

Undo commands

Commands Result

CONTROL-_ Undoes the last change

CONTROL-_ CONTROL-F CONTROL-_ Undoes the last change and changes it back
again

CONTROL-_ CONTROL-_ Undoes the last two changes

CONTROL-_CONTROL-_CONTROL-FCONTROL-_CONTROL-_ Undoes two changes and changes them both
back again

CONTROL-_ CONTROL-_ CONTROL-F CONTROL-_ Undoes two changes and changes the most

recent one back again

If you do not remember the last change you made, you can type CONTROL-_ and undo
it. If you wanted to make this change, type CONTROL-F CONTROL-_ to make the change again.
If you modified a buffer by accident, you can keep typing CONTROL-_ until the Mode Line
indicator shows —— once more.

If the buffer is completely ruined and you want to start over, issue the command METAx
revert-buffer to discard the current buffer contents and reread the associated file. The
emacs editor asks you to confirm your intentions.

242 CHAPTER 7

THE emacs EDITOR

PoINT, MARK, AND REGION

CONTROL-@
CONTROL-SPACE
CONTROL-X CONTROL-X

Point is the current editing position in a buffer. You can move Point anywhere within
the buffer by moving the cursor. It is also possible to set a marker called Mark in the
buffer. The contiguous characters between Point and Mark (either one might come
first) are called Region. Many commands operate on a buffer’s Region, not just on
the characters near Point.

MOVING MARK AND ESTABLISHING REGION

Mark is not as easy to move as Point. Once set, Mark can be moved only by setting
it somewhere else. Each buffer has only one Mark. The CONTROL-@ (or CONTROL-SPACE) com-
mand explicitly sets Mark at the current cursor (and Point) position. Some keyboards
generate CONTROL-@ when you type CONTROL-Q. Although this is not really a backup key
binding, it is occasionally a convenient alternative. You can use CONTROL-X CONTROLX to
exchange Point and Mark (and move the cursor to the new Point).

To establish Region, you usually position the cursor (and Point) at one end of the
desired Region, set Mark with CONTROL-@, and then move the cursor (and Point) to the
other end of Region. If you forget where you left Mark, you can move the cursor
back to it again by giving the command CONTROL-X CONTROLX. You can move the cursor
back and forth with repeated CONTROLX CONTROL-X commands to show Region more
clearly.

If a Region boundary is not to your liking, you can swap Point and Mark using
CONTROL-X CONTROL-X to move the cursor from one end of Region to the other and then
move Point. Continue until you are satisfied with Region.

OPERATING ON REGION

Table 7-5 lists selected commands that operate on Region. Give the command CONTROL-H
a region to see a complete list of these commands.

Operating on Region

Command Result

META-w Copies Region nondestructively (without killing it) to the Kill
Ring

CONTROL-W Kills Region

META-x print-region Sends Region to the printer

META-x append-to-buffer Prompts for a buffer and appends Region to that buffer

META-x append-to-file Prompts for a filename and appends Region to that file

META-x capitalize-region Converts Region to uppercase

CONTROL-X CONTROL-L Converts Region to lowercase

ADVANCED EDITING 243

THE MARK RING

Each time you set Mark in a buffer, you are also pushing Mark’s former location onto
the buffer’s Mark Ring. The Mark Ring is organized as a FIFO (first in, first out) list
and holds the 16 most recent locations where Mark was set. Each buffer has its own
Mark Ring. This record of recent Mark history is useful because it often holds loca-
tions that you want to jump back to quickly. Jumping to a location pointed to by the
Mark Ring can be faster and easier than scrolling or searching your way through the
buffer to find the site of a previous change.

coNTROLU To work your way backward along the trail of former Mark locations, use the com-
CONTROL-@' 11y and CONTROL-U CONTROL-@ one or more times. Each time you give the command, emacs

® Moves Point (and the cursor) to the current Mark location
e Saves the current Mark location at the oldest end of the Mark Ring

® Pops off the youngest (most recent) Mark Ring entry and sets Mark

Each additional CONTROL-UCONTROL-@ command causes emacs to move Point and the cursor
to the previous entry on the Mark Ring.

Although this process might seem complex, it really just makes a safe jump to a
previous Mark location. It is safe because each jump’s starting point is recirculated
through the Mark Ring, where it is easy to find again. You can jump to all previous
locations on the Mark Ring (it might be fewer than 16) by giving the command
CONTROL-U CONTROL-@ repeatedly. You can go around the ring as many times as you like
and stop whenever you want.

SETTING MARK AUTOMATICALLY

Some commands set Mark automatically: The idea is to leave a bookmark before
moving Point a long distance. For example, META-> sets Mark before jumping to the
end of the buffer. You can then return to your starting position with CONTROL-UCONTROL-@.
Searches behave similarly. To help you avoid surprises the message Mark Set appears
in the Echo Area whenever Mark is set, either explicitly or implicitly.

CuT AND PASTE: YANKING KILLED TEXT

Recall that killed text is not discarded but rather is kept in the Kill Ring. The Kill Ring
holds the last 30 pieces of killed text and is visible from all buffers.

Retrieving text from the Kill Ring is called yanking. The meaning of this term in
emacs is the opposite of that used in vim: In vim yanking pulls text from the buffer,
and putting puts text into the buffer. Killing and yanking—which are roughly anal-
ogous to cutting and pasting—are emacs’s primary mechanisms for moving and
copying text. Table 7-6 lists the most common kill and yank commands.

244 CHAPTER 7 THE emacs EDITOR

Common kill and yank commands

Command Result

META-d Kills to end of current word

META-D Kills from beginning of previous word

CONTROL-K Kills to end of line, not including LINEFEED

CONTROL-U 1 CONTROL-K Kills to end of line, including LINEFEED

CONTROL-U O CONTROL-K Kills from beginning of line

META-w Copies Region to the Kill Ring but does not erase Region from
the buffer

CONTROL-W Kills Region

METAz char Kills up to next occurrence of char

CONTROL-Y Yanks the most recently killed text into the current buffer at

Point, sets Mark at the beginning of this text, and positions
Point and the cursor at the end; follow with CONTROL-Y to swap
Point and Mark

META-y Erases the just-yanked text, rotates the Kill Ring, and yanks the
next item (only after CONTROL-Y or META-)

To move two lines of text, move Point to the beginning of the first line and then enter
CONTROL-U 2 CONTROLK to kill two lines. Move Point to the destination position and then
enter CONTROL-Y.

To copy two lines of text, move Point to the beginning of the first line and give the
commands CONTROL-U2 CONTROL-K CONTROL-Y to kill the lines and then yank them back imme-
diately. Move Point to the destination position and type CONTROL-Y.

To copy a larger piece of the buffer, set Region to cover this piece and type CONTROL-W
CONTROL-Y to kill Region and yank it back. Next move Point to the destination and type
CONTROL-Y. You can also set Region and use META-w to copy Region to the Kill Ring.

The Kill Ring is organized as a fixed-length FIFO list, with each new entry causing
the eldest to be discarded (once you build up to 30 entries). Simple cut-and-paste
operations generally use only the newest entry. The older entries are retained to give
you time to change your mind about a deletion. If you do change your mind, you can
“mine” the Kill Ring like an archaeological dig, working backward through time and
down through the strata of killed material to copy a specific item back into the buffer.

To view every entry in the Kill Ring, begin a yanking session by pressing CONTROL-Y. This
action copies the youngest entry in the Kill Ring to the buffer at the current cursor
position. If this entry is not the item you want, continue the yanking session by press-
ing METAy. This action erases the previous yank and copies the next youngest entry to

ADVANCED EDITING 245

the buffer at the current cursor position. If this still is not the item you wanted, press
METAy again to erase it and retrieve a copy of the next entry, and so on. You can con-
tinue giving METAy commands all the way back to the oldest entry. If you continue to
press METAy, you will eventually wrap back to the youngest entry again. In this manner
you can examine each entry as many times as you wish.

The sequence used in a yanking session consists of CONTROL-Y followed by any mixture
of CONTROL-Y and METAy. If you type any other command after METAy, the sequence is bro-
ken and you must give the CONTROL-Y command again to start another yanking session.

As you work backward in the Kill Ring, it is useful to think of this process as advanc-
ing a Last Yank pointer back through history to increasingly older entries. This
pointer is not reset to the youngest entry until you give a new kill command. Using
this technique, you can work backward partway through the Kill Ring with CONTROL-Y
and a few METAy commands, give some commands that do not kill, and then pick up
where you left off with another CONTROL-Y and a succession of METAy commands.

It is also possible to position the Last Yank pointer with positive or negative numeric
arguments to METAy. Refer to the online documentation for more information.

INSERTING SPECIAL CHARACTERS

As stated earlier, emacs inserts everything that is not a command into the buffer at
the position of the cursor. To insert characters that would ordinarily be emacs com-
mands, you can use the emacs escape character: CONTROL-Q. There are two ways of using
this escape character:

¢ CONTROL-Q followed by any other character inserts that character in the buffer,
no matter which command interpretation it was supposed to have.

* CONTROL-Q followed by three octal digits inserts a byte with that value in the
buffer.

CONTROL-Q

Depending on the way your terminal is set up, CONTROL-Q might clash with software flow control.
If CONTROL-Q seems to have no effect, it is most likely being used for flow control. In that case you
must bind another key to the command quoted-insert (page 267).

GLOBAL BUFFER COMMANDS

The vim editor and its predecessors have global commands for bufferwide search and
replace operations. They operate on the entire buffer. The emacs editor has a similar
family of commands. They operate on the portion of the buffer between Point and
the end of the buffer. If you wish to operate on the entire buffer, use META< to move
Point to the beginning of the buffer before issuing the command.

246 CHAPTER7 THE emacs EDITOR

LINE-ORIENTED OPERATIONS

The commands listed in Table 7-7 take a regular expression and apply it to the lines
between Point and the end of the buffer.

Line-oriented operations
Command Result

META-x occur Prompts for a regular expression and copies each line with a
match for the expression to a buffer named =0ccur:

METAx delete-matching-lines Prompts for a regular expression and deletes each line with a
match for the expression

META-x delete-non-matching-lines Prompts for a regular expression and deletes each line that does
not have a match for that expression

The METAxoccur command puts its output in a special buffer named * Occur*, which
you can peruse and discard or use as a jump menu to reach each line quickly. To use
the *Occur* buffer as a jump menu, switch to it (CONTROLX 0 [lowercase “0”]), move
the cursor to the copy of the desired destination line, and give the command CONTROL-C
CONTROL-C. This command moves the cursor to the buffer that was searched and posi-
tions it on the line that the regular expression matched.

As with any buffer change, you can undo the effect of the delete commands.

UNCONDITIONAL AND INTERACTIVE REPLACEMENT

The commands listed in Table 7-8 operate on the characters between Point and the end
of the buffer, changing every string match or regular expression match. An unconditional
replacement makes all replacements automatically. An interactive replacement gives you
the opportunity to see and approve each replacement before it is made.

Replacement commands
Command Result

META-x replace-string Prompts for string and newstring and replaces every instance of
string with newstring. Point is left at the site of the last
replacement, but Mark is set when you give the command, so
you can return to it with CONTROL-U CONTROL-@.

META-x replace-regexp Prompts for regexp and newstring and replaces every match for
regexp with newstring. Point is left at the site of the last
replacement, but Mark is set when you give the command, so
you can return to it with CONTROL-U CONTROL-@.

ADVANCED EDITING 247

Replacement commands

META-% String or The first form uses string; the second form prompts for string.

METAx query-replace Both forms prompt for newstring, query each instance of string,
and, depending on your response, replace it with newstring.
Point is left at the site of the last replacement, but Mark is set
when you give the command, so you can return to it with
CONTROL-U CONTROL-@.

META-x query-replace-regexp Prompts for regexp and newstring, queries each match for
regexp, and, depending on your response, replaces it with
newstring. Point is left at the site of the last replacement, but
Mark is set when you give the command, so you can return to
it with CONTROL-U CONTROL-@.

If you perform an interactive replacement, emacs displays each instance of string or
match for regexp and prompts you for an action to take. Table 7-9 lists some of the
possible responses.

Responses to interactive replacement prompts

Response Meaning

RETURN Do not do any more replacements; quit now.

SPACE Make this replacement and go on.

DELETE Do not make this replacement. Skip it and go on.

, (comma) Make this replacement, display the result, and ask for another

command. Any command is legal except DELETE is treated like
SPACE and does not undo the change.

. (period) Make this replacement and quit searching.

I' (exclamation point) Replace this and all remaining instances without asking any
more questions.

VISITING AND SAVING FILES

When you visit (emacs terminology for “call up”) a file, emacs reads it into a buffer
(page 251), allows you to edit the buffer, and eventually usually saves the buffer back
to the file. The commands discussed here relate to visiting and saving files.

verAxpwd Each emacs buffer keeps a record of its default directory (the directory the file was
METAXCd read from or the working directory, if it is a new file) that is prepended to any relative
pathname you specify. This convenience is meant to save some typing. Enter METAx

pwd to print the default directory for the current buffer or METAx cd to prompt for a

248 CHAPTER7 THE emacs EDITOR

new default directory and assign it to this buffer. The next section discusses pathname
completion, which you can use when emacs prompts for a pathname.

VISITING FILES

The emacs editor works well when you visit a file that has already been called up and
whose image is now in a buffer. After a check of the modification time to ensure that
the file has not been changed since it was last called up, emacs simply switches to that
buffer. Table 7-10 lists commands used to visit files.

Visiting files
Command Result

CONTROL-X CONTROL-F Prompts for a filename and reads its contents into a new
buffer. Assigns the file’s simple filename as the buffer name.
Other buffers are unaffected. It is common practice and
often useful to have several files open simultaneously for
editing.

CONTROL-X CONTROL-V Prompts for a filename and replaces the current buffer with a
buffer containing the contents of the requested file. The current
buffer is destroyed.

CONTROL-X 4 CONTROL-F Prompts for a filename and reads its contents into a new buffer.
Assigns the file’s simple filename as the buffer name. Creates a
new window for this buffer and selects that window. The
window selected before the command still displays the buffer it
was showing before this operation, although the new window
might cover up part of the old window.

To create a new file, simply call it up. An empty buffer is created and properly
named so you can eventually save it. The message (New File) appears in the Echo
Area, reflecting emacs’s understanding of the situation. If this new file grew out of
a typographical error, you can give the command CONTROL-X CONTROL-V and enter the
correct name.

PATHNAME COMPLETION

When you are prompted for the pathname of a file in the Minibuffer, you can type
the pathname followed by a RETURN. Alternatively, you can use pathname completion,
which is similar to bash filename completion (page 348), to help you enter a
pathname.

ADVANCED EDITING 249

While you are entering a pathname in the Minibuffer, press 7AB and emacs will com-
plete the pathname as far as possible. If the completed pathname is satisfactory,
press RETURN. In some cases, emacs cannot complete a pathname. For example, a
directory in the pathname you entered might not exist or you might not have per-
mission to read it. If emacs cannot complete a pathname, it displays a message in
the Echo Area. If the characters following the rightmost slash (/) in the pathname
you are typing match more than one filename, when you press TAB emacs displays
[Complete, but not unique]. If you press TAB a second time, emacs opens a Pathname
Completion List window that displays a list of possible completions (Figure 7-9).
You can open this window manually while you are entering a pathname by typing
a question mark (?).

With the Pathname Completion List window open, you can

¢ Cancel the selection by pressing CONTROL-G or ESCAPE ESCAPE ESCAPE. The display
returns to the state it was in before you opened the Pathname Completion
List window.

¢ Type more characters in the Minibuffer to finish the pathname. Press RETURN
to select the pathname; emacs closes the completion window.

® Type more characters in the Minibuffer to make the completion unambiguous
and press TAB again.

Over time emacs has grown and evolved through more than 20 major revisions
to the mainstream GNU version. The emacs editor, which is coded in C,
contains a complete Lisp interpreter and fully supports the X Window
System and mouse interaction. The original TECO macros are long gone, but
emacs is still very much a work in progress. Version 22 has significant
internationalization upgrades: an extended UTF-8 internal character

set four times bigger than Unicode, along with fonts and keyboard input
methods for more than 30 languages. Also, the user interface is moving in
the direction of a WYSIWYG (what you see is what you get) word processor,
which makes it easier for beginners to use the editor.

-UUU;**--F1 sample Top L1 (Fundamental)

In this buffer, type RET to select the completion near point.

Possible completions are:

#sample# .#sample nars v
.ICEauthority .abrt/ .bash_aliases .bash_history
.bash_logout .bash_profile .bashrc .cache/
.config/ .dbus/ .emacs.d/ .esd_auth
.fontconfig/ .gconf/ .gnome2/ .gtk-bookmarks
.gvfs/ .gvimrc .imsettings.log .local/
.mozilla/ .pulse-cookie .pulse/ .ssh/
.viminfo .Xsession-errors practice sample

sampleB shelltext winsize80

Completions Top L1 (Completion List)-
Find file in other window: ~

Figure 7-9 A Pathname Completion List window

250 CHAPTER7 THE emacs EDITOR

® Press METAv or PAGE UP to move the cursor into the Pathname Completion List
window. Use the ARROW keys to move the cursor between selections. Press
RETURN to choose the selection the cursor is on. You can press CONTROL-G or ESCAPE
ESCAPE ESCAPE to back out of this window and return the cursor to the
Minibuffer.

When you press RETURN, emacs closes the Pathname Completion List window, adds the
filename you selected to the end of the pathname you were typing, and moves the cur-
sor to the end of the pathname you were typing in the Minibuffer. You can continue
typing in the Minibuffer and perform more completions before you press RETURN to
accept the pathname. More information is available from the Completion and Com-
pletion Commands menus of the Minibuffer menu of the emacs online manual (see
the tip on page 225).

SAVING FILES

You save a buffer by copying its contents back to the original file you called up.
Table 7-11 (next page) lists the relevant commands.
You can exit without first getting a warning

Clearing the modified flag (MeTA-~) allows you to exit without saving a modified buffer with no
warning. Make sure you know what you are doing when you use META-~.

Did you modify a buffer by mistake?

When you give a CONTROL-X s command, you might discover files whose buffers were modified by
mistake as emacs tries to save the wrong changes back to the file. When emacs prompts you
to confirm the save, do not answer y if you are not sure. First, exit from the CONTROL-X s dialog by
typing n to any saves you are not sure about. You then have several options:

* Save the suspicious buffer to a temporary file with CONTROL-X CONTROL-W and analyze it later.

* Undo the changes with a string of CONTROL-_ commands until the == indicator disappears
from the buffer's Mode Line.

* If you are sure that all the changes are wrong, use META-x revert-buffer to get a fresh copy
of the file.

* Kill the buffer outright. Because it is modified, emacs asks whether you are sure before
carrying out this command.

* Give the META~ (tilde) command to clear the modified condition and == indicator. A
subsequent CONTROL-X s then believes that the buffer does not need to be written.

ADVANCED EDITING 251

BUFFERS

Saving files
Command
CONTROL-X CONTROL-S
CONTROL-X S

METAx set-visited-file-name

CONTROL-X CONTROL-W

META-~ (tilde)

Result

This workhorse file-saving command saves the current buffer
into its original file. If the current buffer is not modified, emacs
displays the message (No changes need to be saved).

For each modified buffer, you are asked whether you wish to
save it. Answer y or n. This command is given automatically as
you exit from emacs and allows you to save any buffers that
have been modified but not yet written out. Give this command
to save intermediate copies of your work.

Prompts for a filename and sets this name as the “original”
name for the current buffer.

Prompts for a filename, sets this name as the “original” name
for the current buffer, and saves the current buffer into that file.
Equivalent to META-x set-visited-file-name followed by
CONTROL-X CONTROL-S.

Clears the modified flag from the current buffer. If you
mistakenly type META-~ against a buffer with changes you want
to keep, you need to make sure the modified condition and its
% indicator are turned back on before leaving emacs, or all
the changes you made will be lost. One easy way to mark a buffer
as modified is to insert a SPAGE and then remove it using DELETE.

An emacs buffer is a storage object that you can edit. It often holds the contents of
a file but can also exist without being associated with a file. You can select only one
buffer at a time, designated as the current buffer. Most commands operate only on
the current buffer, even when windows show multiple buffers on the screen. For the
most part each buffer is its own world: It has its own name, its own modes, its own
file associations, its own modified state, and perhaps its own special key bindings.
You can use the commands shown in Table 7-12 to create, select, list, and manipulate

buffers.

Working with buffers

Command

CONTROL-X b

CONTROL-X 4 b

Result

Prompts for a buffer name and selects it. If the buffer you name
does not exist, this command creates it.

Prompts for a buffer name and selects it in another window. The
existing window is not disturbed, although the new window
might overlap it.

252 CHAPTER 7

THE emacs EDITOR

WINDOWS

CONTROL-X b
buffer-name

Working with buffers (continued)

Command

CONTROL-X CONTROL-B

META-x rename-buffer

CONTROL-X CONTROL-Q

METAx append-to-buffer

META-x prepend-to-buffer

META-x copy-to-buffer

META-x insert-buffer

CONTROL-X K

META- kill-some-buffers

Result

Creates a buffer named * Buffer List:+ and displays it in another
window. The existing window is not disturbed, although the new
window might overlap it. The new buffer is not selected. In the
s Buffer Lists+ buffer, each buffer’s datais shown along with the
name, size, mode(s), and original filename. A % appears for a
readonly buffer, a * indicates a modified buffer, and . appears
for the selected buffer.

Prompts for a new buffer name and gives this new name to the
current buffer.

Toggles the current buffer’'s readonly status and the associated
%% Mode Line indicator. This command can prevent you from
accidentally modifying a buffer or allow you to modify a buffer
when visiting a readonly file.

Prompts for a buffer name and appends Region to the end of
that buffer.

Prompts for a buffer name and prepends Region to the
beginning of that buffer.

Prompts for a buffer name and deletes the contents of the buffer
before copying Region to that buffer.

Prompts for a buffer name and inserts the contents of that
buffer in the current buffer at Point.

Prompts for a buffer name and deletes that buffer. If the buffer
has been modified but not saved, emacs asks you to confirm
the operation.

Goes through the list of buffers and offers the chance to delete
each buffer. As with CONTROL-X k, emacs asks you to confirm
the kill command if a modified buffer has not been saved.

An emacs window is a viewport that looks into a buffer. The emacs screen begins by
displaying a single window, but this screen space can later be divided among two or
more windows. On the screen the current window holds the cursor and views the cur-
rent buffer. For a tip on terminology, see “The screen and emacs windows” on

page 224.

A window displays one buffer at a time. The command CONTROL-X b buffer-name
switches the buffer that the current window displays. Multiple windows can display
the same buffer with each window displaying a different part of the buffer. Any

ADVANCED EDITING 253

CONTROL-X 0
META-CONTROL-V

change to a buffer is reflected in all windows displaying that buffer. Also, a buffer can
exist without a window open on it.

SPLITTING A WINDOW

One way to divide the screen is to split the starting window explicitly into two or more
pieces. The command CONTROL-X 2 splits the current window in two, with one new window
appearing above the other. A numeric argument is taken as the size of the upper window
in lines. The command CONTROLX 3 splits the current window in two, with the new win-
dows being arranged side by side (Figure 7-10). A numeric argument is taken as the
number of columns to give the left window. For example, CONTROL-U CONTROLX 2 splits the
current window in two; because of the special “times 4” interpretation of CONTROL-U
standing alone, the upper window is given four lines (barely enough to be useful).

Although these commands split the current window, both windows continue to view
the same buffer. You can select a new buffer in either or both new windows, or you
can scroll each window to show different portions of the same buffer.

MANIPULATING WINDOWS

You can use CONTROL-X 0 (lowercase “0”) to select the other window. If more than two
windows appear on the screen, a sequence of CONTROLX 0 commands cycles through
them in top-to-bottom, left-to-right order. The META-CONTROL-Y command scrolls the
other window. If more than two windows are visible, the command scrolls the win-
dow that CONTROLX 0 would select next. You can use either a positive or negative
scrolling argument, just as with CONTROL-V scrolling in the current window.

File Edit Options Buffers Tools Help
lWver time emacs has grown and evolved $[JOover time emacs has grown and evolved t$
to the mainstream GNU version. The ema$fJto the mainstream GNU version. The emac$
contains a complete Lisp interpreter a$flcontains a complete Lisp interpreter an$
System and mouse interaction. The orig$[]System and mouse interaction. The origis
emacs is still very much a work in projfjemacs is still very much a work in progs
internationalization upgrades: an exte$flinternationalization upgrades: an exten$
set four times bigger than Unicode, al$|lset four times bigger than Unicode, alo$
methods for more than 30 languages. Al$[Jmethods for more than 30 languages. Als$
the direction of a WYSIWYG (what you s$[lthe direction of a WYSIWYG (what you se$
which makes it easier for beginners to$§[jwhich makes it easier for beginners to $

The emacs editor has always been consijf]The emacs editor has always been consid$
having been developed originally in a $[lhaving been developed originally in a U$
adhere to the UNIX/Linux philosophy. W$[ladhere to the UNIX/Linux philosophy. Wh$
typically designed to do one thing and$fjtypically designed to do one thing and %
other utilities, emacs is designed to $[lother utilities, emacs is designed to “$
of the underlying programming language$flof the underlying programming language $
customize and extend the editor ratherjfjcustomize and extend the editor rather %
or create new general-purpose tools. I$fjor create new general-purpose tools. In$
(customization) files. [(customization) files.

Well before the emergence of the X Wins[[well before the emergence of the X Winds$
great deal of thought and effort into $[lareat deal of thought and effort into d$
environment, and he used emacs as his $]lenvironment, and he used emacs as his r$
-UUU;**--F1 sample Top L1 -UUU;**--F1 sample Top L1 (

Figure 7-10 Splitting a window horizontally

254 CHAPTER 7

THE emacs EDITOR

CONTROL-X 4b
CONTROL-X 4f

CONTROL-X 0
CONTROL-X 1

META-x shrink-
window
CONTROL-X A
CONTROL-X }
CONTROL-X{

OTHER-WINDOW DISPLAY

In normal emacs operation, explicit window splitting is not nearly as common as
the implicit splitting done by the family of CONTROLX 4 commands. The CONTROL-X 4b
command, for example, prompts for a buffer name and selects it in the other win-
dow. If no other window exists, this command begins with a half-and-half split that
arranges the windows one above the other. The CONTROLX4f command prompts for
a filename, calls the file up in the other window, and selects the other window. If
no other window exists, this command begins with a half-and-half split that
arranges the windows one above the other.

ADJUSTING AND DELETING WINDOWS

Windows might be destroyed when they get in the way. No data is lost in the window’s
associated buffer with this operation, and you can make another window whenever
you like. The CONTROLX O (zero) command deletes the current window and gives its
space to its neighbors; CONTROLX 1 deletes all windows except the current window.

You can also adjust the dimensions of the current window at the expense of its neigh-
bors. To make a window shorter, give the command METAx shrink-window . Press
CONTROL-X A to increase the height of a window, CONTROL-X} to make the window wider,
and CONTROL-X{ to make the window narrower. Each of these commands adds or sub-
tracts one line or column to or from the window, unless you precede the command
with a numeric argument.

The emacs editor has its own guidelines for a window’s minimum useful size and
might destroy a window before you force one of its dimensions to zero. Although the
window might disappear, the buffer remains intact.

FOREGROUND SHELL COMMANDS

The emacs editor can run a subshell (a shell that is a child of emacs—refer to “Exe-
cuting a Command” on page 335) to execute a single command line, optionally with
standard input coming from Region of the current buffer and optionally with stan-
dard output replacing Region (Table 7-13). This process is analogous to executing a
shell command from the vim editor and having the input come from the file you are
editing and the output go back to the same file (page 209). As with vim, how well this
process works depends in part on the capabilities of the shell.

Foreground shell commands

Command Result

META-! (exclamation point) Prompts for a shell command, executes it, and displays the output
CONTROL-U META-! (exclamation ~ Prompts for a shell command, executes it, and inserts the
point) output at Point

META-| (vertical bar) Prompts for a shell command, gives Region as input, filters it

through the command, and displays the output

MA)JOR MODES: LANGUAGE-SENSITIVE EDITING 255

Foreground shell commands (continued)

CONTROL-U META-| (vertical bar) Prompts for a shell command, gives Region as input, filters it
through the command, deletes the old Region, and inserts the
output in that position

The emacs editor can also start an interactive subshell that runs continuously in its
own buffer. See “Shell Mode” on page 264 for more information.

BACKGROUND SHELL COMMANDS

META-x compile

The emacs editor can run processes in the background, with their output being fed
into a growing emacs buffer that does not have to remain in view. You can continue
editing while the background process runs and look at its output later. Any shell com-
mand can be run in this way.

The growing output buffer is always named * compilation*. You can read it, copy
from it, or edit it in any way, without waiting for the background process to finish.
Most commonly this buffer is used to review the output of program compilation and
to correct any syntax errors found by the compiler.

To run a process in the background, give the command METAx compile to prompt for
a shell command and begin executing it as a background process. The screen splits
in half to show the *compilation* buffer.

You can switch to the *compilation* buffer and watch the execution, if you wish.
To make the display scroll as you watch, position the cursor at the very end of the
text with a META> command. If you are not interested in this display, just remove the
window with CONTROLXO (zero) if you are in it or CONTROLX 1 otherwise and keep work-
ing. You can switch back to the *compilation* buffer later with CONTROLX b.

To kill the background process give the command MeTAx kill-compilation. The emacs
editor asks for confirmation and then kills the background process.

If standard format error messages appear in *compilation®*, you can automatically
visit the line in the file where each error occurred. Give the command CONTROLX * (back
tick) to split the screen into two windows and visit the file and line of the next error
message. Scroll the *compilation* buffer until this error message appears at the top
of its window. Use CONTROL-U CONTROLX * to start over with the first error message and
visit that file and line.

MAJOR MODES: LANGUAGE-SENSITIVE EDITING

The emacs editor has a large collection of feature sets, each specific to a certain vari-
ety of text. The feature sets are called Major modes. A buffer can have only one Major
mode at a time.

256 CHAPTER7 THE emacs EDITOR

A buffer’s Major mode is private to the buffer and does not affect editing in any other
buffer. If you switch to a new buffer having a different mode, rules for the new mode
take effect immediately. To avoid confusion, the name of a buffer’s Major mode
appears in the Mode Line of any window viewing that buffer (Figure 7-1 on page 225).

The three classes of Major modes are used for the following tasks:

e Editing human languages (for example, text, nroff, TeX)
e Editing programming languages (for example, C, Fortran, Lisp)
e Special purposes (for example, shell, mail, dired, ftp)

In addition, one Major mode—Fundamental—does nothing special. A Major mode
usually sets up the following;:

¢ Special commands unique to the mode, possibly with their own key bindings.
Whereas languages might have just a few special commands, special-purpose
modes might have dozens.

* Mode-specific character syntax and regular expressions defining word-
constituent characters, delimiters, comments, whitespace, and so on. This
setup conditions the behavior of commands oriented to syntactic units,
such as words, sentences, comments, or parenthesized expressions.

SELECTING A MAJOR MODE

METAx modename The emacs editor chooses and sets a mode when a file is called up by matching the
filename against a set of regular expression patterns describing the filename and file-
name extension. The explicit command to enter a Major mode is METAx modename.
This command is used mostly to correct the Major mode when emacs guesses wrong.

To have a file define its own mode, include the text —*— modename — *— somewhere
in the first nonblank line of the file, possibly inside a comment suitable for the pro-
gramming language the file is written in.

HUMAN-LANGUAGE MODES

A human language is meant eventually to be used by humans, possibly after being for-
matted by a text-formatting program. Human languages share many conventions
about the structure of words, sentences, and paragraphs. With regard to these textual
units, the major human language modes all behave in the same way.

Beyond this area of commonality, each mode offers additional functionality oriented
to a specific text formatter, such as TeX, LaTeX, or nroff/troff. Text-formatter exten-
sions are beyond the scope of this chapter; the focus here is on the commands relating
to human textual units.

WORDS

As mnemonic aids, the bindings for words are defined parallel to the character-
oriented bindings CONTROL-F, CONTROL-B, CONTROL-D, DELETE, and CONTROL-T.

MAJOR MODES: LANGUAGE-SENSITIVE EDITING 257

META
META-b

META-d
META-DELETE

META

META-a
META-¢
CONTROL-X DELETE
META-k

META-
META-}
META-h

Just as CONTROL-F and CONTROL-B move forward and backward over characters, so META
and MeETA-b move forward and backward over words. They might start from a position
inside or outside the word to be traversed, but in all cases Point finishes just beyond
the word, adjacent to the last character skipped over. Both commands accept a
numeric argument specifying the number of words to be traversed.

Just as CONTROL-D and DELETE delete characters forward and backward, so the keys METAd
and META-DELETE kill words forward and backward. They leave Point in exactly the same
finishing position as METAf and METAb do, but they kill the words they pass over. They
also accept a numeric argument.

META transposes the word before Point with the word after Point.

SENTENCES

As mnemonic aids, three of the bindings for sentences are defined parallel to the
line-oriented bindings: CONTROL-A, CONTROL-E, and CONTROL-K. The META2 command moves
backward to the beginning of a sentence; META-¢ moves forward to the end of a sen-
tence. In addition, CONTROL-X DELETE kills backward to the beginning of a sentence; META-k
kills forward to the end of a sentence.

The emacs editor recognizes the ends of sentences by referring to a regular expression
that is kept in a variable named sentence-end. Briefly, emacs looks for the characters
., 2, or ! followed by two SPACEs or an end-of-line marker, possibly with close quotation
marks or close braces. Give the command CONTROL-H v sentence-end RETURN to display the
value of this variable.

The MeTA-a and METAe commands leave Point adjacent to the first or last nonblank char-
acter in the sentence. They accept a numeric argument specifying the number of
sentences to traverse; a negative argument runs them in reverse.

The METAk and CONTROL-X DELETE commands kill sentences forward and backward, in a
manner analogous to CONTROLK line kill. They leave Point in the same position as META-a
and MeTAe do, but they kill the sentences they pass over. They also accept a numeric
argument. CONTROL-X DELETE is useful for quickly backing out of a half-finished sentence.

PARAGRAPHS

The META{ command moves backward to the most recent paragraph beginning; META}
moves forward to the next paragraph ending. The METAhcommand marks the para-
graph the cursor is on as Region (that is, it puts Point at the beginning and Mark at
the end), or marks the next paragraph if the cursor is between paragraphs.

The META} and META{ commands leave Point at the beginning of a line, adjacent to the
first character or last character, respectively, of the paragraph. They accept a numeric
argument specifying the number of paragraphs to traverse and run in reverse if given
a negative argument.

In human-language modes, paragraphs are separated by blank lines and text-
formatter command lines, and an indented line starts a paragraph. Recognition
is based on the regular expressions stored in the variables paragraph-separate
and paragraph-start. A paragraph is composed of complete lines, including the

258 CHAPTER7 THE emacs EDITOR

META-x auto-fill-
mode

META-q
METAx fill-region

final line terminator. If a paragraph starts following one or more blank lines,
the last blank line before the paragraph belongs to the paragraph.

FiLL

The emacs editor can fill a paragraph to fit a specified width, breaking lines and rear-
ranging them as necessary. It breaks lines between words and does not hyphenate
words. The emacs editor can fill automatically as you type or in response to an
explicit command.

The MeTAx auto-fill-mode command toggles Auto Fill mode on and off. When this mode
is on, emacs automatically breaks lines when you press SPACE or RETURN and are currently
beyond the specified line width. This feature is useful when you are entering new text.

Auto Fill mode does not automatically refill the entire paragraph you are currently
working on. If you add new text in the middle of a paragraph, Auto Fill mode breaks
the new text as you type but does not refill the complete paragraph. To refill a com-
plete paragraph or Region of paragraphs, use either METAq to refill the current
paragraph or METAx fill-region to refill each paragraph in Region (between Point and
Mark).

You can change the filling width from its default value of 70 by setting the fill-column
variable. Give the command GONTROL-X f to set fill-column to the current cursor posi-
tion and the command CONTROL-U 727272 CONTROL-X f to set fill-column to nnn, where 0 is
the left margin.

CASE CONVERSION

The emacs editor can force words or Regions to all uppercase, all lowercase, or initial
caps (the first letter of each word uppercase, the rest lowercase) characters. Refer to
Table 7-14.

Case conversion

Command Result

META-I (lowercase “I”) Converts word to the right of Point to lowercase
META-u Converts word to the right of Point to uppercase
META-c Converts word to the right of Point to initial caps
CONTROL-X CONTROL-L Converts Region to lowercase

CONTROL-X CONTROL-U Converts Region to uppercase

The word-oriented conversions move Point over the word just converted (just as METAT
does), allowing you to walk through text and convert each word with METAJ, METAu, or
META<c, or skip over words to be left alone with METAf. A positive numeric argument

MAJOR MODES: LANGUAGE-SENSITIVE EDITING 259

META-x text-mode

META-x edit-tab-
stops

C MoDE

converts that number of words to the right of Point, moving Point as it goes. A negative
numeric argument converts that number of words to the left of Point but leaves Point
stationary. This feature is useful for quickly changing the case of words you have just
typed. Table 7-15 shows some examples.

Examples of case conversion
Characters and commands Result
HELLOMETA—METAH (lowercase “I”) hello
helloMETA—META-u HELLO

helloMETA—META-c Hello

When the cursor (Point) is in the middle of a word, the case conversion commands
convert the characters to the left of the cursor.

TEXT MODE

With very few exceptions, the commands for human-language textual units are
always turned on and available, even when the programming-language modes are
activated. Text mode adds very little to these basic commands but is still worth turn-
ing on just to activate the TAB key function (next). Use the command METAx text-mode
to activate Text mode.

In Text mode, pressing TAB runs the function tab-to-tab-stop. By default TAB stops are
set every eight columns. You can adjust them with METAx edit-tab-stops, which switches
to a special *Tab Stops* buffer. The current TAB stops are laid out in this buffer on a
scale for you to edit. The new stops are installed when or if you type CONTROL-C CONTROL-C.
You can kill this buffer (CONTROL-Xk) or switch away from it (CONTROL-Xb) without changing
the TAB stops.

The TAB stops you set with the METAx edit-tab-stops command affect only the interpre-
tation of TAB characters arriving from the keyboard. The emacs editor automatically
inserts enough spaces to reach the TAB stop. This command does not affect the inter-
pretation of TAB characters already in the buffer or the underlying file. If you edit the
TAB stops and then use them, when you print the file the hard copy will look the same
as the text on the screen.

Programming languages are read by humans but are interpreted by machines. Besides
continuing to handle some of the human-language text units (for example, words and
sentences), the major programming-language modes address several additional
issues:

260 CHAPTER 7 THE emacs EDITOR

e Handling balanced expressions enclosed by parentheses, brackets, or braces
as textual units

¢ Handling comments as textual units

¢ Indention

The emacs editor includes Major modes to support C, Fortran, and several variants
of Lisp. In addition, many users have contributed modes for their favorite languages.
In these modes the commands for human textual units are still available, with occa-
sional redefinitions. For example, a paragraph is bounded only by blank lines and
indention does not signal a paragraph start. In addition, each mode has custom code
to handle the language-specific conventions for balanced expressions, comments, and
indention. This chapter discusses only C mode.

EXPRESSIONS

The emacs Major modes are limited to lexical analysis. They can recognize most
tokens (for example, symbols, strings, and numbers) and all matched sets of
parentheses, brackets, and braces. This is enough for Lisp but not for C, since the
C mode lacks a full-function syntax analyzer and is not prepared to recognize all
of C’s possible expressions.!

Table 7-16 lists the emacs commands applicable to parenthesized expressions and
some tokens. By design the bindings run parallel to the CONTROL commands for char-
acters and the META commands for words. All of these commands accept a numeric
argument and run in reverse if that argument is negative.

Commands for expressions and tokens

Command Result

CONTROL-META-f Moves forward over an expression. The exact behavior depends
on which character lies to the right of Point (or left of Point,
depending on which direction you are moving Point):

* If the first nonwhitespace is an opening delimiter
(parenthesis, bracket, or brace), Point is moved just
past the matching closing delimiter.

« If the first nonwhitespace is a token, Point is moved
just past the end of this token.

CONTROL-META-b Moves backward over an expression.

1. In the emacs documentation the recurring term sexp refers to the Lisp term S-expression. Unfortunately,
it is sometimes used interchangeably with expression, even though the language might not be Lisp.

MAJOR MODES: LANGUAGE-SENSITIVE EDITING 261

Commands for expressions and tokens

CONTROL-META-k Kills an expression forward. This command leaves Point at the
same finishing position as CONTROL-META but kills the
expression it traverses.

CONTROL-META-@ Sets Mark at the position CONTROL-META-f would move to but
does not change Point. To see the marked Region clearly, give
a pair of CONTROL-X CONTROL-X commands to exchange Point
and Mark.

FUNCTION DEFINITIONS

In emacs a balanced expression at the outermost level is considered to be a function
definition and is often called a defun, even though that term is specific to Lisp. More
generally it is understood to be a function definition in the language at hand.

In C mode a function definition includes the return data type, the function name, and
the argument declarations appearing before the { character. Table 7-17 shows the
commands for operating on function definitions.

Function indention style

The emacs editor assumes an opening brace at the left margin is part of a function definition. This
heuristic speeds up the reverse scan for a definition’s leading edge. If your code has an indention
style that puts the opening brace elsewhere, you might get unexpected results.

Function definition commands
Command Result

CONTROL-META-a Moves to the beginning of the most recent function definition.
Use this command to scan backward through a buffer one
function at a time.

CONTROL-META-¢ Moves to the end of the next function definition. Use this
command to scan forward through a buffer one function at a
time.

CONTROL-META-h Marks as Region the current function definition (or next

function definition, if the cursor is between two functions). This
command sets up an entire function definition for a Region-
oriented operation such as kill.

INDENTION

The emacs C mode has extensive logic to control the indention of C programs. You
can adjust this logic for many different styles of C indention (Table 7-18).

262 CHAPTER 7 THE emacs EDITOR

Indention commands
Command Result

TAB Adjusts the indention of the current line. TAB inserts or deletes
whitespace at the beginning of the line until the indention
conforms to the current context and rules in effect. Point is not
moved unless it lies in the whitespace area; in that case it is
moved to the end of the whitespace. TAB inserts leading SPACES;
you can press TAB with the cursor at any position on the line. If
you want to insert a TAB in the text, use META-i or CONTROL-Q TAB.

LINEFEED Shorthand for RETURN followed by TAB. The LINEFEED key is a
convenience for entering new code, giving you an autoindent as
you begin each line.

The next two commands indent multiple lines with a single command.

CONTROL-META-q Reindents all lines inside the next pair of matched braces.
CONTROL-META-q assumes the left brace is correctly indented and
drives the indention from there. If you need to adjust the left
brace, type TAB just to the left of the brace before giving this
command. All lines up to the matching brace are indented as if
you had typed TAB on each one.

CONTROL-META- Reindents all lines in Region. Put Point just to the left of a left
brace and then give the command. All lines up to the matching
brace are indented as if you had typed TAB on each one.

CUSTOMIZING INDENTION

Many styles of C programming have evolved, and emacs does its best to support
automatic indention for all of them. The indention coding was completely rewritten
for emacs version 19; it supports C, C++, Objective-C, and Java. The new emacs
syntactic analysis is much more precise and can classify each syntactic element of
each line of a program into a single syntactic category (out of about 50), such as
statement, string, or else-clause. Based on that analysis, emacs refers to the offset
table named c-offsets-alist to look up how much each line should be indented from
the preceding line.

To customize indention, you must change the offset table. Although you can define
a completely new offset table for each customized style, it is typically more conve-
nient to feed in a short list of exceptions to the standard rules. Each mainstream style
(GNU, K&R [Kernighan and Ritchie], BSD, and so on) has such an exception list;
all are collected in c-style-alist. Here is one entry from c-style-alist:

("gnu"
(c-basic-offset . 2)
(c-comment-only-line-offset . (0 . 0))
(c-offsets-alist . ((statement-block-intro . +)
(knr-argdecT-intro . 5)
(substatement-open . +)
(1abel . 0)

MAJOR MODES: LANGUAGE-SENSITIVE EDITING 263

(statement-case-open . +)

(statement-cont .
(arglist-intro .
(arglist-close .

))
)

+)

c-Tineup-arglist-intro-after-paren)
c-lineup-arglist)

Constructing a custom style is beyond the scope of this book. If you are curious, the
long story is available in emacs info beginning at “Customizing C Indentation.” The
sample .emacs file given in this chapter (page 269) adds a very simple custom style
and arranges to use it on every .c file that is edited.

COMMENTS

Each buffer has its own comment-column variable, which you can view with the
CONTROL-H v comment-column RETURN help command. Table 7-19 lists commands that
facilitate working with comments.

Comment commands

Command
META-;

CONTROL-X;

CONTROL-U — CONTROL-X ;

CONTROL-U CONTROL-X ;

Result

Inserts a comment on the current line or aligns an existing
comment. This command’s behavior differs according to the
situation.

¢ |f no comment is on this line, META; creates an empty
comment at the value of comment-column.

« |f text already on this line overlaps the position of com-
ment-column, META-; creates an empty comment one
SPACE after the end of the text.

« |f a comment is already on this line but not at the cur-
rent value of comment-column, META-; realigns the
comment at that column. If text is in the way, it places
the comment one SPACE after the end of the text.

Once an aligned (possibly empty) comment exists on the line,
Point moves to the start of the comment text.

Sets comment-column to the column after Point. The left
margin is column 0.

Kills the comment on the current line. This command sets
comment-column from the first comment found above this line
and then performs a META-; command to insert or align a
comment at that position.

Sets comment-column to the position of the first comment
found above this line and then executes a META-; command to
insert or align a comment on this line.

264 CHAPTER 7 THE emacs EDITOR

SPECIAL-PURPOSE MODES

METAx shell

The emacs editor includes a third family of Major modes that are not oriented toward
a particular language or toward ordinary editing. Instead, these modes perform some
special function. The following modes might define their own key bindings and com-
mands to accomplish that function:

® Rmail: reads, archives, and composes email
® Dired: moves around an Is -1 display and operates on files
e VIP: simulates a complete vi environment

¢ VC: allows you to drive version-control systems (including RCS, CVS, and
Subversion) from within emacs

¢ GUD (Grand Unified Debugger): allows you to run and debug C (and other)
programs from within emacs

e Tramp: allows you to edit files on any remote system you can reach with ftp or scp

o Shell: runs an interactive subshell from inside an emacs buffer

This book discusses only Shell mode.

SHELL MODE

One-time shell commands and Region filtering were discussed earlier under “Fore-
ground Shell Commands” on page 254. Each emacs buffer in Shell mode has an
underlying interactive shell permanently associated with it. This shell takes its input
from the last line of the buffer and sends its output back to the buffer, advancing Point
as it goes. If you do not edit the buffer, it holds a record of the complete shell session.

The shell runs asynchronously, whether or not you have its buffer in view. The emacs
editor uses idle time to read the shell’s output and add it to the buffer.

Type METAx shell to create a buffer named *shell* and start a subshell. If a buffer
named *shell* already exists, emacs just switches to that buffer. The shell that this
command runs is taken from one of the following sources:

e The Lisp variable explicit-shell-file-name
® The environment variable ESHELL

¢ The environment variable SHELL

To start a second shell, first give the command METAx rename-buffer to change the
name of the existing shell’s buffer, and then give the command MeTAx shell to start
another shell. You can create as many subshells and buffers as you like, all running
in parallel.

A special set of commands is defined in Shell mode (Table 7-20). These commands
are bound mostly to two-key sequences starting with CONTROL-C. Each sequence is
similar to the ordinary control characters found in Linux but uses a leading
CONTROL-C.

CUSTOMIZING emacs 265

Shell mode commands

Command

RETURN

CONTROL-C CONTROL-D
CONTROL-C CONTROL-C
CONTROL-C CONTROL-\

CONTROL-C CONTROL-U

CONTROL-C CONTROL-R

CONTROL-C CONTROL-0

optional

CUSTOMIZING emacs

Result

If Point is at the end of the buffer, emacs inserts the RETURN and
sends this (the last) line to the shell. If Point is elsewhere, it
copies this line to the end of the buffer, peeling off the old shell
prompt (see the regular expression shell-prompt-pattern), if
one existed. Then this copied line—now the last in the buffer—
is sent to the shell.

Sends CONTROL-D to the shell or its subshell.

Sends CONTROL-C to the shell or its subshell.

Sends a quit signal to the shell or its subshell.
Kills the text on the current line not yet completed.

Scrolls back to the beginning of the last shell output, putting the
first line of output at the top of the window.

Deletes the last batch of shell output.

At the heart of emacs is a Lisp interpreter written in C. This version of Lisp is signifi-
cantly extended and includes many special editing commands. The interpreter’s main
task is to execute the Lisp-coded system that implements the look-and-feel of emacs.

Reduced to its essentials, this system implements a continuous loop that watches key-
strokes arrive, parses them into commands, executes those commands, and updates
the screen. This behavior can be customized in a number of ways:

* As single keystrokes arrive, they are mapped immediately through a key-
board translation table. By changing the entries in this table, it is possible
to swap keys. If you are used to vi or vim, for example, you might want to
swap DELETE and CONTROL-H. Then CONTROL-H backspaces as it does in vim, and
DELETE (which is not used by vim) is the help key. If you use DELETE as an inter-
rupt key, you might want to choose another key to swap with CONTROL-H.

e The mapped keystrokes are gathered into small groups called key
sequences. A key sequence might be only a single key, such as CONTROL-N, or
might include two or more keys, such as CONTROL-X CONTROL-F. Once gathered,
the key sequences are used to select a particular procedure to be executed.
The rules for gathering each key sequence and the specific procedure name

266 CHAPTER7 THE emacs EDITOR

to be executed when that sequence comes in are codified in a series of tables
called keymaps. By altering the keymaps, you can change the gathering rules
or change which procedure is associated with which sequence. For example,
if you are used to vi’s or vim’s use of CONTROL-W to back up over the word you
are entering, you might want to change emacs’s CONTROL-W binding from the
standard kill-region to delete-word-backward.

® The command behavior is often conditioned by one or more environment
variables or options. It might be possible to get the behavior you want by
setting some of these variables.

® The command itself is usually a Lisp program that can be reprogrammed to
make it behave as desired. Although this task is not appropriate for begin-
ners, the Lisp source to nearly all commands is available and the internal
Lisp system is fully documented. As mentioned earlier, it is common practice
to load customized Lisp code at startup time, even if you did not write the
code yourself.

Most emacs documentation glosses over the translation, gathering, and procedure
selection steps and talks about keystrokes as though they were commands. However,
it is important to know that the underlying machinery exists and to understand that
you can change its behavior.

THE .emacs STARTUP FILE

Assigning a value to
a variable

Displaying the value
of a variable

Setting the default
value of a variable

Each time you start emacs, it loads the file of Lisp code named ~/.emacs. Using this
file is the most common way to customize emacs. Two command-line options control
the use of the .emacs file. The —q option ignores the .emacs file so emacs starts with-
out it; this is one way to get past a bad .emacs file. The —u user option uses the
~user/.emacs file (the .emacs file from the home directory of user).

The .emacs startup file is generally concerned only with key bindings and option set-
tings; it is possible to write the Lisp statements for this file in a straightforward style.
Each parenthesized Lisp statement is a Lisp function call. Inside the parentheses the
first symbol is the function name; the rest of the SPACE-separated tokens are arguments
to that function.

The most common function in the .emacs file, setq, is a simple assignment to a
global variable. The first argument is the name of the variable to set and the second
argument is its value. The following example sets the variable named c-indent-level
to 8:

(setqg c-indent-level 8)

While you are running emacs, the command CONTROL-H v prompts for the name of a
variable. When you enter the name of a variable and press RETURN, emacs displays the
value of the variable.

You can set the default value for a variable that is buffer-private by using the function
named setq-default. To set a specific element of a vector, use the function name aset.

CUSTOMIZING emacs 267

The first argument is the name of the vector, the second is the offset, and the third is
the value of the target entry. In the startup file the new values are usually constants.
Table 7-21 shows the formats of these constants.

Formats of constants in .emacs

Command Result

Numbers Decimal integers, with an optional minus sign

Strings Similar to C strings but with extensions for CONTROL and META
characters: \C-s yields CONTROL-S, \M-s yields META-s, and \M-\C-s
yields CONTROL-META-s

Characters Not like C characters; start with ? and continue with a printing

character or with a backslash escape sequence (for example,
?a, 7\C-i, 2\033)

Booleans Not1 and 0; use t for true and nil for false

Other Lisp objects Begin with a single quotation mark and continue with the
object’s name

REMAPPING KEYS

The emacs command loop begins each cycle by translating incoming keystrokes into
the name of the command to be executed. The basic translation operation uses the
ASCII value of the incoming character to index a 128-element vector called a
keymap.

Sometimes a character’s eighth bit is interpreted as the META case, but this cannot
always be relied on. At the point of translation all META characters appear with the
ESCAPE prefix, whether or not they were typed that way.

Each position in this vector is one of the following:

¢ Not defined: No translation possible in this map.

® The name of another keymap: Switches to that keymap and waits for the
next character to arrive.

® The name of a Lisp function to be called: Translation process is done; call
this command.

Because keymaps can reference other keymaps, an arbitrarily complex recognition
tree can be set up. The mainstream emacs bindings use at most three keys, with a very
small group of well-known prefix keys, each with its well-known keymap name.

Each buffer can have a local keymap that is used first for any keystrokes arriving
while a window into that buffer is selected. The local keymap allows the regular

268 CHAPTER 7 THE emacs EDITOR

mapping to be extended or overridden on a per-buffer basis and is most often used
to add bindings for a Major mode.

The basic translation flow runs as follows:

® Map the first character through the buffer’s local keymap. If it is defined as
a Lisp function name, translation is done and emacs executes that function.
If it is not defined, use this same character to index the global top-level
keymap.

® Map the first character through the top-level global keymap global-map. At
this and each following stage, the following conditions hold:

+ If the entry for this character is not defined, it is an error. Send a bell to
the terminal and discard all the characters entered in this key sequence.

o If the entry for this character is defined as a Lisp function name, trans-
lation is done and the function is executed.

o If the entry for this character is defined as the name of another keymap,
switch to that keymap and wait for another character to select one of
its elements.

Everything input during the remapping process must be either a command or an
error. Ordinary characters that are to be inserted in the buffer are usually bound to
the command self-insert-command. Each of the well-known prefix characters is each
associated with a keymap (Table 7-22).

Keymap prefixes

Keymap prefix Applies to

ctl-x-map For characters following CONTROL-X

ctl-x-4-map For characters following CONTROL-X 4

esc-map For characters following ESCAPE (including META characters)
help-map For characters following CONTROL-H

mode-specific-map For characters following CONTROL-C

To see the current state of the keymaps, type CONTROL-H b. They appear in the following
order: local, global, and shorter maps for each prefix key. Each line specifies the name
of the Lisp function to be called; the documentation for that function can be retrieved
with the command CONTROLH f function-name or CONTROLH k key-sequence.

The most common type of keymap customization is making small changes to the
global command assignments without creating any new keymaps or commands. This
type of customization is most easily done in the .emacs file using the Lisp function
define-key. The define-key function takes three arguments:

CUSTOMIZING emacs 269

¢ The keymap name
¢ A single character defining a position in that map

¢ The command to be executed when this character appears

For instance, to bind the command backward-kill-word to CONTROL-W, use the
statement

(define-key global-map "\C-w" 'backward-kill-word)

The \ character causes C-w to be interpreted as CONTROLW instead of three letters
(equivalent to *w). The unmatched single quotation mark in front of the command
name is correct. This Lisp escape character keeps the name from being evaluated too
soon. To bind the command kill-region to CONTROL-X CONTROL-K, use the statement

(define-key ctl-x-map "\C-k" 'kill-region)

A SAMPLE .emacs FILE

The following ~/.emacs file produces a plain editing environment that minimizes sur-
prises for vi and vim users. If any section or any line is not appropriate for your
situation, you can edit it or make it a comment by placing one or more semicolons
(;) beginning in column 1.

;33 Preference Variables

(setq make-backup-files nil) ;Do not make backup files

(setq backup-by-copying t) ;If you do, at least do not destroy links
(setq delete-auto-save-files t) ;Delete autosave files when writing orig
(setq blink-matching-paren nil) ;Do not blink opening delim

(setq require-final-newline 'ask) ;Ask about missing final newline

;5 Reverse mappings for C-h and DEL.

;5 Sometimes useful to get DEL character from the Backspace key,
;5 and online help from the Delete key.

;3 NB: F1 is always bound to online help.

(keyboard-translate ?\C-h ?\177)

(keyboard-translate ?\177 ?\C-h)

;5 Some vi sugar: emulate the CR command
;3 that positions us to first non-blank on next line.
(defun forward-line-1-skipws ()
"Position to first nonwhitespace character on next line."
(interactive)
(if (= (forward-Tine) @) ;1f moved OK to start of next line
(skip-chars-forward " \t"))) ;skip over horizontal whitespace

;3 Bind this to M-n. ("enhanced next-1ine")
;5 C-M-n is arguably more "correct" but (1) it takes three fingers
;5 and (2) C-M-n 1is already bound to forward-1list.

(define-key esc-map "n" 'forward-Tine-1-skipws)

270 CHAPTER7 THE emacs EDITOR

;5 C mode customization: set vanilla (8-space bsd) indention style
(require 'cc-mode) ;kiss: be sure it's here

(setq c-default-style
"(
(java-mode . "java")
(awk-mode . "awk")
(c-mode . "bsd")
(other . "gnu")
))

;; See also CC Mode in online help for more style setup examples.

;3 end of c mode style setup

MORE INFORMATION

A lot of emacs documentation is available in both paper and electronic form. The
emacs info page and emacs help functions (page 238) provide an abundance of infor-
mation. See also the GNU emacs Web page at www.gnu.org/software/emacs.

The comp.emacs and gnu.emacs.help newsgroups offer support for and a general
discussion about emacs.

ACCESS TO emacs

The emacs editor is included in the repositories of most Linux distributions. You can
download and install emacs with apt-get (page 1060) or yum (page 1054). You can
download the latest version of the source code from www.gnu.org.

The Free Software Foundation can be reached at these addresses:

Mail Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Email gnu@gnu.org
Phone +1 617-542-5942
Fax +1 617 542 2652

Web www.gnu.org

CHAPTER SUMMARY

You can precede many of the commands in the following tables with a numeric argu-
ment to make the command repeat the number of times specified by the argument.

http://www.gnu.org/software/emacs
http://www.gnu.org
mailto:gnu@gnu.org
http://www.gnu.org

CHAPTER SUMMARY 271

Precede a numeric argument with CONTROL-U to keep emacs from entering the argument

as text.

Table 7-23 lists commands that move the cursor.

Moving the cursor

Command
CONTROL-F
CONTROL-B
META
META-b
META-¢
META-2
META}
META-{
META->
META-<
CONTROL-ESCAPE
CONTROL-A
CONTROL-N
CONTROL-P
CONTROL-V
META-

CONTROL-L

META-r

CONTROL-U num META-r

Result

Forward by characters

Backward by characters

Forward by words

Backward by words

To end of sentence

To beginning of sentence

To end of paragraph

To beginning of paragraph
Forward to end of buffer
Backward to beginning of buffer
To end of line

To beginning of line

Forward (down) one line
Backward (up) one line

Scroll forward (down) one window
Scroll backward (up) one window

Clear and repaint screen, and scroll current line to center of
window

To beginning of middle line

To beginning of line number aum (0 = top, — = bottom)

Table 7-24 lists commands that kill and delete text.

Killing and deleting text

Command
CONTROL-DELETE
DELETE

META-d

Result
Deletes character under cursor
Deletes character to left of cursor

Kills forward to end of current word

272 CHAPTER7 THE emacs EDITOR

Killing and deleting text (continued)

Command
META-DELETE
META-k
CONTROL-X DELETE
CONTROL-K

CONTROL-U 1 CONTROL-K
CONTROL-U 0 CONTROL-K
META-z char

META-w

CONTROL-W

CONTROL-Y

META-y

Result

Kills backward to beginning of previous word
Kills forward to end of sentence

Kills backward to beginning of sentence

Kills forward to, but not including, line-ending LINEFEED; if there
is no text between the cursor and the LINEFEED, Kills the LINEFEED

Kills from cursor forward to and including LINEFEED

Kills from cursor backward to beginning of line

Kills forward to, but not including, next occurrence of char
Copies Region to Kill Ring (does not delete Region from buffer)
Kills Region (deletes Region from buffer)

Yanks most recently killed text into current buffer at Point; sets
Mark at beginning of this text, with Point and cursor at the end

Erases just-yanked text, rotates Kill Ring, and yanks next item
(only after CONTROL-Y or META-y)

Table 7-25 lists commands that search for strings and regular expressions.

Search commands

Command

CONTROL-S

CONTROL-S RETURN
CONTROL-R

CONTROL-R RETURN
META-CONTROL-S

META- CONTROL-S RETURN
META-CONTROL-R

META- CONTROL-R RETURN

Result

Prompts incrementally for a string and searches forward

Prompts for a complete string and searches forward

Prompts incrementally for a string and searches backward

Prompts for a complete string and searches backward

Prompts incrementally for a regular expression and searches forward
Prompts for a complete regular expression and searches forward

Prompts incrementally for a regular expression and searches
backward

Prompts for a complete regular expression and searches
backward

CHAPTER SUMMARY 273

Table 7-26 lists commands that provide online help.

Online help

Command
CONTROL-H a

CONTROL-H b
CONTROL-H ¢ key-sequence
CONTROL-H k key-sequence

CONTROL-H f

CONTROL-H i (lowercase “i”)
CONTROL-H | (lowercase “1”)
CONTROL-H m

CONTROL-H n
CONTROL-H t
CONTROL-H v

CONTROL-H w

Result

Prompts for string and displays a list of commands whose
names contain string

Displays a (long) table of all key bindings now in effect
Displays the name of the command bound to key-sequence

Displays the name of and documentation for the command
bound to key-sequence

Prompts for the name of a Lisp function and displays the
documentation for that function

Displays the top menu of info (page 225)
Displays the last 100 characters typed

Displays the documentation and special key bindings for the
current Major mode

Displays the emacs news file
Starts an emacs tutorial session

Prompts for a Lisp variable name and displays the
documentation for that variable

Prompts for a command name and displays the key sequence,
if any, bound to that command

Table 7-27 lists commands that work with a Region.

Working with a Region
Command Result
META-W Copies Region nondestructively to the Kill Ring
CONTROL-W Kills (deletes) Region

METAx print-region
META-x append-to-buffer
META-x append-to-file
CONTROL-X CONTROL-U
CONTROL-X CONTROL-L

Copies Region to the print spooler

Prompts for buffer name and appends Region to that buffer
Prompts for filename and appends Region to that file
Converts Region to uppercase

Converts Region to lowercase

274 CHAPTER 7 THE emacs EDITOR

Table 7-28 lists commands that work with lines.

Working with lines

Command

META-x occur

META-x delete-matching-lines

Result

Prompts for a regular expression and lists each line containing
a match for the expression in a buffer named =0ccur-:

Prompts for a regular expression and deletes lines from Point
forward that have a match for the regular expression

META-x delete-non-matching-lines Prompts for a regular expression and deletes lines from Point

forward that do not have a match for the regular expression

Table 7-29 lists commands that replace strings and regular expressions uncondition-

ally and interactively.

Commands that replace text

Command
META-x replace-string

META-%
or
META-x query-replace

META-x replace-regexp

METAX query-replace-regexp

Result

Prompts for two strings and replaces each instance of the first
string with the second string from Mark forward; sets Mark at
the start of the command

As above but queries for each replacement (see Table 7-30 for
a list of responses)

Prompts for a regular expression and a string, and replaces
each match for the regular expression with the string; sets Mark
at the start of the command

As above but queries for each replacement (see Table 7-30 for
a list of responses)

Table 7-30 lists responses to replacement queries.

Responses to replacement queries

Command

RETURN

SPACE
DELETE

, (comma)

Result

Quits searching (does not make or query for any more
replacements)

Makes this replacement and continues querying
Does not make this replacement and continues querying

Makes this replacement, displays the result, and asks for
another command

CHAPTER SUMMARY 275

Responses to replacement queries (continued)

Command

. (period)

! (exclamation point)

Result

Makes this replacement and does not make or query for any
more replacements

Replaces this and all remaining instances without querying

Table 7-31 lists commands that work with windows.

Working with windows

Command

CONTROL-X b

CONTROL-X 2
CONTROL-X 3
CONTROL-X 0 (lowercase “0”)
META-CONTROL-V
CONTROL-X 4b
CONTROL-X 4f
CONTROL-X O (zero)
CONTROL-X 1 (one)
META~x shrink-window
CONTROL-X "
CONTROL-X }

CONTROL-X {

Result

Prompts for and displays a different buffer in current window
Splits current window vertically into two

Splits current window horizontally into two

Selects other window

Scrolls other window

Prompts for buffer name and selects it in other window
Prompts for filename and selects it in other window
Deletes current window

Deletes all windows except current window

Makes current window one line shorter

Makes current window one line taller

Makes current window one character wider

Makes current window one character narrower

Table 7-32 lists commands that work with files.

Working with files

Command

CONTROL-X CONTROL-F

CONTROL-X CONTROL-V

Result

Prompts for a filename and reads its contents into a new buffer;
assigns the file’s simple filename as the buffer name.

Prompts for a filename and reads its contents into the current
buffer (overwriting the contents of the current buffer).

276 CHAPTER 7 THE emacs EDITOR

Working with files (continued)

Command

CONTROL-X 4 CONTROL-F

CONTROL-X CONTROL-S
CONTROL-X 8

META-x set-visited-file-name

CONTROL-X CONTROL-W

META~ (tilde)

Result

Prompts for a filename and reads its contents into a new buffer;
assigns the file’s simple filename as the buffer name. Creates a
new window for the new buffer and selects that window. This
command splits the screen in half if you begin with only one
window.

Saves the current buffer to the original file.
Prompts for whether to save each modified buffer (y/n).

T K

Prompts for a filename and sets the current buffer’s “original”
name to that filename.

Prompts for a filename, sets the current buffer’s “original” name
to that filename, and saves the current buffer in that file.

Clears modified flag from the current buffer. Use with caution.

Table 7-33 lists commands that work with buffers.

Working with buffers

Command
CONTROL-X CONTROL-S
CONTROL-X CONTROL-F
CONTROL-X b

CONTROL-X 4b

CONTROL-X CONTROL-B

META-x rename-buffer

CONTROL-X CONTROL-Q

META-x append-to-buffer

Result
Saves current buffer in its associated file.
Prompts for filename and visits (opens) that file.

Prompts for buffer name and selects it. If that buffer does not
exist, creates it.

Prompts for buffer name and displays that buffer in another
window. The existing window is not disturbed, although the new
window might overlap it.

Creates a buffer named =Buffer List= and displays it in another
window. The existing window is not disturbed, although the new
window might overlap it. The new buffer is not selected. In the
=Buffer List buffer, each buffer’s data is displayed with its
name, size, mode(s), and original filename.

Prompts for a new buffer name and assigns this new name to
the current buffer.

Toggles the current buffer’'s readonly status and the associated
%% Mode Line indicator.

Prompts for buffer name and appends Region to the end of that
buffer.

CHAPTER SUMMARY 277

Working with buffers (continued)

Command

META-x prepend-to-buffer

META-x copy-to-buffer

META-x insert-buffer

CONTROL-X k

METAx kill-some-buffers

Result

Prompts for buffer name and prepends Region to the beginning
of that buffer.

Prompts for buffer name, deletes contents of that buffer, and
copies Region to that buffer.

Prompts for buffer name and inserts entire contents of that
buffer in current buffer at Point.

Prompts for buffer name and deletes that buffer.

Goes through the entire buffer list and offers the chance to
delete each buffer.

Table 7-34 lists commands that run shell commands in the foreground. These
commands might not work with all shells.

Foreground shell commands

Command

META-! (exclamation point)
CONTROL-U META-!
(exclamation point)

META-| (vertical bar)

CONTROL-U META-| (vertical bar)

Result

Prompts for shell command, executes it, and displays the
output

Prompts for shell command, executes it, and inserts the output
at Point

Prompts for shell command, supplies Region as input to that
command, and displays output of command

Prompts for shell command, supplies Region as input to that
command, deletes old Region, and inserts output of command
in place of Region

Table 7-35 lists commands that run shell commands in the background.

Background shell commands

Command

META-x compile

META=x Kill-compilation

Result

Prompts for shell command and runs that command in the
background, with output going to the buffer named
=compilation=

Kills background process

278 CHAPTER7 THE emacs EDITOR

Table 7-36 lists commands that convert text from uppercase to lowercase, and vice versa.

Case conversion commands

Command

META- (lowercase “I”)
META-u

META-C

CONTROL-X CONTROL-L
CONTROL-X CONTROL-U

Result

Converts word to right of Point to lowercase
Converts word to right of Point to uppercase
Converts word to right of Point to initial caps
Converts Region to lowercase

Converts Region to uppercase

Table 7-37 lists commands that work in C mode.

C mode commands

Command
CONTROL-META-
CONTROL-META-b
CONTROL-META
CONTROL-META-@

CONTROL-META-a
CONTROL-META-e
CONTROL-META-h

Result

Moves forward over expression

Moves backward over expression

Moves forward over expression and kills it

Sets Mark at the position CONTROL-META-f would move to, without
changing Point

Moves to beginning of the most recent function definition
Moves to end of the next function definition

Moves Point to beginning and Mark to end of current (or next,
if between) function definition

Type MeTAx shell to create a buffer named *shell * and start a subshell. Table 7-38 lists
commands that work on this buffer.

Shell mode commands

Command

RETURN

CONTROL-C CONTROL-D
CONTROL-C CONTROL-C
CONTROL-C CONTROLA

CONTROL-C CONTROL-U
CONTROL-C CONTROL-R

CONTROL-C CONTROL-O (uppercase
“0)!)

Result

Sends current line to the shell

Sends CONTROL-D to shell or its subshell
Sends CONTROL-C to shell or its subshell

Sends quit signal to shell or its subshell

Kills text on the current line not yet completed

Scrolls back to beginning of last shell output, putting first line
of output at the top of the window

Deletes last batch of shell output

EXERCISES 279

EXERCISES

1. Given a buffer full of English text, answer the following questions:
a. How would you change every instance of his to hers?
b. How would you make this change only in the final paragraph?
c. Is there a way to look at every usage in context before changing it?

d. How would you deal with the possibility that His might begin a
sentence?

2. Which command moves the cursor to the end of the current paragraph? Can
you use this command to skip through the buffer in one-paragraph steps?

3. Suppose that you are lost in the middle of typing a long sentence.
a. Is there an easy way to kill the botched sentence and start over?

b. What if only one word is incorrect? Is there an alternative to backspacing
one letter at a time?

4. After you have been working on a paragraph for a while, most likely some
lines will have become too short and others too long. Is there a command
to “neaten up” the paragraph without rebreaking all the lines by hand?

5. Is there a way to change the entire contents of the buffer to capital letters?
Can you think of a way to change just one paragraph?

6. How would you reverse the order of two paragraphs?
7. How would you reverse two words?

8. Imagine that you saw a Usenet posting with something particularly funny
in it and saved the posting to a file. How would you incorporate this file into
your own buffer? What if you wanted to use only a couple of paragraphs
from the posting? How would you add > to the beginning of each included
line?

9. On the keyboard alone emacs has always offered a full set of editing possi-
bilities. Generally, several techniques will accomplish the same goal for any
editing task. In the X environment the choice is enlarged still further with
a new group of mouse-oriented visual alternatives. From these options you
must select the way that you like to solve a given editing puzzle best.

Consider this Shakespearean fragment:

1. Full fathom five thy father Ties;

2. Of his bones are coral made;

3. Those are pearls that were his eyes:
4. Nothing of him that doth fade,

5. But doth suffer a sea-change

280 CHAPTER7 THE emacs EDITOR

6. Into something rich and strange.
7. Sea-nymphs hourly ring his knell:
8. Ding-dong.

9. Hark! now I hear them--

10. Ding-dong, belTl!

The following fragment has been typed with some errors:

Full fathiom five tyy father lies;

. These are pearls that were his eyes:
Of his bones are coral made;
Nothin of him that doth fade,

But doth susffer a sea-change

Into something rich and strange.

Sea-nymphs hourly ring his knell:

Ding=dong.
. Hard! now I hear them--
10. Ding-dong, belT!

CooNOOuUVIh WNR

Use only the keyboard to answer the following;:

a. How many ways can you think of to move the cursor to the spelling
errors?

b. Once the cursor is on or near the errors, how many ways can you think
of to fix them?

c. Are there ways to fix errors without explicitly navigating to or searching
for them? How many can you think of?

d. Lines 2 and 3 in the retyped material are transposed. How many ways can
you think of to correct this situation?

ADVANCED EXERCISES

10. Assume that your buffer contains the C code shown here, with the Major
mode set for C and the cursor positioned at the end of the while line as
shown by the black square:

/%
% Copy string s2 to sl. sl must be Targe enough
% return sl
%/
char =strcpy(char *sl, char #*s2)
{
char *osl;
osl = sl;

while (*sl++ = *S2++)

’
return osl;

ADVANCED EXERCISES 281

* Copy source into dest, stopping after '\Q' is copied, and
* return a pointer to the '\@' at the end of dest. Then our

caller
% can catenate to the dest = string without another strlen call.
*/
char =stpcpy (char *dest, char *source)
{

while ((*dest++ = *source++) != '\0') W

; /% void Toop body =*

return (dest - 1);

}

. Which command moves the cursor to the opening brace of strcpy? Which
command moves the cursor past the closing brace? Can you use these
commands to skip through the buffer in one-procedure steps?

. Assume the cursor is just past the closing parenthesis of the while condi-
tion. How do you move to the matching opening parenthesis? How do
you move back to the matching close parenthesis again? Does the same
command set work for matched [] (square brackets) and {} (braces)?
How does this differ from the vim % command?

. One procedure is indented in the Berkeley indention style; the other is
indented in the GNU style. Which command reindents a line in accor-
dance with the current indention style you have set up? How would you
reindent an entire procedure?

. Suppose that you want to write five string procedures and intend to use
strcpy as a starting point for further editing. How would you make five
copies of the strcpy procedure?

. How would you compile the code without leaving emacs?

This page intentionally left blank

PART Il
THE SHELLS

CHAPTER 8
THE BOURNE AGAIN SHELL (bash) 285

CHAPTER 9
THE TC SHELL (tcsh) 379

283

This page intentionally left blank

IN THIS CHAPTER

Startup Files
Redirecting Standard Error.

Writing and Executing a Simple
Shell Script

JobControl.

Manipulating the Directory
Stack ...l

Reexecuting and Editing
Commands.................

Functions....................

Controlling bash: Features and
Optionscovveninn.

Processing the Command Line ..

THE BOURNE AGAIN

SHELL (bash)

OBJECTIVES

After reading this chapter you should be able to:

» Describe the purpose and history of bash

» List the startup files bash runs

» Use three different methods to run a shell script
» Understand the purpose of the PATH variable
» Manage multiple processes using job control

» Redirect error messages to a file

» Use control operators to separate and group
commands

» Create variables and display the values of variables

and parameters

» List and describe common variables found on the
system

» Reference, repeat, and modify previous commands
using history

» Use control characters to edit the command line
» Create, display, and remove aliases and functions

» Customize the bash environment using the set and
shopt builtins

» List the order of command-line expansion

285

286 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

This chapter picks up where Chapter 5 left off by focusing on the Bourne Again Shell
(bash). It notes where tcsh implementation of a feature differs from that of bash; if
appropriate, you are directed to the page where the alternative implementation is dis-
cussed. Chapter 10 expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again Shell. The bash home page
is at www.gnu.org/software/bash. The bash info page is a complete Bourne Again Shell
reference.

The Bourne Again Shell (bash) and the TC Shell (tcsh) are command interpreters and
high-level programming languages. As command interpreters, they process com-
mands you enter on the command line in response to a prompt. When you use the
shell as a programming language, it processes commands stored in files called shell
scripts. Like other languages, shells have variables and control flow commands (e.g.,
for loops and if statements).

When you use a shell as a command interpreter, you can customize the environment
you work in. You can make the prompt display the name of the working directory,
create a function or an alias for cp that keeps it from overwriting certain kinds of files,
take advantage of keyword variables to change aspects of how the shell works, and
so on. You can also write shell scripts that do your bidding—anything from a one-
line script that stores a long, complex command to a longer script that runs a set of
reports, prints them, and mails you a reminder when the job is done. More complex
shell scripts are themselves programs; they do not just run other programs.
Chapter 10 has some examples of these types of scripts.

Most system shell scripts are written to run under bash (or dash; next page). If you
will ever work in single-user/recovery mode—when you boot the system or perform
system maintenance, administration, or repair work, for example—it is a good idea
to become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 3,
explains how to create and run simple shell scripts, discusses job control, talks
about locale, introduces the basic aspects of shell programming, talks about history
and aliases, and describes command-line expansion. Chapter 9 covers interactive
use of the TC Shell and TC Shell programming, and Chapter 10 presents some more
challenging shell programming problems.

BACKGROUND

bash Shell The Bourne Again Shell is based on the Bourne Shell (an early UNIX shell; this book
refers to it as the original Bourne Shell to avoid confusion), which was written by
Steve Bourne of AT&T’s Bell Laboratories. Over the years the original Bourne Shell

has been expanded, but it remains the basic shell provided with many commercial
versions of UNIX.

http://www.gnu.org/software/bash

BACKGROUND 287

sh Shell

dash Shell

Korn Shell

POSIX

Because of its long and successful history, the original Bourne Shell has been used to
write many of the shell scripts that help manage UNIX systems. Some of these scripts
appear in Linux as Bourne Again Shell scripts. Although the Bourne Again Shell
includes many extensions and features not found in the original Bourne Shell, bash
maintains compatibility with the original Bourne Shell so you can run Bourne Shell
scripts under bash. On UNIX systems the original Bourne Shell is named sh.

On many Linux systems sh is a symbolic link to bash or dash, ensuring scripts that
require the presence of the Bourne Shell still run. When called as sh, bash does its best
to emulate the original Bourne Shell. Under macOS, sh is a copy of bash.

The bash executable file is almost 900 kilobytes, has many features, and is well suited
as a user login shell. The dash (Debian Almquist) shell is about 100 kilobytes, offers
Bourne Shell compatibility for shell scripts (noninteractive use), and because of its
size, can load and execute shell scripts much more quickly than bash.

The Korn Shell (ksh), written by David Korn, ran on System V UNIX. This shell
extended many features of the original Bourne Shell and added many new features.
Some features of the Bourne Again Shell, such as command aliases and command-
line editing, are based on similar features from the Korn Shell.

The POSIX (Portable Operating System Interface) family of related standards is being
developed by PASC (IEEE’s Portable Application Standards Committee; (stan-
dards.ieee.org/develop/wg/PASC_WG.html). A comprehensive FAQ on POSIX,
including many links, appears at www.opengroup.org/austin/papers/posix_faq.html.

POSIX standard 1003.2 describes shell functionality. The Bourne Again Shell provides
the features that match the requirements of this standard. Efforts are under way to
make the Bourne Again Shell fully comply with the POSIX standard. In the meantime,
if you invoke bash with the ——posix option, the behavior of the Bourne Again Shell will
closely match the POSIX requirements.

chsh: changes your login shell

The person who sets up your account determines which shell you use when you first log in on the
system or when you open a terminal emulator window in a GUI environment. Under most Linux
systems, bash is the default shell. You can run any shell you like after you are logged in. Enter
the name of the shell you want to use (bash, tcsh, or another shell) and press RETURN; the next
prompt will be that of the new shell. Give an exit command to return to the previous shell. Because
shells you call in this manner are nested (one runs on top of the other), you will be able to log out
only from your original shell. When you have nested several shells, keep giving exit commands
until you reach your original shell. You will then be able to log out.

The chsh utility changes your login shell more permanently. First give the command chsh. In
response to the prompts, enter your password and the absolute pathname of the shell you want
to use (/bin/bash, /bin/tesh, or the pathname of another shell). When you change your login shell
in this manner using a terminal emulator under a GUI, subsequent terminal emulator windows
might not reflect the change until you log out of the system and log back in. See page 381 for an
example of how to use chsh.

http://stan-dards.ieee.org/develop/wg/PASC_WG.html
http://stan-dards.ieee.org/develop/wg/PASC_WG.html
http://www.opengroup.org/austin/papers/posix_faq.html

288 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

STARTUP FILES

When a shell starts, it runs startup files to initialize itself. Which files the shell runs
depends on whether it is a login shell, an interactive shell that is not a login shell (give
the command bash to run one of these shells), or a noninteractive shell (one used to
execute a shell script). You must have read access to a startup file to execute the com-
mands in it. Typically, Linux distributions put appropriate commands in some of
these files. This section covers bash startup files. See page 382 for information on tcsh
startup files and page 1076 for information on startup files under macOS.

LOGIN SHELLS

/etc/profile

.bash_profile,
.bash_login,
and .profile

A login shell is the first shell that displays a prompt when you log in on a system from
the system console or a virtual console, remotely using ssh or another program, or by
another means. When you are running a GUI and open a terminal emulator such as
gnome-terminal, you are not logging in on the system (you do not provide your username
and password), so the shell the emulator displays is (usually) not a login shell; it is an
interactive nonlogin shell (next page). Login shells are, by their nature, interactive. See
“bash versus —bash” on page 471 for a way to tell which type of shell you are running.

This section describes the startup files that are executed by login shells and shells that
you start with the bash ——login option.

The shell first executes the commands in /etc/profile, establishing systemwide default
characteristics for users running bash. In addition to executing the commands it
holds, some versions of profile execute the commands within each of the files with a
.sh filename extension in the /etc/profile.d directory. This setup allows a user work-
ing with root privileges to modify the commands profile runs without changing the
profile file itself. Because profile can be replaced when the system is updated, making
changes to files in the profile.d directory ensures the changes will remain when the
system is updated.

Set environment variables for all users in /etc/profile or in a *-.sh file in
[etc/profile.d

Setting and exporting a variable in /etc/profile or in a file with a .sh filename extension in the
fetc/profile.d directory makes that variable available to every user’s login shell. Variables that
are exported (placed in the environment) are also available to all interactive and noninteractive
subshells of the login shell.

Next, the shell looks for ~/.bash_profile, ~/.bash_login, or ~/.profile (~/ is shorthand
for your home directory), in that order, executing the commands in the first of these
files it finds. You can put commands in one of these files to override the defaults set
in /etc/profile.

By default, a typical Linux distribution sets up new accounts with ~/.bash_profile
and ~/.bashrc files. The default ~/.bash_profile file calls ~/.bashrc, which calls
/etc/bashrc.

STARTUP FILES 289

.bash_logout When you log out, bash executes commands in the ~/.bash_logout file. This file often
holds commands that clean up after a session, such as those that remove temporary files.

INTERACTIVE NONLOGIN SHELLS

The commands in the preceding startup files are not executed by interactive, nonlogin
shells. However, these shells inherit from the login shell variables that are declared
and exported in these startup files.

.bashre An interactive nonlogin shell executes commands in the ~/.bashrc file. The default
~/.bashrc file calls /etc/bashrc.

fete/bashre Although not called by bash directly, many ~/.bashrc files call /etc/bashre.

NONINTERACTIVE SHELLS

The commands in the previously described startup files are not executed by nonin-
teractive shells, such as those that run shell scripts. However, if these shells are forked
by a login shell, they inherit variables that are declared and exported in these startup
files. Specifically, crontab files (page 781) do not inherit variables from startup files.

BASH_ENV Noninteractive shells look for the environment variable BASH_ENYV (or ENV if the
shell is called as sh) and execute commands in the file named by this variable.

SETTING UP STARTUP FILES

Although many startup files and types of shells exist, usually all you need are the
.bash_profile and .bashrc files in your home directory. Commands similar to the
following in .bash_profile run commands from .bashrc for login shells (when
.bashrc exists). With this setup, the commands in .bashrc are executed by login
and nonlogin shells.

if [-f ~/.bashrc]; then . ~/.bashrc; fi

The [—f ~/.bashrc] tests whether the file named .bashrc in your home directory exists.
See pages 431, 434, and 1005 for more information on test and its synonym []. See
page 290 for information on the . (dot) builtin.

Set PATH in .bash_profile

Because commands in .bashre might be executed many times, and because subshells inherit envi-
ronment (exported) variables, it is a good idea to put commands that add to existing variables in
the .bash_profile file. For example, the following command adds the bin subdirectory of the home
directory to PATH (page 318) and should go in .bash_profile:

PATH=$PATH : $HOME /bin
When you put this command in .bash_profile and not in .bashre, the string is added to the PATH
variable only once, when you log in.

Modifying a variable in .bash_profile causes changes you make in an interactive session to
propagate to subshells. In contrast, modifying a variable in .bashre overrides changes inherited
from a parent shell.

290 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

Sample .bash_profile and .bashrc files follow. Some commands used in these files are
not covered until later in this chapter. In any startup file, you must place in the envi-
ronment (export) those variables and functions that you want to be available to child
processes. For more information refer to “Environment, Environment Variables, and
Inheritance” on page 480.

$ cat ~/.bash_profile
if [-f ~/.bashrc]; then

. ~/.bashrc # Read Tocal startup file if it exists
fi
PATH=$PATH: /usr/local/bin # Add /usr/local/bin to PATH
export PS1='[\h \W \!]\$ ' # Set prompt

The first command in the preceding .bash_profile file executes the commands in the
user’s .bashrc file if it exists. The next command adds to the PATH variable
(page 318). Typically, PATH is set and exported in /etc/profile, so it does not need
to be exported in a user’s startup file. The final command sets and exports PS1
(page 319), which controls the user’s prompt.

The first command in the .bashrc file shown below executes the commands in the
/etc/bashrc file if it exists. Next, the file sets noclobber (page 143), unsets
MAILCHECK (page 319), exports LANG (page 324) and VIMINIT (for vim initializa-
tion; page 202), and defines several aliases. The final command defines a function
(page 356) that swaps the names of two files.

$ cat ~/.bashrc
if [-f /etc/bashrc]1; then

source /etc/bashrc # read global startup file if it exists
fi

set -0 noclobber

unset MAILCHECK

export LANG=C

export VIMINIT='set ai aw'
alias df='df -h'

alias rm="rm -i'

alias 1t='Ts -1trh | tail’
alias h="history | tail’
alias ch="'chmod 755 '

prevent overwriting files

turn off "you have new mail" notice
set LANG variable

set vim options

set up aliases

always do interactive rm's

oo KWW

function switch() { # a function to exchange
Tocal tmp=$$switch # the names of two files
mv "$1" $tmp
mv ll$2ll ll$1ll
mv $tmp "$2"

}

. (DOT) OR source: RUNS A STARTUP FILE IN THE CURRENT SHELL

After you edit a startup file such as .bashrc, you do not have to log out and log in
again to put the changes into effect. Instead, you can run the startup file using the

COMMANDS THAT ARE SymBoLs 291

. (dot) or source builtin (they are the same command under bash; only source is avail-
able under tcsh [page 421]). As with other commands, the . must be followed by a
SPACE on the command line. Using . or source is similar to running a shell script, except
these commands run the script as part of the current process. Consequently, when
you use . or source to run a script, changes you make to variables from within the
script affect the shell you run the script from. If you ran a startup file as a regular shell
script and did not use the . or source builtin, the variables created in the startup file
would remain in effect only in the subshell running the script—not in the shell you
ran the script from. You can use the . or source command to run any shell script—
not just a startup file—but undesirable side effects (such as changes in the values of
shell variables you rely on) might occur. For more information refer to “Environ-
ment, Environment Variables, and Inheritance” on page 480.

In the following example, .bashrc sets several variables and sets PS1, the bash
prompt, to the name of the host. The . builtin puts the new values into effect.

$ cat ~/.bashrc

export TERM=xterm # set the terminal type
export PS1="$(hostname -f): " # set the prompt string
export CDPATH=:$HOME # add HOME to CDPATH string
stty kill 'Au' # set kill Tine to control-u
$. ~/.bashrc

guava:

COMMANDS THAT ARE SYMBOLS

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways. To
minimize confusion, Table 8-1 lists the most common use of each of these symbols
and the page on which it is discussed.

Builtin commands that are symbols

Symbol Command

() Subshell (page 302)

$() Command substitution (page 371)

(()) Arithmetic evaluation; a synonym for let (use when the enclosed value
contains an equal sign; page 505)

$(()) Arithmetic expansion (not for use with an enclosed equal sign; page 369)

[1 The test command (pages 431, 434, and 1005)

(L1l Conditional expression; similar to [] but adds string comparisons (page 506)

292 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

REDIRECTING STANDARD ERROR

File descriptors

Chapter 5 covered the concept of standard output and explained how to redirect
standard output of a command. In addition to standard output, commands can send
output to standard error. A command might send error messages to standard error
to keep them from getting mixed up with the information it sends to standard output.

Just as it does with standard output, by default the shell directs standard error to the
screen. Unless you redirect one or the other, you might not know the difference
between the output a command sends to standard output and the output it sends to
standard error. One difference is that the system buffers standard output but does not
buffer standard error. This section describes the syntax used by bash to redirect stan-
dard error and to distinguish between standard output and standard error. See
page 389 if you are using tcsh.

A file descriptor is the place a program sends its output to and gets its input from.
When you execute a program, the shell opens three file descriptors for the program:
0 (standard input), 1 (standard output), and 2 (standard error). The redirect output
symbol (> [page 140]) is shorthand for 1>, which tells the shell to redirect standard
output. Similarly < (page 142) is short for O<, which redirects standard input. The
symbols 2> redirect standard error. For more information refer to “File Descriptors”
on page 464.

The following examples demonstrate how to redirect standard output and standard
error to different files and to the same file. When you run the cat utility with the name
of a file that does not exist and the name of a file that does exist, cat sends an error
message to standard error and copies the file that does exist to standard output.
Unless you redirect them, both messages appear on the screen.

$ cat y

This 1is y.

$ cat x

cat: x: No such file or directory

$ cat x y
cat: x: No such file or directory
This 1is y.

When you redirect standard output of a command, output sent to standard error is
not affected and still appears on the screen.

$ cat x y > hold

cat: x: No such file or directory
$ cat hold

This 1is y.

Similarly, when you send standard output through a pipeline, standard error is not
affected. The following example sends standard output of cat through a pipeline to
tr (page 1014), which in this example converts lowercase characters to uppercase.

REDIRECTING STANDARD ERROR 293

Combining
standard output and
standard error

Duplicating a file
descriptor

Sending errors
through a pipeline

The text that cat sends to standard error is not translated because it goes directly to
the screen rather than through the pipeline.

$ cat x y | tr "[a-2]" "[A-Z]"
cat: x: No such file or directory
THIS IS Y.

The following example redirects standard output and standard error to different files.
The shell redirects standard output (file descriptor 1) to the filename following 1>.
You can specify > in place of 1>. The shell redirects standard error (file descriptor 2)
to the filename following 2>.

$ cat x y 1> holdl 2> hold2

$ cat holdl

This 1is vy.

$ cat hold2

cat: x: No such file or directory

In the next example, the &> token redirects standard output and standard error to
a single file. The >& token performs the same function under tcsh (page 389).

$ cat x y & hold

$ cat hold

cat: x: No such file or directory
This 1is y.

In the next example, first 1> redirects standard output to hold, and then 2>&1 declares
file descriptor 2 to be a duplicate of file descriptor 1. As a result, both standard output
and standard error are redirected to hold.

$ cat x y 1> hold 2>&1

$ cat hold

cat: x: No such file or directory
This 1is vy.

In this case, 1> hold precedes 2>&1. If they had appeared in the opposite order, stan-
dard error would have been made a duplicate of standard output before standard
output was redirected to hold. Only standard output would have been redirected
to hold in that case.

The next example declares file descriptor 2 to be a duplicate of file descriptor 1 and
sends the output for file descriptor 1 (as well as file descriptor 2) through a pipeline
to the tr command.

$ cat x y 2>&1 | tr "[a-z]" "[A-Z]"
CAT: X: NO SUCH FILE OR DIRECTORY
THIS IS Y.

The token 1& is shorthand for 2>&1 |:

$ cat x y |& tr "[a-z]" "[A-Z]"
CAT: X: NO SUCH FILE OR DIRECTORY
THIS IS Y.

294 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

Sending errors to - You can use 1>&2 (or simply >&2; the 1 is not required) to redirect standard output
standard error of a command to standard error. Shell scripts use this technique to send the output
of echo to standard error. In the following script, standard output of the first echo is

redirected to standard error:

$ cat message_demo
echo This is an error message. 1>&2
echo This is not an error message.

If you redirect standard output of message_demo, error messages such as the one pro-
duced by the first echo appear on the screen because you have not redirected standard
error. Because standard output of a shell script is frequently redirected to a file, you
can use this technique to display on the screen any error messages generated by the
script. The Inks script (page 439) uses this technique. You can use the exec builtin to
create additional file descriptors and to redirect standard input, standard output, and
standard error of a shell script from within the script (page 494).

The Bourne Again Shell supports the redirection operators shown in Table 8-2.

Redirection operators

Operator Meaning
< filename Redirects standard input from filename.
> filename Redirects standard output to filename unless filename exists and noclobber

(page 143) is set. If noclobber is not set, this redirection creates filename if it
does not exist and overwrites it if it does exist.

>! filename Redirects standard output to filename, even if the file exists and noclobber
(page 143) is set.

>> filename Redirects and appends standard output to filename, creates filename if it does
not exist.

&> filename Redirects standard output and standard error to filename.

<&m Duplicates standard input from file descriptor m (page 465).

[n]>&m Duplicates standard output or file descriptor nif specified from file descriptor
m (page 465).

[n}<&— Closes standard input or file descriptor nif specified (page 465).

[n]>&— Closes standard output or file descriptor n if specified.

WRITING AND EXECUTING A SIMPLE SHELL SCRIPT

A shell script is a file that holds commands the shell can execute. The commands in
a shell script can be any commands you can enter in response to a shell prompt. For

WRITING AND EXECUTING A SIMPLE SHELL SCRIPT 295

example, a command in a shell script might run a utility, a compiled program, or
another shell script. Like the commands you give on the command line, a command
in a shell script can use ambiguous file references and can have its input or output
redirected from or to a file or sent through a pipeline. You can also use pipelines and
redirection with the input and output of the script itself.

In addition to the commands you would ordinarily use on the command line, con#rol
flow commands (also called control structures) find most of their use in shell scripts.
This group of commands enables you to alter the order of execution of commands
in a script in the same way you would alter the order of execution of statements using
a structured programming language. Refer to “Control Structures” on page 430
(bash) and page 408 (tcsh) for specifics.

The shell interprets and executes the commands in a shell script, one after another.
Thus, a shell script enables you to simply and quickly initiate a complex series of
tasks or a repetitive procedure.

chmod: MAKES A FILE EXECUTABLE

To execute a shell script by giving its name as a command, you must have permission
to read and execute the file that contains the script (refer to “Access Permissions” on
page 100). Read permission enables you to read the file that holds the script. Execute
permission tells the system that the owner, group, and/or public has permission to
execute the file; it implies the content of the file is executable.

When you create a shell script using an editor, the file does not typically have its
execute permission set. The following example shows a file named whoson that
contains a shell script:

$ cat whoson

date

echo "Users Currently Logged In"
who

$./whoson

bash: ./whoson: Permission denied

You cannot execute whoson by giving its name as a command because you do not have
execute permission for the file. The system does not recognize whoson as an executable
file and issues the error message Permission denied when you try to execute it. (See the
tip on the next page if the shell issues a command not found error message.) When you
give the filename as an argument to bash (bash whoson), bash assumes the argument is
a shell script and executes it. In this case bash is executable, and whoson is an argument
that bash executes, so you do not need execute permission to whoson. You must have
read permission.

The chmod utility changes the access privileges associated with a file. Figure 8-1
shows Is with the -1 option displaying the access privileges of whoson before and after
chmod gives execute permission to the file’s owner.

296 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

The first Is displays a hyphen (=) as the fourth character, indicating the owner does
not have permission to execute the file. Next, chmod gives the owner execute permis-
sion: u+x causes chmod to add (+) execute permission (x) for the owner (u). (The u
stands for user, although it means the owner of the file.) The second argument is the
name of the file. The second Is shows an x in the fourth position, indicating the owner
has execute permission.

Command not found?

If you give the name of a shell script as a command without including the leading ./, the shell
typically displays the following error message:

$ whoson

bash: whoson: command not found
This message indicates the shell is not set up to search for executable files in the working directory.
Enter this command instead:

$./whoson

The ./ tells the shell explicitly to look for an executable file in the working directory. Although not
recommended for security reasons, you can change the PATH variable so the shell searches the
working directory automatically; see PATH on page 318.

If other users will execute the file, you must also change group and/or public access per-
missions for the file. Any user must have execute access to use the file’s name as a
command. If the file is a shell script, the user trying to execute the file must have read
access to the file as well. You do not need read access to execute a binary executable
(compiled program).

The final command in Figure 8-1 shows the shell executing the file when its name is
given as a command. For more information refer to “Access Permissions” on
page 100 as well as the discussions of Is and chmod in Part VII.

$ 1s -1 whoson
-r{>w-r--. 1 max pubs 40 05-24 11:30 whoson

$ chmod u+x whoson
$ 1s -1 whoson
-r@yw-r--. 1 max pubs 40 05-24 11:30 whoson

$./whoson
Fri May 25 11:40:49 PDT 2018
Users Currently Logged In

zach pts/7 2018-05-23 18:17
hls pts/1 2018-05-24 09:59
sam pts/12 2018-05-24 06:29 (guava)
max pts/4 2018-05-24 09:08

Figure 8-1 Using chmod to make a shell script executable

WRITING AND EXECUTING A SIMPLE SHELL SCRIPT 297

#! SPECIFIES A SHELL

You can put a special sequence of characters on the first line of a shell script to tell
the operating system which shell (or other program) should execute the file and
which options you want to include. Because the operating system checks the initial
characters of a program before attempting to execute it using exec, these characters
save the system from making an unsuccessful attempt. If #! (sometimes said out loud
as hashbang or shebang) are the first two characters of a script, the system interprets
the characters that follow as the absolute pathname of the program that is to execute
the script. This pathname can point to any program, not just a shell, and can be useful
if you have a script you want to run with a shell other than the shell you are running
the script from. The following example specifies that bash should run the script:

$ cat bash_script
#!/bin/bash
echo "This 1is a Bourne Again Shell script."”

The bash -e and —u options can make your programs less fractious

The bash —e (errexit) option causes bash to exit when a simple command (e.g., not a control
structure) fails. The bash —u (nounset) option causes bash to display a message and exit when
it tries to expand an unset variable. See Table 8-13 on page 361 for details. It is easy to turn these
options on in the !# line of a bash script:

#!/bin/bash -eu
These options can prevent disaster when you mistype lines like this in a script:

MYDIR=/tmp/$$

cd $MYDIr; rm -rf .
During development, you can also specify the =x option in the '# line to turn on debugging
(page 442).

The next example runs under Perl and can be run directly from the shell without
explicitly calling Perl on the command line:

$ cat ./perl_script.pl
#!/usr/bin/perl -w
print "This is a Perl script.\n";

$./perl_script.pl
This is a Perl script.

The next example shows a script that should be executed by tcsh:

$ cat tcsh_script
#!/bin/tcsh

echo "This is a tcsh script.”
set person = zach

echo "person is $person"”

Because of the #! line, the operating system ensures that tcsh executes the script no
matter which shell you run it from.

http:///perl_script.pl
http:///perl_script.pl

298 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

You can use ps —f within a shell script to display the name of the program that is
executing the script. The three lines that ps displays in the following example show
the process running the parent bash shell, the process running the tcsh script, and
the process running the ps command:

$ cat tcsh_script2
#!/bin/tcsh

ps -f

$./tcsh_script2

UID PID PPID C STIME TTY TIME CMD

max 3031 3030 O Novl6 pts/4 00:00:00 -bash

max 9358 3031 0 21:13 pts/4 00:00:00 /bin/tcsh ./tcsh_script2
max 9375 9358 0 21:13 pts/4 00:00:00 ps -f

If you do not follow #! with the name of an executable program, the shell reports it
cannot find the program you asked it to run. You can optionally follow #! with SPACEs
before the name of the program. If you omit the #! line and try to run, for example,
a tesh script from bash, the script will run under bash and might generate error mes-
sages or not run properly. See page 682 for an example of a stand-alone sed script
that uses #!.

BEGINS A COMMENT

Comments make shell scripts and all code easier to read and maintain by you and
others. The comment syntax is common to both the Bourne Again Shell and the TC

Shell.

If a hashmark (#) in the first character position of the first line of a script is not imme-
diately followed by an exclamation point (!) or if a hashmark occurs in any other
location in a script, the shell interprets it as the beginning of a comment. The shell
then ignores everything between the hashmark and the end of the line (the next NEWLINE
character).

EXECUTING A SHELL SCRIPT

fork and exec As discussed earlier, you can execute commands in a shell script file that you do not
system calls have execute permission for by using a bash command to exec a shell that runs the
script directly. In the following example, bash creates a new shell that takes its input

from the file named whoson:

$ bash whoson

Because the bash command expects to read a file containing commands, you do not
need execute permission for whoson. (You do need read permission.) Even though bash
reads and executes the commands in whoson, standard input, standard output, and
standard error remain directed from/to the terminal. Alternatively, you can supply
commands to bash using standard input:

$ bash < whoson

CONTROL OPERATORS: SEPARATE AND GROUP COMMANDS 299

Although you can use bash to execute a shell script, these techniques cause the script
to run more slowly than if you give yourself execute permission and directly invoke the
script. Users typically prefer to make the file executable and run the script by typing its
name on the command line. It is also easier to type the name, and this practice is con-
sistent with the way other kinds of programs are invoked (so you do not need to know
whether you are running a shell script or an executable file). However, if bash is not
your interactive shell or if you want to see how the script runs with different shells, you
might want to run a script as an argument to bash or tcsh.

sh does not call the original Bourne Shell

The original Bourne Shell was invoked with the command sh. Although you can call bash or, on
some systems dash, with an sh command, it is not the original Bourne Shell. The sh command
(/bin/sh) is a symbolic link to /bin/bash or /bhin/dash, so it is simply another name for the bash or
dash command. When you call bash using the command sh, bash tries to mimic the behavior
of the original Bourne Shell as closely as possible—but it does not always succeed.

CONTROL OPERATORS: SEPARATE AND GROUP COMMANDS

Whether you give the shell commands interactively or write a shell script, you must
separate commands from one another. This section, which applies to the Bourne
Again and TC Shells, reviews the ways to separate commands that were covered in
Chapter 5 and introduces a few new ones.

The tokens that separate, terminate, and group commands are called control
operators. Each of the control operators implies line continuation as explained
on page 512. Following is a list of the control operators and the page each is
discussed on.

¢ ; Command separator (next page)

e NEWLINE Command initiator (next page)
¢ & Background task (next page)

e | Pipeline (next page)

¢ |& Standard error pipeline (page 293)
* () Groups commands (page 302)

¢ |l Boolean OR (page 302)

e && Boolean AND (page 302)

¢ ;; Case terminator (page 454)

300 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

; AND NEWLINE SEPARATE COMMANDS

Whitespace

The NEWLINE character is a unique control operator because it initiates execution of the
command preceding it. You have seen this behavior throughout this book each time
you press the RETURN key at the end of a command line.

The semicolon () is a control operator that does not initiate execution of a command
and does not change any aspect of how the command functions. You can execute a
series of commands sequentially by entering them on a single command line and sep-
arating each from the next using a semicolon (;). You initiate execution of the
sequence of commands by pressing RETURN:

$x5y;z

If x, y, and z are commands, the preceding command line yields the same results as
the next three commands. The difference is that in the next example the shell issues
a prompt after each of the commands finishes executing, whereas the preceding com-
mand line causes the shell to issue a prompt only after z is complete:

©#H A o
N < X

Although the whitespace (SPACEs and/or TABs) around the semicolons in the previous
example makes the command line easier to read, it is not necessary. None of the control
operators needs to be surrounded by whitespace.

| AND & SEPARATE COMMANDS AND DO SOMETHING ELSE

The pipe symbol (I) and the background task symbol (&) are also control operators.
They do not start execution of a command but do change some aspect of how the
command functions. The pipe symbol alters the source of standard input or the des-
tination of standard output. The background task symbol causes the shell to execute
the task in the background and display a prompt immediately so you can continue
working on other tasks.

Each of the following command lines initiates a pipeline (page 145) comprising three

simple commands:

$ x
]

lyl z
$ -1

s grep tmp | less

In the first pipeline, the shell redirects standard output of x to standard input of y and
redirects y’s standard output to z’s standard input. Because it runs the entire pipeline
in the foreground, the shell does not display a prompt until task z runs to completion:
z does not finish until y finishes, and y does not finish until x finishes. In the second
pipeline, x is an Is -1 command, y is grep tmp, and z is the pager less. The shell dis-
plays a long (wide) listing of the files in the working directory that contain the string
tmp, sent via a pipeline through less.

CONTROL OPERATORS: SEPARATE AND GROUP CoMmMANDS 301

The next command line executes a list (page 149) by running the simple commands
d and e in the background and the simple command f in the foreground:

$d&ed&f
[1] 14271
[2] 14272

The shell displays the job number between brackets and the PID number for each
process running in the background. It displays a prompt as soon as f finishes, which
might be before d or e finishes.

Before displaying a prompt for a new command, the shell checks whether any back-
ground jobs have completed. For each completed job, the shell displays its job
number, the word Done, and the command line that invoked the job; the shell then
displays a prompt. When the job numbers are listed, the number of the last job started
is followed by a + character, and the job number of the previous job is followed by a
— character. Other job numbers are followed by a SPACE character. After running the
last command, the shell displays the following lines before issuing a prompt:

[1]- Done d
[2]+ Done e

The next command line executes a list that runs three commands as background jobs.
The shell displays a shell prompt immediately:

$d&ed&f&
[1] 14290
[2] 14291
[3] 14292

The next example uses a pipe symbol to send the output from one command to the
next command and an ampersand (&) to run the entire pipeline in the background.
Again, the shell displays the prompt immediately. The shell commands that are part
of a pipeline form a single job. That is, the shell treats a pipeline as a single job, no
matter how many commands are connected using pipe () symbols or how complex
they are. The Bourne Again Shell reports only one process in the background
(although there are three):

$d]le]| f&
[1] 14295

The TC Shell shows three processes (all belonging to job 1) in the background:

tcsh $d| e]| f&
[1] 14302 14304 14306

&& AND || BOOLEAN CONTROL OPERATORS

The && (AND) and Il (OR) Boolean operators are called short-circuiting control
operators. If the result of using one of these operators can be decided by looking
only at the left operand, the right operand is not evaluated. The result of a Boolean
operation is either 0 (true) or 1 (false).

302 CHAPTER S8

THE BOURNE AGAIN SHELL (bash)

&&

optional

The & & operator causes the shell to test the exit status of the command preceding
it. If the command succeeds, bash executes the next command; otherwise, it skips the
next command. You can use this construct to execute commands conditionally.

$ mkdir bkup && cp -r src bkup

This compound command creates the directory bkup. If mkdir succeeds, the content
of directory src is copied recursively to bkup.

The Il control operator also causes bash to test the exit status of the first command
but has the opposite effect: The remaining command(s) are executed only if the first
command failed (that is, exited with nonzero status).

$ mkdir bkup || echo "mkdir of bkup failed" >> /tmp/log

The exit status of a command list is the exit status of the last command in the list.
You can group lists with parentheses. For example, you could combine the previous
two examples as

$ (mkdir bkup & cp -r src bkup) || echo "mkdir failed" >> /tmp/log

In the absence of parentheses, & & and Il have equal precedence and are grouped from
left to right. The following examples use the true and false utilities. These utilities do
nothing and return true (0) and false (1) exit statuses, respectively:

$ false; echo $?
1

The $? variable holds the exit status of the preceding command (page 477). The next
two commands yield an exit status of 1 (false):

$ true || false && false

$ echo $?

1

$ (true || false) && false
$ echo $?

1

Similarly, the next two commands yield an exit status of 0 (true):

§ false && false || true

$ echo $?

(4]

$ (false && false) || true
$ echo $?

0

See “Lists” on page 149 for more examples.

() GRours COMMANDS

You can use the parentheses control operator to group commands. When you use this
technique, the shell creates a copy of itself, called a subshell, for each group. It treats
each group of commands as a list and creates a new process to execute each command

CONTROL OPERATORS: SEPARATE AND GROUP COMMANDS 303

(refer to “Process Structure” on page 333 for more information on creating sub-
shells). Each subshell has its own environment, meaning it has its own set of variables
whose values can differ from those in other subshells.

The following command line executes commands a and b sequentially in the back-
ground while executing ¢ in the background. The shell displays a prompt
immediately.

$(a;b) &cé&
[1] 15520
[2] 15521

The preceding example differs from the earlier example d & e & f & in that tasks a
and b are initiated sequentially, not concurrently.

Similarly the following command line executes a and b sequentially in the back-
ground and, at the same time, executes ¢ and d sequentially in the background. The
subshell running a and b and the subshell running ¢ and d run concurrently. The shell
displays a prompt immediately.

$(@a;b)&(c;dg&

[1] 15528
[2] 15529

The next script copies one directory to another. The second pair of parentheses creates
a subshell to run the commands following the pipe symbol. Because of these parentheses,
the output of the first tar command is available for the second tar command, despite the
intervening cd command. Without the parentheses, the output of the first tar command
would be sent to cd and lost because cd does not process standard input. The shell vari-
ables $1 and $2 hold the first and second command-line arguments (page 471),
respectively. The first pair of parentheses, which creates a subshell to run the first two
commands, allows users to call cpdir with relative pathnames. Without them, the first
cd command would change the working directory of the script (and consequently the
working directory of the second cd command). With them, only the working directory
of the subshell is changed.

$ cat cpdir
(cd $1 ; tar -cf - .) | (cd $2 ; tar -xvf -)
$./cpdir /home/max/sources /home/max/memo/biblio

The cpdir command line copies the files and directories in the /home/max/sources
directory to the directory named /home/max/memo/biblio. Running this shell script
is the same as using cp with the —r option. See page 772 for more information on cp.

\ CONTINUES A COMMAND

Although it is not a control operator, you can use a backslash (\) character in the mid-
dle of commands. When you enter a long command line and the cursor reaches the
right side of the screen, you can use a backslash to continue the command on the next
line. The backslash quotes, or escapes, the NEWLINE character that follows it so the shell
does not treat the NEWLINE as a control operator. Enclosing a backslash within single
quotation marks or preceding it with another backslash turns off the power of a

304 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

optional

backslash to quote special characters such as NEWLINE (not tcsh; see prompt2 on
page 404). Enclosing a backslash within double quotation marks has no effect on the
power of the backslash (not tcsh).

Although you can break a line in the middle of a word (token), it is typically simpler,
and makes code easier to read, if you break a line immediately before or after
whitespace.

You can enter a RETURN in the middle of a quoted string on a command line without
using a backslash. (See prompt2 on page 404 for tcsh behavior.) The NEWLINE (RETURN)
you enter will then be part of the string:

$ echo "Please enter the three values

> required to complete the transaction."
Please enter the three values

required to complete the transaction.

In the three examples in this section, the shell does not interpret RETURN as a control
operator because it occurs within a quoted string. The greater than sign (>) is a sec-
ondary prompt (PS2; page 321) indicating the shell is waiting for you to continue the
unfinished command. In the next example, the first RETURN is quoted (escaped) so the
shell treats it as a separator and does not interpret it literally.

$ echo "Please enter the three values \
> required to complete the transaction."
Please enter the three values required to complete the transaction.

Single quotation marks cause the shell to interpret a backslash literally:

$ echo 'Please enter the three values \
> required to complete the transaction.'
Please enter the three values \

required to complete the transaction.

JoB CONTROL

As explained on page 150, a job is another name for a process running a pipeline
(which can be a simple command). You run one or more jobs whenever you give the
shell a command. For example, if you type date on the command line and press RETURN,
you have run a job. You can also create several jobs on a single command line by
entering several simple commands separated by control operators (& in the following
example):

$ find . -print | sort | 1pr & grep -1 max /tmp/+ > maxfiles &
[1] 18839
[2] 18876

JoB ConTROL 305

The portion of the command line up to the first & is one job—a pipeline comprising
three simple commands connected by pipe symbols: find, sort, and Ipr. The second job
is a pipeline that is a simple command (grep). The & characters following each pipe-
line put each job in the background, so bash does not wait for them to complete
before displaying a prompt.

Using job control you can move jobs from the foreground to the background, and
vice versa; temporarily stop jobs; and list jobs that are running in the background or
stopped.

jobs: LISTS JoBS

The jobs builtin lists all background jobs. In the following example, the sleep command
runs in the background and creates a background job that jobs reports on:

$ sleep 60 &

[1] 7809

$ jobs

[1] + Running sleep 60 &

fg: BRINGS A JOB TO THE FOREGROUND

The shell assigns a job number to each job you run in the background. For each job
run in the background, the shell lists the job number and PID number immediately,
just before it issues a prompt:

$ gnome-calculator &

[1] 1246

$ date &

[2] 1247

$ Fri Dec 7 11:44:40 PST 2018

[2]+ Done date

$ find /usr -name ace -print > findout &
[2] 1269

$ jobs

[1]- Running gnome-calculator &
[2]+ Running find /usr -name ace -print > findout &

The shell discards job numbers when a job is finished and reuses discarded job numbers.
When you start or put a job in the background, the shell assigns a job number that is
one more than the highest job number in use.

In the preceding example, the jobs command lists the first job, gnome-calculator, as
job 1. The date command does not appear in the jobs list because it finished before
jobs was run. Because the date command was completed before find was run, the find
command became job 2.

To move a background job to the foreground, use the fg builtin followed by the job
number. Alternatively, you can give a percent sign (%) followed by the job number
as a command. Either of the following commands moves job 2 to the foreground.

306 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

When you move a job to the foreground, the shell displays the command it is now
executing in the foreground.

$ fg 2
find /usr -name ace -print > findout

or

$ %2
find /usr -name ace -print > findout

You can also refer to a job by following the percent sign with a string that uniquely
identifies the beginning of the command line used to start the job. Instead of the pre-
ceding command, you could have used either fg %find or fg %f because both
uniquely identify job 2. If you follow the percent sign with a question mark and a
string, the string can match any part of the command line. In the preceding example,
fg %?ace would also bring job 2 to the foreground.

Often, the job you wish to bring to the foreground is the only job running in the back-
ground or is the job that jobs lists with a plus (+). In these cases, calling fg without
an argument brings the job to the foreground.

SUSPENDING A JOB

Pressing the suspend key (usually CONTROL-Z) immediately suspends (temporarily stops)
the job in the foreground and displays a message that includes the word Stopped.

CONTROL-Z
[2]+ Stopped find /usr -name ace -print > findout

For more information refer to “Moving a Job from the Foreground to the Background”
on page 151.

bg: SENDS A JOB TO THE BACKGROUND

To move the foreground job to the background, you must first suspend the job
(above). You can then use the bg builtin to resume execution of the job in the
background.

$ bg
[2]+ find /usr -name ace -print > findout &

If a background job attempts to read from the terminal, the shell stops the job and
displays a message saying the job has been stopped. You must then move the job to
the foreground so it can read from the terminal.

$ (sleep 5; cat > mytext) &
[1] 1343

$ date

Fri Dec 7 11:58:20 PST 2018

MANIPULATING THE DIRECTORY STACK 307

[1]+ Stopped (sleep 5; cat >mytext)
$ fg

(sleep 5; cat >mytext)

Remember to let the cat out!

CONTROL-D

$

In the preceding example, the shell displays the job number and PID number of the
background job as soon as it starts, followed by a prompt. Demonstrating that you
can give a command at this point, the user gives the command date, and its output
appears on the screen. The shell waits until just before it issues a prompt (after date
has finished) to notify you that job 1 is stopped. When you give an fg command, the
shell puts the job in the foreground, and you can enter the data the command is wait-
ing for. In this case the input needs to be terminated using CONTROL-D, which sends an
EOF (end of file) signal to cat. The shell then displays another prompt.

The shell keeps you informed about changes in the status of a job, notifying you when
a background job starts, completes, or stops, perhaps because it is waiting for input
from the terminal. The shell also lets you know when a foreground job is suspended.
Because notices about a job being run in the background can disrupt your work, the
shell delays displaying these notices until just before it displays a prompt. You can
set notify (page 363) to cause the shell to display these notices without delay.

If you try to exit from a nonlogin shell while jobs are stopped, the shell issues a
warning and does not allow you to exit. If you then use jobs to review the list of
jobs or you immediately try to exit from the shell again, the shell allows you to exit.
If huponexit (page 362) is not set (it is not set by default), stopped jobs remain
stopped and background jobs keep running in the background. If it is set, the shell
terminates these jobs.

MANIPULATING THE DIRECTORY STACK

Both the Bourne Again Shell and the TC Shell allow you to store a list of directories
you are working with, enabling you to move easily among them. This list is referred
to as a stack. It is analogous to a stack of dinner plates: You typically add plates to
and remove plates from the top of the stack, so this type of stack is named a LIFO
(last in, first out) stack.

dirs: DISPLAYS THE STACK

The dirs builtin displays the contents of the directory stack. If you call dirs when the
directory stack is empty, it displays the name of the working directory:

$ dirs
~/Titerature

308 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

The dirs builtin uses a tilde (~) to represent the name of a user’s home directory. The
examples in the next several sections assume you are referring to the directory struc-
ture shown in Figure 8-2.

pushd: PUSHES A DIRECTORY ON THE STACK

When you supply the pushd (push directory) builtin with one argument, it pushes the
directory specified by the argument on the stack, changes directories to the specified
directory, and displays the stack. The following example is illustrated in Figure 8-3:

$ pushd ../demo

~/demo ~/1iterature

$ pwd

/home/sam/demo

$ pushd ../names

~/names ~/demo ~/literature

$ pwd

/home/sam/names
When you call pushd without an argument, it swaps the top two directories on the
stack, makes the new top directory (which was the second directory) the new work-

ing directory, and displays the stack (Figure 8-4).

$ pushd

~/demo ~/names ~/literature
$ pwd

/home/sam/demo

Using pushd in this way, you can easily move back and forth between two directories.
You can also use cd - to change to the previous directory, whether or not you have
explicitly created a directory stack. To access another directory in the stack, call
pushd with a numeric argument preceded by a plus sign. The directories in the stack
are numbered starting with the top directory, which is number 0. The following pushd
command continues with the previous example, changing the working directory to
literature and moving literature to the top of the stack:

€
<D
© @ @
@D

Figure 8-2 The directory structure used in the examples

MANIPULATING THE DIRECTORY STACK 309

$ pushd +2

~/1iterature ~/demo ~/names
$ pwd

/home/sam/11iterature

(@ pushd

()pushd

Figure 8-3 Creating a directory stack

pushd pushd

Hoo
a0
100

Figure 8-4 Using pushd to change working directories

popd: PoPS A DIRECTORY OFF THE STACK

To remove a directory from the stack, use the popd (pop directory) builtin. As the
following example and Figure 8-5 show, without an argument, popd removes the

popd

UURt

Figure 8-5 Using popd to remove a directory from the stack

310 CHAPTERS8

THE BOURNE AGAIN SHELL (bash)

top directory from the stack and changes the working directory to the new top
directory:

$ dirs

~/1iterature ~/demo ~/names
$ popd

~/demo ~/names

$ pwd

/home/sam/demo

To remove a directory other than the top one from the stack, use popd with a numeric
argument preceded by a plus sign. The following example removes directory number
1, demo. Removing a directory other than directory number 0 does not change the
working directory.

$ dirs

~/Titerature ~/demo ~/names
$ popd +1

~/Titerature ~/names

PARAMETERS AND VARIABLES

Shell parameter

Variables

User-created
variables

Shell variables
and environment
variables

Within a shell, a shell parameter is associated with a value you or a shell script can
access. This section introduces the following kinds of shell parameters: user-created
variables, keyword variables, positional parameters, and special parameters.

Parameters whose names consist of letters, digits, and underscores are referred to as
variables. A variable name must start with a letter or underscore, not with a number.
Thus, A76, MY_CAT, and ___X___ are valid variable names, whereas
69TH_STREET (starts with a digit) and MY-NAME (contains a hyphen) are not.

Variables that you name and assign values to are user-created variables. You can
change the values of user-created variables at any time, or you can make them
readonly so that their values cannot be changed.

By default, a variable is available only in the shell it was created in (i.e., local); this type
of variable is called a shell variable. You can use export to make a variable available in
shells spawned from the shell it was created in (i.e., global); this type of variable is called
an environment variable. One naming convention is to use mixed-case or lowercase
letters for shell variables and only uppercase letters for environment variables. Refer to
“Variables” on page 479 for more information on shell variables and environment
variables.

To declare and initialize a variable in bash, use the following syntax:
VARIABLE=value

There can be no whitespace on either side of the equal sign (=). An example follows:

PARAMETERS AND VARIABLES 311

Declaring and
initializing a variable
for a script

Keyword variables

Positional and
special parameters

$ myvar=abc

Under tcsh the assignment must be preceded by the word set and the SPACEs on either
side of the equal sign are optional:

$ set myvar = abc

The Bourne Again Shell permits you to put variable assignments at the beginning of
a command line. This type of assignment places variables in the environment of the
command shell—that is, the variable is accessible only from the program (and the
children of the program) the command runs. It is not available from the shell running
the command. The my_script shell script displays the value of TEMPDIR. The fol-
lowing command runs my_script with TEMPDIR set to /home/sam/temp. The echo
builtin shows that the interactive shell has no value for TEMPDIR after running
my_script. If TEMPDIR had been set in the interactive shell, running my_script in
this manner would have had no effect on its value.

$ cat my_script

echo $TEMPDIR

$ TEMPDIR=/home/sam/temp ./my_script
/home/sam/temp

$ echo $TEMPDIR

$

Keyword variables have special meaning to the shell and usually have short, mne-
monic names. When you start a shell (by logging in, for example), the shell inherits
several keyword variables from the environment. Among these variables are HOME,
which identifies your home directory, and PATH, which determines which directories
the shell searches and in which order to locate commands you give the shell. The shell
creates and initializes (with default values) other keyword variables when you start
it. Still other variables do not exist until you set them.

You can change the values of most keyword shell variables. It is usually not necessary
to change the values of keyword variables initialized in the /etc/profile or
/etc/csh.cshre systemwide startup files. If you need to change the value of a bash key-
word variable, do so in one of your startup files (for bash see page 288; for tcsh see
page 382). Just as you can make user-created variables environment variables, so you
can make keyword variables environment variables—a task usually done automati-
cally in startup files. You can also make a keyword variable readonly. See page 317
for a discussion of keyword variables.

The names of positional and special parameters do not resemble variable names.
Most of these parameters have one-character names (for example, 1, ?, and #) and
are referenced (as are all variables) by preceding the name with a dollar sign ($1, $2,
and $#). The values of these parameters reflect different aspects of your ongoing
interaction with the shell.

312 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

Whenever you run a command, each argument on the command line becomes the
value of a positional parameter (page 470). Positional parameters enable you to
access command-line arguments, a capability you will often require when you write
shell scripts. The set builtin (page 472) enables you to assign values to positional
parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of positional parameters, and the status of the most recently
executed command, are available as special parameters (page 475). You cannot
assign values to special parameters.

USER-CREATED VARIABLES

The first line in the following example declares the variable named person and initializes
it with the value max:

$ person=max

$ echo person
person

$ echo $person
max

Parameter Because the echo builtin copies its arguments to standard output, you can use it to dis-

substitution

Quoting the $

SPACES

play the values of variables. The second line of the preceding example shows that
person does not represent max. Instead, the string person is echoed as person. The shell
substitutes the value of a variable only when you precede the name of the variable with
a dollar sign ($). Thus, the command echo $person displays the value of the variable
person; it does not display $person because the shell does not pass $person to echo as
an argument. Because of the leading $, the shell recognizes that $person is the name of
a variable, substitutes the value of the variable, and passes that value to echo. The echo
builtin displays the value of the variable (not its name), never “knowing” you called it
with the name of a variable.

You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
max

$ echo "$person"
max

$ echo '$person’
$person

$ echo \$person
$person

Because they do not prevent variable substitution but do turn off the special meanings
of most other characters, double quotation marks are useful when you assign values
to variables and when you use those values. To assign a value that contains SPACEs or

PARAMETERS AND VARIABLES 313

Pathname
expansion in
assignments

TABs to a variable, use double quotation marks around the value. Although double
quotation marks are not required in all cases, using them is a good habit.

$ person="max and zach"

$ echo $person

max and zach

$ person=max and zach

bash: and: command not found

When you reference a variable whose value contains TABs or multiple adjacent SPACEs,
you must use quotation marks to preserve the spacing. If you do not quote the vari-
able, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="max and zach"
$ echo $person

max and zach

$ echo "$person"

max and zach

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such as
% or 2, the shell might expand that variable.

The first line in the following sequence of commands assigns the string max* to the
variable memo. All shells interpret special characters as special when you reference
a variable that contains an unquoted special character. In the following example, the
shell expands the value of the memo variable because it is not quoted:

$ memo=max:

$ 1s

max.report

max.summary

$ echo $memo
max.report max.summary

Above, the shell expands the $memo variable to max, expands max* to max.report
and max.summary, and passes these two values to echo. In the next example, the
Bourne Again Shell does not expand the string because bash does not perform path-
name expansion (page 152) when it assigns a value to a variable.

$ echo "$memo"
max:

All shells process a command line in a specific order. Within this order bash (but not
tcsh) expands variables before it interprets commands. In the preceding echo com-
mand line, the double quotation marks quote the asterisk (*) in the expanded value
of $memo and prevent bash from performing pathname expansion on the expanded
memo variable before passing its value to the echo command.

314 CHAPTER S8

THE BOURNE AGAIN SHELL (bash)

optional
Braces around
variables

The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},
in which the variable name is enclosed by ${}. The braces insulate the variable name
from adjacent characters. Braces are necessary when catenating a variable value with
a string:

$ PREF=counter

$ WAY=$PREFclockwise

$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as expected. Only a blank line is output
because although PREFclockwise and PREFfeit are valid variable names, they are not
initialized. By default the shell evaluates an unset variable as an empty (null) string
and displays this value (bash) or generates an error message (tcsh). To achieve the
intent of these statements, refer to the PREF variable using braces:

$ PREF=counter

$ WAY=${PREF}clockwise

$ FAKE=${PREF}feit

$ echo $WAY $FAKE
counterclockwise counterfeit

The Bourne Again Shell refers to command-line arguments using the positional
parameters $1, $2, $3, and so forth up to $9. You must use braces to refer to argu-
ments past the ninth argument: ${10}. The name of the command is held in $0
(page 470).

unset: REMOVES A VARIABLE

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, assign a null value
to the variable. In the following example, set (page 472) displays a list of all variables
and their values; grep extracts the line that shows the value of person.

$ echo $person
zach

$ person=

$ echo $person

$ set | grep person
person=

You can remove a variable using the unset builtin. The following command removes
the variable person:

$ unset person
$ echo $person

$ set | grep person

PARAMETERS AND VARIABLES 315

VARIABLE ATTRIBUTES

This section discusses attributes and explains how to assign attributes to variables.

readonly: MAKES THE VALUE OF A VARIABLE PERMANENT

You can use the readonly builtin (not in tesh) to ensure the value of a variable cannot
be changed. The next example declares the variable person to be readonly. You must
assign a value to a variable before you declare it to be readonly; you cannot change
its value after the declaration. When you attempt to change the value of or unset a
readonly variable, the shell displays an error message:

$ person=zach

$ echo $person

zach

$ readonly person

$ person=helen

bash: person: readonly variable

$ unset person

bash: unset: person: cannot unset: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly shell
variables. This list includes keyword variables that are automatically set as readonly as
well as keyword or user-created variables that you have declared as readonly. See the
next page for an example (readonly and declare —r produce the same output).

declare: LISTS AND ASSIGNS ATTRIBUTES TO VARIABLES

The declare builtin (not in tesh) lists and sets attributes and values for shell variables.
The typeset builtin (another name for declare) performs the same function but is dep-
recated. Table 8-3 lists five of these attributes.

Variable attributes (declare)

Attribute Meaning
-a Declares a variable as an array (page 486)
~f Declares a variable to be a function name (page 356)

=i Declares a variable to be of type integer (page 316)
-t Makes a variable readonly; also readonly (above)

-X Makes a variable an environment variable; also export (page 480)

The following commands declare several variables and set some attributes. The first
line declares person1 and initializes it to max. This command has the same effect with
or without the word declare.

$ declare personl=max

$ declare -r person2=zach

$ declare -rx person3=helen
$ declare -x person4

316 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

readonly and
export

Listing variable
attributes

Integer

The readonly and export builtins are synonyms for the commands declare —r and
declare —x, respectively. You can declare a variable without initializing it, as the pre-
ceding declaration of the variable person4 illustrates. This declaration makes person4
an environment variable so it is available to all subshells. Until person4 is initialized,
it has a null value.

You can list the options to declare separately in any order. The following is equivalent
to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of — when you want to remove an attribute from a variable.
You cannot remove the readonly attribute. After the following command is given, the
variable person3 is no longer exported, but it is still readonly:

$ declare +x person3

See page 481 for more information on exporting variables.

Without any arguments or options, declare lists all shell variables. The same list is
output when you run set (page 473) without any arguments.

If you call declare with options but no variable names, the command lists all shell
variables that have the specified attributes set. The command declare —r displays a list
of all readonly variables. This list is the same as that produced by the readonly com-
mand without any arguments. After the declarations in the preceding example have
been given, the results are as follows:

$ declare -r

declare -r BASHOPTS="checkwinsize:cmdhist:expand_aliases:
declare -ir BASHPID

declare -ar BASH_VERSINFO='([@]="4" [1]="2" [2]="24" [3]="1" ... '
declare -ir EUID="500"

declare -ir PPID="1936"

declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:
declare -ir UID="500"

declare -r person2="zach"

declare -rx person3="helen"

The first seven entries are keyword variables that are automatically declared as
readonly. Some of these variables are stored as integers (—i). The —a option indicates
that BASH_VERSINFO is an array variable; the value of each element of the array
is listed to the right of an equal sign.

By default, the values of variables are stored as strings. When you perform arithmetic
on a string variable, the shell converts the variable into a number, manipulates it, and
then converts it back to a string. A variable with the integer attribute is stored as an
integer. Assign the integer attribute as follows:

$ declare -i COUNT

PARAMETERS AND VARIABLES 317

You can use declare to display integer variables:

$ declare -i

declare -ir BASHPID
declare -i COUNT

declare -ir EUID="1000"
declare -i HISTCMD
declare -i LINENO
declare -i MAILCHECK="60"
declare -i OPTIND="1"

KEYWORD VARIABLES

Tilde (~)

Keyword variables are either inherited or declared and initialized by the shell when
it starts. You can assign values to these variables from the command line or from a
startup file. Typically, these variables are environment variables (exported) so they
are available to subshells you start as well as your login shell.

HOME: YOUR HOME DIRECTORY

By default, your home directory is the working directory when you log in. Your home
directory is established when your account is set up; under Linux its name is stored
in the /etc/passwd file. macOS uses Open Directory (page 1068) to store this
information.

$ grep sam /etc/passwd
sam:x:500:500:Sam the Great:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns it
to the environment variable HOME (tcsh uses home). When you give a ¢d command
without an argument, cd makes the directory whose name is stored in HOME the
working directory:

$ pwd

/home/max/Taptop

$ echo $HOME

/home/max

$ cd

$ pwd

/home/max
This example shows the value of the HOME variable and the effect of the cd builtin.
After you execute cd without an argument, the pathname of the working directory is
the same as the value of HOME: your home directory.

The shell uses the value of HOME to expand pathnames that use the shorthand tilde
(~) notation (page 91) to denote a user’s home directory. The following example uses
echo to display the value of this shortcut and then uses Is to list the files in Max’s laptop
directory, which is a subdirectory of his home directory:

$ echo ~

/home/max

$ 1s ~/1aptop

tester count Tineup

318 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

Working directory

PATH: WHERE THE SHELL LOOKS FOR PROGRAMS

When you give the shell an absolute or relative pathname as a command, it looks
in the specified directory for an executable file with the specified filename. If the
file with the pathname you specified does not exist, the shell reports No such file
or directory. If the file exists as specified but you do not have execute permission
for it, or in the case of a shell script you do not have read and execute permission
for it, the shell reports Permission denied.

When you give a simple filename as a command, the shell searches through certain
directories (your search path) for the program you want to execute. It looks in several
directories for a file that has the same name as the command and that you have exe-
cute permission for (a compiled program) or read and execute permission for (a shell
script). The PATH (tcsh uses path) variable controls this search.

The default value of PATH is determined when bash is compiled. It is not set in a
startup file, although it might be modified there. Normally, the default specifies that the
shell search several system directories used to hold common commands. These system
directories include /bin and /usr/bin and other directories appropriate to the local sys-
tem. When you give a command, if the shell does not find the executable—and, in the
case of a shell script, readable—file named by the command in any of the directories
listed in PATH, the shell generates one of the aforementioned error messages.

The PATH variable specifies the directories in the order the shell should search them.
Each directory must be separated from the next by a colon. The following command
sets PATH so a search for an executable file starts with the /usr/local/bin directory.
If it does not find the file in this directory, the shell looks next in /bin and then in
/usr/bin. If the search fails in those directories, the shell looks in the ~/bin directory,
a subdirectory of the user’s home directory. Finally, the shell looks in the working
directory. Exporting PATH makes sure it is an environment variable so it is available
to subshells, although it is typically exported when it is declared so exporting it again
1S not necessary:

$ export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:

A null value in the string indicates the working directory. In the preceding example,
a null value (nothing between the colon and the end of the line) appears as the last
element of the string. The working directory is represented by a leading colon (not
recommended; see the following security tip), a trailing colon (as in the example), or
two colons next to each other anywhere in the string. You can also represent the
working directory explicitly using a period (.).

Because Linux stores many executable files in directories named bin (binary), users
typically put their executable files in their own ~/bin directories. If you put your own
bin directory toward the end of PATH, as in the preceding example, the shell looks
there for any commands it cannot find in directories listed earlier in PATH.

If you want to add directories to PATH, you can reference the old value of the PATH
variable in setting PATH to a new value (but see the preceding security tip). The fol-
lowing command adds /usr/local/bin to the beginning of the current PATH and the
bin directory in the user’s home directory (~/bin) to the end:

PARAMETERS AND VARIABLES 319

$ PATH=/usr/local/bin:$PATH:~/bin

Set PATH in ~/.bash_profile; see the tip on page 289.

PATH and security

Do not put the working directory first in PATH when security is a concern. If you are working as
root, you should never put the working directory first in PATH. It is common for root’s PATH to
omit the working directory entirely. You can always execute a file in the working directory by
prepending ./ to the name: ./myprog.

Putting the working directory first in PATH can create a security hole. Most people type Is as the
first command when entering a directory. If the owner of a directory places an executable file
named Is in the directory, and the working directory appears first in a user’s PATH, the user giving
an Is command from the directory executes the Is program in the working directory instead of the
system Is utility, possibly with undesirable results.

MAIL: WHERE YOUR MAIL IS KEPT

The MAIL variable (mail under tcsh) usually contains the pathname of the file that holds
your mail (your mailbox, usually /var/mail/name, where name is your username).
However, you can use MAIL to watch any file (including a directory): Set MAIL to the
name of the file you want to watch.

If MAIL is set and MAILPATH (below) is not set, the shell informs you when the file
specified by MAIL is modified (such as when mail arrives). In a graphical environment
you can unset MAIL so the shell does not display mail reminders in a terminal emulator
window (assuming you are using a graphical mail program).

Most macOS systems do not use local files for incoming mail. Instead, mail is typ-
ically kept on a remote mail server. The MAIL variable and other mail-related shell
variables have no effect unless you have a local mail server.

The MAILPATH variable (not in tcsh) contains a list of filenames separated by
colons. If this variable is set, the shell informs you when any one of the files is
modified (for example, when mail arrives). You can follow any of the filenames
in the list with a question mark (?) and a message. The message replaces the you
have mail message when you receive mail while you are logged in.

The MAILCHECK variable (not in tcsh) specifies how often, in seconds, the shell
checks the directories specified by MAIL or MAILPATH. The default is 60 seconds.
If you set this variable to zero, the shell checks before it issues each prompt.

PS1: USER PROMPT (PRIMARY)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash with
root privileges, bash typically displays a hashmark (#) prompt. The PS1 variable
(prompt under tcsh; page 403) holds the prompt string the shell uses to let you know
it is waiting for a command. When you change the value of PS1, you change the
appearance of your prompt.

320 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

You can customize the prompt displayed by PS1. For example, the assignment
$ PS1="[\u@\h \W \!]$ "

displays the prompt
[user@bost directory event]$

where user is the username, bhost is the hostname up to the first period, directory is
the basename of the working directory, and event is the event number (page 337) of
the current command.

If you are working on more than one system, it can be helpful to incorporate the sys-
tem name into your prompt. The first example that follows changes the prompt to
the name of the local host, a SPACE, and a dollar sign (or, if the user is running with
root privileges, a hashmark), followed by a SPACE. A SPACE at the end of the prompt
makes commands you enter following the prompt easier to read. The second example
changes the prompt to the time followed by the name of the user. The third example
changes the prompt to the one used in this book (a hashmark for a user running with
root privileges and a dollar sign otherwise):

$ PS1="\h \$ '
guava $

$ PS1="\@ \u $ '
09:44 PM max $

$ PS1="\$ '

$
Table 8-4 describes some of the symbols you can use in PS1. See Table 9-4 on
page 403 for the corresponding tcsh symbols. For a complete list of special characters
you can use in the prompt strings, open the bash man page and search for the third
occurrence of PROMPTING (enter the command /PROMPTING followed by a
RETURN and then press n two times).

PS1 symbols
Symbol Display in prompt
\$ # if the user is running with root privileges; otherwise, $
\w Pathname of the working directory
\W Basename of the working directory
\! Current event (history) number (page 341)
\d Date in Weekday Month Date format
\h Machine hostname, without the domain
\H Full machine hostname, including the domain

\u Username of the current user

PARAMETERS AND VARIABLES 321

PS1 symbols (continued)

Symbol Display in prompt

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format
\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

PS2: USER PROMPT (SECONDARY)

The PS2 variable holds the secondary prompt (prompt2 under tcsh). On the first line
of the next example, an unclosed quoted string follows echo. The shell assumes the
command is not finished and on the second line displays the default secondary
prompt (>). This prompt indicates the shell is waiting for the user to continue the
command line. The shell waits until it receives the quotation mark that closes the
string and then executes the command:

$ echo "demonstration of prompt string

> 2"

demonstration of prompt string
2

The next command changes the secondary prompt to Input => followed by a SPACE.
On the line with who, a pipe symbol (I) implies the command line is continued
(page 512) and causes bash to display the new secondary prompt. The command grep
sam (followed by a RETURN) completes the command; grep displays its output.

$ PS2="Input => "

$ who |
Input => grep sam
sam ttyl 2018-05-01 10:37 (:0)

PS3: MENU PROMPT

The PS3 variable holds the menu prompt (prompt3 in tcsh) for the select control
structure (page 461).

PS4: DEBUGGING PROMPT
The PS4 variable holds the bash debugging symbol (page 443; not in tcsh).

IFS: SEPARATES INPUT FIELDS (WORD SPLITTING)

The IFS (Internal Field Separator) shell variable (not in tcsh) specifies the characters
you can use to separate arguments on a command line. It has the default value of SPACE-
TAB-NEWLINE. Regardless of the value of IFS, you can always use one or more SPACE or TAB
characters to separate arguments on the command line, provided these characters are
not quoted or escaped. When you assign character values to IFS, these characters can
also separate fields—but only if they undergo expansion. This type of interpretation
of the command line is called word splitting and is discussed on page 372.

322 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

Be careful when changing IFS

Changing IFS has a variety of side effects, so work cautiously. You might find it useful to save
the value of IFS before changing it. You can then easily restore the original value if a change
yields unexpected results. Alternatively, you can fork a new shell using a bash command before
experimenting with IFS; if you run into trouble, you can exit back to the old shell, where IFS is
working properly.

The following example demonstrates how setting IFS can affect the interpretation of
a command line:

$ a=w:x:y:z

$ cat $a
cat: w:x:y:z: No such file or directory
$ IFS=":"

$ cat $%a

cat: w: No such file or directory
cat: x: No such file or directory
cat: y: No such file or directory
cat: z: No such file or directory

The first time cat is called, the shell expands the variable a, interpreting the string
w:x:y:z as a single word to be used as the argument to cat. The cat utility cannot find
a file named w:x:y:z and reports an error for that filename. After IFS is set to a
colon (:), the shell expands the variable a into four words, each of which is an argu-
ment to cat. Now cat reports errors for four files: w, x, y, and z. Word splitting based
on the colon (:) takes place only after the variable a is expanded.

The shell splits all expanded words on a command line according to the separating
characters found in IFS. When there is no expansion, there is no splitting. Consider
the following commands:

$ IFS:“p"
$ export VAR

Although TFS is set to p, the p on the export command line is not expanded, so the
word export is not split.

The following example uses variable expansion in an attempt to produce an export
command:

$ IFS="p"

$ aa=export

$ echo $aa
ex ort

This time expansion occurs, so the p in the token export is interpreted as a separator (as
the echo command shows). Next, when you try to use the value of the aa variable to
export the VAR variable, the shell parses the $aa VAR command line as ex ort VAR. The
effect is that the command line starts the ex editor with two filenames: ort and VAR.

PARAMETERS AND VARIABLES 323

$ $aa VAR

2 files to edit

"ort" [New File]

Entering Ex mode. Type "visual" to go to Normal mode.
iq

E173: 1 more file to edit

:q

$

If IFS is unset, bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does not
split words.

Multiple separator characters

Although the shell treats sequences of multiple SPACE or TAB characters as a single separator, it
treats each occurrence of another field-separator character as a separator.

CDPATH: BROADENS THE SCOPE OF cd

The CDPATH variable (cdpath under tcsh) allows you to use a simple filename as an
argument to the cd builtin to change the working directory to a directory other than
a child of the working directory. If you typically work in several directories, this vari-
able can speed things up and save you the tedium of using cd with longer pathnames
to switch among them.

When CDPATH is not set and you specify a simple filename as an argument to cd, cd
searches the working directory for a subdirectory with the same name as the argument.
If the subdirectory does not exist, cd displays an error message. When CDPATH is set,
cd searches for an appropriately named subdirectory in the directories in the COPATH
list. If it finds one, that directory becomes the working directory. With CDPATH set,
you can use cd and a simple filename to change the working directory to a child of any
of the directories listed in CDPATH.

The CDPATH variable takes on the value of a colon-separated list of directory
pathnames (similar to the PATH variable). It is usually set in the ~/.bash_profile
startup file with a command line such as the following:

export CDPATH=$HOME:$HOME/T1iterature

This command causes cd to search your home directory, the literature directory, and
then the working directory when you give a cd command. If you do not include the
working directory in CDPATH, cd searches the working directory if the search of all
the other directories in CDPATH fails. If you want cd to search the working directory
first, include a colon (:) as the first entry in CDPATH:

export CDPATH=:$HOME:$HOME/11iterature

If the argument to the cd builtin is anything other than a simple filename (i.e., if the
argument contains a slash [/]), the shell does not consult CDPATH.

324 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

KEYWORD VARIABLES: A SUMMARY
Table 8-5 lists the bash keyword variables. See page 402 for information on tcsh

variables.

Variable
BASH_ENV
CDPATH
COLUMNS
HISTFILE

HISTFILESIZE

HISTSIZE

HOME

IFS
INPUTRC
LANG

LC_

LINES

MAIL
MAILCHECK
MAILPATH

OLDPWD
PATH

bash keyword variables

Value

The pathname of the startup file for noninteractive shells (page 289)
The cd search path (page 323)

The width of the display used by select (page 460)

The pathname of the file that holds the history list (default: ~/.bash_history;
page 336)

The maximum number of entries saved in HISTFILE (default: 1,000-2,000;
page 336)

The maximum number of entries saved in the history list (default: 1,000;
page 336)

The pathname of the user’s home directory (page 317); used as the default
argument for cd and in tilde expansion (page 91)

Internal Field Separator (page 321); used for word splitting (page 372)
The pathname of the Readline startup file (default: ~/.inputrc; page 349)

The locale category when that category is not specifically set using one of the
LC_ variables (page 327)

A group of variables that specify locale categories including LC_ALL,
LC_COLLATE, LC_CTYPE, LC_MESSAGES, and LC_NUMERIC; use the locale
builtin (page 328) to display a more complete list including values

The height of the display used by select (page 460)
The pathname of the file that holds a user’s mail (page 319)
How often, in seconds, bash checks for mail (default: 60; page 319)

A colon-separated list of file pathnames that bash checks for mail in
(page 319)

The pathname of the previous working directory

A colon-separated list of directory pathnames that bash looks for commands
in (page 318)

PROMPT_COMMAND A command that bash executes just before it displays the primary prompt

SPECIAL CHARACTERS 325

Variable
PS1

PS2

PS3

PS4
PWD
REPLY

bash keyword variables (continued)

Value

Prompt String 1; the primary prompt (page 319)
Prompt String 2; the secondary prompt (page 321)
The prompt issued by select (page 460)

The bash debugging symbol (page 443)

The pathname of the working directory

Holds the line that read accepts (page 490); also used by select (page 460)

SPECIAL CHARACTERS

Table 8-6 lists most of the characters that are special to the bash and tcsh shells.

Character

NEWLINE

0

(())

>>

<<

Shell special characters

Use
A control operator that initiates execution of a command (page 300)
A control operator that separates commands (page 300)

A control operator that groups commands (page 302) for execution by a
subshell; these characters are also used to identify a function (page 356)

Evaluates an arithmetic expression (page 505)

A control operator that executes a command in the background (pages 150
and 300)

A control operator that sends standard output of the preceding command to
standard input of the following command (pipeline; page 300)

A control operator that sends standard output and standard error of the
preceding command to standard input of the following command (page 293)

Redirects standard output (page 140)
Appends standard output (page 144)
Redirects standard input (page 142)
Here document (page 462)

Matches any string of zero or more characters in an ambiguous file reference
(page 154)

326 CHAPTER S8

THE BOURNE AGAIN SHELL (bash)

LOCALE

Localization and
internationalization

Shell special characters (continued)

Character Use
? Matches any single character in an ambiguous file reference (page 153)
\ Quotes the following character (page 50)

! Quotes a string, preventing all substitution (page 50)

" Quotes a string, allowing only variable and command substitution (pages 50

and 312)
Lt Performs command substitution [deprecated, see $()]
[1 Character class in an ambiguous file reference (page 155)
$(() Evaluates an arithmetic expression (page 369)
$ References a variable (page 310)

(dot builtin) Executes a command in the current shell (page 290)
Begins a comment (page 298)
{} Surrounds the contents of a function (page 356)
(null builtin) Returns true (page 498)

&& A control operator that executes the command on the right only if the
(Boolean AND) command on the left succeeds (returns a zero exit status; page 302)

|| (Boolean OR) A control operator that executes the command on the right only if the
command on the left fails (returns a nonzero exit status; page 302)

I (Boolean NOT) Reverses the exit status of a command

$() (notintcsh) Performs command substitution (preferred form; page 371)

In conversational English, a locale is a place or location. When working with Linux,
a locale specifies the way locale-aware programs display certain kinds of data such
as times and dates, money and other numeric values, telephone numbers, and mea-
surements. It can also specify collating sequence and printer paper size.

Localization and internationalization go hand in hand: Internationalization is
the process of making software portable to multiple locales while localization is
the process of adapting software so that it meets the language, cultural, and
other requirements of a specific locale. Linux is well internationalized so you can
easily specify a locale for a given system or user. Linux uses variables to specify
a locale.

LocAaLe 327

i18n The term 118n is an abbreviation of the word internationalization: the letter i followed
by 18 letters (nternationalizatio) followed by the letter 7.

110n The term 110n is an abbreviation of the word localization: the letter [followed by 10
letters (ocalizatio) followed by the letter 7.

LC_: LOCALE VARIABLES

The bash man page lists the following locale variables; other programs use additional
locale variables. See the locale man pages (sections 1, 5, and 7) or use locale —help
for more information.

o LANG—Specifies the locale category for categories not specified by an LC_
variable (except see LC_ALL). Many setups use only this locale variable and
do not specify any of the LC_ variables.

e LC_ALL—Overrides the value of LANG and all other LC_ variables.

¢ LC_COLLATE—Specifies the collating sequence for the sort utility
(page 969) and for sorting the results of pathname expansion (page 313).

LC_CTYPE—Specifies how characters are interpreted and how character
classes within pathname expansion and pattern matching behave. Also affects
the sort utility (page 969) when you specify the —d (——dictionary-order) or the
—i (——ignore-nonprinting) options.

¢ LC_MESSAGES—Specifies how affirmative and negative answers appear
and the language messages are displayed in.

¢ LC_NUMERIC—Specifies how numbers are formatted (e.g., are thousands
separated by a comma or a period?).

Internationalized C programs call setlocale()

Internationalized C programs call setlocale(). Other languages have analogous facilities. Shell
scripts are typically internationalized to the degree that the routines they call are. Without a call to
setlocale(), the hello, world program will always display hello, world, regardless of how you set
LANG.

You can set one or more of the LC_ variables to a value using the syntax
xx_YY.CHARSET

where xx is the ISO-639 language code (e.g., en = English, fr = French, zu = Zulu), YY
is the ISO-3166 country code (e.g., FR = France, GF = French Guiana, PF = French
Polynesia), and CHARSET is the name of the character set (e.g., UTF-8 [page 1131],
ASCII [page 1083], ISO-8859-1 [Western Europe], also called the character map or
charmap). On some systems you can specify CHARSET using lowercase letters. For
example, en_GB.UTF-8 can specify English as written in Great Britain, en_US.UTF-8
can specify English as written in the United States, and fr_FR.UTF-8 can specify French
as written in France.

328 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

The C locale

Setting the locale to C forces a program to process and display strings as the program was written
(i.e., without translating input or output), which frequently means the program works in English.
Many system scripts set LANG to C so they run in a known environment. Some text processing
utilities run slightly faster when you set LANG to C. Setting LANG to C before you run sort can help
ensure you get the results you expect.

If you want to make sure your shell script will work properly, put the following line near the top of
the file:

export LANG=C

Following is an example of a difference that setting LANG can cause. It shows that having LANG
set to different values can cause commands to behave differently, especially with regard to sorting.

$ echo $LANG
en_US.UTF-8

$1s

m666 Makefile merry
$ 1s [1-n]=

m666 Makefile merry

$ export LANG=C

$ 1s

Makefile m666 merry
$ 1s [1-n]=

m666 merry

locale: DISPLAYS LOCALE INFORMATION

The locale utility displays information about the current and available locales. Without
options, locale displays the value of the locale variables. In the following example, only
the LANG variable is set, although you cannot determine this fact from the output.
Unless explicitly set, each of the LC_ variables derives its value from LANG.

$ locale

LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

Typically, you will want all locale variables to have the same value. However, in some
cases you might want to change the value of one or more locale variables. For example,
if you are using paper size A4 but working in English, you could change the value of
LC_PAPER to nl_NL.utf8.

LocaLe 329

The —a (all) option causes locale to display the names of available locales; —v (verbose;
not in macOS) displays more complete information.

$ locale -av

Tocale: aa_DJ archive: /usr/lib/locale/locale-archive
title | Afar language locale for Djibouti (CaduLaaqo Dialects).
source | Ge'ez Frontier Foundation
address | 7802 Solomon Seal Dr., Springfield, VA 22152, USA
email | locales@geez.org
Tlanguage | aa
territory | D]
revision | 0.20
date | 2003-07-05
codeset | ISO-8859-1

The —m (maps) option causes locale to display the names of available character maps. On
Linux systems, locale definition files are kept in the /usr/share/i18n/locales directory;
on macOS systems, they are kept in /usr/share/locale.

Following are some examples of how some LC_ variables change displayed values. Each
of these command lines sets an LC_ variable and places it in the environment of the utility
it calls. The +%x format causes date to display the locale’s date representation. The last
example does not work under macOS.

$ LC_TIME=en_GB.UTF-8 date +%x
24/01/18

$ LC_TIME=en_US.UTF-8 date +%x
01/24/2018

$ 1s xx

T1s: impossible d'accéder a xx: Aucun fichier ou dossier de ce type
$ LC_MESSAGES=en_US.UTF-8 1s xx

Ts: cannot access xx: No such file or directory

SETTING THE LOCALE

You might have to install a language package for a locale before you can specify a locale.
If you are working in a GUI, it is usually easiest to change the locale using the GUL

For all Linux distributions and macOS, put locale variable assignments in ~/.profile
or ~/.bash_profile to affect both GUI and bash command-line logins for a single user.
Remember to export the variables. The following line in one of these files will set all
LC_ variables for the given user to French as spoken in France:

export LANG=fr_FR.UTF-8
Under tesh, put the following line in ~/.tcshrc or ~/.cshrc to have the same effect:
setenv LANG fr_FR.UTF-8

The following paragraphs explain how to use the command-line interface to change
the locale for all users; the technique varies by distribution.

330 CHAPTERS8

THE BOURNE AGAIN SHELL (bash)

Fedora/RHEL

Debian/Ubuntu/Mint

openSUSE

mac0S

TIME

uTc

Time zone

TZ

Put locale variable assignments (previous page) in /etc/profile.d/zlang.sh (you will
need to create this file; the filename was chosen to be executed after lang.sh) to
affect both GUI and command-line logins for all users. Under tcsh, put the variable
assignment in /etc/profile.d/zlang.csh.

Put locale variable assignments (previous page) in /etc/default/locale to affect both
GUI and command-line logins for all users.

Put locale variable assignments (previous page) in /etc/profile.local (you might need
to create this file) to affect both GUI and command-line logins for all users. The
/etc/sysconfig/language file controls the locale of GUI logins; see the file for
instructions.

Put locale variable assignments (previous page) in /etc/profile to affect both GUI and
command-line logins for all users.

On networks with systems in different time zones it can be helpful to set all systems
to the UTC (page 1131) time zone. Among other benefits, doing so can make it easier
for an administrator to compare logged events on different systems over time. Each
user account can be set to the local time for that user.

The time zone for a user is specified by an environment variable or, if one is not set,
by the time zone for the system.

The TZ variable gives a program access to information about the local time zone.
This variable is typically set in a startup file (pages 288 and 382) and placed in the
environment (page 480) so called programs have access to it. It has two syntaxes.

The first syntax of the TZ variable is
namzval[nam2]

where nam is a string comprising three or more letters that typically name the time
zone (e.g., PST; its value is not significant) and +val is the offset of the time zone from
UTC, with positive values indicating the local time zone is west of the prime meridian
and negative values indicating the local time zone is east of the prime meridian. If the
nam?2 is present, it indicates the time zone observes daylight savings time; it is the
name of the daylight savings time zone (e.g., PDT).

In the following example, date is called twice, once without setting the TZ variable
and then with the TZ variable set in the environment in which date is called:

$ date
Wed May 3 10:08:06 PDT 2017

$ TZ=EST+5EDT date
Wed May 3 13:08:08 EDT 2017

The second syntax of the TZ variable is

Time 331

tzconfig

tzselect

continent/country

where continent is the name of the continent or ocean and country is the name of the
country that includes the desired time zone. This syntax points to a file in the
/usr/share/zoneinfo hierarchy (next page). See tzselect (below) if you need help deter-
mining these values.

In the next example, date is called twice, once without setting the TZ variable and
then with the TZ variable set in the environment in which date is called:

$ date
Wed May 3 10:09:27 PDT 2017

$ TZ=America/New_York date
Wed May 3 13:09:28 EDT 2017

See www.gnu.org/software/libc/manual/html_node/TZ-Variable.html for extensive
documentation on the TZ variable.

The tzconfig utility was available under Debian/Ubuntu and is now deprecated; use
dpkg-reconfigure tzdata in its place.

The tzselect utility can help you determine the name of a time zone by asking you first
to name the continent or ocean and then the country the time zone is in. If necessary,
it asks for a time zone region (e.g., Pacific Time). This utility does not change system
settings but rather displays a line telling you the name of the time zone. In the fol-
lowing example, the time zone is named Europe/Paris. Newer releases keep time zone
information in /usr/share/zoneinfo (next page). Specifications such as Europe/Paris
refer to the file in that directory (/usr/share/zoneinfo/Europe/Paris).

$ tzselect

Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.

1) Africa

8) Europe

9) Indian Ocean

10) Pacific Ocean

11) none - I want to specify the time zone using the Posix TZ format.

#? 8
Please select a country.
1) Aaland Islands 18) Greece 35) Norway
15) France 32) Monaco 49) Vatican City
16) Germany 33) Montenegro
17) Gibraltar 34) Netherlands
#? 15

Here is that TZ value again, this time on standard output so that you
can use the /usr/bin/tzselect command in shell scripts:
Europe/Paris

http://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

332 CHAPTER S8

THE BOURNE AGAIN SHELL (bash)

/etc/timezone

/ust/share/zoneinfo

/etc/localtime

mac0S

Under some distributions, including Debian/Ubuntu/Mint, the /etc/timezone file
holds the name of the local time zone.

$ cat /etc/timezone
America/Los_Angeles

The /usr/share/zoneinfo directory hierarchy holds time zone data files. Some time
zones are held in regular files in the zoneinfo directory (e.g., Japan and GB) while
others are held in subdirectories (e.g., Azores and Pacific). The following example
shows a small part of the /usr/share/zoneinfo directory hierarchy and illustrates
how file (page 820) reports on a time zone file.

$ find /usr/share/zoneinfo
/usr/share/zoneinfo
/usr/share/zoneinfo/Atlantic
/usr/share/zoneinfo/Atlantic/Azores
/usr/share/zoneinfo/Atlantic/Madeira
/usr/share/zoneinfo/Atlantic/Jan_Mayen

/usr/share/zoneinfo/Japan
/usr/share/zoneinfo/GB
/usr/share/zoneinfo/US
/usr/share/zoneinfo/US/Pacific
/usr/share/zoneinfo/US/Ar1izona
/usr/share/zoneinfo/US/Michigan

$ file /usr/share/zoneinfo/Atlantic/Azores
/usr/share/zoneinfo/Atlantic/Azores: timezone data, version 2, 12 gmt
time flags, 12 std time flags, no Teap seconds, 220 transition times, 12
abbreviation chars

Some Linux distributions use a link at /etc/localtime to a file in /usr/share/zoneinfo
to specify the local time zone. Others copy the file from the zoneinfo directory to
localtime. Following is an example of setting up this link; to create this link you must
work with root privileges.

date

Wed Tue Jan 24 13:55:00 PST 2018

cd /etc

1n -sf /usr/share/zoneinfo/Europe/Paris localtime
date

Wed Jan 24 22:55:38 CET 2018

On some of these systems, the /etc/systemconfig/clock file sets the ZONE variable
to the name of the time zone:

$ cat /etc/sysconfig/clock

The time zone of the system is defined by the contents of /etc/localtime.
This file is only for evaluation by system-config-date, do not rely on its
contents elsewhere.

ZONE="Europe/Paris"

On macOS, you can use systemsetup to work with the time zone.

PROCESSES 333

$ systemsetup -gettimezone
Time Zone: America/Los_Angeles

$ systemsetup -listtimezones
Time Zones:

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa

$ systemsetup -settimezone America/Los_Angeles
Set TimeZone: America/Los_Angeles

PROCESSES

A process is the execution of a command by the Linux kernel. The shell that starts
when you log in is a process, like any other. When you specify the name of a utility
as a command, you initiate a process. When you run a shell script, another shell
process is started, and additional processes are created for each command in the
script. Depending on how you invoke the shell script, the script is run either by the
current shell or, more typically, by a subshell (child) of the current shell. Running
a shell builtin, such as cd, does not start a new process.

PROCESS STRUCTURE

fork() system call

init daemon

Like the file structure, the process structure is hierarchical, with parents, children,
and a root. A parent process forks (or spawns) a child process, which in turn can fork
other processes. The term fork indicates that, as with a fork in the road, one process
turns into two. Initially the two forks are identical except that one is identified as the
parent and one as the child. The operating system routine, or system call, that creates
a new process is named fork().

A Linux system begins execution by starting the init daemon, a single process called
a spontaneous process, with PID number 1. This process holds the same position in
the process structure as the root directory does in the file structure: It is the ancestor
of all processes the system and users work with. When a command-line system is in
multiuser mode, init runs getty or mingetty processes, which display login: prompts on
terminals and virtual consoles. When a user responds to the prompt and presses
RETURN, getty or mingetty passes control to a utility named login, which checks the user-
name and password combination. After the user logs in, the login process becomes the
user’s shell process.

When you enter the name of a program on the command line, the shell forks a new
process, creating a duplicate of the shell process (a subshell). The new process
attempts to exec (execute) the program. Like fork(), exec() is a system call. If the
program is a binary executable, such as a compiled C program, exec() succeeds, and
the system overlays the newly created subshell with the executable program. If the
command is a shell script, exec() fails. When exec fails, the program is assumed to

334 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

be a shell script, and the subshell runs the commands in the script. Unlike a login
shell, which expects input from the command line, the subshell takes its input from
a file—namely, the shell script.

PROCESS IDENTIFICATION

PID numbers Linux assigns a unique PID (process identification) number at the inception of each
process. As long as a process exists, it keeps the same PID number. During one session
the same process is always executing the login shell (page 288). When you fork a new
process—for example, when you use an editor—the PID number of the new (child)
process is different from that of its parent process. When you return to the login shell,
it is still being executed by the same process and has the same PID number as when
you logged in.

The following example shows that the process running the shell forked (is the parent
of) the process running ps. When you call it with the —f option, ps displays a full list-
ing of information about each process. The line of the ps display with bash in the
CMD column refers to the process running the shell. The column headed by PID iden-
tifies the PID number. The column headed by PPID identifies the PID number of the
parent of the process. From the PID and PPID columns you can see that the process
running the shell (PID 21341) is the parent of the processes running sleep (PID
22789) and ps (PID 22790).

$ sleep 10 &

[1] 22789

$ ps -f

UID PID PPID C STIME TTY TIME CMD

max 21341 21340 0 10:42 pts/16 00:00:00 bash

max 22789 21341 0 17:30 pts/16 00:00:00 sleep 10
max 22790 21341 0 17:30 pts/16 00:00:00 ps -f

Refer to page 946 for more information on ps and the columns it displays when
you specify the —f option. A second pair of sleep and ps —f commands shows that
the shell is still being run by the same process but that it forked another process
to run sleep:

$ sleep 10 &

[1] 22791

$ ps -f

UID PID PPID C STIME TTY TIME CMD

max 21341 21340 0 10:42 pts/16 00:00:00 bash

max 22791 21341 0 17:31 pts/16 00:00:00 sleep 10
max 22792 21341 0 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps ——forest, with or without the —e option) to see the
parent—child relationship of processes. The next example shows the —p option to
pstree, which causes it to display PID numbers:

$ pstree -p
systemd(1)-+-NetworkManager(655)---{NetworkManager}(702)
| -abrtd(657)---abrt-dump-oops(696)

PROCESSES 335

| ~accounts-daemon(1204)---{accounts-daemo}(1206)
| -agetty(979)

|-Togin(984)---bash(2071)-+-pstree(2095)
[*-sleep(2094)

The preceding output is abbreviated. The first line shows the PID 1 (systemd init) and
a few of the processes it is running. The line that starts with —login shows a textual
user running sleep in the background and pstree in the foreground. The tree for a user
running a GUI is much more complex. Refer to “$$: PID Number” on page 476 for
a description of how to instruct the shell to report on PID numbers.

EXECUTING A COMMAND

fork() and sleep()

Background process

Builtins

Variables

Hash table

When you give the shell a command, it usually forks [spawns using the fork() system
call] a child process to execute the command. While the child process is executing the
command, the parent process (running the shell) sleeps [implemented as the sleep()
system call]. While a process is sleeping, it does not use any computer time; it remains
inactive, waiting to wake up. When the child process finishes executing the com-
mand, it tells its parent of its success or failure via its exit status and then dies. The
parent process (which is running the shell) wakes up and prompts for another
command.

When you run a process in the background by ending a command with the ampersand
control operator (&), the shell forks a child process without going to sleep and without
waiting for the child process to run to completion. The parent process, which is exe-
cuting the shell, reports the job number and PID number of the child process and
prompts for another command. The child process runs in the background, independent
of its parent.

Although the shell forks a process to run most commands, some commands are built
into the shell (e.g., cd, alias, jobs, pwd). The shell does not fork a process to run builtins.
For more information refer to “Builtins” on page 157.

Within a given process, such as a login shell or subshell, you can declare, initialize, read,
and change variables. Some variables, called shell variables, are local to a process.
Other variables, called environment variables, are available to child processes. For
more information refer to “Variables” on page 479.

The first time you specify a command as a simple filename (and not a relative or abso-
lute pathname), the shell looks in the directories specified by the PATH (bash;
page 318) or path (tcsh; page 403) variable to find that file. When it finds the file, the
shell records the absolute pathname of the file in its hash table. When you give the
command again, the shell finds it in its hash table, saving the time needed to search
through the directories in PATH. The shell deletes the hash table when you log out
and starts a new hash table when you start a session. This section shows some of the
ways you can use the bash hash builtin; tcsh uses different commands for working
with its hash table.

336 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

When you call the hash builtin without any arguments, it displays the hash table.
When you first log in, the hash table is empty:

$ hash
hash: hash table empty
$ who am i

sam pts/2 2017-03-09 14:24 (plum)
$ hash
hits command

1 /usr/bin/who

The hash —r option causes bash to empty the hash table, as though you had just logged
in; tcsh uses rehash for a similar purpose.

$ hash -r
$ hash
hash: hash table empty

Having bash empty its hash table is useful when you move a program to a different
directory in PATH and bash cannot find the program in its new location, or when
you have two programs with the same name and bash is calling the wrong one. Refer
to the bash info page for more information on the hash builtin.

HISTORY

The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, called events, that provides a quick way to reexecute
any events in the list. This mechanism also enables you to edit and then execute pre-
vious commands and to reuse arguments from them. You can use the history list to
replicate complicated commands and arguments that you used previously and to
enter a series of commands that differ from one another in minor ways. The history
list also serves as a record of what you have done. It can prove helpful when you have
made a mistake and are not sure what you did or when you want to keep a record
of a procedure that involved a series of commands.

history can help track down mistakes

When you have made a mistake on a command line (not an error within a script or program) and
are not sure what you did wrong, look at the history list to review your recent commands. Some-
times this list can help you figure out what went wrong and how to fix things.

The history builtin displays the history list. If it does not, read the next section, which
describes the variables you might need to set.

VARIABLES THAT CONTROL HISTORY

The TC Shell’s history mechanism is similar to bash’s but uses different variables and
has some other differences. See page 384 for more information.

History 337

Event number

The value of the HISTSIZE variable determines the number of events preserved in the
history list during a session. A value in the range of 100 to 1,000 is normal.

When you exit from the shell, the most recently executed commands are saved in the file
whose name is stored in the HISTFILE variable (default is ~/.bash_history). The next
time you start the shell, this file initializes the history list. The value of the HISTFILESIZE
variable determines the number of lines of history saved in HISTFILE (see Table 8-7).

History variables

Variable Default Function

HISTSIZE 1,000 events Maximum number of events saved during a session
HISTFILE ~/.hash_history Location of the history file

HISTFILESIZE 1,000-2,000 events Maximum number of events saved between sessions

The Bourne Again Shell assigns a sequential event number to each command line.
You can display this event number as part of the bash prompt by including \! in PS1
(page 319). Examples in this section show numbered prompts when they help to
illustrate the behavior of a command.

Enter the following command manually to establish a history list of the 100 most
recent events; place it in ~/.bash_profile to affect future sessions:

$ HISTSIZE=100

The following command causes bash to save the 100 most recent events across login
sessions:

$ HISTFILESIZE=100

After you set HISTFILESIZE, you can log out and log in again, and the 100 most
recent events from the previous login session will appear in your history list.

Enter the command history to display the events in the history list. This list is ordered
with the oldest events at the top. A tcsh history list includes the time the command
was executed. The following history list includes a command to modify the bash
prompt so it displays the history event number. The last event in the history list is the
history command that displayed the list.

32 $ history | tail
23 PS1="\! bash$ "

24 1s -1
25 cat temp
26 rm temp

27 vim memo
28 T1pr memo
29 vim memo
30 1pr memo
31 rm memo
32 history | tail

338 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

As you run commands and your history list becomes longer, it might run off the top
of the screen when you use the history builtin. Send the output of history through a
pipeline to less to browse through it or give the command history 10 or history | tail
to look at the ten most recent commands.

Handy history aliases

Creating the following aliases makes working with history easier. The first allows you to give the
command h to display the ten most recent events. The second alias causes the command hg string
to display all events in the history list that contain string. Put these aliases in your ~/.bhashre file
to make them available each time you log in. See page 352 for more information on aliases.

$ alias 'h=history | tail’
$ alias 'hg=history | grep'

REEXECUTING AND EDITING COMMANDS

You can reexecute any event in the history list. Not having to reenter long command
lines allows you to reexecute events more easily, quickly, and accurately than you
could if you had to retype the command line in its entirety. You can recall, modify,
and reexecute previously executed events in three ways: You can use the fc builtin
(next), the exclamation point commands (page 341), or the Readline Library, which
uses a one-line vi- or emacs-like editor to edit and execute events (page 345).

Which method to use?

If you are more familiar with vi or emacs and less familiar with the C or TC Shell, use fc or the
Readline Library. If you are more familiar with the C or TC Shell, use the exclamation point com-
mands. If it is a toss-up, try the Readline Library; it will benefit you in other areas of Linux more
than learning the exclamation point commands will.

fc: DISPLAYS, EDITS, AND REEXECUTES COMMANDS

The fc (fix command) builtin (not in tcsh) enables you to display the history list and
to edit and reexecute previous commands. It provides many of the same capabilities
as the command-line editors.

VIEWING THE HISTORY LIST

When you call fc with the -1 option, it displays commands from the history list.
Without any arguments, fc -1 lists the 16 most recent commands in a list that
includes event numbers, with the oldest appearing first:

$ fc -1

1024 cd

1025 view calendar

1026 vim letter.adamsQl

1027 aspell -c letter.adams0l
1028 vim Tletter.adamsQl

1029 Tpr Tetter.adams@l

1030 cd ../memos

1031 Is

HisTorY 339

1032
1033
1034
1035
1036
1037
1038
1039
1040

rm =0405
fc -1
cd

whereis aspell

man aspell

cd /usr/share/doc/xaspell=
pwd

1s

1s man-html

The fc builtin can take zero, one, or two arguments with the -1 option. The arguments
specify the part of the history list to be displayed:

fc I [first [last]]

The fc builtin lists commands beginning with the most recent event that matches
first. The argument can be an event number, the first few characters of the command
line, or a negative number, which specifies the nth previous command. Without last,
fc displays events through the most recent. If you include last, fc displays commands
from the most recent event that matches first through the most recent event that

matches last.

The next command displays the history list from event 1030 through event 1035:

$ fc -1 1030 1035

1030
1031
1032
1033
1034
1035

cd ../memos

1s

rm =0405
fc -1

cd

whereis aspell

The following command lists the most recent event that begins with view through the
most recent command line that begins with whereis:

$ fc -1 view whereis

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

view calendar

vim letter.adams01l
aspell -c letter.adamsQl
vim letter.adams0l

Tpr letter.adams0l

cd ../memos

1s

rm =0405
fc -1

cd

whereis aspell

To list a single command from the history list, use the same identifier for the first and
second arguments. The following command lists event 1027:

$ fc -1 1027 1027

1027

aspell -c letter.adamsQl

340 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

EDITING AND REEXECUTING PREVIOUS COMMANDS
You can use fc to edit and reexecute previous commands.

fc [-e editor] [first [last]]

When you call fc with the —e option followed by the name of an editor, fc calls the
editor with event(s) in the Work buffer. By default, fc invokes the vi(m) or nano editor.
Without first and last, it defaults to the most recent command. The next example
invokes the vim editor (Chapter 6) to edit the most recent command. When you exit
from the editor, the shell executes the command.

$§ fc -e vi

The fc builtin uses the stand-alone vim editor. If you set the EDITOR variable, you do
not need to use the —e option to specify an editor on the command line. Because the value
of EDITOR has been changed to /usr/bin/emacs and fc has no arguments, the following
command edits the most recent command using the emacs editor (Chapter 7):

$ export EDITOR=/usr/bin/emacs

$ fc
If you call it with a single argument, fc invokes the editor on the specified command.
The following example starts the editor with event 1029 in the Work buffer:

$ fc 1029

As described earlier, you can identify commands either by using numbers or by spec-
ifying the first few characters of the command name. The following example calls the
editor to work on events from the most recent event that begins with the letters vim
through event 1030:

$ fc vim 1030

Clean up the fc buffer

When you execute an fc command, the shell executes whatever you leave in the editor buffer,
possibly with unwanted results. If you decide you do not want to execute a command, delete
everything from the buffer before you exit from the editor.

REEXECUTING COMMANDS WITHOUT CALLING THE EDITOR

You can also reexecute previous commands without using an editor. If you call fc with
the —s option, it skips the editing phase and reexecutes the command. The following
example reexecutes event 1029:

$ fc -s 1029
Tpr letter.adams0l

The next example reexecutes the previous command:
$ fc -s

When you reexecute a command, you can tell fc to substitute one string for another.
The next example substitutes the string john for the string adams in event 1029 and
executes the modified event:

$ fc -s adams=john 1029
Tpr letter.johnol

History 341

11 reexecutes the
previous event

UsING AN EXCLAMATION POINT (!) TO REFERENCE EVENTS

The C Shell history mechanism uses an exclamation point to reference events. This
technique, which is available under bash and tcsh, is frequently more cumbersome to
use than fc but nevertheless has some useful features. For example, the !! command
reexecutes the previous event, and the shell replaces the !$ token with the last word
from the previous command line.

You can reference an event by using its absolute event number, its relative event number,
or the text it contains. All references to events, called event designators, begin with an
exclamation point (!). One or more characters follow the exclamation point to specify
an event.

You can put history events anywhere on a command line. To escape an exclamation
point so the shell interprets it literally instead of as the start of a history event, precede
it with a backslash (\) or enclose it within single quotation marks.

EVENT DESIGNATORS
An event designator specifies a command in the history list. Table 8-8 lists event
designators.

Event designators
Designator Meaning

! Starts a history event unless followed immediately by SPACE, NEWLINE, =,
or (.

I The previous command.

In Command number nin the history list.

I-n The nth preceding command.

Istring The most recent command line that started with string.

12string[?] The most recent command that contained string. The last ? is optional.
I1# The current command (as you have it typed so far).

You can reexecute the previous event by giving a !! command. In the following example,
event 45 reexecutes event 44:

44 $ 1s -1 text

-rw-rw-r--. 1 max pubs 45 04-30 14:53 text
45 § 11

Ts -1 text

-rw-rw-r--. 1 max pubs 45 04-30 14:53 text

The !! command works whether or not your prompt displays an event number. As
this example shows, when you use the history mechanism to reexecute an event, the
shell displays the command it is reexecuting.

342 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

Inevent number

Istring event text

optional

A number following an exclamation point refers to an event. If that event is in the
history list, the shell executes it. Otherwise, the shell displays an error message. A
negative number following an exclamation point references an event relative to the
current event. For example, the command !-3 refers to the third preceding event.
After you issue a command, the relative event number of a given event changes (event
-3 becomes event —4). Both of the following commands reexecute event 44:

51§ 144

Ts -1 text

-rw-rw-r--. 1 max pubs 45 04-30 14:53 text

52 % !-8

Ts -1 text

-rw-rw-r--. 1 max pubs 45 04-30 14:53 text
When a string of text follows an exclamation point, the shell searches for and
executes the most recent event that began with that string. If you enclose the
string within question marks, the shell executes the most recent event that con-
tained that string. The final question mark is optional if a RETURN would
immediately follow it.

68 $ history 10
59 1s -1 texts=
60 tail text5
61 cat textl text5 > letter
62 vim letter
63 cat letter
64 cat memo
65 T1pr memo
66 pine zach
67 1s -1
68 history

69 $!

1s -1

70 $!lpr

Tpr memo

71 $!'?letter?
cat letter

WORD DESIGNATORS

A word designator specifies a word (token) or series of words from an event (a com-
mand line). Table 8-9 on page 344 lists word designators. The words on a command
line are numbered starting with O (the first word, usually the command), continuing
with 1 (the first word following the command), and ending with # (the last word on
the command line).

To specify a particular word from a previous event, follow the event designator (such
as !114) with a colon and the number of the word in the previous event. For example,

HisTory 343

114:3 specifies the third word following the command from event 14. You can specify
the first word following the command (word number 1) using a caret (*) and the last
word using a dollar sign ($). You can specify a range of words by separating two
word designators with a hyphen.

72 $ echo apple grape orange pear
apple grape orange pear

73 $ echo 172:2

echo grape

grape

74 $ echo '72:A

echo apple

apple

75 $ 172:0 172:$
echo pear

pear

76 $ echo '72:2-4

echo grape orange pear

grape orange pear

77 $ 172:0-$%

echo apple grape orange pear
apple grape orange pear

As the next example shows, !$ refers to the last word of the previous event. You can
use this shorthand to edit, for example, a file you just displayed using cat:

$ cat report.718

$ vim !'$
vim report.718

If an event contains a single command, the word numbers correspond to the argu-
ment numbers. If an event contains more than one command, this correspondence
does not hold for commands after the first. In the next example, event 78 contains
two commands separated by a semicolon so the shell executes them sequentially; the
semicolon is word number S.

78 $ 172 ; echo helen zach barbara
echo apple grape orange pear ; echo helen zach barbara
apple grape orange pear

helen zach barbara

79 $ echo !78:7

echo helen

helen

80 $ echo !78:4-7

echo pear ; echo helen

pear

helen

344 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

Substitute modifier

Quick substitution

Word designators

Designator Meaning

n The nth word. Word 0 is normally the command name.

W The first word (after the command name).

$ The last word.

m-n All words from word number mthrough word number n; m defaults to 0 if you
omit it (0—n).

n= All words from word number n through the last word.

All words except the command name. The same as 1.

% The word matched by the most recent ?string? search.

MODIFIERS

On occasion you might want to change an aspect of an event you are reexecuting. Per-
haps you entered a complex command line with a typo or incorrect pathname or you
want to specify a different argument. You can modify an event or a word of an event
by putting one or more modifiers after the word designator or after the event designator
if there is no word designator. Each modifier must be preceded by a colon (:).

The following example shows the substitute modifier correcting a typo in the previous
event:

$ car /home/zach/memo.0507 /home/max/letter.0507
bash: car: command not found

$ 11:s/car/cat

cat /home/zach/memo.0507 /home/max/letter.0507

The substitute modifier has the syntax
[g]s/old/new/

where old is the original string (not a regular expression) and new is the string that
replaces old. The substitute modifier substitutes the first occurrence of old with new.
Placing a g before the s causes a global substitution, replacing all occurrences of old.
Although / is the delimiter in the examples, you can use any character that is not in
either old or new. The final delimiter is optional if a RETURN would immediately follow
it. As with the vim Substitute command, the history mechanism replaces an amper-
sand (&) in new with old. The shell replaces a null old string (s//new/) with the
previous old string or the string within a command you searched for using ?string?.

An abbreviated form of the substitute modifier is quick substitution. Use it to reexe-
cute the most recent event while changing some of the event text. The quick
substitution character is the caret (2). For example, the command

$ AoldAnewA

HisTorY 345

produces the same results as
$ 1l:s/old/new/
Thus, substituting cat for car in the previous event could have been entered as

$ AcarAcat
cat /home/zach/memo.0507 /home/max/letter.0507

You can omit the final caret if it would be followed immediately by a RETURN. As with
other command-line substitutions, the shell displays the command line as it appears
after the substitution.

Other modifiers Modifiers (other than the substitute modifier) perform simple edits on the part of the
event that has been selected by the event designator and the optional word designa-
tors. You can use multiple modifiers, each preceded by a colon (:).

The following series of commands uses Is to list the name of a file, repeats the command
without executing it (p modifier), and repeats the last command, removing the last part
of the pathname (h modifier) again without executing it:

$ 1s /etc/ssh/ssh_config
/etc/ssh/ssh_config

$ 1:p
1s /etc/ssh/ssh_config
$ 11:h:p

1s /etc/ssh

Table 8-10 lists event modifiers other than the substitute modifier.

Event modifiers

Modifier Function

e (extension) Removes all but the filename extension

h (head) Removes the last part of a pathname

p (print) Displays the command but does not execute it

q (quote) Quotes the substitution to prevent further substitutions on it
r (root) Removes the filename extension

t (tail) Removes all elements of a pathname except the last

X Like q but quotes each word in the substitution individually

THE READLINE LIBRARY

Command-line editing under the Bourne Again Shell is implemented through the
Readline Library, which is available to any application written in C. Any applica-
tion that uses the Readline Library supports line editing that is consistent with that

346 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

vi mode

emacs mode

provided by bash. Programs that use the Readline Library, including bash, read
~/.inputrc (page 349) for key binding information and configuration settings. The
—-noediting command-line option turns off command-line editing in bash.

You can choose one of two editing modes when using the Readline Library in bash:
emacs or vi(m). Both modes provide many of the commands available in the stand-alone
versions of the emacs and vim editors. You can also use the ARROW keys to move around.
Up and down movements move you backward and forward through the history list. In
addition, Readline provides several types of interactive word completion (page 348).
The default mode is emacs; you can switch to vi mode using the following command:

$ set -o vi
The next command switches back to emacs mode:

$ set -o emacs

vi EDITING MODE

Before you start, make sure the shell is in vi mode.

When you enter bash commands while in vi editing mode, you are in Input mode
(page 169). As you enter a command, if you discover an error before you press RETURN,
you can press ESCAPE to switch to vim Command mode. This setup is different from the
stand-alone vim editor’s initial mode. While in Command mode you can use many vim
commands to edit the command line. It is as though you were using vim to edit a copy
of the history file with a screen that has room for only one command. When you use
the k command or the UP ARROW to move up a line, you access the previous command.
If you then use the j command or the DOWN ARROW to move down a line, you return to
the original command. To use the k and j keys to move between commands, you must
be in Command mode; you can use the ARROW keys in both Command and Input modes.

The command-line vim editor starts in Input mode

The stand-alone vim editor starts in Command mode, whereas the command-line vim editor
starts in Input mode. If commands display characters and do not work properly, you are in Input
mode. Press ESCAPE and enter the command again.

In addition to cursor-positioning commands, you can use the search-backward (?)
command followed by a search string to look back through the history list for the
most recent command containing a string. If you have moved back in the history list,
use a forward slash (/) to search forward toward the most recent command. Unlike
the search strings in the stand-alone vim editor, these search strings cannot contain
regular expressions. You can, however, start the search string with a caret (*) to force
the shell to locate commands that start with the search string. As in vim, pressing n
after a successful search looks for the next occurrence of the same string.

You can also use event numbers to access events in the history list. While you are in
Command mode (press ESCAPE), enter the event number followed by a G to go to the
command with that event number.

HisTorY 347

When you use /, ?, or G to move to a command line, you are in Command mode, not
Input mode: You can edit the command or press RETURN to execute it.

When the command you want to edit is displayed, you can modify the command line
using vim Command mode editing commands such as x (delete character), r (replace
character), ~ (change case), and . (repeat last change). To switch to Input mode, use
an Insert (i, I), Append (a, A), Replace (R), or Change (¢, C) command. You do not
have to return to Command mode to execute a command; simply press RETURN, even
if the cursor is in the middle of the command line. For more information refer to the
vim tutorial on page 167. Refer to page 213 for a summary of vim commands.

emacs EDITING MODE

Unlike the vim editor, emacs is modeless. You need not switch between Command
mode and Input mode because most emacs commands are control characters
(page 231), allowing emacs to distinguish between input and commands. Like vim,
the emacs command-line editor provides commands for moving the cursor on the
command line and through the command history list and for modifying part or all
of a command. However, in a few cases, the emacs command-line editor commands
differ from those used in the stand-alone emacs editor.

In emacs you perform cursor movement by using both CONTROL and ESCAPE commands.
To move the cursor one character backward on the command line, press CONTROL-B. Press
CONTROL-F to move one character forward. As in vim, you can precede these movements
with counts. To use a count you must first press ESCAPE; otherwise, the numbers you type
will appear on the command line.

Like vim, emacs provides word and line movement commands. To move backward or
forward one word on the command line, press ESCAPED or ESCAPES, respectively. To move
several words using a count, press ESCAPE followed by the number and the appropriate
escape sequence. To move to the beginning of the line, press CONTROL-A; to move to the
end of the line, press CONTROL-E; and to move to the next instance of the character ¢, press
CONTROL-X CONTROL-F followed by c.

You can add text to the command line by moving the cursor to the position you
want to enter text and typing. To delete text, move the cursor just to the right of
the characters you want to delete and press the erase key (page 29) once for each
character you want to delete.

CONTROL-D can terminate your screen session

If you want to delete the character directly under the cursor, press CONTROL-D. If you enter CONTROL-D
at the beginning of the line, it might terminate your shell session.

If you want to delete the entire command line, press the line kill key (page 30). You can
press this key while the cursor is anywhere in the command line. Use CONTROLK to delete
from the cursor to the end of the line. Refer to page 270 for a summary of emacs
commands.

348 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

READLINE COMPLETION COMMANDS

You can use the TAB key to complete words you are entering on the command line. This
facility, called completion, works in both vi and emacs editing modes and is similar
to the completion facility available in tcsh. Several types of completion are possible,
and which one you use depends on which part of a command line you are typing
when you press TAB.

CoMMAND COMPLETION

If you are typing the name of a command, pressing TAB initiates command completion,
in which bash looks for a command whose name starts with the part of the word you
have typed. If no command starts with the characters you entered, bash beeps. If there
is one such command, bash completes the command name. If there is more than one
choice, bash does nothing in vi mode and beeps in emacs mode. Pressing TAB a second
time causes bash to display a list of commands whose names start with the prefix you
typed and allows you to continue typing the command name.

In the following example, the user types bz and presses TAB. The shell beeps (the user
is in emacs mode) to indicate that several commands start with the letters bz. The user
enters another TAB to cause the shell to display a list of commands that start with bz
followed by the command line as the user has entered it so far:

$ bz © TAB (beep) = TAB

bzcat bzdiff bzip2 bzless
bzcmp bzgrep bzip2recover bzmore
$ bzHl

Next, the user types ¢ and presses TAB twice. The shell displays the two commands that
start with bzc. The user types a followed by TAB. At this point the shell completes the
command because only one command starts with bzca.

$ bzc = TAB (beep) = TAB
bzcat bzcmp
$bzca > t Nl

PATHNAME COMPLETION

Pathname completion, which also uses TABs, allows you to type a portion of a path-
name and have bash supply the rest. If the portion of the pathname you have typed
is sufficient to determine a unique pathname, bash displays that pathname. If more
than one pathname would match it, bash completes the pathname up to the point
where there are choices so that you can type more.

When you are entering a pathname, including a simple filename, and press 1A, the
shell beeps (if the shell is in emacs mode—in vi mode there is no beep). It then extends
the command line as far as it can.

$ cat films/dar = TAB (beep) cat films/dark_H

HisTorY 349

In the films directory every file that starts with dar has k_ as the next characters,
so bash cannot extend the line further without making a choice among files. The
shell leaves the cursor just past the _ character. At this point you can continue typ-
ing the pathname or press TAB twice. In the latter case bash beeps, displays the
choices, redisplays the command line, and again leaves the cursor just after the
_ character.

$ cat films/dark_ = TAB (beep) = TAB
dark_passage dark_victory
$ cat films/dark_H

When you add enough information to distinguish between the two possible files and
press TAB, bash displays the unique pathname. If you enter p followed by 18 after the
_ character, the shell completes the command line:

$ cat films/dark_p = TAB = assage

Because there is no further ambiguity, the shell appends a SPACE so you can either finish
typing the command line or press RETURN to execute the command. If the complete
pathname is that of a directory, bash appends a slash (/) in place of a SPACE.

VARIABLE COMPLETION

When you are typing a variable name, pressing TAB results in variable completion,
wherein bash attempts to complete the name of the variable. In case of an ambiguity,
pressing TAB twice displays a list of choices:

$ echo $HO = TAB (beep) = TAB
$HOME $HOSTNAME $HOSTTYPE
$ echo $HOM © TAB =@ E

Pressing RETURN executes the command

Pressing RETURN causes the shell to execute the command regardless of where the cursor is on
the command line.

.inputrc: CONFIGURING THE READLINE LIBRARY

The Bourne Again Shell and other programs that use the Readline Library read the file
specified by the INPUTRC environment variable to obtain initialization information.
If INPUTRC is not set, these programs read the ~/.inputrc file. They ignore lines of
.Anputrc that are blank or that start with a hashmark (#).

VARIABLES
You can set variables in .inputrc to control the behavior of the Readline Library using
the syntax:

set variable value

350 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

bind

Table 8-11 lists some variables and values you can use. See “Readline Variables” in
the bash man or info page for a complete list.

Readline variables
Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to start
Readline in emacs mode (the default). Similar to the set —o vi
and set —o emacs shell commands (page 346).

horizontal-scroll-mode Set to on to cause long lines to extend off the right edge of the
display area. Moving the cursor to the right when it is at the right
edge of the display area shifts the line to the left so you can see
more of the line. Shift the line back by moving the cursor back
past the left edge. The default value is off, which causes long
lines to wrap onto multiple lines of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at the end of
directory names it completes. The default value is on.

mark-modified-lines Set to on to cause Readline to precede modified history lines
with an asterisk. The default value is off.

KEY BINDINGS

You can map keystroke sequences to Readline commands, changing or extending the
default bindings. Like the emacs editor, the Readline Library includes many com-
mands that are not bound to a keystroke sequence. To use an unbound command,
you must map it using one of the following forms:

keyname: command_name
" keystroke_sequence" : command_name

In the first form, you spell out the name for a single key. For example, CONTROL-U would
be written as control-u. This form is useful for binding commands to single keys.

In the second form, you specify a string that describes a sequence of keys that will be
bound to the command. You can use the emacs-style backslash escape sequences
(page 231) to represent the special keys CONTROL (\C), META (\M), and ESCAPE (\e). Specify
a backslash by escaping it with another backslash: \\. Similarly, a double or single
quotation mark can be escaped with a backslash: \" or \'.

The kill-whole-line command, available in emacs mode only, deletes the current line.
Put the following command in .inputrc to bind the kill-whole-line command (which
is unbound by default) to the keystroke sequence CONTROL-R:

control-r: kill-whole-Tine

Give the command bind -P to display a list of all Readline commands. If a command
is bound to a key sequence, that sequence is shown. Commands you can use in vi
mode start with vi. For example, vi-next-word and vi-prev-word move the cursor to

History 351

the beginning of the next and previous words, respectively. Commands that do not
begin with vi are generally available in emacs mode.

Use bind —q to determine which key sequence is bound to a command:

$ bind -q kill-whole-Tine
kill-whole-Tine can be invoked via "\C-r".

You can also bind text by enclosing it within double quotation marks (emacs mode
only):

"QQ": "The Linux Operating System"

This command causes bash to insert the string The Linux Operating System when
you type QQ on the command line.

CoNDITIONAL CONSTRUCTS
You can conditionally select parts of the .inputrc file using the $if directive. The syntax
of the conditional construct is

$if test[=value]
commands
[$else

commands|

Sendif

where test is mode, term, or a program name such as bash. If test equals value (or if test
is true when value is not specified), this structure executes the first set of commands. It
test does not equal value (or if test is false when value is not specified), it executes the
second set of commands if they are present or exits from the structure if they are not
present.

The power of the $if directive lies in the three types of tests it can perform:
1. You can test to see which mode is currently set.
$if mode=vi

The preceding test is true if the current Readline mode is vi and false
otherwise. You can test for vi or emacs.

2. You can test the type of terminal.
$if term=xterm

The preceding test is true if the TERM variable is set to xterm. You can test
for any value of TERM.

3. You can test the application name.
$if bash

The preceding test is true when you are running bash and not another program
that uses the Readline Library. You can test for any application name.

352 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

ALIASES

These tests can customize the Readline Library based on the current mode, the type
of terminal, and the application you are using. They give you a great deal of power
and flexibility when you are using the Readline Library with bash and other
programs.

The following commands in .inputrc cause CONTROL-Y to move the cursor to the beginning
of the next word regardless of whether bash is in vi or emacs mode:

$ cat ~/.inputrc
set editing-mode vi
$if mode=vi
"\C-y": vi-next-word
$else
"\C-y": forward-word
$endif

Because bash reads the preceding conditional construct when it is started, you must
set the editing mode in .inputrc. Changing modes interactively using set will not
change the binding of CONTROL-Y.

For more information on the Readline Library, open the bash man page and give the
command /AREADLINE, which searches for the word READLINE at the beginning
of a line.

If Readline commands do not work, log out and log in again

The Bourne Again Shell reads ~/.inputre when you log in. After you make changes to this file, you
must log out and log in again before the changes will take effect.

An alias is a (usually short) name that the shell translates into another (usually longer)
name or command. Aliases allow you to define new commands by substituting a
string for the first token of a simple command. They are typically placed in the
~/.bashrc (bash) or ~/.tcshrc (tcsh) startup files so that they are available to interac-
tive subshells.

Under bash the syntax of the alias builtin is
alias [name[=value]]

Under tcsh the syntax is
alias [name[value]]

In the bash syntax no SPACEs are permitted around the equal sign. If value contains
SPACEs or TABs, you must enclose value within quotation marks. Unlike aliases under
tcsh, a bash alias does not accept an argument from the command line in value. Use
a bash function (page 356) when you need to use an argument.

ALIASES 353

An alias does not replace itself, which avoids the possibility of infinite recursion in
handling an alias such as the following:

$ alias 1s="1s -F'

You can nest aliases. Aliases are disabled for noninteractive shells (that is, shell scripts).
Use the unalias builtin to remove an alias. When you give an alias builtin command
without any arguments, the shell displays a list of all defined aliases:

$ alias

alias 11="1s -1'
alias 1="1s -1tr’'
alias 1s="'1ls -F'
alias zap='rm -i'

To view the alias for a particular name, enter the command alias followed by the
name of the alias. Most Linux distributions define at least some aliases. Enter an alias
command to see which aliases are in effect. You can delete the aliases you do not want
from the appropriate startup file.

SINGLE VERSUS DOUBLE QUOTATION MARKS IN ALIASES

The choice of single or double quotation marks is significant in the alias syntax when
the alias includes variables. If you enclose value within double quotation marks, any
variables that appear in value are expanded when the alias is created. If you enclose
value within single quotation marks, variables are not expanded until the alias is
used. The following example illustrates the difference.

The PWD keyword variable holds the pathname of the working directory. Max cre-
ates two aliases while he is working in his home directory. Because he uses double
quotation marks when he creates the dirA alias, the shell substitutes the value of the
working directory when he creates this alias. The alias dirA command displays the
dirA alias and shows that the substitution has already taken place:

$ echo $PWD

/home/max

$ alias dirA="echo Working directory is $PWD"

$ alias dirA

alias dirA='echo Working directory 1is /home/max"'

When Max creates the dirB alias, he uses single quotation marks, which prevent the
shell from expanding the $PWD variable. The alias dirB command shows that the
dirB alias still holds the unexpanded $PWD variable:

$ alias dirB="echo Working directory is $PWD'
$ alias dirB
alias dirB='echo Working directory is $PWD'

After creating the dirA and dirB aliases, Max uses cd to make cars his working direc-
tory and gives each of the aliases as a command. The alias he created using double
quotation marks displays the name of the directory he created the alias in as the

354 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

working directory (which is wrong). In contrast, the dirB alias displays the proper
name of the working directory:

$ cd cars

$ dirA

Working directory 1is /home/max

$ dirB

Working directory is /home/max/cars

How to prevent the shell from invoking an alias

The shell checks only simple, unquoted commands to see if they are aliases. Commands given as
relative or absolute pathnames and quoted commands are not checked. When you want to give a
command that has an alias but do not want to use the alias, precede the command with a backslash,
specify the command’s absolute pathname, or give the command as ./command.

EXAMPLES OF ALIASES

The following alias allows you to type r to repeat the previous command or r abc to
repeat the last command line that began with abc:

$ alias r="fc -s'

If you use the command Is -Itr frequently, you can create an alias that substitutes Is —
Itr when you give the command I:

$ alias 1="1s -1tr’

$1

-rw-r----- . 1 max pubs 3089 02-11 16:24 XTerm.ad
-rw-r--r--. max pubs 30015 03-01 14:24 flute.ps
-rw-r--r--. max pubs 641 04-01 08:12 fixtax.icn
-rw-r--r--. max pubs 484 04-09 08:14 maptax.icn

drwxrwxr-x.
drwxrwxr-x.
-rWXr-Xr-x.
drwxrwxr-x.

max pubs 1024 08-09 17:41 Tiger

max pubs 1024 09-10 11:32 testdir
max pubs 485 09-21 08:03 floor

max pubs 1024 09-27 20:19 Test_Emacs

NERENNRRR

Another common use of aliases is to protect yourself from mistakes. The following
example substitutes the interactive version of the rm utility when you enter the com-
mand zap:

$ alias zap="rm -i'

$ zap f=

rm: remove 'fixtax.icn'? n
rm: remove 'flute.ps'? n
rm: remove 'floor'? n

The —i option causes rm to ask you to verify each file that would be deleted,
thereby helping you avoid deleting the wrong file. You can also alias rm with the
rm —i command: alias rm="rm —i'.

The aliases in the next example cause the shell to substitute Is -1 each time you give an 1l
command and Is —F each time you use Is. The —F option causes Is to print a slash (/) at
the end of directory names and an asterisk () at the end of the names of executable files.

ALIASES 355

$ alias 1s='1ls -F'

$ alias 11="1s -1"'

$ 1

drwxrwxr-x. 2 max pubs 1024 09-27 20:19 Test_Emacs/

drwxrwxr-x. 2 max pubs 1024 08-09 17:41 Tiger/
-rw-r----- . 1 max pubs 3089 02-11 16:24 XTerm.ad
-rw-r--r--. 1 max pubs 641 04-01 08:12 fixtax.icn
-rw-r--r--. 1 max pubs 30015 03-01 14:24 flute.ps
-rwxr-xr-x. 1 max pubs 485 09-21 08:03 floor=
-rw-r--r--. 1 max pubs 484 04-09 08:14 maptax.icn
drwxrwxr-x. 2 max pubs 1024 09-10 11:32 testdir/

In this example, the string that replaces the alias 1l (Is -1) itself contains an alias (Is).
When it replaces an alias with its value, the shell looks at the first word of the
replacement string to see whether it is an alias. In the preceding example, the
replacement string contains the alias Is, so a second substitution occurs to produce
the final command Is —=F -1. (To avoid a recursive plunge, the Is in the replacement
text, although an alias, is not expanded a second time.)

When given a list of aliases without the =value or value field, the alias builtin displays
the value of each defined alias. The alias builtin reports an error if an alias has not

been defined:

$ alias 11 1 1s zap wx
alias 11="1s -1"

alias 1="1s -1tr’'

alias 1s="1ls -F'

alias zap="rm -i'

bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \1s
Test_Emacs XTerm.ad flute.ps maptax.icn
Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest
of the command line, any arguments are still received by the command that is executed:

$ 11 f=

-rw-r--r--. 1 max pubs 641 04-01 08:12 fixtax.icn
-rw-r--r--. 1 max pubs 30015 03-01 14:24 flute.ps
-rwxr-xr-x. 1 max pubs 485 09-21 08:03 floor=

You can remove an alias using the unalias builtin. When the zap alias is removed, it is no
longer displayed by the alias builtin, and its subsequent use results in an error message:

$ unalias zap

$ alias

alias 11="1s -1'

alias 1="1s -1tr’'

alias 1s="'1ls -F'

$ zap maptax.icn

bash: zap: command not found

356 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

FUNCTIONS

A shell function (tcsh does not have functions) is similar to a shell script in that it
stores a series of commands for execution at a later time. However, because the shell
stores a function in the computer’s main memory (RAM) instead of in a file on the
disk, the shell can access it more quickly than the shell can access a script. The shell
also preprocesses (parses) a function so it starts more quickly than a script. Finally
the shell executes a shell function in the same shell that called it. If you define too
many functions, the overhead of starting a subshell (as when you run a script) can
become unacceptable.

You can declare a shell function in the ~/.bash_profile startup file, in the script that
uses it, or directly from the command line. You can remove functions using the unset
builtin. The shell does not retain functions after you log out.

Removing variables and functions that have the same name

If you have a shell variable and a function that have the same name, using unset removes the shell
variable. If you then use unset again with the same name, it removes the function.

The syntax that declares a shell function is

[function] function-name () {
commands

J

where the word function is optional (and is frequently omitted; it is not portable),
function-name is the name you use to call the function, and commands comprise
the list of commands the function executes when you call it. The commands can be
anything you would include in a shell script, including calls to other functions.

The opening brace ({) can appear on the line following the function name. Aliases and
variables are expanded when a function is read, not when it is executed. You can use
the break statement (page 453) within a function to terminate its execution.

You can declare a function on a single line. Because the closing brace must appear as
a separate command, you must place a semicolon before the closing brace when you
use this syntax:

$ say_hi() { echo "hi" ; }
$ say_hi
hi

Shell functions are useful as a shorthand as well as to define special commands. The
following function starts a process named process in the background, with the output
normally displayed by process being saved in .process.out.

FuncTioNs 357

Function local
variables

Export a function

start_process() {
process > .process.out 2>&1 &

}

The next example creates a simple function that displays the date, a header, and a list
of the people who are logged in on the system. This function runs the same com-
mands as the whoson script described on page 295. In this example the function is
being entered from the keyboard. The greater than (>) signs are secondary shell
prompts (PS2); do not enter them.

$ function whoson () {

> date

> echo "Users Currently Logged On"
> who

>}

$ whoson

Thurs Aug 9 15:44:58 PDT 2018
Users Currently Logged On

hls console 2018-08-08 08:59 (:0)
max pts/4 2018-08-08 09:33 (0.0)
zach pts/7 2018-08-08 09:23 (guava)

You can use the local builtin only within a function. This builtin causes its arguments
to be local to the function it is called from and its children. Without local, variables
declared in a function are available to the shell that called the function (functions are
run in the shell they are called from). The following function demonstrates the use
of local:

$ demo () {
> x=4

> local y=8
> echo "demo: $x $y"
>}

$ demo
demo: 4 8

$ echo $x

4

$ echo $y

$

The demo function, which is entered from the keyboard, declares two variables, x
and y, and displays their values. The variable x is declared with a normal assignment
statement while y is declared using local. After running the function, the shell that
called the function has access to x but knows nothing of y. See page 488 for another
example of function local variables.

An export —f command places the named function in the environment so it is available
to child processes.

358 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

Functionsin If you want the whoson function to be available without having to enter it each time
startup files you log in, put its definition in ~/.bash_profile. Then run .bash_profile, using the

optional

eva

. (dot) command to put the changes into effect immediately:

$ cat ~/.bash_profile

export TERM=vt100

stty kill 'Au'

whoson () {
date
echo "Users Currently Logged On"
who

}
$. ~/.bash_profile

You can specify arguments when you call a function. Within the function these arguments
are available as positional parameters (page 470). The following example shows the arg1
function entered from the keyboard:

$ argl () { echo "$1" ; }
$ argl first_arg
first_arg

See the function switch () on page 290 for another example of a function.

The following function allows you to place variables in the environment (export them)
using tcsh syntax. The env utility lists all environment variables and their values and
verifies that setenv worked correctly:

$ cat .bash_profile

setenv - keep tcsh users happy
setenv() {
if [$# -eq 2]

then
eval $1=%2
export $1
else

echo "Usage: setenv NAME VALUE" 1>&2
fi
}
$. ~/.bash_profile
$ setenv TCL_LIBRARY /usr/local/lib/tcl
$ env | grep TCL_LIBRARY
TCL_LIBRARY=/usr/Tocal/Tib/tcl

The $# special parameter (page 475) takes on the value of the number of command-
line arguments. This function uses the eval builtin to force bash to scan the command
$1=$2 rwice. Because $1=$2 begins with a dollar sign ($), the shell treats the entire
string as a single token—a command. With variable substitution performed, the com-
mand name becomes TCL_LIBRARY=/usr/local/lib/tcl, which results in an error.

CONTROLLING bash: FEATURES AND OPTIONS 359

With eval, a second scanning splits the string into the three desired tokens, and the
correct assignment occurs. See page 500 for more information on eval.

CONTROLLING bash: FEATURES AND OPTIONS

This section explains how to control bash features and options using command-line
options and the set and shopt builtins. The shell sets flags to indicate which options
are set (on) and expands $- to a list of flags that are set; see page 478 for more

information.

bash COMMAND-LINE OPTIONS

You can specify short and long command-line options. Short options consist of a
hyphen followed by a letter; long options have two hyphens followed by multiple
characters. Long options must appear before short options on a command line that
calls bash. Table 8-12 lists some commonly used command-line options.

Option
Help
No edit

No profile

No rc

POSIX
Version
Login
shopt

End of options

bash command-line options

Explanation
Displays a usage message.

Prevents users from using the Readline Library
(page 345) to edit command lines in an interactive
shell.

Prevents reading these startup files (page 288):
[etc/profile, ~/.bash_profile, ~/.bash_login, and
~/.profile.

Prevents reading the ~/.bashre startup file
(page 289). This option is on by default if the shell is
called as sh.

Runs bash in POSIX mode.
Displays bash version information and exits.
Causes bash to run as though it were a login shell.

Runs a shell with the opt shopt option (page 360). A
-0 (uppercase “0”) sets the option; +0 unsets it.

On the command line, signals the end of options.
Subsequent tokens are treated as arguments even if
they begin with a hyphen (=).

Syntax
—-help

—-noediting

——noprofile

——Nnorc

——posix
—-version
-1 (lowercase “I”)

[]0 [opt]

360 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

SHELL FEATURES

You can control the behavior of the Bourne Again Shell by turning features on and
off. Different methods turn different features on and off: The set builtin controls one
group of features, and the shopt builtin controls another group. You can also control
many features from the command line you use to call bash.

Features, options, variables, attributes?

To avoid confusing terminology, this book refers to the various shell behaviors that you can control
as features. The bash info page refers to them as “options” and “values of variables controlling
optional shell behavior.” In some places you might see them referred to as attributes.

set +0: TURNS SHELL FEATURES ON AND OFF

The set builtin, when used with the —o or +o0 option, enables, disables, and lists certain
bash features (the set builtin in tcsh works differently). For example, the following
command turns on the noclobber feature (page 143):

$ set -o noclobber
You can turn this feature off (the default) by giving this command:
$ set +o noclobber

The command set —o without an option lists each of the features controlled by set,
followed by its state (on or off). The command set +o without an option lists the same
features in a form you can use as input to the shell. Table 8-13 lists bash features. This
table does not list the —i option because you cannot set it. The shell sets this option
when it is invoked as an interactive shell. See page 472 for a discussion of other uses
of set.

shopt: TURNS SHELL FEATURES ON AND OFF

The shopt (shell option) builtin (not in tcsh) enables, disables, and lists certain bash
features that control the behavior of the shell. For example, the following command
causes bash to include filenames that begin with a period (.) when it expands ambig-
uous file references (the —s stands for set):

$ shopt -s dotglob

You can turn this feature off (the default) by giving the following command (where
the —u stands for unset):

$ shopt -u dotglob

The shell displays how a feature is set if you give the name of the feature as the only
argument to shopt:

$ shopt dotglob
dotglob off

CONTROLLING bash: FEATURES AND OPTIONS 361

Feature

allexport

braceexpand

cdspell

cmdhist

dotglob

emacs

errexit

Without any options or arguments, shopt lists the features it controls and their states.
The command shopt —s without an argument lists the features controlled by shopt
that are set or on. The command shopt —u lists the features that are unset or off.
Table 8-13 lists bash features.

Setting set +o features using shopt

You can use shopt to set/unset features that are otherwise controlled by set +o0. Use the regular
shopt syntax using =s or —u and include the —o option. For example, the following command turns
on the noclobber feature:

$ shopt -o -s noclobber

bash features
Description Syntax Alternative syntax

Automatically places in the environment set —o allexport set-a
(exports) all variables and functions you

create or modify after giving this command

(default is off).

Causes bash to perform brace expansion set —o0 braceexpand set -B
(default is on; page 366).

Corrects minor spelling errors in directory shopt -s cdspell

names used as arguments to cd (default

is off).

Saves all lines of a multiline command in shopt —s cmdhist

the same history entry, adding semicolons
as needed (default is on).

Causes shell special characters shopt -s dotglob
(wildcards; page 152) in an ambiguous

file reference to match a leading period in

afilename. By default, special characters

do not match a leading period: You must

always specify the filenames . and ..

explicitly because no pattern ever

matches them (default is off).

Specifies emacs editing mode for set -0 emacs

command-line editing (default is on;

page 347).

Causes bash to exit when a pipeline set —o errexit set-e

(page 145), which can be a simple
command (page 133; not a control
structure), fails (default is off).

362 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

bash features (continued)

Feature

execfail

expand_aliases

hashall

histappend

histexpand

history

huponexit

ignoreeof

monitor

nocaseglob

noclobber

nogloh

Description

Causes a shell script to continue running

when it cannot find the file that is given as
an argument to exec. By default, a script
terminates when exec cannot find the file

that is given as its argument (default is off).

Causes aliases (page 352) to be expanded
(default is on for interactive shells and off
for noninteractive shells).

Causes bash to remember where
commands it has found using PATH
(page 318) are located (default is on).

Causes bash to append the history list to
the file named by HISTFILE (page 336)
when the shell exits (default is off [bash
overwrites this file]).

Turns on the history mechanism (which
uses exclamation points by default;

page 341). Turn this feature off to turn off
history expansion (default is on).

Enables command history (default is on;
page 336).

Specifies that bash send a SIGHUP signal
to all jobs when an interactive login shell
exits (default is off).

Specifies that bash must receive ten EOF
characters before it exits. Useful on noisy
dial-up lines (default is off).

Enables job control (default is on;
page 304).

Causes ambiguous file references
(page 152) to match filenames without
regard to case (default is off).

Helps prevent overwriting files (default is
off; page 143).

Disables pathname expansion (default is
off; page 152).

Syntax Alternative syntax

shopt -s execfail

shopt —s expand_aliases

set —o hashall set-h

shopt —s histappend

set —o histexpand set -H

set —o history

shopt —s huponexit

set o ignoreeof

set -0 monitor set -m

shopt -s nocaseglob

set —o0 noclobber set-C

set -0 noglob set —f

CONTROLLING bash: FEATURES AND OPTIONS 363

bash features (continued)
Feature Description Syntax Alternative syntax

notify With job control (page 304) enabled, set —o notify set-b
reports the termination status of
background jobs immediately (default is
off: bash displays the status just before
the next prompt).

nounset Displays an error when the shell tries to set —o0 nounset set-u
expand an unset variable; bash exits from
a script but not from an interactive shell
(default is off: bash substitutes a null
value for an unset variable).

nullglob Causes bash to substitute a null string for shopt s nuliglob
ambiguous file references (page 152) that
do not match a filename (default is off:
bash passes these file references as is).

pipefail Sets the exit status of a pipeline to the exit set —o pipefail
status of the last (rightmost) simple
command that failed (returned a nonzero
exit status) in the pipeline; if no command
failed, exit status is set to zero (default is
off: bash sets the exit status of a pipeline
to the exit status of the final command in

the pipeline).
posix Runs bash in POSIX mode (default is off). set -0 posix
verhose Displays each command line after bash set —o verhose set-v

reads it but before bash expands it (default
is off). See also xtrace.

Vi Specifies vi editing mode for command- set —0 vi
line editing (default is off; page 346).

Xpg_echo Causes the echo builtin to expand shopt —s xpg_echo
backslash escape sequences without the
need for the —e option (default is off;
page 457).

xtrace Turns on shell debugging: Displays the set —o xtrace set —x
value of PS4 (page 321) followed by each
input line after the shell reads and expands
it (default is off; see page 442 for a
discussion). See also verhose.

364 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

PROCESSING THE COMMAND LINE

Whether you are working interactively or running a shell script, bash needs to read a
command line before it can start processing it—bash always reads at least one line before
processing a command. Some bash builtins, such as if and case, as well as functions and
quoted strings, span multiple lines. When bash recognizes a command that covers more
than one line, it reads the entire command before processing it. In interactive sessions,
bash prompts with the secondary prompt (PS2, > by default; page 321) as you type each
line of a multiline command until it recognizes the end of the command:

$ ps -ef |

> grep emacs

zach 26880 24579 1 14:42 pts/10 00:00:00 emacs notes
zach 26890 24579 0 14:42 pts/10 00:00:00 grep emacs

$ function hello () {

> echo hello there

> }

$
For more information refer to “Implicit Command-Line Continuation” on page 512.
After reading a command line, bash applies history expansion and alias substitution
to the command line.

HISTORY EXPANSION

“Reexecuting and Editing Commands” on page 338 discusses the commands you can
give to modify and reexecute command lines from the history list. History expansion
is the process bash uses to turn a history command into an executable command line.
For example, when you enter the command !!, history expansion changes that com-
mand line so it is the same as the previous one. History expansion is turned on by
default for interactive shells; set +o histexpand turns it off. History expansion does
not apply to noninteractive shells (shell scripts).

ALIAS SUBSTITUTION

Aliases (page 352) substitute a string for the first word of a simple command. By
default, alias substitution is turned on for interactive shells and off for noninteractive
shells; shopt —u expand_aliases turns it off.

PARSING AND SCANNING THE COMMAND LINE

After processing history commands and aliases, bash does not execute the command
immediately. One of the first things the shell does is to parse (isolate strings of characters
in) the command line into tokens (words). After separating tokens and before executing
the command, the shell scans the tokens and performs command-line expansion.

COMMAND-LINE EXPANSION

Both interactive and noninteractive shells transform the command line using command-
line expansion before passing the command line to the program being called. You can

PROCESSING THE COMMAND LINE 365

use a shell without knowing much about command-line expansion, but you can use what
a shell has to offer to a better advantage with an understanding of this topic. This section
covers Bourne Again Shell command-line expansion; TC Shell command-line expansion
is covered starting on page 384.

The Bourne Again Shell scans each token for the various types of expansion and sub-
stitution in the following order. Most of these processes expand a word into a single
word. Only brace expansion, word splitting, and pathname expansion can change
the number of words in a command (except for the expansion of the variable "$@"—
see page 474).

Brace expansion (next page)

Tilde expansion (page 368)

Parameter and variable expansion (page 368)

Arithmetic expansion (page 369)

Command substitution (page 371)

Word splitting (page 372)

Pathname expansion (page 372)

Process substitution (page 374)

0 2 N A e

Quote removal (page 374)

ORDER OF EXPANSION

The order in which bash carries out these steps affects the interpretation of com-
mands. For example, if you set a variable to a value that looks like the instruction
for output redirection and then enter a command that uses the variable’s value to
perform redirection, you might expect bash to redirect the output.

$ SENDIT="> /tmp/saveit"

$ echo xxx $SENDIT

XXX > /tmp/saveit

$ cat /tmp/saveit

cat: /tmp/saveit: No such file or directory

In fact, the shell does not redirect the output—it recognizes input and output redi-
rection before it evaluates variables. When it executes the command line, the shell
checks for redirection and, finding none, evaluates the SENDIT variable. After
replacing the variable with > /tmp/saveit, bash passes the arguments to echo,
which dutifully copies its arguments to standard output. No /tmp/saveit file is
created.

Quotation marks can alter expansion

Double and single quotation marks cause the shell to behave differently when performing expan-
sions. Double quotation marks permit parameter and variable expansion but suppress other types
of expansion. Single quotation marks suppress all types of expansion.

366 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

BRACE EXPANSION

Brace expansion, which originated in the C Shell, provides a convenient way to spec-
ify a series of strings or numbers. Although brace expansion is frequently used to
specify filenames, the mechanism can be used to generate arbitrary strings; the shell
does not attempt to match the brace notation with the names of existing files. Brace
expansion is turned on in interactive and noninteractive shells by default; you can
turn it off using set +o braceexpand. The shell also uses braces to isolate variable
names (page 314).

The following example illustrates how brace expansion works. The Is command does
not display any output because there are no files in the working directory. The echo
builtin displays the strings the shell generates using brace expansion.

$ 1s
$ echo chap_{one, two, three}. txt
chap_one.txt chap_two.txt chap_three.txt

The shell expands the comma-separated strings inside the braces on the command
line into a SPACE-separated list of strings. Each string from the list is prepended with
the string chap_, called the preamble, and appended with the string .txt, called the
postscript. Both the preamble and the postscript are optional. The left-to-right order
of the strings within the braces is preserved in the expansion. For the shell to treat
the left and right braces specially and for brace expansion to occur, at least one
comma must be inside the braces and no unquoted whitespace can appear inside the
braces. You can nest brace expansions.

Brace expansion can match filenames. This feature is useful when there is a long
preamble or postscript. The following example copies four files—main.c, fl.c, f2.c,
and tmp.c—located in the /usr/local/src¢/C directory to the working directory:

$ cp /usr/local/src/C/{main,fl,f2,tmp}.c .
You can also use brace expansion to create directories with related names:

$ 1s -F

filel file2 file3

$ mkdir vrs{A,B,C,D,E}

$ 1s -F

filel file2 file3 wvrsA/ vrsB/ vrsC/ vrsD/ vrsk/

The —F option causes Is to display a slash (/) after a directory and an asterisk () after
an executable file. If you tried to use an ambiguous file reference instead of braces to
specify the directories, the result would be different (and not what you wanted):

$ rmdir vrs:

$ mkdir vrs[A-E]

$ 1s -F

filel file2 file3 vrs[A-E]/

An ambiguous file reference matches the names of existing files. In the preceding exam-
ple, because it found no filenames matching vrs[A-E], bash passed the ambiguous file

PROCESSING THE COMMAND LINE 367

Sequence
expression

seq

reference to mkdir, which created a directory with that name. Brackets in ambiguous file
references are discussed on page 155.

Under newer versions of bash, brace expansion can include a sequence expression to
bl

generate a sequence of characters. It can generate a sequential series of numbers or

letters using the following syntax:

{nl..n2[..incr|}

where n1 and n2 are numbers or single letters and incr is a number. This syntax
works on bash version 4.0+; give the command echo $BASH_VERSION to see which
version you are using. The incr does not work under macOS. When you specify
invalid arguments, bash copies the arguments to standard output. Following are
some examples:

$ echo {4..8}
45678

$ echo {8..16..2}
8 10 12 14 16

$ echo {a..m..3}
adggjm

$ echo {a..m..b}
{a..m..b}

$ echo {2..m}
{2..m}

See page 500 for a way to use variables to specify the values used by a sequence
expression. Page 444 shows an example in which a sequence expression is used to
specify step values in a for...in loop.

Older versions of bash do not support sequence expressions. Although you can use
the seq utility to perform a similar function, seq does not work with letters and dis-
plays an error when given invalid arguments. The seq utility uses the following
syntax:

seq nl [incr] n2

The —s option causes seq to use the specified character to separate its output. Following
are some examples:

$ seq 4 8
4

[o BN o) IV,]

$ seq -s\ 8 2 16
8 10 12 14 16

$ seqad
seq: invalid floating point argument: a
Try 'seq --help' for more information.

368 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

TILDE EXPANSION

Chapter 4 introduced a shorthand notation to specify your home directory or the
home directory of another user. This section provides a more detailed explanation of
tilde expansion.

The tilde (~) is a special character when it appears at the start of a token on a com-
mand line. When it sees a tilde in this position, bash looks at the following string of
characters—up to the first slash (/) or to the end of the word if there is no slash—as
a possible username. If this possible username is null (that is, if the tilde appears as
a word by itself or if it is immediately followed by a slash), the shell substitutes the
value of the HOME variable for the tilde. The following example demonstrates this
expansion, where the last command copies the file named letter from Max’s home
directory to the working directory:

$ echo $HOME
/home/max

$ echo ~
/home/max

$ echo ~/letter
/home/max/letter
$ cp ~/letter .

If the string of characters following the tilde forms a valid username, the shell sub-
stitutes the path of the home directory associated with that username for the tilde and
name. If the string is not null and not a valid username, the shell does not make any
substitution:

$ echo ~zach

/home/zach

$ echo ~root
/root

$ echo ~xx
~XX

Tildes are also used in directory stack manipulation (page 307). In addition, ~+ is a
synonym for PWD (the name of the working directory), and ~- is a synonym for
OLDPWD (the name of the previous working directory).

PARAMETER AND VARIABLE EXPANSION

On a command line, a dollar sign ($) that is not followed by an open parenthesis
introduces parameter or variable expansion. Parameters include both command-line,
or positional, parameters (page 470) and special parameters (page 475). Variables
include both user-created variables (page 312) and keyword variables (page 317).
The bash man and info pages do not make this distinction.

The shell does not expand parameters and variables that are enclosed within single
quotation marks and those in which the leading dollar sign is escaped (i.e., preceded
with a backslash). The shell does expand parameters and variables enclosed within
double quotation marks.

PROCESSING THE COMMAND LINE 369

ARITHMETIC EXPANSION

The shell performs arithmetic expansion by evaluating an arithmetic expression and
replacing it with the result. See page 398 for information on arithmetic expansion
under tcsh. Under bash the syntax for arithmetic expansion is

$((expression))

The shell evaluates expression and replaces $((expression)) with the result. This syntax
is similar to the syntax used for command substitution [$(...)] and performs a parallel
function. You can use $((expression)) as an argument to a command or in place of any
numeric value on a command line.

The rules for forming expression are the same as those found in the C programming
language; all standard C arithmetic operators are available (see Table 10-8 on
page 508). Arithmetic in bash is done using integers. Unless you use variables of type
integer (page 316) or actual integers, however, the shell must convert string-valued
variables to integers for the purpose of the arithmetic evaluation.

You do not need to precede variable names within expression with a dollar sign ($).
In the following example, after read (page 489) assigns the user’s response to age, an
arithmetic expression determines how many years are left until age 100:

$ cat age_check

#!/bin/bash

read -p "How old are you? " age

echo "Wow, in $((100-age)) years, you'll be 100!"

$./age_check
How old are you? 55
Wow, in 45 years, you'll be 100!

You do not need to enclose the expression within quotation marks because bash does
not perform pathname expansion until later. This feature makes it easier for you to
use an asterisk (*) for multiplication, as the following example shows:

$ echo There are $((60+:60+24%:365)) seconds in a non-leap year.
There are 31536000 seconds in a non-leap year.

The next example uses wc, cut, arithmetic expansion, and command substitution
(page 371) to estimate the number of pages required to print the contents of the file
letter.txt. The output of the wc (word count) utility (page 1027) used with the -1
option is the number of lines in the file, in columns (character positions) 1 through
4, followed by a SPACE and the name of the file (the first command following). The cut
utility (page 784) with the —c1-4 option extracts the first four columns.

$ wc -1 letter.txt

351 Tetter.txt

$ wc -1 letter.txt | cut -cl-4
351

370 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

let builtin

The dollar sign and single parenthesis instruct the shell to perform command substi-
tution; the dollar sign and double parentheses indicate arithmetic expansion:

$ echo $(($(wc -1 letter.txt | cut -cl-4)/66 + 1))
6

The preceding example sets up a pipeline that sends standard output from wc to stan-
dard input of cut. Because of command substitution, the output of both commands
replaces the commands between the $(and the matching) on the command line.
Arithmetic expansion then divides this number by 66, the number of lines on a page.
A 1 is added because integer division discards remainders.

Fewer dollar signs ($)

When you specify variables within $((and)), the dollar signs that precede individual variable
references are optional. This format also allows you to include whitespace around operators,
making expressions easier to read.

$ x=23 y=37

$ echo $((2 = $x + 3 = $y))
157

$ echo $((2 = x +3 = y))
157

Another way to get the same result without using cut is to redirect the input to we
instead of having wc get its input from a file you name on the command line. When
you redirect its input, wc does not display the name of the file:

$ wec -1 < letter.txt
351

It is common practice to assign the result of arithmetic expansion to a variable:
$ numpages=$(($(wc -1 < letter.txt)/66 + 1))

The let builtin (not in tcsh) evaluates arithmetic expressions just as the $(()) syntax
does. The following command is equivalent to the preceding one:

$ let "numpages=$(wc -1 < letter.txt)/66 + 1"

The double quotation marks keep the SPACEs (both those you can see and those that
result from the command substitution) from separating the expression into separate
arguments to let. The value of the last expression determines the exit status of let. If
the value of the last expression is 0, the exit status of let is 1; otherwise, the exit status
is 0.

You can supply let with multiple arguments on a single command line:

$ et a=5+3 b=7+2
$ echo $a $b
89

When you refer to variables when doing arithmetic expansion with let or $(()), the
shell does not require a variable name to begin with a dollar sign ($). Nevertheless,

PROCESSING THE COMMAND LINE 371

it is a good practice to do so for consistency, because in most places you must precede
a variable name with a dollar sign.

COMMAND SUBSTITUTION

Command substitution replaces a command with the output of that command. The
preferred syntax for command substitution under bash is

$(command)

Under bash you can also use the following, older syntax, which is the only syntax
allowed under tcsh:

‘ command®

The shell executes command within a subshell and replaces command, along with
the surrounding punctuation, with standard output of command. Standard error of
command is not affected.

In the following example, the shell executes pwd and substitutes the output of the
command for the command and surrounding punctuation. Then the shell passes the
output of the command, which is now an argument, to echo, which displays it.

$ echo $(pwd)
/home/max

The next script assigns the output of the pwd builtin to the variable where and displays
a message containing the value of this variable:

$ cat where

where=$(pwd)

echo "You are using the $where directory."
$./where

You are using the /home/zach directory.

Although it illustrates how to assign the output of a command to a variable, this
example is not realistic. You can more directly display the output of pwd without
using a variable:

$ cat where2

echo "You are using the $(pwd) directory."
$./where2

You are using the /home/zach directory.

The following command uses find to locate files with the name README in the
directory tree rooted at the working directory. This list of files is standard output
of find and becomes the list of arguments to Is.

$ 1s -1 $(find . -name README -print)
The next command line shows the older ‘ command® syntax:

$ 1s -1 ‘find . -name README -print'

372 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

$ 1s -1 $(find .

One advantage of the newer syntax is that it avoids the rather arcane rules for token
handling, quotation mark handling, and escaped back ticks within the old syntax.
Another advantage of the new syntax is that it can be nested, unlike the old syntax.
For example, you can produce a long listing of all README files whose size exceeds
the size of /README using the following command:

-name README -size +$(echo $(cat ./README | wc -c)c) -print)

Try giving this command after giving a set —x command (page 442) to see how bash
expands it. If there is no README file, the command displays the output of Is —1.

For additional scripts that use command substitution, see pages 439, 458, and 498.

$((versus $(

The symbols $((constitute a single token. They introduce an arithmetic expression, not a command
substitution. Thus, if you want to use a parenthesized subshell (page 302) within $(), you must put
a SPACE between the $(and the following (.

WORD SPLITTING

The results of parameter and variable expansion, command substitution, and arithmetic
expansion are candidates for word splitting. Using each character of IFS (page 321) as
a possible delimiter, bash splits these candidates into words or tokens. If IFS is unset,
bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does not split words.

PATHNAME EXPANSION

Pathname expansion (page 152), also called filename generation or globbing, is the
process of interpreting ambiguous file references and substituting the appropriate list
of filenames. Unless noglob (page 362) is set, the shell performs this function when
it encounters an ambiguous file reference—a token containing any of the unquoted
characters *, 2, [, or . If bash cannot locate any files that match the specified pattern,
the token with the ambiguous file reference remains unchanged. The shell does not
delete the token or replace it with a null string but rather passes it to the program as
is (except see nullglob on page 363). The TC Shell generates an error message.

In the first echo command in the following example, the shell expands the ambiguous
file reference tmp* and passes three tokens (tmp1, tmp2, and tmp3) to echo. The
echo builtin displays the three filenames it was passed by the shell. After rm removes
the three tmp* files, the shell finds no filenames that match tmp* when it tries to
expand it. It then passes the unexpanded string to the echo builtin, which displays the
string it was passed.

$1s

tmpl tmp2 tmp3
$ echo tmp:
tmpl tmp2 tmp3
$ rm tmp=

$ echo tmp:
tmp*

By default, the same command causes the TC Shell to display an error message:

PROCESSING THE COMMAND LINE 373

Quotation marks

Levels of expansion

tcsh $ echo tmp:
echo: No match

A period that either starts a pathname or follows a slash (/) in a pathname must
be matched explicitly unless you have set dotglob (page 361). The option
nocaseglob (page 362) causes ambiguous file references to match filenames with-
out regard to case.

Putting double quotation marks around an argument causes the shell to suppress
pathname and all other kinds of expansion except parameter and variable expansion.
Putting single quotation marks around an argument suppresses all types of expan-
sion. The second echo command in the following example shows the variable $max
between double quotation marks, which allow variable expansion. As a result the
shell expands the variable to its value: sonar. This expansion does not occur in the
third echo command, which uses single quotation marks. Because neither single nor
double quotation marks allow pathname expansion, the last two commands display
the unexpanded argument tmp* .

$ echo tmp= $max

tmpl tmp2 tmp3 sonar

$ echo "tmp: $max"

tmp+* sonar

$ echo '"tmp: $max'

tmp* $max
The shell distinguishes between the value of a variable and a reference to the variable
and does not expand ambiguous file references if they occur in the value of a variable.
As a consequence you can assign to a variable a value that includes special characters,
such as an asterisk ().

In the next example, the working directory has three files whose names begin with
letter. When you assign the value letter* to the variable var, the shell does not expand
the ambiguous file reference because it occurs in the value of a variable (in the assign-
ment statement for the variable). No quotation marks surround the string letter;
context alone prevents the expansion. After the assignment the set builtin (with the
help of grep) shows the value of var to be letter.

$ 1s letter:=

Tetterl Tletter2 Tletter3
$ var=letter=

$ set | grep var
var="'Tetterx"'

$ echo '$var’

$var

$ echo "$var"

Tetters

$ echo $var

Tetterl letter2 letter3

The three echo commands demonstrate three levels of expansion. When $var is
quoted with single quotation marks, the shell performs no expansion and passes the
character string $var to echo, which displays it. With double quotation marks, the
shell performs variable expansion only and substitutes the value of the var variable
for its name, preceded by a dollar sign. No pathname expansion is performed on this

374 CHAPTER 8

THE BOURNE AGAIN SHELL (bash)

CHAPTER

Running a
shell script

Job control

command because double quotation marks suppress it. In the final command, the
shell, without the limitations of quotation marks, performs variable substitution and
then pathname expansion before passing the arguments to echo.

PROCESS SUBSTITUTION

The Bourne Again Shell can replace filename arguments with processes. An argument
with the syntax <(command) causes command to be executed and the output to be
written to a named pipe (FIFO). The shell replaces that argument with the name of
the pipe. If that argument is then used as the name of an input file during processing,
the output of command is read. Similarly an argument with the syntax >(command)
is replaced by the name of a pipe that command reads as standard input.

The following example uses sort (page 969) with the -m (merge, which works correctly
only if the input files are already sorted) option to combine two word lists into a single
list. Each word list is generated by a pipe that extracts words matching a pattern from
a file and sorts the words in that list.

$ sort -m -f <(grep "[AA-Z]..$" memol | sort) <(grep ".=aba.:" memo2 |sort)

QuUOTE REMOVAL

After bash finishes with the preceding list, it performs quote removal. This process
removes from the command line single quotation marks, double quotation marks,
and backslashes that are not a result of an expansion.

SUMMARY

The shell is both a command interpreter and a programming language. As a com-
mand interpreter, it executes commands you enter in response to its prompt. As a
programming language, it executes commands from files called shell scripts. When
you start a shell, it typically runs one or more startup files.

When the file holding a shell script is in the working directory, there are three basic
ways to execute the shell script from the command line.

1. Type the simple filename of the file that holds the script.

2. Type an absolute or relative pathname, including the simple filename
preceded by ./.

3. Type bash or tcsh followed by the name of the file.

Technique 1 requires the working directory to be in the PATH variable. Techniques
1 and 2 require you to have execute and read permission for the file holding the script.
Technique 3 requires you to have read permission for the file holding the script.

Ajob is another name for a process running a pipeline (which can be a simple command).
You can bring a job running in the background into the foreground using the fg builtin.
You can put a foreground job into the background using the bg builtin, provided you first
suspend the job by pressing the suspend key (typically CONTROL-Z). Use the jobs builtin to
display the list of jobs that are running in the background or are suspended.

CHAPTER SUMMARY 375

Variables

Locale

Process

History

Command-line
editors

Aliases

Functions

Shell features

Command-line
expansion

The shell allows you to define variables. You can declare and initialize a variable by
assigning a value to it; you can remove a variable declaration using unset. Shell vari-
ables are local to the process they are defined in. Environment variables are global
and are placed in the environment using the export (bash) or setenv (tcsh) builtin so
they are available to child processes. Variables you declare are called user-created
variables. The shell defines keyword variables. Within a shell script you can work
with the positional (command-line) parameters the script was called with.

Locale specifies the way locale-aware programs display certain kinds of data, such
as times and dates, money and other numeric values, telephone numbers, and mea-
surements. It can also specify collating sequence and printer paper size.

Each process is the execution of a single command and has a unique identification
(PID) number. When you give the shell a command, it forks a new (child) process to
execute the command (unless the command is built into the shell). While the child
process is running, the shell is in a state called sleep. By ending a command line with
an ampersand (&), you can run a child process in the background and bypass the
sleep state so the shell prompt returns immediately after you press RETURN. Each com-
mand in a shell script forks a separate process, each of which might in turn fork other
processes. When a process terminates, it returns its exit status to its parent process.
An exit status of zero signifies success; a nonzero value signifies failure.

The history mechanism maintains a list of recently issued command lines called events,
that provides a way to reexecute previous commands quickly. There are several ways
to work with the history list; one of the easiest is to use a command-line editor.

When using an interactive Bourne Again Shell, you can edit a command line and com-
mands from the history list, using either of the Bourne Again Shell’s command-line
editors (vim or emacs). When you use the vim command-line editor, you start in Input
mode, unlike with the stand-alone version of vim. You can switch between Command
and Input modes. The emacs editor is modeless and distinguishes commands from
editor input by recognizing control characters as commands.

An alias is a name the shell translates into another name or command. Aliases allow
you to define new commands by substituting a string for the first token of a simple
command. The Bourne Again and TC Shells use different syntaxes to define an alias,
but aliases in both shells work similarly.

A shell function is a series of commands that, unlike a shell script, is parsed prior to
being stored in memory. As a consequence shell functions run faster than shell scripts.
Shell scripts are parsed at runtime and are stored on disk. A function can be defined
on the command line or within a shell script. If you want the function definition to
remain in effect across login sessions, you can define it in a startup file. Like functions
in many programming languages, a shell function is called by giving its name fol-
lowed by any arguments.

There are several ways to customize the shell’s behavior. You can use options on the

command line when you call bash. You can also use the bash set and shopt builtins
to turn features on and off.

When it processes a command line, the Bourne Again Shell replaces some words
with expanded text. Most types of command-line expansion are invoked by the

376 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

appearance of a special character within a word (for example, the leading dollar
sign that denotes a variable). Table 8-6 on page 325 lists these special characters.
The expansions take place in a specific order. Following the history and alias expan-
the common expansions are parameter and variable expansion, command
substitution, and pathname expansion. Surrounding a word with double quotation
marks suppresses all types of expansion except parameter and variable expansion.
Single quotation marks suppress all types of expansion, as does quoting (escaping)

sions,

a special character by preceding it with a backslash.

EXERCISES

1. Explain the following unexpected result:

$ whereis date

date: /bin/date ...

$ echo $PATH
.:/usr/Tocal/bin:/usr/bin:/bin

$ cat > date

echo "This is my own version of date."
$./date

Sun May 21 11:45:49 PDT 2017

2. What are two ways you can execute a shell script when you do not have execute
permission for the file containing the script? Can you execute a shell script if
you do not have read permission for the file containing the script?

3. What is the purpose of the PATH variable?

a.

Set the PATH variable and place it in the environment so it causes the
shell to search the following directories in order:

¢ /usr/local/bin

¢ /usr/bin

¢ /bin

¢ /usr/kerberos/bin

¢ The bin directory in your home directory

¢ The working directory

. If there is an executable file named doit in /usr/bin and another file with

the same name in your ~/bin directory, which one will be executed?

. If your PATH variable is not set to search the working directory, how can

you execute a program located there?

. Which command can you use to add the directory /usr/games to the end

of the list of directories in PATH?

4. Assume you have made the following assignment:

$ person=zach

EXERCISES 377

Give the output of each of the following commands.
a. echo $person

b. echo '$person'

c. echo "$person"

. The following shell script adds entries to a file named journal-file in your
home directory. This script helps you keep track of phone conversations and
meetings.

$ cat journal
journal: add journal entries to the file
$HOME/journal-file

file=$HOME/journal-file

date >> $file

echo -n "Enter name of person or group:
read name

echo "$name" >> $file

echo >> $file

cat >> $file

eCho Mmoo "
$file

echo >> $file

a. What do you have to do to the script to be able to execute it?

b. Why does the script use the read builtin the first time it accepts input from
the terminal and the cat utility the second time?

. Assume the /home/zach/grants/biblios and /home/zach/biblios directories
exist. Specify Zach’s working directory after he executes each sequence of
commands. Explain what happens in each case.

a. $ pwd
/home/zach/grants
$ CDPATH=$(pwd)
$ cd
$ cd biblios

b. $ pwd
/home/zach/grants
$ CDPATH=$(pwd)
$ cd $HOME/biblios

Name two ways you can identify the PID number of the login shell.

Enter the following command:
$ sleep 30 | cat /etc/services

Is there any output from sleep? Where does cat get its input from? What has
to happen before the shell will display a prompt?

378 CHAPTER8 THE BOURNE AGAIN SHELL (bash)

ADVANCED EXERCISES

9.

10.
11.

12.

13.

14.

15.

Write a sequence of commands or a script that demonstrates variable
expansion occurs before pathname expansion.

Write a shell script that outputs the name of the shell executing it.
Explain the behavior of the following shell script:

$ cat quote_demo
twoliner="This is Tine 1.
This 1is Tine 2."

echo "$twoliner"

echo $twoliner

a. How many arguments does each echo command see in this script? Explain.

b. Redefine the IFS shell variable so the output of the second echo is the
same as the first.

Add the exit status of the previous command to your prompt so it behaves
similarly to the following;:

$ [0] 1s xxx
Ts: xxx: No such file or directory
$ [1]

The dirname utility treats its argument as a pathname and writes to standard out-
put the path prefix—that is, everything up to but not including the last component:

$ dirname a/b/c/d

a/b/c
If you give dirname a simple filename (no / characters) as an argument, dir-
name writes a . to standard output:

$ dirname simple

Implement dirname as a bash function. Make sure it behaves sensibly when
given such arguments as /.

Implement the basename utility, which writes the last component of its
pathname argument to standard output, as a bash function. For example,
given the pathname a/b/c/d, basename writes d to standard output:

$ basename a/b/c/d

d
The Linux basename utility has an optional second argument. If you give
the command basename path suffix, basename removes the suffix and the
prefix from path:

$ basename src/shellfiles/prog.bash .bash
prog

$ basename src/shellfiles/prog.bash .c
prog.bash

Add this feature to the function you wrote for exercise 14.

IN THIS CHAPTER

Shell Scripts 380
Entering and Leaving the

TCShell vt 381
Features Common to the Bourne

Again and TC Shells.......... 383
Redirecting Standard Error. 389
Word Completion 391
Editing the Command Line...... 393
Variables.................... 396
Reading User Input............ 401
Control Structures............. 408
Builtinscoiiaa... 418

THE TC SHELL (tcsh)

OBJECTIVES

After reading this chapter you should be able to:

» Identify tcsh startup files

» Explain the function of the history, histfile, and
savehist variables

» Set up an alias that uses a command-line argument

» Redirect standard error and standard output of a script
to two different files

» Set up and use filename, command, and variable
completion

» Correct command-line spelling errors

» Explain and use the @ builtin to work with numeric
variables

» Explain the use of the noclobber variable
» Use an if structure to evaluate the status of a file

» Describe eight tcsh builtins

379

380 CHAPTER9

THE TC SHELL (tcsh)

Assignment
statement

The TC Shell (tcsh) performs the same function as the Bourne Again Shell and other
shells: It provides an interface between you and the Linux operating system. The TC
Shell is an interactive command interpreter as well as a high-level programming lan-
guage. Although you use only one shell at any given time, you should be able to
switch back and forth comfortably between shells as the need arises. In fact, you
might want to run different shells in different windows. Chapters 8 and 10 apply to
tcsh as well as to bash, so they provide a good background for this chapter. This chap-
ter explains tcsh features that are not found in bash and those that are implemented
differently from their bash counterparts.

The TC Shell is an expanded version of the C Shell (csh), which originated on Berkeley
UNIX. The “T” in TC Shell comes from the TENEX and TOPS-20 operating systems,
which inspired command completion and other features in the TC Shell. A number of
features not found in csh are present in tcsh, including file and username completion,
command-line editing, and spelling correction. As with csh, you can customize tcsh to
make it more tolerant of mistakes and easier to use. By setting the proper shell vari-
ables, you can have tcsh warn you when you appear to be accidentally logging out or
overwriting a file. Many popular features of the original C Shell are now shared by
bash and tcsh.

Although some of the functionality of tcsh is present in bash, differences arise in
the syntax of some commands. For example, the tcsh assignment statement has the
following syntax:

set variable = value

Having SPACEs on either side of the equal sign, although illegal in bash, is allowed (but
not mandatory) in tcsh. By convention shell variables in tcsh are generally named with
lowercase letters, not uppercase (you can use either). If you reference an undeclared
variable (one that has had no value assigned to it), tcsh generates an error message,
whereas by default bash does not. Finally, the default tcsh prompt is a greater than
sign (>), but it is frequently set to a single $ character followed by a SPACE. The exam-
ples in this chapter use a prompt of tcsh $ to avoid confusion with the bash prompt.

Do not use tcsh as a programming language

If you have used UNIX and are comfortable with the C or TC Shell, you might want to use tcsh as
your login shell. However, you might find that the TC Shell is not as good a programming language
as bash. If you are going to learn only one shell programming language, learn bash. The Bourne
Again Shell and dash (page 287), which is a subset of bash, are used throughout Linux to pro-
gram many system administration scripts.

SHELL SCRIPTS

The TC Shell can execute files containing tcsh commands, just as the Bourne Again
Shell can execute files containing bash commands. Although the concepts of writing
and executing scripts in the two shells are similar, the methods of declaring and
assigning values to variables and the syntax of control structures are different.

ENTERING AND LEAVING THE TC SHELL 381

You can run bash and tcsh scripts while using any one of the shells as a command
interpreter. Various methods exist for selecting the shell that runs a script. Refer to
“#! Specifies a Shell” on page 297 for more information.

If the first character of a shell script is a pound sign (#) and the following character is
not an exclamation point (1), the TC Shell executes the script under tcsh. If the first char-
acter is anything other than #, tcsh calls the sh link to dash or bash to execute the script.

echo: getting rid of the RETURN

The tcsh echo builtin accepts either a—n option or a trailing \e to get rid of the RETURN that echo
normally displays at the end of a line. The bash echo builtin accepts only the —n option (refer to
“read: Accepts User Input” on page 489).

Shell game

When you are working with an interactive TC Shell, if you run a script in which # is not the first
character of the script and you call the script directly (without preceding its name with tcsh), tcsh
calls the sh link to dash or bash to run the script. The following script was written to be run under
tcsh but, when called from a tcsh command line, is executed by bash. The set builtin (page 472)
works differently under bash and tcsh. As a result the following example (from page 401) issues
a prompt but does not wait for you to respond:

tcsh $ cat user_in

echo -n "Enter input: "

set input_line = "$<"

echo $input_Tine

tcsh $ user_in

Enter input:
Although in each case the examples are run from a tcsh command line, the following one calls
tcsh explicitly so that tcsh executes the script and it runs correctly:

tcsh $ tcsh user_in

Enter input: here is some input
here is some input

ENTERING AND LEAVING THE TC SHELL

chsh You can execute tcsh by giving the command tesh. If you are not sure which shell you
are using, use the ps utility to find out. It shows whether you are running tcsh, bash, sh
(linked to bash), or possibly another shell. The finger command followed by your user-
name displays the name of your login shell, which is stored in the /etc/passwd file.
(macOS uses Open Directory [page 1068] in place of this file.) If you want to use tcsh
as a matter of course, you can use the chsh (change shell) utility to change your login

shell:

bash $ chsh

Changing shell for sam.
Password:

New shell [/bin/bash]: /bin/tcsh

382 CHAPTER9 THE TC SHELL (tcsh)

Shell changed.
bash §

The shell you specify will remain in effect for your next login and all subsequent log-
ins until you specify a different login shell. The /etc/passwd file stores the name of
your login shell.

You can leave tcsh in several ways. The approach you choose depends on two fac-
tors: whether the shell variable ignoreeof is set and whether you are using the shell
that you logged in on (your login shell) or another shell that you created after you
logged in. If you are not sure how to exit from tcsh, press CONTROL-D on a line by itself
with no leading SPACEs, just as you would to terminate standard input to a program.
You will either exit or receive instructions on how to exit. If you have not set
ignoreeof (page 407) and it has not been set for you in a startup file, you can exit
from any shell by using CONTROL-D (the same procedure you use to exit from the Bourne
Again Shell).

When ignoreeof is set, CONTROL-D does not work. The ignoreeof variable causes the shell
to display a message telling you how to exit. You can always exit from tcsh by giving
an exit command. A logout command allows you to exit from your login shell only.

STARTUP FILES

/etc/csh.cshre and
/etc/csh.login

.teshre and .cshre

.history

When you log in on the TC Shell, it automatically executes various startup files.
These files are normally executed in the order described in this section, but you can
compile tesh so that it uses a different order. You must have read access to a startup
file to execute the commands in it. See page 288 for information on bash startup files
and page 1076 for information on startup files under macOS.

The shell first executes the commands in /etc/csh.cshrc and /etc/csh.login. A user
working with root privileges can set up these files to establish systemwide default
characteristics for tcsh users. They contain systemwide configuration information,
such as the default path, the location to check for mail, and so on.

Next, the shell looks for ~/.tcshre or, if it does not exist, ~/.cshrc (~/ is shorthand for
your home directory; page 91). You can use these files to establish variables and
parameters that are specific to your shell. Each time you create a new shell, tcsh reini-
tializes these variables for the new shell. The following .tcshrce file sets several shell
variables; establishes two aliases (page 387); and adds two directories to path, one
at the beginning of the list and one at the end:

tcsh $ cat ~/.tcshrc

set noclobber

set dunique

set ignoreeof

set history=256

set path = (~/bin $path /usr/games)
alias h history

alias 11 1s -1

Login shells rebuild the history list from the contents of ~/.history. If the histfile
variable exists, tcsh uses the file that histfile points to in place of .history.

FEATURES COMMON TO THE BOURNE AGAIN AND TC SHELLS 383

Jogin Login shells read and execute the commands in ~/.login. This file contains commands
that you want to execute once, at the beginning of each session. You can use setenv
(page 396) to declare environment (global) variables here. You can also declare the
type of terminal you are using and set some terminal characteristics in your .login file.

tcsh $ cat ~/.1ogin
setenv history 200
setenv mail /var/spool/mail/$user
if (-z $DISPLAY) then
setenv TERM vt100
else
setenv TERM xterm
endif
stty erase 'Ah' kill 'Au' -Tlcase tab3
date '+Login on %A %B %d at %I:%M %p'

The preceding .login file establishes the type of terminal you are using by setting the
TERM variable (the if statement [page 409] determines whether you are using a
graphical interface and therefore which value should be assigned to TERM). It then
runs stty (page 987) to set terminal characteristics and date (page 787) to display the
time you logged in.

fete/esh.logout The TC Shell runs the /etc/csh.logout and ~/.logout files, in that order, when you exit
and .logout from a login shell. The following sample .logout file uses date to display the time you
logged out. The sleep command ensures that echo has time to display the message
before the system logs you out. The delay might be useful for dial-up lines that take

some time to display the message.

tcsh $ cat ~/.logout
date '+Logout on %A %B %d at %I:%M %p'
sleep 5

FEATURES COMMON TO THE BOURNE AGAIN AND
TC SHELLS

Most of the features common to both bash and tcsh are derived from the original
C Shell:

e Command-line expansion (also called substitution; next page)
¢ History (next page)

e Aliases (page 387)

¢ Job control (page 388)

¢ Filename substitution (page 388)

¢ Directory stack manipulation (page 389)

¢ Command substitution (page 389)

384 CHAPTER9 THE TC SHELL (tcsh)

The chapters on bash discuss these features in detail. This section focuses on the
differences between the bash and tcsh implementations.

COMMAND-LINE EXPANSION (SUBSTITUTION)

Refer to “Processing the Command Line” on page 364 for an introduction to com-
mand-line expansion in the Bourne Again Shell. The tcsh man page uses the term
substitution instead of expansion; the latter is used by bash. The TC Shell scans each
token on a command line for possible expansion in the following order:

1. History substitution (below)

2. Alias substitution (page 387)

3. Variable substitution (page 396)

4. Command substitution (page 389)

5. Filename substitution (page 388)

6. Directory stack substitution (page 389)
HISTORY

The TC Shell assigns a sequential event number to each command line. You can dis-
play this event number as part of the tcsh prompt (refer to “prompt” on page 403).
Examples in this section show numbered prompts when they help illustrate the
behavior of a command.

THE history BUILTIN

As in bash, the tcsh history builtin displays the events in your history list. The list of
events is ordered with the oldest events at the top. The last event in the history list
is the history command that displayed the list. In the following history list, which is
limited to ten lines by the argument of 10 to the history command, command 23
modifies the tcsh prompt to display the history event number. The time each com-
mand was executed appears to the right of the event number.

32 $ history 10
23 23:59 set prompt = "! § "
24 23:59 1s -1
25 23:59 cat temp
26 0:00 rm temp

27 0:00 vim memo

28 0:00 Tpr memo

29 0:00 vim memo

30 0:00 Tpr memo

31 0:00 rm memo
0

100 history

HISTORY EXPANSION

The same event and word designators work in both shells. For example, !! refers to
the previous event in tcsh, just as it does in bash. The command 1328 executes event
number 328; !?txt? executes the most recent event containing the string txt. For more

FEATURES COMMON TO THE BOURNE AGAIN AND TC SHELLS 385

history and savehist

information refer to “Using an Exclamation Point (!) to Reference Events” on
page 341. Table 9-1 lists the few tcsh word modifiers not found in bash.

Word modifiers
Modifier Function
u Converts the first lowercase letter into uppercase
| Converts the first uppercase letter into lowercase

a Applies the next modifier globally within a single word

You can use more than one word modifier in a command. For instance, the a modi-
fier, when used in combination with the u or I modifier, enables you to change the
case of an entire word.

tcsh $ echo $VERSION

VERSION: Undefined variable.

tcsh $ echo !!:1:al

echo $version
tcsh 6.17.00 (Astron) 2009-07-10 (i386-intel-Tinux) options wide,nls,

In addition to using event designators to access the history list, you can use the command-
line editor to access, modify, and execute previous commands (page 393).

VARIABLES

The variables you set to control the history list in tcsh are different from those used in
bash. Whereas bash uses HISTSIZE and HISTFILESIZE to determine the number of
events that are preserved during and between sessions, respectively, tcsh uses history
and savehist (Table 9-2) for these purposes.

History variables

Variable Default Function

history 100 events Maximum number of events saved during a session
histfile ~/.history Location of the history file

savehist not set Maximum number of events saved between sessions

When you exit from a tcsh shell, the most recently executed commands are saved in
your ~/.history file. The next time you start the shell, this file initializes the history
list. The value of the savehist variable determines the number of lines saved in the
.history file (not necessarily the same as the history variable). If savehist is not set,
tcsh does not save history information between sessions. The history and savehist
variables must be shell variables (i.e., declared using set, not setenv). The history vari-
able holds the number of events remembered during a session and the savehist
variable holds the number remembered between sessions. See Table 9-2.

If you set the value of history too high, it can use too much memory. If it is unset or
set to zero, the shell does not save any commands. To establish a history list of