Learning DevOps

Second Edition

A comprehensive guide to accelerating DevOps culture adoption
with Terraform, Azure DevOps, Kubernetes, and Jenkins

Mikael Krief

1\V

Learning DevOps
Second Edition

A comprehensive guide to accelerating DevOps
culture adoption with Terraform, Azure DevOps,
Kubernetes, and Jenkins

Mikael Krief

Packt

BIRMINGHAM—MUMBAI

Learning DevOps
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Preet Ahuja
Senior Editor: Shazeen Igbal

Content Development Editor: Romy Dias
Technical Editor: Arjun Varma

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini
Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Jyoti Chauhan
Marketing Coordinator: Nimisha Dua

First published: October 2019
Second edition: February 2022

Production reference: 1240222

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-896-4

www . packt.com

http://www.packt.com

I would like to dedicate this book to my wife and children,
who are my source of happiness.

Contributors

About the author

Mikael Krief (born in 1980) lives in France and works as a DevOps engineer.

He loves to share his passion through various communities such as the HashiCorp User
Group. In 2019, he wrote the first edition of this book, and in 2020, he wrote Terraform
Cookbook (Packt Publishing), and also contributes to many public projects, writes blogs
and books, and speaks at conferences.

He is interested in HashiCorp products and specializes in the use of Terraform in several
company contexts.

For all his contributions and passion, he has received the Microsoft Most Valuable
Professional (MVP) award, which Microsoft has awarded him for the last 6 years and
he has been nominated and selected as a Hashicorp Ambassador since 2020.

I would like to extend my thanks to my family for accepting that I needed
to work long hours on this book during family time. I would like to thank
Meeta Rajani for giving me the opportunity to write this second edition of
this book, which was a very enriching experience. Special thanks to Romy
Dias and Vaidehi Sawant for their valuable input and time reviewing this
book and to the entire Packt team for their support during the course of
writing this book.

About the reviewers

Kevin Bridges is a senior DevOps engineer at Alegeus. Kevin's worked with a wide
range of tools supporting stable releases and hotfixes. He's relatively new to the cloud
space (Azure), is enjoying it so far, and just received Azure Fundamentals certification
in June 2021.

Kevin spent 20 years in the Army in active and reserve capacities. He graduated from
Granite State College with a Bachelor of Science in information technology in 2009
and graduated with an MBA from the University of New Hampshire (Manchester) in
May 2015.

Kevin loves making complicated things simple.

I would like to thank all my family, friends, and colleagues
for all their support

Deb Bhattacharya applies Agile and DevOps to make organizations more successful.
Over 20 years, Deb has helped over 50 teams across 4 countries to be more Agile and
to be more DevOps. Deb is passionate about that.

Deb's other passion is sports. When Deb was younger, he used to play professional table
tennis. He won many tournaments, but most importantly, he coached tournament-
winning table tennis teams. Deb still enjoys playing table tennis.

Deb uses all his experience from his hands-on software development background and
his sports background to develop high-performing Agile and DevOps teams. The two
passions nicely come together here.

I am thankful to Anand Athani, the delivery manager I reported to some
20 years ago when I was an engineering lead. I was writing the thesis paper
for my master's and Anand suggested Rational Unified Process (RUP). That

started my Agile journey. The learning and contributing are still going on.

Table of Contents

Preface

Section 1: DevOps and Infrastructure

as Code
1

The DevOps Culture and Infrastructure as Code Practices

Getting started with DevOps 4 The benefits of laC 14
Implementing CI/CD and laC languages and tools 14
continuous deployment 7 ThelaCtopology 18
Continuous integration (Cl) 7 The evolution of the DevOps culture 24
Cont?nuous delivery (CD) 10 Summary 24
Continuous deployment 12 Questions 25
Understanding laC practices 13 Further reading 25
Provisioning Cloud Infrastructure with Terraform
Technical requirements 28 Creating the Azure SP 36
Installing Terraform 28 Configuring the Terraform provider 38
Manual installation 29 The Terraform configuration for local

. . development and testing 39
Installation by script 29
Integrating Terraform with Azure Writing a Terraform script to
Cloud Shell 34 deploy an Azure infrastructure 40
Configuring Terraform for Azure 36 Following some Terraform good

practices 45

viii Table of Contents

Running Terraform for

Formatting and validating the

deployment 47 configuration 56
Initialization 49 The Terraform life cycle within
Previewing the changes 5o @ CI/CD process 58
Applying the changes 2 protecting the state file
Understanding the Terraform with a remote backend 60
life cycle with different Summary 65
command-line options 54 Questions 65
Using destroy to better rebuild 54 Further reading 66
Using Ansible for Configuring laaS Infrastructure
Technical requirements 68 Executing Ansible 85
Installing Ansible 69 Using the preview or dry run option 87
Installing Ansible with a script 69 Increasing the log level output 88
Integrating Ansible into . .
Azure Cloud Shell 71 PrOt.ec“ng data with
,) Ansible Vault 89
Ansible artifacts 73))))
Configuring Ansible 73 Using varlables. in An.5|ble
for better configuration 89
Creating an Ansible inventory =~ 76 Protecting sensitive data
The inventory file 76 With Ansible Vault 92
Configuring.hosts in the inventory 78 Using a dynamic inventory
Testing the inventory 79 for an Azure infrastructure 95
Executing the first playbook 80 Summary 29
Writing a basic playbook 81 Questions 100
Understanding Ansible modules 82 Further reading 100
Improving your playbooks with roles 83
Optimizing Infrastructure Deployment with Packer
Technical requirements 103 Creating Packer templates
An overview of Packer 103 for Azure VMs with SCFIptS 109
The structure of the Packer template 110

Installing Packer 104

Table of Contents ix

Building an Azure image with
the Packer template 116

Using Ansible in a Packer

template 120
Writing the Ansible playbook 120
Integrating an Ansible playbook

in a Packer template 121
Executing Packer 123
Configuring Packer to authenticate

to Azure 123

5

Checking the validity of the Packer

template 124
Running Packer to generate

our VM image 124
Writing Packer templates

with HCL format 127
Using a Packer image

with Terraform 131
Summary 132
Questions 133
Further reading 133

Authoring the Development Environment with Vagrant

Technical requirements 136 Writing the Vagrant configuration file 142
Installing Vagrant 136 Creating a local VM using
Installing manually on Windows 136 the Vagrant CLI 145
Installing Vagrant by script Creating the VM 146
on er.mdows . . 138 Connecting to the VM 147
Installing Vagrant by script on Linux 139

- Summary 148
Writing a Vagrant .
configuration file 140 Questions _ 148
Using Vagrant Cloud for Vagrant Boxes 140 Further readmg 149
Section 2: DevOps CI/CD Pipeline
Managing Your Source Code with Git
Technical requirements 154 Git command lines 168
O\{er\(leW|ng Git and Its Understanding the Git process
principal command lines 154 Jnd Gitflow pattern 171
G?t insta'llatior? 157 Starting with the Git process 172
Git configuration 166 Isolating your code with branches 181

Useful Git vocabulary 166

x Table of Contents

Branching strategy with Gitflow 186 Questions 190

Summary 189 Further reading 190

7

Continuous Integration and Continuous Delivery

Technical requirements 192 Versioning of the code with
CI/CD principles 192 Git in Azure Repos 210
al 193 Creating a Cl pipeline 212

Creating a CD pipeline - the release 222

cb 194 . - —_
Creating a full pipeline definition
Using a package manager in a YAML file 229
in the C"GCD process 12:_, Using GitLab CI 236
Private Nu e.t and npm repository ! Authentication at GitLab 237
Nexus Repository OSS 196 . . .
fact 198 Creating a new project and managing

Azure Artifacts your source code 238
Using Jenkins for CI/CD Creating a Cl pipeline 242
implementation 199 Accessing the C.I pipeline
Installing and configuring Jenkins 199 execution details 244
Configuring a GitHub webhook 201 Summary 245
Configuring ajeknkins EI job igz Questions 246
Executing a Jenkins jo .

gal J Further reading 246

Using Azure Pipelines for CI/CD 208

8

Deploying Infrastructure as Code with CI/CD Pipelines

Technical requirements 248 Running Terraform and Ansible

Running Packer in Azure in Azure Pipelines 252

Pipelines 248 Summary 257
Questions 257

Further reading 258

Table of Contents xi

Section 3: Containerized Microservices with
Docker and Kubernetes

9

Containerizing Your Application with Docker

Technical requirements 262 Deploying a container
|nsta”ing Docker 263 to ACI with a CI/CD pipeline 282
Registering on Docker Hub 263 Writing the Terraform code for ACI 283
Docker installation 265 Creating a CI/CD pipeline for the
An overview of Docker's elements 269 container 285
Creating a Dockerfile 270 Using Docker for running
-) command-line tools 292
Writing a Dockerfile 270 . .
Dockerfile instructions overview 271 Getting started with
Docker Compose 295
Bwldmg and running a) Installing Docker Compose 295
container on a local machine 273 Writing the Docker Compose
Building a Docker image 273 configuration file 296
Instantiating a new container Executing Docker Compose 297
of an image 275 .
Testing a container locally 276 DeP'Oymg POCker Compose
containers in ACI 299
Pushing an image to Summary 301
Docker Hub 277 .
Pushi Docker i ¢ Questions 302
usning a bocker image to .
a private registry (ACR) 280 Further reading 302
Managing Containers Effectively with Kubernetes
Technical requirements 304 Afirst example of Kubernetes
Installing Kubernetes 305 application deployment 311
Kubernetes architecture overview 305 Using Helm as a package
Installing Kubernetes on a local manager 315
machine 306 Installing the Helm client 316

Installing the Kubernetes dashboard 308

xii Table of Contents

Using a public Helm chart from

Creating a CI/CD pipeline

Artifact Hub 317 for Kubernetes with Azure
Creating a custom Helm chart 321 Pipelines 329
Publishing a Helm chart Monljcor!ngKa%pllcatlons and 230
in a private metrics in Kubernetes
registry (ACR) 323 Us?ng the kubectl command line 331
Using AKS 325 Us!ng t!‘le web dashboard 332
) . Using tier tools 332
Creating an AKS service 326
Configuring the kubeconfig file Summa ry 334
Z°dr AKS ke :2; Questions 335
t .
vantages Further reading 335
Section 4: Testing Your Application
Testing APIs with Postman
Technical requirements 340 Preparing Postman
Creating a Postman collection collections for Newman 359
with requests 340 Exporting the collection 359
Installation of Postman 342 Exporting the environments 360
Creat?ng a coII.ection 343 Running the Newman
Creating our first request 344 command line 362
Using environments and Integration of Newman
variables to dynamize in the CI/CD pipeline process 365
requests 347 Build and release configuration 366
Writing Postman tests 350 The pipeline execution 372
Executing Postman request Summary 374
tests locally 353 .
. Questions 374
Understanding the Furth di 374
Newman concept 357 urther reading

Table of Contents xiii

12

Static Code Analysis with SonarQube

Technical requirements 376 Executing SonarQube

Exploring SonarQube 376 inaClprocess 387
Installing SonarQube 377 Configuring SonarQube 388
Overview of the SonarQube Fireatlng a.CI plpellne for SonarQube
architecture 377 10 Azure Pipelines 389
SonarQube installation 379 Summary 393
Real-time analysis Questions 393
with SonarLint 385 Further reading 393
Security and Performance Tests

Technical requirements 396 Running performance

App|y|ng web Security and tests with Postman 401
penetration testing with ZAP 396 Summary 404
Using ZAP for security testing 397 Questions 405
Ways to automate the execution Further reading 405
of ZAP 400

Section 5: Taking DevOps Further/More

on DevOps

Security in the DevOps Process with DevSecOps

Technical requirements 410 Executing InSpec 419
Testing Azure infrastructure Keeping sensitive data safe
compliance with Chef InSpec 411 |\ HashiCorp Vault 421
Overvi.ew of InSpec 412 Installing Vault locally 422
Insta-lllng. InSpec 412 Starting the Vault server 424
Configuring Azure for InSpec 414 Writing secrets to Vault 426
Writing InSpec tests 415 Reading secrets in Vault 428

xiv Table of Contents

Using the Vault Ul web interface 429 Summary 436

Getting Vault secrets in Terraform 432 Questions 437
Further reading 437

Reducing Deployment Downtime

Technical requirements 440 Applying blue-green

Reducing deployments on Azure 446

deployment downtime with Using App Service with slots 446

Terraform 441 Using Azure Traffic Manager 448

Understanding blue-green Introducing feature flags 450

deployment concepts and Usi

patterns 443 sing an open source

Using bl deol t framework for

-sihg Due-green aeployment to feature flags 452

improve the production environment 444 .

Understanding the canary release Usmg the LaunchDarkly

pattern 444 Solution 458

Exploring the dark launch pattern 445 Summary 463
Questions 464
Further reading 464

DevOps for Open Source Projects

Technical requirements 466 Getting started with

Storing source code in GitHub 467 GitHub Actions 482

Creating a new repository on GitHub 467 Analyzing code with

Contributing to a GitHub project 469 SonarCloud 486

C ibuti Detecting security

ontributing to 0ﬁen source 471 vulnerabilities with

prOJect.s using pu reques.ts WhiteSource Bolt 491

Managing the changelog file Summary 495

and release notes 476 .

Sharing binaries in GitHub Questions 495

g Further reading 496

releases 478

Table of Contents xv

17

DevOps Best Practices

Automating everything 498 Shifting security left

Choosing the right tool 499 with DevSecOps 504
Writing all your configuration Monitoring your system 505
in code 500 Evolving project management 506
Designing Summary 507
the system architecture 501 Questions 508
Building a good CI/CD pipeline 502 fyrther reading 508
Integrating tests 503

Assessments

Index

Other Books You May Enjoy

Preface

Today, with the evolution of technologies and ever-increasing competition, companies are
facing a real challenge to design and deliver products faster — all while maintaining user
satisfaction.

One of the solutions to this challenge is to introduce (to companies) a culture of
collaboration between different teams, such as development and operations, testers, and
the security team. This culture, which has already been proven and is called a DevOps
culture, can ensure that teams and certain practices reduce the time to market of
companies through this collaboration — with shorter application deployment cycles and
by bringing real value to the company's products and applications.

Moreover, with the major shift of companies toward the cloud, application infrastructures
are evolving and the DevOps culture will allow better scalability and performance of
applications, thus generating a financial gain for companies.

If you want to learn more about the DevOps culture and apply its practices to your
projects, this book will introduce the basics of DevOps practices through different tools
and labs.

In this book, we will discuss the fundamentals of the DevOps culture and practices, and
then we will examine different labs used for the implementation of DevOps practices, such
as IaC, using Git and CI/CD pipelines, test automation, code analysis, and DevSecOps,
along with the addition of security to your processes.

A part of this book is also dedicated to the containerization of applications, with coverage
of the simple use of Docker and the management of containers in Kubernetes. It includes
downtime reduction topics during deployment and DevOps practices on open source
projects.

This book ends with a chapter dedicated to some good DevOps practices that can be
implemented throughout the life cycle of your projects.

In this second edition, all tools are upgraded and we will learn about Vagrant from
HashiCorp and more on Kubernetes deployment.

xviii Preface

The book aims to guide you through the step-by-step implementation of DevOps practices
using different tools that are mostly open source or are leaders in the market.

In writing this book, my goal is to share my daily experience with you; I hope that it will
be useful for you and be applied to your projects.

Who this book is for

This book is for anyone who wants to start implementing DevOps practices. No specific
knowledge of development or system operations is required.

What this book covers

Chapter 1, The DevOps Culture and Infrastructure as Code Practices, explains the objectives
of the DevOps culture and details the different DevOps practices — IaC and CI/CD
pipelines — that will be seen throughout this book.

Chapter 2, Provisioning Cloud Infrastructure with Terraform, details provisioning cloud
infrastructure with IaC using Terraform, including its installation, its command line,
its life cycle, practical usage for provisioning a sample of Azure infrastructure, and the
protection of Terraform state files with remote backends.

Chapter 3, Using Ansible for Configuring IaaS Infrastructure, concerns the configuration
of VMs with Ansible, including Ansible's installation, command lines, setting up roles for
an inventory and a playbook, its use in configuring VMs in Azure, data protection with
Ansible Vault, and the use of a dynamic inventory.

Chapter 4, Optimizing Infrastructure Deployment with Packer, covers the use of
Packer to create VM images, including its installation and how it is used for creating
images in Azure.

Chapter 5, Authoring the Development Environment with Vagrant, explains how to build
a local development environment using IaC and Vagrant.

Chapter 6, Managing Your Source Code with Git, explores the use of Git, including its
installation, its principal command lines, its workflow, an overview of the branch system,
and an example of a workflow with GitFlow.

Chapter 7, Continuous Integration and Continuous Delivery, shows the creation of an
end-to-end CI/CD pipeline using three different tools: Jenkins, GitLab CI, and Azure
Pipelines. For each of these tools, we will explain their characteristics in detail.

Preface xix

Chapter 8, Deploying Infrastructure as Code with a CI/CD Pipeline, discusses the usage
of CI/CD pipelines with Azure Pipelines to automatically execute Packer, Terraform,
and Ansible.

Chapter 9, Containerizing Your Application with Docker, covers the use of Docker,
including its local installation, an overview of the Docker Hub registry, writing

a Dockerfile, and a demonstration of how it can be used. An example of an application
will be containerized, executed locally, and then deployed in an Azure container instance
via a CI/CD pipeline.

Chapter 10, Managing Containers Effectively with Kubernetes, explains the basic use of
Kubernetes, including its local installation and application deployment, and then an
example of Kubernetes managed with Azure Kubernetes Services.

Chapter 11, Testing APIs with Postman, details the use of Postman to test an example of
an API, including its local use and automation in a CI/CD pipeline with Newman and
Azure Pipelines.

Chapter 12, Static Code Analysis with SonarQube, explains the use of SonarQube to
analyze static code in an application, including its installation, real-time analysis with the
SonarLint tool, and the integration of SonarQube into a CI pipeline in Azure Pipelines.

Chapter 13, Security and Performance Tests, discusses the security and performance of web
applications, including demonstrations of how to use the ZAP tool to test OWASP rules
and Postman to test API performance.

Chapter 14, Security in the DevOps Process with DevSecOps, explains how to use security
integration in the DevOps process through testing compliance of the infrastructure with
Inspec, and the usage of Vault for protecting sensitive data.

Chapter 15, Reducing Deployment Downtime, presents the reduction of deployment
downtime with Terraform, the concepts and patterns of blue-green deployment, and
how to apply them in Azure. Significant focus is also given to the use of feature flags
within an application.

Chapter 16, DevOps for Open Source Projects, is dedicated to open source. It details the
tools, processes, and practices for open source projects with collaboration in GitHub, pull
requests, changelog files, binary sharing in GitHub releases, and an end-to-end example of
a CI pipeline in Travis CI and in GitHub Actions. Open source code analysis and security
are also discussed with SonarCloud and WhiteSource Bolt.

Chapter 17, DevOps Best Practices, reviews a DevOps list of good practices regarding
automation, IaC, CI/CD pipelines, testing, security, monitoring, and project management.

xx Preface

To get the most out of this book

No development knowledge is required to understand this book. The only languages you
will see are declarative languages such as JSON or YAML. In addition to this, no specific
IDE is required. If you do not have one, you can use Visual Studio Code, which is free and
cross-platform. It is available here: https://code.visualstudio.com/.

The cloud provider that serves as an example in this book is Microsoft Azure. If you don't
have a subscription, you can create a free account here: https: //azure.microsoft.
com/en-us/free/.

As regards the operating systems you will need, there are no real prerequisites. Most of the
tools we will use are cross-platform and compatible with Windows, Linux, and macOS.
Their installations will be detailed in their respective chapters.

Software/hardware covered in the book Operating system requirements
Terraform Windows, macOS, or Linux
Ansible Linux or macOs

Packer Windows, macOS, or Linux
Vagrant Windows, macOS, or Linux
Docker Windows, macOS, or Linux
Azure CLI Windows, macOS, or Linux
Helm Windows, macOS, or Linux
Postman Windows, macOS, or Linux
SonarLint Windows, macOS, or Linux
Java Runtime Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Learning-DevOps-Second-Edition. If
there's an update to the code, it will be updated in the GitHub repository.

https://code.visualstudio.com/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition

Preface xxi

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action

The Code in Action videos for this book can be viewed at https://bit.ly/36xzV7u.

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801818964 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Navigate to the folder in which we created the Vagrant£file file.

"

A block of code is set as follows:

pool:
vmImage: ubuntu-latest
steps:
- task: DotNetCoreCLI@2
displayName: "Restore"

inputs:

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[inputs:
command: 'test'
projects: '**/tests/*.csproj’
arguments: '--configuration Release'
- task: DotNetCoreCLI@2

https://github.com/PacktPublishing/
https://bit.ly/36xzV7u
https://static.packt-cdn.com/downloads/9781801818964_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801818964_ColorImages.pdf

xxii Preface

Any command-line input or output is written as follows:

sudo apt-get update && sudo apt-get install -y gnupg software-
properties-common curl \

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "When
choosing the Adjusting your PATH environment option, we can leave the default choice
proposed by the installer.”

Tips or Important Notes
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www . packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xxiii

Share Your Thoughts

Once you've read Learning DevOps - Second Edition, we'd love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your

feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801818967

Section 1:
DevOps and
Infrastructure
as Code

The objectives of part one are to present the DevOps culture and to provide all the keys
for the best infrastructure as code practices. This part explains the application of DevOps
to cloud infrastructure, showing provisioning using Terraform and configuration with
Ansible. Then, we improve on this by templating this infrastructure with Packer.

This section comprises the following chapters:

Chapter 1, The DevOps Culture and Infrastructure as Code Practices
Chapter 2, Provisioning Cloud Infrastructure with Terraform
Chapter 3, Using Ansible to Configure IaaS Infrastructure

Chapter 4, Optimizing Infrastructure Deployment with Packer
Chapter 5, Authoring the Development Environment with Vagrant

1

The DevOps Culture
and Infrastructure
as Code Practices

DevOps, a term that we hear more and more in enterprises with phrases such as We
do DevOps or We use DevOps tools, is the contraction of the words "Development”
and "Operations.”

DevOps is a culture that's different from traditional corporate cultures and requires a
change in mindset, processes, and tools. It is often associated with continuous integration
(CI) and continuous delivery (CD) practices, which are software engineering practices,
but also with Infrastructure as Code (IaC), which consists of codifying the structure and
configuration of infrastructure.

In this chapter, we will see what DevOps culture is, what DevOps principles are, and the
benefits they bring to a company. Then, we will explain CI/CD practices and, finally, we
will detail IaC with its patterns and practices.

4 The DevOps Culture and Infrastructure as Code Practices

In this chapter, we will cover the following topics:

o Getting started with DevOps
« Implementing CI/CD and continuous deployment

o Understanding IaC practices

Check out the following video to view the Code in Action: https://bit.1ly/3JJAMADb

Getting started with DevOps

The term DevOps was introduced in 2007-2009 by Patrick Debois, Gene Kim, and John
Willis, and it represents the combination of Development (Dev) and Operations (Ops). It
has given rise to a movement that advocates bringing developers and operations together
within teams. This delivers added business value to users more quickly, which makes it
more competitive in the market.

DevOps culture is a set of practices that reduce the barriers between developers, who
want to innovate and deliver faster, and operations, who want to guarantee the stability
of production systems and the quality of the system changes they make.

DevOps culture is also the extension of agile processes (Scrum, XP, and so on), which makes
it possible to reduce delivery times and already involves developers and business teams.
However, they are often hindered because of the non-inclusion of Ops in the same teams.

The communication and this link between Dev and Ops allows a better follow-up of
end-to-end production deployments and more frequent deployments that are of higher
quality, saving money for the company.

To facilitate this collaboration and to improve communication between Dev and Ops,
there are several key elements in the processes that must be put in place, as shown here:

« More frequent application deployments with integration and continuous delivery
(called CI/CD).

o The implementation and automation of unitary and integration tests, with a process
focused on behavior-driven design (BDD) or test-driven design (TDD).

« The implementation of a means of collecting feedback from users.

« Monitoring applications and infrastructure.

https://bit.ly/3JJAMAb

Getting started with DevOps 5

The DevOps movement is based on three axes:

o The culture of collaboration: This is the very essence of DevOps - the fact that
teams are no longer separated by silos specialization (one team of developers, one
team of Ops, one team of testers, and so on). However, these people are brought
together by making multidisciplinary teams that have the same objective: to deliver
added value to the product as quickly as possible.

 Processes: To expect rapid deployment, these teams must follow development
processes from agile methodologies with iterative phases that allow for better
functionality, quality, and rapid feedback. These processes should not only be
integrated into the development workflow with continuous integration, but also into
the deployment workflow with continuous delivery and deployment. The DevOps
process is divided into several phases:

A. Planning and prioritizing functionalities
B. Development

C. Continuous integration and delivery

D. Continuous deployment

E. Continuous monitoring

These phases are carried out cyclically and iteratively throughout the life of
the project.

+ Tools: The choice of tools and products used by teams is very important in DevOps.
Indeed, when teams were separated into Dev and Ops, each team used their specific
tools — deployment tools for developers and infrastructure tools for Ops — which
further widened communication gaps.

With teams that bring development and operations together, and with this culture of
unity, the tools that are used must be usable and exploitable by all members.

Developers need to integrate with the monitoring tools that are used by Ops teams to
detect performance problems as early as possible, and with security tools provided by Ops
to protect access to various resources.

Ops, on the other hand, must automate the process of creating and updating the

infrastructure and integrate the code into a code manager. This is called IaC, but this can
only be done in collaboration with developers who know the infrastructure that's needed
for applications. Ops must also be integrated into application release processes and tools.

6 The DevOps Culture and Infrastructure as Code Practices

The following diagram illustrates the three axes of DevOps culture - the collaboration
between Dev and Ops, the processes, and the use of tools:

The DevOps culture

° Process

Collaboration

Continuous
Integration

- [T
"

Figure 1.1 - The DevOps culture union

So, we can go back to DevOps culture with Donovan Brown's definition
(http://donovanbrown.com/post/what-is-devops):

"DevQOps is the union of people, processes, and products to enable
continuous delivery of value to our end users.”

The benefits of establishing a DevOps culture within an enterprise are as follows:
o Better collaboration and communication in teams, which has a human and social
impact within the company

o Shorter lead times to production, resulting in better performance and end user
satisfaction

o Reduced infrastructure costs with IaC

o Significant time saved with iterative cycles that reduce application errors and
automation tools that reduce manual tasks, so teams focus more on developing
new functionalities with added business value.

http://donovanbrown.com/post/what-is-devops

Implementing CI/CD and continuous deployment

Note

For more information about DevOps culture and its impact on, and
transformation of, enterprises, read the book The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win, by Gene Kim and Kevin
Behr, and The DevOps Handbook: How to Create World-Class Agility, Reliability,
and Security in Technology Organizations, by Gene Kim, Jez Humble, Patrick
Debois, and John Willis.

In this section, we learned about the essential notions of the DevOps culture. Now,
let's look at the first practice of the DevOps culture: the implementation of CI/CD and
continuous deployment.

Implementing CI/CD and continuous
deployment

Earlier, we learned that one of the key DevOps practices is the process of continuous
integration and continuous delivery, also known as CI/CD. In fact, behind the acronyms
of CI/CD, there are three practices:

» Continuous integration (CI)
» Continuous delivery (CD)

+ Continuous deployment

What does each of these practices correspond to? What are their prerequisites and best
practices? Where are they applicable?

Let's look at each of these practices in detail, starting with continuous integration.

Continuous integration (ClI)

In the following definition given by Martin Fowler, three key things are mentioned -
members of a team, integrate, and as quickly as possible:

"Continuous integration is a software development practice where members
of a team integrate their work frequently... Each integration is verified by
an automated build (including test) to detect integration errors as quickly

as possible.”

8 The DevOps Culture and Infrastructure as Code Practices

That is, CI is an automatic process that allows you to check the completeness of an
application's code every time a team member makes a change. This verification must be
done as quickly as possible.

We see DevOps culture in CI very clearly, with the spirit of collaboration and
communication, because the execution of CI impacts all members in terms of work
methodology and therefore collaboration; moreover, CI requires the implementation of
processes (branch, commit, pull request, code review, and so on) with automation that is
done with tools that have been adapted to the whole team (Git, Jenkins, Azure DevOps,
and so on). Finally, CI must run quickly to collect feedback on code integration as soon as
possible and hence be able to deliver new features more quickly to users.

Implementing ClI

Therefore, to set up CI, it is necessary to have a Source Code Manager (SCM) that will
centralize the code of all members. This code manager can be of any type: Git, SVN, or
Team Foundation Version Control (TFVC). It's also important to have an automatic
build manager (CI server) that supports continuous integration, such as Jenkins, GitLab
CI, TeamCity, Azure Pipelines, GitHub Actions, Travis CI, and Circle CI.

Note

In this book, we will use Git as an SCM, and we will look a little more deeply
into its concrete uses.

Each team member will work on the application code daily, iteratively, and incrementally
(such as in agile and scrum methods). Each task or feature must be partitioned from other
developments with the use of branches.

Regularly, even several times a day, members archive or commit their code and preferably
with small commits (trunks) that can easily be fixed in the event of an error. This will be
integrated into the rest of the code of the application, with the rest of the commits of the
other members.

Integrating all the commits is the starting point of the CI process.

This process, which is executed by the CI server, needs to be automated and triggered
at each commit. The server will retrieve the code and then do the following:

« Build the application package — compilation, file transformation, and so on

o Perform unit tests (with code coverage)

Implementing CI/CD and continuous deployment 9

Note

It is also possible to enrich this process with static code and vulnerability
analysis, which we will look at in Chapter 12, Static Code Analysis with
SonarQube, which is dedicated to testing.

This CI process must be optimized as soon as possible so that it can run fast, and so that
developers can gather quick feedback on the integration of their code. For example, code
that has been archived and does not compile or whose test execution fails can impact and
block the entire team.

Sometimes, bad practices can cause tests to fail during CI. To deactivate this test's
execution, you must take it is not serious, it is necessary to deliver quickly, or the code that
compiles it is essential as an argument.

On the contrary, this practice can have serious consequences when the errors that are
detected by the tests are revealed in production. The time that's saved during CI will be
lost on fixing errors with hotfixes and redeploying them quickly, which can cause stress.
This is the opposite of DevOps culture as there's poor application quality for end users and
no real feedback; instead of developing new features, we spend time correcting errors.

With an optimized and complete CI process, the developer can quickly fix their problems
and improve their code or discuss it with the rest of the team and commit their code for
a new integration. Let's look at the following diagram:

The continuous integration (Cl) pipeline

Source control Cl server

Push the code
—)
— O-23

Push the code

)

s SN

Quick feedback

Figure 1.2 - The continuous integration workflow

This diagram shows the cyclical steps of continuous integration. This includes the code
being pushed into the SCM by the team members and the build and test being executed by
the CI server. The purpose of this process is to provide rapid feedback to members.

Now that we've seen what continuous integration is, let's look at continuous delivery.

10 The DevOps Culture and Infrastructure as Code Practices

Continuous delivery (CD)

Once continuous integration has been completed, the next step is to deploy the
application automatically in one or more non-production environments, which is called
staging. This process is called continuous delivery (CD).

CD often starts with an application package being prepared by CI, which will be installed
based on a list of automated tasks. These tasks can be of any type: unzip, stop and restart
service, copy files, replace configuration, and so on. The execution of functional and
acceptance tests can also be performed during the CD process.

Unlike CI, CD aims to test the entire application with all of its dependencies. This is very
visible in microservice applications composed of several services and APIs; CI will only
test the microservice under development, while once deployed in a staging environment,
it will be possible to test and validate the entire application, as well as the APIs and
microservices that it is composed of.

In practice, today, it is very common to link CI to CD in an integration environment; that
is, CI deploys at the same time in an environment. This is necessary so that developers can
not only execute unit tests but also verify the application as a whole (UI and functional) at
each commit, along with the integration of the developments of the other team members.

It is important that the package that's generated during CI, which will also be deployed
during CD, is the same one that will be installed on all environments, and this should be
the case until production. However, there may be configuration file transformations that
differ, depending on the environment, but the application code (binaries, DLL, Docker
images, and JAR) must remain unchanged.

This immutable, unchangeable character of the code is the only guarantee that the
application that's verified in an environment will be of the same quality as the version that
was deployed in the previous environment, and also the same one that will be deployed in
the next environment. If changes (improvements or bug fixes) are to be made to the code
following verification in one of these environments, once done, the modifications will
have to go through the CI and CD cycle again.

The tools that are set up for CI/CD are often used with other solutions, as follows:

« A package manager: This constitutes the storage space of the packages generated
by CI and recovered by CD. These managers must support feeds, versioning, and
different types of packages. There are several on the market, such as Nexus, ProGet,
Artifactory, and Azure Artifacts.

Implementing CI/CD and continuous deployment 11

A configuration manager: This allows you to manage configuration changes during
CD; most CD tools include a configuration mechanism with a system of variables.

In CD, deploying the application in each staging environment is triggered as follows:

o It can be triggered automatically, following a successful execution in a previous
environment. For example, we can imagine a case where the deployment in the
pre-production environment is automatically triggered when the integration tests
have been successfully performed in a dedicated environment.

o It can be triggered manually, for sensitive environments such as the production
environment, following manual approval by the person responsible for validating
the proper functionality of the application in an environment.

What is important in a CD process is that the deployment to the production environment
- that is, to the end user - is triggered manually by approved users.

The continuous delivery (CD) pipeline

Package management

. i o
Cl server L ,/ ! .
Push the code g . ‘ S
e Qi [° 1 - 0 — G
Auto Auto
Manual
P
= 22
Cl Quick feedbacks

Continuous Integration Continuous Delivery

Figure 1.3 - The continuous delivery workflow

The preceding diagram clearly shows that the CD process is a continuation of the CI
process. It represents the chain of CD steps, which are automatic for staging environments
but manual for production deployments. It also shows that the package is generated by

CI and stored in a package manager, and that it is the same package that is deployed in
different environments.

Now that we've looked at CD, let's look at continuous deployment practices.

12 The DevOps Culture and Infrastructure as Code Practices

Continuous deployment

Continuous deployment is an extension of CD, but this time, with a process that
automates the entire CI/CD pipeline from the moment the developer commits their
code to deployment in production through all of the verification steps.

This practice is rarely implemented in enterprises because it requires a variety of tests
(unit, functional, integration, performance, and so on) to be covered for the application.
Successfully executing these tests is sufficient to validate the proper functionality of

the application regarding all of these dependencies. However, it also allows you to
automatically deploy to a production environment without any approval action required.

The continuous deployment process must also take into account all of the steps to restore
the application in the event of a production problem.

Continuous deployment can be implemented by using and implementing feature toggle
techniques (or feature flags), which involves encapsulating the application's functionalities
in features and activating its features on demand, directly in production, without having
to redeploy the code of the application.

Another technique is to use a blue-green production infrastructure, which consists
of two production environments, one blue and one green. First, we deploy to the blue
environment, then to the green one; this will ensure that no downtime is required.

The continuous deployment pipeline

Package management

SCM Cl server g “
Push the code e L ! N
— o % H .
v G = [¥ [- =) — (D — T
—) fute Auto Auto
Y —
K —

Cl Quick feedbacks

Continuous Integration

Figure 1.4 - The continuous deployment workflow

Understanding IaC practices 13

Note

We will look at the feature toggle and blue-green deployment usage in more
detail in Chapter 15, Reducing Deployment Downtime.

The preceding diagram is almost the same as that of CD, but with the difference that it
depicts automated end-to-end deployment.

CI/CD processes are therefore an essential part of DevOps culture, with CI allowing teams
to integrate and test the coherence of its code and to obtain quick feedback regularly.

CD automatically deploys on one or more staging environments and hence offers the
possibility to test the entire application until it is deployed in production.

Finally, continuous deployment automates the ability to deploy the application from
commit to the production environment.

Note

We will learn how to implement all of these processes in practice with Jenkins,
Azure DevOps, and GitLab CI in Chapter 7, Continuous Integration and
Continuous Delivery.

In this section, we discussed the practices that are essential to DevOps culture, which are
continuous integration, continuous delivery, and continuous deployment.

In the next section, we will look at another DevOps practice, known as IaC.

Understanding laC practices

IaC is a practice that consists of writing the code of the resources that make up an
infrastructure.

This practice began to take effect with the rise of the DevOps culture and with the
modernization of cloud infrastructure. Indeed, Ops teams that deploy infrastructures
manually take the time to deliver infrastructure changes due to inconsistent handling
and the risk of errors. Also, with the modernization of the cloud and its scalability, the
way infrastructure is built requires reviewing the provisioning and change practices by
adapting a more automated method.

IaC is the process of writing the code of the provisioning and configuration steps of
infrastructure components, which helps automate its deployment in a repeatable and
consistent manner.

Before we look at the use of [aC, we will see what the benefits of this practice are.

14 The DevOps Culture and Infrastructure as Code Practices

The benefits of laC

The benefits of IaC are as follows:

 The standardization of infrastructure configuration reduces the risk of errors.

o The code that describes the infrastructure is versioned and controlled in a source
code manager.

o The code is integrated into CI/CD pipelines.

« Deployments that make infrastructure changes are faster and more efficient.

o There's better management, control, and a reduction in infrastructure costs.
IaC also brings benefits to a DevOps team by allowing Ops to be more efficient in terms of
infrastructure improvement tasks, rather than spending time on manual configuration. It

also gives Dev the possibility to upgrade their infrastructures and make changes without
having to ask for more Ops resources.

IaC also allows the creation of self-service, ephemeral environments that will give
developers and testers more flexibility to test new features in isolation and independently
of other environments.

laC languages and tools

The languages and tools that are used to write the configuration of the infrastructure can
be of different types; that is, scripting, declarative, and programmatic. We will explore
them in the following sections.

Scripting types

These are scripts such as Bash, PowerShell, or others that use the different clients (SDKs)
provided by the cloud provider; for example, you can script the provisioning of an Azure
infrastructure with the Azure CLI or Azure PowerShell.

For example, here is the command that creates a resource group in Azure:

« Using the Azure CLI (the documentation is available at https: //bit.
1ly/2V10£xJ), we have the following:

az group create --location westeurope --resource-group
MyAppResourcegroup

https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ

Understanding IaC practices 15

» Using Azure PowerShell (the documentation is available at https: //bit.
ly/2VcASeh), we have the following:

New-AzResourceGroup -Name MyAppResourcegroup -Location
westeurope

The problem with these languages and tools is that they require a lot of lines of code. This
is because we need to manage the different states of the manipulated resources, and it is
necessary to write all the steps of creating or updating the desired infrastructure.

However, these languages and tools can be very useful for tasks that automate repetitive
actions to be performed on a list of resources (selection and query), or that require
complex processing with certain logic to be performed on infrastructure resources, such
as a script that automates VMs that carry a certain tag being deleted.

Declarative types

These are languages in which it is sufficient to write the state of the desired system or
infrastructure in the form of configuration and properties. This is the case, for example,
for Terraform and Vagrant from HashiCorp, Ansible, the Azure ARM template, Azure
Bicep (https://docs.microsoft.com/en-us/azure/azure-resource-
manager/templates/bicep-overview), PowerShell DSC, Puppet, and Chef. All
the user has to do is write the final state of the desired infrastructure; the tool will take
care of applying it.

For example, the following Terraform code allows you to define the desired configuration
of an Azure resource group:

resource "azurerm resource group" "myrg" {
name = "MyAppResourceGroup"

location = "West Europe"

tags = {

environment = "Bookdemo"

}

In this example, if you want to add or modify a tag, just modify the tags property in the
preceding code and Terraform will do the update itself.

https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/bicep-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/bicep-overview

16 The DevOps Culture and Infrastructure as Code Practices

Here is another example that allows you to install and restart nginx on a server
using Ansible:

- hosts: all

tasks:

- name: install and check nginx latest version
apt: name=nginx state=latest

- name: start nginx

service:

name: nginx

state: started

To ensure that the service is not installed, just change the preceding code, with service
as an absent value and the state property with the stopped value:

- hosts: all
tasks:
- name: stop nginx
service:
name: nginx
state: stopped
- name: check nginx is not installed

apt: name=nginx state=absent

In this example, it was enough to change the state property to indicate the desired state
of the service.

Note

For details regarding the use of Terraform and Ansible, see Chapter 2,
Provisioning Cloud Infrastructure with Terraform, and Chapter 3, Using Ansible
for Configuring Iaa$S Infrastructure.

Programmatic types

For a few years now, an observation has been made that the two types of IaC code, which
are of the scripting or declarative languages, are destined to be in the operational team.
This does not commonly involve the developers in the IaC.

Understanding IaC practices

17

This is done to create more union between developers and operations so that we see the
emergence of IaC tools that are based more on languages known by developers, such as

TypeScript, Java, Python, and C#.

Among the IaC tools that allow us to provision infrastructure using a programming
language, we have Pulumi (https://www.pulumi.com/) and Terraform CDK

(https://github.com/hashicorp/terraform-cdk).

The following is an example of some TypeScript code written with the Terraform CDK:

import { Construct } from 'constructs';

import { App, TerraformStack, TerraformOutput } from 'cdktf';

import {
ResourceGroup,
} from './.gen/providers/azurerm';
class AzureRgCDK extends TerraformStack {
constructor (scope: Construct, name: string) {
super (scope, name) ;
new AzurermProvider (this, 'azureFeature', {

features: [{}],

DE;

const rg = new ResourceGroup (this, 'cdktf-rg',

name: 'MyAppResourceGroup',

location: 'West Europe',

IF
1

const app = new App () ;
new AzureRgCDK (app, 'azure-rg-demo') ;

app.synth() ;

{

In this example, which is written in Typescript, we are using two-tier libraries: the npm
package and a Terraform CDK called cdkt £. The npm package that's used to provision

Azure resources is called 'gen/providers/azurerm’'.

Then, we declare a new class that initializes the Azure provider and we define the creation

of the resource group with the new ResourceGroup method.

Finally, to create the resource group, we instantiate this class and call the app . synth

method of the CDK.

https://www.pulumi.com/
https://github.com/hashicorp/terraform-cdk

18 The DevOps Culture and Infrastructure as Code Practices

Note

For more information about the Terraform CDK, I suggest reading the
following blog posts and watching the following video:

https://www.hashicorp.com/blog/cdk-for-terraform-
enabling-python-and-typescript-support

https://www.hashicorp.com/blog/announcing-cdk-for-
terraform-0-1

https://www.youtube.com/watch?v=5hSdb0OnadRQ

The laC topology

In a cloud infrastructure, IaC is divided into several typologies:

+ Deploying and provisioning the infrastructure
« Server configuration and templating
« Containerization

+ Configuration and deployment in Kubernetes

Let's deep dive into each topology.

Deploying and provisioning the infrastructure

Provisioning is the act of instantiating the resources that make up the infrastructure. They
can be of the Platform-as-a-Service (PaaS) and serverless resource types, such as a web
app, Azure function, or Event Hub, but also the entire network part that is managed, such
as VNet, subnets, routing tables, or Azure Firewall. For virtual machine resources, the
provisioning step only creates or updates the VM cloud resource, but not its content.

There are different provisioning tools we can use for this, such as Terraform, the ARM
template, AWS Cloud training, the Azure CLI, Azure PowerShell, and also Google Cloud
Deployment Manager. Of course, there are many more, but it is difficult to mention them
all. In this book, we will look at, in detail, the use of Terraform to provide an infrastructure.

Server configuration

This step concerns configuring virtual machines, such as the hardening, directories, disk
mounting, network configuration (firewall, proxy, and so on), and middleware installation.

https://www.hashicorp.com/blog/cdk-for-terraform-enabling-python-and-typescript-support
https://www.hashicorp.com/blog/cdk-for-terraform-enabling-python-and-typescript-support
https://www.hashicorp.com/blog/announcing-cdk-for-terraform-0-1
https://www.hashicorp.com/blog/announcing-cdk-for-terraform-0-1
https://www.youtube.com/watch?v=5hSdb0nadRQ

Understanding IaC practices 19

There are different configuration tools, such as Ansible, PowerShell DSC, Chef, Puppet,
and SaltStack. Of course, there are many more, but in this book, we will look in detail at
the use of Ansible to configure a virtual machine.

To optimize server provisioning and configuration times, it is also possible to create and
use server models, also called images, that contain all of the configuration (hardening,
middleware, and so on) of the servers. While provisioning the server, we will indicate the
template to use. So, in a few minutes, we will have a server that's been configured and is
ready to be used.

There are also many IaC tools for creating server templates, such as Aminator (used by
Netflix) and HashiCorp Packer.

Here is an example of some Packer file code for creating an Ubuntu image with package
updates:

{
"builders": [{
"type": "azure-arm",
"os type": "Linux",
"image publisher": "Canonical",
"image offer": "UbuntuServer",
"image sku": "16.04-LTS",
"managed image resource group name": "demoBook",
"managed image name": "SampleUbuntuImage",
"location": "West Europe",
"vm_size": "Standard DS2 v2"
11,
"provisioners": [{
"execute command": "chmod +x {{ .Path }}; {{ .vars }} sudo
-E sh '"{{ .path }}'",
"inline": [

"apt-get update",
"apt-get upgrade -y",
"/usr/sbin/waagent -force -deprovision+user && export
HISTSIZE=0 && sync"
I,
"inline shebang": "/bin/sh -x",
"type": "shell"

20 The DevOps Culture and Infrastructure as Code Practices

1
}

This script creates a template image for the Standard DS2_ V2 virtual machine based
on the Ubuntu OS (the builders section). Additionally, Packer will update all the
packages during the creation of the image with the apt -get update command.
Afterward, Packer will deprovision the image to delete all user information (the
provisioners section).

Note

The Packer part will be discussed in detail in Chapter 4, Optimizing
Infrastructure Deployment with Packer.

Immutable infrastructure with containers

Containerization consists of deploying applications in containers instead of deploying
them in VMs.

Today, it is very clear that the container technology to be used is Docker and that a
Docker image is configured with code in a Dockerfile. This file contains the declaration of
the base image, which represents the operating system to be used, additional middleware
to be installed on the image, only the files and binaries necessary for the application, and
the network configuration of the ports. Unlike VMs, containers are said to be immutable;
the configuration of a container cannot be modified during its execution.

Here is a simple example of a Dockerfile:

FROM ubuntu

RUN apt-get update

RUN apt-get install -y nginx

ENTRYPOINT ["/usr/sbin/nginx","-g","daemon off;"]
EXPOSE 80

In this Docker image, we are using a basic Ubuntu image, installing nginx, and exposing
port 80.

Note

The Docker part will be discussed in detail in Chapter 9, Containerizing Your
Application with Docker.

Understanding IaC practices 21

Configuration and deployment in Kubernetes

Kubernetes is a container orchestrator - it is the technology that most embodies IaC
(in my opinion) because of the way it deploys containers, the network architecture (load
balancer, ports, and so on), and volume management, as well as how it protects sensitive
information, all of which are described in the YAML specification files.

Here is a simple example of a YAML specification file:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-demo
labels:
app: nginx
spec:

replicas: 2

selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:

- name: nginx
image: nginx:1.7.9
ports:

- containerPort: 80

In the preceding specification file, we can see the name of the image to deploy (ngnix),
the port to open (80), and the number of replicas (2).

Note

The Kubernetes part will be discussed in detail in Chapter 10, Managing
Containers Effectively with Kubernetes.

22 The DevOps Culture and Infrastructure as Code Practices

IaC, like software development, requires that we implement practices and processes that
allow the infrastructure code to evolve and be maintained.

Among these practices are those of software development, as follows:

Have good principles of nomenclature.
Do not overload the code with unnecessary comments.
Use small functions.

Implement error handling.

Note

To learn more about good software development practices, read the excellent
book, which is, for my part, a reference on the subject, Clean Code, by Robert
Martin.

However, there are more specific practices that I think deserve more attention:

Everything must be automated in the code: When performing IaC, it is necessary
to code and automate all of the provisioning steps and not leave the manual steps
out of the code that distort the automation of the infrastructure, which can generate
errors. And if necessary, do not hesitate to use several tools such as Terraform and
Bash with the Azure CLI scripts.

The code must be in a source control manager: The infrastructure code must also
be in an SCM to be versioned, tracked, merged, and restored, and hence have better
visibility of the code between Dev and Ops.

The infrastructure code must be with the application code: In some cases, this
may be difficult, but if possible, it is much better to place the infrastructure code in
the same repository as the application code. This is to ensure we have better work
organization between developers and operations, who will share the same workspace.

Separation of roles and directories: It is good to separate the code from the
infrastructure according to the role of the code. This allows you to create one
directory for provisioning and configuring VMs and another that will contain the
code for testing the integration of the complete infrastructure.

Understanding IaC practices 23

Integration into a CI/CD process: One of the goals of IaC is to be able to automate
the deployment of the infrastructure. So, from the beginning of its implementation,
it is necessary to set up a CI/CD process that will integrate the code, test it, and
deploy it in different environments. Some tools, such as Terratest, allow you to write
tests on infrastructure code. One of the best practices is to integrate the CI/CD
process of the infrastructure into the same pipeline as the application.

The code must be idempotent: The execution of the infrastructure deployment
code must be idempotent; that is, it should be automatically executable at will.
This means that scripts must take into account the state of the infrastructure when
running it and not generate an error if the resource to be created already exists,

or if a resource to be deleted has already been deleted. We will see that declarative
languages, such as Terraform, take on this aspect of idempotence natively. The
code of the infrastructure, once fully automated, must allow the application's
infrastructure to be constructed and destructed.

To be used as documentation: The code of the infrastructure must be clear and
must be able to serve as documentation. Infrastructure documentation takes a long
time to write and, in many cases, it is not updated as the infrastructure evolves.

The code must be modular: In infrastructure, the components often have the same
code - the only difference is the value of their properties. Also, these components
are used several times in the company's applications. Therefore, it is important

to optimize the writing times of code by factoring it with modules (or roles, for
Ansible) that will be called as functions. Another advantage of using modules is the
ability to standardize resource nomenclature and compliance on some properties.

Having a development environment: The problem with IaC is that it is difficult to
test its infrastructure code under development in environments that are used for
integration, as well as to test the application, because changing the infrastructure
can have an impact. Therefore, it is important to have a development environment
even for IaC that can be impacted or even destroyed at any time.

For local infrastructure tests, some tools simulate a local environment, such as Vagrant
(from HashiCorp), so you should use them to test code scripts as much as possible.

Of course, the full list of good practices is longer than this; all the methods and processes
of software engineering practices are also applicable.

24 The DevOps Culture and Infrastructure as Code Practices

Therefore, IaC, like CI/CD processes, is a key practice of DevOps culture that allows
you to deploy and configure an infrastructure by writing code. However, IaC can only be
effective with the use of appropriate tools and the implementation of good practices.

In this section, we covered an overview of some DevOps best practices. Next, we will
present a brief overview of the evolution of the DevOps culture.

The evolution of the DevOps culture

With time and the experience that's been gained by using the DevOps culture, we can
observe an evolution of the practices, as well as the teams that integrate with this movement.

This is, for example, the case of the GitOps practice, which is starting to emerge more and
more in companies.

The GitOps workflow, which is commonly applied to Kubernetes, consists of using Git as
the only source of truth; that is, the Git repository contains the code of the infrastructure
state, as well as the code of the application to be deployed.

A controller will oversee retrieval of the Git source during a code commit, executing the
tests, and redeploying the application.

Note

For more details about GitOps culture, practices, and workflows, read the
official guide on the initiator of GitOps here: https://www.weave.
works/technologies/gitops/.

Summary

In this chapter, we saw that the DevOps culture is a story of collaboration, processes,

and tools. Then, we detailed the different steps of the CI/CD process and explained

the difference between continuous integration, continuous delivery, and continuous
deployment. Finally, the last part explained how to use IaC with its best practices, and we
covered the evolution of the DevOps culture.

We learned about the basis of the DevOps culture and its practices, which sets the tone for
the rest of the chapters in this book, where we will discuss how to apply this culture using
tools and practices.

In the next chapter, we will begin by covering the implementation of Infrastructure as
Code and how to provision infrastructure with Terraform.

https://www.weave.works/technologies/gitops/
https://www.weave.works/technologies/gitops/

Questions 25

Questions
1. Which words is DevOps a contraction of?
2. Is DevOps a term that represents the name of a tool, a culture or a society, or the
title of a book?
3. What are the three axes of DevOps culture?
4. What is the objective of continuous integration?
5. What is the difference between continuous delivery and continuous deployment?
6. Whatis [aC?

Further reading

If you want to know more about DevOps culture, here are some resources:

The DevOps Resource Center (Microsoft resources): https://docs.
microsoft.com/en-us/azure/devops/learn/

2020 State of DevOps Report (by Puppet): https://puppet.com/resources/
report/2020-state-of-devops-report

https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://puppet.com/resources/report/2020-state-of-devops-report
https://puppet.com/resources/report/2020-state-of-devops-report

2

Provisioning Cloud
Infrastructure with
Terraform

In the previous chapter, we introduced the tools, practices, and benefits of Infrastructure
as Code (IaC) and its impact on DevOps culture. Out of all of the IaC tools that have been
mentioned, one that is particularly popular and powerful is Terraform, which is part of
the HashiCorp tools suite.

In this chapter, we will explore the basics of using Terraform to provision a cloud
infrastructure, using Azure as an example. We will start with an overview of its strengths
compared to other IaC tools. We will learn how to install it in both manual mode and
automatic mode, and then we will create our first Terraform script to provision an
Azure infrastructure with the use of best practices and its automation in a Continuous
Integration (CI)/Continuous Deployment (CD) process. Finally, we will go a little
deeper with the implementation of a remote backend for the Terraform state file.

28 Provisioning Cloud Infrastructure with Terraform

In this chapter, we will cover the following topics:

« Installing Terraform

 Configuring Terraform for Azure

o Writing a Terraform script to deploy an Azure infrastructure

 Running Terraform for deployment

o Understanding the Terraform life cycle with different command-line options

« Protecting the state file with a remote backend

Technical requirements

This chapter will explain how you can use Terraform to provision an Azure infrastructure
as an example of cloud infrastructure. Therefore, you will need an Azure subscription,
which you can get, for free, at https://azure.microsoft.com/en-us/free/.

In addition, we will require a code editor to write the Terraform code. There are
several editors out there, but I will be using Visual Studio Code. It is free, lightweight,
multiplatform, and has several extensions for Terraform. You can download it at
https://code.visualstudio.com/. The complete source code of this chapter
is available at https://github.com/PacktPublishing/Learning-DevOps-
Second-Edition/tree/main/CHAPO2.

Check out the following video to view the Code in Action:

https://bit.ly/3p7x63h

Installing Terraform

Terraform is a command-line tool that, in its basic version, is open source, uses the
HashiCorp Configuration Language (HCL), is declarative, and is relatively easy to read.
Its main advantage is the use of the same language to deploy on a multitude of cloud
providers such as Azure, AWS, and Google—the complete list is available at https: //
www.terraform.io/docs/providers/.

Terraform has other advantages:

o It's multiplatform, and it can be installed on Windows, Linux, and Mac.

o Itallows a preview of infrastructure changes before they are implemented.

https://azure.microsoft.com/en-us/free/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02
https://bit.ly/3p7x63h
http://bit.ly/2MJs7TW
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/

Installing Terraform 29

o It allows the parallelization of operations by considering resource dependencies.

« It integrates a very large number of providers.

Terraform can be installed onto your system in a number of ways. Let's begin by looking
at the manual installation method.

Manual installation

To install Terraform manually, perform the following steps:

1. Go to the official download page at https://www.terraform.io/
downloads.html. Then, download the package corresponding to your operating
system.

2. After downloading, unzip and copy the binary into an execution directory (for
example, inside ¢ : \Terraform).

3. Then, the PATH environment variable must be completed with the path to the
binary directory. For detailed instructions, please view the video at https://
learn.hashicorp.com/tutorials/terraform/install-cli.

Now that we've learned how to install Terraform manually, let's take a look at the options
available to us to install it using a script.

Installation by script

Script installation automates the installation or update of Terraform on a remote server
that will be in charge of executing Terraform code, such as on a Jenkins slave or an Azure
Pipelines agent.

Installing Terraform by script on Linux

To install the Terraform binary on Linux, we have two solutions. The first solution is to
install Terraform using the following script:

TERRAFORM VERSION="1.0.0" #Update with your desired version
curl -Os https://releases.hashicorp.com/terraform/${TERRAFORM
VERSION}/terraform ${TERRAFORM VERSION} linux amdé4.zip \

&& curl -Os https://releases.hashicorp.com/
terraform/$ {TERRAFORM VERSION}/terraform ${TERRAFORM VERSION}
SHA256SUMS \

&& curl https://keybase.io/hashicorp/pgp keys.asc | gpg
--import \

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://learn.hashicorp.com/tutorials/terraform/install-cli

30 Provisioning Cloud Infrastructure with Terraform

&& curl -Os https://releases.hashicorp.com/
terraform/${TERRAFORM VERSION}/terraform ${TERRAFORM VERSION}
SHA256SUMS.sig \

&& gpg --verify terraform ${TERRAFORM VERSION} SHA256SUMS.sig
terraform ${TERRAFORM VERSION} SHA256SUMS \

&& shasum -a 256 -c terraform ${TERRAFORM VERSION} SHA256SUMS
2>&1 | grep "${TERRAFORM VERSION} linux amdé4.zip:\sOK" \

&& unzip -o terraform ${TERRAFORM VERSION} linux amdé4.zip -d /
usr/local/bin

This script does the following:

o Itsetsthe TERRAFORM VERSION parameter with the version to download.
It downloads the Terraform package by checking the checksum.

o It unzips the package in the user's local directory.

Important Note

This script is also available in the GitHub source for this book at https: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP02/Terraform install Linux.
sh.

To execute this script, follow these steps:

1. Open a command-line Terminal.
2. Copy and paste the preceding script.

3. Execute it by hitting Enter in the command-line Terminal.

The following screenshot displays an execution of the script to install Terraform on Linux:

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP02/Terraform_install_Linux.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP02/Terraform_install_Linux.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP02/Terraform_install_Linux.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP02/Terraform_install_Linux.sh

Installing Terraform 31

root@ubuntu-bionic:/learningdevops/CHAPO2# sh Terraform_install_Linux.sh
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
7717 100 7717 [¢] 0 20523 0 --:--: t--i-- --i--1-- 20469
: key 34365D9472D7468F: "HashiCorp Security (hashicorp.com/security) <security@hashicorp.com>" not changed
: Total number processed: 1
unchanged: 1
: Signature made Tue Jun 8 11:21:42 2021 UTC
using RSA key B36CBA91A2C0730C435FC280B0OB441097685B676
: Good signature from "HashiCorp Security (hashicorp.com/security) <security@hashicorp.com>" [unknown]
: WARNING: This key is not certified with a trusted signature!
There is no indication that the signature belongs to the owner.
Primary key fingerprint: C874 011F 0AB4 0511 0D02 1055 3436 5D94 72D7 468F
Subkey fingerprint: B36C BA91 A2C0 730C 435F (280 BOB4 4109 7685 B676
terraform_1.0.0_linux_amd64.zip: OK
Archive: terraform_1.0.0_linux_amd64.zip
inflating: /usr/local/bin/terraform

Figure 2.1 - The Terraform install script on Linux

In the execution of the preceding script, we can see the download of the Terraform ZIP
package (using the curl tool) and the unzip operation of this package inside the /usr/
local/bin folder.

The benefit of this solution is that we can choose the Terraform installation folder and that
it is applicable on the various distributions of Linux. This is because it uses common tools,
including curl and unzip.

The second solution for installing Terraform on Linux is to use the apt package manager.
You can do so by using the following script for the Ubuntu distribution:

sudo apt-get update && sudo apt-get install -y gnupg software-

properties-common curl \

&& curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo
apt-key add - \

&& sudo apt-add-repository "deb [arch=amdé64] https://apt.
releases.hashicorp.com $(lsb release -cs) main" \

&& sudo apt-get update && sudo apt-get install terraform
This script does the following:

 Itadds the apt HashiCorp repository.
o It updates the local repository.
o It downloads the Terraform CLI.

Important Note

For additional details about this script and the installation of Terraform on
other distributions, please refer to the documentation at https://learn.
hashicorp.com/tutorials/terraform/install-cli,and
navigate to the Linux tab.

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://learn.hashicorp.com/tutorials/terraform/install-cli

32 Provisioning Cloud Infrastructure with Terraform

The benefit of this solution is that you can use Linux package management, which can be
integrated into popular configuration tools (for example, Ansible, Puppet, or Docker)

We have just discussed the installation of Terraform on Linux. Now, let's take a look at its
installation on Windows.

Installing Terraform by script on Windows

If we use Windows, we can use Chocolatey, which is a free public package manager,
such as NuGet or npm, but dedicated to software. It is widely used for the automation of
software on Windows servers or even local machines.

Important Note

The Chocolatey official website can be found at https: //chocolatey.
org/, and its installation documentation can be located at https://
chocolatey.org/install.

Once Chocolatey has been installed, we just need to run the following command in
PowerShell or the CMD tool:

choco install terraform -y

The following is a screenshot of the Terraform installation for Windows with Chocolatey:

tem32> choco install terraform
Ch @.10.
Installing the following packages:
raf

By installi

install completed. Performing other installation

raform\1.8.0\terraform_1.8.8_windows_amd64. 7

Figure 2.2 — Terraform installation on Windows

Executing the choco install terraformcommand installs the latest version of
Terraform from Chocolatey.

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/install
https://chocolatey.org/install

Installing Terraform 33

Once installed, we can check the Terraform version by running the following command:
terraform version

This command displays the installed Terraform version.

We can also check out the different commands that Terraform offers by running the
following command:

terraform --help

The following screenshot lists the different commands and their functions:

$ terraform --help
sion] [-help]

run
resources
rraform
taint Manually mark a re
untaint Ma ly unmark a
ite dates the

ther commands:
3 (ntal)
ock L t t a state

Figure 2.3 - Terraform's available commands

Now, let's take a look at the installation of Terraform on macOS.

34 Provisioning Cloud Infrastructure with Terraform

Installing Terraform by script on macOS

On macOS, we can use Homebrew, the macOS package manager (https://brew.
sh/), to install Terraform by executing the following command in your Terminal:

brew install terraform
That's all for the installation of Terraform by script. Let's take a look at another solution

that uses Terraform in Azure without having to install it—Azure Cloud Shell.

Integrating Terraform with Azure Cloud Shell

If we are using Terraform to deploy a piece of infrastructure in Azure, we should also
know that the Azure team has integrated Terraform into Azure Cloud Shell.

Important Note

To learn more about Azure Cloud Shell, please refer to its documentation at
https://azure.microsoft.com/en-us/features/cloud-
shell/.

To use it from the Azure Cloud Shell, follow these steps:

1. Connect to the Azure portal by opening https: //portal.azure.com, and
sign in with your Azure account:

Microsoft Azure

B8 Microsoft

Sign in

to continue to Microsoft Azure

|Emai|_. phene, or Skype

Mo account? Create one!

Can't access your account?

Figure 2.4 - The Azure Sign in page

https://brew.sh/
https://brew.sh/
https://azure.microsoft.com/en-us/features/cloud-shell/
https://azure.microsoft.com/en-us/features/cloud-shell/
https://portal.azure.com

Installing Terraform 35

2. Open the Cloud Shell and choose the mode you want, that is, either Bash
or PowerShell.

3. Then, we can run the Terraform command line in the shell.

The following is a screenshot of the execution of Terraform in Azure Cloud Shell:

Microsoft Azure P Search resources, services, and docs

Bash PEEINEERE

Shell .Succeeded.
PowerShell

Welcome to Azure Cloud Shell

Type "az" to use Azure CLI
Type "help" to learn about Cloud Shell

Azure:~% terraform
Usage: terraform [-version] [-help] <command> [args]

The available commands for execution are listed below.

The most common, useful commands are shown first, followed by
less common or more advanced commands. If you're just getting
started with Terraform, stick with the common commands. For the
other commands, please read the help and docs before usage.

Common commands :
apply Builds or changes infrastructure
console Interactive console for Terraform interpolations
destroy Destroy Terraform-managed infrastructure

Figure 2.5 - Azure Cloud Shell

The advantage of using this solution is that we don't need any software to install; we
can simply upload your Terraform files to Cloud Shell and run them in Cloud Shell.
Additionally, we are already connected to Azure, so no configuration is required (please
refer to the Configuring Terraform for Azure section).

However, this solution is only to be used in development mode and not for the local
or automatic use of Terraform. For this reason, in this chapter, we will discuss the
configuration of Terraform for Azure.

Now that we have installed Terraform, we can begin using it locally to provision an Azure
infrastructure. We will start with the first step, which is to configure Terraform for Azure.

36 Provisioning Cloud Infrastructure with Terraform

Configuring Terraform for Azure

Before writing the Terraform code in which to provision a cloud infrastructure such
as Azure, we must configure Terraform to allow the manipulation of resources in an
Azure subscription.

To do this, first, we will create a new Azure Service Principal (SP) in Azure Active
Directory (AD), which, in Azure, is an application user who has permission to manage
Azure resources.

Important Note

For more details about the Azure SP, please read the documentation at
https://docs.microsoft.com/en-us/azure/active-
directory/develop/app-objects-and-service-
principals.

For this Azure SP, we have to assign to it the contributing permissions on the subscription
in which we will create resources.

Creating the Azure SP

This operation can be done either via the Azure portal (all steps are detailed within

the official documentation at https://docs .microsoft.com/en-us/azure/
active-directory/develop/howto-create-service-principal-portal)
or via a script by executing the following az c¢1i command (which we can launch in
Azure Cloud Shell).

The following is a template az c11i script that you have to run to create an SP. Here, you
have to enter your SP name, role, and scope:

az ad sp create-for-rbac --name="<ServicePrincipal name>"
--role="Contributor" --scopes="/subscriptions/<subscription
Id>"

Take a look at the following example:

az ad sp create-for-rbac --name="SPForTerraform"
--role="Contributor" --scopes="/subscriptions/8921-1444-..."

This sample script creates a new SP, named SPForTerraform, and gives it the
contributor permission on the subscription ID, that is, 8921. . ..

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

Configuring Terraform for Azure 37

Important Note

For more details about the Azure CLI command to create an Azure SP, please
refer to the documentation at https://docs.microsoft.com/en-
us/cli/azure/create-an-azure-service-principal-
azure-cli?view=azure-cli-latest.

The following screenshot shows the execution of the script that creates an Azure SP:

Bash vio ? &L Ok

to use Azure CLT 2.0
Type "help" to learn about Cloud Shell

"SPForTerrafor Y scopes="/subscriptions/1da42ac9-ee3e-4fdb-

SPFor

94a2ea’d-18c9-46b3-803
Name": "SPForTerraform”,
ittp://SPForTerraform”,
"alcaldad7-@aa@-.
2e3a33f9-

Figure 2.6 — Creating an Azure SP

The creation of this Azure SP returns three pieces of identification information:

o+ The application ID, which is also called the client ID
o The client secret

e The tenant ID

The SP is created in Azure AD. The following screenshot shows the Azure AD SP:

Home

| © Search (Ctrl+/) | « = New registration [is] Endpoints b4 Troubleshooting | W Got feedback?
¥ Dashboard
) . - o Welcome to the new and i App regi ions (now
All services Overview
Y FAVORITES U‘ Getting started A Looking to learn how it's changed from App registrations (Legacy)? Learn more

Still want to use App registrations (Legacy)? Go back and tell us why
W Resource groups Manage

All applications Owned applications Applications from personal account
@ Recent s Users _—

All resources .i Groups |p spForTerraform

&8 App Services iE Organizational relationships DISPLAY NAME APPLICATIO... CREATED ON CERTIFICATES & SECRETS

B virtual machines] ini
- - Roles and administrators

M @ SPForTerraform 94a2ea7d-1.. 4/19/2019 @ current
m Virtual machines (classic) E

Enterprise applications

]
. Azure Active Directory 1 B Devices

™ Application Insights B app registrations e

? Subscriptions @ Identity Governance

Figure 2.7 — The App registrations list in the Azure portal

https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest

38 Provisioning Cloud Infrastructure with Terraform

Here, we have just discovered how to create an SP in Azure AD, and we have given it
permissions to manipulate the resources of our Azure subscriptions.

Now, let's learn how to configure Terraform to use our Azure SP.

Configuring the Terraform provider

Once the Azure SP has been created, we will configure our Terraform configuration to
connect to Azure using this SP. To do this, follow these steps:

1. Inadirectory of your choice, create a new filename, provider. tf (the
extension .tf file corresponds to Terraform files), which contains the
following code:

provider "azurerm" ({

features {}
subscription id = "<subscription ID>"
client id = "<Client ID>"
client secret = "<Client Secret>"

tenant id = "<Tenant Id>"

}

In the preceding code, we indicate that the provider we are using is azurerm. The
authentication information to Azure is the SP that has been created, and we add
new block features that provide the possibility that we can customize the behavior
of the Azure provider resources.

However, for security reasons, it is not advisable to put identification information in
plain text inside your configuration, especially if you know that this code might be
accessible by other people.

2. 'Therefore, we will improve the preceding code by replacing it with this one:

provider "azurerm" (

features {}

}

3. So, we delete the credentials in the Terraform configuration, and we will pass the
identification values to specific Terraform environment variables:

» ARM SUBSCRIPTION ID
» ARM CLIENT_ID

Configuring Terraform for Azure 39

* ARM CLIENT SECRET
* ARM TENANT ID

Important Note

For more information regarding the azurerm provider, please refer to

the documentation at https://registry.terraform.io/
providers/hashicorp/azurerm/latest/docs. We will learn
how to set these environment variables later in this chapter, in the Running
Terraform form deployment section.

As a result, the Terraform code no longer contains any identification information.

We have just learned how to configure Terraform for Azure authentication. Now, we will
explain how to quickly configure Terraform to perform local development and testing.

The Terraform configuration for local development
and testing

When you work locally and want to test the Terraform code quickly—for example, in a
sandbox environment—it might be more convenient and faster to use your own Azure
account instead of using an SP.

To do this, it is possible to connect to Azure beforehand using the az login command.
Then, enter your identification information in the window that opens.

The following is a screenshot of the Azure login window:

I :~4 az login

Note, we have launched a browser for you to login. For old experience with device code, use "az login -

Sign in 1o your account

Microsoft Azure

B® Microsoft

Figure 2.8 - The Azure Sign in page with Azure login

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

40 Provisioning Cloud Infrastructure with Terraform

If several subscriptions are accessed, the desired one can be selected using the following
command:

az account set --subscription="<Subscription ID>"

Then, we configure the Terraform provider as before using the provider, "azurerm" { }.

Of course, this authentication method should not be done in the case of an execution on a
remote server.

Important Note

For more information regarding the provider configuration, please refer
to the documentation at https://www.terraform.io/docs/
providers/azurerm/index.html.

Therefore, the Terraform configuration for Azure is defined by the configuration of the
provider that uses the information from an Azure SP.

Once this configuration is complete, we can start writing the Terraform configuration to
manage and provision Azure resources.

Writing a Terraform script to deploy an Azure
infrastructure

To illustrate the use of Terraform to deploy resources in Azure, we will provide a simple
Azure architecture with Terraform that is composed of the following components:

o There's an Azure resource group.

 There's also a network configuration that is composed of a virtual network and
a subnet.

o In this subnet, we will create a virtual machine that has a public IP address in order
to be publicly available.

To do this, in the same directory where we previously created the provider. tf£ file, we
will create a main. t£ file with the following code:

1. Let's start with the code that provides the resource group:

resource "azurerm resource group" "rg" {
name = "bookRg"

location = "West Europe"

https://www.terraform.io/docs/providers/azurerm/index.html
https://www.terraform.io/docs/providers/azurerm/index.html

Writing a Terraform script to deploy an Azure infrastructure 41

tags {

environment = "Terraform Azure"

}

Any piece of Terraform code is composed of the same syntax model, and the syntax
of a Terraform object consists of four parts:

» A type of resource or data block

* A name of the resource to be managed (for example, azurerm resource
group)

= An internal Terraform ID (for example, rg)

» A list of properties that correspond to the real properties of the resource (that is,
name and location)

Important Note

More documentation regarding the Terraform syntax is available at
https://www.terraform.io/docs/configuration-0-11/
resources.html.

This code uses the azurerm_resource group Terraform resource and will
provision a resource group, named bookRg, that will be stored in the West
Europe location.

2. 'Then, we will write the code for the network part:

resource "azurerm virtual network" "vnet" {

name = "book-vnet"

location = "West Europe"

address space = ["10.0.0.0/16"]

resource group name = azurerm resource group.rg.name
}
resource "azurerm subnet" "subnet" {

name = "book-subnet"

virtual network name = azurerm virtual network.vnet.
name

resource group name = azuUrerm resource group.rg.name
address prefix = "10.0.10.0/24"

https://www.terraform.io/docs/configuration-0-11/resources.html
https://www.terraform.io/docs/configuration-0-11/resources.html

42 Provisioning Cloud Infrastructure with Terraform

In this Terraform code for the network part, we create the code for a VNet, book-vnet,
and in it, we create a subnet called book - subnet.

If we look at this code carefully, we can see that, for the dependencies between the
resources, we do not put in clear IDs, but we use pointers on the Terraform resources.

The VNet and subnet are the property of the resource group with $ {azurerm
resource group.rg.name }, which tells Terraform that the VNet and subnet will be
created just after the resource group. As for the subnet, it is dependent on its VNet with
the use of the ${azurerm virtual network.vnet.name} value; it's the explicit
dependence concept.

Now, let's write the Terraform provisioning code of the virtual machine, which is
composed of the following:

o A network interface
« A public IP address
o An Azure Storage object for the diagnostic boot (boot information logs)

A virtual machine
The sample code for the network interface with the IP configuration is as follows:

resource "azurerm network interface" "nic" {
name = "book-nic"
location = "West Europe"
resource group name = azurerm resource group.rg.name
ip configuration ({
name = "bookipconfig"
subnet id = azurerm subnet.subnet.id
private ip address allocation = "Dynamic"

public ip address id = azurerm public ip.pip.id

}

In this Terraform code, we use an azurerm network interface block (https://
www.terraform.io/docs/providers/azurerm/r/network interface.
html). In it, we configure the name, region, resource group, and IP configuration with the
dynamic IP address of the network interface.

https://www.terraform.io/docs/providers/azurerm/r/network_interface.html
https://www.terraform.io/docs/providers/azurerm/r/network_interface.html
https://www.terraform.io/docs/providers/azurerm/r/network_interface.html

Writing a Terraform script to deploy an Azure infrastructure

43

The code for public ip address, which has an IP address in the subnet we just
created, is as follows:

resource "azurerm public ip" "pip" {

name = "book-ip"

location = "West Europe"

resource group name = "${azurerm resource group.rg.name}"
public ip address allocation = "Dynamic"
domain name label = "bookdevops"

}

In this Terraform code, we use an azurerm public_ ip blockathttps://www.
terraform.io/docs/providers/azurerm/r/public_ip.html. Init, we
configure the dynamic allocation of the IP address and the DNS label.

The code for storage account, which we use for the boot diagnostic logs, is as follows:

resource "azurerm storage account" "stor" {
name = "bookstor"
location = "West Europe"

resource_group name = azurerm resource group.rd.name
account tier = "Standard"
account replication type = "LRS"

}

In this Terraform code, we use an azurerm storage account blockathttps://

www.terraform.io/docs/providers/azurerm/r/storage account.html.

In it, we configure the name, region, resource group, and type of storage, which, in our

case, is Standard LRS.

Important Note

The documentation for the storage account can be found at https: //
docs.microsoft.com/en-us/azure/storage/common/
storage-account-overview.

https://www.terraform.io/docs/providers/azurerm/r/public_ip.html
https://www.terraform.io/docs/providers/azurerm/r/public_ip.html
https://www.terraform.io/docs/providers/azurerm/r/storage_account.html
https://www.terraform.io/docs/providers/azurerm/r/storage_account.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview

44 Provisioning Cloud Infrastructure with Terraform

And the code for the Ubuntu virtual machine, which contains the ID of the network
interface created earlier, is as follows:

resource "azurerm linux virtual machine" "vm" {
name = "bookvm"
location = "West Europe"

resource group name = azurerm resource group.rg.name

vm_size = "Standard DS1 v2"
network interface ids = ["${azurerm network interface.nic.
id}"]
storage image reference ({
publisher = "Canonical!"
offer = "UbuntuServer"
sku = "16.04-LTS"
version = "latest"

}

In this Terraform code, we use an azurerm linux virtual machine block at
https://registry.terraform.io/providers/hashicorp/azurerm/
latest/docs/resources/linux virtual machine. In it, we configure the
name, size (Standard_DS1 V2), reference to the network interface Terraform
object, and the type of virtual machine operating system (Ubuntu).

All of these code sections are exactly like the previous ones with the use of an explicit
dependency to specify the relationships between the resources.

Important Note

This complete source code is available at ht tps: //github. com/
PacktPublishing/Learning-DevOps-Second-Edition/
tree/main/CHAPO2/terraform simple script.

We have just created a complete Terraform script that allows us to provision a small
Azure infrastructure. However, as in any language, there are good practices regarding file
separation, applying a clear and readable code, and, finally, the use of built-in functions.

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_virtual_machine
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_virtual_machine
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_simple_script
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_simple_script
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_simple_script

Writing a Terraform script to deploy an Azure infrastructure 45

Following some Terraform good practices

We have just looked at an example of Terraform code to provision an Azure infrastructure,
but it is also useful to look at some good practices for writing Terraform code.

Better visibility with the separation of files

When executing Terraform code, all of the configuration files in the execution
directory that have the . t £ extension are automatically executed; in our example, we have
provider.tf andmain.tf. Itis good to separate the code into several files in order to
improve the readability of the code and its evolution.

Using our example script, we can do better by separating it with the following:
» Rg.tf: This contains the code for the resource group.

e Network. tf: This contains the code for the VNet and subnet.

« Compute. tf: This contains the code for the network interface, public IP, storage,
and virtual machine.

Important Note

The complete code with separate files can be located at ht tps: //github.
com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO2/terraform separate files.

The protection of sensitive data

Care must be taken with sensitive data in the Terraform configuration, such as passwords
and access permissions. We have already learned that, for access authentication to Azure,
it is not necessary to leave them in the code. Additionally, in our example concerning

the administrator account of the virtual machine, note that the password of the admin
account of the virtual machine has been clearly specified in this Terraform configuration.
To remedy this, we can use a strong secret manager to store passwords, such as Azure Key
Vault or HashiCorp Vault, and get them via Terraform.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_separate_files
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_separate_files
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_separate_files

46 Provisioning Cloud Infrastructure with Terraform

Dynamizing the configuration with variables and interpolation
functions

When writing the Terraform configuration, it is important to take into account—from the
beginning—that the infrastructure that will host an application is very often the same for
all stages. However, only some information will vary from one stage to another, such as
the name of the resources and the number of instances.

To give more flexibility to the code, we must use variables in the code with the
following steps:

1.

Declare the variables by adding the following sample code in the global Terraform
code. Alternatively, we can add it within another file (such as variables. t£) for
better readability of the code:

variable "resource group name"
description ="Name of the resource group"
variable "location" {
description ="Location of the resource"
default ="West Europe"
variable "application name" ({

description ="Name of the application"

}

Instantiate their values in another . tfvars file, named terraform.tfvars,
with the variable name=value syntax, similar to the following:

resource group name ="bookRg"

application name ="book"

Use these variables in code with var.<name of the variables;for example,
in the resource group Terraform code, we can write the following:

resource "azurerm resource group" "rg" {
name = var.resoure_ group_ name
location = var.location
tags {
environment = "Terraform Azure"

Running Terraform for deployment 47

}

In addition to this, Terraform has a large list of built-in functions that can be used to
manipulate data or variables. To learn more about these functions, please refer to the
official documentation at https://www.terraform.io/docs/configuration/
functions.html.

Of course, there are many other good practices, but these are to be applied from the first
lines of code to ensure that your code is well maintained.

Important Note

The complete and final code of this example is available at ht tps: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO2/terraform vars interp.

We have written a Terraform configuration, using best practices, which allows us to create
a simple cloud infrastructure in Azure that provides a network and a virtual machine.
Now, let's take a look at how to run Terraform with our code in order to provision this
infrastructure.

Running Terraform for deployment

With the Terraform configuration written, we now need to run Terraform to deploy
our infrastructure.

However, before any execution, first, it is necessary to provide authentication with the
Azure SP to ensure that Terraform can manage the Azure resources.

To do this, we can either set the environment variables specific to Terraform to contain the
information of the SP created earlier in the Configuring Terraform for Azure section, or we
can use the az cli script.

The following script exports the four Terraform environment variables in the Linux OS:

export ARM SUBSCRIPTION ID=XXXXX-XXXXX-XXXX-XXXX
export ARM CLIENT ID=XXXXX-XXXXX-XXXX-XXXX
export ARM CLIENT SECRET=XXXXXXXXXXXXXXXXXX

export ARM TENANT TID=XXXXX-XXXXX-XXXX-XXXX

https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_vars_interp
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_vars_interp
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02/terraform_vars_interp

48 Provisioning Cloud Infrastructure with Terraform

Additionally, we can use the az c11i script with the login command:
az login

Once authenticated, we can run the Terraform workflow.

In our scenario, we begin with an empty Azure subscription without any Azure
resource groups; however, in the real world, our subscription might already contain
a resource group.

Before running Terraform, in the Azure portal, check that you do not have a resource
group in your subscription, as follows:

Dashboard > DEMO - Resource groups

.0 DEMO - Resource groups

Subscription
| o |59-:-"c:'? (Ctri+/) | « + Add EE Edit columns O Refresh L
& Overview by name... All locations v Alltags v
M Access control (IAM) 0 items
NAME SUBSCRIPTION LOCATION

Diagnose and solve problems
O Security

Events

Cost Management
%@ Cost analysis
© Budgets

@ Advisor recommendations
No resource groups to display
Billing

Try changing your filters if you don't see what you're looking for. Leamn more [

| Invoices
Create resource group

Figure 2.9 — No resource group on Azure

No

To run Terraform, we need to open a command-line Terminal such as CMD, PowerShell,

or Bash and navigate to the directory where the Terraform configuration files we wrote

earlier are located.

The Terraform configuration is executed in several steps, including initialization, the
preview of changes, and the application of those changes.

Next, let's take a look, in detail, at the execution of these steps, starting with the
initialization step.

Running Terraform for deployment 49

Initialization

The initialization step allows Terraform to do the following:

o Initialize the Terraform context to check and make the connection between the
Terraform provider and remote service—in our case, this is with Azure.

« Download the plugin(s) of the provider(s)—in our case, it will be the azurerm
provider.

o Check the code variables.
To execute the initialization, run the init command:
terraform init

The following is a screenshot of terraform init:

root@ubuntu-bionic:/learningdevops/CHAPO2/terraform_separate_files#|terraform 1init

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "2.63.0"...

- Installing hashicorp/azurerm v2.63.0...

- Installed hashicorp/azurerm v2.63.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repositary
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

Figure 2.10 - Executing the terraform init command

50 Provisioning Cloud Infrastructure with Terraform

As we have gathered during its execution of the preceding command, Terraform does
the following:

« It downloads the latest version of the azurerm plugin.

o It creates a working . terraform directory.

The following is a screenshot of the . terraform directory:

[terraform]
o | compute.tf

o | networl.tf

o provider.tf
ol orgtf

Figure 2.11 - The Terraform configuration directory

Important Note

For more information about the init command line, please refer to
the documentation at https://www.terraform.io/docs/
commands/init.html.

Once the initialization step is complete, we can proceed to the next step, which is
previewing the changes.

Previewing the changes

The next step is to preview the changes made to the infrastructure before applying them.

To do this, run Terraform with the plan command. When executed, the plan
automatically uses the terraform. tfvars file to set the variables.

To execute it, launch the plan command:

terraform plan

https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html

Running Terraform for deployment 51

The following output shows the execution of the terraform plan command:

aform plan

shing raform state in- ior to plan...
» this plan, but will not be

Terraform will perform the following actions:

+ azurerm _network interface.nic

steway b
urity gr
) end

ip.pip.id}"
ubnet.id}"

¢ You didn't spec
antee that

Figure 2.12 - Executing the terraform plan command

During the execution of the plan command, the command displays the name and
properties of the resources that will be impacted by the change. It also displays the
number of new resources and the number of resources that will be modified, along with
the number of resources that will be deleted.

52 Provisioning Cloud Infrastructure with Terraform

Important Note

For more information about the plan command line, please refer to
the documentation at https://www. terraform.io/docs/
commands/plan.html.

Therefore, we have just seen a prediction of the changes that will be applied to our
infrastructure. Now, we will view how to apply them.

Applying the changes
After validating that the result of the plan command corresponds to our expectations,

the final step is the application of the Terraform code in real time to provision and apply
the changes to our infrastructure.

To do this, we will execute the apply command:
terraform apply

This command does the same operation as the plan command and interactively asks the
user for confirmation that we want to implement the changes.

The following is a screenshot of the terraform apply confirmation:

$ terraform apply

following symk

Terraform will perform the following actions:

+ azurerm network interface.nic

<computed=

Plan: 7 to add, 0 to change, @ to destroy.
Do you want to perform these actions?
Ter m will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: I

Figure 2.13 - Confirmation of the changes to be applied in Terraform

The confirmation is given by inputting yes (or no to cancel), then Terraform applies the
changes to the infrastructure.

https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html

Running Terraform for deployment 53

The following is a screenshot of the terraform apply execution:

DnLy 'yes' wilL-bE dLlPrlPd to approve.

Enter a value: yes

azurerm_resource_group.rg:

n
tags.environment: "" == "Terraform Azure"

azurerm_virtual_machine.wm: Still creating... (2m38s elapsed)
azurerm_virtual machine.vm: Creation complete after 2m32s (ID: /subscriptions/ldad2a

apply complete! Resources: 7 added, 0 changed, 0 destroyed.

Figure 2.14 - Executing the terraform apply command

The output of the apply command displays all actions executed by Terraform, along with
all changes and the impacted resources. It ends with a summary line that displays the sum
of all added, changed, or destroyed resources.

Important Note

For more information about the apply command line, please refer to
the documentation at https://www.terraform.io/docs/
commands/apply.html.

Since the Terraform apply command has been executed correctly, we can check in the
Azure portal whether the resources described in the Terraform code are present.

The following is a screenshot of the Azure resources by Terraform:

Y - | o nicoen oo

o Add EE Edit columns) Refresh

NAME
1ame book-ip
2 items B book-nic
NAME / &= book-osdisk
(8] bookRrg 3 bookstorpackt123
4 bookvm
Gy

¢+ book-vnet

Figure 2.15 — A list of provisioned Azure resources

https://www.terraform.io/docs/commands/apply.html
https://www.terraform.io/docs/commands/apply.html

54 Provisioning Cloud Infrastructure with Terraform

We can gather from the portal that the resources specified in the Terraform code have
been provisioned successfully.

So, we have just learned how Terraform is useful for provisioning infrastructure using
three main commands:

o The init command to initialize the context
o The plan command to preview the changes

o The apply command to apply the changes

In the next section, we will explore other Terraform commands and the Terraform
life cycle.

Understanding the Terraform life cycle with
different command-line options

We have just discovered that applying changes to a piece of infrastructure with Terraform
is mainly done using three commands. They include the init, plan, and apply
commands. However, Terraform has other very practical and important commands that
can be used to best manage the life cycle of our infrastructure, and the question of how
to execute Terraform in an automation context such as a CI/CD pipeline must also be
considered.

Among the other operations that can be done on a piece of infrastructure is the cleaning
up of resources by removing them. This is done to either better rebuild or remove
temporary infrastructure.

Using destroy to better rebuild

One of the steps in the life cycle of infrastructure that is maintained by IaC is the removal
of the infrastructure; do not forget that one of the objectives and benefits of IaC is to be
able to make rapid changes to infrastructure but also create environments on demand.
That is to say, we create and keep environments as long as we need them, and we will
destroy them when they are no longer used, thereby allowing the company to make
financial savings.

To accomplish this, it is necessary to automate the removal of the infrastructure in order
to be able to rebuild it quickly.

Understanding the Terraform life cycle with different command-line options 55

To destroy infrastructure that has previously provisioned with Terraform, execute the
following command:

terraform destroy

The execution of this command should give the following output:

ted and is shown below.
d with the following symbols:

Enter a value:

Figure 2.16 — Confirmation of the terraform destroy command

This command, as with apply, requires confirmation from the user before applying
the destruction:
fdb-b294-f7a607f589d5/ resour oups/bookRg, 2m40s elapsed)

7 destroyed.

te! Resources:

Figure 2.17 - Executing the terraform destroy command

Once validated, wait for the confirmation message that the infrastructure has been
destroyed.

The destroy command only destroys the resources configured in the current Terraform
configuration. Other resources (created manually or by another Terraform code) are not
affected. However, if our Terraform code provides a resource group, it will destroy all of
its content.

56 Provisioning Cloud Infrastructure with Terraform

Important Note

For more information about the dest roy command line, please refer
to the documentation at https://www.terraform.io/docs/
commands/destroy.html.

We have just discovered that Terraform also allows you to destroy resources on the
command line. Now, let's learn how to format and validate your Terraform code.

Formatting and validating the configuration

After learning how to destroy resources with Terraform, it is also important to emphasize
the importance of having well-formatted code that meets Terraform's style rules and to
validate that the code does not contain syntax or variable errors.

Formatting the code

Terraform has a command that allows the code to be properly aligned with Terraform's
styles and conventions.

The following command automatically formats the code:
terraform fmt

The following is a screenshot of a Terraform-arranged file:

/d/Repos/Learning-DevOps/CHAPO2/terraform_separate_files# terraform fmt

compute. tt
network. tf
provider. tf
rg. tf

Figure 2.18 - Executing the terraform fmt command

The command reformats the code and indicates the list of arranged files.

Important Note

For more information regarding the Terraform style guide, please refer
tohttps://www.terraform.io/docs/configuration/
style.html. Additionally, for information about the terraform fmt
command line, please refer to https: //www.terraform.io/docs/
commands/fmt .html.

https://www.terraform.io/docs/commands/destroy.html
https://www.terraform.io/docs/commands/destroy.html
https://www.terraform.io/docs/configuration/style.html
https://www.terraform.io/docs/configuration/style.html
https://www.terraform.io/docs/commands/fmt.html
https://www.terraform.io/docs/commands/fmt.html

Understanding the Terraform life cycle with different command-line options 57

Validating the code

Along the same lines, Terraform has a command that validates the code and allows us to
detect possible errors before executing the plan command or the apply command.

Let's consider the example of the following code extract:
resource "azurerm public ip" "pip" {

name = var.ip-name

location = var.location

resource_group_name = "${azurerm resource group.rg.name}"
allocation method = "Dynamic"
domain name label = "bookdevops"

}

In the name property, we use an ip-name variable that has not been declared or
instantiated with any value.

Executing the terraform plan command should return an error:

:/d/Repos/Learning-DevOps/CHAPO2/terraform_vars_interp# terraform plan

resource ‘'azurerm_public_ip.pip' config: unknown variable referenced: 'ip-name'; define it with a 'variable' block

Figure 2.19 - The terraform plan command with an error

And because of this error, in a CI/CD process, it could delay the deployment of the
infrastructure.

In order to detect errors in the Terraform code as early as possible in the development
cycle, execute the following command. This validates all Terraform files in the directory:

terraform validate

The following screenshot shows the execution of this command:

: /d/Repos/Learning-DevOps/CHAPB2/terraform_vars_interp# terraform validate

resource 'azurerm_public_ip.pip*' config: unknown variable referenced: 'ip-name'; define it with a 'variable' block

Figure 2.20 — Executing the terraform validate command

Here, we observe the same error as the one returned by the plan command.

We have just discovered Terraform's main command lines. Let's dive a little deeper with
the integration of Terraform into a CI/CD process.

58 Provisioning Cloud Infrastructure with Terraform

The Terraform life cycle within a CI/CD process

So far, we have seen and executed, on the local machine, the various Terraform commands
that allow us to initialize, preview, apply, and destroy infrastructure and to format and
validate Terraform code. When using Terraform locally, in a development context, the

execution life cycle is as follows:
O k
- a ltf

Code

Terraform

Validate

Figure 2.21 - The Terraform CICD process

The following steps explain the sequence in the preceding diagram:

Code development

Code formatting with terraform fmt
Initialization with terraform init

Code validation with terraform validate

Planning with terraform plan

AN L

Manual verification of Terraform changes on the infrastructure

However, IaC, similar to an application, must be deployed or executed in an automatic
CI/CD process. This begins with the archiving of the Terraform code of the team
members. Then, it triggers the CI and executes the Terraform commands that we have
studied in this chapter.

The following is a screenshot of the Terraform life cycle in CI/CD automation:

Understanding the Terraform life cycle with different command-line options 59

Cl Server

h
é ltf
SCM
O Push the tf code
—)
Pushihe f o= ‘ ...m -
O—

Terraform

Figure 2.22 - The Terraform CICD workflow
The steps of CI/CD by the CI server (in which Terraform has been installed) for Terraform
are as follows:
Retrieving the code from the SCM
Code formatting with terraform fmt
Initialization with terraform init

Code validation with terraform validate

AR

Displaying a preview of the infrastructure changes with terraform plan
-out=out.tfplan

6. Applying changes in automatic mode with terraform apply --auto-
approve out.tfplan

By adding the - -auto-approve option to the apply and destroy commands,
Terraform can also be executed in automatic mode. This is to avoid asking for
confirmation from the user to validate the changes that need to be applied. With this
automation, Terraform can be integrated with CI/CD tools.

In the plan command, an out option is added to specify a file with the . t fplan format
that corresponds to a file that contains the output of the plan command. This out .
tfplan file is then used by the apply command. The advantage of this procedure is that it
is possible to execute the application on a later plan, which can be used in a rollback case.

In this section, we have gathered that, aside from the usual Terraform commands of
init, plan, apply, and destroy, Terraform also has options that will allow us

to improve the readability of the code and validate the code syntax. Additionally, we
explained that Terraform allows a perfect integration into a CI/CD pipeline with a life
cycle and automation options.

In the next section, we will examine what the tfstate file is and how to protect it with
a remote backend.

60 Provisioning Cloud Infrastructure with Terraform

Protecting the state file with a remote
backend

When Terraform handles resources, it writes the state of these resources in a Terraform
state file. This file is in JSON format and preserves the resources and their properties
throughout the execution of Terraform.

By default, this file, called terraform. tfstate, is created locally when the first
execution of the apply command is executed. Then, it will be used by Terraform each time
the plan command is executed in order to compare its state (written in the state file) with
that of the target infrastructure. Finally, it will return a preview of what will be applied.

When using Terraform in an enterprise, this locally stored state file poses many problems:

« Knowing that this file contains the status of the infrastructure, it should not be
deleted. If deleted, Terraform might not behave as expected when it is executed.

« It must be accessible at the same time by all members of the team who are handling
resources on the same infrastructure.

o 'This file can contain sensitive data, so it must be secure.

o When provisioning multiple environments, it is necessary to be able to use multiple
state files.

With all of these points, it is not possible to keep this state file locally or even to archive it
in an SCM.

To solve this problem, Terraform allows this state file to be stored in a shared and secure
storage called the remote backend.

Important Note

Terraform supports several types of remote backends; the full list is available
athttps://www.terraform.io/docs/backends/types/
remote.html.

In our case, we will use an azurerm remote backend to store our state files with a storage
account and a blob for the state file.

Therefore, we will implement and use a remote backend in three steps:
1. The creation of the storage account

2. The Terraform configuration for the remote backend

3. The execution of Terraform with the use of this remote backend

https://www.terraform.io/docs/backends/types/remote.html
https://www.terraform.io/docs/backends/types/remote.html

Protecting the state file with a remote backend 61

Let's take a look, in detail, at the execution of these steps:

1.

To create an Azure storage account and a blob container, we can use either the
Azure portal (https://docs.microsoft.com/en-gb/azure/storage/
common/storage-quickstart-create-account?tabs=azure-portal)
oranaz cli script:

1-Create resource group

az group create --name MyRgRemoteBackend --location
westeurope

2-Create storage account

az storage account create --resource-group
MyRgRemoteBackend --name storageremotetf --sku Standard
LRS --encryption-services blob

3-Get storage account key

ACCOUNT KEY=$ (az storage account keys list --resource-
group MyRgRemoteBackend --account-name storageremotetf
--query [0] .value -o tsv)

4-Create blob container

az storage container create --name tfbackends --account-
name storageremotetf --account-key S$SACCOUNT KEY

This script creates a MyRgRemoteBackend resource group and a storage account,
called storageremotett.

Then, the script retrieves the key account from the storage account and creates a
blob container, t fbackends, inside this storage account.

This script can be run in Azure Cloud Shell, and the advantage of using a script rather
than using the Azure portal is that this script can be integrated into a CI/CD process.

Then, to configure Terraform to use the previously created remote backend, we need
to add the configuration section within the Terraform. t £ file:

terraform {
backend "azurerm" ({

storage account name "storageremotetfdemo"

container name = "tfbackends"

key "myappli.tfstate"

snapshot = true

}

https://docs.microsoft.com/en-gb/azure/storage/common/storage-quickstart-create-account?tabs=azure-portal
https://docs.microsoft.com/en-gb/azure/storage/common/storage-quickstart-create-account?tabs=azure-portal

62 Provisioning Cloud Infrastructure with Terraform

*

¥ e

The storage_account_name property contains the name of the storage
account, the container name property contains the container name, the key
property contains the name of the blob state object, and the snapshot property
enables a snapshot of this blog object at each edition by Terraform execution.

However, there is still one more piece of configuration information to be

provided to Terraform so that it can connect and have permissions on the storage

account. This information is the access key, which is a private authentication and
authorization key on the storage account. To provide the storage key to Terraform,
as with the Azure SP information, set an ARM_STORAGE_KEY environment
variable with the storage account access key value.

The following is a screenshot of the Azure storage access key:

storageremotetf - Access keys

Storage acc:

) Search (Ctrl+/)

Overview

Activity log

Access control (|AM)

Tags

Diagnose and solve problems

Storage Explorer (preview)

Settings

Access keys

«

Use access keys to authenticate your applications when making requests to this Azure storage account.
keys regularly. You are provided two access keys so that you can maintain connections using one key whil

When you regenerate your access keys, you must update any Azure resources and applications that

Storage account name

| storageremotetf

key1 Q

Key
| Dn5040v015az9NL2 FXNLUjSVimuDe) R i, - — a—

Connection string

| DefaultEndpointsProtocol =https;AccountName=storageremotetf:Accoun J

Figure 2.23 - The Azure storage access key

Important Note

Terraform supports other types of authentications on the storage account
such as the use of a SAS token or by using an SP. For more information on
how to configure Terraform for an azurerm remote backend, please refer
to the documentation at https://www.terraform.io/docs/
backends/types/azurerm.html.

https://www.terraform.io/docs/backends/types/azurerm.html
https://www.terraform.io/docs/backends/types/azurerm.html

Protecting the state file with a remote backend 63

3. Finally, once the Terraform configuration is complete, Terraform can be run with
this new remote backend. It is during init that Terraform initializes the context
of the state file. By default, the init command remains unchanged with
terraform init.

However, if multiple Terraform states are used to manage multiple environments,
it's possible to create several remote backend configurations with the simplified code
in the . t £ file:

terraform {

backend "azurerm" {}

}

Then, create several backend. tfvars files that only contain the properties of the
backends.

These backend properties are the storage account name, the name of the blob container,
and the blob name of the state file:

storage account name = "storageremotetf"
container name = "tfbackends"

key = "myappli.tfstate"
snapshot = true

In this scenario, when executing the init command, we can specify the backend.
tfvars file to use with the following command:

terraform init -backend-config="backend.tfvars"

The -backend-config argument is the path to the backend configuration file.

Personally, I prefer this way of doing things as it allows me to decouple the code by
externalizing the values of the backend properties for better readability of the code.

64 Provisioning Cloud Infrastructure with Terraform

So, here is the execution of Terraform:

nd. tfvars"”

automatically

ers do not ve any version constraints in
ion was installed.

il

running *
nfrastructure

niti z
t and remind

Figure 2.24 - The terraform init command with backend configuration

In this execution, we can view the export of the ARM ACCESS KEY environment variable,
along with the Terraform init command that determines the backend configuration
with the -backend-config option.

With this remote backend, the state file will no longer be stored locally but on a storage
account, which is a shared space. Therefore, it can be used at the same time by several
users. At the same time, this storage account offers security to protect the sensitive data of
the state file and the possibility of any backups or restorations of the state files, which are
both essential and critical elements of Terraform, too.

Note

The entire source code of this chapter is available at ht tps: //github.
com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO02, and the final Terraform code is located
inside the terraform vars interp folder

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP02

Summary 65

Ssummary

In this chapter dedicated to Terraform, we learned that its installation can be done either
manually or using scripts.

To apply Terraform, we detailed the different steps of its configuration to provision an
Azure infrastructure using an Azure SP.

Additionally, we explained, step by step, its local execution with its main command
lines, which are init, plan, apply, and destroy, along with its life cycle in a CI/CD
process. Finally, we ended this chapter by looking at the protection of the state file in an
Azure remote backend.

Therefore, Terraform is a tool that is in line with the principles of IaC. The Terraform code
is readable and understandable to users, and its execution integrates very well into a CI/
CD pipeline that allows you to automatically provision a cloud infrastructure.

Throughout this book, we will continue to discuss Terraform, with additions about its use
with Packer, Azure Kubernetes Services, and downtime reduction.

In the next chapter, we will explore the next step of the IaC, which is configuration
management by using Ansible. We will cover its installation, its usage for configuring our
provisioned virtual machine, and how to protect secrets with Ansible Vault.

Questions
What is the language used by Terraform?

What is Terraform's role?
Is Terraform a scripting tool?

Which command allows you to display the installed version?

M e

When using Terraform for Azure, what is the name of the Azure object that
connects Terraform to Azure?

o

What are the three main commands of the Terraform workflow?
Which Terraform command allows you to destroy resources?

8. What is the option added to the apply command to automate the application of
infrastructure changes?

9. What is the purpose of the Terraform state file?

10. Is it a good practice to leave the Terraform state file locally? If not, what should
be done?

66 Provisioning Cloud Infrastructure with Terraform

Further reading

If you want to know more about Terraform, here are some resources:

o The official Terraform documentation: https://www.terraform.io/

o Terraform download and installation information: https://www.terraform.
io/downloads.html

o Terraform Azure provider: https://www.terraform.io/docs/
providers/azurerm/index.html

o The official Azure documentation for Terraform: https://docs.microsoft.
com/en-us/azure/terraform/terraform-overview

o Book: Terraform Cookbook: https://www.packtpub.com/product/
terraform-cookbook,/9781800207554

o Getting Started with Terraform, Second Edition: https://www.packtpub.com/
networking-and-servers/getting-started-terraform-second-
edition

 Online learning for Terraform: https://learn.hashicorp.com/
terraform

https://www.terraform.io/
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/docs/providers/azurerm/index.html
https://www.terraform.io/docs/providers/azurerm/index.html
https://docs.microsoft.com/en-us/azure/terraform/terraform-overview
https://docs.microsoft.com/en-us/azure/terraform/terraform-overview
https://www.packtpub.com/product/terraform-cookbook/9781800207554
https://www.packtpub.com/product/terraform-cookbook/9781800207554
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://learn.hashicorp.com/terraform
https://learn.hashicorp.com/terraform

3

Using Ansible for
Configuring laaS
Infrastructure

In the previous chapter, we talked about provisioning an Azure cloud infrastructure
with Terraform. If this infrastructure contains virtual machines (VMs), once they've
been provisioned, it is necessary to configure their systems and install all the necessary
middleware. This configuration will be necessary for the proper functionality of the
applications that will be hosted on the VM.

There are several Infrastructure as Code (IaC) tools available for configuring VMs
and the most well-known are Ansible, Puppet, Chef, SaltStack, and PowerShell DSC.
Among them, Ansible from Red Hat (https://www.ansible.com/overview/
it-automation) stands out for its many assets, as follows:

o Itis declarative and uses the easy-to-read YAML language.
« Ansible only works with one executable.

« It does not require agents to be installed on the VMs to be configured.

https://www.ansible.com/overview/it-automation
https://www.ansible.com/overview/it-automation

68 Using Ansible for Configuring Iaa$ Infrastructure

o A simple SSL/WinRM connection is required for Ansible to connect to remote VMs.
« It has a template engine and a vault to encrypt/decrypt sensitive data.

o Itis idempotent.
The main uses cases of Ansible are as follows:

« Configuring a VM with middleware and hardening, which we will learn about in
this chapter

o Infrastructure provisioning, such as Terraform, but using YAML configuration

 Security compliance to test that the system or network configuration conforms to
the enterprise requirements

In this chapter, we will learn how to install Ansible, and then use it to configure a VM with
an inventory and a playbook. We will also learn how to protect sensitive data with Ansible
Vault before discussing how to use a dynamic inventory in Azure.

The following topics will be covered in this chapter:

« Installing Ansible

 Creating an Ansible inventory

« Executing the first playbook

« Executing Ansible

« Protecting data with Ansible Vault

 Using a dynamic inventory for an Azure infrastructure

Technical requirements

To follow along with the chapter, you must meet the following technical requirements:

« To install Ansible, we need an OS such as Red Hat, Debian, CentOS, macOS, or any
of the BSDs. For those who have Windows, you can install the Windows Subsystem
for Linux (WSL); refer to the documentation at https://docs.microsoft.
com/en-us/windows/wsl/install-winlo0.

« Python 2 (version 2.7) or Python 3 (version 3.5+) must be installed on the machine
that runs Ansible. You can download it here: https: //www.python.org/
downloads/. For more information about the Ansible requirements, refer to the
documentation here: https://docs.ansible.com/ansible/latest/
installation guide/intro_installation.html#control-node-
requirements.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements

Installing Ansible 69

« An Ansible playbook uses YAML configuration files, so any code editor would
work; however, we will be using Visual Studio Code as it is very suitable. You can
download it here: https://code.visualstudio.com/.

o Most of this chapter will not focus on a particular cloud provider, except for the last
section on Azure. We will need an Azure subscription for this, which we can get for
free from here: https://azure.microsoft.com/en-us/free/.

« To run the Ansible dynamic inventory for Azure, we need to install the Azure
Python SDK: https://docs.microsoft.com/en-us/azure/python/
python-sdk-azure-install?view=azure-python.

o The complete source code for this chapter is available here: https://github.
com/PacktPublishing/Learning-DevOps-Second-Edition/tree/
main/CHAPO3.

Check out the following video to see the Code in Action:

https://bit.ly/3HdwbVec.

Installing Ansible

Before we start using Ansible, we must know which OS we can use it on and how to
install and configure it. Then, we must learn about some of the concepts surrounding the
artifacts that it needs to operate.

In this section, we will look at how to install Ansible on a local or server machine and how
to integrate Ansible in Azure Cloud Shell. Then, we will talk about the different elements
or artifacts that make up Ansible. Finally, we will configure Ansible.

To get started, we will learn how to download and install Ansible with an automatic script.

Installing Ansible with a script

Unlike Terraform, Ansible is not multiplatform and can only be installed on Red Hat,
Debian, CentOS, macOS, or any of the BSDs. You install it using a script that differs
according to your OS.

For example, to install the latest version on Ubuntu, we must run the following script in
a Bash Terminal:

sudo apt-get update
sudo apt-get install software-properties-common
sudo apt-add-repository --yes --update ppa:ansible/ansible

sudo apt-get install ansible

https://code.visualstudio.com/
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/azure/python/python-sdk-azure-install?view=azure-python
https://docs.microsoft.com/en-us/azure/python/python-sdk-azure-install?view=azure-python
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03
https://bit.ly/3HdwbVc

70 Using Ansible for Configuring Iaa$ Infrastructure

Important Note

This script is also available here: https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAPO3/install ansible ubuntu.sh.

This script updates the necessary packages, installs the software-properties-
common dependency, adds the Ansible repository, and installs the latest version of Ansible.

Important Note

The Ansible installation scripts for all distribution types are available
here: https://docs.ansible.com/ansible/latest/
installation guide/intro_installation.
html#installing-ansible-on-specific-operating-
systems.

To install Ansible locally on a Windows OS machine, there is no native solution, but it can
be installed on a local VirtualBox VM or WSL. WSL allows developers who are on

a Windows OS to test their scripts and applications directly on their workstations, without
having to install a VM.

Important Note

Read this article to learn how to install Ansible on a local VirtualBox
environment: https://phoenixnap.com/kb/install-
ansible-on-windows. For more details about WSL, read the
documentation here: https://docs.microsoft.com/en-us/
windows/wsl/about.

To test whether it has been successfully installed, we can run the following command to
check its installed version:

ansible --version

The result of executing this command provides some information on the installed version
of Ansible, like this:

mikael@vmAnsible:~$ ansible --version
ansible 2.8.3
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/home/mikael/.ansible/plugins/modules', u'/usr/share/ansible/plugins/modules’]

ansible python module location = /usr/lib/python2.7/dist-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.15+ (default, Oct 7 2019, 17:39:04) [GCC 7.4.0]

Figure 3.1 - The ansible --version command

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP03/install_ansible_ubuntu.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP03/install_ansible_ubuntu.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP03/install_ansible_ubuntu.sh
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-specific-operating-systems
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-specific-operating-systems
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-specific-operating-systems
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-specific-operating-systems
https://phoenixnap.com/kb/install-ansible-on-windows
https://phoenixnap.com/kb/install-ansible-on-windows
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

Installing Ansible 71

To display a list of all Ansible commands and options, execute the ansible command
with the - -help argument:

ansible --help

The following screenshot shows the execution of this command:

ansible ——help
pattern> [options]

~% a
Usage: ansible <host-

Define and run a single task ‘playbook’

Dptions:
-a MODULE_ARGS, --args=MODULE_ARGS
module arguments
F rault password

ronously, failing after X seconds
{defaul
don't make 2 changes; i ad, try to predict so
of the F
) files and templates, show th
ose files; works great with --check

variables as key=value or YAML/JSON, if

Figure 3.2 - The ansible --help command

As we can see, installing Ansible on a local or remote machine is quite simple and can be
automated by a script. If we deploy infrastructure in Azure, we can also use Ansible as it is
integrated into Azure Cloud Shell.

Now, let's look at how Ansible is integrated into Azure Cloud Shell.

Integrating Ansible into Azure Cloud Shell

As we learned in Chapter 2, Provisioning Cloud Infrastructure with Terraform, Azure
Cloud Shell integrates third-party tools that can be used in Azure without having to
install them on a VM. Among these tools is Terraform, which we saw in detail in the
previous chapter, but there is also Ansible, which Microsoft has integrated to allow us to
automatically configure the VMs that are hosted in Azure.

To use Ansible in Azure cloud, we must do the following:
1. Connect to the Azure portal at https://portal.azure.com.
2. Open Cloud Shell.
3. Choose Bash mode.
4

In the Terminal that opens, we now have access to all Ansible commands.

https://portal.azure.com

72 Using Ansible for Configuring Iaa$ Infrastructure

The following screenshot shows the ansible command in Azure Cloud Shell:

Requesting a Cloud Shell.Succeeded.
Connecting terminal. ..

Welcome to Azure Cloud Shell

Type "az" to use Azure CLI
Type "help" to learn about Cloud Shell

{@Azure:~% ansible --help
Usage: ansible <host-pattern> [options]

Define and run a single task "playbook' against a set of hosts

Options:
-a MODULE_ARGS, --args=MODULE_ARGS
module arguments
--ask-vault-pass ask for vault password

Figure 3.3 — Ansible in Azure Cloud Shell

This way, it will be possible to use Ansible for development and testing without installing
any software.

Also, Ansible has modules that allow us to provision an Azure infrastructure (such as
Terraform, but this aspect of Ansible will not be covered in this book), so its integration
into Azure Cloud Shell allows for simplified authentication.

Important Note

Detailed documentation on integrating Ansible into Azure Cloud Shell is
available here: https://docs.microsoft.com/en-us/azure/
ansible/ansible-run-playbook-in-cloudshell.

Before we start using Ansible, we will review the important concepts (or artifacts) of
Ansible that will serve us throughout this chapter.

https://docs.microsoft.com/en-us/azure/ansible/ansible-run-playbook-in-cloudshell
https://docs.microsoft.com/en-us/azure/ansible/ansible-run-playbook-in-cloudshell

Installing Ansible 73

Ansible artifacts
To configure a system, Ansible needs several main artifacts:
+ The hosts: These are target systems that Ansible will configure; the host can also be
a local system.

+ The inventory: This is a file in INI or YAML format that contains the list of target
hosts that Ansible will perform configuration actions on. This inventory can also be
a script, which is the case with a dynamic inventory.

Important Note

We will look at how to implement an Ansible inventory in the Creating an
Ansible inventory section, while we will look at how to implement a dynamic
inventory in the Using a dynamic inventory for Azure infrastructure section.

« The playbook: This is the Ansible configuration script that will be executed to
configure hosts.

Important Note

We will learn how to write playbooks in the Executing the first playbook section,
later in this chapter.

After learning how to install Ansible, we looked at the essential elements of Ansible, which
are hosts, inventory, and playbooks. Now, let's learn how to configure Ansible.

Configuring Ansible

By default, the Ansible configuration is in the /etc/ansible/ansible.cfgfile,
which is created while Ansible is being installed. This file contains several configuration
keys, such as an SSL connection, a user, a protocol, transport, and many others.

As we mentioned previously, this file is created by default while Ansible is being installed.
To help the user get started, initial content is placed in it. This content contains a
multitude of configuration keys that are commented out so that they are not applied by
Ansible but can be activated at any time by the user.

74 Using Ansible for Configuring Iaa$ Infrastructure

Note

If we use Ansible inside Azure Cloud Shell, we need to create this file
(ansible. cfg) manually inside our Azure cloud drive and set the
ANSIBLE CONFIG environment variable with the path to the created

file. The documentation for this environment variable is available here:
https://docs.ansible.com/ansible/latest/reference
appendices/config.html#envvar-ANSIBLE CONFIG.

The following screenshot shows an extract from this /etc/ansible/ansible.cfg
configuration file with some keys in the comments, as shown by the # symbol:

config file for ansible -- https://ansible.com/

nearly all parameters can be overridden in ansible-playbook
or with command line flags. ansible will read ANSIBLE_CONFIG,
ansible.cfg in the current working directory, .ansible.cfg in
the home directory or /etc/ansible/ansible.cfg, whichever it
finds first

[defaults]
some basic default values...

#inventory /etc/ansible/hosts

#library = /usr/share/my_modules/
#module_utils /usr/share/my_module_utils/
#remote_tmp ~/ .ansible/tmp

#local_tmp ~/.ansible/tmp
#plugin_filters_cfg = /etc/ansible/plugin_filters.yml
#forks 5

#poll_interval 15

#sudo_user root

#ask_sudo_pass True

#ask_pass True

#transport smart

#remote_port 22

#module_lang C

#module_set_locale = False

Figure 3.4 - Ansible configuration file

If we want to change the default Ansible configuration, we can modify this file.

https://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_CONFIG
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_CONFIG

Installing Ansible 75

Important Note

For more details about all Ansible configuration keys, see the official
documentation: https://docs.ansible.com/ansible/
latest/reference appendices/config.html#ansible-
configuration-settings.

We can also view and modify this configuration using the ansible-config command.
For example, to display the Ansible configuration file, we can execute the following
command:

ansible-config view

The following screenshot shows the execution of this command:

nearly all param
or with mand 1in

[defaults]
some basic default wvalues...

#lnventory
#library

#module_lang
#module set loc

Figure 3.5 - Ansible view configuration with the CLI

In this section, we learned how to install Ansible and explored some of Ansible's artifacts.
Finally, we looked at different ways to configure Ansible.

https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings

76 Using Ansible for Configuring Iaa$ Infrastructure

In the next section, we will detail a static Ansible inventory and how to create it to
target hosts.

Creating an Ansible inventory

The inventory contains the list of hosts that Ansible will perform administration and
configuration actions on.

There are two types of inventories:

o Static inventory: Hosts are listed in a text file in INI (or YAML) format; this is the
basic mode of Ansible inventory. The static inventory is used in cases where we
know the host addresses (IP or FQDN).

« Dynamic inventory: The list of hosts is dynamically generated by an external
script (for example, with a Python script). The dynamic inventory is used if we do
not have the addresses of the hosts, for example, as with an infrastructure that is
composed of on-demand environments.

In this section, we will learn how to create a static inventory in init format, starting with
a basic example, and then we will look at the groups and host configuration.

Let's start by learning how to create a static inventory file.

The inventory file

For Ansible to configure hosts when running the playbook, it needs to have a file that
contains the list of hosts; that is, the list of IP or Fully Qualified Domain Name (FQDN)
addresses of the target machines. This list of hosts is noted in a static file called the
inventory file.

By default, Ansible contains an inventory file that's created while it's being installed; this
fileis /etc/ansible/hosts and it contains several inventory configurations examples.
In our case, we will manually create and fill this file in a directory of our choice, such as
devopsansible.

Let's do this step by step:
1. First, we must create the directory with the following basic command:

mkdir devopsansible
cd devopsansible

Creating an Ansible inventory 77

2. Now, let's create a file named myinventory (without an extension) where we
will write the IP addresses or the FQDN of the targets hosts, as shown in the
following example:

192.10.14.10
mywebserver.entreprise.com
localhost

When Ansible is executed based on this inventory, it will execute all of the requested
actions (playbook) on all the hosts mentioned in this inventory.

Important Note

For more information about the inventory file, read the documentation at
https://docs.ansible.com/ansible/latest/user
guide/intro_inventory.html.

However, when you're using Ansible in an enterprise, the same Ansible code (or
playbook) contains the configuration actions that are performed for all of the VMs of
an application. Since these VMs have different roles within the application, such as an
application that consists of one (or more) web server and one database server, we must
divide our inventory to separate the VMs by functional roles.

To group VMs by role in the inventory, we will organize our VMs into groups that will be
noted between [], which gives us the following inventory:

[webserver]
192.10.20.31
mywebserver.exemple.com
[databasel
192.20.34.20

In this example, we have defined two groups, webserver and database. All the hosts
are distributed into these groups.

As another example, we can also group the hosts by environments with this
sample inventory:

[dev]
192.10.20.31
192.10.20.32

[gal

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

78 Using Ansible for Configuring Iaa$ Infrastructure

192.20.34.20
192.20.34.21
[prodl]

192.10.12.10
192.10.12.11

Later in this chapter, we will learn how these groups will be used in playbook writing.

Now, let's learn how to complete our inventory by configuring hosts.

Configuring hosts in the inventory

As we have seen, the entire Ansible configuration is in the ansible. cfg file. However,
this configuration is generic and applies to all Ansible executions, as well as connectivity
to hosts.

However, when using Ansible to configure VMs from different environments or roles
with different permissions, it is important to have different connectivity configurations,
such as different admin users and SSL keys per environment. For this reason, it is possible
to override the default Ansible configuration in the inventory file by configuring specific
parameters per host, as defined in this inventory.

The main configuration parameters that can be overridden are as follows:

o ansible user: This is the user who connects to the remote host.
« ansible port: Itis possible to change the default value of the SSH port.
o ansible host: This is an alias for the host.

o ansible connection: This is the type of connection to the remote host and can
be Paramiko, SSH, or local.

« ansible private key file: This is the private key that's used to connect to
the remote host.

Important Note

The complete list of parameters is available in the following documentation:
https://docs.ansible.com/ansible/latest/user
guide/intro_inventory.html#list-of-behavioral-
inventory-parameters.

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#list-of-behavioral-inventory-parameters
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#list-of-behavioral-inventory-parameters
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#list-of-behavioral-inventory-parameters

Creating an Ansible inventory 79

Here is an example of an inventory where we have configured the connection of the hosts:

[webserver]

webserverl ansible host=192.10.20.31 ansible port=2222
webserver2 ansible host=192.10.20.31 ansible port=2222
[database]

databasel ansible host=192.20.34.20

ansible user=databaseuser

database2 ansible host=192.20.34.21

ansible user=databaseuser

[dev]

webserverl

databasel

[ga]

webserver2

database2

The following can be seen in this inventory example:

o+ The connection information has been specified beside each host.

+ The alias implementation (such as webserverl and webserver2) is used in
another group (such as the ga group in this example).

Having implementing an Ansible inventory, we will now learn how to test this inventory.

Testing the inventory

Once the inventory has been written, it is possible to test whether all of the hosts
mentioned can be accessed from Ansible. To do this, we can execute the following
command:

ansible -i inventory all -u demobook -m ping

The -1 argument is the path of the inventory file, the -u argument corresponds to the
remote username that's used to connect to the remote machine, and -m is the command
to execute. Here, we execute the ping command on all the machines in the inventory.

80 Using Ansible for Configuring Iaa$ Infrastructure

The following screenshot shows the execution of this command:

/devopsansible# ansible -i inventory all -u dem ok -m ping
webse
han
“ping’

databasel

Figure 3.6 - Testing the ansible ping command with the all option

We can also test connectivity on the hosts of a particular group by calling this command
with the group name instead of al1l. For example, in our case, we will execute
this command:

ansible -i inventory webserver -u demobook -m ping

The following screenshot shows the execution of this command:

/devopsansible# ansible -i inventory webserver -u demobook -m ping

Figure 3.7 - Testing the ansible ping command for a specific host

In this section, we learned that Ansible needs an inventory file to configure hosts. Then,
we created and tested our first inventory file before learning how to configure this file
even further.

In the next section, we will learn how to set up and write the configuration action code in
Ansible playbooks.

Executing the first playbook

One of the essential elements of Ansible is its playbooks because, as stipulated in the
introduction, they contain the code of the actions or tasks that need to be performed to
configure or administer a VM.

Executing the first playbook

81

Indeed, once the VM has been provisioned, it must be configured, and all of the
middleware needed to run the applications that will be hosted on this VM must
be installed. Also, it is necessary to perform administrative tasks concerning the
configuration of directories and their access.

In this section, we will see what a playbook is made up of, its modules, and how to
improve our playbook with roles.

Now, let's start studying how to write a basic playbook.

Writing a basic playbook

The code of a playbook is written in YAML, a declarative language that allows us to easily

visualize the configuration steps.

To understand what a playbook looks like, let's look at a simple and classic example;

that is, installing an NGINX server on an Ubuntu VM. Previously, we created a working

devopsansible directory, inside which we will create a playbook . yml file and insert

the following content code:

- hosts: all
tasks:
- name: install and check nginx latest version
apt: name=nginx state=latest
- name: start nginx
service:
name: nginx

state: started

Let's take a look at this in detail:

o First of all, the YAML file starts and ends with the optional - - - characters.

+ The - hosts property contains the list of hosts to configure. Here, we have written

the value of this property as all to install NGINX on all of the VMs listed in our
inventory. If we want to install it on only a particular group, for example, on the
webserver group, we will note this as follows:

- hosts: webserver

82 Using Ansible for Configuring Iaa$ Infrastructure

« Then, we indicate the list of tasks or actions to be performed on these VMs, with the
property of the list of tasks.

o Under the tasks element, we describe the list of tasks and, for each of them,
a name that serves as a label, in the name property. Under the name, we call the
function to be executed using the Ansible modules and their properties. In our
example, we have used two modules:

» apt: This allows us to retrieve a package (the apt -get command) to get the
latest version of the nginx package.

» service: This allows us to start or stop a service — in this example, to start the
NGINX service.

What we can see is that we do not require any knowledge of development or IT scripting
to use Ansible; the important thing is to know the list of actions you can perform on
VMs to configure them. The Ansible playbook is, therefore, a sequence of actions that are
encoded in Ansible modules.

We have just seen that the tasks that are used in playbooks use modules. In the next
section, we will provide a brief overview of modules and their use.

Understanding Ansible modules

In the previous section, we learned that, in Ansible playbooks, we use modules. This has
made Ansible so popular today that there is a huge list of public modules provided by
Ansible natively (+200). The complete list is available here: https://docs.ansible.
com/ansible/latest/collections/index_module.html.

These modules allow us to perform all of the tasks and operations to be performed on
a VM for its configuration and administration, without having to write any lines of code
or scripts.

Within an enterprise, we can also create our custom modules and publish them in

a private registry internally. More information can be found here: https://docs.
ansible.com/ansible/latest/dev _guide/developing modules
general .html.

Now that we've learned how to write a simple playbook and how to use modules, we will
improve the playbook even further with roles.

https://docs.ansible.com/ansible/latest/collections/index_module.html
https://docs.ansible.com/ansible/latest/collections/index_module.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html

Executing the first playbook 83

Improving your playbooks with roles

Within an enterprise, when configuring a VM, we notice a certain repetition of tasks for
each application. For example, several applications require the identical installation of
NGINX, which must be performed in the same way.

With Ansible, this repetition will require duplicating the playbook code, as seen in our
playbook example in the Executing a basic playbook section, between several playbooks
(because each application contains a playbook). To avoid this duplication and, hence,
save time, avoid errors, and homogenize installation and configuration actions, we can
encapsulate the playbook code in a directory called role that can be used by

several playbooks.

To create the nginx role corresponding to our example, we will create the following
directory and file tree within our devopsansible directory:

devopsansible

E inventory
Playbook.yml

roles

ngnix

Figure 3.8 — The Ansible architecture folder

Then, in the main. yml file, which is located in tasks, we will copy and paste the
following code from our playbook in the file that is created:

- name: install and check nginx latest version
apt: name=nginx state=latest
- name: start nginx
service:
name: nginx

state: started

84 Using Ansible for Configuring Iaa$ Infrastructure

Then, we will modify our playbook to use this role with the following content:

- hosts: webserver
roles:

- nginx

Following the node roles, we will provide a list of roles (the names of the role
directories) to be used. So, this nginx role is now centralized and can be used in several
playbooks without having to rewrite its code.

The following is the code of a playbook that configures a VM web server with Apache and
another VM that contains a MySQL database:

- hosts: webserver
roles:
- php
- apache
- hosts: database
roles:

- mysqgl

Important Note

For more information on role creation, read the official documentation at
https://docs.ansible.com/ansible/latest/user
guide/playbooks reuse roles.html.

However, before we start creating a role, we can use Ansible Galaxy (https://galaxy.
ansible.com/), which contains a large number of roles provided by the community
and covers a high number of configuration and administration needs.

Within an enterprise, we can also create custom roles and publish them in a private galaxy
within the company. More information can be found here: https://docs.ansible.
com/ansible/latest/dev_guide/developing modules general.html.

In this section, we learned how to write a playbook, as well as how to improve one with
roles. All of our artifacts are finally ready, so we will now be able to execute Ansible.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html

Executing Ansible 85

Executing Ansible

So far, we've learned how to install Ansible, listed the hosts in the inventory, and set up
our Ansible playbook. Now, we can run Ansible to configure our VMs.

For this, we will run the Ansible tool with the ansible-playbook command, like this:
ansible-playbook -i inventory playbook.yml
The basic options for this command are as follows:

o The -1 argument with the inventory file path
 The path of the playbook file

The following is the execution of this command:

/devopsansible# ansible-playbook -i inventory playbook.yml --check

TASK [ngnix :
changed: "

Figure 3.9 — Executing the Ansible playbook
The execution of this command applies the playbook to the hosts in the inventory in
several steps:
1. Gathering facts: Ansible checks that the hosts can be reached.
2. The task's playbook is executed on hosts.

86 Using Ansible for Configuring Iaa$ Infrastructure

3. PLAY Recap: This is the status of the changes that were executed on each host; the
value of this status can be as follows:

This is the number of playbook tasks that have been correctly applied
to the host.

changed This is the number of changes that have been applied.

ok

unreachable | The host is unreachable.

failed Execution failed on this host.

Table 3.1 - The values of PLAY Recap

If we need to upgrade our playbook to add or modify middleware on our VMs, during the
second execution of Ansible with this upgraded playbook, we will see that Ansible did not
reapply the complete configuration of the VMs; it only applied the differences.

The following screenshot shows the second execution of Ansible with no changes made to
our playbook:

Figure 3.10 — The Ansible playbook's execution with changed information

Here, we can see that Ansible didn't change anything on the hosts (changed=0).

We can also add some useful options to this command to provide the following:

A preview of Ansible changes before applying the changes

« More logs in the execution output

These options are not only important for the playbook development phase, but also for
debugging them in case of errors during their execution.

Executing Ansible 87

Now, let's look at how to use these preview options.

Using the preview or dry run option

When coding an Ansible playbook, we often need to test different steps without applying
them directly to infrastructure. Hence, it is very useful, especially when automating VM
configuration with Ansible, to have a preview of its execution. This allows us to check that
the syntax of the playbook is maintaining good consistency with the system configuration
that already exists on the host.

With Ansible, it's possible to check the execution of a playbook on hosts by adding the
- -check option to the command:

ansible-playbook -i inventory playbook.yml --check

Here is an example of this dry run execution:

/devopsansible# ansible-playbook -i inventory playbook.yml --check

ok: [we

Figure 3.11 - The Ansible playbook dry run execution

With this option, Ansible does not apply configuration changes to the host; it only checks
and previews the changes that have been made to the hosts.

Important Note

For more information on the - -check option, please refer to the following
documentation: https://docs.ansible.com/ansible/
latest/user guide/playbooks checkmode.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_checkmode.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_checkmode.html

88 Using Ansible for Configuring Iaa$ Infrastructure

We have just seen that Ansible allows us to check a playbook before applying it to a host; it
is also necessary to know that there are other tools to test the functionality of a playbook
(without having to simulate its execution), such as Vagrant by HashiCorp.

Vagrant allows us to locally create a test environment composed of VMs very quickly
that we can run our playbooks on and see the results. For more information on the use of
Ansible and Vagrant, refer to the following documentation: https://docs.ansible.
com/ansible/latest/scenario guides/guide vagrant.html.

We have just learned how to preview the changes that will be applied by Ansible. Now,
let's look at how to increase the log level output of Ansible's execution.

Increasing the log level output

In case of errors, it is possible to add more logs during the output by adding the -v, -vvv,
or -vvvv option to the Ansible command.

The -v option enables basic verbose mode, the -vvv option enables verbose mode
with more outputs, and the -vvvv option adds verbose mode and the connection
debugging information.

Executing the following command applies a playbook and will display more log
information using the -v option that has been added:

ansible-playbook -i inventory playbook.yml -v

This can be useful for debugging in case of Ansible errors.

Important Note

The complete documentation on the ansible-playbook command is
available here: https://docs.ansible.com/ansible/2.4/
ansible-playbook.html.

We have just learned how to execute Ansible with its inventory and playbook by exploring
some options that allow for the following:

 Previewing the changes that will be made by Ansible

« Increasing the level of logs to make debugging easier

In the next section, we will talk about data security while using Ansible Vault.

https://docs.ansible.com/ansible/latest/scenario_guides/guide_vagrant.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_vagrant.html
https://docs.ansible.com/ansible/2.4/ansible-playbook.html
https://docs.ansible.com/ansible/2.4/ansible-playbook.html

Protecting data with Ansible Vault 89

Protecting data with Ansible Vault

So far, we've learned how to use Ansible with an inventory file that contains the list of
hosts to configure, and with a playbook that contains the code of the host's configuration
actions. But in all IaC tools, it will be necessary to extract some data that is specific to

a context or environment inside variables.

In this section, we will look at how to use variables in Ansible and how to protect sensitive
data with Ansible Vault.

To illustrate this use and protection of variables, we will complete our example by
installing a MySQL server on the database server.

Let's begin by looking at the use and utility of variables in Ansible.

Using variables in Ansible for better configuration

When deploying infrastructure with IaC, the code that's used is often composed of two parts:

o+ A part that describes the elements or resources that make up the infrastructure.

o Another part that differentiates the properties of this infrastructure from one
environment to another.

This second part of differentiation for each environment is done by using variables, and
Ansible has a whole system that allows us to inject variables into playbooks.

To learn how to use variables in Ansible, we will complete our code and add a role called
mysql to the roles directory with the following tree structure:

devopsansible

Igl inventory
Ia Playbook.yml

roles

‘ ngnix

| mysql

Figure 3.12 - The Ansible role folder structure

90 Using Ansible for Configuring Iaa$ Infrastructure

In the main. yml file of this role, we will write the following code:

- name: Update apt cache
apt: update cache=yes cache valid time=3600
- name: Install required software
apt: name="{{ packages }}" state=present
vars:
packages:
- python-mysqgldb
- mysql-server
- name: Create mysqgl user
mysqgl user:
name={{ mysql user }}
password={{ mysql password }}
priv=*.*:ALL

state=present

In this code, some static information has been replaced by variables. They are as follows:

« packages: This contains a list of packages to install, and this list is defined in the
following code.

o mysqgl user: This contains the user admin of the MySQL database.
o mysqgl password: This contains the admin password of the MySQL database.

The different tasks of this role are as follows:

« Updating packages
« Installing the MySQL server and Python MySQL packages
o Creating a MySQL user

Protecting data with Ansible Vault 91

Important Note

The complete source code for this role is available at https: //github.
com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO03/devopsansible/roles/
mysqgl.

As we can see, in the user creation task, we have put the mysql user and mysqgl
password variables in for the user name and password. Hence, this information may
be different depending on the environment, or it may be instantiated dynamically when
running Ansible.

To define the values of these variables, we will create a group vars directory, which will
contain all of the values of the variables for each group defined in our inventory.

Then, in this group vars folder, we will create a database subdirectory
corresponding to the database group defined in the inventory and a main. yml subfile.

In this main.yml file, we put the desired values of these variables, as follows:

mysqgl user: mydbuserdef
mysqgl password: mydbpassworddef

Finally, we will complete our playbook by calling the mysql role by adding the
following code:

- hosts: database
become: true
roles:

- mysqgl

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/roles/mysql
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/roles/mysql
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/roles/mysql
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/roles/mysql

92 Using Ansible for Configuring Iaa$ Infrastructure

We can execute Ansible with the same command as the previous one, ansible-
playbook -i inventory playbook.yml. The following output is generated:

root@ESKTOP-9Q2U73]: /d/devopsansible# ansible-playbook -i inventory playbook.yml

PLAY [webserver] *ikdokddddokdodok ik ofdodo & s e e o e e ok e oo o ok e ko sk s ok o e o o e e ok e ok sk ok ok e ko sk ok ok e ok sk o s o sk ek ke ok

rinq Fac‘ts] e o e o A ko A ke s o e o o o o ke ok
rl]

TASK [ngnix : install and check nginx latest version] *** =E SRR
ce .

TASK [nqnix . start nginx] . ok 3 e o o ok e o e ook
ri]

PLAY [database] ##kioriiioriooioriodokfobdodobfoboobfoboobfobbotoffotoftob ook dofkoto o kot otk o otk ol ok ok ok ok ok kb ok ook ok ok ok

TASK [Gathering Facts] - -
ok: [databasel]

TASK [mysq'l I,Ipdate ap‘t cache] *** o 4 A e e ok o o o o o e
ok: [databasel]

TASK [mysql : Install required software] *¥*¥¥ ki X ks
changed: [databasel]

TASK [mysgl : Create mysql user]
changed: [databasel]

sk ok o ke ok 4o ok Ak ok ok ok he o s ke ok e o sk o ok e o s ke o e o o ke ok o ok ok ok e o ok ke ok e o ok ok ok ke ok e ke ok ke o o ke o ke sk o ke ok e sk o ke ok e K o ke ok 3ok e ok
changed=2 unreachable=0 =0
changed=0 unreachable=0 =0
changed=0 unreachable=0 =0

Figure 3.13 — The Ansible playbook's MySQL execution

Here, Ansible has updated the database server with two changes: the list of packages to
be installed and the MySQL admin user. We have just learned how to use variables in
Ansible, but this one is clear in the code, which raises security issues.

Important Note

For more information about Ansible variables, read the complete
documentation here: https://docs.ansible.com/ansible/
latest/user guide/playbooks variables.html.

Now, let's learn how to use Ansible Vault to protect playbook variables.

Protecting sensitive data with Ansible Vault

Configuring a system often requires sensitive information that should not be in the wrong
hands. In the Ansible tool, there is a sub-tool called Ansible Vault that protects the data
that's transmitted to Ansible through playbooks.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

Protecting data with Ansible Vault 93

In this section, we'll learn how to manipulate Ansible Vault to encrypt and decrypt the
information of the MySQL user.

The first step is to encrypt the group vars/database/main.yml file, which contains
the values of the variables, by executing the following command:

ansible-vault encrypt group vars/database/main.yml

Ansible Vault requests that you include a password that will be required to decrypt the file
and then shows the execution of this command to encrypt the content of a file:

opsansible# ansible-vault encrypt group vars/database/main.yml

New Vault passwi

Confirm New V& assword:
Encryption successful

Figure 3.14 - Ansible Vault encryption

After executing this command, the content of the file is encrypted, so the values are no
longer clear. The following is a sample from it:

Figure 3.15 - Encrypted file

To decrypt the file to modify it, you must execute the decrypt command:
ansible-vault decrypt group vars/database/main.yml

Ansible Vault requests the password that was used to encrypt the file, and the file becomes
readable again.

In an Ansible usage automation process, it is preferable to store the password in a file in
a protected location; for example, in the ~/.vault pass.txt file.

Then, to encrypt the variable file with this file, we must execute the ansible-vault
command and add the - -vault-password-file option:

ansible-vault encrypt group vars/database/main.yml --vault-
password-file ~/.vault pass.txt

94 Using Ansible for Configuring Iaa$ Infrastructure

Now that the file has been encrypted and the data is protected, we will run Ansible.

In interactive mode, we will run the following command:
ansible-playbook -i inventory playbook.yml --ask-vault-pass

Ansible asks the user to enter the password shown in the following screenshot:

/devopsansible# ansible-playbook -i inventory playbook.yml --ask-vault-pass

Vault password:

Figure 3.16 - Decrypted file with Ansible Vault

In automatic mode - that is, in a CI/CD pipeline — we can add the - -vault-
password-file parameter with the path of the file that contains the password to
decrypt the data:

ansible-playbook -i inventory playbook.yml --vault-password-
file ~/.vault pass.txt

With that, we've executed Ansible with data that is no longer clear in the code and with
the use of the ansible-vault command.

Important Note

The entire source code for the inventory, playbook, and roles is

available here: https://github.com/PacktPublishing/
Learning-DevOps-Second-Edition/tree/main/CHAPO3/
devopsansible.

In this section, we learned how to protect sensitive data in our playbooks using the
ansible-vault utility. We encrypted and decrypted variable files to protect them, and
then re-ran Ansible with these encrypted files.

In the following section, we will learn how to use Ansible with a dynamic inventory.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible

Using a dynamic inventory for an Azure infrastructure 95

Using a dynamic inventory for an Azure
infrastructure

When configuring an infrastructure that is composed of several VMs, along with
ephemeral environments that are built on demand, the observation that's often made is
that maintaining a static inventory, as we saw in the Creating an Ansible inventory section,
can quickly become complicated and its maintenance takes a lot of time to complete.

To overcome this problem, Ansible allows inventories to be obtained dynamically by
calling a script (for example, in Python) that is either provided by cloud providers or
a script that we can develop ourselves that returns the contents of the inventory.

In this section, we will look at the different ways to use Ansible to configure VMs in Azure
using a dynamic inventory. Let's get started:

1. The first step is to configure Ansible to be able to access Azure resources. For
this, we will create an Azure Service Principal in Azure AD, in exactly the same
way as we did for Terraform (see the Configuring Terraform for Azure section of
Chapter 2, Provisioning Cloud Infrastructure with Terraform). Then, we must export
the information of the four service principal IDs to the following environment
variables:

export AZURE SUBSCRIPTION_ ID=<subscription id>
export AZURE CLIENT ID=<client ID>

export AZURE SECRET=<client Secret>

export AZURE TENANT=<tenant ID>

Important Note

For more information on the Azure environment variables for Ansible, please
refer to the Azure documentation here: https://docs.ansible.com/
ansible/latest/scenario guides/guide azure.html.

2. 'Then, to be able to generate an inventory with groups and to filter VMs, it is better
to add tags to the VMs. Tags can be added using Terraform, an az c1i command
line, or an Azure PowerShell script.

Here is an example script with az c11i:

az resource tag --tags role=webserver -n VMO0l -g
demoAnsible --resource-type "Microsoft.Compute/
virtualMachines"

https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html

96 Using Ansible for Configuring Iaa$ Infrastructure

The preceding script adds a role tag of the webserver value to the vM01 VM.
Then, we must perform the same operation on the VM02 VM (just change the value
of the -n parameter to VM02 in the preceding script).

The following screenshot shows the VM tag in the Azure portal:
** Connect P start e' Restart B Stop :ﬁ: Capture @ De

o Advisor (1 of 2): Use availability sets for improved fault tolerance =

Resource group (change) : demoAnsible Computer name 1 VMO1

Status : Running Operating system : Linux (ubuntu)

Location : West Europe Size : Standard DS2 v2 (2 vcpus, 7 GB memory)
Subscription (change) : DEMO Public IP address 1 137.117.215.130

Subscription ID : 1dad2ac9-ee3e-4fdb-b294-f7a607f589d5 Private IP address 1 10.0.0.4

Virtual network/subnet : VMO1VNET/VMO1Subnet

DNS name : Configure

Tags (change) ' role : webserver

Figure 3.17 — Azure role tag
Now, we must add to our VM the tag that contains the database with this script:

az resource tag --tags role=database -n VM04 -g
demoAnsible --resource-type "Microsoft.Compute/
virtualMachines"

This script adds a role tag to VM04, which has a value of database.

Important Note

The az c1li documentation for managing Azure tags can

be found here: https://docs.microsoft.com/
fr-fr/cli/azure/resource?view=azure-cli-
latest&viewFallbackFrom=azure-cli-latest.md#az-
resource-tag.

3. To use a dynamic inventory in Azure, we need to do the following actions:
» Install the Ansible Azure module on the machine with the following script.

wget -gq https://raw.githubusercontent.com/ansible-
collections/azure/dev/requirements-azure. txt;

pip3 install -r requirements-azure.txt;

https://docs.microsoft.com/fr-fr/cli/azure/resource?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest.md#az-resource-tag
https://docs.microsoft.com/fr-fr/cli/azure/resource?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest.md#az-resource-tag
https://docs.microsoft.com/fr-fr/cli/azure/resource?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest.md#az-resource-tag
https://docs.microsoft.com/fr-fr/cli/azure/resource?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest.md#az-resource-tag

Using a dynamic inventory for an Azure infrastructure 97

» We can also install the Azure module using Ansible Galaxy by executing the
following command:

ansible-galaxy collection install azure.azcollection

Note

For more details about the Azure collection, read the documentation at
https://galaxy.ansible.com/azure/azcollection.

Create a new file named inv.azure rm.yml (the name of this file must finish
with azure rm) and write in this file the following configuration:

» Use the azure rm plugin.
= Allow the returned VM list to be grouped by role tags.
= Filter only in the demoAnsible resource group.

The contents of this file will look as follows:
plugin: azure rm
include vm_ resource groups:

- demoAnsible

auth source: auto

keyed groups:

- key: tags.role

leading separator : false

Important Note

The complete source code for the inv.azure rm.yml fileis

available here: https://github.com/PacktPublishing/
Learning-DevOps-Second-Edition/tree/main/CHAPO3/
devopsansible/inventories.

4. After setting up all of the artifacts for our Ansible dynamic inventory in Azure, it is
good to test its functionality, which includes doing the following:
A. Ensuring there are no execution errors.

B. Ensuring the connection and authentication to our Azure environment are done
correctly.

C. Ensuring its execution returns the Azure VMs from our infrastructure.

https://galaxy.ansible.com/azure/azcollection
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/inventories
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/inventories
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP03/devopsansible/inventories

98 Using Ansible for Configuring Iaa$ Infrastructure

Important Note

As mentioned in the Technical requirements section, before running the
following commands, we need to have the Azure Python module installed on
the machine.

To perform this test, execute the following command:

ansible-inventory -i inv.azure rm.yml --list

This command allows us to display as output the inventory script in list format.
Here is a small sample screen from this execution:

root@LP-FYLZ2X2:) /Learning-DevOps-Second-Edition/CHAPG3/devopsansiblett ansible-inventory —i inv.azure_rm.yml —list
{

"_meta": {
“"hostvars": {
“"bookvmdl_73ec":

“: "bookvm@l",
t_inventory_hostname”: "bookvmol_73ec",
"/subscriptions/) i/resourceGroups/demoAnsible/providers/Microsoft . Compute/virtualMachines/bookvn@l",

/resourceGroups/demoAnsible/providers/Microsoft . Compute/galleries/demo/inages/linux/versions/1.0.0"

": "bookvme1663",
"/subscriptions/8 5/resourceGroups/demoAnsible/providers/Microsoft . Network/networkInterfaces/bookvmo1663",

skl_3d7£0532bd1f4d3a98d5ddbUTb65dBaF" ,
erating_system_type": "Linux"

“os_profil

Figure 3.18 - Dynamic Ansible inventory list of VMs
We can also display this inventory in graph mode by running the same command
but with the - -graph option, as follows:

root@LP-FYLZ2X2: /Learning-DevOps-Second-Edition/CHAPG3/devopsansible# ansible-inventory -i inv.azure_rm.yml --graph
@all:

| —edatabase:

| |—bookvm2_2f86

|-—@ungrouped:

| —@webserver:

| |—bookvmel_73ec
| |-—bookvml_6823

Figure 3.19 - Dynamic Ansible inventory list of VMs grouped by role
With the - -graph option, we get a better visualization of the VMs according to
their tags.

With the test concluded, we can proceed to the final step, which is executing Ansible
with a dynamic inventory.

5. Once we have tested our dynamic inventory in Azure, we just have to run Ansible
on it, using the tags we applied to the VMs. For this, we must run our playbook with
the following command:

ansible-playbook playbook.yaml -i inv.azurerm.yml -u
demobook -ask-pass

Summary 99

Note

In our lab we use a VM with a username and password, and it's because

of this that in the preceding command, we use the -u parameter (for the
VM username) and the —~ask-pass parameter (to ask for the VM user
password). But it's better and recommended to use SSH public/private keys
instead of a password.

The following screenshot shows the execution of the Ansible playbook with the
dynamic inventory:

root@LP-FYLZ2X2: /i - //Learning-DevOps-Second-Edition/CHAP@3/devopsansible#t ansible-playbook playbook.yml —i inv.azure_rm.yml -u demobook -—ask-pass
SSH password:

L T I S —————————
B T L I T e T P ———

ok: [bookvm
ok: [bookvm: 1

TASK [ngnix : install and check nginx latest VErSIiOn] kkikkikkkkkkhhhhkkkkkiiihhiihhhhhhhhiiiiihhhhhhbhhkkk kAR ARk AR
ok: [bookvm@1_
ok: [book 1]

BT T B L e ——
ok: [bookvm
ok: [bookvmo1_

Figure 3.20 - Dynamic Ansible inventory execution

From now on, each time a VM on our Azure infrastructure has a role=webserver
tag, it will be automatically taken into account by the dynamic inventory, so no code
modifications will be necessary.

Important Note

For other ways to use dynamic inventories on Azure, you can consult the
Azure documentation at https://docs.microsoft.com/en-
us/azure/developer/ansible/dynamic-inventory-
configure?tabs=azure-cli.

By using a dynamic inventory, we can take full advantage of the scalability of the cloud
with an automatic VM configuration and without having to make any code changes.

In this section, we learned how to use a dynamic inventory in Azure by implementing
its configuration and doing the necessary script recovery, before executing this dynamic
inventory with Ansible.

Summary

In this chapter, we saw that Ansible is a very powerful and complete tool that allows us
to automate server configuration and administration. To work, it uses an inventory that
contains the list of hosts to be configured and a playbook that the list of configuration
actions is coded in.

https://docs.microsoft.com/en-us/azure/developer/ansible/dynamic-inventory-configure?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/developer/ansible/dynamic-inventory-configure?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/developer/ansible/dynamic-inventory-configure?tabs=azure-cli

100 Using Ansible for Configuring Iaa$ Infrastructure

Roles, modules, and variables also allow for better management and centralization of
playbook code. Ansible also has a vault that protects sensitive playbook data. Finally, for
dynamic environments, inventory writing can be simplified by implementing dynamic
inventories.

In the next chapter, we will learn how to optimize infrastructure deployment with the use
of Packer to create server templates.

Questions
1. What is the role of Ansible that was detailed in this chapter?
2. Can we install Ansible on a Windows OS?
3. What are the two artifacts that we studied in this chapter that Ansible needs to run?
4. What is the name of the option that was added to the ansible-playbook
command that is used to preview the changes that will be applied?
5. What is the name of the utility used to encrypt and decrypt Ansible data?
6. When using a dynamic inventory in Azure, on which properties of the VMs is the

inventory script used to return the list of VMs?

Further reading

If you want to know more about Ansible, here are some resources:

The Ansible documentation: https://docs.ansible.com/ansible/
latest/index.html

Quick Start video: https://www.ansible.com/resources/
videos/quick-start-video?extIdCarryOver=true&sc_
cid=701f20000010H6UAAG

Ansible on Azure documentation: https://docs.microsoft.com/en-us/
azure/ansible/

Visual Studio Code Ansible extension: https://marketplace.
visualstudio.com/items?itemName=vscoss.vscode-ansible

Mastering Ansible: https://www.packtpub.com/virtualization-and-
cloud/mastering-ansible-third-edition

Ansible Webinars Training: https://www.ansible.com/resources/
webinars-training

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://www.ansible.com/resources/videos/quick-start-video?extIdCarryOver=true&sc_cid=701f2000001OH6uAAG
https://www.ansible.com/resources/videos/quick-start-video?extIdCarryOver=true&sc_cid=701f2000001OH6uAAG
https://www.ansible.com/resources/videos/quick-start-video?extIdCarryOver=true&sc_cid=701f2000001OH6uAAG
https://docs.microsoft.com/en-us/azure/ansible/
https://docs.microsoft.com/en-us/azure/ansible/
https://marketplace.visualstudio.com/items?itemName=vscoss.vscode-ansible
https://marketplace.visualstudio.com/items?itemName=vscoss.vscode-ansible
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-ansible-third-edition

4
Optimizing
Infrastructure

Deployment
with Packer

In the previous chapters, we learned how to provision a cloud infrastructure using
Terraform and then we continued with the automated configuration of VMs with Ansible.
This automation allows us to benefit from a real improvement in productivity and very
visible time-saving.

102 Optimizing Infrastructure Deployment with Packer

However, despite this automation, we notice the following:

+ Configuring a VM can be very time-consuming because it depends on its hardening
as well as the middleware that will be installed and configured on this VM.

« Between each environment or application, the middleware versions are not identical
because their automation script is not necessarily identical or maintained over time.
Hence, for example, the production environment, being more critical, will be more
likely to have the latest version of packages, which is not the case in pre-production
environments. And with this situation, we often encounter issues with the behavior
of applications in production.

« Configuration and security compliance is not often applied or updated.

To address these issues, all cloud providers have integrated a service that allows them to
create or generate custom VM images. These images contain all of the configurations of
the VMs with their security administration and middleware configurations and can then
be used as a basis to create VMs for applications.

The benefits of using these images are as follows:

o The provisioning of a VM from an image is very fast.

o Each VM is uniform in configuration and, above all, is safety compliant.

Among the Infrastructure as Code (IaC) tools, there is Packer from the HashiCorp tools,
which allows us to create VM images from a file (or template).

In this chapter, we will learn how to install Packer in different modes. We will discuss
the syntax of Packer templates to create custom VM images in Azure that use scripts
or Ansible playbooks.

We will detail the execution of Packer with these templates using JSON and HCL format.
Finally, we will see how Terraform uses the images created by Packer. Through this
chapter, we'll understand that Packer is a simple tool that simplifies the creation of

VMs in a DevOps process and integrates very well with Terraform.

In this chapter, we will cover the following:

« An overview of Packer
« Creating Packer templates using scripts
« Creating Packer templates using Ansible

 Executing Packer

Technical requirements 103

 Writing Packer templates with HCL format

+ Using images created by Packer with Terraform

Technical requirements

This chapter will explain how to use Packer to create a VM image in an Azure
infrastructure as an example of cloud infrastructure. So, you will need an Azure
subscription, which you can get here for free: https://azure.microsoft.com/
en-us/free/.

In the Using Ansible in a Packer template section, we will learn how to write Packer
templates that use Ansible, so you will need to install Ansible on your machine and
understand how it works, which is detailed in Chapter 3, Using Ansible for Configuring
Iaa$ Infrastructure.

The last section of this chapter will give an example of using Terraform with a Packer
image; for its application, it will be necessary to install Terraform and understand

its operation, which is detailed in Chapter 2, Provisioning Cloud Infrastructure with
Terraform.

The entire source code of this chapter is available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAPO4.

Check out the following video to see the Code in Action: https://bit.ly/35exxSo.

An overview of Packer

Packer is part of the HashiCorp open source suite of tools, and this is the official Packer
page: https://www.packer.io/.It's an open source command-line tool that allows
us to create custom VM images of any OS (these images are also called templates) on
several platforms from a JSON file.

Packer's operation is simple; it is based on the basic OS provided by the different cloud
providers and configures a temporary VM by executing the scripts described in the JSON
or HCL template. Then, from this temporary VM, Packer generates a custom image ready
to be used to provision VMs.

Apart from VM images, Packer also provides other types of images such as Docker
images or Vagrant images. After this brief overview of Packer, let's look at the different
installation modes.

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04
https://bit.ly/35exxSo
https://www.packer.io/

104 Optimizing Infrastructure Deployment with Packer

Installing Packer

Packer, like Terraform, is a cross-platform tool and can be installed on Windows, Linux,
or macOS. The installation of Packer is almost identical to the Terraform installation
(see Chapter 2, Provisioning Cloud Infrastructure with Terraform) and can be done in two
ways: either manually or via a script.

Installing manually
To install Packer manually, use the followings steps:
1. Go to the official download page (https://www.packer.io/downloads.
html) and download the package corresponding to your operating system.

2. After downloading, unzip and copy the binary into an execution directory
(for example, inside c: \Packer).

3. Then, the PATH environment variable must be set with the path to the binary
directory.

Tip

For detailed instructions on how to update the PATH environment variable
on Windows, refer to this article: https://www.architectryan.
com/2018/03/17/add-to-the-path-on-windows-10/,and
for Linux, refer to this one: https://www.techrepublic.com/
article/how-to-add-directories-to-your-path-in-
linux/.

Now that we've learned how to install Packer manually, let's look at the options available
to us to install it using a script.

Installing by script

It is also possible to install Packer with an automatic script that can be installed on

a remote server and be used on a CI/CD process. Indeed, Packer can be used locally,

as we will see in this chapter, but its real goal is to be integrated into a CI/CD pipeline.
This automatic DevOps pipeline will allow the construction and publication of uniform
VM images that will guarantee the integrity of middleware and VM security based on
these images.

Let's see the structure of these scripts for the different OSes, that is, Linux, Windows,
and macOS.

https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.techrepublic.com/article/how-to-add-directories-to-your-path-in-linux/
https://www.techrepublic.com/article/how-to-add-directories-to-your-path-in-linux/
https://www.techrepublic.com/article/how-to-add-directories-to-your-path-in-linux/

An overview of Packer 105

Installing Packer by script on Linux

For installing the Packer binary on Linux, we have two solutions:
o The first solution is to install Packer with the following script:

PACKER VERSION="1.7.3" #Update with your desired version

curl -Os https://releases.hashicorp.com/packer/${PACKER
VERSION}/packer ${PACKER VERSION} linux amdé4.zip \

&& curl -Os https://releases.hashicorp.com/
packer/${PACKER VERSION}/packer ${PACKER VERSION}
SHA256SUMS \

&& curl https://keybase.io/hashicorp/pgp keys.asc | gpg
--import \

&& curl -Os https://releases.hashicorp.com/
packer/${PACKER VERSION}/packer ${PACKER VERSION}
SHA256SUMS.sig \

&& gpg --verify packer ${PACKER VERSION} SHA256SUMS.sig
packer ${PACKER VERSION} SHA256SUMS \

&& shasum -a 256 -c packer ${PACKER VERSION} SHA256SUMS
2>&1 | grep "${PACKER VERSION} linux amdé4.zip:\sOK" \
&& unzip -o packer_ ${PACKER VERSION} linux amdé4.zip -d /
usr/local/bin

Note

The code of this script is also available here: https: //github. com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAP04/install packer.sh.

This script performs the following actions:
* Downloads the Packer version 1.7.3 package and checks the checksum

= Unzips and copies the package into a local directory, /usr/local/bin
(by default, this folder is in the PATH environment variable)

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/install_packer.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/install_packer.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/install_packer.sh

106 Optimizing Infrastructure Deployment with Packer

The following is a screenshot of the execution of the script for installing Packer

on Linux:

APB4# sh install
ad Time Til

¢ key 518 C: "Hashi
Total num D essed:

ignature made
using RSA b3 B B
signature "Hashic) (shicorp.c
WARNING: This k cert 5 signatu
Tt no indicat]

Primary key fingerp A6 E7F8

p 1 linux_amd64.zip: OK

Archi pac 4.8_linux_amd6
inflating: /usr/local/bin/pa

Figure 4.1 - Install Packer script execution

not cha

48FFCAC
" T[unknown]

o the owner

The benefit of this solution is that we can choose the Packer installation folder and
that it is applicable on the various distributions of Linux as it uses common tools,

which are curl and unzip.

+ The second solution for installing Packer on Linux is to use the apt package

manager by using the following script for Ubuntu distribution:

sudo apt-get update && sudo apt-get install
software-properties-common curl \

Y gnupg

&& curl -fsSL https://apt.releases.hashicorp.com/gpg |

sudo apt-key add - \

&& sudo apt-add-repository "deb [arch=amdé64] https://apt.
releases.hashicorp.com $(1lsb _release -cs) main" \

&& sudo apt-get update && sudo apt-get install packer

This script does the following:
» Adds the apt HashiCorp repositor
» Updates the local repositor
» Downloads the Packer CL

Important Note

com/tutorials/packer/get-started-install-

Linux tab.

For more details about this script and the installation of Packer on other
distributions, read the documentation at https://learn.hashicorp.

cli?in=packer/docker-get-started, and navigate to the

https://learn.hashicorp.com/tutorials/packer/get-started-install-cli?in=packer/docker-get-started
https://learn.hashicorp.com/tutorials/packer/get-started-install-cli?in=packer/docker-get-started
https://learn.hashicorp.com/tutorials/packer/get-started-install-cli?in=packer/docker-get-started

An overview of Packer 107

Installing Packer by script on Windows

On Windows, we can use Chocolatey, which is a software package manager. Chocolatey
is a free public package manager, like NuGet or npm, but dedicated to software. It is
widely used for the automation of software on Windows servers or even local machines.
Chocolatey's official website is here: https://chocolatey.org/, and its installation
documentation is here: https://chocolatey.org/install.

Once Chocolatey is installed, we just need to run the following command in PowerShell
or in the CMD tool:

choco install packer -y

The following is a screenshot of the Packer installation for Windows with Chocolatey:

choco install packer

Removing old pa
Downloading pack

rv1.4.8\packer_1.4.8_wind

-4.@\packer_1.4.8_windows_amd64.zip to C:\ProgramD

Figure 4.2 - Installing Packer using Chocolatey

The execution of choco install packer -y installs the latest version of Packer
from Chocolatey.

Installing Packer by script on macOS

On macOS, we can use Homebrew, the macOS package manager (https://brew.
sh/), for installing Packer by executing the following command in our Terminal:

brew install packer

https://chocolatey.org/
https://chocolatey.org/install
https://brew.sh/
https://brew.sh/

108 Optimizing Infrastructure Deployment with Packer

Integrating Packer with Azure Cloud Shell

Just as we learned in detail for Terraform in the Integrating Terraform with Azure Cloud
Shell section in Chapter 2, Provisioning Cloud Infrastructure with Terraform, Packer is also
integrated with Azure Cloud Shell, as shown in the following screenshot:

1" Home
I=| Dashboard

All services

vio ? & LMD
Requesting a Cloud Shell.Succeeded.
Connecting terminal...

Welcome to Azure Cloud Shell

Type "az" to use Azure CLI
Type "help" to learn about Cloud Shell

mikael@Azure:~$ packer
Usage: packer [--version] [--help] <command> [<args>]

Available commands are:
build build image(s) from template
console check that a template is walid
fix fixes templates from old versions of packer
inspect see components of a template
validate check that a template is walid
version Prints the Packer version

mikael@Azure:~$

Figure 4.3 - Packer on Azure Cloud Shell

Now that we have seen the installation of Packer on different operating systems and its
integration with Azure Cloud Shell, we will next check its installed version.

Checking the Packer installation

Once installed, we can check the installed version of Packer by running the following
command:

packer --version

Creating Packer templates for Azure VMs with scripts 109

This command displays the installed Packer version:

PS C:\Users\mkrief> packer --version

1.7.3

Figure 4.4 - Packer version command

To see all of the Packer command-line options, we can execute the following command:
packer --help

After executing, we will see a list of available commands, as shown in the following
screenshot:

PS C:\Users\mkrief> packer —-help
Usage: packer [--version] [--help] <command> [<args>]

Available commands are:
build build image(s) from template
console creates a console for testing variable interpolation
fix fixes templates from old versions of packer

fmt Rewrites HCL2 config files to canonical format
hcl2_upgrade transform a JSON template into an HCL2 configuration
init Install missing plugins or upgrade plugins

inspect see components of a template

validate check that a template is valid

version Prints the Packer version

Figure 4.5 - Packer help command

We have just seen the manual installation procedure for Packer and installation with
a script on different OSes, as well as its integration with Azure Cloud Shell.

We will now write a template to create a VM image in Azure with Packer using scripts.

Creating Packer templates for Azure VMs
with scripts

As mentioned in the introduction, to create a VM image, Packer is based on a file
(template) that is written in JSON format or in HashiCorp Configuration Language
(HCL), which was introduced in Packer from version 1.5.0 (read the following blog post
for more information: https://www.packer.io/guides/hcl). We will first see
the structure and composition of this template, and then we will put into practice how to
create a template that will create a VM image in Azure.

https://www.packer.io/guides/hcl

110 Optimizing Infrastructure Deployment with Packer

The structure of the Packer template

The Packer template is composed of several main sections, such as builders,
provisioners, and variables. The JSON format of the template is as follows:

{

"variables": ({

// list of wvariables

b

"builders": [
{
//builders properties
}
] I
"provisioners": [
{

// list of scripts to execute for image provisionning

}

Let's look at the details of each section.

The builders section

The builders section is mandatory and contains all of the properties that define the
image and its location, such as its name, the type of image, the cloud provider on which
the image will be generated, connection information to the cloud, the base image to use,
and other properties that are specific to the image type.

Here is some example code of a builders section:

"builders": [{
"type": "azure-rm",
"client id": "xxxxxxxx",

"client secret": "xxxxxxxx",

Creating Packer templates for Azure VMs with scripts 111

"subscription id": "xxxxxxxxxx",
"tenant id": "xxxxxx",

"os type": "Linux",

"image publisher": "Canonical",
"image offer": "UbuntuServer",

"location": "westus"

In this sample, the builders section defines an image that will be stored in the Azure
cloud and is based on the Linux Ubuntu OS. We also configure the authentication keys
for the cloud.

Note

The documentation on the builders section is here: https: //www.
packer.io/docs/builders.

If we want to create the same image but on several providers, we can indicate in the same
template file multiple block builders that will contain the provider properties. For
example, see the following code sample in JSON format:

{

"builders": [
{
"type": "azure-rm",
"location": "westus",
b
{

"type": "docker",

"image": "alpine:latest",

https://www.packer.io/docs/builders
https://www.packer.io/docs/builders

112 Optimizing Infrastructure Deployment with Packer

To translate the same block code in HCL format, we write first two sources block
that define the different provider properties. And we call these sources in the build
section as follows:

build {

sources = ["sources.azure-arm.azurevm", "sources.docker.
docker-img"]

}

In this code sample, we define in the Packer template the information for an image of an
Azure VM, and the information for a Docker image based on Alpine. The advantage of
this is to standardize the scripts that will be detailed in the provisioning section of these
two images.

Just after the details of each section, we will see a concrete example with a builders
section to create an image in Azure.

Let's move on to explaining the provisioners section.

The provisioners section

The provisioners section, which is optional, contains a list of scripts that will be
executed by Packer on a temporary VM base image in order to build our custom VM
image according to our needs.

If the Packer template does not contain a provisioners section, no configuration
will be made on the base images.

The actions defined in this section are available for Windows as well as Linux images,
and the actions can be of several types, such as executing a local or remote script,
executing a command, or copying a file.

Note

The provisioners type proposed natively by Packer is detailed
in the documentation: https://www.packer.io/docs/
provisioners/index.html.

It is also possible to extend Packer by creating custom provisioning types. To learn more
about custom provisioners, refer to the documentation here: https: //www.
packer.io/docs/extending/custom-provisioners.html.

https://www.packer.io/docs/provisioners/index.html
https://www.packer.io/docs/provisioners/index.html
https://www.packer.io/docs/extending/custom-provisioners.html
https://www.packer.io/docs/extending/custom-provisioners.html

Creating Packer templates for Azure VMs with scripts

113

The following is a sample of a provisioners section for JSON format:

{

"provisioners": [
{
"type": "shell",
"script": "hardening-config.sh"
¥
{
"type": "file",
"source": "scripts/installers",
"destination": "/tmp/scripts"

}

}

And the following is the same block code in HCL format:

provisioner "shell" {

scripts = ["hardening-config.sh"]
}
provisioner "file" {
source = "scripts/installers"
destination = "/tmp/scripts"

}

In this provisioners section, Packer will upload and execute the local script,
hardening-config. sh, to apply the hardening configuration on the remote

temporary VM base image, and copy the content of the scripts/installers local

folder to the remote folder, /tmp/scripts, to configure the image.

So, in this section, we list all of the configuration actions for the image to be created.

However, when creating an image of a VM, it's necessary to generalize it — in other words,

delete all of the personal user information that was used to create this image.

114 Optimizing Infrastructure Deployment with Packer

For example, for a Windows VM image, we will use the Sysprep tool as the last step of
provisioners with the following code:

"provisioners": |

{

"type": "powershell",

"inline": ["& C:\\windows\\System32\\Sysprep\\Sysprep.exe /
oobe /generalize /shutdown /quiet"]}

]

Another example of Sysprep usage in Packer templates is available here: https: //www.
packer.io/docs/builders/azure.html.

And for deleting the personal user information on a Linux image, we will use the
following code:

'"provisioners": [

"type": "shell",

"execute command": "sudo sh -c '{{ .vars }} {{ .path }}'",

"inline": [

"/usr/sbin/waagent -force -deprovision+user && export

HISTSIZE=0 && sync"

]

}
]

Note

For more information about the provisioners section, refer to

the documentation here: https://www.packer.io/docs/
templates/provisioners.html, and the list of actions can be found
here: https://www.packer.io/docs/provisioners/index.
html.

After the provisioners section, let's talk about variables.

https://www.packer.io/docs/builders/azure.html
https://www.packer.io/docs/builders/azure.html
https://www.packer.io/docs/templates/provisioners.html
https://www.packer.io/docs/templates/provisioners.html
https://www.packer.io/docs/provisioners/index.html
https://www.packer.io/docs/provisioners/index.html

Creating Packer templates for Azure VMs with scripts 115

The variables section

In the Packer template, we may often need to use values that are not static in the code.
This optional variables section is used to define variables that will be filled either as
command-line arguments or as environment variables. These variables will then be used
in the builders or provisioners sections.

Here is an example of a variables section:

{
"variables":
"access_key": "{{env 'ACCESS KEY'}}",
"image folder": "/image",
"vin_size": "Standard DS2_ v2"
Y
}

In this example, we initialize the following:

o The access_key variable with the ACCESS KEY environment variable
o The image folder variable with the /image value

o The value of the VM image size, which is the vim_s1ize variable

To use these so-called user variables, we use the { {user 'variablename' }}
notation, and here is an example of using these variables in the builders section:

"builders": [
{
"type": "azure-arm",
"access_key": "{{user 'access key'}}",
"vin_size": "{{user 'vm size'}}",
}

1,

And in the provisioners section, we use the variables defined in the variables
section, as follows:

"provisioners": [

{

116 ~ Optimizing Infrastructure Deployment with Packer

"type": "shell",

"inline": [

"mkdir {{user 'image folder'}}",
"chmod 777 {{user 'image folder'}}",

"execute command": "sudo sh -c '{{ .vars }} {{ .Path

We, therefore, define the properties of the image with variables that will be provided when
executing the Packer template. We can also use these variables in the provisioners
section for centralizing these properties and not have to be redefined , here, the path of
the images (/image) that will be repeated several times in the templates.

Note

Apart from the variables provided by the user, it is also possible to retrieve
other variable sources, such as secrets stored in HashiCorp Vault or

Consul. For more information about variables, refer to the documentation:
https://www.packer.io/docs/templates/legacy json
templates/user-variables.

We have just seen the structure of the Packer template with the principal sections that
compose it, which are builders, provisioners, and variables. Now let's look
at a concrete example with the writing of a Packer template to create an image in Azure.

Building an Azure image with the Packer template

With all of the elements we saw earlier, we will now be able to create a Packer template
that will create a VM image in Azure.

For this, we will need to first create an Azure AD Service Principal (SP) that will have
the permissions to create resources in our subscription. The creation is exactly the same
as we did for Terraform; for more details, see the Configuring Terraform for Azure section
in Chapter 2, Provisioning Cloud Infrastructure with Terraform. Then, on the local disk, we
will create a Packer template file.

https://www.packer.io/docs/templates/legacy_json_templates/user-variables
https://www.packer.io/docs/templates/legacy_json_templates/user-variables

Creating Packer templates for Azure VMs with scripts 117

If you want to use JSON template format, create an azure linux.json file, which
will be our Packer template. We will start writing to this file with the builders section,
as follows:

..."builders": [{

"type": "azure-arm",
"client_id": "{{user 'clientid'}}",
"client secret": "{{user 'clientsecret'}}",
"subscription id": "{{user 'subscriptionid'}}",
"tenant id": "{{user 'tenantid'}}",
"os_type": "Linux",
"image publisher": "Canonical",
"image offer": "UbuntuServer",
"image sku": "18.04-LTS",
"location": "West Europe",
"vm_size": "Standard DS2_v3",
"managed image resource group name": "{{user 'resource
group'}}",
"managed image name": "{{user 'image name'}}-{{user 'image
version'}}",
"azure tags": {
"version": "{{user 'image version'}}",
"role": "WebServer"
!

| P
This section describes the following:

o It describes the azure rmtype, which indicates the provider.

o Also, it describes the client id, secret client, subscription id, and
tenant_id properties, which contain information from the previously created SP.
For security reasons, these values are not written in plain text in the JSON template;
they will be placed in variables (which we will see right after the details of the
builders section).

118 Optimizing Infrastructure Deployment with Packer

« Themanaged image resource group name and managed image name
properties indicate the resource group as well as the name of the image to be
created. The name of the image is also placed into a variable with a name and
a version number.

 The other properties correspond to the information of the OS type (Ubuntu 18),
size (Standard DS2_v3), region, and tag.

Now we will write the variables section that defines the elements that are not fixed:

..."variables": {

"subscriptionid": "{{env 'AZURE SUBSCRIPTION ID'}}",
"clientid": "{{env 'AZURE CLIENT ID'}}",
"clientsecret": "{{env 'AZURE CLIENT SECRET'}}",
"tenantid": "{{env 'AZURE TENANT ID'}}",

"resource group": "rg images",

"image name": "linuxWeb",

"image version": "0.0.1"

| S
We have defined the variables and their default values with the following:

o The four pieces of authentication information from the SP will be passed either in
the Packer command line or as an environment variable.

 The resource group, name, size, and region of the image to be generated are also in
variables.

o The image version variable that contains the version of the image (used in the
name of the image) is defined.

So, with these variables, we will be able to use the same JSON template file to generate
several images with different names and sizes (we will see this when Packer is executed).

Finally, the last action is to write the steps of the provisioners image with the
following code:

"provisioners": [
{
"type": "shell",
"execute command": "sudo sh -c¢ '{{ .vars }} {{ .path }}'",

"inline": [

Creating Packer templates for Azure VMs with scripts 119

"apt-get update",
"apt-get -y install nginx"

}s

{
"type": "shell",
"execute command": "sudo sh -c¢ '{{ .vars }} {{ .Path }}'",
"inline": [

"/usr/sbin/waagent -force -deprovision+user && export
HISTSIZE=0 && sync"

]
]
Here is what the preceding code block is doing:

o It updates packages with apt -get update and upgrade.
« Itinstalls NGINX.
Then, in the last step before the image is created, the VM is deprovisioned to delete the

user information that was used to install everything on the temporary VM using the
following command:

/usr/sbin/waagent -force -deprovision+user && export HISTSIZE=0
&& sync

Note

The complete source code of this Packer template is available here:
https://github.com/PacktPublishing/Learning-
DevOps-Second-Edition/blob/main/CHAP04/templates/
azure linux.json.

We have just seen the structure of a Packer template, which is mainly composed of three
sections, which are variables, builders, and provisioners, and from there we
saw a concrete example with the writing of a Packer template to generate a custom VM
image in Azure that uses scripts or provisioning commands.

We have our Packer template finished and ready to be run, but first we will see another
type of provisioners using Ansible.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux.json

120 Optimizing Infrastructure Deployment with Packer

Using Ansible in a Packer template

We have just seen how to write a Packer template that uses command scripts (for example,
apt-get), but it is also possible to use Ansible playbooks to create an image. Indeed,
when we use IaC to configure VMs, we are often used to configuring the VMs directly
using Ansible before thinking about making them into VM images.

What is interesting about Packer is that we can reuse the same playbook scripts that we
used to configure VMs to create our VM images. So it's a huge time-saver because we
don't have to rewrite the scripts.

To put this into practice, we will write the following:

« An Ansible playbook that installs NGINX
o A Packer template that uses Ansible with our playbook

Let's start with the writing of the Ansible playbook.

Writing the Ansible playbook

The playbook we are going to write is almost identical to the one we set up in Chapter 3,
Using Ansible for Configuring IaaS Infrastructure, but with some changes.

The following code is the sample of the playbook:

- hosts: 127.0.0.1
become: true
connection: local
tasks:
- name: installing Ngnix latest version
apt:
name: nginx
state: latest
- name: starting Nginx service
service:
name: nginx

state: started

Using Ansible in a Packer template 121

The changes made are as follows:

« There is no inventory because it is Packer that manages the remote host, which is
the temporary VM that will be used to create the image.

o The value of hosts is, therefore, the local IP address.

« We only keep the installation of NGINX in this playbook and we deleted the task
that installed the MySQL database.

Note

The code of this playbook is available here: ht tps://github. com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAPO4 /templates/ansible/playbookdemo.
yml.

Now that we have written our Ansible playbook, we will see how to integrate its execution
into the Packer template.

Integrating an Ansible playbook in a Packer template

In terms of the Packer template, the JSON builders and variables sections are
identical to one of the templates that uses scripts that we detailed earlier in the Using
Ansible in a Packer template section. What is different is the JSON provisioners
section, which we will write as follows:

provisioners": [
{
"type": "shell",
"execute command": "sudo sh -c¢ '{{ .vars }} {{ .path }}'",
"inline": [
"add-apt-repository ppa:ansible/ansible", "apt-get
update", "apt-get install ansible -y"

]
b
{

"type": "ansible-local",
"playbook file": "ansible/playbookdemo.yml"

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/ansible/playbookdemo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/ansible/playbookdemo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/ansible/playbookdemo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/ansible/playbookdemo.yml

122 Optimizing Infrastructure Deployment with Packer

"type": "shell",
"execute command": "sudo sh -c '{{ .vars }} {{ .path }}'",

"script": "clean.sh"

..... //Deprovision the VM

The actions described in this provisioners section, which Packer will execute using
this template, are as follows:

1. Installs Ansible on the temporary VM.

2. On this temporary VM, the ansible-1local provisioner runs the playbook
playbookdemo.yaml that installs and starts NGINX. The documentation of
this provisioner is here: https: //www.packer.io/docs/provisioners/
ansible/ansible-local.

3. The clean. sh script deletes Ansible and its dependent packages that are no
longer used.

4. Deprovisions the VM to delete the local user information.

Note

The complete Packer template is available here: ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAPO4/templates/azure linux_ansible.
json, and the source of the clean script, clean. sh, is available here:
https://github.com/PacktPublishing/Learning-
DevOps-Second-Edition/blob/main/CHAPO4/templates/
clean.sh.

As we can see here, Packer will execute Ansible on the temporary VM that will be used to
create the image, but it is also possible to use Ansible remotely by using Packer's Ansible
provisioner, the documentation of which is located here: https: //www.packer.io/
docs/provisioners/ansible/ansible.

We have seen up to this point how a Packer template is composed of the builders,
variables, and provisioners sections, and we have seen that it is possible to use
Ansible within a Packer template.

We will now run Packer with these JSON templates to create a VM image in Azure.

https://www.packer.io/docs/provisioners/ansible/ansible-local
https://www.packer.io/docs/provisioners/ansible/ansible-local
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux_ansible.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux_ansible.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux_ansible.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/azure_linux_ansible.json
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/clean.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/clean.sh
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/clean.sh
https://www.packer.io/docs/provisioners/ansible/ansible
https://www.packer.io/docs/provisioners/ansible/ansible

Executing Packer 123

Executing Packer

Now that we have created the Packer templates, the next step is to run Packer to generate
a custom VM image, which will be used to quickly provision VMs that are already
configured and ready to use for your applications.

As a reminder, to generate this image, Packer will, from our JSON template, create a
temporary VM, on which it will perform all of the configuration actions described in this
template, and then it will generate an image from this image. Finally, at the end of its
execution, it removes the temporary VM and all of its dependencies.

To generate our VM image in Azure, follow these steps:

1. Configure Packer to authenticate to Azure.
2. Check our Packer template.

3. Run Packer to generate our image.

Let's look in detail at the execution of each of its steps.

Configuring Packer to authenticate to Azure

To allow Packer to create resources in Azure, we will use the Azure AD SP that we created
earlier in this chapter in the Building an Azure image with the Packer template section.

To execute Packer in Azure, we will use the four pieces of authentication information
(subscription id,client id,client secret,and tenant id) of this SP in
the environment variables provided in our Packer template in the variables section.

In our following template, we have four variables (client id, client secret,
subscription id,and tenant_id), which take as their values four environment
variables (ARM_CLIENT ID,ARM CLIENT SECRET,ARM SUBSCRIPTION ID,and
ARM TENANT ID):

Figure 4.6 - Packer template variables

124 Optimizing Infrastructure Deployment with Packer

So we can set these environment variables as follows (this is a Linux example):

export ARM SUBSCRIPTION ID=<subscription id>export ARM CLIENT
ID=<client ID>export ARM SECRET SECRET=<client Secrets>export
ARM TENANT ID=<tenant ID>

Note

For Windows, we can use the PowerShell $env command to set an
environment variable.

The first step of authentication is done, and we will now check the Packer template we
wrote.

Checking the validity of the Packer template

Before executing Packer to generate the image, we will execute the packer validate
command to check that our template is correct.

So, inside the folder that contains the Packer template, we execute the following command
on the template:

packer validate azure linux.json

The output of the execution of this command returns the status of the check for whether
the template is valid, as shown in the following screenshot:

|/templates# packer validate azure_linux.json

Template validated successfully.

Figure 4.7 - Packer validate command

Our Packer template is correct in its syntax, so we can launch Packer to generate
our image.

Running Packer to generate our VM image

To generate our image with Packer, we will execute Packer with the build command
on the template file as follows:

packer build azure linux.json

Executing Packer 125

In the output of the Packer execution, we can see the different actions being performed by
Packer. First is the creation of the temporary VM, as shown in the following screenshot:

/CHAPB4/templates# packer build azure_linux.json
azure-arm output will be in this color.

L] S
ted in West Europe, checkout the docs at https:/

up - Xwz

roup-xwz j9dady4’

Group - xwz j9dady4"

Figure 4.8 — Packer creating temporary VM output

In the Azure portal, we see a temporary resource group and its resources created by
Packer, as shown in the following screenshot:

5 items Show hidden types @

NAME

(8] packer-Resource-Group-xwzj9dady4 -ﬂ pkripxwzj9dady4

|LT pkrnixwzjodady4

= pkrosxwzj9dady4
pkrvmxwzj9dady4

4

pkrvnxwzjodady4

Figure 4.9 — Packer temporary resource group in the Azure portal

The execution time of Packer depends on the actions to be performed on the temporary
VM. At the end of its execution, Packer indicates that it has generated the image and
deletes the temporary resources.

126 Optimizing Infrastructure Deployment with Packer

The following screenshot is the end of the output of the Packer execution, which displays
the deletion of the temporary resource group and the generation of the image:

Builds finished. artifacts of succe
-arm: Azure.ResourceManagement.VMImage:

ssful builds are: 3
0SType: Linux

/resourceGroups/rq_images/praviders/Mic rosoft.Compute/images/linuxweb-6.0.2

Figure 4.10 - Packer execution output

After the Packer execution, in the Azure portal, we check that the image is present. The
following screenshot shows our generated image:

[[] wame TYPE LOCATION
@ linuxWeb-0.0.1 Image West Europe
@ linuxWebAnsible-0.0.1 Image West Europe

Figure 4.11 - Azure VM image created by Packer

In this screen, we can see our image and the images that we generated with the Packer
template, which uses Ansible.

It is also interesting to know that we can override the variables of our template when
executing the packer build command, as in the following example:

packer build -var 'image version=0.0.2' azure linux.json

We can pass all variables with the -var options to the build command.

So, with this option, we can change the name of the image without changing the content
of the template, and we can do this for all of the variables that are defined in our template.

Writing Packer templates with HCL format 127

Note

The complete documentation of the Packer build command is available here:
https://www.packer.io/docs/commands/build.html.

We have just seen the Packer command lines to check the syntax of the JSON Packer
template and then to run Packer on a template that generates a VM image in Azure.

Now we will learn about the basic elements for writing Packer templates using
HCL format.

Writing Packer templates with HCL format

Since the release of version 1.5.0 of Packer, it's possible to write Packer templates using
HCL format, which we learned in detail in Chapter 2, Provisioning Cloud Infrastructure
with Terraform.

Note

The HCL integration in Packer is currently in Beta, and will be preferred by
HashiCorp from version 1.7.0.

The HCL format of the template is very similar to the JSON format and it's composed of
variable, source, build, and provisioner blocks. The following code shows the
structure of the HCL Packer template.

For writing an HCL template, create a file, . pkr . hcl, that contains all the following
code:

packer {
required plugins
{
azure =
{
version = ">= 1.0.0"
source = "github.com/hashicorp/azure"
}
}

Variable "var name"{

https://www.packer.io/docs/commands/build.html

128 Optimizing Infrastructure Deployment with Packer

}

Source "name" {

}

Build {
Source = []
Provisionner "" {}

}

First, we start with the Packer plugin configuration that has been introduced from
version 1.7.0. In this block, we list all plugins that will be used in the code.

Note
For more information about Packer plugins, read the documentation at
https://www.packer.io/docs/plugins.

Then, in the variable block, we declare the user variables, for example Azure
credentials, VM name, VM size, or other variables. The following code shows a sample

variable block:

variable "image folder" ({
default = "/image"

}

variable "vm size" {
default = "Standard DS2 v2"

Note

For more information and details about HCL variables, read the
documentation at https://www.packer.io/guides/hcl/
variables.

https://www.packer.io/docs/plugins
https://www.packer.io/guides/hcl/variables
https://www.packer.io/guides/hcl/variables

Writing Packer templates with HCL format 129

The source block contains the properties of the target image to build an Azure image or
Docker image. The following code show examples of two source blocks:

o The first source declaration is for an Azure VM:

source "azure-arm" "azurevm" {
os_type = "Linux"
location = "West Europe"
vm_size = "Standard DS2_ V2"

}

» The second source declaration is for the Docker image:

source "docker" "docker-img"
image = "ubuntu"

export path = "imagedocker.tar"

}

The build block contains the source list to use and the provisioner scripts for
configuring the images. The following code show a sample build block:

build {

sources = ["sources.azure-arm.azurevm", "sources.docker.docker-
img"]
provisioner "shell" ({

inline = [

"apt-get update",

"apt-get -y install nginx"
]

execute command = "chmod +x {{ .Path }}; {{ .Vars }} sudo -E
sh '{{ .path }}'"
inline shebang = "/bin/sh -x"

}

provisioner "shell" {
inline = [
"sleep 30",

"/usr/sbin/waagent -force -deprovision+user && export
HISTSIZE=0 && sync"

130 Optimizing Infrastructure Deployment with Packer

]

execute command = "chmod +x {{ .Path }}; {{ .vars }} sudo -E
sh '{{ .path }}'"
inline shebang = "/bin/sh -x"

}
}

In the preceding code, the source property contains the list of sources declared just
before in the source block details.

Then we use a list of provisioner blocks of shell type to install the NGINX package
and clean the image with personal information - exactly the same operations that we did
with the JSON format.

Note

The code source of this HCL template format is available at ht tps: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP04/templates/.pkr.hcl.

Finally, to execute Packer using an HCL template, we execute the following command to
download plugins:

packer init .pkr.hcl

Then we check the template syntax by running the validate command:
packer validate .pkr.hcl

Finally, we build the desired image by running this following command:
packer build .pkr.hcl

After the execution of the preceding command, the image will be created, exactly as we
have already seen with the JSON format.

Note

To migrate Packer templates from JSON format to HCL format, read this
documentation: https://learn.hashicorp.com/tutorials/
packer/hcl2-upgrade.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/.pkr.hcl
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/.pkr.hcl
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/templates/.pkr.hcl
https://learn.hashicorp.com/tutorials/packer/hcl2-upgrade
https://learn.hashicorp.com/tutorials/packer/hcl2-upgrade

Using a Packer image with Terraform 131

We have discussed how to write and execute Packer templates using the HCL format that
will become the preferred format for HashiCorp. We will now learn how to provision,
with Terraform, a VM based on this image that we have just generated.

Using a Packer image with Terraform

Now that we have generated a custom VM image, we will provision a new VM based on
this new image. For the provisioning of this VM, we will continue to use IaC practices
using Terraform from HashiCorp.

To do this, we will take the Terraform script created in Chapter 2, Provisioning Cloud
Infrastructure with Terraform,, and modify it to use the custom image.

In the compute. t £ script, add the following block of data, which will point to the VM
image that we generated with Packer in the last section:

GET THE CUSTOM IMAGE CREATED BY PACKER
data "azurerm image" "customngnix" {
name = "linuxWeb-0.0.1"

resource group name = "rg images"

}

In this code, we add a block of azurerm_image Terraform data that allows us to retrieve
the properties of a VM image in Azure, in which we specify the name property with name
of the custom image, and the resource group name property with the resource
group of the image.

For more information about this azurerm image data block and its properties,
refer to the documentation: https://www.terraform.io/docs/providers/
azurerm/d/image.html.

Then, in the VM Terraform code in the azurerm virtual machine resource code
(still in the compute. t£ file), the storage image reference section is modified
with the following code:

resource "azurerm virtual machine" "vm" {
USE THE CUSTOM IMAGE

storage image reference ({

id = "${data.azurerm image.customngnix.id}"

https://www.terraform.io/docs/providers/azurerm/d/image.html
https://www.terraform.io/docs/providers/azurerm/d/image.html

132 Optimizing Infrastructure Deployment with Packer

}

In this code, the ID property uses the 1d of the image from the block data that we added
earlier.

Note

The entire code for the compute . t £ script is available here: https://
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP04/terraform/compute.

t £ and the full Terraform code is here: https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
tree/main/CHAPO4/terraform.

When executing this Terraform code, which is identical to a classic Terraform execution,
as seen in Chapter 2, Provisioning Cloud Infrastructure with Terraform, the provisioned
VM will be based on the custom image generated by Packer.

We have seen that by changing a little bit of our previous Terraform code, adding a data
block that retrieves information from a VM image, and using the ID of that image, we can,
in Terraform, use custom VM images generated by Packer.

Summary

In this chapter, we have seen how to install Packer and use it to create custom VM images.
The VM image was made from two Packer templates: the first one using scripts and the
second one using Ansible.

Then, we saw how to write Packer templates with HCL format. Finally, we modified our
Terraform code to use our VM image.

This chapter ends the implementation of IaC practices, starting with Terraform to
provision a cloud infrastructure, then using Ansible for server configuration, and, finally,
finishing with Packer for VM image creation.

With these VM images created by Packer, we will be able to improve infrastructure
provisioning times with faster deployment, ready-to-use VMs, and, therefore, a reduction
in downtime.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/terraform/compute.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/terraform/compute.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/terraform/compute.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP04/terraform/compute.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04/terraform
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04/terraform
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP04/terraform

Questions 133

Obviously, these are not the only IaC tools; there are many others on the marketplace, and
you will have to do technology monitoring to find the ones that best suit your needs.

In the next chapter, we will start a new part, which is the implementation of CI/CD, and
we will learn how to use Git for sourcing your code.

Questions
1. What are the two ways to install Packer?
2. What are the mandatory sections of a Packer template that are used to create a VM
image in Azure?
Which command is used to validate a Packer template?
4. Which command is used to generate a Packer image?

Further reading

If you want to know more about Packer, here are some resources:

Packer documentation: https://www.packer.io/docs/
Packer Learning: https://learn.hashicorp.com/packer

Using Packer in Azure: https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/build-image-with-packer

Designing Immutable Infrastructure with Packer (Pluralsight Video): https://
www.pluralsight.com/courses/packer-designing-immutable-
infrastructure

https://www.packer.io/docs/
https://learn.hashicorp.com/packer
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/build-image-with-packer
https://www.pluralsight.com/courses/packer-designing-immutable-infrastructure
https://www.pluralsight.com/courses/packer-designing-immutable-infrastructure
https://www.pluralsight.com/courses/packer-designing-immutable-infrastructure

5

Authoring the
Development
Environment
with Vagrant

In the previous chapters, we learned how to provision a piece of infrastructure with
Terraform, how to install middleware with Ansible, and, finally, how to create Virtual
Machine (VM) images with Packer.

One problem that is frequently pointed out by operational teams is the fact that they
need to be able to test all of the automation scripts on isolated environments, that is,
environments that are not on the local machine. Indeed, writing scripts with Ansible
under Linux, for example, is difficult to test on a local Windows machine.

To answer this problem, we can use virtualization systems such as Hyper-V or VirtualBox,
which allow you to have VMs with different operating systems that run locally. However,
to go even further, we can automate the creation and provisioning of these VMs using the
tiers tool from HashiCorp, called Vagrant.

136 Authoring the Development Environment with Vagrant

In this chapter, we will learn about the basics of using Vagrant. We will discuss its
installation, how to write Vagrant files, and, finally, we will examine its execution to create
and provision a Linux VM.

In this chapter, we're going to cover the following main topics:
o Installing Vagrant
o Writing a Vagrant configuration file

 Provisioning a local VM with the Vagrant CLI

Technical requirements

Vagrant can create a VM on any hypervisor. In this chapter, we will use VirtualBox
as a local VM hypervisor. You can download and install it from https://www.
virtualbox.org/wiki/Downloads.

On Windows, if you have already installed Hyper-V, to use VirtualBox, you need to
disable Hyper-V. Please refer to the following documentation:

https://www.vagrantup.com/docs/installation#fwindows-
virtualbox-and-hyper-v

All of the commands executed in this chapter will be executed in a terminal console such
as PowerShell or Bash.

The complete source code for this chapter is available here:

https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO5/

Check out the following video to view the Code in Action: https://bit.ly/3s5a049

Installing Vagrant

Vagrant is a cross-platform tool that can be installed on Windows, Linux, or macOS.
Installation can be done in two ways: either manually or via a script in Windows.

Installing manually on Windows

To install Vagrant manually on Windows, perform the following steps:
1. Go to the official download page (https://www.vagrantup.com/

downloads), click on the Windows tab, and download the MSI package
corresponding to your operating system's CPU type (either 32 bits or 64 bits).

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://bit.ly/3s5aO49
https://www.vagrantup.com/downloads
https://www.vagrantup.com/downloads

Installing Vagrant

137

2.

3.

After downloading, click on the downloaded MSI file and select the installation
directory (keep the default value):

ﬂ Vagrant Setup — x

Destination Folder
Click Mext to install to the default folder or click Change to choose another.

Install Vagrant to:

C:\HashiCorp\Vagrant},

Change... o

Back Next Cancel

Figure 5.1 - Vagrant Setup folder choice
Then, click on the Install button:

ﬂ Vagrant Setup G X

Ready to install Vagrant

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back 9 Install Cancel

Figure 5.2 — The Vagrant Setup Install button

138 Authoring the Development Environment with Vagrant

You have learned how to install Vagrant manually on a Windows system. In the next
section, we will discuss the installation of Vagrant using Chocolatey or a script.

Installing Vagrant by script on Windows

On Windows, we can use Chocolatey, which is a software package manager.

Note

In this chapter, I will not reintroduce Chocolatey, as we have already
introduced it in the previous chapters. For additional information about
Chocolatey, please read the documentation at https: //chocolatey.
org/.

Once Chocolatey has been installed, we simply need to run the following command in
PowerShell or the CMD tool:

choco install vagrant -y

The following is a screenshot of the Vagrant installation for Windows using Chocolatey:

rief\Documents> choco install vagrant

niiow1ng packages:

By installing you accept licenses for the packages.
Progress: Downloading vagrant y ... 100%

mkrie AppData Lu(al\Temp\chucoletey vagrant\ 1 0210807\vagrant_2.2.18_x86_64.msi (253.13 MB).
3 MB) completed

Hashes match.
Installing vagrant...

installed

ed plugins...
All plugins are up to da
Repairing currently installed global plugins. This may take a few minutes
Installed plugins Cce 1ly repaired!

vagrant may he able to he autumatnalh umnstalled
H

Figure 5.3 - Vagrant installation with Chocolatey

To finalize the installation of Vagrant, we need to reboot the machine.

https://chocolatey.org/
https://chocolatey.org/

Installing Vagrant 139

Installing Vagrant by script on Linux
On Linux, we can execute the following script to install Vagrant automatically:

sudo apt-get update && sudo apt-get install -y gnupg software-
properties-common curl \

&& curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo
apt-key add - \

&& sudo apt-add-repository "deb [arch=amd64] https://apt.
releases.hashicorp.com $(lsb release -cs) main" \

&& sudo apt-get update && sudo apt-get install vagrant

This script does the following:

o It adds the apt HashiCorp repository.
o It updates the local repository.
+ It downloads and installs the Vagrant CLI.

Note

For additional information about all installations of Vagrant on other
operating systems, please refer to the documentation at https: //www.
vagrantup.com/downloads.

Once Vagrant has been installed, we can test the installation of the Vagrant CLI by
running the following command:

vagrant --version

The preceding command displays the version of Vagrant that has been installed, and the
following screenshot shows the execution of this command:

\Learning-DevOps-Second-Edition\CHAP®5\VagrantFiles> vagrant

Figure 5.4 - Displaying the installed version of Vagrant

We have just learned the manual installation procedure for Vagrant and how to install it
using a script on Linux.

Now, we will expose some main Vagrant artifacts and write a Vagrant template
configuration to create a basic Linux VM locally and configure it with Ansible to test
Ansible scripts.

https://www.vagrantup.com/downloads
https://www.vagrantup.com/downloads

140 Authoring the Development Environment with Vagrant

Writing a Vagrant configuration file

Before we discuss how to write the Vagrant configuration file, it is important to mention a
few artifacts of Vagrant.

The important elements of Vagrant are the following:

o The Vagrant binary (CLI): We learned how to download and install this in the
previous section, Installing Vagrant.

o The base image of the VM, called Vagrant Boxes, will be used and mentioned in the
configuration file. This image can be either public, that is, published in the Vagrant
cloud, or local on the machine.

 The configuration file defines the composition of our VM that we want to create
locally.

Now that we have looked at the different elements of Vagrant, we are going to write the
configuration file of our VM. To begin, we are going to check which base machine we are
going to use.

Using Vagrant Cloud for Vagrant Boxes

To use basic Vagrant images, HashiCorp has set up a portal that allows you to publish and
publicly share images of VMs that are compatible with Vagrant.

To gain access to these images, called boxes, you can navigate to the site at
https://app.vagrantup.com/boxes/search and then perform a search
on the specific box that interests you according to the following criteria:

o The operating system (Windows or Linux)

+ The supported hypervisor

« The middleware that has already been installed
o The publisher

Writing a Vagrant configuration file 141

The following screenshot shows an example of how to search on Vagrant Cloud:

https://app.vagrantup.com/boxes/search?utf8=/ &sort=downloads&provider=&g=bionic
ps://appvagrantup. q

HashiCorp
v Vagra nt cloud Search Pricing Vagrant Help CreateanAccount Signin

Discover Vagrant Boxes

bionic 0 Q

provier [0 Sort o [Recenty Updted
generic/ubuntu1804 240 Pownloads e
) and 1 more providers 799,142 5 days ago

A generic Ubuntu 18.04 (aka Bionic Beaver) image,
ready for use as an appliance or development
environment.

e @ ubuntu/bionic64 20210827.00 Donrloads friosed

534,554 1 day ago
Official Ubuntu 18.04 LTS (Bionic Beaver) builds
. — . hyperv |[virtualbex Bownloads Released
rr| hashicorp/bionicé4 1.0.282 80,554 about 2 years ago

Astandard Ubuntu 18.04 LTS 64-bit box

Figure 5.5 - The Vagrant Cloud search box

In this example, we are searching for a basic Bionic box. In the list of results, we find the
official ubuntu/bionicé4 box, which is compatible with the VirtualBox hypervisor.

142 Authoring the Development Environment with Vagrant

By clicking on the desired box, the portal displays more information, such as the
configuration details and the changelog of the box:

[5 httpsy//app.vagrantup.com/ubuntu/b n:@s.-"b'lnni:ﬁ.!.]:

v Vagra nt CIOUd Search Pricing

ubuntu/bionic64 Vagrant box

How to use this box with Vagrant:
vagrantfile = New

Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/bionicé4”
end

v20210827.0.0 currently released version

This version was created 1 day ago.

There isn't a description.

Figure 5.6 — The Vagrant Cloud box details

Note

For more information about Vagrant Cloud and how to create and publish
your custom boxes, I suggest you refer to the official documentation at
https://www.vagrantup.com/vagrant-cloud.

Now that we have chosen our base box, we will write the Vagrant configuration file for
our VM.

Writing the Vagrant configuration file

To create a local VM using Vagrant, we need to write the configuration of the VM in the
configuration file.

https://www.vagrantup.com/vagrant-cloud

Writing a Vagrant configuration file 143

This configuration will contain information about the VM, such as the following:

The box to use

The hardware configuration such as the RAM and CPU
The network configuration

The scripts to use to provision and configure the VM

The local folder to share with the VM

In this section, we will learn how to create a basic Vagrant configuration file that creates a
local VM that contains an Ansible binary already installed.

To create a Vagrant configuration, perform the following steps:

1.
2.

PS

Create a folder called VagrantFiles.

Inside this folder, open a new terminal console and run the vagrant init
command with the name of the box, as follows:

vagrant init ubuntu/bionicé64

The following screenshot shows the execution of this command:

Learning-DevOps-Second-Ed CHAPO5\VagrantF1 les>|vagrant 1nit ubuntu/bionicé4

A "vagrantfile has been placed in this_directory. You are now

ready to ‘vagrant up your first virtual environment! Please read
the comments in the vagrantfile as well as documentation on
vagrantup.com’ for more information on using vagrant.

Figure 5.7 - The init Vagrant file
The preceding command creates a new Vagrant file file with the basic
configuration for a bionic VM with the following code:
Vagrant.configure ("2") do |config]
config.vm.box = "ubuntu/bionicé64"

end

Next, we will add scripts to install Ansible during the provisioning of this VM.

In this VagrantFiles folder, create a new folder called scripts and then create
a new file script, called ansible. sh, using the following content:

apt-get update

sudo apt-get --assume-yes install software-properties-
common

sudo apt-add-repository --yes --update ppa:ansible/
ansible

sudo apt-get --assume-yes install ansible

144 Authoring the Development Environment with Vagrant

4. Inthe vagrantfile file, update the configuration with the following lines:

Vagrant .configure ("2") do |config]
config.vm.box = "ubuntu/bionic64"

config.vm.provision "shell", path: "scripts/
ansible.sh"

end

5. To test the local Ansible playbook, we can share the local directory with the VM by
adding the following lines to the configuration file:

Vagrant .configure ("2") do |config]

config.vm.box = "ubuntu/bionicé4" config.vm.provision
"shell", path: "scripts/ansible.sh"

config.vm.synced folder "C:\\<path>\\CHAP03\\
devopsansible", "/learningdevops"

end

In the preceding configuration, we shared the local c:\\ . . .Chap03\
devopsansible folder (this is an example of a local folder) between the local
machine and the /learningdevops folder in the VM.

Note

For more details about this Vagrant configuration file, please refer to the
complete documentation at https: //www.vagrantup.com/docs/
vagrantfile.

6. 'The final step is to validate this configuration file by running the following
command:

vagrant validate

The output of this command is shown in the following screenshot:
PS I \Learning-DevOps—Second-Edition\CHAP®5\VagrantFiles> vagrant validate

Vagrantfile validated successfully.

Figure 5.8 - Validating the Vagrant configuration

https://www.vagrantup.com/docs/vagrantfile
https://www.vagrantup.com/docs/vagrantfile

Creating a local VM using the Vagrant CLI 145

Note

In this section, we learned how to create a VM using a Vagrant configuration
file. If you wish to create multiple VMs in the same configuration file, please
refer to the official documentation at https: //www.vagrantup.com/
docs/multi-machine.

We have just discussed how to choose a Vagrant box and how to write a Vagrant
configuration file. Now, in the next section, we will learn how to use the Vagrant CLI and
the configuration file to create a VM locally.

Creating a local VM using the Vagrant CLI

Now that we have written the configuration file, we can create our VM locally.

To perform this, we will use several Vagrant CLI commands. To display all of the available
commands, we will run the vagrant --help command:

\Learning-DevOps-Second-Edition\CHAPO5\VagrantFiles> vagrant
: vagrant [options] <command> [<args>]

-h, --help Print this help.

Common commands :
autocomplete manages autocomplete installation on host
box manages boxes: installation, removal, etc.
cloud manages everything related to Vagrant Cloud
destroy stops and deletes all traces of the vagrant machine
global-status outputs status vagrant environments for this user
halt stops the vagrant machine
help shows the help for a subcommand X
qnig initializes a new Vagrant environment by creating a vagrantfile
ogin
package packages a running vagrant environment into a box
plugin manages plugins: install, uninstall, update, etc.
port displays information about guest port mappings
powershell connects to machine via powershell remoting
provision provisions the vagrant machine
deploys code in this environment to a configured destination
connects to machine via RDP
restarts vagrant machine, loads new vagrantfile configuration
resume a suspended vagrant machine
manages shapshots: saving, restoring, etc.
connects to machine via SSH
ssh-config outputs OpensSH valid configuration to connect to the machine
status outputs status of the vagrant machine
suspend suspends the machine
up starts and provisions the vagrant environment
upload upload to machine via communicator
validate validates the vagrantfile
vbguest plugin: vagrant-vbguest: install VvirtualBox Guest Additions to the machine
version prints current and latest Vagrant version
winrm executes commands on a machine via WinRM
winrm-config outputs WinRM configuration to connect to the machine

Figure 5.9 - Displaying the Vagrant commands

https://www.vagrantup.com/docs/multi-machine
https://www.vagrantup.com/docs/multi-machine

146 Authoring the Development Environment with Vagrant

Note

All details about the Vagrant CLI commands are documented at
https://www.vagrantup.com/docs/cli.

In the next section we will learn how to create the VM, then we will connect to this VM,
and finally we will perform some scripts.

Creating the VM

To create the VM, navigate to the folder in which we created the Vagrantfile file, and
run the following command:

vagrant up

The output is shown in the following screenshot:

Bringing machine 'default' up w1th "virtualbox’ prov1der
default: Importing base box 'ubuntu/bionic64’.
default: Matching MAC address for NAT network1ng
default: checking if box 'ubuntu/bionic64' version '20210818.0.0' is up to date...

5 P
default: Boot1ng VM.

default: waiting for ‘machine to boot. This may take a few minutes...
default: ssH address: 127.0.0.1:2222

default: SSH username: vagrant

default: SSH auth method: private key

default:

default: Key inserted! Disconnecting and reconnecting using new SSH key...
default: Machine booted and ready!

Unmounting Virtualbox Guest Additions ISO from: /mnt
: Checking for guest additions in vM...
: Mounting shared folders.
: /vagrant => C: /REPOSPERSO/Learn1ng DevOps-Second-Edition/CHAPOS/vagrantFiles
: /learningdevops => C:/REPOSPERSO/Learning-DevOps-second-Edition/CHAPO3/devopsansible
: Running provisioner: shell.
: Running: C:/Users/mkrieF/AppData/Loca1/Temp/vagrant—she1120210829—5524—is6k7s.sh
default: Hit:1 http://archive.ubuntu.com/ubuntu bionic InRelease

detau H d o
default: Sett1ng up thon param1ko (2 0.0- lubuntul 2) .
default: Setting up ans1b1e (2.9.24-1ppa~bionic) ...

default: Processing triggers for mime-support (3.60ubuntul) ...
default: Processing triggers for man-db (2.8.3-2ubuntu0.1) ...

Figure 5.10 — The Vagrant up execution workflow

The execution of the preceding command performs the following steps:

1. Import the box from Vagrant Cloud.

2. Create a new VM in the hypervisor (in our case, this is VirtualBox).

https://www.vagrantup.com/docs/cli

Creating a local VM using the Vagrant CLI 147

3. Create an SSH connection with SSH keys (Vagrant creates private/public SSH keys).
4. Mount the shared folder.
5. Apply the provisioning Ansible script.

After the provisioning of the VM, we can view this VM in the hypervisor here in
VirtualBox.

Now that the VM is up and has been provisioned, we can connect it.

Connecting to the VM

To connect the VM with SSH, we can use the default SSH command dedicated to Vagrant
(in administrator mode):

vagrant ssh

The output is shown in the following screenshot:

PS HN \Learning-DevOps-Second- Ed1t1on\CHAP65\VagrantF11es> vagrant ssh
Welcome to Ubuntu 18.84.5 LTS (GNU/Linux 4.15.8-154-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Sun Aug 29 14:25:23 UTC 2021
System load: ©.61 Processes: 96
Usage of /: 4.1% of 38.71GB Users logged in: 2]
Memory usage: 17% IP address for enp@s3: 18.8.2.15
Swap usage: %
© updates can be applied immediately.
New release '20.64.3 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

vagrant@ubuntu-bionic: $

Figure 5.11 - Connecting SSH to the Vagrant VM

The execution of this command means that Vagrant automatically connects the SSH
credential to the VM, and we can run any commands or scripts inside the VM.

148 Authoring the Development Environment with Vagrant

For example, we can run the ansible -version command to display the installed
version of Ansible:

lvagrant@ubuntu-bionic: $ ansible --version
ansible 2.9.24
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/home/vagrant/.ansible/plugins/medules', u'/usr/share/ansible/plugins/modules’]

ansible python module location = /fusr/lib/python2.7/dist-packages/ansible

executable location = /usr/bin/ansible

python version 2 17 (default, Feb 27 2021, 15:18:58) [GCC 7.5.0]
vagrant@ubuntu-b $

Figure 5.12 — Executing commands inside the VM

After running the desired tests, if we wish to destroy this VM to remake it, we can run the
vagrant destroy command:

PS W \Learning-DevOps-Second-Edition\CHAP@5\VagrantFiles> vagrant destroy
de-Fault Are you sure you want to destroy the 'default' VM? [y/N] y

==> default: Forcing shutdown of VM.
==> default: Destroying VM and associated drives...

Figure 5.13 - Destroying the Vagrant VM

In this section, we learned how to create a VM and connect to it using the Vagrant CLIL.

Summary

In this chapter, we learned that it was possible to create VMs locally using Vagrant from
HashiCorp in order to have an isolated development environment.

We discussed how to download and install it. Then, we learned how to write a Vagrant
configuration file using a Bionic box, an ansible install script, and a locally shared
folder.

Finally, we learned how to execute the Vagrant command lines in order to create this VM
and connect to it for testing purposes.

In the next chapter, we will start a new topic, which is the implementation of CI/CD, and
we will learn how to use Git to source your code.

Questions
1. What is the role of Vagrant?
2. What is the Vagrant command to create a VM?
3. What is the Vagrant command to connect SSH to a VM?

Further reading 149

Further reading

If you want to know more about Vagrant, please take a look at the following resources:

« The official Vagrant documentation : https://www.vagrantup.com/docs/
index

o The official Vagrant Cloud documentation: https: //www.vagrantup.com/
vagrant-cloud

https://www.vagrantup.com/docs/index
https://www.vagrantup.com/docs/index
https://www.vagrantup.com/vagrant-cloud
https://www.vagrantup.com/vagrant-cloud

Section 2:
DevOps CI/CD
Pipeline

This part covers the DevOps pipeline process, starting with the principles of continuous
integration and continuous deployment. It will be illustrated through the use of different
tools, including Jenkins, Azure Pipelines, and GitLab.

This section comprises the following chapters:
o Chapter 6, Managing Your Source Code with Git

o Chapter 7, Continuous Integration and Continuous Deployment

o Chapter 8, Deploying Infrastructure as Code with CI/CD Pipelines

6

Managing Your
Source Code with Git

A few years ago, when we were developers and writing code as part of a team, we
encountered recurring problems that were for the most part as follows:

» How to share my code with my team members
« How to version the update of my code
« How to track changes to my code

« How to retrieve an old state of my code or part of it

Over time, these issues have been solved with the emergence of source code managers,
also called a version control system (VCS) or noted more commonly as a version control
manager (VCM).

The goals of these VCSs are mainly to do the following:

« Allow collaboration of developers' code
o Retrieve the code
o Version the code

« Track code changes

154 Managing Your Source Code with Git

With the advent of agile methods and a development-operations (DevOps) culture, the
use of a VCS in processes has become mandatory. Indeed, as mentioned in Chapter 1, The
DevOps Culture and Infrastructure as Code Practices, the implementation of a continuous
integration/continuous deployment (CI/CD) process can only be done with a VCS as

a prerequisite.

In this chapter, we will see how to use one of the best-known VCSs, which is Git. We will
start with an overview of Git and see how to install it. Then, we will see its main command
lines to familiarize any developer with their uses. Finally, we will see the current process of
using Git workflows and usage of Gitflow. The purpose of this chapter is to show the usage
of Git daily with simple processes.

This chapter covers the following topics:

« Opverviewing Git and its principal command lines

« Understanding the Git process and Gitflow pattern

This chapter does not cover the installation of a Git server, so if you want to know
more about that, you can refer to the documentation at the following link:
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols.

Technical requirements

The use of Git does not have any technical prerequisites; we just need a command-line
Terminal.

To illustrate its usage in this chapter, we will use Azure Repos from the Azure DevOps
platform (formerly Visual Studio Team System (VSTS)), which is a cloud platform that
has a Git repository manager. You can register here for free: https://visualstudio.
microsoft.com/team-services/.

Check out the following video to see the code in action: https://bit.1ly/3LTcoO1.

Overviewing Git and its principal
command lines

To understand the origin of Git, it is necessary to know that there are two types of VCSs:
centralized and distributed systems.

https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols
https://visualstudio.microsoft.com/team-services/
https://visualstudio.microsoft.com/team-services/
https://bit.ly/3LTcoOi

Overviewing Git and its principal command lines 155

The first type to emerge were centralized systems, such as Subversion (SVN),
Concurrent Version System (CVS), and Team Foundation Version Control (TFVC)
and Microsoft Visual SourceSafe (VSS). These systems consist of a remote server that
centralizes the code of all developers.

We can represent a centralized source control system like this:

Central / Remote VCS

Figure 6.1 - Centralized source control

All developers can archive and retrieve their code on the remote server. The system allows
better collaboration between teams and a guarantee of code backup. However, it has its
drawbacks, such as the following:

+ In case of no connection (for a network problem or internet disconnection)
between the developers and the remote server, no more archiving or code recovery
actions can be performed.

« If the remote server no longer works, the code, as well as the history, will be lost.

The second type of VCS, which appeared later, is a distributed system, such as Mercurial
or Git. These systems consist of a remote repository and a local copy of this repository on
each developer's local machine, as shown in the following screenshot:

80

Local repository

Remote repository . O

Local repository

Figure 6.2 - Distributed source control

156 Managing Your Source Code with Git

So, with this distributed system, even in the event of disconnection from the remote
repository, developers can continue to work with the local repository, and synchronization
will be done when the remote repository is accessible again. A copy of the code and its
history is also present in the local repository.

Git is, therefore, a distributed VCS that was created in 2005 by Linus Torvalds and the
Linux development community.

Note

To learn a little more about Git's history, read this page: https://
git-scm.com/book/en/v2/Getting-Started-A-Short-
History-of-Git.

Since its creation, Git has become a very powerful and mature tool that can be used by
anyone for coding.

Git is a free, cross-platform tool, and it can be installed on a local machine for people who
manipulate code—that is, in client mode—but can also be installed on servers to host and
manage remote repositories.

Git is a command-line tool with a multitude of options. Nevertheless, there are many
graphical tools today—such as Git GUI, GitKraken, GitHub Desktop, or Sourcetree—that
allow you to interact with Git operations more easily and graphically without having

to use command lines yourself. However, these graphical tools do not contain all of the
operations and options available on the command line. Fortunately, many code editors
such as Visual Studio Code (VS Code), Visual Studio, JetBrains, and Sublime Text allow
direct code integration with Git and remote repositories.

For remote repositories, there are several cloud and free solutions such as GitHub, GitLab,
Azure DevOps, or Bitbucket Cloud. Also, there are other solutions called on-premises
solutions that can be installed in an enterprise, such as Azure DevOps Server, Bitbucket,
or GitHub Enterprise.

In this chapter, we will see the usage of Git—for example, with Azure DevOps as a remote
repository—and we will see the usage of GitLab and GitHub in future chapters.

In this section, we have introduced Git, and we will now see how to install it on a local
machine to develop and version our sources.

https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git

Overviewing Git and its principal command lines 157

Git installation

We will now detail the steps of installing and configuring Git on Windows, Linux, and
macOS systems.

To install on a Windows machine manually, we must download the Git for Windows tool
executable from https://gitforwindows.org/, and, once downloaded, we click on
the executable file and follow the next different configuration steps during the installation:

1. Select an installation path for the Git binaries. We keep the default path, as
illustrated in the following screenshot:

Git 2.33.0.2 Setup - x

Select Destination Location
Where should Git be installed?

Setup will install Git into the following folder.

To continue, click Mext. If you would like to select a different folder, click Browse.

C:\Proqram Files\Git] Browse...

At least 262.4 MB of free disk space is required.

Back Cancel

Figure 6.3 - Git installation path

https://gitforwindows.org/

158 Managing Your Source Code with Git

2. Choose Git integration components in Windows Explorer by marking the Windows
Explorer integration checkbox, as illustrated in the following screenshot:

" Git 2.33.0.2 Setup - X

Select Components \%“
Which components should be installed?

Select the components you want to install; clear the components you do not want to
install, Click Next when you are ready to continue.

[[] Additional icons
. []op

Windows Explorer integration
Git Bash Here
Git GUI Here

[CILrS (CaTge TiE Suppory

Assodate .git™ configuration files with the default text editor

Assodate .sh files to be run with Bash

[:| Check daily for Git for Windows updates

[C] (uew) Add a Git Bash Profile to Windows Terminal

Current selection requires at least 262,3 MB of disk space,
https: (/aitforwindows, orgf

Back Cancel

Figure 6.4 - Choosing Git installation components

3. Choose your code editor integrated development environment (IDE); in our case,
we use VS Code by selecting the Use Visual Studio Code as Git's default editor

option, as illustrated in the following screenshot:
" Git 2.33.0.2 Setup - X

Choosing the default editor used by Git N,
Which editor would you like Git to use? /

Use Visual Studio Code as Git's default editor v

Visual Studio Code is an Open Source, lightweight and powerful editor
running as a desktop application. It comes with built-in support for JavaScript,
TypeScript and Node.js and has a rich ecosystem of extensions for other
languages (such as C++, C#, Java, Python, PHP, Go) and runtimes (such as
NET and Unity).

Use this option to let Git use Visual Studio Code as its default editor.

https://aitforwindows, orgf

Back ‘l Next | ‘ Cancel

Figure 6.5 - Choosing Git installation editor

Overviewing Git and its principal command lines 159

Configure the name of the default branch. We can keep the default option to use
master as the default branch name, as illustrated in the following screenshot:

Git 2.33.0.2 Setup = X

Adjusting the name of the initial branch in new repositories '\%
What would you like Git to name the initial branch after “git init™?

el
Let Git use its default branch name (currently: "master”) for the initial branch

in newly created repositories. The Git project intends to change this default to
a more indusive name in the near future.

O] ¥

(O override the default branch name for new repositories

NEW! Many teams already renamed their default branches; common choices are
“main”, “trunk” and “development®, Specify the name “git init” should use for the
initial branch:

main

This setting does not affect existing repositories.

https://aitforwindows, orgf

sd [mor] | conce

Figure 6.6 — Git configuration default branch name

When choosing an Adjusting your PATH environment option, we can leave the
default choice proposed by the installer, as illustrated in the following screenshot:

" Git 2,33,0.2 Setup - X

Adjusting your PATH environment \%
How would you like to use Git from the command line? p.

O use Git from Git Bash only

This is the most cautious choice as your PATH will not be modified at all. You wil
only be able to use the Git command line tools from Git Bash.

(Recommended) This option adds only some minimal Git wrappers to your

PATH to avold cluttering your environment with optional Unix tools,

You will be able to use Git from Git Bash, the Command Prompt and the Windows
PowerShell as well as any third-party software looking for Git in PATH,

(O Use Git and optional Unix tools from the Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like *find® and "sort®, Only

use this option If you understand the implications.
https://faitForwindows,orgf

| Back || mext | Cancel |

Figure 6.7 - Git installation PATH configuration

160 Managing Your Source Code with Git

6. Choose a Secure Shell (SSH) client to use by keeping the default option to use the
integrated ssh. exe client, as illustrated in the following screenshot:

" Git 2.33.0.2 Setup - X

Choosing the SSH executable {“v
Which Secure Shell dient program would you like Git to use?

H

This uses ssh.exe that comes with Git.

(O use external OpenSSH

NEW! This uses an external ssh.exe. Git will not install its own OpenSSH
(and related) binaries but use them as found on the PATH,

https: /fgitForwindows, orgf

Back Cancel

Figure 6.8 - Git installation SSH tool

7. Choose a type of HyperText Transfer Protocol Secure (HTTPS) transport, which
we will also leave by default at the Use the OpenSSL library option, as illustrated in
the following screenshot:

" Git 2.33.0.2 Setup . X

Choosing HTTPS transport backend N
% Which SSL/TLS library would you like Git to use for HTTPS connections?

Server certificates will be validated using the ca-bundle.crt file.

(O use the native Windows Secure Channel library

Server certificates will be validated using Windows Certificate Stores.
This option also allows you to use your company's internal Root CA certificates
distributed e.g. via Active Directory Domain Services.

https://gitforwindows,orgf

Back Cancel

Figure 6.9 - Git installation using OpenSSL

Overviewing Git and its principal command lines 161

Choose an option for the encoding of the end files. We will also select the default
option, which archives in Unix format, as illustrated in the following screenshot:

" Git 2.33.0.2 Setup - X

Configuring the line ending conversions \\
How should Git treat line endings in text files? p

(®|Checkout Windows-style, commit Unix-style line endings|

Git will convert LF to CRLF when checking out text files, When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows (“core.autocrlf™ is set to “true”).

(O Checkout as-is, commit Unix-style line endings

Git will not perform any conversion when checking out text files, When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix (“core.autocrlf” is set to “input”).

(O Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files, Choosing this option is not recommended for cross-platform
projects (“core.autocrlf” is set to “false”).

https://aitforwindows.orgf
. Bak [mext || cancel |

Figure 6.10 — Choosing encoding of Git installation files
Select a default terminal emulator for Git Bash. We choose MinT Ty, as illustrated in
the following screenshot:
" Git 2.33.0.2 Setup — b 4

Configuring the terminal emulator to use with Git Bash y \‘
Which terminal emulator do you want to use with your Git Bash? v

®[Use MinTTY (the default terminal of M5Y52)

Git Bash will use MInTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty” to work in MinTTY.

(O use Windows' default console window

Git will use the default console window of Windows ("emd.exe™), which works well
with Win32 console programs such as interactive Python or node.js, but has a
very limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

https://agitforwindows,org/

Figure 6.11 - Git installation terminal emulator

162 Managing Your Source Code with Git

10. Choose the default behavior of the git pull command. We keep the default
option, as illustrated in the following screenshot:

e

Git 2.33.0.2 Setup = X

Choose the default behavior of "git pull” 7 _\"
What should “git pull” do by default? v

@® Defauit (fast-forward or merge)|

This is the standard behavior of "git pull*: fast-forward the current branch to
the fetched branch when possible, otherwise create a merge commit.

(O Rebase

Rebase the current branch onto the fetched branch, If there are no local
commits to rebase, this is equivalent to a fast-forward.

() only ever fast-forward
Fast-forward to the fetched branch. Fail if that is not possible.

https://aitforwindows,orgf

R e

Figure 6.12 - Git installation default git pull command

11. Choose a credential manager helper by keeping the default option, as illustrated in
the following screenshot:

" Git 2.33.0.2 Setup - X

Choose a credential helper \\
Which credential helper should be configured? .

@|git Credential Manager Core)
(NEW!) Use the new, cross-platform version of the Git Credential Manager.

See more information about the future of Git Credential Manager here.

O Git Credential Manager
(DEPRECATED) The Git Credential Manager for Windows handles credentials e.g.
for Azure DevOps and GitHub (requires .NET framework v4.5. 1 or later),

O None

Do not use a credential helper.

https://gitforwindows,org/

‘ Back \ Next \ Cancel

Figure 6.13 - Git installation credential manager

Overviewing Git and its principal command lines

163

12. In the next screen, we enable file system caching, as follows:

% Git 2.33.0.2 Setup - X

Configuring extra options \\
Which features would you like to enable?

Enable file system caching

File system data will be read in bulk and cached in memory for certain
operations ("core.fscache” is set to "true”). This provides a significant
performance boost.

[C]enable symbolic links

Enable symbolic links (requires the SeCreateSymbolicLink permission).
Please note that existing repositories are unaffected by this setting.

https://gitForwindows.orgf

Back || Next | ‘ Cancel ‘

Figure 6.14 — Git installation file caching

13. Then, finish the installation configuration by clicking on the Install button, as
illustrated in the following screenshot:

-,

Git 2.33.0.2 Setup = X

Configuring experimental options ’ ,\‘
These features are developed actively. Would you like to try them? W\

[CJEnable experimental support for pseudo consoles,
(NEW!) This allows running native console programs like Node or Python in a
Git Bash window without using winpty, but it still has known bugs.

[C] enable experimental built-in file system monitor

(NEW!) Automatically run a builtn file system watcher, to speed up common
operations such as "git status®, "gitadd’, "git commit’, etc in worktrees

containing many files,
Back Install l Cancel \

Figure 6.15 — Git installation last step

https://aitforwindows, org/

164 Managing Your Source Code with Git

At the end of the installation, the installation utility proposes to open Git Bash, which is a
command-line Terminal Linux emulator dedicated to Git commands, as illustrated in the
following screenshot:

Git 2.21.0 Setup -

Completing the Git Setup
Wizard

Setup has finished installing Git on your computer. The
application may be launched by selecting the installed
shortcuts.

Click Finish to exit Setup

Launch Git Bash

(] View Release Notes

Click Finish to exit Setup.

Figure 6.16 — End of Git installation

After the installation, we can immediately check the status of the Git installation directly
in the Git Bash window by running the git version command, as follows:

MINGW64:/c/Users/Mikael

$ git version
git version 2.21.0.windows.1

Figure 6.17 - Displaying Git version

We can also install Git using an automatic script with Chocolatey, the Windows software
package manager, which we already used in the previous chapters on Terraform and
Packer. (As a reminder, the Chocolatey documentation is available here: https://
chocolatey.org/.)

To install Git for Windows with Chocolatey, we must execute the following command in
an operating Terminal:

choco install -y git

https://chocolatey.org/
https://chocolatey.org/

Overviewing Git and its principal command lines 165

And the result of this execution is displayed in the following screenshot:

LN Administrator: Windows PowerShell

PS C:\WINDOWS\system32> choco install git
Chocolate

By installing you accept licenses for the packages*
Progress: Downloading git.install 2.33.e.2... 1%
Progress: Downloading git 2.33.0.2... 1e8%

git.install v2.33.8.2 ed]
git.install package files install completed. Performing other installation steps.
Using Git LFS
Installing 64-bit git.install...
git.install has been installed.
WARNING: Can't find git.install install location
git.install can be automatically uninstalled.

install of git.install w

ware installed to 'C:\

[App]
les install completed. Performing other installation steps.
The install of git was s ful.

default install location if installer.

Chocolatey installed 2/2 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Figure 6.18 — Git installation with Chocolatey

To install Git on a Linux machine, for Debian systems such as Ubuntu, we run the
apt-get command as follows:

apt-get install git
Or for CentOS or Fedora, install Git with the yum command, like this:
yum install git

For a macOS system, we can download and install Git using Homebrew (https://
brew. sh/), which is a package manager dedicated to macOS, by executing this
command in the Terminal:

brew install git

The installation of Git is finished, and we will now proceed to its configuration.

https://brew.sh/
https://brew.sh/

166 Managing Your Source Code with Git

Git configuration

Git configuration requires us to configure our username and email, which will be used
during code commit. To perform this configuration, we execute the following commands
in a Terminal—either the one that is native to your operating system (OS) or Git Bash for
Windows:

git config --global user.name "<your username>"

git config --global user.email "<your email>"
Then, we can check the configuration values by executing the following command:
git config --global --list

Refer to the following screenshot:

git config --global user.name “"mikaelkrief"
git config --global user.email "mikael.krief

git config --global --list
user.name=mikaelkrief
user.email=mikael.krief@ fr

Figure 6.19 - Git configuration

Git is now configured and ready to use, but before using it, we will provide an overview of
its vocabulary.

Useful Git vocabulary

Git is a tool that is very rich in objects and terminology and has its own concepts.
Before using it, it is important to have some knowledge of its artifacts and the terms that
compose it. Here is a brief list of this vocabulary:

« Repository: A repository is the basic element of Git; it is the storage space where the
sources are tracked and versioned. There are remote repositories that centralize a
team's code and allow team collaboration. There is also the local repository, which
is a copy of the local repository on the local machine.

« Clone: Cloning is the act of making a local copy of a remote repository.

o Commit: A commit is a change made to one or more files, and the change is saved
to the local repository. Each commit is unique and is identified by a unique number
called SHA-1, by which code changes can be tracked.

Overviewing Git and its principal command lines 167

 Branch: The code that is in the repository is stored by default in a master branch.
A branch can create other branches that will be a replica of the master on which
developers make changes, and that will allow us to work in isolation without
affecting the master branch. At any time, we can merge one branch with another.

o Merge: This is an action that consists of merging the code of one branch with
another.

o Checkout: This is an action that allows us to switch from one branch to another.

« Fetch: This is an action of retrieving the code from the remote repository without
merging it with the local repository.

o Pull: This is an action that consists of updating your local repository from the
remote repository. A pull is equivalent to a fetch and merge operation.

o Push: A push is the reverse action of a pull—it allows us to update the remote
repository from the local repository.

« Pull request (PR): A PR is a Git feature (initiated by GitHub) that provides a
graphical user interface (GUI) client or web interface for discussing proposed
changes, between teams' users, before integrating them into the main branch.
If you want more information about PRs, read the GitHub documentation at
https://docs.github.com/en/github/collaborating-with-
pull-requests/proposing-changes-to-your-work-with-pull-
requests/about-pull-requests.

These are the concepts to know when using Git and its workflow. Of course, this list is not
exhaustive, and there are other important terms and notions; we can find information on
several sites. Here is a small list:

+ GitHub vocabulary: https://help.github.com/en/articles/github-
glossary

o Atlassian glossary: https://www.atlassian.com/git/glossary/
terminology

o Linux Academy: https://linuxacademy.com/blog/linux/git-terms-
explained/

With these concepts explained, we can now see how to use Git with its command lines.

https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://help.github.com/en/articles/github-glossary
https://help.github.com/en/articles/github-glossary
https://www.atlassian.com/git/glossary/terminology
https://www.atlassian.com/git/glossary/terminology
https://linuxacademy.com/blog/linux/git-terms-explained/
https://linuxacademy.com/blog/linux/git-terms-explained/

168 Managing Your Source Code with Git

Git command lines

With everything we've seen so far on Git, we can now start manipulating it. The best
way to do so is to first learn to use Git on the command line; then, once the process is
assimilated, we can use the graphical tools better.

Here is a presentation of the main Git command lines that are now part of (or should be
part of) developers' daily lives. We will see their application in practice in the next section,
Understanding the Git process and Gitflow pattern.

The first command is the one that allows us to retrieve code from a remote repository.

Retrieving a remote repository

The first command line to know is the clone command, which makes a copy of a remote
repository to create a local repository. The command to execute is shown here:

git clone <url of the remote repository>

The only mandatory parameter is the repository Uniform Resource Locator (URL) (any
repository is identifiable by a unique URL). Once this command is executed, the content
of the remote repository is downloaded to the local machine, and the local repository is
automatically created and configured.

Initializing a local repository

Note that init is the Git command that allows you to create a local repository. To do
this in the directory that will contain your local repository, run the following simple
command:

git init

This command creates a . git directory that contains all of the folders and configuration
files of the local repository.

Configuring a local repository

After the init command, the new local repository must be configured by setting up the
linked remote repository. To make this setting, we will add remote with the following
command:

git remote add <name> <url of the remote>

Overviewing Git and its principal command lines 169

The name passed as a parameter allows this remote repository to be identified locally; it
is the equivalent of an alias. It is also possible to configure several remote devices on our
local repository.

Adding a file for the next commit

Making a commit (which we will see next) is to archive our changes in our local
repository. When we edit files, we can choose which ones will be included in the next
commit; it's a staged concept. The other files not selected will be set aside for a later
commit.

To add files to the next commit, we execute the add command, as follows:
git add <files path to add>

So, for example, if we want all of the files modified at the next commit, execute the git
add . command. We can also filter the files to be added with regular expressions
(RegEx), suchasgit add *.txt.

Creating a commit

A commit is a Git entity that contains a list of changes made to files and that have been
registered in the local repository. Making a commit, therefore, consists of archiving
changes made to files that have been previously selected with the add command.

The command to create a commit is shown here:
git commit -m "<your commit message>"

The -m parameter corresponds to a message, or description, that we assign to this commit.
The message is very important because we will be able to identify the reason for the
changes in the files.

It is also possible to commit all files modified since the last commit, without having to
execute the add command, by executing the git commit -a -m "<message>"
command.

Once the commit is executed, the changes are archived in the local repository.

170 Managing Your Source Code with Git

Updating the remote repository

When we make commits, they are stored in the local repository, and when we are ready to
share them with the rest of the team for validation or deployment, we must publish them
to the remote repository. To update a remote repository from commits made on a local
repository, a push operation is performed with this command:

git push <alias> <branch>

The alias passed as a parameter corresponds to the alias of the remote repository
configured in the Git configuration of the local repository (done by the git remote
add command).

And the branch parameter is the branch to be updated—by default, it is the master
branch.

Synchronizing the local repository from the remote

As we discussed previously, the Git command line is used to update the remote repository
from the local repository. Now, to perform the reverse operation—that is, update the
repository with all of the changes of the other members that have been pushed on the
remote repository—we will perform a pull operation with this command:

git pull
The execution of this command leads to two operations:

1. Merging the local code with the remote code.

2. Committing to the local repository.

On the other hand, if we do not want to commit—to be able to make other changes, for
example—instead of the pull command, we must execute fetch with this command:

git fetch

Its execution only merges the local code from the remote code, and to archive it, we will
have to execute commit to update the local repository.

Managing branches

By default, when creating a repository, the code is placed in the main branch called
master. In order to be able to isolate the developments of the master branch—for
example, to develop a new feature, fix a bug, or even make technical experiments—we
can create new branches from other branches and merge them together when we want to
merge their code.

Understanding the Git process and Gitflow pattern 171

To create a branch from the current locally loaded branch, we execute the following
command:

git branch <name of the desired branch>
To switch to another branch, we execute the following command:
git checkout <name of the branch>

This command changes the branch and loads the current working directory with the
contents of that branch.

To merge a branch to the current branch, execute the merge command, as follows:
git merge <branch name>

With the name of the branch, we want to merge as a parameter.

Finally, to display a list of local branches, we execute the branch command, as follows:
git branch

Branch management is not easy to use from the command line. The graphical tools of Git,
already mentioned, allow better visualization and management of the branches. We will
see their uses in detail in the next section, which will deal with the Git process. That's all
for the usual Git command lines, although there are many more to handle.

In the next section, we will put all of this into practice by applying the work and
collaboration process with Git, and look at an overview of the Gitflow pattern.

Understanding the Git process and Gitflow
pattern

So far, we have seen the fundamentals of a very powerful VCS, which is Git, with its
installation, configuration, and some of its most common command lines. In this section,
we will put all of this into practice with a case study that will show which Git process to
apply throughout the life cycle of a project.

In this case study, for remote repositories, we will use Azure Repos (one of the Azure
DevOps services), which is a free Git cloud platform that can be used for personal or even
business projects. To learn more about Azure DevOps, consult the documentation here:
https://azure.microsoft.com/en-us/services/devops/. We will often
talk about it in this book.

https://azure.microsoft.com/en-us/services/devops/

172 Managing Your Source Code with Git

Let's first look at how collaboration with Git is constituted, and then we will see how to
isolate code using branches.

Starting with the Git process

In this lab, we will explain the Git collaboration process with a team of two developers
who start a new application development project.

Here are the steps of the Git process that we will discuss in detail in this section:

1.

The first developer commits the code on the local repository and pushes it to the
remote repository.

Then, the second developer gets the pushed code from the remote repository.

The second developer updates this code, creates a commit, and pushes the new
version of the code to the remote repository.

Finally, the first developer retrieves the last version of the code in the local
repository.

The Gitflow data flow that we'll learn about is illustrated in the following diagram:

- N

LOCAL REMOTE

Working T Git Local Git remote
directory 't staging Area repository repository
1

gitadd

l
|

git push

Git pull

git checkout

|

git merge
1

|

Figure 6.20 - Git data flow

Understanding the Git process and Gitflow pattern 173

However, before we start working with Git commands, we will have a look at the steps to
create and configure a Git repository in Azure Repos.

Creating and configuring a Git repository

To start with, we will create a remote Git repository in Azure DevOps that will be used to
collaborate with other team members. Follow these steps:

1. In Azure DevOps, we will create a new project, as follows:

Create a project to get started

Project name *

BookDemo v

Description

Demo project

Visibility
® - O
Public Private

Anyone on the internet can
view the project. Certain
features like TFVC are not
supported.

Version control @

Git

—~+ Create project

Only people you give
access to will be able to
view this project.

~~ Advanced

Work item process @

Basic

Figure 6.21 - Creating an Azure DevOps project

174 Managing Your Source Code with Git

2. Enter a name and description for the project, and as we can see from the preceding
screenshot, the Version control type is Git. Then, on the left-side menu, we click on
the Azure Repos service, as follows:

% Boards

% Repos Repos

[3 Files
f Pipelines

$ Commits
A Test Plans 2 Pushes

¥ Branches
,l Artifacts

@ Tags

IV Pull requests

Figure 6.22 — Azure Repos menu

3. A default repository is already created, and it has the same name as the project, as
we can see here:

BookDemo + .
H BookDemo is empty. Add some code!
ﬂ Overview
#~ Clone to your computer
a Boards
SSH https://Booklabs@dev.azure.com/Booklabs/BookDemao/
Repos
Generate Git credentials
| [Files
Having problems authenticating in Git? Be sure to get the latest version of Git for Windows
¢ Commits
s Pushes

- or push an existing repository from command line

Branches

Figure 6.23 — Azure DevOps new repository

Now that the Git repository is created in Azure Repos, we will see how to initialize
and configure our local working directory to work with this Git repository.

Understanding the Git process and Gitflow pattern 175

4. To initialize this repository, we will create a local directory and name it (for
example, bookProject). This will contain the application code.

5. Once this directory is created, we will initialize a local Git repository by executing

inside the bookProject folder the git init command, as follows:
» DATA(D:) » DevOps * bookProject @

Mam Modifié le Type Taille

gt 27/03/2019 13:09 Dossier de fichiers

/bookProjec

Figure 6.24 — git init command
The result of the preceding command is a confirmation message and a new .git
directory. This new directory will contain all of the information and configuration
of the local Git repository.

6. Then, we will configure this local repository to be linked to the Azure DevOps
remote repository. This link will allow the synchronization of local and remote
repositories. For this, in Azure DevOps, we get the URL of the repository, which is
found in the repository information, as shown in the following screenshot:

BookDemo is empty. Add some code!

-~ Clone to your computer

SSH { https://Booklabs@dev.azure.com/BookLabs/BookDemo/_git/BookDemo [E] OR 1 Clone in VS Code ~

Generate Git credentials

Figure 6.25 — Azure DevOps repository URL

7. Runthegit remote add command inside the bookProject folder that we
created in Step 4, as follows:

git remote add origin <url of the remote repository>

176 Managing Your Source Code with Git

By executing the preceding command, we create an origin alias that will point to
the remote repository URL.

Note

This whole initialization and configuration procedure also applies to an empty
directory, as in our case, or to a directory that already contains code that we
want to archive.

So, we now have a local Git repository that we will work on. After creating and
configuring our repository, we will start developing code for our application and
collaborate using the Git process by starting with a commit of the code.

Committing the code

The first step in the process is the code commit, which allows you to store your code
changes in your local Git repository, by following these steps:

1. In our directory, we will create a Readme . md file that contains the following
example text:

Readme.md X

Figure 6.26 — Sample of README file

2. To make a commit of this file in our local repository, we must add it to the list of the
next commit by executing the git add . command (the . character at the end
indicates to include all of the files to modify, add, or delete).

3. We can also see the status of changes that will be made to the local repository by
running the git status command, as shown in the following screenshot:

Understanding the Git process and Gitflow pattern 177

“bookProject

AbookProject
On braﬂrh master

Mo commits

be committed:
ched <file>..." to unstag

Figure 6.27 - git add . command

From the preceding execution, we can see that a Readme . md file is created and it will also
integrate to commit.

The last operation to do is validate the change by archiving it in the local repository, and
for this, we execute the following command:

git commit -m "Add file readme.md"

We make a commit with a description, for keeping track of changes. Here is a screenshot
of the preceding command:

D: \DevOpsi\bookProjed commit -m "Add file readme.md"

[master sl g it) le] Add file readme. md

Committer: Mikael KRIEF <miks F united

your name and email address were nfigured aut

on your username and hostname. Please ck that th

You can suppress this message by sett i y¥. Run the
following command and follow the instructions in your editor to edit
your configuration file:

git config --global --edit

doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

1 file changed insertions(+)
create mode 188644 Readme.md

Figure 6.28 - git commit command

178 Managing Your Source Code with Git

Note

In this example, we also notice a Git message that gives information about the
user's Git configuration.

Now that our local Git repository is up to date with our changes, we just have to archive
them on the remote repository.

Archiving on the remote repository

To archive local changes and allow the team to work and collaborate on this code as well,
we will push our commit in the remote repository by executing the following command:

git push origin master

We indicate to the git push command the alias and the branch of the remote
repository. During the first execution of this command, we will be asked to authenticate to
the Azure DevOps repository, as shown in the following screenshot:

B C\Windows\System32\cmd.exe - git push origin master

C:\bookDemo>git commit -m "Add file readme.md"
[master (root-commit) 1957d38] Add file readme.md
1 file changed, 3 insertions(+)
create mode 100644 Readme.md

Sign in to your account

C:\bookDemoxgit push origin master b Visual Studio

B® Microsoft

Signin

No account? Create one!
Can't access your account?

Sign-in options

Figure 6.29 - git push on Azure DevOps

Understanding the Git process and Gitflow pattern 179

And after authentication, the push is executed, as follows:

Enumer

Coun

done.

remote:

remote:

To https c emo/ /BookDemo
[new br

Figure 6.30 - git push result

The remote repository is up to date with our changes, and in the Azure Repos interface,
we can see the code of the remote repository. The following screenshot shows the
directory in Azure Repos that contains the added file:

ﬂ BookDemo + ¥* master ~~ | BookDemo / Type to find a file or folder...
ﬂ Owverview
€ BookDemo
Boards m+ Readme.md
Repos
[} Files

2 Commits

Figure 6.31 — Azure Repos new file added

That's it: we have performed the first major step of the Git process, which consists of
initializing a repository and pushing code into a remote repository. The next step is to
make changes to the code by another team member.

Cloning the repository

When another member wants to retrieve the entire remote repository code for the first
time, they perform a clone operation, and to do so, they must execute this command:

git clone <repository url>

180 Managing Your Source Code with Git

The execution of this command performs these actions, as follows:

1. Creates a new directory with the name of the repository.
2. Creates a local repository with its initialization and configuration.

3. Downloads the remote code.

The team member can therefore modify and make changes to the code.

Updating the code

When the code is modified and the developer updates their changes on the remote
repository, they will perform exactly the same actions as when the remote repository was
initialized, with the execution of the following commands:

git add .
git commit -m "update the code"

git push origin master

We added the files to the next commit, created a commit, and pushed the commit to the
remote repository.

The last remaining step is the retrieval of updates by other members.

Retrieving updates

When one member updates the remote repository;, it is possible to retrieve these updates
and update our local repository with the changes by running the git pull command, as
follows:

git pull origin master

The following screenshot shows the execution of thisgit pull command:

. ‘bookProject>git pull origin master
remote: Azure Repos
remote: Found 3 [o send. (@ ms)
Unpacking (done.
From h v.azure, com/ kLabs/BookDemo/_git/BookDemo
* hran aster -» FETCH_HEAD

» origin/master

g S
Fast-forward
Readme . md 4

1 file changed, 3 insertions(+), 1 deletion(-)

Figure 6.32 - git pull command

Understanding the Git process and Gitflow pattern 181

From the preceding execution, we indicate the origin alias and master branch to be
updated in the local repository, and its execution displays the pushed commits. At the end
of the execution of this command, our local repository is up to date.

For the rest of the process with the code update, this is the same as we saw earlier in the
Updating the code section.

We have just seen the simple process of using Git, but it is also possible to isolate its
development with the use of branches.

Isolating your code with branches

When developing an application, we often need to modify part of the code without
wanting to impact the existing stable code of the application. For this, we will use a feature
that exists in all VCSs that allows us to create and manage branches.

The mechanics of using the branches are quite simple, as outlined here:

1. From a branch, we create another branch.
2. We develop this new branch.

In case we work in teams, create a PR for a discussion about the code changes. If
reviewers agree with these changes, they approve the changes' code.

4. To apply the changes made on this new branch to the original branch, a merge
operation is performed.

Conceptually, a branch system is represented in this way:

Branch A

L J The branch A is merged
The branch B is created — < with the branch B

from the branch A h

Branch B

Figure 6.33 - Branch diagram

In this diagram, we see that branch B is created from branch A. These two branches will
be modified by development teams for adding a new feature to our application. But in the
end, branch A is merged with branch B, and hence the branch B code changes.

182 Managing Your Source Code with Git

Now that we have seen the branch bases, let's look at how to use branches in Git by
following these steps:

1.

The purpose of this lab is to create a Featurel branch from the master branch.
Then, after some changes on the Featurel branch, we will merge the code changes
from the Featurel branch to the master branch. First, create a Featurel branch
on the local repository, from master, with the help of the following command:

git branch Featurel

The execution of this command created a new branch, Featurel, which contains
exactly the same code as the parent branch, master.

To load your working directory with the code of this branch, we execute the
following command:

git checkout Featurel

From the following output, we can see the switch of the branch:

\BookDemo>»git branch Featurel

kDemo>git checkout Featurel
o branch ‘Featurel’

Figure 6.34 - Git switch branch

We can also see a list of branches of our local repository with the following
command:

git branch
The output of this command is shown here:

\BookDemo>git branch

master

Figure 6.35 - git branch command
During execution, we can see two branches and the active branch as well.
Now, we will make changes to our code on this branch. The update mechanism

is identical to everything we have already seen previously, so we will execute the
following commands:

git add .
git commit -m "Add feature 1 code"

Understanding the Git process and Gitflow pattern 183

5. For the push operation, we will specify the name of the Featurel branch in the
parameter with this command:

git push origin Featurel

The following screenshot shows the code execution that performs all of these steps:

\BookDemo>git add .
it commit -m "Add feature 1 code"
feature 1 ¢
deletion(-)

[\)emo>git push origin Featurel
Enumerat ; .
Counting : (, done.

4 threads

o done.
Total
remote:
remote:
remote: f [..)
To http ev.azure.com/BookLa JookDemo,/_git/BookDemo
* [new branc

Figure 6.36 — Adding a Git branch

6. With the preceding commands that we executed, we created a commit on the
Featurel branch. We then executed the push command to publish the new
branch as well as its commit in the remote repository. On the other hand, in the
Azure Repos interface, we can see our two branches in the Branches section, as
shown in the following screenshot:

B BookDemo | Branches

Mine A
E Overview

Branch Commit
& Boards ¥ Featurel]| eed2a456
Repos ¥ master Default Compare d2dafess
Files

$ Commits

?s Pushes

Figure 6.37 — Azure Repos branches list

184 Managing Your Source Code with Git

7. Before merging the code, we create a PR for a discussion about the changes. The
following screenshots show PR creation and approval steps in Azure DevOps.
We start by creating a PR, as follows:
) Azure DevOps £ Search ‘ = 0 @ & . -
B sookpemo —- .
New pull request K
& oveniew ' Abandoned 2 v
B soards v
Repos ~

Files !

Commits
®i Pushes , !

o [E

i-‘* Branches
irrently, no pull requests need your
Tags -
attention
| 81 Pull requests o

Il requests allow you to review code and help ensure quality before
L merge. Learn more
Pipelines v

New pull request
A Test Plans v

Figure 6.38 — Azure Repos: Creating a PR
Then, fill in the form of this PR by selecting the source and target branches, entering
a title and description, and choosing reviewers. We can also view the difference in
the code that will be merged. The process is illustrated in the following screenshot:

Understanding the Git process and Gitflow pattern

185

¥ Featurel ~ into ¥ master v = —

Overview

Title

\ Update feature

Description [B Add commit messages

Describe the code that is being reviewed

(© Markdown supported. Drag & drop. paste, or select files to insert. @ Link work items.

@ # 10 A~ B I o @ = = =

Reviewers Add required reviewers

lf'! Mikael Krief % |ISearch users and groups to add as reviewers]

Work items to link

[Search work items by ID or title ~]

Tags

| |
—

Figure 6.39 — Azure Repos PR form

Finally, the reviewers will review, approve, or reject the changes (they can also
merge directly), as illustrated in the following screenshot:

‘ £ Search ‘

3 o & @
Update feature Approve

12 ' Mikael Krief Feature? into master '

Overview Files Updates Commits

o

No merge conflicts

Last checked Just now

Description &

» 4 D A DN + 8

Figure 6.40 — Azure Repos PR approval

186 Managing Your Source Code with Git

8. 'The last step in our process is to merge the code of the Featurel branch into
that of the master branch, master. To perform this merge, we will first load our
working directory with the master branch, then merge the Featurel branch to
the current branch, which is master.

To do this, we will execute the following commands:

git checkout master

git merge Featurel

The execution of these commands is displayed as follows:

checkout master

to branch 'n
ranch is up to date with ‘origin/master’.

Readme . md
1 file chan

Figure 6.41 - git merge branch

At the end of its execution, the code of the master branch thus contains the
changes made in the Featurel branch.

We have just seen the use of branches and their merges in Git; now, let's look at the
Gitflow branch pattern and its utility.

Branching strategy with Gitflow

When we start using branches in Git, the question that often arises is: Which is the right
branch strategy to use? In other words, what is the key that we need to isolate our code—is
it by environment, functionality, theme, or release?

This question has no universal answer, and the management of branches within a project
depends on the context of the project. However, there are branch strategy patterns that
have been approved by several communities and a multitude of users that allow a better
collaboration process in a project under Git.

I suggest we have a closer look at one of these branch patterns, which is Gitflow.

The Gitflow pattern

One of these patterns is Gitflow, developed by nvie, which is very popular and has a very
easy-to-learn Git workflow.

Understanding the Git process and Gitflow pattern 187

A branch diagram of Gitflow is shown here:

master

hotfix/fix1 release

develop

feature/featurel feature/feature2

Figure 6.42 - Gitflow diagram

Let's look at the details of this workflow, as well as the purpose of each of these branches
in their order of creation, as follows:

1.

First of all, we have the master branch, which contains the code that is currently in
production. No developer is working directly on it.

From this master branch, we create a develop branch, which is the branch that
will contain the changes to be deployed in the next delivery of the application.

For each of the application's functionalities, a feature/<name of the
features> branch is created (/ will hence create a feature directory) from the
develop branch.

As soon as a feature is finished being coded, the branch of the feature is merged into
the develop branch.

Then, as soon as we want to deploy all of the latest features developed, we create a
release branch from develop.

The release branch content is deployed in all environments successively.

As soon as the deployment in production has taken place, the release branch
is merged with the master branch, and, with this merge operation, the master
branch contains the production code. Hence, the code that is on the release
branch and feature branch is no longer necessary, and these branches can be
deleted.

If a bug is detected in production, we create a hot £ix/<bug name> branch;
then, once the bug is fixed, we merge this branch into the master and develop
branches to propagate the fix on the next branches and deployments.

After seeing the workflow of the Gitflow pattern, we'll discuss the tools that facilitate its
implementation.

188 Managing Your Source Code with Git

Gitflow tools

To help teams and developers to use Gitflow, nvie created a Git override command-line
tool that allows you to easily create branches according to the workflow step. This tool is
available on the nvie GitHub page here: https://github.com/nvie/gitflow.

On the other hand, there are also Git graphical tools that support the Gitflow model, such
as GitKraken (https://www.gitkraken.com/) and Sourcetree (https://www.
sourcetreeapp . com/). These tools allow us to use the Gitflow process via

a graphical interface, as shown in the following screenshot, with the use of Sourcetree
with a Git - f£1low feature that allows us to create a branch using the Gitflow pattern.

The following screenshot shows the configuration of Sourcetree for Gitflow pattern branch
naming:

< (-] —
R o %
L I a Ul

Branch Merge Stash Discard Tag Git-flow

Initialise repository for Git-flow

Create / use the following branches:

Production branch: |ma5ter |

Development branch: |develop

Use the following prefixes in future:

Feature branch prefpc |feature;’

Release branch prefix: |re|ease/
Hotfix branch prefix: |hotﬁx,r’

Wersion tag prefix: |

2 Nram e

Figure 6.43 — Sourcetree Git-flow tool

Then, after this configuration, we can create a branch easily with this name, as shown in
the following screenshot:

https://github.com/nvie/gitflow
https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/

Summary 189

Q File Edit View Repository Actions Tools Help

demobook

e) o i 7 a

O © © © s Iy C © Ul
Commit Pull Push Fetch Branch Merge Stash Discard Tag Git-flow

Choose Next Flow Action

Current state:

Feature: develop

Recommended actions:

| Finish Feature

| Other Action...

Start New Feature
Finish Feature
Start New Release
Finish Release
Start New Hotfix
Finish Hotfix

Figure 6.44 — Creating a Sourcetree branch

As shown in the preceding screenshots, we use Sourcetree and the graphical interface that
allows us to create branches intuitively.

Note

For more documentation on Gitflow and its process, read this article:
https://jeffkreeftmeijer.com/git-flow/.

To get started with Gitflow, I suggest you get used to small projects, then you will see
that the mechanism is the same for larger projects. In this section, we saw the process of
using Git's command lines with its workflow. Then, we talked about the management of
development branches, and finally, we went a little further into branches with Gitflow,
which allows the simple management of branches and a better development workflow
with Git.

summary

Git is today an essential tool for all developers; it allows us to use command lines or
graphical tools and share and version code for better team collaboration.

https://jeffkreeftmeijer.com/git-flow/

190

Managing Your Source Code with Git

In this chapter, we saw how to install Git on the different OSes and an overview of the
main command lines. Then, through a small lab, we saw the Git workflow with the
application of Git command lines. Finally, we presented the isolation of code with the
implementation of branches and the use of the Gitflow pattern, which gives a simple
model of branch strategy.

In the next chapter, we will talk about CI/CD, which is one of the key practices of the

DevOps culture.
Questions
1. Whatis Git?
2. Which command is used to initialize a repository?
3. What is the name of the Git artifact for saving part of the code?
4. Which Git command allows you to save your code in the local repository?
5. Which Git command allows you to send your code to the remote repository?
6. Which Git command allows you to update your local repository from the remote
repository?
7. Which Git mechanism is used for Git code isolation?
8. What is Gitflow?

Further reading

If you want to know more about Git, here are some resources:

Git documentation: https://www.git-scm.com/doc
Pro Git book: https://git-scm.com/book/en/v2

Mastering Git book: https://www.packtpub.com/application-
development /mastering-git

Set up Git: https://try.github.io/
Learn Git Branching: https://learngitbranching.js.org/
Atlassian Git tutorials: https://www.atlassian.com/git/tutorials

git-flow cheat sheet: https://danielkummer.github.io/git-flow-
cheatsheet/

https://www.git-scm.com/doc
https://git-scm.com/book/en/v2
https://www.packtpub.com/application-development/mastering-git
https://www.packtpub.com/application-development/mastering-git
https://try.github.io/
https://learngitbranching.js.org/
https://www.atlassian.com/git/tutorials
https://danielkummer.github.io/git-flow-cheatsheet/
https://danielkummer.github.io/git-flow-cheatsheet/

7

Continuous
Integration and
Continuous Delivery

One of the main pillars of development-operations (DevOps) culture is the
implementation of continuous integration (CI) and deployment processes, as we
explained in Chapter 1, The DevOps Culture and Infrastructure as Code Practices.

In the previous chapter, we looked at the use of Git with its command lines and usage
workflow, and in this chapter, we will look at the important role Git has in the CI/CD
workflow.

Cl is a process that provides rapid feedback on the consistency and quality of code to all
members of a team. It occurs when each user's code commit retrieves and merges the code
from a remote repository, compiles it, and tests it.

Continuous delivery (CD) is the automation of the process that deploys an application in
different stages (or environments).

192 Continuous Integration and Continuous Delivery

In this chapter, we will learn the principles of the CI/CD process as well as its practical
use with different tools such as Jenkins, Azure Pipelines, and GitLab CI. For each of
these tools, we will present the advantages, disadvantages, and best practices, and look at a
practical example of implementing a CI/CD pipeline.

You will learn about the concept of a CI/CD pipeline. After this, we will explore package
managers and the role they play in the pipeline.

Then, you will learn how to install Jenkins and, finally, build a CI/CD pipeline on Jenkins,
Azure Pipelines, and GitLab CI.

This chapter covers the following topics:

« CI/CD principles

« Using a package manager in the CI/CD process
o Using Jenkins for CI/CD implementation

« Using Azure Pipelines for CI/CD

« Using GitLab CI

Technical requirements

The only requirement for this chapter is to have Git installed on your system, as detailed
in the previous chapter.

The source code for this chapter is available at ht tps: //github. com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAPO7.

Check out the following video to see the code in action: https://bit.1ly/3s9G8Pj.

CI/CD principles

To implement a CI/CD pipeline, it is important to know the different elements that will
be required to build an efficient and safe pipeline. In order to understand the principles of
CI/CD, the following diagram shows the different steps of a CI/CD workflow, which we
already saw in Chapter 1, The DevOps Culture and Infrastructure as Code Practices:

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://bit.ly/3s9G8Pj

CI/CD principles 193

Package management

1
1
.
. 4 |
Remote repository Cl Server | N
1
1

Push

e ——) /,/ s .-
|+ 3 - — 2 — .
Auto Auto Manual
o —

280
AV N1 Y
Cl Quick feedbacks

Continuous Integration Continuous Delivery

Figure 7.1 - CI/CD workflow

o —
) —

Let's look in detail at each of these steps in order to list the artifacts of the CI/CD process.

Cl

The CI phase checks the code archived by the team members. It must be executed on each
commit that has been pushed to the remote repository.

The setting up of a Git-type source control version (SCV) is a necessary prerequisite that
makes it possible to centralize the code of all the members of a team.

The team will have to decide on a code branch that will be used for CI. For example, we
can use the master branch, or the develop branch as part of GitFlows; it just needs to
be an active branch that very regularly centralizes code changes.

In addition, CI is achieved by an automatic task suite that is executed on a server,

following similar patterns executed on a developer's laptop that has the necessary tools for
CI; this server is called the CI server.

The CI server can be either of the on-premises type, installed in the company data center,
such as Jenkins or TeamCity, or perhaps a cloud type that we don't have to worry about
installing and maintaining, such as Azure Pipelines or GitLab CI.

The tasks performed during the CI phase must be automated and take into account all the
elements that are necessary for the verification of the code.

These tasks are generally the compilation of code and the execution of unit tests with code
coverage. We can also add static code analysis with SonarQube (or SonarCloud), which
we will look at in Chapter 12, Static Code Analysis with SonarQube.

194 Continuous Integration and Continuous Delivery

At the end of the verification tasks, in many cases, the CI generates an application package
that will be deployed on the different environments (also called stages).

To be able to host this package, we need a package manager, also called a repository
manager, which can be on-premises (installed locally) such as Nexus, Artifactory, or
ProGet, or a software-as-a-service (SaaS) solution such as Azure Pipelines, Azure
Artifacts, or the GitHub Packages registry. This package must also be neutral in terms
of environment configuration and must be versioned in order to deploy the application
in a previous version if necessary.

CcDh

Once the application has been packaged and stored in a package manager during CI, the
CD process is ready to retrieve the package and deploy it in different environments.

The deployment in each environment consists of a succession of automated tasks that are
also executed on a remote server that has access to the different environments.

It is, therefore, necessary to involve Dev, Ops, and also the security team in the
implementation of CI/CD tools and processes. It will, indeed, be this union of people
with the tools and processes that will deploy applications on the different servers or cloud
resources, respecting the network rules but also the company's security standards.

During the deployment phase, it is often necessary to modify the configuration of

the application in the generated package in order for it to be adapted to the target
environment. It is, therefore, necessary to integrate a configuration manager that is
already present in common CI/CD tools such as Jenkins, Azure Pipelines, or Octopus
Deploy. In addition, when there is a new configuration key, it is good practice for every
environment, including production, to be entered with the involvement of the Ops team.

Finally, the triggering of a deployment can be done automatically, but for environments
that are more critical (for example, production environments), heavily regulated
companies may have gateways that require a manual trigger with checks on

the people authorized to trigger the deployment.

The different tools for setting up a CI/CD pipeline are listed here:
« AnSCV
+ A package manager
o A Clserver

A configuration manager

Using a package manager in the CI/CD process 195

But let's not forget that all these tools will only be really effective in delivering added value
to the product if the Dev and Ops teams work together around them.

We have just looked at the principles of implementing a CI/CD pipeline. In the rest of the
chapter, we will look at the practical implementation with different tools, starting with
package managers.

Using a package manager in the CI/CD process

A package manager is a central repository to centralize and share packages, development
libraries, tools, and software.

For consumer clients that use package managers, the benefit is the possibility to track,
update, install, and remove installed packages.

There are many public package managers, such as NuGet, Node Package Manager
(npm), Maven, Bower, and Chocolatey, that provide frameworks or tools for developers in
different languages and platforms.

The following screenshot is from the NuGet package manager, which publicly provides
more than 150,000 .NET frameworks:

.e nuget Packages Upload Statistics Documentation Downloads Blog

Search for packages...

There are 255 875 packages

4 Newtonsoft Json & by dotnetfoundation jamesnk newtonsoft

4 1281 207 499 total downloads ‘D last updated 6 months ago [P Latest version: 13.0.1 <2 json

Json.NET is a popular high-performance JSON framework for .NET

Microsoft Extensions.Dependencylnjection @ by: aspnet dotnetframework Microsoft

NET 4 753 833 308 total downloads U last updated 12 days ago P Latest version: 6.0.0-rc.1.21451.13
Default implementation of dependency injection for Microsoft.Extensions.Dependencylnjection.
Microsoft.Extensions. LOg g [ng @ by aspnet dotnetframework Microsoft

NET

4 735 313 652 total downloads %V last updated 12 days ago [Latest version: 6.0.0-rc.1.21451.13

Logging infrastructure default implementation for Microsoft.Extensions.Logging.

Figure 7.2 - NuGet package manager

196 Continuous Integration and Continuous Delivery

One of the advantages for the developer of using this type of package manager is that
they don't have to store the packages with the application sources but can make them a
reference in a configuration file so that the packages will be automatically retrieved.

In an enterprise application, things are a little different because, although developers use
packages from public managers, some elements that are generated in an enterprise must
remain internal.

Indeed, it is often the case that frameworks (such as NuGet or npm libraries) are
developed internally and cannot be exposed publicly. Moreover, as we have seen in the
CI/CD pipeline, we need to make a package for our application and store it in a package
manager that will be private to the company.

That's why looking at package managers such as NuGet and npm, which can be used
within an enterprise or for personal needs, is suggested.

Private NuGet and npm repository

If you need to centralize your NuGet or npm packages, you can create your own local
repository.

To create your NuGet server instance, here is the Microsoft documentation: https://
docs.microsoft.com/en-us/nuget/hosting-packages/overview.

For npm, we can also install it locally with the npm local-npm package, whose
documentation is available here: https://www.npmjs.com/package/local-npm.

The problem with installing one repository per package-type method is that we need to
install and maintain a repository and its infrastructure for the different types of packages.

This is why it is preferable to switch to universal repository solutions such as Nexus
(Sonatype), ProGet, and Artifactory for on-premises solutions, and Azure Artifacts,
MyGet, or Artifactory for Saa$ solutions.

To understand how a package manager works, we will look at Nexus Repository OSS and
Azure Artifacts.

Nexus Repository OSS

Nexus Repository is a product of the Sonatype company (https://www.sonatype.
com/), which specializes in development-security-operations (DevSecOps) tools that
integrate security controls in the code of applications.

https://docs.microsoft.com/en-us/nuget/hosting-packages/overview
https://docs.microsoft.com/en-us/nuget/hosting-packages/overview
https://www.npmjs.com/package/local-npm
https://www.sonatype.com/
https://www.sonatype.com/

Using a package manager in the CI/CD process 197

Nexus Repository exists in an open source/free version, and its documentation is available
athttps://www.sonatype.com/nexus-repository-oss?smtNoRedir=1 and
https://help.sonatype.com/repomanager3.

Before installing and using Nexus, please take into consideration the software

and hardware requirements detailed in the requirements documentation here:
https://help.sonatype.com/repomanager3/installation/system-
requirements.

For the installation and configuration steps, refer to the installation procedure, which is
available here: https://help.sonatype.com/repomanager3/installation.

You can also use it via a Docker container (we will look at Docker in detail in the next
chapter), and here is the documentation regarding this: https: //hub.docker.
com/r/sonatype/nexus3/.

Once Nexus Repository is installed, we must create a repository by following these steps:

1. In the Repositories section, click on the Create repository button.

2. 'Then, choose the type of packages (for example, npm, NuGet, or Bower) that will be
stored in the repository, as shown in the following screenshot:

RepOSitories Manage repositories RepOSitories / & Select Recipe

© Create repository o ‘ Recipe 1+

‘ Name 4 ‘ T B apt(hosted)
8 apt(proxy)
@ mavencentral proxy
& bower (group)
Eg maven-public group & bower (hosted)
E maven-releases hosted E bower (proxy)
£ docker (group)
E maven-snapshots hosted 9 docker (hosted)
E§ nugetgroup group £ docker (proxy) e
8 oitlfs (hosted)
£ nuget-hosted hosted
B8 go(group)
@ nugetorg-proxy proxy 8 oo lproxy)
& maven2 (group)
& maven2 (hosted)
£ maven2 (proxy)
£ npm (group)
B8 npm (hosted)
8 npm (proxy)

Figure 7.3 — Nexus package manager

https://www.sonatype.com/nexus-repository-oss?smtNoRedir=1
https://help.sonatype.com/repomanager3
https://help.sonatype.com/repomanager3/installation/system-requirements
https://help.sonatype.com/repomanager3/installation/system-requirements
https://help.sonatype.com/repomanager3/installation
https://hub.docker.com/r/sonatype/nexus3/
https://hub.docker.com/r/sonatype/nexus3/

198 Continuous Integration and Continuous Delivery

Nexus is a high-performance and widely used enterprise repository, but it requires effort
to install and maintain it. This is not the case for SaaS package managers such as Azure
Artifacts, which we'll look at now.

Azure Artifacts

Azure Artifacts is one of the services provided by Azure DevOps. We already looked at it
in the previous chapter, and we will also cover it again later, in the Using Azure Pipelines
for CI/CD section of this chapter. It is hosted in the cloud, and therefore allows private
package feeds to be managed.

The packages supported today are NuGet, npm, Maven, Gradle, Python, and also
universal packages. The main difference compared with Nexus is that in Azure Artifacts,
the feed is not by package type, and one feed can contain different types of packages.

One of the advantages of Azure Artifacts is that it is fully integrated with other Azure
DevOps services such as Azure Pipelines, which allows for the management of CI/CD
pipelines, as we will see shortly.

In Azure Artifacts, there is also a type of package called a universal package that allows
the storing of all types of files (called a package) in a feed that can be consumed by other
services or users.

Here is an example of an Azure Artifacts feed containing several types of packages, in
which we can see one NuGet package, one npm package, one universal package, one
Maven package, and one Python package:

. - - demo + New feed § Connecttofeed B Recyde 03 v Y
+
Y Filter by keywords This feed ~ X
Package Views Source Downloads Users
[s) This feed 16 &2
- Version 1.1.3 —
1ode .
m W ot This feed 10 L0
fersion 1.0.30 =
¢
‘ E . ‘unlversal This feed L0 f£0
Version 1.1.0 b4
| . This feed Lo 0
A This feed L0 £0

Version 1.1.1 -

Figure 7.4 — Azure Artifacts packages

Using Jenkins for CI/CD implementation 199

Azure Artifacts has the advantage of being in Saa$ offering mode, so there is no
installation or infrastructure to manage; for more information, the documentation is
available here: https://azure.microsoft.com/en-us/services/devops/
artifacts/.

We finished this overview of package managers with the local NuGet server instance,
NPM, Nexus, and Azure Artifacts. Of course, there are many other package manager tools
that should be considered according to the company's needs.

After looking at package managers, we will now implement a CI/CD pipeline with a well-
known tool called Jenkins.

Using Jenkins for CI/CD implementation

Jenkins is one of the oldest CI tools, initially released in 2011. It is open source and
developed in Java.

Jenkins has become famous thanks to the large community working on it and its plugins.
Indeed, there are more than 1,500 Jenkins plugins that allow you to perform all types of
actions within your jobs. And if, despite everything, one of your tasks does not have a
plugin, you can create one yourself.

In this section, we will look at the installation and configuration of Jenkins and will create
a CI Jenkins job that will be executed during the commit of code that is in a Git repository.

The source code of the demonstration application is a Java project that is open source
and available on the GitHub Microsoft repository space here: https://github.com/
microsoft/MyShuttle2. To be able to use it, you need to fork it into your GitHub
account.

Before talking about the Jenkins job, we will see how to install and configure Jenkins.

Installing and configuring Jenkins

Jenkins is a cross-platform tool that can be installed on any type of support, such as
virtual machines (VMs) or even Docker containers. Its installation documentation is
available here: https://jenkins.io/doc/book/installing/.

For our demo, and to quickly access the configuration of a CI/CD pipeline, we will use
Jenkins on an Azure VM. In fact, Azure Marketplace contains a VM with Jenkins and its
prerequisites already installed.

https://azure.microsoft.com/en-us/services/devops/artifacts/
https://azure.microsoft.com/en-us/services/devops/artifacts/
https://github.com/microsoft/MyShuttle2
https://github.com/microsoft/MyShuttle2
https://jenkins.io/doc/book/installing/

200 Continuous Integration and Continuous Delivery

These steps show how to create an Azure VM with Jenkins and its basic configuration:

1. To get all the steps to create an Azure VM with Jenkins already installed, read the
documentation available here: https://docs.microsoft.com/en-us/
azure/jenkins/install-jenkins-solution-template.

The following screenshot shows Jenkins integration on Azure Marketplace:

. . g . N . ™y
|p jenkins ® | S Pricing : All)L Operating System : All y

Showing Results in Compute

“ O %

Jenkins @ Jenkins Cluster CloudBees Jenkins
Microsoft Bitnami Distribution
Microsoft published Jenkins Master Ideal for production environments CloudBees

on a Linux {Uburtu) Vi that need high performance. Up-to- Jenkins tailored for you.

date, secure, built from source.

<@ < @

Figure 7.5 - Jenkins on Azure Marketplace

2. Once installed and created, we will access Jenkins in the browser by providing its
Uniform Resource Locator (URL) in the Azure portal in the DNS name field, as
shown in the following screenshot:

& Connect | P Start | Q¥ Restart M Stop (@ Capture @ Delete {) Refresh

Resource group (change) : JenkinsDemo Computer name : jenkins
Status : Running Operating system ¢ Linux (ubuntu 16.04)
Location : West Europe Size : Standard DS2 v2 (2 vcpus, 7 GiB memory)
Subscription (change) : DEMO Ephemeral OS disk o NJA
Subscription 1D : 1dad2ac Public IP address HES
Private IP address 1 10.1.04

Wirtual network/subnet : jenkins-vnet/jenkins

[DNS name : demagjenkins. 2.cloudapp.azure.com]

Figure 7.6 - Azure Domain Name System (DNS) name of Jenkins

https://docs.microsoft.com/en-us/azure/jenkins/install-jenkins-solution-template
https://docs.microsoft.com/en-us/azure/jenkins/install-jenkins-solution-template

Using Jenkins for CI/CD implementation 201

3. Follow the displayed instructions on the Jenkins home page to enable access to
this Jenkins instance via secure Secure Sockets Layer (SSL) tunneling. For more
details about this step, read the documentation at https://docs.microsoft.
com/en-us/azure/jenkins/install-jenkins-solution-
template#tconnect-to-jenkins and this article: https://jenkins.io/
blog/2017/04/20/secure-jenkins-on-azure/.

4. 'Then, follow the configuration instructions on the Unlock Jenkins message
displayed on the Jenkins screen. Once the configuration is complete, we get Jenkins
ready to create a CI job.

In order to use GitHub features in Jenkins, we also installed the GitHub integration
plugin from the Jenkins plugin management by following this documentation:
https://jenkins.io/doc/book/managing/plugins/.

The following screenshot shows the installation of the GitHub plugin:

Jenkins Plugin Manager

* Update Center Updates Installed d
Install | Name Version
O GitHub Authontication .
Authentication plugin using GitHub OAuth to provide authentication and authofization capabilities for GitHub and GitHub Enterprise
itHub I
a GitHub Issuss =

This Plugin creates GitHub issues when builds fail, and automatically closes the issue when the build starls passing again.

o Pipeline GitHub Notify Step
Plugin that provides a GitHub status notification step

104

GitBucket

O 08

This in integrates. Gi to Jenkins.
GitHub Integration
% GitHub | .28
GitHub Integration Plugin for Jenkins
- uf uild Trigger]

Figure 7.7 - Jenkins GitHub integration

Now that we have installed the GitHub plugin in Jenkins, let's look at how to configure
GitHub with a webhook for its integration with Jenkins.

Configuring a GitHub webhook

In order for Jenkins to run a new job, we must first create a webhook in the GitHub
repository. This webhook will be used to notify Jenkins as soon as a new push occurs in
the repository.

To do this, follow these steps:

1. In the GitHub repository, go to the Settings | Webhooks menu.
2. Click on the Add Webhook button.

https://docs.microsoft.com/en-us/azure/jenkins/install-jenkins-solution-template#connect-to-jenkins
https://docs.microsoft.com/en-us/azure/jenkins/install-jenkins-solution-template#connect-to-jenkins
https://docs.microsoft.com/en-us/azure/jenkins/install-jenkins-solution-template#connect-to-jenkins
https://jenkins.io/blog/2017/04/20/secure-jenkins-on-azure/
https://jenkins.io/blog/2017/04/20/secure-jenkins-on-azure/
https://jenkins.io/doc/book/managing/plugins/

202 Continuous Integration and Continuous Delivery

3. In the Payload URL field, fill in the URL address of Jenkins followed by /github-
webhook/, leave the secret input as it is, and choose the Just the push event
option.

4. Validate the webhook.

The following screenshot shows the configuration of a GitHub webhook for Jenkins:

¢»Code [Pullrequests 0@ [Projects 0 EEWiki W) Security [l Insights | £ Settingi'

Options Webhooks / Manage webhook

Collaborators We'll send a POST request to the URL below with details of any subscribed events. You can also specify which data
format you'd like to receive (JSON, x-www-form-urlenceded, etc). More information can be found in our developer

Branches documentation,

Webhooks e Payload URL *

- £

Notifications | http://demojenkins.westeurope.cloudapp.azure.com/github-webhoo

Integrations & services Content type

Deploy keys application/x-www-form-urlencoded #
Secret

Moderation

Interaction limits
Which events would you like to trigger this webhook?

® Just the push event.

© Send me everything.

© Let me select individual events.

Active
We will deliver event details when this hook is triggered.

Update webhook | Delete webhook ‘

Figure 7.8 — GitHub webhook for Jenkins configuration

5. Finally, we can check on the GitHub interface that the webhook is well configured
and that it communicates with Jenkins, as illustrated in the following screenshot:

<> Code [7 Pull requests 1 © Actions [IM] Projects (@ Wiki @) Security [ili Insights | & Settings

Options Webhooks fidd webhook

Collaborators
Webhooks allow external services to be notified when certain events happen. When the specified events happen, we'll

Branches send a POST request to each of the URLs you provide. Learn more in our Webhooks Guide.
Webhooks « hittp://demojenkins.westeurope.cloudapp.azure.com/github-webhook/ (push) m
Notifications

Figure 7.9 - GitHub Webhooks' validation

Using Jenkins for CI/CD implementation 203

The configuration of GitHub is done. We will now proceed to create a new CI job
in Jenkins.

Configuring a Jenkins Cl job

To configure Jenkins, let's follow these steps:

1. First, we will create a new job by clicking on New Item or on the create new jobs
link, as shown in the following screenshot:

Jenkins

¢ New ltem

Welcome to Jenkins!

[== Build History
Pleage create new jobs tg get started.

@ Manage Jenkins

& My views
% Lockable Resources

Figure 7.10 - Creating a new job in Jenkins

2. On the job configuration form, enter the name of the job—for example, demoCI—
and choose the Freestyle project template, and then validate that by clicking on
OK, as shown in the following screenshot:

Enter an item name

demoCl o

» Required field

A% Freestyle project a

/ This is the central feature of Jenkins. Jenkins will build your project, combining any SCM

- Maven project
[|
\dwiid/ Build a maven project. Jenkins takes advantage of your POM files and drastically reduces

Figure 7.11 - Jenkins job name

204 Continuous Integration and Continuous Delivery

3. 'Then, we configure the job with the following parameters:

» In the GitHub project input, we enter the URL of the GitHub repository,
as follows:

Description

[Plain text] Preview
[J Enable project-based security
[l Discard old builds

¥ GitHub project
Project ur https://github.com/mikaelkrief/MyShuttle2/

Figure 7.12 - Jenkins job: GitHub

» In the Source Code Management section, enter the URL of the GitHub repository
and the code branch, like this:

Source Code Management
© None
® Git

Repositories
Repository URL | nttps://github.com/mikaelkrief/MyShuttle2 git

Credentials - none - T o= Add ~

Branches to build
Branch Specifier (blank for 'any') | *fmaster

Repository browser (Auto)

Figure 7.13 - Jenkins job: GitHub configuration

» In the Build Triggers section, check the GitHub hook trigger for GITScm
polling box, like this:

Using Jenkins for CI/CD implementation 205

Build Triggers

[Trigger builds remotely (e.g., from scripts)

[0 Build after other projects are built

[Build periodically

[J Build when a change is pushed to TFS/Team Services
[0 Build when a change is pushed to a TFS pull request
[J GitHub Branches

[GitHub Pull Requests

GitHub hook trigger for GITScm polling

O Poll sCM

Figure 7.14 - Jenkins job: GitHub hook trigger

= In the Build section, in the Add build step drop-down list, we'll choose the
Execute shell step for this lab. You can add as many actions as necessary to your
CI (compilation, file copies, and tests). You can see some examples of possible
actions in the following screenshot:

Build

Add build step ~

| -
Copy artifacts from another project
Deploy to Azure Container Service (AKS)
Deploy to Kubernetes
Download from Azure storage
Execute Windows batch command
Execute shell
GitHub PR: set 'pending’ status
Invoke Ant
Invoke Gradle script
Invoke top-level Maven targets
Queue an ACR Quick Task

Run with imeout

Figure 7.15 - Jenkins job: adding a build step

206 Continuous Integration and Continuous Delivery

= Inside the textbox of the shell command, we enter the printenv command to be
executed during the execution of the job pipeline, as illustrated in the following
screenshot:

Build
x|

 Execute shell ©

Command | printenv

See the list of available environment variables

Advanced...

Add build step ~

Figure 7.16 - Jenkins job command step sample
4. Then, we finish the configuration by clicking on Apply and then on the Save button.

Our Jenkins CI job has now been created and is configured to be triggered during a
commiit and to perform various actions.

We will now run it manually to test its proper functioning.

Executing a Jenkins job
To test job execution, we will perform these steps:
1. First, we will modify the code of our GitHub repository—for example, by modifying
the Readme . md file.
2. Then, we commit to the master branch directly from the GitHub web interface.

3. What we see in Jenkins, right after making this commit, is that the DemoC1I job is
queued up and running.

Using Jenkins for CI/CD implementation 207

The following screenshot shows the job execution queue:

[7] sitrub Hook Log

@ GitHub

(@ Open Blue Ocean

e—
== Rename

Permalinks

« Last build (#4), 18 sec ago

« Last stable build (#4), 18 sec ago

« Last successful build (#4). 18 sec ago
« Last completed build (#4), 18 sec ago

Build History trend
find X
g # Jun 4, 2019 5:02 PM
@ # Jun 4, 2019 5:01 PM
9 #2 Jun 3, 2019 11:21 PM
g# Jun 3, 2019 11:14 PM

Figure 7.17 - Jenkins job run history

4. By clicking on the job, and then on the link of the Console Output menu, we can
see the job execution logs, as shown in the following screenshot:

Jenkins » demoCl

3

#4

‘ Back to Project
Q, status
@ Changes
B console output
E View as plain text
[Z Edit Build Information
) Delete build %4’
m Polling Log
4 Git Build Data

n No Tags

@ Console Output

Started by GitHub push by mikaelkrief

Building in workspace /var/lib/jenkins/workspace/demoCI

No credentials specified

> git rev-parse --is-inside-work-tree # timeout=10

Fetching changes from the remote Git repository

> git config remote.origin.url https://github.com/mikaelkrief/MyShuttle?.git # timeout=18
Fetching upstream changes from https://github.com/mikaelkrief/Myshuttle2.git

> git --version # timeout=18@

> git fetch --tags --progress https://github.com/mikaelkrief/MyShuttle2.git +refs/heads/*:refs/remotes/origin/*
> git rev-parse refs/remotes/origin/master*{commit} # timeout=1@

> git rev-parse refs/remotes/origin/origin/master~{commit} # timeout=18

Checking out Revision 475f4117a5e4d4892427e77104875f7f25ab@734 (refs/remotes/origin/master)

Figure 7.18 - Jenkins job console output

We have just created a CI job in Jenkins that runs during a commit of a Git repository
(GitHub, in our example).

In this section, we have looked at the creation of a pipeline in Jenkins. Let's now look at
how to create a CI/CD pipeline with another DevOps tool: Azure Pipelines.

208 Continuous Integration and Continuous Delivery

Using Azure Pipelines for CI/CD

Azure Pipelines is one of the services offered by Azure DevOps. It was previously known
as Visual Studio Team Services (VSTS).

Azure DevOps is a complete DevOps platform provided by Microsoft that is fully
accessible via a web browser and requires no installation. It is very useful for the following

reasons:

o The DevOps tools manage their code in a version control system (VCS).

« It manages a project in agile mode.

« It deploys applications in a CI/CD pipeline, to centralize packages.

o It performs manual test plans.

Each of these features is combined into services that are summarized in this table:

Service name

Description

Documentation link

Azure Repos

This is an VCS that we looked at
in the previous chapter.

https://azure.microsoft .com/
en-us/services/devops/repos/

Azure Boards

This is a service for project
management in agile mode with
sprints, backlogs, and boards.

https://azure.microsoft .com/
en-us/services/devops/boards/

Azure Pipelines

This is a service that allows the

management of CI/CD pipelines.

https://azure.microsoft.
com/en-us/services/devops/
pipelines/

Azure Artifacts

This is a private package
manager.

https://azure.microsoft.
com/en-us/services/devops/
artifacts/

Azure Test Plans

This allows you to make and
manage a manual test plan.

https://azure.microsoft.com/
en-us/services/devops/test-
plans/

Table 7.1 - Azure DevOps services list

Using Azure Pipelines for CI/CD 209

Azure DevOps is free for up to five users. Beyond that, there is a license version

with per-user costs. For more information on licensing, refer to the product sheet at
https://azure.microsoft.com/en-us/pricing/details/devops/
azure-devops-services/, which also contains a calculator to get a cost estimate for
your team.

Note

There is also Azure DevOps Server, which is the same product as Azure
DevOps, but it installs itself on-premises. To find out the differences between
these two products, read the documentation here: https://docs.
microsoft.com/en-us/azure/devops/user-guide/about-
azure-devops-services-tfs?view=azure-devops.

To register with Azure DevOps and create an account, called an organization, we need
either a Microsoft live account or a GitHub account, and to then follow these steps:

1. Inyour browser, go to this URL: https://azure.microsoft.com/en-us/
services/devops/.

2. Click on the Sign In button.
On the next page, choose the account to use (either Live or GitHub).

4. Assoon as we register, the first step suggested is to create an organization with a
unique name of your choice and the Azure location—for example, BookLabs for
the name of the organization, and West Europe for the location.

5. In this organization, we will now be able to create projects with our CI/CD pipeline,
as we learned in Chapter 6, Managing Your Source Code with Git.

In this lab, we will show how to set up an end-to-end (E2E) CI and CD pipeline, starting
with the use of Azure Repos to version our code. Then, in Azure Pipelines, we will look at
the CI process and end with the automatic deployment of the application in the release.

https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://docs.microsoft.com/en-us/azure/devops/user-guide/about-azure-devops-services-tfs?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/user-guide/about-azure-devops-services-tfs?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/user-guide/about-azure-devops-services-tfs?view=azure-devops
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

210 Continuous Integration and Continuous Delivery

Versioning of the code with Git in Azure Repos

As we have mentioned, the first prerequisite for setting up a CI process is to have the
application code versioned in an SVC, and we will do this in Azure Repos by following
these steps:

1. To start our lab, we will create a new project; this operation has already been
covered in Chapter 6, Managing Your Source Code with Git, in the Starting with the
Git process section.

2. 'Then, in Azure Repos, we will import code from another Git repository by using
the Import repository option of the repository menu, as shown in the following

screenshot:
O Azure DevOps Booklabs / BookDemo / Repos / Files / 4 BookDemo v e R search
pel ‘Filterreposimries
n BookDemo + ° Feature1 | BookDemo / Type to find & Setup build
~ @ BookDemo 3
>
Overview .
ﬂ g Contents History = README + New + New repository
® =
! Boards .g Name T Last i (T iy e
% - 5 Manage repositories 3
Repos o = | ms Readme.md 8/21 Readme.md Mikael Krief
[Files
@ Commits
2y Pushes
1° Branches

Figure 7.19 — Azure Repos Import repository menu

3. Once the Import a Git repository window opens, enter the URL of the Git
repository whose sources we want to import. In our lab, we'll import the sources
found in the https://github.com/mikaelkrief/DemoAspNetApp.git
repository, as can be seen in the following screenshot:

https://github.com/mikaelkrief/DemoAspNetApp.git

Using Azure Pipelines for CI/CD 211

Import a Git repository X

Source type
Git A
Clone URL *

https://github.com/mikaelkrief/DemoAspMetApp.git D

[_J Reguires authonzation

Mame *

DemoAspNetApp

o= -

Figure 7.20 — Azure Repos Import repository

4. Click on the Import button and then we'll see that the code is imported into our
repository. The following screenshot shows the code imported into our Azure Repos
repository, which is an ASPNET code application, and its unit tests:

I¥ master ~ | DemofAspMetApp / Type to find a file or folder...

© DemoAspNetApp Contents History
B app MName T
I tests
M app
M tests

Figure 7.21 - Azure Repos import repository done

Now that we have the code in Azure Repos, we'll set up a CI pipeline that will check and
test the code at each user commit.

212 Continuous Integration and Continuous Delivery

Creating a Cl pipeline

We will create a CI pipeline in Azure Pipelines by following these steps:

1. To create this pipeline, open the Pipelines | Builds menu, as shown in the following
screenshot. Then, click on the New pipeline button:

* Pipelines Pipelines

e Builds]
L Test Plans

¥ Releases
By Artifacts W\ Library

= Task groups

" Deployment groups

Figure 7.22 — Azure Pipelines: creating a build

2. For the configuration mode, we choose the Use the classic editor option, as shown
in the following screenshot:

ﬂ Overview Mew pipeline

E Boards Where Is your COde?
Repos

Azure Repos Git YAML
Free private Git repositories, pull requests, and code search

* Pipelines
u Bitbucket Cloud ~ YAML
I . Hosted by Atlassian
kd Builds
GitHub ~ YAML
ﬁ Rel H o Home to the world's largest community of developers
% Libra : -
2 o GitHub Enterprise Server =~ YAML
The self-hosted version of GitHub Enterprise
= Task groups
= Depl . ‘} Other Git
ployment groups Any Internet-facing Git repositary
L B == Subversion
L— |

Centralized version control by Apache

g Artifacts

Use the classic editor tojcreate a pipeline without YAML,

Figure 7.23 — Azure Pipelines classic editor link

Using Azure Pipelines for CI/CD 213

In Azure Pipelines, there is the choice of either classic editor mode, which allows us
to configure the pipeline via a graphical interface, or YAML pipeline mode, which
involves using a YAML Ain't Markup Language (YAML) file that describes the
configuration of the pipeline.

In this lab, we will use the classic editor mode so that we can visualize the different
options and configuration steps.

3. 'The first configuration step of the pipeline consists of selecting the repository that
contains the application's sources.

Today, Azure Pipelines supports several types of Git systems, such as Azure Repos,
GitHub, Bitbucket, and Subversion (SVN). We will therefore select Azure Repos
Git in the repository that contains the imported sources, as shown in the following
screenshot:

Select a source

4]0 O = u e

Azure Repos Git GitHub GitHub Enterprise Subversion Bitbucket Cloud Other Git
Server

Team project

B1 BookDemo v
Repository
4 DemoAspNetApp v e

Default branch for manual and scheduled builds

¥ master v

Figure 7.24 — Azure Pipelines: selecting the source repository

4. Azure Pipelines proposes to select a build template that will contain all the
preconfigured build steps; there is also the possibility to start from an empty
template.

214 Continuous Integration and Continuous Delivery

Since our project is an ASPNET core application, we will choose the ASPNET Core
template, as shown in the following screenshot:

Select a template Search
Or start with an i3 Empty job

Others

Ant
Build and test a Java project with Apache Ant.

ASP.NET Core
Build and test an ASP.NET Core web application. @ Apply

DQ ASP.NET Core (.NET Framework)

Build an ASP.NET Core web application that targets the full .NET
Framework.

\

Figure 7.25 — Azure Pipelines: choosing a template

Once the template has been chosen, we reach the configuration page of the build
definition.

The configuration of the build definition consists of four main sections, outlined as
follows:

» Variables
= Steps

= Triggers
= Options

Using Azure Pipelines for CI/CD 215

5. We configure the Variables section, which allows us to fill in a list of variables in a
key form, creating a value that can be used in the steps.

The following screen shows the Variables tab of our build definition:

& - > BookDemo-ASP.NET Core-Cl

Tasks Variables Triggers Options Retention History ‘ Save & queue Vv

Pipeline variables

Variable groups

Predefined variables 2

BuildPlatform variables, which are already prefilled by the template,
and the + Add button, which allows us to add other variables if we wish.

Name T

“? Discard

= Summary [> Queue ...

Value

BuildConfiguration

BuildPlatform

Release

any cpu

system.collectionld
system.debug
system.definitionld

system.teamProject

T6c79aec-9641-44c5-be15-beacfafes7a9

false

1

BookDemo

Figure 7.26 — Azure Pipelines: Variables tab
When we navigate to the Variables tab, we see the BuildConfiguration and

]

Settable at queue time

Note

Documentation on variables is available here: https://docs.microsoft.
com/en-us/azure/devops/pipelines/process/variables?view=azure-
devops&tabs=classic%2Cbatch.

6. We configure the Tasks tab, which contains the configuration of all the steps to be
performed in the build.

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=classic%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=classic%2Cbatch
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=classic%2Cbatch

216 Continuous Integration and Continuous Delivery

Here is a screenshot of this tab:

Tasks Vanables Triggers Options Retention History | Save & queue ~ D

Pipeline
Build pipeline

z= Get sources
o] DemoAspMetApp ¥ master

Agent job 1 +

B Runon agent

Restore
MET Core

Build
MET Core

daotnet

=
=
LS

Test
MNET Core

Publish
MNET Caore

Publish Artifact
Publish Build Artifacts

Figure 7.27 — Azure Pipelines: Tasks list

In the preceding screenshot, the first part is Pipeline, which allows us to configure
the name of the build definition as well as the agent to use.

Indeed, in Azure DevOps, pipelines are executed on agents that are installed on
VMs or containers.

Azure DevOps offers free agents from multiple operating systems (OSes), called a
hosted agent, but it is also possible to install your own agents, known as self-hosted
agents.

Note

To learn more about hosted and self-hosted agents, refer to the following
documentation: https://docs.microsoft.com/en-us/azure/
devops/pipelines/agents/agents?view=azure-devops.

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops

Using Azure Pipelines for CI/CD 217

The following screenshot shows the configuration of the Pipeline section:

Tasks Variables Triggers Options Retention History ‘ Save & queue ~ %) Discard = Summary Notifications :
Service hooks Agent POOIS
Pipeline e
|Bnild pipeline I Dashboards
Name * Name
= ?S solrc: SIA;; % mast ‘ DemoCICD-ASP.NET Core-Cl Boards -
SUEREINEIED master B & Azure Pipelines
Project configuration Azure Pipelines
. Agentpool* (D | Poolinformation | IManage [£] l \) 9
égent job1 + Team configuration Default
& Runon agent ‘ Azure Pipelines e \ a Aot Pioclines
GitHub connections "
Pipelines
Agent pools e
Parallel jobs

Figure 7.28 — Azure Pipelines: Agent pools configuration

7. 'Then, we have the Get sources phase, which contains the configuration of the
sources that we did at the beginning; it is, however, possible to moditfy it here, as
illustrated in the following screenshot:

Tasks Variables Triggers Options Retention History | Save & queue v) Discard = Summary [> Queue
Pipeline
Build pipeline Select a source

40 o =

Azure Repos Git GitHub GitHub Enterprise Subversion
Server

== Get sources

o DemoAsphetApp I¥ master

Agent job 1
& Runon agent +

Team project
M Restore
NET Core ‘ =1 BookDemo

Build -
NET Core Repository

NET Core
Default branch for manual and scheduled builds

Publish
NET Core ‘3" master ~ |

M Test ‘ © DemoAspNetApp ~ ‘

Figure 7.29 — Azure Pipelines: source code configuration

8. We have the Agent job part, which contains an ordered list of tasks to be performed
in the pipeline. Each of these tasks is configured in the panel on the right.

218 Continuous Integration and Continuous Delivery

We can add tasks by clicking on the + button, and then select them from the Azure
Pipelines catalog, as follows:

Pipeline
Build pipeline
Add tasks | U Refresh
== Get sources
v DemoAsphetApp ¥ master
All Build Utility Test Package Deploy Tool
Agent job 1 +
8 Run on agent
.NET Core
Restore \ = Build, test, package, or publish a dotnet application,
MNET Caore For package commands, supports NuGetorg
Management and MyGet.
Build
{NET Core .NET Core SDK Installer
Acquires a specific version of the .NET Core SDK from
Test it to the PATH, Use this task to change the version
NET Core
e L . - .
i i Android Signin
Publish 'm aning

Figure 7.30 — Azure Pipelines: adding a task
By default, Azure Pipelines contains a very rich catalog of tasks; a list of
these is available here: https://docs .microsoft.com/en-us/
azure/devops/pipelines/tasks/index?view=azure-
devops. We can also install tasks that can be found in the Azure
Marketplace: https://marketplace.visualstudio.com/
search?target=AzureDevOps&category=Azure%20
Pipelines&sortBy=Downloads. If necessary, you can also create tasks for
your needs by following the documentation here: https://docs.microsoft.

com/en-us/azure/devops/extend/get-started/node?view=azure-
devops.

Let's define the five tasks in the CI pipeline, as follows:

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/index?view=azure-devops
https://marketplace.visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines&sortBy=Downloads
https://marketplace.visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines&sortBy=Downloads
https://marketplace.visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines&sortBy=Downloads
https://docs.microsoft.com/en-us/azure/devops/extend/get-started/node?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/extend/get-started/node?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/extend/get-started/node?view=azure-devops

Using Azure Pipelines for CI/CD 219

Step/task Description

Restore Restores the packages referenced in the project

Build Builds the project and generates binaries

Test Runs unit tests

Publish Creates a ZIP package that contains the binary files of the project

Defines an artifact that is our ZIP package of the application, which
we will publish in Azure DevOps, and which will be used in the
deployment release, as seen in the previous section, using a package
manager in the CI/CD process

Publish build artifacts

Table 7.2 - Azure Pipelines steps list

9. 'The last important configuration of our CI pipeline is the configuration of the build
trigger in the Triggers tab to enable CI, as shown in the following screenshot:

Tasks Variables Triggers Options Retention History | Save & queue '9 Discard = Summary [> Queue

Continuous integration D AsoNetA
emoAspNetApp

m DemoAspNetApp

Enabled [@ Enable continuous integration]
Scheduled + Add D Batch changes while a build is in progress
No builds scheduled Branch filters
Type Branch specification
Build completion + Add
Include A | | % master ~ o

Build when another build completes

-+ Add

Figure 7.31 — Azure Pipelines: enabling CI

220 Continuous Integration and Continuous Delivery

10. The configuration of our CI or build pipeline is complete; we validate and test its
execution for the first time by clicking on the Save & queue button, as illustrated in
the following screenshot:

& --- > BookDemo-ASP.NET Core-Cl

Tasks Variables Triggers Options Retention History B Save & queue ~)| Discard
Continuous integration »q Save & queue
S
pq DemoAspNetApp ave
SR Save as draft

Figure 7.32 — Azure Pipelines: saving and queuing the pipeline

11. At the end of the execution of the build, we have some information that helps us to
analyze the status of the pipeline, as follows:

» The following screenshot shows the execution logs. This displays the details of the
execution of each task defined in the pipeline:

@ 1#20190606.2: add solution

Manually run today at 13:39 by Mikael Krief 4 DemoAspNetApp I# master ¢ 6dd6355

Summary Tests

Agent job 1
Pocl: Hosted Ubuntu 1604 - Agent: Hosted Agent

Prepare job - succeeded

Initialize job - succeeded

Checkout - succeeded

Restore - succeeded

Build - succeeded

Test - succeeded

Publish - succeeded

Publish Artifact - succeeded

Post-job: Checkout + succeeded

Finalize Job - succeeded

Report build status - succeeded

Figure 7.33 — Azure Pipelines run result

Using Azure Pipelines for CI/CD 221

» The results of the execution of the unit tests are shown next. The following
screenshot displays a report of the executions of unit tests with some important
metrics, such as the number of passed/failed tests and the test execution time:

@ #20190606.2: add solution

Manually run today at 13:39 by Mikael Krief € DemoAspNetApp I master ¢ 6dd6855

Logs Summary | Tests

Summary

1 Run(s) Completed (1 Passed, 0 Failed)

1 1 orses 100% 65 974ms

0 @ Failed
0 @& Others

Total tests Pass percentage Run duration (@)

T +25 787ms

Figure 7.34 — Azure Pipelines: test execution summary

» The following screenshot shows the published artifacts. This provides the
possibility to explore or download the published artifacts defined in the Publish

Build Artifact task of the pipeline.

Artifacts explorer

drop

O appzip

Figure 7.35 — Azure Pipelines: browsing artifacts

Now we know our CI build is configured and operational, we will create and configure a
deployment release for the CD pipeline.

222 Continuous Integration and Continuous Delivery

Creating a CD pipeline - the release

In Azure Pipelines, the element that allows deployment in the different stages or
environments is called the release. We will now create a release definition that will deploy
our build-generated artifacts to an Azure web app by following these steps:

1. To create a release definition, we go to the Releases menu and click on New
pipeline, as follows:

Overview

Boards

Repos .
Pipelines ‘! . >\'.
Builds \

v e @D A D

Releases o No release pipelines found
Y Library Automate your release process in a few easy steps with a new pipeline
= Task groups e
"t Deployment groups

A Test Plans

Figure 7.36 — Azure Pipelines: creating a release definition

2. As for the build, the first step of the configuration is to choose a template already
configured. For this lab, we will choose the Azure App Service deployment
template, as illustrated in the following screenshot:

Using Azure Pipelines for CI/CD 223

/ BookDemo / Pipelines

All pipelines > ¥ New release pipeline
PP PP Select a template

Pipeline Tasks ~ Variables Retention Opfions History Orstartwith an & Empty job

Featured

Artifacts | + Add Stages | | Add @ Azure App Service deployment

Deploy your application to Azure App Service. Choose from
Web App on Windows, Linux, containers, Function Apps, or
WebJobs.

@ Deploy a Java app to Azure App Service

+ ?:\‘::c: Stage 1 Deploy a Java application to an Azure Web App.
i Select a template
—————————————————— ‘ Deploy a Node.js app to Azure App Service
Deploy a Nodejs application to an Azure Web App.
Schedule
‘ @ ‘ not set

@ Deploy a PHP app to Azure App Service and
Azure Database for MySQL

Figure 7.37 — Azure Pipelines: Azure App Service deployment template

3. 'Then, in the next window, the first stage is named—for example, CI—as the CI
environment, as illustrated in the following screenshot:

Stage
| + Add ~ a

& Properties A

Mame and owners of the stage

I
| Stage name

£ |
L | (@ 1job, 1task Cl

| | Stage owner

@ Mikael Krief

Figure 7.38 — Azure Pipelines: Stage name

224 Continuous Integration and Continuous Delivery

4. We configure the entry point of the release in the artifacts part by adding an artifact
that is the build definition previously created in the Creating a CI pipeline section,

as follows:
All pipelines > ¥ Add an artifact
Pipeline (@ Tasks ~ Variables
Source type
------ I*I Q‘>
Artifacts | + Add + Build Azure Repos ...

Add an artifact

]

Schedule
not set

5 more artifact types

O

GitHub

TFVC

Project * @
b | | BookDemo hd |
Source (build pipeline) * 0]
a| BookDemo-ASP.NET Core-CI hd |
Default version * ()
""" | Latest v
Source alias* (@
| _BookDemo-ASP.NET Core-Cl ‘
@ The artifacts published by each version will be le for depl it in release pipeli The latest

successful build of BookDemo-ASP.NET Core-Cl published the following artifacts: drop.

Figure 7.39 — Azure Pipelines: adding a release artifact

Using Azure Pipelines for CI/CD 225

5. We configure the automatic release trigger for each successful build execution
as follows:

All pipelines > F New release pipeline

Pipeline (O Tasks - Variables Retention Options History

Continuous deployment trigger
Artifacts | + Add Build: _BookDemo-ASP.NET Core-Cl

@D cnabied

e Creates a release every time a new build is available.
&

el Build branch filters ()

_BookDemo-
ASP.NET Core-C

Mo filters added.
4+ Add |

Figure 7.40 — Azure Pipelines: release enabling CD

6. Now, we'll configure the steps that will be executed in the CI stage; by clicking
on the stage, we get exactly the same configuration window as the build, with the
following information:

= The agent's choice over the Run on agent section

» The configuration of the steps with their parameters

226 Continuous Integration and Continuous Delivery

In our case, we see the deployment task in an Azure web app that was already
present in the template. We first fill in the parameters that are located in the
CI header because they are shared for the CI course, as shown in the following
screenshot:

All pipelines > ¥ New release pipeline Save

Pipeline Tasks v Variables Retention Options History

Cl

Deployment process Stage name
‘ Cl

Run on agent T -

S Run on agent + arameters & | @ Unlink all
IAzure subscription * | Manage 2

Deploy Azure App Service
Azure App Service Deploy |: ~ O

o] Scoped to subscription "DEMO”

[This field is linked to 1 setting in 'Deploy Azure App Service
App type

|:Web App on Windows hd

IApp service name *

|:demoboc:k—c'| hd O

Figure 7.41 — Azure Pipelines: release configuration

We will fill in the following parameters:

» The connection to your Azure subscription

» The name of the Azure web app in which we want to deploy our ZIP package

Note

The web app must already be created before deploying the application in it.
If it is not created, you can use the Azure command-line interface (CLI)

az webapp create command, documented at https://docs.
microsoft.com/en-us/cli/azure/webapp?view=azure-
cli-latest#az-webapp-create, or the PowerShell New-
AzureRmWebApp command, documented at https://docs.
microsoft.com/en-us/powershell/module/azurerm.
websites/new-azurermwebapp?view=azurermps-6.13.0.

Then, in the parameters of the Azure deployment task, we have nothing to modity.

https://docs.microsoft.com/en-us/cli/azure/webapp?view=azure-cli-latest#az-webapp-create
https://docs.microsoft.com/en-us/cli/azure/webapp?view=azure-cli-latest#az-webapp-create
https://docs.microsoft.com/en-us/cli/azure/webapp?view=azure-cli-latest#az-webapp-create
https://docs.microsoft.com/en-us/powershell/module/azurerm.websites/new-azurermwebapp?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/powershell/module/azurerm.websites/new-azurermwebapp?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/powershell/module/azurerm.websites/new-azurermwebapp?view=azurermps-6.13.0

Using Azure Pipelines for CI/CD 227

7. We just have to rename the release with a name that simply describes what it does,
and then we save it, as follows:

Booklabs / BookDemo / Pipelines FO e I e R Search
All pipelines > | DeployApp CD ¢ W ére
Pipeline Tasks ~ Variables Retention Options History
Cl
Deployment process Stage name
cl

Run on agent +

£ Runon agent

Parameters © | @; Unlink all

Figure 7.42 — Azure Pipelines: editing the release name

8. Now, we complete our definition of the release with the deployment of the other
environments (or stages), which are, for our example, QA and PROD. To simplify
the manipulation, we will clone the CI environment settings in our release and
change the name of the App service name settings to the name of the web app. The
following screenshot shows the clone environment action:

All pipelines > % DeployApp CD
Pipeline Tasks -~ Variables Retention Options History

Artifacts | + Add Stages | + Add v

%

n
el % | a

_BookDemo- — i . Q
ASP.NET Core-C| R | 1job, 1task

-+ ™ Clone
® Schedule .

not set -

Figure 7.43 — Azure release clone stage

228 Continuous Integration and Continuous Delivery

And the following screenshot shows the Azure App service name settings with the
web app name of the new environment:

Pipeline Tasks v Variables Retention Options History
QA Stage name
Deployment process
QA
Run on agent + Parameters © | @ Unlinkall

2 Run on agent

Azure subscription® @ | Manage 2
Deploy Azure App Service
Azure App Service deploy

0] Scoped to subscription ‘DEMO’

App type @

Web App on Windows

App service name * @

demobook-qga

Figure 7.44 - Azure release: editing the app service name

9. We finally get the release definition, as follows:

All pipelines > ¥ DeployApp CD

Save %7 Createrelease = View releases

Pipeline Tasks - Variables Retention ~ Options History

Artifacts | + Add

Stages | + Add v

not set

9 ‘\ﬁ / —] i—l

k:F i \//42\ a (o) AR (a) % proD ‘2

P L& | 1job, 1task >/ R | 1job, 1task \"/ R | 1job, 1task A\
[® ‘ Schedule

Figure 7.45 — Azure Pipelines: release definition

Using Azure Pipelines for CI/CD 229
10. To trigger the deployment of our application, we will create a new release by
clicking on the Create release button, as shown in the following screenshot:
All pipelines > T DeployApp CD %7 Create release |'’= View releases
Pipeline Tasks - Variables Retention Options History
Artifacts | + Add Stages | + Add v
Figure 7.46 — Azure Pipelines: creating a release
11. At the end of its execution, we can see its deployment status, as shown in the
following screenshot:
Booklabs / BookDemo / Pipelines / Releases /O Search
R Search all pipelines .
DeployApp CD Z Edit
% =R} + New v Releases Deployments Analytics H
DeployApp CD Releases Created Stages
oc
/'\ Release-1) ~
& 20190... §° master 2019-06-11 0:43)@ Can O prOD

Figure 7.47 - Azure Pipelines: deployment status

In this screenshot, we see that the deployment in the integration environment was

successfully completed.

By following the steps in this lab, we have created a CI and CD pipeline in user interface

(UI) mode (called classical). Now, we will learn how to create a pipeline in code mode

with a YAML file.

Creating a full pipeline definition in a YAML file

In the previous sections, we discussed the creation of a CI and CD pipeline in Azure

DevOps using the UI, which has some advantages, but one of its inconvenient points is

the difficulty to automate the creation of a pipeline for lots of projects.

To solve this problem, Azure DevOps has the possibility to write the entire pipeline
definition (CI and CD) inside a YAML file that is saved in the repository.

230 Continuous Integration and Continuous Delivery

Note

The objective of this section is to demonstrate an overview of the pipeline
YAML of Azure DevOps with only the CI steps. It's not an advanced lab, and
if you want to learn more, read the documentation here: https://docs.
microsoft.com/en-us/azure/devops/pipelines/yaml-
schema.

In the following lab, we will learn how to create a basic pipeline definition in a YAML file.
Here's how to do this:

1. In Azure Repos, inside the DemoBook repository created previously, add a new file
named azure-pipeline.yaml, with the following content:

trigger:
- master
pool:
vmImage: ubuntu-latest
steps:
- task: DotNetCoreCLI@2
displayName: "Restore"
inputs:
command: restore
projects: '**/* csproj'
- task: DotNetCoreCLI@2
displayName: "build"
inputs:
command: 'build'
projects: '**/* csproj'
arguments: '--configuration Release'
- task: DotNetCoreCLI@2
displayName: "Run tests"
inputs:
command: 'test'
projects: '**/tests/*.csproj'
arguments: '--configuration Release'
- task: DotNetCoreCLI@2
displayName: "Code coverage"

inputs:

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema

Using Azure Pipelines for CI/CD 231

command: test

projects: '**/*Tests/*.csproj'
arguments: '--configuration Release --collect "Code
coverage"'

In this file, we have three sections: trigger, pool, and steps. In the trigger
section, we indicate the branch of the code that triggers the pipeline, so here, any
commit on the master branch will execute the pipeline.

Then, the pool section indicates the agent pool to be used to execute the pipeline.
Finally, in the steps section, we write all tasks that will be executed during the
pipeline. Here, in our lab, we have declared four tasks, as follows:

= The restore of the NuGet packages of the project
» The compilation of the project
= The execution of the tests

= The publication of the code coverage of the executed tests

2. We commit and push this file into the root of the repository, as follows:

BookLabs BookDemo Repos Files © DemoAspNetApp.git v

© DemoAspNetApp.git

> ™ app

> I tests

| ‘ [azure-pipeline.yaml |

- =4

Figure 7.48 — Azure Pipelines: YAML pipeline

232 Continuous Integration and Continuous Delivery

3. In Azure Pipelines, open the Pipeline menu and click on the Create pipeline
button, as shown in the following screenshot:

c Azure DevOps BooklLabs / BookDemo / Pipelines = il
BookDemo +
ﬂ Overview
! Boards
Repos F
’ Pipelines o ‘,
‘e @) ¥
E. Environments . .
Create your first Pipeline

.,ﬁ? Releases

Automate your build and release processes using our wizard, and go from
[V Library code to cloud-hosted within minutes.

Task groups e Create Pipeline

t+ Deployment groups

Figure 7.49 — Azure Pipelines: creating a new YAML pipeline

4. Select the source of the code (here, we choose Azure Repos Git) and select the
repository that contains the YAML file of the pipeline, as illustrated in the following
screenshot:

Booklabs / BookDemo / Pipelines

~ Connect Select Configure Review

New pipeline

Select a repository

Y Filter by keywords BookDemo X

0 DemoAspNetApp.git
)

Figure 7.50 — Azure Pipelines: selecting the repository

Using Azure Pipelines for CI/CD 233

5. 'Then, configure the Azure pipeline by choosing the option to use the existing YAML
file, as illustrated in the following screenshot:

Booklabs / BookDemo / Pipelines

~ Connect + Select Configure Review

New pipeline

Configure your pipeline

@ ASP.NET Core
Build and test ASP.NET Core projects targeting .NET Care.

@ ASP.NET Core (NET Framework)
Build and test ASP.NET Core projects targeting the full .NET Framework.

- Starter pipeline
Start with a minimal pipeline that you can customize to build and deploy your code.

- Existing Azure Pipelines YAML file
Select an Azure Pipelines YAML file in any branch of the repository.

Figure 7.51 - Azure Pipelines: selecting the option to use an existing YAML file
Then, select the path of the pipeline YAML file, as follows:

Select an existing YAML file X

Select an Azure Pipelines YAML file in any branch of the
repository.

Branch

3—9 master v

Path

/azure-pipeline.yaml o v

Select a file from the dropdown or type in the path to your file

DemoAspNetApp.git [2

Figure 7.52 - Azure Pipelines: selecting the YAML file
Validate this by clicking on the Continue button.

234 Continuous Integration and Continuous Delivery

6. The content of the file is displayed on the screen. Finally, to execute the pipeline,
click on the Run button, as illustrated in the following screenshot:

g DPDAEBR+8 0

»

Azure DevOps £ Search = [C_DU ® p,; w
~ Connect + Select + Configure Review
New pipeline
Review your pipeline YAML variables | [ENLNNESE
@ DemoAspNetApp.git / azure-pipeline.yaml = Show assistant
1 trigger:
2
3 - -master
4
5 pool:
6
7 vmImage: -ubuntu-latest
8
9
10 steps:
11
Settings
12 - -task: -DotNetCoreCLI@2
13
14 displayName: - "Restore”
15

Figure 7.53 — Azure Pipelines: running the pipeline

The pipeline is created and is executed.

7. Finally, we can view the details of the execution of the pipeline, as illustrated in the
following screenshot:

Using Azure Pipelines for CI/CD 235

@ #20210926.1 Added azure-pipeline.yaml

on DemoAspNetApp.git

@ This run is being retained as one of 3 recent runs by master (Branch).

Summary Tests Releases

Manually run by ' Mikael Krief

Repository and version Time started and elapsed

€ DemoAspNetApp.git [51 26 sept. at 17:09
 master ¢ 282b335b © 395

Warnings 1

@ Project files) matching the specified patten were not found.
Code coverage

Jobs

- /
@ Job

View retention leases

View 7 changes

Related Tests and coverage
[0 work items © 100% passed
E30 artifacts Setup code coverage
Duration
Success ® 32s

Figure 7.54 — Azure Pipelines: job execution

Click on Job, as indicated in the preceding screenshot, to display the details of the
execution of each task. You should then see a screen like this:

< Jobs in run #20210926.1

DemoAspNetApp.qgit

Jobs

Initialize job <1

° Checkout DemoAspNet...

© Restore

@ huild

© Runtests

@ Code coverage <1

@ Post-job: Checkout D... <1
Finalize Job <1
Report build status <1

I~
bz

Job

Pool: Azure Pipelines
Image: ubuntu-latest
Agent: Hosted Agent
Started: Today at 17:09

Duration: 32s

7 » Job preparation parameters

A 100% tests passed

Figure 7.55 — Azure Pipelines: details of the execution

236 Continuous Integration and Continuous Delivery

In this section, we learned the basics of how to use YAML files that contain the definition
of the pipeline and have many other very interesting features. To learn more, consult the
documentation here: https://docs.microsoft.com/en-us/azure/devops/
pipelines/?view=azure-devops.

Let's now look at creating a CI pipeline using GitLab CI.

Using GitLab ClI

In the previous sections of this chapter, we learned how to create CI/CD pipelines with
Jenkins and Azure Pipelines.

Now, let's look at a lab using another DevOps tool that is gaining popularity: GitLab CI.

GitLab CI is one of the services offered by GitLab (https://about.gitlab.com/),
which, like Azure DevOps, is a cloud platform with the following attributes:

« A source code manager
« A CI/CD pipeline manager

« A board for project management

The other services it offers are listed here: https://about.gitlab.com/
features/.

GitLab has a free price model with additional services that are subject to a charge;

a price grid is available at https: //about .gitlab.com/pricing/. The differences
between Azure DevOps and GitLab are detailed in this link: https: //about.
gitlab.com/devops-tools/azure-devops-vs-gitlab.html.

In this lab, we'll find out about the following:
1. Authentication at GitLab

2. Creating a new project and versioning its code in GitLab

3. The creation and execution of a CI pipeline in GitLab CI

https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://about.gitlab.com/
https://about.gitlab.com/features/
https://about.gitlab.com/features/
https://about.gitlab.com/pricing/
https://about.gitlab.com/devops-tools/azure-devops-vs-gitlab.html
https://about.gitlab.com/devops-tools/azure-devops-vs-gitlab.html

Using GitLab CI 237

Authentication at GitLab

Creating a GitLab account is free and can be done either by creating a GitLab account or
using external accounts, such as Google, GitHub, Twitter, or Bitbucket.

To create a GitLab account, we need to go to https://gitlab.com/users/sign_
in#fregister-pane and choose the type of authentication.

The following screenshot shows the GitLab authentication form:

GitLab.com

GitLab.com offers free unlimited (private) repositories and unlimited

collaborators. signin L
¢ Explore projects on GitLab.com (no login needed) Username or email
¢ More information about GitLab.com =
s GitLab.com Support Forum
* GitLab Homepage Password
By signing up for and by signing in to this service you accept our:
) Remember me Forgot your password?

* Privacy policy

" crtebom tems

Sign in with
& Googe W Twitter
) GitHub B Bitbucket
Salesforce

[J Remember me

Figure 7.56 — GitLab registration

https://gitlab.com/users/sign_in#register-pane
https://gitlab.com/users/sign_in#register-pane

238 Continuous Integration and Continuous Delivery

Once your account has been created and authenticated, you will be taken to the home
page of your account, which offers all the functionalities shown in the following
screenshot:

& GitLab Groups v Activity Milestones Snippets [2) v Search or jump to... Q

Welcome to GitLab

Code, test, and deploy together

Create a project Create a group

Projects are where you store your code, access issues, wiki and

N Groups are the best way to manage projects and members.
other features of GitLab.

Explore public projects Learn more about GitLab

Th 1,259,593 publi ject: thi - Publi N . .
ere are public projects on this server. Fublie " Take a look at the documentation to discover all of GitLab's

rojects are an easy way to allow everyone to have read-onl .
proy ¥ way T d = capabilities.

access.

Figure 7.57 - GitLab home page

Now that we are done with authentication, let's go ahead and create a new project.

Creating a new project and managing your
source code

To create a new project in GitLab, follow these steps:

1. Click on Create a project on the home page, as illustrated in the following
screenshot:

Using GitLab CI 239

Welcome to GitLab

Code, test, and deploy together

Create a project

E Projects are where you store your code, access issues, wiki and
other features of GitLab.

Figure 7.58 - GitLab new project

+ Then, we can choose from a few options, as follows:

= To create an empty project (without code), the form asks you to enter the project's
name, as illustrated in the following screenshot:

Blank project Create from template Impert project CI/CD for external repo

Project name

BookDemo
Project URL Project slug
https://gitlab.com/mikakrief/ bookdemao

‘Want to house several dependent projects under the same namespace? Create a group.
Project description (optional)
Description format

Visibility Level @

® @@ Private
Project access must be granted explicitly to each user.

O P Internal

The project can be accessed by any logged in user.

O @ Public
The project can be accessed without any authentication.

[J Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

Create project Cancel

Figure 7.59 - GitLab project configuration

240 Continuous Integration and Continuous Delivery

» To create a new project from a built-in template project, proceed as follows:

Blank project Create from template Import project CI/CD for external repo

Learn how to contribute to the built-in templates
Built-in 17 Instance 0 Group 0

t.\ Ruby on Rails

. Preview Use template
Includes an MVC structure, Gemfile, Rakefile, along with many others, to help you get started.

Spri
(;',I pring Preview Use template
Includes an MVC structure, mvnw and pomxml to help you get started.

NodelS Express .
Preview Use template
Includes an MVC structure to help you get started.

i0S (Swift) 5
B Preview Use template
A ready-to-go template for use with 105 Swift apps.

-NET Core .
. . E Preview Use template
A NET Core consaole application template, customizable for any .NET Core project

Figure 7.60 - GitLab project template

» To import code from an internal or external repository of another SVC platform,
this is as shown in the following screenshot:

Blank project Create from template Import project CI/CD for external repo
Import project from

& GitLab export Q) GitHub © Bitbucket Cloud @ Bitbucket Server G Google Code ¥ Fogbugz = " Gitea

git Repo by URL [3] Manifest file

Figure 7.61 - GitLab: importing code

» The code to import is located in an external SVC repository, as shown in the
following screenshot:

Using GitLab CI 241

Blank project Create from template Import project CI/CD for external repo

Run CI/CD pipelines for external repositories

Connect your external repositories, and CI/CD pipelines will run for new commits. A GitLab project will be created with only CI/CD features

enabled.

If using GitHub, you'll see pipeline statuses on GitHub for your commits and pull requests. Mare info

Connect repositories from

O GitHub git Repo by URL

Figure 7.62 - GitLab: CI/CD for external repositories
In our case, for this lab, we will start with the first option, which is an empty project,
and as we saw in the form, we choose a project name such as BookDemo and then
validate it by clicking on the Create a project button.

2. Once the project is created, we'll have a page that indicates the different Git
commands to execute to push its code.

3. To do this, on our local disk, we will create a new gitlab-ci-demo.yml file and
then copy the content of our example, which can be found at https://github.
com/PacktPublishing/Learning-DevOps-Second-Edition/tree/
main/CHAPO7,inthe gitlab-ci-demo.yml file.

4. Then, we will execute the following commands in a terminal to push the code into
the repository, as seen in detail in Chapter 6, Managing Your Source Code with Git:

git init

git remote add origin <git repo Url>
git add .

git commit -m "Initial commit"

git push -u origin master

Note

During execution, an identification window will ask for your GitLab account
identifier (ID) because it is a private project. Once logged in to your account
on the GitLab web portal, your username will be available on your account
pageathttps://gitlab.com/profile/account.

Once these commands have been executed, we'll obtain a remote GitLab repository with
our lab code.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP07
https://gitlab.com/profile/account

242 Continuous Integration and Continuous Delivery

The following screenshot shows the remote GitLab repository:

B BookDemo & ov | frsr | 0 ¥Fork| 0

Project ID: 12804986

&® Add license -0-1Commit ¥ 1Branch & 0Tags [3 911 KB Files

© Auto DevOps x
=z It will automatically build, test, and deploy your application based on a predefined CI/CD configuration.
o o Learn more in the Auto DevOps documentation
Enable in settings

master ~ | bookdemo [+ ~ History = @Q Find file Web IDE @ v

lﬁi Initial commit dfezed2f

Mikael KRIEF authored 8 minutes ago
| @ Add README | @ Add CHANGELOG @ Add CONTRIBUTING @ Add Kubernetes cluster @ Set up CI/CD

Name Last commit Last update
B app Initial commit 8 minutes ago
I tests Initial commit 8 minutes ago

Figure 7.63 - GitLab repository

The code of our application has been deposited in GitLab, and we can now create our CI
process with GitLab.

Creating a Cl pipeline
In GitLab CI, the creation of a CI pipeline (and CD) is not done via a graphical UI (GUI),
but with a YAML file at the root of the project.

This method, which consists of describing the process of a pipeline in a file that is located
with the code, can be called Pipeline as Code (PaC), in the same way as Infrastructure as
Code (IaC). We'll proceed as follows:

1. To create this pipeline, we will create, at the root of the application code, a
.gitlab-ci.yml file with the following content:

image: microsoft/dotnet:latest
stages:

- build

- test

Using GitLab CI 243

variables:

BuildConfiguration: "Release"

build:
stage: build
script:
- "cd app"

- "dotnet restore"

- "dotnet build --configuration
$BuildConfiguration"

test:
stage: test
script:
- "cd tests"

- "dotnet test --configuration
$BuildConfiguration"

Note

The code of this file is also available here: https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAPO7/gitlab-ci-demo.yml.

We can see at the beginning of this code that we use amicrosoft/
dotnet :latest Docker image that will be mounted in a container and in which
the actions of the pipeline will be executed.

Then, we define two stages, one for the build and one for the test execution, as well
asa BuildConfiguration variable that will be used in the scripts.

Finally, we describe each of the stages of the scripts to be executed in their
respective directories. These .NET core scripts are identical to the ones we saw
in the Using Azure Pipelines for CI/CD section.

Note

Full documentation on the format and syntax of this .gitlab-ci.yml file
is available here: https://docs.gitlab.com/ee/ci/yaml/.

Then, we will commit and push this file into the remote repository.

Just after pushing the code, we can see that the CI process has been triggered.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP07/gitlab-ci-demo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP07/gitlab-ci-demo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP07/gitlab-ci-demo.yml
https://docs.gitlab.com/ee/ci/yaml/

244 Continuous Integration and Continuous Delivery

Our CI pipeline was, therefore, triggered when the code was pushed into the repository, so
let's now look at how to see the details of its execution.

Accessing the Cl pipeline execution details

To access the execution details of the executed CI pipeline, follow these steps:

1. In the GitLab CI menu, go to CI/ CD | Pipelines, and you will see a list of pipeline
executions, as shown in the following screenshot:

& Project All 4 Pending 0 Running 0 Finished 4 Branches Tags Run Pipeline Clear

® Repository Status Pipeline Triggerer Commit Stages
D Issues 0 #65755387 (#4) ' Pmaster o fetdade — & 00:04:36
() (v)
passe @ Update gitlab-ciyml AN £ 6 minutes ago

11 Merge Requests 0

c/co d #65751242 (#3 Fnaster © dacsoact ©® o
*#3) ' @ Update gitlab-ciyml AN £ 45 minutes ago

Jobs
Figure 7.64 - GitLab pipelines

2. To display the details of the pipeline, we click on the desired pipeline execution, as
illustrated in the following screenshot:

Pipeline #65755387 (#4) triggered 15 minutes ago by (@ Mikael Krief
Update .gitlab-ci.yml

@ 2 jobs for master in 4 minutes and 36 seconds

n

0 faebdade =~ (fy

Pipeline Jobs 2
Build Test

() build O © test Qo

Figure 7.65 - GitLab pipeline execution

Summary 245

3. We can see the execution status, as well as the two stages that you defined in the
pipeline YAML file. To view the details of the execution logs for a stage, we click on
the stage, as shown in the following screenshot:

Mikael Krief > BookDemo > Jobs > #229390643

) passed | Job #229390643 triggered 19 minutes ago by (@ Mikael Krief

Running with gitlab-runner 11.11.2 (ac2a293
on doc to-scale ed2dce3a
Using Docke! cutor with image microsoft/dotnet:latest ...
Pulling do image mi
Using docker image sha25 all: F d7f8d@c5ec38 for microsoft/dotnet:latest ...
Running on runner-ed2dce3a-projec t - o rm-1560285231-e19116a0. .

Initialized empty Git repository in /builds/mikakrief/bookdemo/.git/

From https://gitlab.com/mikakrief/bookdemo
* [new branch] master -> origin/master

Restore completed in 13.32 sec for /builds/mikakrief/bookdemo/app/app.csproj.

Figure 7.66 — GitLab execution log details

We can see the execution of the scripts written in the pipeline YAML file.

In this section, we have seen the implementation of a CI pipeline in GitLab CI with the
initialization of a remote repository and the creation of a YAML file for configuring the
pipeline as well as the execution of the pipeline.

Summary

In this chapter, we looked at one of the most important topics in DevOps: the CI/CD
process. We started with a presentation of the principles of CI and CD. Then, we focused
on package managers, looking at NuGet, npm, Nexus, and Azure Artifacts.

Finally, we saw how to implement and execute an E2E CI/CD pipeline using three
different tools: Jenkins, Azure Pipelines, and GitLab CI. For each of them, we looked at
the archiving of the application source code, along with the creation of a pipeline and its
execution.

After reading this chapter, we should be able to create a pipeline for CI and CD with
source code management as the source. In addition, we will be able to choose and use
a package manager to centralize and distribute our packages.

246 Continuous Integration and Continuous Delivery

In the next chapter, we will learn about the creation of a CI/CD pipeline for an IAC project
using Azure DevOps with the objective of executing Packer, Terraform, and Ansible code.

Questions

NSk WD

o

What are the prerequisites for implementing a CI pipeline?
When will the CI pipeline be triggered?

What is the purpose of a package manager?

Which types of packages are stored in a NuGet package manager?
Which platform is Azure Artifacts integrated into?

Is Jenkins a cloud service?

In Azure DevOps, what is the name of the service that allows the management of
CI/CD pipelines?

What are the three services offered by GitLab?
In GitLab CI, which element allows you to build a CI pipeline?

Further reading

If you would like to find out more about CI/CD pipelines, here are some resources you
can consult:

Hands-On Continuous Integration and Delivery: https: //www.packtpub.com/
virtualization-and-cloud/hands-continuous-integration-and-
delivery

Continuous Integration, Delivery, and Deployment: https://www.packtpub.
com/application-development/continuous-integration-
delivery-and-deployment

Mastering Jenkins: https://www.packtpub.com/application-
development/mastering-jenkins

Azure DevOps Server 2019 Cookbook: https://www.packtpub.com/
networking-and-servers/azure-devops-server-2019-cookbook-
second-edition

Mastering GitLab 12: https://www.packtpub.com/cloud-networking/
mastering-gitlab-12

https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/virtualization-and-cloud/hands-continuous-integration-and-delivery
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/mastering-jenkins
https://www.packtpub.com/application-development/mastering-jenkins
https://www.packtpub.com/networking-and-servers/azure-devops-server-2019-cookbook-second-edition
https://www.packtpub.com/networking-and-servers/azure-devops-server-2019-cookbook-second-edition
https://www.packtpub.com/networking-and-servers/azure-devops-server-2019-cookbook-second-edition
https://www.packtpub.com/cloud-networking/mastering-gitlab-12
https://www.packtpub.com/cloud-networking/mastering-gitlab-12

8
Deploying
Infrastructure as

Code with CI/CD
Pipelines

In the first part of this book, we learned a lot about Infrastructure as Code (IaC), its
advantages, and tools such as Terraform, Packer, and Ansible, and their command lines.
Then, in the second part, we discussed Git and dedicated a chapter to the Continuous
Integration and Continuous Deployment of applications.

However, we should not neglect to also put CI/CD into practice as IaC, which will allow
us to orchestrate and automate the whole process of provisioning the infrastructure.

It is in this second edition of this book that I wanted to add this chapter to reuse all that
we have learned in the previous chapters and show how to implement IaC with a CI/CD
pipeline, which will be composed of Packer, Terraform, and Ansible.

248 Deploying Infrastructure as Code with CI/CD Pipelines

The pipeline tool that will be used is Azure Pipelines, which we have already covered in
detail in Chapter 7, Continuous Integration and Continuous Delivery. So we will learn how
to write a Azure pipeline in YAML to generate an image with Packer. Then, we will see
how to write a YAML pipeline to provision a Virtual Machine (VM) with Terraform and
complete it with the execution of Ansible to install nginx on this VM.

This chapter covers the following topics:

« Running Packer in Azure Pipelines

« Running Terraform and Ansible in Azure Pipelines

Technical requirements
This chapter requires the following:
o An Azure subscription for creating the Packer image and provisioning the VM; you

can create a free account here: https://azure.microsoft.com/en-us/
free/search/.

o An Azure DevOps account for creating the YAML pipelines definition; you can
create a free account here: https://azure.microsoft.com/en-us/
pricing/details/devops/azure-devops-services/.

The source code for this chapter is available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAPOS.

Check out the following video to view the Code in Action: https://bit.1ly/3BDT9ne

Running Packer in Azure Pipelines

To start our IaC pipeline, we will automatically create an Azure VM image using Packer.
To perform this operation, we will use Azure Pipelines with a pipeline in YAML format.
The goal of this pipeline is to execute a Packer command automatically.

Important Note

For more details on how to create a YAML pipeline in Azure DevOps, read
Chapter 7, Continuous Integration and Continuous Delivery.

The Packer template that we will use in this section's lab is the code that we learned in
Chapter 4, Optimizing Infrastructure Deployment with Packer. This source code is available
here: https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP08/packer/.pkr.hcl.

https://azure.microsoft.com/en-us/free/search/
https://azure.microsoft.com/en-us/free/search/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP08
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP08
https://bit.ly/3BDT9ne
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/packer/.pkr.hcl
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/packer/.pkr.hcl

Running Packer in Azure Pipelines 249

Before we start using Packer, we need first to create an Azure resource group that will
store the created VM image by the pipeline. In our lab, we named this Azure resource
group rg_images. The following screenshot shows the Azure resource group:

]
|:| rg_images
]

Figure 8.1 - The Azure resource group for the Packer image

Now, we can write the code of the pipeline, which will execute Packer command lines on
the Packer template.

To do this, in the same folder as the Packer template, create a new YAML file that will
describe the steps of the pipeline, and then write three blocks of code, as follows:

1. The first step is to execute the packer init command:

- script: packer init $(Build.SourcesDirectory) /CHAP08/
packer/.pkr.hcl

displayName: Packer init

2. 'The second step is to validate the Packer template by running the packer
validate command:

- script: packer validate $(Build.SourcesDirectory)/
CHAPO08/packer/.pkr.hcl

displayName: Packer validate template

3. 'The last step is to build the image with Packer by running the packer build
command:

- script: packer build $ (Build.SourcesDirectory) /CHAP08/
packer/.pkr.hcl

displayName: Packer build template
env:
PKR VAR clientid: $(PKR VAR clientid)
PKR VAR clientsecret: $(PKR VAR clientsecret)
PKR VAR subscriptionid: $(PKR VAR subscriptionid)
PKR VAR tenantid: $(PKR VAR tenantid)

250 Deploying Infrastructure as Code with CI/CD Pipelines

In this step code, we add to the script the environment variables corresponding
to the Azure service principal account. To be used in a Packer template, these
environment variables must be in the PKR VAR <variable name> format.

Important Note

The entire source code of this YAML pipeline file is available here: ht tps: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP08/packer/pipeline.yaml.

Then, commit and push this file in your Git repository. In this lab, we use GitHub,
although you can use other Git repositories such as Azure Repos or Bitbucket.

The last step is to create and run the Azure Pipeline by following these steps:

1. Inthe Azure Pipelines menu, click on New pipeline:

BooklLabs / BookDemo / Pipelines P Search ‘ = D @ A2, '\
Pipelines e New pipeline
Recent All Runs 5 Filter pipelines

Recently run pipelines

Pipeline Last run

B4 DPED B0
(-]

Figure 8.2 - Creating a new pipeline in Azure Pipelines

2. Select the Git repository that contains the Packer templates and the YAML pipeline
file, and choose the option to use the existing YAML pipeline file. All the details
for this step are explained in the Creating the full pipeline definition in a YAML file
section of Chapter 7, Continuous Integration and Continuous Delivery.

After creating the pipeline, inside Edit mode, add four variables to store the
credentials information of the Azure service principal.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/packer/pipeline.yaml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/packer/pipeline.yaml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/packer/pipeline.yaml

Running Packer in Azure Pipelines 251

Variables X
L Search variables E E
PKR_VAR_clientid o
f.’f = 63433d3e-

fic PKR_VAR_clientsecret

= _~YywjOkr e

fic PKR_VAR _subscriptionid

= Ba7aace5-

f PKR_VAR_tenantid
= 2e3a33f3-66b1-

Figure 8.3 — Azure Pipelines variables

These are the variables we used in the YAML pipeline in the latest step script.

3. 'Then, we can run the pipeline and wait until the end of the execution. In the log
panel, we can display all the execution details.

& Jobs in run #20211023.2 ¥ Packer build template O Viewrawlog
Packer

Jobs
v @ Jb 6m 18s
Initialize job s
@ Checkout PacktPublishi. 3s
@ Packer init 8s
@ Packer validate template 1s
@ Packer build template 6m 35
@ Postjob: Checkout Pa.. <15

Finalize Job <1s

Figure 8.4 — The Azure Pipelines Packer pipeline logs

252 Deploying Infrastructure as Code with CI/CD Pipelines

4. Finally, in the Azure portal, we can see the generated VM image in the Azure
resource group.

(%) rg_images =

Resource group

[,O ISearch (Ctrl+/) I « + Create == Edit columns IE] Delete resource group O Refresh i Export to CSV °‘_c‘

-

(4 Overview -\ Essentials

Activity log Subscription (Move) : Microsoft Azure Sponscrship
%Q‘ Access control (IAM) Subscription ID : 8a7aace5-74aa-416f-b8ed-2c292b6304e5
) Tags Tags (Edit) : Click here to add tags

4{1 Resource visualizer
Resources Recommendations

£ Events
Settings | Filter for any field... ‘ Type ==all X Location == all X T Add filter
@ Resource costs Showing 1to 1 of 1 records. || Show hidden types ©
2, Deployments
= m Name T
[a) Security
D @ linuxWeb-v0.0.1
% Policies

Figure 8.5 — The Packer image on Azure

In this section, we learned how to create Packer images automatically using pipelines
in Azure DevOps. In the next section, we will continue with the IaC pipeline to execute
Terraform and Ansible commands inside automatic pipelines.

Running Terraform and Ansible in Azure
Pipelines

After the creation of the Packer pipeline, we will now create the pipeline for provisioning
an Azure VM that uses the image created with Packer and then configures this VM with
Ansible. For this demonstration, we will use Ansible to install nginx on this VM.

The Terraform configuration that is used in this code will provision new Azure resource
group, a virtual network with a subnet, and a Linux VM with the tag role as the
webserver value.

This complete Terraform code is available here: https://github. com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAPO08/terraform. I will not explain it, since it's the same code that we learned in
Chapter 2, Provisioning Cloud Infrastructure with Terraform.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP08/terraform
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP08/terraform
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP08/terraform

Running Terraform and Ansible in Azure Pipelines 253

The complete Ansible code that we used to install nginx on the Linux machine is available
here: https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP08/ansible/playbookdemo.yml. We already
learned about it in Chapter 3, Using Ansible for Configuring laaS Infrastructure. For the
Ansible inventory, we use a dynamic inventory that selects VM hosts based on a specific
Azure resource group and a tag on a VM.

The configuration code of this dynamic inventory is available here: https://github.
com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/
CHAPO8/ansible/inv.azure rm.yml.

Now that we have all the Terraform and Ansible code, we can write the YAML code of the
Azure Pipelines with the following steps. For this, create a new azure-pipeline.yaml
file with the following content:

1. The first step is to run Terraform workflow commands with init, plan,
and apply:

- script: terraform init --backend-config backend.
tfvars

displayName: Terraform init

workingDirectory: $(Build.SourcesDirectory) /CHAP08/
terraform

env:
ARM CLIENT ID: $(AZURE CLIENT ID)
ARM CLIENT SECRET: $(AZURE SECRET)
ARM SUBSCRIPTION ID: $(AZURE SUBSCRIPTION ID)
ARM TENANT ID: $(AZURE TENANT)
ARM ACCESS KEY: $(AZURE ACCESS KEY)

- script: terraform plan
displayName: Terraform plan

workingDirectory: $(Build.SourcesDirectory) /CHAP08/
terraform

env:
ARM CLIENT ID: $(AZURE CLIENT ID)
ARM CLIENT SECRET: $(AZURE SECRET)
ARM SUBSCRIPTION ID: $(AZURE SUBSCRIPTION ID)
ARM TENANT ID: $(AZURE TENANT)
ARM ACCESS KEY: $(AZURE ACCESS KEY)

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/ansible/playbookdemo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/ansible/playbookdemo.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/ansible/inv.azure_rm.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/ansible/inv.azure_rm.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP08/ansible/inv.azure_rm.yml

254 Deploying Infrastructure as Code with CI/CD Pipelines

- script: terraform apply -auto-approve
displayName: Terraform apply

workingDirectory: $(Build.SourcesDirectory) /CHAP08/
terraform

env:
ARM CLIENT ID: $(AZURE CLIENT ID)
ARM CLIENT SECRET: $(AZURE SECRET)
ARM SUBSCRIPTION ID: $(AZURE SUBSCRIPTION ID)
ARM TENANT ID: $(AZURE TENANT)
ARM ACCESS KEY: $(AZURE ACCESS KEY)

In these script tasks, we run the following three commands:

» The terraform init command using a Terraform state backend configuration.

» The terraform plan command for previewing the changes.

Important Note

Optionally, we can add one step here to manually approve the plan result
before we apply the changes. Here, in this lab, we are confident with the plan
changes, and the pipeline can apply the changes directly.

» The terraform apply command for applying changes and creating the VM
if it does not exist. To this command, we add the -auto-approve option to
automatically apply changes without asking for confirmation.

For Azure authentication, we use the service principal credentials and the Azure
storage access key (for state backend) as environment variables.

2. Then, in this pipeline, we continue with the Ansible execution with the following
code:

- script: pip install ansible[azure]==2.8.6

displayName: Get requirements

- script: ansible-playbook playbookdemo.yml -i inv.
azure rm.yml
displayName: Ansible playbook

workingDirectory: $(Build.SourcesDirectory) /CHAP0S/
ansible

env:

Running Terraform and Ansible in Azure Pipelines 255

AZURE CLIENT ID: $(AZURE CLIENT ID)
AZURE_SECRET: $(AZURE SECRET)
AZURE_SUBSCRIPTION ID: $(AZURE SUBSCRIPTION ID)
AZURE_TENANT: $(AZURE TENANT)
ANSIBLE HOST KEY CHECKING: False

In this code, the first script installs the Azure plugins for Ansible that are required
for the dynamic inventory.

The second script executes an Ansible playbook and uses the dynamic inventory
configured in the inv.azure rm.yml file. We also use the Azure service
principal credentials as environment variables.

Then, commit and push this file in your Git repository.

The last step is to create and run the Azure pipeline by following these steps:

1. Inthe Azure Pipelines menu, click on New pipeline.

2. Select the Git repository that contains Packer templates and the YAML pipeline file,
and choose the option to use the existing YAML pipeline file.

All the details for this step are explained in the Creating the full pipeline definition in
a YAML file section of Chapter 7, Continuous Integration and Continuous Delivery.

3. After creating the pipeline, inside Edit mode, add five variables to store the
credentials information of the Azure service principal and the Azure storage access
key for the Terraform state backend.

Variables X
| pe) Eearch variables -

fic AZURE_ACCESS_KEY
= DQzll

fr AZURE_CLIENT_ID

= 63433d3e-

S AZURE_SECRET
=Yg

f AZURE_SUBSCRIPTION_ID

= Ba7aace5-

fe AZURE_TENANT

= 2e3a3319-

Figure 8.6 — Azure Pipelines Terraform and Ansible variables

These are the variables we used in the YAML pipeline in all of the script steps.

256 Deploying Infrastructure as Code with CI/CD Pipelines

4. 'Then, we can run the pipeline and wait until the end of the execution. In the log
panel, we can display all the execution details step by step.

& Jobs in run #20211025.4 ¥ Ansible playbook

Terraform-Ansible

Jobs Author
Help B e/ pipelines/tasks/utility mand-1line
v @ Job 1m 265
Initialize job 1s
@ Checkout PacktPublishi... 1s
@ Terraform init As
VRN AR R K R R KR R R KK K K
o @ Terraform plan 9s
TASK [Gathering Facts] Hichiss fotkstiokiom bbb bbbk bbbk bk
@ Terraform apply 8 ok: [bookvm_9@dd]
e (-} Get requirements A7s
@ Ansible playbook 12s
@ Post-job: Checkout Pa... <1s

art nginx 1CR] FHRT IR TR IR R R R EAEE R KRR

Finalize Job <is ok: [bookvm_9@dd]

PLAY RECAP 5%k s s st ook ms ot R ks o s b S 3 ok o Sk M A AR RS R SRR

bookvm_90dd ok=3 changed=0 unreachable=6 failed=@ s e rescued=0 ignored=0

Figure 8.7 — Azure Pipelines Terraform and Ansible log details
We can see on this screen the Terraform command execution and then the Ansible
execution.

5. Finally, to verify that the execution is successful, find the public IP on this VM
inside the Azure portal.

Dashboard > Microsoft Azure Sponsorship > book-lab >
e bookvm

Virtual machine

0 Search (Ctrl+/) « & connect [> Start ¢ Restart [] Stop &) Capture [i] Delete () Refresh [] Openinmobile [cLi/Ps Q) Feedback

B Overview = A Essentials JSON View
Activity log Resource group (Move) : book-lab Operating system : Linux (ubuntu 18.04) B
Ba Access control (AM) Status Running Size : Standard DS2 v2 (2 vepus, 7 GiB memory)
Py Location West Europe Public IP address 1 52.166.36.72
ags
Subscription (Move) Microsoft Azure Sponsorship Virtual network/subnet : book-vnet/book-subnet
2 Diagnose and solve problems
Subscription ID 8a7aaces- DNS name : p teurope.cloudapp.azure.com

Figure 8.8 - Azure VM public IP
Open a browser and navigate to this public IP:

Summary 257

C' A Nonsécuris | 52.16636.72

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 8.9 - The nginx home page

We can now see the home page of nginx.

In this section, we learned how to write pipeline code to execute Terraform and then
Ansible automatically with a YAML pipeline in Azure DevOps, and Terraform and
Ansible command lines.

Summary

In this chapter, we implemented a sample pipeline for IaC. In the first section, we learned
how to integrate Packer command lines in pipelines. Then, in the second part, we
continued the automation of IaC with another pipeline that ran Terraform to provision
an Azure VM, and installed nginx on this VM with Ansible.

All the YAML pipeline code used in this chapter was applicable to GitHub and Azure
Pipelines, and the process is exactly the same for other CI/CD tools such as Jenkins or
GitLab CI.

In the next chapter, we will learn how to build and run a container using Docker.

Questions
1. What is the name of the tool used in this chapter?

2. What is the IaC provisioning order between Terraform, Ansible, and Packer?

258 Deploying Infrastructure as Code with CI/CD Pipelines

Further reading

If you would like to find out more about IaC pipelines, here are some labs:

« DevOps Lab about Terraform on Azure DevOps: https://azuredevopslabs.
com/labs/vstsextend/terraform/.

« DevOps Lab about Ansible on Azure DevOps: https://www.
azuredevopslabs.com/labs/vstsextend/ansible/.

https://azuredevopslabs.com/labs/vstsextend/terraform/
https://azuredevopslabs.com/labs/vstsextend/terraform/
https://www.azuredevopslabs.com/labs/vstsextend/ansible/
https://www.azuredevopslabs.com/labs/vstsextend/ansible/

Section 3:
Containerized
Microservices

with Docker and
Kubernetes

In this part, we present the basic uses of Docker and how to create and run containers
from a Dockerfile. Then, we explore the role of Kubernetes and how to deploy more
complex applications on Kubernetes.

This section comprises the following chapters:

o Chapter 9, Containerizing Your Application with Docker
o Chapter 10, Managing Containers Effectively with Kubernetes

9

Containerizing Your
Application with
Docker

In the last few years, one technology in particular has been making headlines on the net,
on social networks, and at events—Docker.

Docker is a containerization tool that became open source in 2013. It allows you to
isolate an application from its host system so that the application becomes portable, and
the code tested on a developer's workstation can be deployed to production without any
concerns about execution runtime dependencies. We'll talk a little about application
containerization in this chapter.

A container is a system that embeds an application and its dependencies. Unlike a virtual
machine (VM), a container contains only a light operating system (OS) and the elements
required for the OS, such as system libraries, binaries, and code dependencies.

To learn more about the differences between VMs and containers, and why containers
will replace VMs in the future, I suggest you read this blog article: https://blog.
docker.com/2018/08/containers-replacing-virtual-machines/.

https://www.docker.com/blog/containers-replacing-virtual-machines/
https://www.docker.com/blog/containers-replacing-virtual-machines/

262 Containerizing Your Application with Docker

The principal difference between VMs and containers is that each VM that is hosted on
a hypervisor contains a complete OS and is therefore completely independent of the guest
OS that is on the hypervisor.

Containers, however, don't contain a complete OS—only a few binaries—but they are
dependent on the guest OS, and use its resources (central processing unit (CPU),
random-access memory (RAM), and network).

In this chapter, we will learn how to install Docker on different platforms, how to create
a Docker image, and how to register it in Docker Hub. Then, we'll discuss an example of
a continuous integration/continuous deployment (CI/CD) pipeline that deploys

a Docker image in Azure Container Instances (ACI). After that, we will show how to
use Docker to runn tools with command-line interfaces (CLIs).

Finally, we will also learn the basic notions about Docker Compose and how to deploy
Docker Compose containers in ACI.

This chapter covers the following topics:

« Installing Docker

« Creating a Dockerfile

 Building and running a container on a local machine
« Pushing an image to Docker Hub

 Pushing a Docker image to a private registry (ACR)

« Deploying a container to ACI with a CI/CD pipeline
« Using Docker for running command-line tools

o Getting started with Docker Compose

« Deploying Docker Compose containers in ACI

Technical requirements

This chapter has the following technical requirements:

« An Azure subscription. You can get a free account here: https://azure.
microsoft.com/en-us/free/.

o For some Azure commands, we will use the Azure CLI. Refer to the documentation
here: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli.

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Installing Docker 263

o In the last part of this chapter, in the Creating a CI/CD pipeline for the container
section, we will discuss Terraform and the CI/CD pipeline, which were explained
in Chapter 2, Provisioning Cloud Infrastructure with Terraform, and Chapter 7,
Continuous Integration and Continuous Deployment.

All of the source code for the scripts included in this chapter is available here:
https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPOO.

Check out the following video to see the code in action:

https://bit.ly/3t1Jovs

Installing Docker

Docker's daemon is free and very well suited to developers and small teams—it's what
we'll use in this book.

Docker is a cross-platform tool that can be installed on Windows, Linux, or macOS and
is also natively present on some cloud providers, such as Amazon Web Services (AWS)
and Azure.

To operate, Docker needs the following elements:

» The Docker client: This allows you to perform various operations on the
command line.

» The Docker daemon: This is Docker's engine.

« Docker Registry: This is a public registry (Docker Hub) or private registry of
Docker images.

Before installing Docker, we will first create an account on Docker Hub.

Registering on Docker Hub

Docker Hub is a public space called a registry, containing more than 2 million public
Docker images that have been deposited by companies, communities, and even
individual users.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09
https://bit.ly/3t1Jov8

264 Containerizing Your Application with Docker

To register on Docker Hub and list public Docker images, perform the following steps:

1. Gotohttps://hub.docker.com/, where you will see the following screen:

& &) %] https://hub.docker.com 8 o= g

Docker is updating and extending our product subscriptions. Please read our blog for more information. X

@‘docker] Q, Search for great content (¢ Explore Pricing Signin

Build and Ship any cot Started Todau for
Ap pl i cati on AnYWhe re Al:ady ha?:arweaccou‘;? asin I‘:r ree

Docker Hub is the world's easiest way to create, manage,

Docker ID I
and deliver your teams' container applications.

Email

Password ©

[[] 5end me occasional product updates and announcements.

PAp—— e

RCAPTO
e

By creating an account, you agree to the Subscription Service
Agreement, Privacy Policy and Data Processing Terms

Figure 9.1 - Docker Hub login page

2. Fill in the form with a unique identifier (ID), an email, and a password. Then, click
on the Sign Up button.

3. Once your account is created, you can then log in to the site, and this account will
allow you to upload custom images and download Docker Desktop.

4. To view and explore the images available from Docker Hub, go to the Explore
section, as indicated in the following screenshot:

https://hub.docker.com/

Installing Docker 265

Q_ microsoft Explore Repositories Organizations GetHelp v mikaelkrief ~ ()

@ Docker EE @ Docker CE [=) Containers & Plugins

Filters 1- 25 of 1234 results for microsoft. Clear search Most Popular -

Docker Certified @ oo 2
OFFICIALIMAGE @
["] & Docker Certified mono

| Updated 12 minutes ago Downloads ~ Stars
mono
Images . N " "

Mono is an open source implementation of Microsoft's .NET Framework
D Verified Publisher @

Docker Certified And Verified Publisher Content Container Linux x86-64 PowerPC64LE 386 ARM64 ARM Application Frameworks

D Official Images @

Official Images Published By Docker

Categories @ .. Microsoft ASP.NET

By Microsoft * Updated 14 minutes ago
[] Analytics
[] Application Frameworks Microsoft ASP.NET images

[] Application Infrastructure

Container ~ x86-64 Base Images

[] Application Services

Figure 9.2 - Docker Hub Explore page

A list of Docker images is displayed with a search filter that you can use to search for
official images or images from verified publishers, as well as images certified by Docker.

Having created an account on Docker Hub, we will now look at installing Docker on
Windows.

Docker installation

We'll now discuss the installation of Docker on Windows in detail.

Before installing Docker Desktop on Windows or macOS, we need to check all license
options. For more information about Docker Desktop licensing, read the pricing page
(https://www.docker.com/pricing) and the frequently asked questions (FAQ)
page (https://www.docker.com/pricing/faq).

To install Docker Desktop on a Windows machine, it is necessary to first check the
hardware requirements, which are outlined here:

« Windows 10/11 64-bit with at least 4 gigabytes (GB) of RAM

« Windows Subsystem for Linux 2 (WSL 2) backend or Hyper-V enabled. You
can refer to this documentation in the event of any problems: https://docs.
docker.com/docker-for-windows/troubleshoot/#virtualization-
must-be-enabled.

https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled

266 Containerizing Your Application with Docker

Note

For more information about WSL, read the documentation here:

https://docs.microsoft.com/en-us/windows/wsl/
install

More details about Docker Desktop requirements are specified here:

https://docs.docker.com/desktop/windows/install/

To install Docker Desktop, which is the same binary as the Docker installer for Windows
and macOS, follow these steps:

1. First, download Docker Desktop by clicking on the Docker Desktop for Windows
button on the install documentation page at https: //docs . docker. com/
desktop/windows/install/, as indicated in the following screenshot:

docker docs Q Search the docs Home Guides Manuals Reference Samples

/ Manuals / Docker Desktop / Windows / Install Docker Desktop for Windows

Docker Desktop - .
s Install Docker Desktop on Windows
e Estimated reading time: 9 minutes
Mac -
@ Update to the Docker Desktop terms
Windows o

Professional use of Docker Desktop in large organizations (more than 250 employees or more than $10 million in annual revenue)

Install Docker Desktop for requires users to have a paid Docker subscription. While the effective date of these terms is August 31, 2021, there is a grace period

Windows

until January 31, 2022, for those that require a paid subscription. For more information, see the blog Docker is Updating and Extending
User manual Our Product Subscriptions and the Docker Desktop License Agreement.
Networking

Welcome to Docker Desktop for Windows. This page contains information about Docker Desktop for Windows system requirements,

for=landipubleshoctng) download URL, instructions to install and update Docker Desktop for Windows.

Docker Desktop WSL 2
backend © Download Docker Desktop for Windows

Release notes
Docker Desktop for Windows
Previous versions -

‘ Dashboard

Figure 9.3 - Download link for Docker Desktop
2. Once that's downloaded, click on the downloaded executable (EXE) file.

3. 'Then, take the single configuration step, which is a possibility to install required
components for the WSL 2 backend, as illustrated in the following screenshot:

o Installing Docker Desktop 4.1.1 (69879) — | X

Configuration

Install required Windows components for WSL 2
Add shortcut to desktop

Figure 9.4 - Docker Desktop configuration

https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/windows/install/

Installing Docker 267

In our case, we will check this option to install Windows components using WSL 2
as the backend.

Once the installation is complete, we'll get a confirmation message and a button to
close the installation, as illustrated in the following screenshot:

€ Installing Docker Desktop 4.1.1 (69879) — m] X

Docker Desktop 4.1.1

Installation succeeded

Close

Figure 9.5 - Docker Desktop end installation

Finally, to start Docker, launch the Docker Desktop program. An icon will appear in
the notification bar indicating that Docker is starting. It will then ask you to log in
to Docker Hub via a small window. The startup steps of Docker Desktop are shown
in the following screenshot:

Meilleur résultat
(

o Docker Desktop o
g

Application

Commande

=~ docker > € Docker Hub — O X

Rechercher sur le Web

- Welcome to Docker Hub

R ssult [T 1]
L docker - Afficher les résultats Web > .. ’
Sign in with your Docker 1D
9 ‘ krief_mikael@hotmail.com ‘

About Docker Desktop ‘-nuu-----‘ ‘

Settings
Check for Updates

v

ign in

Troubleshoot If you don't have a Docker ID yet, you can create one
Switch to Windows containers... on hub.docker.com

Docker Hub
Documentation

Kitematic

Sign in / Create Docker ID...
Repositories

Kubernetes

Restart.

Quit Docker Desktop

Figure 9.6 — Docker Hub sign-in from Docker Desktop

268 Containerizing Your Application with Docker

That's it! We've installed and started Docker on Windows.

To install Docker on another OS, you can read the documentation for each OS at
https://docs.docker.com/get-docker/. Afterward, you can choose the desired
target OS from this page, as shown in the following screenshot:

< > G https://docs.docker.com/get-docker/

docker docs Q Search the docs Home Guides Manuals Reference Samples

/ Guides / Get Docker

Docker overview

Get Dacker

Getstrted - Get Docker

Language-specific guides (New) @ Update to the Docker Desktop terms

Develop with Docker . Professional use of Docker Desktop in large organizations (more than 250 employees or more than $10 million in annual revenue)
requires users to have a paid Docker subscription. While the effective date of these terms is August 31, 2021, there is a grace period

Set up CI/CD - until January 31, 2022, for those that require a paid subscription. For more information, see the blog Docker is Updating and Extending

Our Product Subscriptions.
Deploy your app to the cloud -

Run your app in production - Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your
Educational resources applications. By taking advantage of Docker's methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the

Open source at Docker . delay between writing code and running it in production.

You can download and install Docker on multiple platforms. Refer to the following section and choose the best installation path for you.

“ A= A

Documentation archive

Docker Desktop for Mac Docker Desktop for Windows Docker for Linux
A native application using the macOS A native Windows application which Install Docker on a computer which
sandbox security model which delivers delivers all Docker tools to your already has a Linux distribution
all Docker tools to your Mac. ‘Windows computer. installed.

Figure 9.7 - Docker installation documentation

To check your Docker installation, open the Terminal window (it will also work on a
Windows PowerShell Terminal) and execute the following command:

docker --help

You should be able to see something like this:

https://docs.docker.com/get-docker/

Installing Docker 269

PS C:\Users\mkrief> docker --help
Usage:

docker [flags]

docker [command]

Available Commands:
compose Docker Compose
context Manage contexts
ecs
exec Run a command in a running container
help Help about any command
inspect Inspect containers
kill Kill one or more running containers
login Log in to a Docker registry or cloud backend
logout Log out from a Docker registry or cloud backend
logs Fetch the logs of a container
prune prune existing resources in current context
ps List containers
rm Remove containers
run Run a container
secret Manages secrets
serve Start an api server
start Start one or more stopped containers
stop Stop one or more running containers
version Show the Docker version information
volume Manages volumes

Figure 9.8 - docker --help command

As you can see in the preceding screenshot, the command displays the different operations
available in the Docker client tool.

Before looking at the execution of Docker commands in detail, it is important to have an
overview of Docker's concepts.

An overview of Docker's elements

Before executing Docker commands, we will discuss some of Docker's fundamental
elements, which are Dockerfiles, containers, and volumes.

First of all, it is important to know that a Docker image is a basic element of Docker and
consists of a text document called a Dockerfile that contains the binaries and application
files we want to containerize.

A Docker registry is a centralized storage system for shared Docker images. This registry
can be public—as in the case of Docker Hub—or private, such as with Azure Container
Registry (ACR) or JFrog Artifactory.

270 Containerizing Your Application with Docker

A container is an instance that is executed from a Docker image. It is possible to have
several instances of the same image within a container that the application will run.
Finally, a volume is a storage space that is physically located on the host OS (that is,
outside the container), and it can be shared across multiple containers if required. This
space will allow the storage of persistent elements such as files or databases.

To manipulate these elements, we will use command lines, which will be discussed as we
progress through this chapter.

In this section, we discussed Docker Hub and the different steps for creating an account.
Then, we looked at the steps for installing Docker Desktop locally, and finally, we finished
with an overview of Docker elements.

We will now start working with Docker, and the first operation we will look at is the
creation of a Docker image from a Dockerfile.

Creating a Dockerfile

A basic Docker element is a file called a Dockerfile, which contains step-by-step
instructions for building a Docker image.

To understand how to create a Dockerfile, we'll look at an example that allows us to build
a Docker image that contains an Apache web server and a web application.

Let's start by writing a Dockerfile.

Writing a Dockerfile

To write a Dockerfile, we will first create a HyperText Markup Language (HTML) page
that will be our web application. So, we'll create a new appdocker directory and an
index.html page in it, which includes the example code that displays welcome text on a
web page, as follows:

<html>
<body>
<hl>Welcome to my new app</hl>
This page is test for my demo Dockerfile.

Enjoy ...
</body>
</html>

Creating a Dockerfile 271

Then, in the same directory, we create a Dockerfile (without an extension) with the
following content, which we will detail right after:

FROM httpd:latest
COPY index.html /usr/local/apache2/htdocs/

To create a Dockerfile, start with the FROM statement. The required FROM statement
defines the base image, which we will use for our Docker image—any Docker image is
built from another Docker image. This base image can be saved either in Docker Hub or
in another registry, such as JFrog Artifactory, Nexus Repository, or ACR.

In our code example, we use the Apache ht tpd image tagged as the latest version,
https://hub.docker.com/ /httpd/,and we use the FROM httpd:latest
Dockerfile instruction.

Then, we use the COPY instruction to execute the image construction process. Docker
copies the local index.html file that we just created into the /usr/local/apache2/
htdocs/ directory of the image.

Note

The source code for this Dockerfile and the HTML page can be found here:
https://github.com/PacktPublishing/Learning-
DevOps-Second-Edition/tree/main/CHAP09/appdocker.

We have just looked at the FROM and COPY instructions of the Dockerfile, but there are
other instructions as well that we'll cover in the following section.

Dockerfile instructions overview

We previously mentioned that a Dockerfile file is comprised of instructions, and we also
looked at a concrete example with the FROM and COPY instructions. There are other
instructions that will allow you to build a Docker image. Here is an overview of the
principal instructions that can be used for this purpose:

« FROM: This instruction is used to define the base image for our image, as shown in
the example detailed in the preceding Writing a Dockerfile section.

« COPY and ADD: These are used to copy one or more local files into an image.
The ADD instruction supports an extra two functionalities, to refer to a Uniform
Resource Locator (URL) and to extract compressed files.

https://hub.docker.com/_/httpd/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/appdocker
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/appdocker

272 Containerizing Your Application with Docker

Note

For more details about the differences between COPY and ADD, you can
read this article: https: //nickjanetakis.com/blog/docker-
tip-2-the-difference-between-copy-and-add-in-a-
dockerile.

o RUN and CMD: These instructions take a command as a parameter that will be
executed during the construction of the image. The RUN instruction creates a
layer so that it can be cached and versioned. The CMD instruction defines a default
command to be executed during the call to run the image. The CMD instruction can
be overwritten at runtime with an extra parameter provided.

You can write the following example of the RUN instruction in a Dockerfile to
execute the apt -get command:

RUN apt-get update
With the preceding instruction, we update the apt packages that are already

present in the image and create a layer. We can also use the CMD instruction in the
following example, which will display a docker message during execution:

CMD "echo docker"
o ENV: This instruction allows you to instantiate environment variables that can be

used to build an image. These environment variables will persist throughout the life
of the container, as follows:

ENV myvar=mykey

The preceding command sets a myvar environment variable with the mykey value
to the container.

« WORKDIR: This instruction gives the execution directory of the container, as follows:

WORKDIR usr/local/apache2

That was an overview of Dockerfile instructions. There are other instructions that are
commonly used, such as EXPOSE, ENTRYPOINT, and VOLUME, which you can find in
the official documentation at https://docs.docker.com/engine/reference/
builder/.

https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile
https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile
https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Building and running a container on a local machine 273

We have just observed that the writing of a Dockerfile is performed with different
instructions, such as FROM, COPY, and RUN, which are used to create a Docker image.
Now, let's look at how to run Docker in order to build a Docker image from a Dockerfile,
and run that image locally to test it.

Building and running a container on a local
machine

So far in the chapter, we have discussed Docker elements and have looked at an example
of a Dockerfile that is used to containerize a web application. Now, we have all the
elements to run Docker.

The execution of Docker is performed by different operations, as outlined here:

o Building a Docker image from a Dockerfile
« Instantiating a new container locally from this image

« Testing our locally containerized application

Let's take a deep dive into each operation.

Building a Docker image

We'll build a Docker image from our previously created Dockerfile that contains the
following instructions:

FROM httpd:latest
COPY index.html /usr/local/apache2/htdocs/

We'll go to a terminal to head into the directory that contains the Dockerfile, and then
execute the docker build command with the following syntax:

docker build -t demobook:vl .

The -t argument indicates the name of the image and its tag. Here, in our example, we
call our image demobook, and the tag we've added is v1.

274 Containerizing Your Application with Docker

The . (dot) at the end of the command specifies that we will use the files in the current
directory. The following screenshot shows the execution of this command:

PS L siil_iliiU\Learning-DevOps-Second-Edition\CHAP®9\appdocker> docker build -t demobook:v1l .
[+] Building 46.5s (7/7) FINISHED
=> [internal] load build definition from Dockerfile
=> transferring dockerfile: 98B
[internal] load .dockerignore
=> transferring context: 2B
[internal] load metadata for docker.io/library/httpd:latest
[internal] load build context
=> transferring context: 191B
[1/2] FROM docker.io/library/httpd:latest@sha256:f70876d78442771406d7245b8d3425e8b0a86891c79811at94+b2el2afOfadeb
=> resolve docker.io/library/httpd:latest@sha256:f70876d78442771406d7245b8d3425e8b0a86891c79811af94fb2el2afOfadeb
=> sha256:4182565671564bb0b369534aaloUdf113c5fellecebaable2da®ldluuf663eedd 913.73kB / 913.73kB
sha256: £70876d784U2771406d7245b8d3425e8b0a86891c79811af9Ufb2el2af0fadeb 1.86kB / 1.86kB
sha256:73c9b78280a693050838e9e3519e7+5723d742ada3eld2cd5+10740bUd88fU86e .36kB
sha256:1132alfc88faaf5c19959+03535c1356d3004ced1978cb9c3+32e73d9c139532 8. 8.78kB
sha256:7d63c13d9b9b6ec5f05a2b07daadacaa9c610d01102a662ae9b1d082105f1ffa 31.36MB / 31.36MB
sha256: ca52f3eeeab65ce537eecl8U0e21d7d024ab70+b555a609cd748e710779db9e0 176B / 176B
sha256:21d69ac90cafod2u441bfa860ed2dcdbf82e421f95d9a2abf957c9b111978c03 24.11MB / 24.11MB
sha256:162e88bc307455be86d7a+71d19421a240793U468d7ab879e36c86b5Ud8ebec7d 296B / 296B
sha256:7d63c13d9b9b6ec5+05a2bb7daadacaa9c610d01102a662ae9b1d082105F1ffa
a52f3eeecabb5ce537eecl840e21d7d02Uab70+b5552609cd748e710779db9e0
r 48256567156UbbOb369534aaleue+113c5felecebaable2da®idllulf663eedy
extracting 1d69ac90caf9d2uuulbfad6@ed2Uclbf82e21f95d9a2abf957c9b111978cH3
extracting sha256:462e88bc307455be86d7af71d19421a240793468d7ab879e36c86b54d8eBecTd
[2/2] COPY index.html /usr/local/apache2/htdocs/ 2
exporting to image
=> exporting layers
=> writing image sha256:9a3862a66c65d0ald31b760bU6Ud8deedff1a73927fad7U75ac520+87664Uc3301
=> => naming to docker.io/library/demobook:v1l 3

0.
0.
0.
0.
5.
0.
0.
3.
0.
0.
0.
0.
0.
7S
0.
5.
0.8
6.
0.
0.
a.
0.
0.
0.
0.
0.
0.

Figure 9.9 - docker build command
We can see in this preceding execution the three steps of the Docker image builder, as
follows:
1. Docker downloads the defined base image.
2. Docker copies the index . html file in the image.
3. Docker creates and tags the image.
When you execute the docker build command, it downloads the base image indicated

in the Dockerfile from Docker Hub, and then Docker executes the various instructions
that are mentioned in the Dockerfile.

Note

Note that if during the first execution of the docker build command you
getaGet https://registry-1.docker.io/v2/library/
httpd/manifests/latest: unauthorized: incorrect
username or passwoxrd error, then execute the docker logout
command. Next, restart the docker build command, as indicated in this
article: https://medium. com/@blacksourcez/fix-docker-
error-unauthorized-incorrect-username-or-password-
in-docker-£80c45951b6h.

At the end of the execution, we obtain a locally stored Docker demobook image.

mailto:https://medium.com/@blacksourcez/fix-docker-error-unauthorized-incorrect-username-or-password-in-docker-f80c45951b6b
mailto:https://medium.com/@blacksourcez/fix-docker-error-unauthorized-incorrect-username-or-password-in-docker-f80c45951b6b
mailto:https://medium.com/@blacksourcez/fix-docker-error-unauthorized-incorrect-username-or-password-in-docker-f80c45951b6b

Building and running a container on a local machine 275

Note

The Docker image is stored in a local folder system depending on your OS.
For more information about the location of Docker images, you can read this
article: http://www.scmgalaxy.com/tutorials/location-
of-dockers-images-in-all-operating-systems/.

We can also check if the image is successfully created by executing the following Docker
command:

docker images

Here is the output of the preceding command:

PS [\Learning-DevOps-Second-Edition\CHAP@9\appdocker> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

demobook vl 9a3862a66c65 5 minutes ago 143MB
gcr.io/k8s—minikube/kicbase v@.0.12-snapshot3 25ac91b9c8d7 14 months ago 952MB

Figure 9.10 — docker images command

This command displays a list of Docker images on my local machine, and we can see the
demobook image we just created. So, the next time the image is built, we will not need to
download the ht t pd image again.

Now that we have created a Docker image of our application, we will instantiate a new
container of this image.

Instantiating a new container of an image

To instantiate a new container of our Docker image, we will execute the docker run
command in our Terminal, with the following syntax:

docker run -d --name demoapp -p 8080:80 demobook:vl

The -d parameter indicates that the container will run in the background. In the - -name
parameter, we specify the name of the container we want. In the -p parameter, we indicate
the desired port translation. In our example, this would mean port 80 of the container
will be translated to port 8080 on our local machine. And finally, the last parameter of the
command is the name of the image and its tag.

The execution of this command is shown in the following screenshot:

\Learning-DevOps-Second-Edition\CHAP@9\appdocker> docker run -d --name demoapp -p 8080:80 demobook:vl1

6cce2099b17ucbe29fcdussdeulcdsb2ebbdf50cedfbla5e298Ue3U6ebeeTela

Figure 9.11 - docker run command

http://www.scmgalaxy.com/tutorials/location-of-dockers-images-in-all-operating-systems/
http://www.scmgalaxy.com/tutorials/location-of-dockers-images-in-all-operating-systems/

276 Containerizing Your Application with Docker

At the end of its execution, this command displays the ID of the container, and the
container runs in the background. It is also possible to display a list of containers running
on the local machine by executing the following command:

docker ps
The following screenshot shows the execution with our container:

PS C:\Users\mkrief> docker ps
[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

6cce2099b174 demobook:vil "httpd-foreground" 2 weeks ago Up About a minute 0.0.0.0:8080->80/tcp demoapp

Figure 9.12 - docker ps command

After the execution of each container, we have its shortcut ID, its associated image, its
name, its execution command, and its translation port information displayed.

So, we have built a Docker image and instantiated a new container of that image locally.
We will now see how to run a web application that is in the local container.

Testing a container locally

Everything that runs in a container remains inside it—this is the principle of container
isolation. However, in the port translation that we did previously, you can test your
container on your local machine with the run command.

To do this, open a web browser and enter http://localhost:8080 with 8080,
which represents the translation port indicated in the command. You should be able to see
the following result:

&« O @ localhost:8080

Welcome to my new app

This page 1is test for mv demo Dockerfile.
Enjov ...
Figure 9.13 - Docker application launched

We can see the content of our index.html page displayed.

In this section, we looked at the different Docker commands that can be used to build
a Docker image. Then, we instantiated a new container from that image, and finally, we
tested it locally.

In the next section, we will see how to publish a Docker image in Docker Hub.

Pushing an image to Docker Hub 277

Pushing an image to Docker Hub

The goal of creating a Docker image that contains an application is to be able to use it on
servers that contain Docker and host the company's applications, just as with a VM.

In order for an image to be downloaded to another computer, it must be saved in a Docker
image registry. As already mentioned in this chapter, there are several Docker registries that
can be installed on-premises, which is the case for JFrog Artifactory and Nexus Repository.

If you want to create a public image, you can push (or upload) it to Docker Hub, which

is Docker's public (and free, depending on your license) registry. We will now see how to
upload the image we created in the previous section to Docker Hub. To do this, you need
to have an account on Docker Hub, which we created prior to installing Docker Desktop.

To push a Docker image to Docker Hub, perform the following steps:
1. Sign in to Docker Hub: Log in to Docker Hub using the following command:
docker login -u <your dockerhub login>

When executing the command, you will be asked to enter your Docker Hub
password and indicate that you are connected to the Docker registry, as shown in
the following screenshot:

PS \Learning_DevOps\CHAPOQ/\appdocker> docker login mikaelkr
Password:

Login Succeeded

Figure 9.14 — The docker login command
2. Retrieve the image ID: The next step consists of retrieving the ID of the image that

has been created. To do so, we will execute the docker images command to
display a list of images with their ID.

PS \Learning-DevOps-Second-Edition\CHAP89\appdocker> docker images
REPOSITORY TAG TMAGE _TD CREATED SIZE

demobook vl 9a3862a66c65 17 hours ago 143MB
ger.io/k8s-minikube/kicbase v@.8.12-snapshot3 25ac91b9c8d7 14 months ago 952MB

Figure 9.15 — Docker images list

3. Tag the image for Docker Hub: With the ID of the image we retrieved, we will now
tag the image for Docker Hub. To do so, the following command is executed:

docker tag <image ID> <dockerhub login>/demobook:vl

The following screenshot shows the execution of this command on the created image:

\Learning_DevOps\CHAPO7\appdocker> docker tag al/ld88tbel8 [[fkaelkriet)demobook:vl

Figure 9.16 — docker tag

278 Containerizing Your Application with Docker

4. Push the Docker image to Docker Hub: After tagging the image, the last step is to
push the tagged image to Docker Hub.

For this purpose, we will execute the following command:

docker push docker.io/<dockerhub login>/demobook:vl

The following screenshot shows the execution of the preceding command:

PS \Learning-DevOps-Second-Edition\CHAP89\appdocker> docker push docker.io/mikaelkrief/demobook:v1
The push refers to repository [docker.io/mikaelkrief/demobook]

fe83a28f9cfa: Pushed

fdcdecab7afe: Mounted from library/httpd

c86537ee5uf9: Mounted from library/httpd

ecd2bu9ef243: Mounted from library/httpd
7511c367fU7a: Mounted from library/httpd
e8b689711f21: Mounted from library/httpd
vl: digest: sha256:388d9e8b2beb28cu95buo6cToUTbd3d808faU83087a5b5¢c8lUcclelde3fell9e79 size: 1572

Figure 9.17 - docker push image
We can see from this execution that the image is uploaded to Docker Hub.
To view the pushed image in Docker Hub, we connect to the Docker Hub web portal

athttps://hub.docker.com/ and see that the image is present, as shown in the
following screenshot:

Explore Repositories Organizations GetHelp ~ mikaelkrief ‘)
Repositories ~ mikaelkrief / demobock Using 2 of 1 private repositories. Get more
General Tags Builds Timeline Collaborators ~ Webhooks Settings
& | mikaelkrief/ demobook Dacker commands

This repository does not have o description ~ # To push a new tag to this repository,

docker push mikaelkrief/demobook:tagname

(@ Last pushed: 6 minutes ago

Tags

This repository contains 1 tag(s).

Figure 9.18 - The pushed image in Docker Hub with tag
By default, the image pushed to Docker Hub is in public mode—everybody can view it in
the explorer and use it.

We can access this image in Docker Hub in the Docker Hub search engine, as shown in
the following screenshot:

https://hub.docker.com/

Pushing an image to Docker Hub 279

Q. demobook Explore Repositories

& Docker EE & Docker CE (=] containers % Plugins

Filters 1-1 of 1 result for demobook. Clear search
Docker Certified @
[| @ Docker Certified | mikaelkrief/demobook

' By mikaelkrief * Updated 4 hours ago

Images
Container

D Verified Publisher @
Docker Certified And Verified Publisher Content

D Official Images @

Official Images Published By Docker
Figure 9.19 - Finding the image in Docker Hub

To make this image private—meaning only you are authenticated to use it—you must go
to the Settings tab of the image and click on the Make private button, as shown in the
following screenshot:

Repositories mikaelkrief / demobook

General Tags Builds Timeline Collaborators ~ Webhooks Settings o

Visibility Settings
Using 0 of 1 private repositories. Get mare

Make this repository private: Private repositories are only available to you or members of your organization.

e [2

In this section, we looked at the steps and Docker commands for logging in to Docker
Hub via the command line, and then we looked at the tag and push commands for
uploading a Docker image to Docker Hub.

Figure 9.20 — Making a Docker image private

In the next section, we will see how to push a Docker image to a private Docker registry
using an example ACR instance.

280 Containerizing Your Application with Docker

Pushing a Docker image to a private
registry (ACR)

In the previous section, we learned how to push a Docker image to Docker Hub, which is
a public registry. Now, we will learn how to push a Docker image to a private registry.

There are a lot of on-premises or cloud solutions that enable the Docker private registry.
Here is a list of these solutions:

o Docker registry server: https://docs.docker.com/registry/deploying/

o Artifactory from JFrog: https://www.jfrog.com/confluence/display/
JFROG/Docker+Registry

o Amazon Elastic Container Registry (ECR): https://aws.amazon.com/ecr/

+ Google Container Registry (GCR): https://cloud.google.com/
container-registry

e ACR:https://azure.microsoft.com/en-us/services/container-
registry/

In this section, we will study the use of one of these solutions—ACR.

To push a Docker image into ACR, we will proceed with these steps:

1. Before pushing a Docker image, we will create an ACR resource using one of the
following:

= The Azure CLI (https://docs.microsoft.com/en-us/azure/
container-registry/container-registry-get-started-azure-
cli). Theaz cli script that creates a resource group and an ACR resource is
shown here:

az group create --name RG-ACR --location eastus

az acr create --resource-group RG-ACR --name acrdemo
--sku Basic

= PowerShell (https://docs.microsoft.com/en-us/azure/
container-registry/container-registry-get-started-
powershell). The PowerShell script that creates a resource group and an ACR
resource is shown here:

New-AzResourceGroup -Name RG-ACR -Location EastUS

$registry = New-AzContainerRegistry -ResourceGroupName
"RG-ARC" -Name "acrdemo" -EnableAdminUser -Sku Basic

https://docs.docker.com/registry/deploying/
https://www.jfrog.com/confluence/display/JFROG/Docker+Registry
https://www.jfrog.com/confluence/display/JFROG/Docker+Registry
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-powershell
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-powershell
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-powershell

Pushing a Docker image to a private registry (ACR) 281

» The Azure portal (https://docs.microsoft.com/en-us/azure/
container-registry/container-registry-get-started-portal)

In the next steps, we will use an ACR resource named demobookacr.
2. 'Then, we will connect to our Azure account by running the followingaz cli
command:

az login

3. We connect to the created ACR resource (in Step 1) with the following az acr
login command by passing the - -name argument as the name of the ACR
resource created in Step 1, as follows:

az acr login --name demobookacr

This command will connect to the Docker registry using the docker login
command in the background.

4. For pushing a Docker image into this ACR resource, we will execute a couple of
commands.

The first command is to create a tag to the local image, as illustrated here:

docker tag demobook:vl demobookacr.azurecr.io/demobook:vl

The second command is to push the image into the ACR resource, as illustrated
here:

docker push demobookacr.azurecr.io/demobook:vl

These two commands are exactly the same as those we learned for tagging and
pushing a Docker image into Docker Hub, with the difference being that the URL of
the Docker registry for ACR here is <acr names.azurecr.io.

The following screenshot shows the execution of these commands:

PS C:\Users\mkrief> docker tag demobook:vl demobookacr.azurecr.io/demobook:vl
PS C:\Users\mkrief> docker push demobookacr.azurecr.io/demobook:v1l

The push refers to repository [demobookacr.azurecr.io/demobook]

f883a28+9cfa: Pushed

Udcdec®b7ale: Pushed

c86537ee5U4f9: Pushed
ecd2bld9ef243: Pushed
7511c367f47a: Pushed
e8b689711f21: Pushed
vl: digest: sha256:380d9eBb2beb20cl95bU96c70UTbd3d808f0U8307a5b5c8Ucclelde3fell9e79 size: 1572

Figure 9.21 - Pushing Docker image into ACR

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal

282 Containerizing Your Application with Docker

And the following screenshot shows the pushed Docker image in ACR:

Dashboard > Microsoft Azure Sponsorship » rg-acr > demobookacr >

a demobookacr | Repositories « demobook

Container registry Repasitory
|/° Search (Ctrl+/ | <« O Refresh O Refresh i Delete repository
O security J Search to filter repositories ... | ~ Essentials

B Locks Repositories Ty Repaository : demobook

Last updated date : 11/6/2021, 7:24 PM GMT+1

| £ Search to filter tags ...
% Repositories
Tags Ty

4% Wwebhooks -n
® Replications

% Tasks

Figure 9.22 — Docker image in ACR

5. Finally, to pull this Docker image, we will use the following command:

docker pull demobookacr.azurecr.io/demobook:vl

In this section, we learned how to use Docker to push and pull Docker images in a private
Docker registry (that is, ACR).

In the next section, we will see how to deploy this image with a CI/CD pipeline in
managed cloud container services—ACI and Terraform.

Deploying a container to ACIl with a CI/CD
pipeline
One of the major reasons Docker has quickly become attractive to developers and

operations teams is because the deployment of Docker images and containers has made
CI and CD pipelines for enterprise applications easier.

To automate the deployment of our application, we will create a CI/CD pipeline that
deploys the Docker image containing our application in ACI.

ACI is a managed service by Azure that allows you to deploy containers very easily,
without having to worry about the hardware architecture.

Note

To learn more about ACI, head to the official page athttps://azure.
microsoft.com/en-us/services/container-instances/.

https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/

Deploying a container to ACI with a CI/CD pipeline 283

In addition, we will use Terraform for infrastructure as code (IaC), which we discussed
in Chapter 2, Provisioning Cloud Infrastructure with Terraform, using the Azure ACI
resource and its integration with the Docker image.

We will therefore divide this section into two parts, as follows:

o The Terraform code configuration of the Azure ACI and its integration with our
Docker image

+ An example of a CI/CD pipeline in Azure Pipelines, which allows you to execute the
Terraform code

To start, we will write the Terraform code that allows you to provision an ACI resource in
Azure.

Writing the Terraform code for ACI

To provision an ACI resource with Terraform, we navigate to a new terraform-aci
directory and create a Terraform file, main. t f.

In this code, we will provide Terraform code for a resource group and ACI resource using
the azurerm container group Terraform object.

Note

Documentation for the Terraform ACI resource is available here: https://
registry.terraform.io/providers/hashicorp/azurerm/
latest/docs/resources/container group.

Thismain. t£ file contains the following Terraform code, which creates a resource group:

resource "azurerm resource group" "acidemobook" {
name = "demoBook"

location = "westus2"

}

In thismain. t £ file, we add variable declarations in the Terraform configuration, as
follows:

variable "imageversion" ({

description ="Tag of the image to deploy"

}

variable "dockerhub-username" {

284 Containerizing Your Application with Docker

description ="Tag of the image to deploy"

}

And we add the Terraform code for the ACI with the azurerm container group
resource block, as follows:

resource "azurerm container group" "aci-myapp" {
name = "aci-agent"
location = "West Europe"

resource group name = azurerm resource group.ac idemobook.
name

os_type = "linux"

container

name = "myappdemo"

image = "docker.io/mikaelkrief/${var.dockerhub-
username} :${var.imageversion}"

cpu = "0.5" memory = "1.5"

ports {

port = 80

protocol = "TCP"

}

}

In the preceding code snippets, we do the following:

o Wedeclare imageversion and dockerhub-username variables, which will be
instantiated during the CI/CD pipeline and include the username and the tag of the
image to be deployed.

o We use the azurerm container group resource from Terraform to manage
the ACI. In its image property, we indicate the information of the image to be
deployed—meaning, its full name in Docker Hub as well as its tag, which in our
example is deported in the imageversion variable.

Finally, in order to protect the Terraform state file, we can use the Terraform remote
backend by using Azure Blob storage, as we discussed in the Protecting the state file in the
remote backend section of Chapter 2, Provisioning Cloud Infrastructure with Terraform.

Deploying a container to ACI with a CI/CD pipeline 285

Note

The complete source code of this Terraform file is available here: https: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAPO9/terraform-aci.

We have the Terraform code that allows us to create an Azure ACI resource that
will execute a container of our image. Now, we will create a CI/CD pipeline that will
automatically deploy the container of the application.

Creating a CI/CD pipeline for the container

To create a CI/CD pipeline that will build our image and execute the Terraform code, we
can use all the tools that we discussed in detail in Chapter 7, Continuous Integration and
Continuous Delivery.

In this chapter, to visualize the pipeline, we will use Azure Pipelines, which is one of the
previously detailed tools. It is advisable to carefully read the Using Azure Pipelines section
of Chapter 7, Continuous Integration and Continuous Delivery. For this reason, we will not
detail all the stages of the pipeline, but only those relevant to our container subject.

To implement the CI/CD pipeline in Azure Pipelines, we will proceed with these steps:

1. Welll create a new build definition whose source code will point to the fork of the
GitHub repository (https://github.com/PacktPublishing/Learning-
DevOps-Second-Edition), and select the root folder of this repository, as
shown in the following screenshot:

Select a source

(®
=
> 0 0 = " ©
Azure Repos Git GitHub GitHub Enterprise Subversion Bitbucket Cloud Other Git
Server

(@ Authorized using connection: PacktPublishing ~ Change

Repository * | Manage on GitHub =
PacktPublishing/Learning-DevOps-Second-Edition

Default branch for manual and scheduled builds *
main
Continue

Figure 9.23 — Azure Pipelines with GitHub sources

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/terraform-aci
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/terraform-aci
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/terraform-aci
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition

286 Containerizing Your Application with Docker

Note

For more information about forks in GitHub, read Chapter 16, DevOps for
Open Source Projects.

You are free to use any source control version available in Azure Pipelines.

2. Then, on the Variables tab, we will define variables that will be used in the pipeline.
The following screenshot shows the information on the Variables tab:

Tasks Variables Triggers Options Retention History = Summary [> Queue

Pipeline variables Name T Value

Variable groups ARM_CLIENT_ID 94a2eard-10c9-46b3-8

Predefined variables (2 ARM _CLIENT SECRET
ARM_SUBSCRIPTION_ID 1dad2ac9-ee3e
ARM_TENANT_ID 2e3a33f9-66b1
dockerhub_Username mikael’
system.collectionld 76c79aec-9641-44c5-be15-beacfafe67a9
system.debug true
system.definitionld 2
system.teamPragject BookDemo

Figure 9.24 - Pipeline variables
We defined four pieces of Terraform connection information for Azure and the
username of Docker Hub.

3. 'Then, on the Tasks tab, we must take the following steps:

A. Runthe docker build command on the Dockerfile.
B. Push the image to Docker Hub.

C. Run the Terraform code to update the ACI resource with the new version of
the updated image.

Deploying a container to ACI with a CI/CD pipeline

287

The following screenshot shows the configuration of the tasks:

Tasks

Pipeline

Variables Triggers Options History

Build pipeline

== Get sources

) PacktPublishing/Learning-DevOps-Second-Edition § main
Agent job 1 +
£ FRunonagent
S Docker build and push
-l oocker

\l
1

Use Terraform 0.14
Terraform Installer

Terraform execution e
Bash

Figure 9.25 - Pipeline steps list

We configure the tasks mentioned in Step 3 with these steps:

1.

The first task, Docker build and push, allows you to build the Docker image and

push it to Docker Hub. Its configuration is quite simple, as we can see here:

Pipeline
Build pipeline

== Get sources

©) PackiPublishing/Learning-DevOps-Secend-Edition Container Repository ~

¥ main

Agent job 1

= Run on sgent

Display name *

| Docker build and push ‘

Container registry () | Manage 2

+ DockerHub v 0O 4+ New

\

Docker

Docker build and push

Container repository (1)

$(dockerHub_Username)/demobook

\' Use Terraform 0.14

Terraform Installer

m ;rezraform execution Command* (D
ach

Commands ~

buildAndPush v

Dockerfile™ (@)

| CHAP09/appdocker/Dockerfile ‘

Build context (i)

Tags ()

| $(Build.BuildNumber) ‘

Figure 9.26 — Docker build and push step parameters

288 Containerizing Your Application with Docker

These are the required parameters of this task:
» A connection to Docker Hub using Service Connection named DockerHub
» The tag of the image that will be pushed to Docker Hub
2. The second task, Terraform Installer with the display name Use Terraform 0.14,

allows you to download Terraform on the pipeline agent by specifying the version of
Terraform that you want.

Note

This task is available in the Visual Studio Marketplace at
https://marketplace.visualstudio.com/
items?itemName=charleszipp.azure-pipelines-tasks-
terraform&targetId=76c79aec-9641-44c5-bel5-
beacfafe67a9.

The following screenshot shows its configuration, which is very simple:

Pipeline
Build pipeline Terraform Installer @

== Get sources

- . Task version 0. v
©) PacktPublishing/Learning-DevOps-Second-Edition

¥ main

Display name *

Agent job 1
igRLm :3|J1 agent + ‘ Use Terraform 0.14
Docker build and push Version O]
Docker
T ‘ 0.14.10
Use Terraform 0.14 (] Download URL (D)

Terraform Installer

. ¥
Terraform execution ‘
Bash

BH <\

Control Options v

Output Variables v

Figure 9.27 - Terraform step parameters

3. 'The last task, Bash, allows you the Terraform execution inside a Bash script, and
this screenshot shows its configuration:

https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform&targetId=76c79aec-9641-44c5-be15-beacfafe67a9
https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform&targetId=76c79aec-9641-44c5-be15-beacfafe67a9
https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform&targetId=76c79aec-9641-44c5-be15-beacfafe67a9
https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform&targetId=76c79aec-9641-44c5-be15-beacfafe67a9

Deploying a container to ACI with a CI/CD pipeline 289

Pipeline Task version 3.x ~
Build pipeline

== Get sources

Display name *
€) PacktPublishing/Learning-DevOps-Second-Edition play

¥ main Terraform execution

Type @
() File Path (@) Inline

Script @

Agent job 1

B Aunon agent

Sa_ Docker build and push
- Docker

export ARM_CLIENT_ID="${ARM_CLIENT_ID)"

\i Use Terraform 0.14 export ARM_CLIENT SECRET="$(ARM_CLIENT SECRET)"
Termaform Installer export ARM_TENANT ID="$(ARM_TENANT_ID)"
export ARM_SUBSCRIPTION_ID="$(ARM_SUBSCRIPTION_ID)"
m Terraform execution ® i
Bash i terraform init -backend-config="backend.tfvars"
terraform apply -var “imageversion=$(Build.BuildNumber)" -var "dockerhub-userame=$(dockerhub_Username)" --auto-approve

Advanced ~

Working Directory (1)

‘ CHAPO9/terraform-aci

Figure 9.28 - Bash step parameters
The configured script looks like this:
export ARM CLIENT ID="$ (ARM CLIENT ID)"
export ARM CLIENT SECRET="$ (ARM CLIENT SECRET)"
export ARM TENANT ID="$ (ARM TENANT ID)"
export ARM SUBSCRIPTION ID="$ (ARM SUBSCRIPTION ID)"
terraform init -backend-config="backend.tfvars"

terraform apply -var "imageversion=$ (Build.BuildNumber)"
-var "dockerhub-username=$ (dockerhub Username)" --auto-
approve

This script performs three actions, which are done in the following order:
A. Exports the environment variables required for Terraform.
B. Executes the terraform init command.

C. Executes terraform apply to apply the changes, with the two -var
parameters, which are our Docker Hub username as well as the tag to be
applied. These parameters allow the execution of a container with the new
image that has just been pushed to Docker Hub.

290 Containerizing Your Application with Docker

Then, to configure the build agent to use in the Agent job options, we use the Azure
Pipelines agent-hosted Ubuntu 16.04, as shown in the following screenshot:

== Get sources
€) PacktPublishing/Learning-DevOps-Second-Edition

T et Display name *
‘ Agent job
Agent job i
EgRun 0.{ agent o + Agent selection A~
2. Docker build and push Agent pool () | Poolinformation | Manage 1
z Daocker

‘ Azure Pipelines

Agent Specification *

1. Use Terraform 0.14
Terraform Installer

E Terraform execution ‘ ubuntu-latest

Bash

Figure 9.29 - Agent job parameters

Finally, the last configuration is the trigger configuration on the Triggers tab, which

enables the CI with the trigger of this build at each commit, as shown in the following
screenshot:

Tasks Variables Options History Save & queue

Conti integrati
entinuous integration 0 PacktPublishing/Learning-DevOps-Second-Edition

O PacktPublishing/Learning-DevOps-Second-Edition
Enabled

Enable continuous integration

Pull request validation () Batch changes while a build is in progress

o PacktPublishing/Learning-DevOps-Second-Edition Branch filters

Disabled
Type Branch specification
Scheduled + Add Include ~ | | main |
No builds scheduled + Add
i i + Add §
Build completion Path filters
Build when another build completes + Add

Figure 9.30 — Enabled CI
That completes the configuration of the CI/CD pipeline in Azure Pipelines.
After we trigger this build, we should be able to see a new version of the Docker image at

the end of its execution, which corresponds to the number of the build that pushed the
Docker image into Docker Hub, as illustrated in the following screenshot:

Deploying a container to ACI with a CI/CD pipeline 291

® mikaelkrief/demobook

This repository does not have a description ~ #

(@® Last pushed: an hour ago

Tags

This repository contains 7 tag(s).

1.0.13 {1 © an hour ago

_

1.0.12 A @ an hour ago

Figure 9.31 - Pushed Docker image in Docker Hub via pipeline
In the Azure portal, we have our aci-app ACI resource with our mydemoapp container,
as you can see in the following screenshot:

— .
. aci-app - Containers
_—

Container instances

«
O Search (Ctrl+/) O Refresh

& Overview 1 container

Activity log NAME IMAGE STATE PREVIOUS STATE START TIME RESTART
s Access control (AM) myappdemo dockerio/mikaelkrief/de... Running . 019061852707 ©

L 4 Tags

Events Properties Logs Connect
Settings -

—) Display time zone @ Local time O utc
&= Containers

% Identity NAME TYPE FIRST TIMESTAMP LAST TIMESTAMP 4 MESSAGE COUNT
i ;.
It properties Created Normal 6/18/2019, 5:27 PM GMT... 6/18/2013, 5:27 PM GMT... Created container 1
& Locks .

Started Normal 6/18/2019, 5:27 PM GMT... 6/18/2019, 5:27 PM GMT... Started container 1
Export template

Pulled Normal 6/18/2019, 5:27 PM GMT... 6/18/2019, 5:27 PM GMT... Successfully pulled imag... 1
Monitoring pulling Normal 6/18/2019, 5:26 PM GMT... 6/18/2019, 5:26 PM GMT... pulling image “docker.io/... 1

Figure 9.32 - ACI containers

Notice that the container is running well.

292 Containerizing Your Application with Docker

Now, to access our application, we need to retrieve the public fully qualified domain
name (FQDN) URL of the container provided in the Azure portal. The following
screenshot shows where you can find this:

aci-app =

Container instances

o Search (Ctri+/) € P st QRestat M stop @ Delete) Refresh

E— Resource group (ciange) : demoBook oS type : Linux
g Status : Running IP address : 51.105.134.152
Activity log
Location : West Europe FQDN : myapp-demo.westeurope.azurecontainer.io

s
s Access control (IAM
b 1AM) Subscription (change) : DEMO Container count : 1

& Tags Subscription ID : 1da42ac9-ee3e-4fdb-b294-17a607f589d5

Settings Tags (change) : Click here to add tags
Figure 9.33 - FQDN of application container in ACI
We open a web browser with this URL:

< C ® myapp-demo.westeurope.azurecontainer.io

Welcome to my new app

This page is test for my demo Dockerfile.
Enjoy ...

Figure 9.34 - Testing the application
Our web application is displayed correctly.
The next time the application is updated, the CI/CD build is triggered, a new version of

the image will be pushed into Docker Hub, and a new container will be loaded with this
new version of the image.

In this section, we have looked at writing Terraform code to manage an ACI resource
and the creation of a CI/CD pipeline in Azure Pipelines, which allows you to deploy
the application's image in Docker Hub and then update the ACI resource with the new
version of the image.

In the next section, we will discuss another use case of Docker—that is, for running
command-line tools.

Using Docker for running command-line tools

Up to now in this chapter, we have studied use cases of Docker to containerize a web
application with Nginx.

Using Docker for running command-line tools 293

Another use case of Docker is to be able to run command-line tools that are in Docker
containers.

To illustrate this, we will run a sample of Terraform configuration using the Terraform
binary, which is not located on a local machine but in a Docker container.

The Terraform configuration that we use in this section is the same as that in the previous
section, Deploying a container to ACI with a CI/CD pipeline, and the source code is
available here: https://github.com/PacktPublishing/Learning-DevOps-
Second-Edition/tree/main/CHAPO9/terraform-aci.

The goal of this lab is to run this Terraform configuration using the Terraform binary that
is in the Docker container. To run this lab, following these steps:

1. First we pull the official Terraform image from the Docker Hub with this command:
docker pull hashicorp/terraform

The following screenshot shows the execution of this command:

25 \Learning-DevOps-Second-Edition\CHAP@9\terraform-aci> docker pull hashicorp/terraform
Using default tag: latest

latest: Pulling from hashicorp/terraform

afdeaddu6e+8b: Pull complete

2bb95c284368: Pull complete

efl9uPel168e: Pull complete

Digest: sha256:b5Uec7c5c0599bc94337383588%¢ecfaelefb5adcf22985Uc758a5¢c9U172c30856
Status: Downloaded newer image for hashicorp/terraform:latest
docker.ic/hashicorp/terraform:latest

Figure 9.35 - docker pull command to pull Terraform image

2. 'Then, inside the folder that contains the Terraform configuration, we will run the
Terraform workflow using the following three docker run commands:

First, we run the terraform init command, as follows:
docker run -i -t -v ${PWD}:/usr/tf -w /usr/tf '
--env ARM CLIENT ID="<azure clientId>" '
--env ARM CLIENT SECRET="<azure client secret>" '
--env ARM SUBSCRIPTION ID="<azure subscription>" '
--env ARM TENANT ID="azure tenant id" '
--env ARM ACCESS KEY="azure access key " '
hashicorp/terraform:latest '
init -backend-config="backend.tfvars"

In this docker run command, we use the following arguments:

» -v to create a volume for mounting the current local directory that contains the
Terraform code inside the /usr/t£ directory on the container

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/terraform-aci
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/terraform-aci

294 Containerizing Your Application with Docker

» -w to specify the working directory

» --env with the environment variable necessary for Terraform to authenticate to
Azure

* Hashicorp/terraform:latest, which is the name of the image

» init -backend-config="backend.tfvars", which is the argument for
the Terraform command to run

Now, we run the terraform plan command, as follows:
docker run -i -t -v ${PWD}:/usr/tf -w /usr/tf '
--env ARM CLIENT ID="<azure clientId>" '
--env ARM CLIENT SECRET="<azure client secret>" '
--env ARM SUBSCRIPTION ID="<azure subscription>" '
--env ARM TENANT ID="azure tenant id" '
--env ARM ACCESS KEY="azure access key " '
hashicorp/terraform:latest '

plan -var dockerhub-username="<docker hub username>" -out
plan.tfplan

In this preceding command, we use the same argument, with the plan command
for Terraform.
Finally, we run the terraform apply command, as follows:
docker run -i -t -v ${PWD}:/usr/tf -w /usr/tf '
--env ARM CLIENT ID="<azure clientId>" '
--env ARM CLIENT SECRET="<azure client secret>" '
--env ARM SUBSCRIPTION ID="<azure subscription>" '
--env ARM TENANT ID="azure tenant id" '
--env ARM ACCESS KEY="azure access key " '
hashicorp/terraform:latest '

apply plan.tfplan

We have just studied a basic example of using a tool (here with Terraform) that runs in a
Docker container. This use of Docker has the following advantages:

o It's not necessary to install these tools on its local machine; the installation process
is done by the tool editor in the Docker image.

o You can run several versions of the same tool.

Getting started with Docker Compose 295

In the next section, we will discuss the use of Docker Compose, which allows us to mount
several Docker images to the same group of containers.

Getting started with Docker Compose

So far in this chapter, we have studied how to write a Dockerfile, create a Docker image,
and run a container of this Docker image.

Today, applications are not working in standalone mode; they need other dependencies
such as a service (for example, another application; an application programming
interface (API)) or a database. This implies that for these applications, the Docker
workflow is more consistent. Indeed, when we work with several Docker applications,
we have to execute for each of them the docker build and docker run commands,
which requires some effort.

Docker Compose is a more advanced Docker tool that allows us to deploy several Docker
containers at the same time in the same deployment cycle. Docker Compose also allows
us to manage elements that are common to these Docker containers, such as data volumes
and network configuration.

Note

For more details about Docker Compose, read the official documentation here:

https://docs.docker.com/compose

In Docker Compose, this configuration—which contains the Docker images, the volumes,
and the network that constitutes the artifacts of the same application—is done simply in a
configuration file in YAML Ain't Markup Language (YAML) format.

In this section, we will learn about the basic mode installation of Docker Compose. Then,
we will write a simple Docker Compose configuration file to run an nginx application
with a MySQL database in the same context. Finally, we will execute this Docker Compose
configuration file and view the result in Docker containers.

Installing Docker Compose

On Windows or macOS, the Docker Compose binary is already installed with Docker
Desktop.

Follow this documentation to install the Docker Compose binary on Linux: https://
docs.docker.com/compose/install/#install-compose-on-linux-
systems.

https://docs.docker.com/compose
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
https://docs.docker.com/compose/install/#install-compose-on-linux-systems

296 Containerizing Your Application with Docker

We can check if Docker Compose is correctly installed by running the following
command:

docker-compose version

The following screenshot shows the result of this command:

Learning-DevOps—Second-Edition\CHAP@9\docker—compose> docker—compose version
docker-compose version 1.29.2, build 5becealc

docker-py version: 5.0.0
CPython version: 3.9.0
OpenSSL version: OpenSSL 1.1.1g

Figure 9.36 - docker-compose version command

This command displays the version of the installed docker-compose binary.

Now that Docker Compose is installed, we will write the Docker Compose configuration
YAML file.

Writing the Docker Compose configuration file

For deploying containers using Docker Compose, we will write a configuration file to run
an nginx container coupled with a mysqgl container.

For this, we will create a new file named docker-compose . yml with the following
content that is in two blocks of code.

The first code snippet, in YAML, is for creating an nginx container, as follows:

version: '3' #version of the Docker Compose YAML schema
services:
nginx:
image: nginx:latest
container name: nginx-container
ports:
- 8080:80

In the preceding code snippet, we start with the services property, which contains a
list of services (or Docker applications) to run in Docker. The first service is the nginx
service. We configure the nginx docker image to use, the name of the container, and
the exposed port, which is 8080, for the local access of the nginx service.

Getting started with Docker Compose 297

Then, we add the YAML for the MySQL service with the following code:

mysql :
image: mysqgl:5.7
container name: mysqgl-container
environment :
MYSQL ROOT PASSWORD: secret
MYSQL DATABASE: mydb
MYSQL USER: myuser
MYSQL PASSWORD: password

In the preceding code snippet, we configure the mysql service with the Docker image,
the name of the container, and the required environment variable for configuring the
database access.

Note
The complete source code of this file is available here:
https://github.com/PacktPublishing/Learning-

DevOps-Second-Edition/blob/main/CHAP09/docker-
compose/docker-compose.yml

We have just written the YAML file of the docker-compose configuration. Now, we will
run Docker Compose to execute the containers described in this configuration.

Executing Docker Compose

For running the Docker containers described in the YAML configuration file, we will run
the basic operation of Docker Compose by executing the following command in the folder
that contains the docker-compose . yml file:

docker-compose up -d

Note

The -d option is added for running the containers in detached mode.

The complete documentation for the docker-compose CLI is available
here:

https://docs.docker.com/compose/reference/

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP09/docker-compose/docker-compose.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP09/docker-compose/docker-compose.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP09/docker-compose/docker-compose.yml

298 Containerizing Your Application with Docker

The following screenshot shows the execution of the docker-compose up -d command:

PS \Learning-DevOps-Second-Edition\CHAP@9\docker—compose> docker—compose up -d

[+] Running 12/12

- mysql Pulled

- b386bbd43752 Already exists

f23cbf2ecc5d Pull complete
30cfcb6c29cP@a Pull complete
b38609286¢cbe Pull complete
8211d9e66cd6 Pull complete
2313f9eecalla Pull complete
T7ebli87d00da® Pull complete
a7laacf213e7 Pull complete
393153c555df Pull complete
06628e2290d7 Pull complete
ff2ab8dac9ac Pull complete

[+] Running 2/2

- Container mysql-container Started

- Container nginx-container Running

WO NNNDEN

Figure 9.37 — docker-compose up -d command

At the end of this execution, Docker Compose displays a list of started containers. Here, in
our example, these are nginx and mysql.

To check that the containers are running, we execute the docker ps Docker command
to display a list of running containers.

The following screenshot shows the execution of the docker ps command:

PS C:\Users\mkrief> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

2fc77d3debbe nginx:latest "/docker-entrypoint..." 3 minutes ago Up 3 minutes 0.0.0.0:8080—>80/tcp nginx—container
7dbL99e87U466 mysql:5.7 "docker—entrypoint.s.." 3 minutes ago Up 3 minutes 3306/tcp, 33060/tcp mysql-container

Figure 9.38 — docker ps command
We can see that our two containers are running.
On Windows or macOS, we can also use Docker Desktop, which displays in the

containers' list the running containers mounted by Docker Compose inside the docker-
compose group, as illustrated in the following screenshot:

& docker Upgrade &3 W @ mikaelkrief
& Containers / Apps O\ Search... Sortby v
N Images demoapp demobook:v1

EXITED (255) PORT: 8080

& Volumes minikube ger.io/k8s-minik...

EXITED (130) PORT:0

@ Dev Environments (ZE0a0
< docker-compose

= RUNNING

w mysgl-container mysql:5.7
RUNNING

] nginx-container nginx:latest
RUNNING PORT: 8080

Figure 9.39 — Docker Desktop list of Docker Compose containers

Deploying Docker Compose containers in ACI 299

In this section, we learned some basic features for writing Docker Compose configuration
files and executing Docker Compose locally to run Docker containers.

In the next section, we will discuss the same execution of these containers remotely on ACI.

Deploying Docker Compose containers in ACI
We discussed ACI in the Deploying a container to ACI with a CI/CD pipeline section.

Now, we will learn how to execute containers with Docker Compose configuration in ACI
to run a set of containers that are on the same application services.

For this lab, we will use the same Docker Compose configuration we learned in the Using
Docker for running command-line tools section. The only difference is that the running
port on the nginx service is 80 instead of 8080, which we used locally (because my port
80 is already used by another service).

For deploying containers on ACI, we will perform the following steps:

1. Inside our Azure subscription, we will create a new resource group called
rg-acicompose.

2. Then, in the console terminal, run the following Docker command to log in to Azure:
docker login azure

The execution of this command opens a window that allows us to authenticate
ourselves to our Azure subscription.

3. Create a new Docker context by running the following command:
docker context create aci demobookaci

By running this command, we choose the Azure subscription and the resource
group we created in Step 1, as illustrated in the following screenshot:

PS ¢ ‘mammaman\Learning-DevOps—Second-Edition\CHAP@9\docker-compose> ducker cuntext create aci demobookaci
? Select a subscription ID Microsoft Azure Sponsorship (¢)

? Select a resource group rg-acicompose (westeurope)
Successfully created aci context "demobookaci

Figure 9.40 — Creating Docker context for ACI

4. Check the new Docker context by running the following command:

docker context 1ls

300 Containerizing Your Application with Docker

This command displays a list of Docker contexts and indicates with a * symbol the
current context, as illustrated in the following screenshot:

\Learning-DevOps—Second-Edition\CHAP@9\docker—compose> docker context ls
TYPE DESCRIPTION DOCKER ENDPOINT

moby Current DOCKER_HOST based configuration npipe:////./pipe/docker_engine
aci rg-acicompose@westeurope
desktop-linux moby npipe:////./pipe/dockerDesktopLinuxEngine

Figure 9.41 - List of Docker contexts

5. Select the newly created demobookaci context by running the following
command:

docker context use demobookaci

6. Finally, to deploy the Docker Compose configuration application inside this ACI
resource, run the following command:

docker compose up

The following screenshot shows the result of the execution of this command:

PS \Learning-DevOps-Second-Edition\CHAP@9\docker-compose> docker compose up
[+] Running 3/3

- Group docker-compose Created
- nginx-container Created
- mysgl-container Created

Figure 9.42 - docker compose up command for deployment to ACI

In our Azure subscription, we can see the created ACI resource with two containers, as
indicated in the following screenshot:

Microsoft Azure R Search resources, services, and docs (G+/)

Dashboard > > rg-acicompose > docker-compase

=, docker-compose | Containers

===l Container instances

|)3 Search (Ctrl+/) | &« O Refresh

© overview = 3 containers

Activity log Name Image State
% Access control (1AM) nginx-container nginx:latest Running
€ Tags mysql-container mysql:5.7 Running
Settings aci--dns--sidecar docker/aci-hostnames-sidecar:1.0 Running

Figure 9.43 — ACI containers created by Docker Compose

Summary 301

Finally, to test and gain access to the deployed application, find the application FQDN
in the ACI properties and launch the application in the browser. This is exactly what we
learned in the Deploying a container to ACI with a CI/CD pipeline section of this chapter.

Note
For another sample of Docker Compose in ACI, read an official tutorial here:

https://docs.microsoft.com/en-us/azure/container-
instances/tutorial -docker-compose

In this section, we have learned how to deploy multiple containers using Docker Compose
in ACI using the docker-compose YAML file and some Docker command-line
contexts.

Summary

In this chapter, we presented Docker and its essential concepts. We discussed the
necessary steps to create a Docker Hub account, and then we installed Docker locally with
Docker Desktop.

We created a Dockerfile that details the composition of a Docker image of a web
application, and we also looked at the principal instructions that it is composed of—
FROM, COPY, and RUN.

We executed the docker buildand docker run commands to build an image from
our Dockerfile and execute it locally, and then pushed it to Docker Hub using the push
command.

In the second part of this chapter, we implemented and executed a CI/CD pipeline in
Azure Pipelines to deploy our container in an ACI resource that was provisioned with
Terraform. Then, we discussed the use of Docker for running command-line tools such as
Terraform.

Finally, we learned to install and use Docker Compose to create multiple application
containers and deploy them in ACI.

In the next chapter, we will continue with the subject of containers, and we will look at
the use of Kubernetes, which is a tool to manage containers on a large scale. We will use
the Azure Kubernetes Service (AKS) and Azure Pipelines to deploy an application in
Kubernetes with a CI/CD pipeline.

302 Containerizing Your Application with Docker

Questions

What is Docker Hub?

What is the basic element that allows you to create a Docker image?

In a Dockerfile, what is the instruction that defines a base image to use?
Which Docker command allows you to create a Docker image?

Which Docker command allows you to instantiate a new container?

SR

Which Docker command allows you to publish an image in Docker Hub?

Further reading

If you want to know more about Docker, here are some great books:

o Docker Cookbook: https://www.packtpub.com/virtualization-and-
cloud/docker-cookbook-second-edition

o Beginning DevOps with Docker: https://www.packtpub.com/
virtualization-and-cloud/beginning-devops-docker

https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook-second-edition
https://www.packtpub.com/virtualization-and-cloud/beginning-devops-docker
https://www.packtpub.com/virtualization-and-cloud/beginning-devops-docker

10

Managing
Containers
Effectively with
Kubernetes

In the previous chapter, we learned in detail about containers with Docker, about the
construction of a Docker image, and about the instantiation of a new container on the
local machine. Finally, we set up a continuous integration/continuous deployment
(CI/CD) pipeline that builds an image, deploys it in Docker Hub, and executes its
container in Azure Container Instances (ACI).

All this works well and does not pose too many problems when working with a few
containers. But in so-called microservice applications—that is, applications that are
composed of several services (each of them is a container), we will need to manage and
orchestrate these containers.

There are two major container orchestration tools on the market: Docker Swarm and
Kubernetes.

304 Managing Containers Effectively with Kubernetes

For some time now, Kubernetes, also known as K8S, has proved to be a true leader in the
field of container management and is therefore becoming a must for the containerization
of applications.

In this chapter, we will learn how to install Kubernetes on a local machine, as well as an
example of how to deploy an application in Kubernetes, both in a standard way and with
Helm. We will learn in more depth about Helm by creating a chart and publishing it in a
private registry on Azure Container Registry (ACR).

Then, we will talk about Azure Kubernetes Service (AKS) as an example of a Kubernetes
cluster, and finally, we will learn how to monitor applications and metrics in Kubernetes.

This chapter will cover the following topics:

o Installing Kubernetes

« A first example of Kubernetes application deployment
 Using Helm as a package manager

 DPublishing a Helm chart in a private registry (ACR)

» Using AKS

« Creating a CI/CD pipeline for Kubernetes with Azure Pipelines

« Monitoring applications and metrics in Kubernetes

Technical requirements

This chapter is a continuation of the previous chapter on Docker, so to understand it
properly, it is necessary to have read that chapter and to have installed Docker Desktop
(for the Windows operating system (OS)).

In the CI/CD part of this chapter, you will need to retrieve the source code that was
provided in the previous chapter on Docker, which is available at https://github.
com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAP09/appdocker.

For the section about Helm charts on ACR, it's necessary to have an Azure subscription
(register for free here: https://azure.microsoft.com/en-us/free/) and that
you have installed the Azure Command-Line Interface (CLI) binary, available here:
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli.

The entire source code for this chapter is available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAP10.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/appdocker
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/appdocker
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP09/appdocker
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP10
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP10
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP10

Installing Kubernetes 305

Check out the following video to see the Code in Action:

https://bit.ly/3p7ydjt

Installing Kubernetes

Before installing Kubernetes, we need to have an overview of its architecture and main
components, because Kubernetes is not a simple tool but is a cluster—that is, it consists of
a master server and other slave servers called nodes.

I suggest you explore the architecture of Kubernetes in a simplified way.

Kubernetes architecture overview

Kubernetes is a platform that is made up of several components that assemble together
and extend on demand, in order to enable better scalability of applications. The
architecture of Kubernetes, which is a client/server type, can be represented simply, as
shown in the following diagram:

Figure 10.1 — Kubernetes architecture

In the previous diagram, we can see that a cluster is made up of a master component and
nodes (also called worker nodes), which represent the slave servers.

In each of these nodes, there are pods, which are virtual elements that will contain
containers and volumes.

Put simply, we can create one pod per application, and it will contain all the containers
of the application. For example, one pod can contain a web server container, a database
container, and a volume that will contain persistent files for images and database files.

https://bit.ly/3p7ydjt

306 Managing Containers Effectively with Kubernetes

Finally, kubect1 is the client tool that allows us to interact with a Kubernetes cluster.
With this, we have the main requirements that allow us to work with Kubernetes, so let's
look at how we can install it on a local machine.

Installing Kubernetes on a local machine

When developing a containerized application that is to be hosted on Kubernetes, it is very
important to be able to run the application (with its containers) on your local machine,
before deploying it on remote Kubernetes production clusters.

In order to install a Kubernetes cluster locally, there are several solutions, which are
detailed next.

The first solution is to use Docker Desktop by performing the following steps:

1. If we have already installed Docker Desktop, which we learned about in Chapter
9, Containerizing Your Application with Docker, we can activate the Enable
Kubernetes option in Settings on the Kubernetes tab, as shown in the following

screenshot:

@'docker Upgrade e ?4. e mikaelkrief
Settings X

= General Kubernetes

v1.21.5
I® Resources
e Enable Kubernetes
Start a Kubernetes single-node cluster when starting Docker Desktop. e
i Experimental Features .
oW system containers (aavance
P [J show syst t (ad d)
@ WlbarEEs e Show Kubernetes internal containers when using Docker commands.
@ Software Updates ‘ Reset Kubernetes Cluster

All stacks and Kubernetes resources will be deleted.

= O

Figure 10.2 - Enabling Kubernetes in Docker Desktop

Installing Kubernetes 307

2. After clicking on the Apply & Restart button, Docker Desktop will install a local
Kubernetes cluster, and also the kubect1 client tool, on the local machine.

The second way of installing Kubernetes locally is to install minikube, which also installs
a simplified Kubernetes cluster locally. Here is the official documentation that you can
read: https://minikube.sigs.k8s.io/docs/start/.

Note

There are other solutions for installing local Kubernetes, such as kind or
kubeadm. For more details, read the documentation here: https://
kubernetes.io/docs/tasks/tools/.

Following the local installation of Kubernetes, we will check its installation by executing
the following command in a Terminal:

kubectl version --short

The following screenshot shows the results for the preceding command:

PS C:\Users\mkrief> kubectl version —--short

Client Version: v1.28.5
Server Version: v1.28.9

Figure 10.3 - kubectl getting the binary version

Note

All of the operations that we carry out on our Kubernetes cluster will be done
with kubect 1 commands.

After installing our Kubernetes cluster, we'll need another element, which is the
Kubernetes dashboard. This is a web application that allows us to view the status, as well
as all the components, of our cluster.

In the next section, we'll discuss how to install and test the Kubernetes dashboard.

https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

308 Managing Containers Effectively with Kubernetes

Installing the Kubernetes dashboard

In order to install the Kubernetes dashboard, which is a pre-packaged containerized web
application that will be deployed in our cluster, we will run the following command in a
Terminal:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.4.0/aio/deploy/recommended.yaml

Its execution is shown in the following screenshot:

PS C:\Users\mkrief> kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.4.8/aio/deploy/recommended.yaml
namespace/kubernetes-dashboard created
serviceaccount/kubernetes-dashboard created

service/kubernetes-dashboard created

secret/kubernetes-dashboard-certs created
secret/kubernetes-dashboard-csrf created
secret/kubernetes-dashboard-key-holder created
configmap/kubernetes-dashboard-settings created
role.rbac.authorization.k8s.io/kubernetes—-dashboard created
clusterrole.rbac.authorization.k8s.io/kubernetes-dashboard created
rolebinding.rbac.authorization.k8s.io/Kubernetes-dashboard created
clusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
deployment .apps/kubernetes-dashboard created
service/dashboard-metrics-scraper created
deployment.apps/dashboard-metrics-scraper created

Figure 10.4 — Kubernetes dashboard installation

From the preceding screenshot, we can see that different artifacts are created, which are
outlined as follows: secrets, two web applications, role-based access control (RBAC)
roles, permissions, and services.

Note

Note that the Uniform Resource Locator (URL) mentioned in the parameters
of the command that installs the dashboard may change depending on the
versions of the dashboard. To find out the last valid URL to date, consult

the official documentation by visiting ht tps: / /kubernetes.io/
docs/tasks/access-application-cluster/web-ui-
dashboard/.

Now that we have installed this Kubernetes dashboard, we will connect to it and
configure it.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

Installing Kubernetes 309

To open the dashboard and connect to it from our local machine, we must first create a
proxy between the Kubernetes cluster and our machine by performing the following steps:

1. To create a proxy, we execute the kubectl proxy command in a Terminal. The
detail of the execution is shown in the following screenshot:

»kubectl proxy

on 127.68.68.1:38881

Figure 10.5 - kubectl proxy command

We can see that the proxy is open on the localhost address (127.0.0.1) on port
8001.

2. 'Then, in a web browser, open the following URL, http://localhost:8001/
api/vl/namespaces/kubernetes-dashboard/services/
https:kubernetes-dashboard: /proxy/#/1login, which is a local URL
(localhost and 8001) that is created by the proxy and that points to the Kubernetes
dashboard application we have installed.

The following screenshot shows how to select the Kubernetes configuration file or
enter the authentication token:

c @ localhost:8001/a pi/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login

Kubernetes Dashboard

© Kubeconfig

Please select the kubeconfig file that you have created to configure access to the
cluster. To find out more about how to configure and use kubeconfig file, please refer
to the Configure Access to Multiple Clusters section.

O Token

Every Service Account has a Secret with valid Bearer Token that can be used to log in
to Dashboard. To find out more about how to configure and use Bearer Tokens,
please refer to the Authentication section.

Figure 10.6 - Kubernetes dashboard authentication

310 Managing Containers Effectively with Kubernetes
3. To create a new user authentication token, we will execute the following script in a
PowerShell Terminal:
$TOKEN= ((kubectl -n kube-system describe secret default |
Select-String "token:") -split " +") [1]
kubectl config set-credentials docker-for-desktop
--token="${TOKEN}"
The execution of this script creates a new token inside the local config file.
4. Finally, in the dashboard, we will select the config file, which is located in the C: \

Users\<user names.kube\ folder, as shown in the following screenshot:

C (@ localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login

Kubernetes Dashboard

@ Kubeconfig

Please select the kubeconfig file that you have created to configure access to
the cluster. To find out more about how to configure and use kubeconfig file,
please refer to the Configure Access to Multiple Clusters section.

(O Token

Every Service Account has a Secret with valid Bearer Token that can be used to
log in to Dashboard. To find out more about how to configure and use Bearer
Tokens, please refer to the Authentication section.

Choose kubeconfig file

config /

Figure 10.7 - Kubernetes dashboard authentication with the kubeconfig file

Note
For token authentication, read this blog post:
https://www.replex.io/blog/how-to-install-access-

and-add-heapster-metrics-to-the-kubernetes-
dashboard

https://www.replex.io/blog/how-to-install-access-and-add-heapster-metrics-to-the-kubernetes-dashboard
https://www.replex.io/blog/how-to-install-access-and-add-heapster-metrics-to-the-kubernetes-dashboard
https://www.replex.io/blog/how-to-install-access-and-add-heapster-metrics-to-the-kubernetes-dashboard

A first example of Kubernetes application deployment 311

5. After clicking on the SIGN IN button, the dashboard is displayed, as follows:

&« C @ localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/overview?namespace=default ¥
kubernetes Q search
Cluster Discovery and Load Balancing

Namespaces

Nodes Services

Persistent Volumes

-

Name % Labels Cluster IP Internal endpoints External endpoints
Roles
component: apiserver

Storage Classes Q kubernetes . 10.96.0.1 kubernetes:443 TCP
provider: kubernetes

Namespace

Config and Storage

default ~

Overview Secrets

Workloads Name Type Age T
Cron Jobs default-token-2vtdd kubernetes.io/service-account-token 30 minutes

Figure 10.8 - Kubernetes dashboard resources list

We have just seen how to install a Kubernetes cluster on a local machine, and then we
installed and configured the Kubernetes web dashboard in this cluster. We will now
deploy our first application in the local Kubernetes cluster using YAML Ain't Markup
Language (YAML) specification files and kubect1 commands.

A first example of Kubernetes application
deployment

After installing our Kubernetes cluster, we will deploy an application in it. First of all, it
is important to know that when we deploy an application in Kubernetes, we create a new
instance of the Docker container in a Kubernetes pod object, so we first need to have

a Docker image that contains the application.

For our example, we will use the Docker image that contains a web application that we
have pushed into Docker Hub in Chapter 9, Containerizing Your Application with Docker.

312 Managing Containers Effectively with Kubernetes

To deploy this instance of the Docker container, we will create a new k8sdeploy folder,
and inside it, we will create a Kubernetes deployment YAML specification file (myapp-
deployment . yml) with the following content:

apiVersion: apps/vl
kind: Deployment
metadata:
name: webapp
spec:
selector:
matchLabels:
app: webapp
replicas: 2
template:
metadata:
labels:
app: webapp
spec:
containers:
- name: demobookk8s
image: mikaelkrief/demobook:latest
ports:

- containerPort: 80

In this preceding code snippet, we describe our deployment in the following way:

o The apiVersion property is the version of api that should be used.
 In the Kind property, we indicate that the specification type is deployment.

o The replicas property indicates the number of pods that Kubernetes will create
in the cluster; here, we choose two instances.

In this example, we chose two replicas, which can—at the very least—distribute the traffic
load of the application (if there is a high volume of load, we can put in more replicas),
while also ensuring the proper functioning of the application. Therefore, if one of the

two pods has a problem, the other (which is an identical replica) will ensure the proper
functioning of the application.

A first example of Kubernetes application deployment 313

Then, in the containers section, we indicate the image (from Docker Hub) with name
and tag. Finally, the ports property indicates the port that the container will use within
the cluster.

Note

This source code is also available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAP10/k8sdeploy/myapp-deployment .yml.

To deploy our application, we go to our Terminal and execute one of the essential
kubectl commands (kubectl apply), as follows:

kubectl apply -f myapp-deployment.yml

The - £ parameter corresponds to the YAML specification file.

This command applies the deployment that is described in the YAML specification file on
the Kubernetes cluster.

Following the execution of this command, we will check the status of this deployment
by displaying a list of pods in the cluster. To do this in the Terminal, we execute the
kubectl get pods command, which returns a list of cluster pods. The following
screenshot shows the execution of the deployment and displays the information in the
pods, which we use to check the deployment:

PS \Learning-DevOps-Second-Edition\CHAP10\k8sdeploy> kubectl apply —f myapp-deployment.yml
deployment.apps/webapp created 1
PS \Learning-DevOps-Second-Edition\CHAP1@\k8sdeploy> kubectl get pods

NAME READY STATUS RESTARTS AGE
webapp-799697d7d6—gjv7x 1/1 Running @ 100s
webapp-799697d7d6-rd96r 1/1 Running © 100s

Figure 10.9 - kubectl apply command

What we can see in the preceding screenshot is that the second command displays our
two pods, with the name (webapp) specified in the YAML file, followed by a unique
identifier (UID), and that they are in a Running status.

We can also visualize the status of our cluster on the Kubernetes web dashboard, the
webapp deployment with the Docker image that has been used, and the two pods that
have been created. For more details, we can click on the different links of the elements.

Our application has been successfully deployed in our Kubernetes cluster but, for the
moment, it is only accessible inside the cluster, and for it to be usable, we need to expose it
outside the cluster.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-deployment.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-deployment.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-deployment.yml

314 Managing Containers Effectively with Kubernetes

In order to access the web application outside the cluster, we must add a service type and
a NodePort category element to our cluster. To add this service type and NodePort
element, in the same way as for deployment, we will create a second YAML file (myapp-
service.yml) of the service specification in the same k8sdeploy directory, which has
the following code:

apivVersion: vl
kind: Service
metadata:

name: webapp

labels:
app: webapp
spec:

type: NodePort

ports:

- port: 80
targetPort: 80
nodePort: 31000

selector:

app: webapp

In the preceding code snippet, we specify the kind, Service, as well as the type of
service, NodePort.

Then, in the ports section, we specify the port translation: port 80, which is exposed
internally, and port 31000, which is exposed externally to the cluster.

Note

The source code of this file is also available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/CHAP10/k8sdeploy/myapp-service.yml.

To create this service on the cluster, we execute the kubectl apply command, but this
time with our myapp-service.yaml file as a parameter, as follows:

kubectl apply -f myapp-service.yml

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-service.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-service.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP10/k8sdeploy/myapp-service.yml

Using Helm as a package manager 315

The execution of the command creates the service within the cluster, and, to test our
application, we open a web browser with the http://localhost:31000 URL, and
our page is displayed as follows:

& c [(D localhost:3 1000 1

Welcome to my new app

This page 1s test for my demo Dockerfile.
Emjov ...

Figure 10.10 - Demo Kubernetes application

Our application is now deployed on a Kubernetes cluster, and it can be accessed from
outside the cluster.

In this section, we have learned that the deployment of an application, as well as the
creation of objects in Kubernetes, is achieved using specification files in YAML format and
several kubect1 command lines.

The next step is to use Helm packages to simplify the management of the YAML
specification files.

Using Helm as a package manager

As previously discussed, all the actions that we carry out on the Kubernetes cluster are
done via the kubect1 tool and the YAML specification files.

In a company that deploys several microservice applications on a Kubernetes cluster,
we often notice a large number of these YAML specification files, and this poses

a maintenance problem. In order to solve this maintenance problem, we can use Helm,
which is the package manager for Kubernetes.

Note

For more information on package managers, you can also read the Using a
package manager section of Chapter 7, Continuous Integration and Continuous
Delivery.

Helm is, therefore, a repository that will allow the sharing of packages called charts that
contain ready-to-use Kubernetes specification file templates.

316 Managing Containers Effectively with Kubernetes

Note

To learn more about Helm and to access its documentation, visit
https://helm.sh/.

Installing the Helm client

So, we'll see how to install Helm on our local Kubernetes cluster, and later, we'll go
through the installation of an application with Helm.

Note

In the first edition of this book, we used a Helm version prior to 3.0, and we
learned to install the Helm Tiller plugin. Since version 3.0+, the Tiller plugin
doesn't need to be installed, so the Tiller installation guide is deleted in this
second edition.

Since version 3, Helm is composed of only one binary: a client tool that allows us mainly
to install packages of Kubernetes specification files on a target Kubernetes cluster, list the
packages of a repository, and indicate the package(s) to be installed.

To install the Helm client, please refer to the installation documentation at https://
helm.sh/docs/using helm/#installing-the-helm-client, which details
the installation procedure according to the different OSs.

In Windows, for example, we can install it via the Chocolatey package manager, with the
execution of the following command:

choco install kubernetes-helm -y

To check its installation, execute the helm --help command, as shown in the following
screenshot:

PS C:\Users\mkrief> helm ——help
The Kubernetes package manager

Common actions for Helm:

helm search: search for charts

helm pull: download a chart to your local directory to view
helm install: upload the chart to Kubernetes

helm list: list releases of charts

Figure 10.11 - helm --help command

The execution of the command tells us that the Helm is properly installed. Now, we will
learn how to use a public Helm chart.

https://helm.sh/
https://helm.sh/docs/using_helm/#installing-the-helm-client
https://helm.sh/docs/using_helm/#installing-the-helm-client

Using Helm as a package manager 317

Using a public Helm chart from Artifact Hub

The packages contained in a Helm repository are called charts. Charts are composed of
files that are templates of Kubernetes specification files for an application.

With charts, it's possible to deploy an application in Kubernetes without having to write
any YAML specification files. So, to deploy an application, we will use its corresponding
chart, and we will pass some configuration variables of this application.

Once Helm is installed, we will install a chart that is in the Helm public repository called
Artifact Hub and available here: https://artifacthub.io/. But first, to display
a list of public charts, we run the following command:

helm search hub

The hub parameter is the name of Artifact Hub.

To search for a specific package, we can run the helm search hub <package
name> command, and if we want to search all wordpress packages (for example),
we run the following command:

helm search hub wordpress

Here is an extract from the result, which includes a lot of charts:

PS C:\Users\mkrief> helm search hub wordpress
CHART VERSION
://artifacthub. io/packages/helm/kube-wordp. . . 0.1.0
://artifacthub. io/packages/helm/bitnami/wo. .
://artifacthub.io/packages/helm/bitnami-ak. . .
://artifacthub. io/packages/helm/groundhog2. . . 0.4.4
://artifacthub. io/packages/helm/riftbit/wo. . . 12
://artifacthub. io/packages/helm/homeenterp. . . [}
://artifacthub. io/packages/helm/mcouliba/u. . . [}
://artifacthub.io/packages/helm/securecode. . . 3
://artifacthub.io/packages/helm/wordpressm. . . 1
://artifacthub. io/packages/helm/bitpoke/wo. . . [}
://artifacthub. io/packages/helm/presslabs 0
://artifacthub. io/packages/helm/presslabs 0
://artifacthub.io/packages/helm/phntom/bin.. .]
://artifacthub.io/packages/helm/gh-shessel.. . 1
://artifacthub. io/packages/helm/sonu-wordp. . . 1
://artifacthub.i 0.
://artifacthub.i 0.2.

1

[¢]

8]

1

2]

2]

[¢]

[¢]

]

]

PP VERSION DESCRIPTION

this is my wordpress package
2.2.3 .2 Web publishing platform for building blogs and ...
12.2.3 .2 Web publishing platform for building blogs and ...
.2 A Helm chart for Wordpress on Kubernetes
.1 Web publishing platform for building blogs and ...
.0-php8.0-apache Blog server
6.0 A Helm chart for Kubernetes

Insecure & Outdated Wordpress Instance: Never e...

This is the Helm Chart that creates the Wordpre...
111 Bitpoke WordPress Operator Helm Chart
11.0-alpha.3 Presslabs WordPress Operator Helm Chart
0.12.0-rc.2 A Helm chart for deploying a WordPress site on ...
www.binaryvision.co.il static wordpress
Web publishing platform for building blogs and ...
This is my custom chart to deploy wordpress and...
Wordpress for Kubernetes
Wordpress for Kubernetes
This is my custom chart to deploy wordpress and
Your Open-Source, Cloud-Native WordPress Infras.
A Helm chart for the WordPress security scanner.
This is my custom chart to deploy wordpress and.
Open-Source WordPress Infrastructure on Kubernetes
Open-Source WordPress Infrastructure on Kubernetes
Wordpress for Kubernetes
Wordpress for Kubernetes

ERroaoaaRD

P
1
8
8

.8
8
8
1
]

://artifacthub.i

://artifacthub.i

://artifacthub.i

://artifacthub.i

://artifacthub.i

://artifacthub. io/packages/helm/presslabs/. . .
://artifacthub. io/packages/helm/six/wordress
://artifacthub. io/packages/helm/jinchi—cha. . .
://artifacthub. io/packages/helm/wordpressm. . .
://artifacthub.io/packages/helm/presslabs/. . .

ORKRRIINTONKHRKHENUOGS OO

Presslabs WordPress Operator Helm Chart

Figure 10.12 - Searching for Helm packages

https://artifacthub.io/

318 Managing Containers Effectively with Kubernetes

For an easy way to find packages, go to the Artifact Hub site (https://artifacthub.
io/) and search for the wordpress package, as shown in the following screenshot:

: @
O Artifact HUB (el o STATS SIGNUP SIGN IN @ -
1-20 of 27 results for "wordpress” Sort: Relevance % Show: 20 #% @
FILTERS
B wordpress % 0 (& Helm chart
() Official ® >
@ﬂ USER: harsh-del REPO: kube-wordpress Updated 5 months ago
|| Verified publishers @ VERSION: 0.1.0 APPVERSION: 1.1
KIND

this is my wordpress package

[) Helm charts (27
— en Images Security Rating

CATEGORY

[] Database

= . _ wordpress % 28) (& Helm chart

[| Integration and Delivery ‘ P

- E ORG: Bitnami repo: Bitnami Updated 5 days ago
|| Logging and Tracing

VERSION: 12.2.3 APPVERSION: 5.8.2

[} Machine learning

- Web publishing platform for building blogs and websites.
|_J Monitoring
\:\ Networking : Verified Publisher Images Security Rating

[Security
Figure 10.13 — Artifact Hub wordpress search
This page list all wordpress packages from all community publishers.

Then, click on the desired package to display details of the package, as illustrated in the
following screenshot:

https://artifacthub.io/
https://artifacthub.io/

Using Helm as a package manager 319

<> wordpress
Q[

ORG: Bitnami REPQ: | & Helmchart | Bitnami | @ Verified Publisher

Web publishing platform for building blogs and websites.

& SUBSCRIPTIONS: 6

WordPress & INSTALL

WordPress is one of the most versatile open source content management systems on the market. A publishing plat- TEMPLATES

form for building blogs and websites. E DEFAULT VALUES

"2 VALUES SCHEMA

TL;DR

B CHANGELOG

$ helm repo add bitnami https://charts.bitnami.com/bitnami

$ helm install my-release bitnami/wordpress AT GRS

582

Figure 10.14 - Artifact Hub wordpress details

On this page, we can see the current version of the package and some technical package
installation guidelines.

Note

It's also possible to create our private or corporate Helm repository with tools
such as Nexus, Artifactory, or even ACR.

Let's now install an application with Helm.

To illustrate the use of Helm, we will deploy a WordPress application in our Kubernetes
cluster using a Helm chart.

In order to do this, execute the following commands (mentioned here:
https://artifacthub.io/packages/helm/bitnami/wordpress):

helm repo add bitnami https://charts.bitnami.com/bitnami

helm install wpdemo bitnami/wordpress

The first command, helm repo add, adds the index of the bitnami repository locally.
Then, we use the helm install <release name> <package name> command
to install the desired package on Kubernetes.

https://artifacthub.io/packages/helm/bitnami/wordpress

320 Managing Containers Effectively with Kubernetes

The following screenshot shows the execution of these two commands:

PS C:\Users\mkrief>
helm repo add bitnami https://charts.bitnami.com/bitnami 1

"bitnami" has been added to your repositories
PS C:\Users\mkrief> helm install wpdemo bitnami/wordpress (2
NAME: wpdemo

LAST DEPLOYED: Sat Dec 4 19:29:46 2021
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

CHART NAME: wordpress

CHART VERSION: 12.2.3

APP VERSION: 5.8.2

** Please be patient while the chart is being deployed **

Your WordPress site can be accessed through the following DNS name from within your cluster:
wpdemo-wordpress.default.svc.cluster.local (port 80)

To access your WordPress site from outside the cluster follow the steps below:

1. Get the WordPress URL by running these commands:

NOTE: It may take a few minutes for the LoadBalancer IP to be available.
Watch the status with: 'kubectl get svc --namespace default -w wpdemo-wordpress'

export SERVICE_IP=$(kubectl get svc —-namespace default wpdemo-wordpress --template "{{ range (index .status.loadBalancer.ingress 0) }}{{.}}{{ end }}")
echo "WordPress URL: http://$SERVICE_IP/"
echo "WordPress Admin URL: http://$SERVICE_IP/admin"

. Open a browser and access WordPress using the obtained URL.

. Login with the following credentials below to see your blog:

echo Username: user

Figure 10.15 - Installing an application with Helm

With the execution of the preceding commands, Helm installs a WordPress instance called
wpdemo and all of the Kubernetes components on the local Kubernetes cluster.

We can also display a list of Helm packages that are installed on the cluster by executing
the following command:

helm 1s

The following screenshot shows the execution of this command:

PS C:\Users\mkrief> helm 1ls
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

wpdemo default 1 2021-12-64 19:29:46.8115125 +01600 CET deployed wordpress-12.2.3 5.8.2

Figure 10.16 — Helm list of installed packages

And if we want to remove a package and all of its components (for example, to remove
the application installed with this package), we execute the helm delete command, as
follows:

helm delete wpdemo
The following screenshot shows the execution of this command:

PS C:\Users\mkrief> helm delete wpdemo
release "wpdemo" uninstalled

Figure 10.17 - helm delete command

Using Helm as a package manager 321

We have discussed the installation of a Helm chart from Artifact Hub to a Kubernetes
cluster. In the next section, we will learn how to create a custom Helm chart package.

Creating a custom Helm chart

We have just learned how to use and install a public Helm chart from Artifact Hub, but in

companies, we often have some custom applications that require us to create custom Helm
charts.

Here are the basic steps to create a custom Helm chart:

1.

2.

Inside the folder that will contain the Helm chart file template, run the helm
create <chart name> command, as follows:

helm create demobook

The execution of this command will create a directory structure and basic template
files for our chart, as shown in the following screenshot:

~ demobook
> charts

v templates
tests
_helpers.tpl
deployment.yaml|
hpa.yaml|
ingress.yaml
NOTES.txt
service.yaml|

serviceaccount.yam|

helmignore

Chart.yaml

values.yaml

Figure 10.18 - Helm chart structure folder

Then, customize the chart templates and values by following the technical
documentation here: https://helm.sh/docs/chart template guide/.

https://helm.sh/docs/chart_template_guide/

322 Managing Containers Effectively with Kubernetes

3. Finally, we publish the chart in our Kubernetes cluster by running the helm
install <chart name> <chart path roots> command, as follows:

helm install demochart ./demobook

The following screenshot shows the execution of the preceding command:

PS Learning-DevOps-Second-Edition\CHAP10> helm install demochart ./demobook
NAME: demochart

LAST DEPLOYED: Sun Dec 5 17:16:19 2021

NAMESPACE: default

STATUS: deployed

1. Get the application URL by running these commands:
export POD_NAME=$(kubectl get pods --namespace default -1 "app.kubernetes.Yo/name=demobook,app.kubernetes.io/instance=demochart" -o
jsonpath="{.items[0].metadata.name}")
export CONTAINER_PORT=$(kubectl get pod --namespace default $POD_NAME -o jsonpath="{.spec.containers[0].ports[0].containerPort}")
echo "Visit http://127.0.0.1:8080 to use your application"
kubectl --namespace default port-forward $POD_NAME 8080:$CONTAINER_PORT

Figure 10.19 - helm install command

To check the package installation by Helm, run the kubectl get pods command to
display a list of created pods.

The following screenshot shows a list of created pods:

PS \Learning-DevOps—-Second-Edition\CHAP10> kubectl get pods
NAME READY STATUS RESTARTS AGE
demochart-demobook-77U58bfd9f-htimwv 1/1 Running © 104ds

Figure 10.20 - kubectl get pods

And run the helm 1s command to display a list of installed Helm charts, as shown in the
following screenshot:

PS \Learning-DevOps-Second-Edition\CHAP10> helm 1s
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

demochart default 1 2021-12-05 17:16:19.0370031 +0100 CET deployed demobook-0.1.0 1.16.0

Figure 10.21 — Helm package list

We can see in the preceding screenshot the demochart Helm chart that is installed on
the Kubernetes cluster.

In this section, we have seen an overview of the installation and use of Helm, which is the
package manager for Kubernetes. Then, we learned about the installation of Helm charts
from Artifact Hub. Finally, we learned how to create a custom Helm chart and install this
chart on a Kubernetes cluster.

In the next section, we will learn how to publish a custom Helm chart to a private Helm
repository—that is, ACR.

Publishing a Helm chart in a private registry (ACR) 323

Publishing a Helm chart in a private
registry (ACR)

In the previous section, we discussed a public Helm repository called Artifact Hub, which
is great for public (or community) applications or tools. But for company applications, it's
better and recommended to have a private Helm registry.

In the marketplace, there are a lot of private registries such as Nexus or Artifactory, and
this documentation explains how to create a private Helm repository: https://helm.
sh/docs/topics/chart repository/.

In this section, we will discuss how to use a private Helm repository (that is, ACR,
which we have already learned about in Chapter 9, Containerizing Your Application with
Docker). So, to start our lab, we consider that we have already created an ACR named
demobookacr on Azure.

Note

If you have not already created an ACR, follow the documentation here:

https://docs.microsoft.com/en-us/azure/container-
registry/container-registry-get-started-azure-cli

To publish a custom Helm chart in ACR, follow these steps:

1. 'The first step is to create a package in tar gz format of the chart by running the
helm package command inside the folder where the chart . yaml file of the
chart is located.

Run the following command with "." as a parameter to indicate that the chart.
yaml file is in the current folder:
helm package

The following screenshot shows the execution of this command:

PS \Learning-DevOps-Second-Edition\CHAP10\demobook> helm package .

Successfully packaged chart and saved it to: \Learning-DevOps-Second-Edition\CHAP10\demobook\demobook-0.1.0.tgz

Figure 10.22 - Creating a Helm package
The Helm chart package is created with the name demobook-0.1.0.tgz.

2. 'Then, authenticate to ACR with the following PowerShell script:
$env:HELM EXPERIMENTAL OCI=1

S$USER NAME="00000000-0000-0000-0000-000000000000"
S$ACR NAME="demobookacr"

324 Managing Containers Effectively with Kubernetes

az login
SPASSWORD=$ (az acr login --name $ACR NAME --expose-token
--output tsv --query accessToken)

helm registry login "$ACR NAME.azurecr.io" --username
SUSER NAME --password "$PASSWORD"

The preceding script performs these operations:

» Sets the HELM EXPERIMENTAL OCI environment variable to 1. For more details
about environment variables, read this documentation: https://helm.sh/
docs/topics/registries/.

» Sets the USER_NAME variable with a 000 fake value.
» Sets the ACR NAME variable with the name of the ACR.
= Sets the PASSWORD variable dynamically by using the az c1i command.

» Uses the Helm registry login to authenticate to the ACR registry.
3. Finally, we push the Helm chart into the ACR registry with the following command:

helm push .\demobook-0.1.0.tgz oci://$ACR NAME.azurecr.
io/helm

After the execution of this command, the pushed Helm chart will be in the helm/
demobook repository on the ACR.
4. We can check that the Helm chart is correctly pushed to the ACR by running the

following command:

az acr repository show --name $ACR NAME --repository
helm/demobook

The execution of this command displays the details of the helm/demobook
Helm chart.

https://helm.sh/docs/topics/registries/
https://helm.sh/docs/topics/registries/

Using AKS 325

In the Azure portal, we can see the Helm repository, the Helm chart, and the tag, as
shown in the following screenshot:

o, demobookacr | Repositories « helm/demobook

Container registry Repository
A2 Search (Ctrl+/) « O Refresh O Refresh lﬁ] Delete repository
‘ Tags ~~ Essentials

a
| P Search to filter repositories ... ‘

& Quick start Repositories T, Repository
helm/demobook
Events wae
demobook Last updated date
. 12/7/2021, 6:52 PM GMT+1
Settings helm/demobook mee

Access keys P Search to filter tags ...

@ Encryption Tags Ty
o |dentity 010
g Networking e
2] Security
E] Locks

Services

A Repositories “

Figure 10.23 - ACR Helm repository

We just learned how to build and push a custom Helm chart into ACR using Helm
command lines and az c1i commands.

Now, in the next section, let's look at an example of a managed Kubernetes service that is
hosted in Azure, called AKS.

Using AKS

A production Kubernetes cluster can often be complex to install and configure. This

type of installation requires the availability of servers, human resources who have the
requisite skills regarding the installation and management of a Kubernetes cluster, and—
especially—the implementation of an enhanced security policy to protect the applications.

To overcome these problems, cloud providers offer managed Kubernetes cluster services.
This is the case with Amazon with Elastic Kubernetes Service (EKS), Google with
Google Kubernetes Engine (GKE), and finally, Azure with AKS. In this section, I propose
an overview of AKS, while also highlighting the advantages of a managed Kubernetes
cluster.

326 Managing Containers Effectively with Kubernetes

AKS is, therefore, an Azure service that allows us to create and manage a real Kubernetes
cluster as a managed service.

The advantage of this managed Kubernetes cluster is that we don't have to worry about its
hardware installation and the management of the master part is done entirely by Azure
when the nodes are installed on virtual machines (VMs).

The use of this service is free; what is charged is the cost of the VMs on which the nodes
are installed.

Note

To learn more about the benefits offered by AKS, you can read the
documentation at https://docs.microsoft.com/en-us/
azure/aks/intro-kubernetes.

Let's now look at how to create an AKS service.

Creating an AKS service

The creation of an AKS cluster in Azure can be done in three different ways, as
outlined here:

« Manually, via the Azure portal: The standard way to create an AKS service is to do
so via the Azure portal, by creating a Kubernetes service, and then entering its basic
Azure properties—that is, the type and number of nodes desired, as shown in the
following screenshot:

Dashboard > New > Kubemetes Service DO v

Kubernetes Service
Micosoft

Kubernetes Service v s..-i
Microsoft
<demobookAKS
9 * Re (Europe) West Europe v
* Kul sio 1.12.8 (default) v

Azure Kubernetes Service is the quickest path from zero to Kubernetes on Azure. This new service features an Azure-
hosted control plane, automated upgrades, self-healing, easy scaling, and a simple user experience for both developers
and cluster operators. With AKS, customers get the benefits of open source Kubernetes without complexity or operational
overhead, PRIMARY NODE POOL

* DNS name

GemobookAKS-dns

The number and size of nodes in the pr de pool in your cluster. For production workloads, at least 3 nodes are
recommended for resiliency. For develo 1 test workloads, only one node s required. You will not be able to change the
node size after cluster creation, but o change the number of nodes in your cluster after creation. If you would
like additional node pools, you will need to enable the *X" feature on the "Scale” tab which will allow you to add more node
pools after creating the cluster. Learn more about node pools in Azure Kubernetes Service

[Node size @ Standard DS2 v2

8 memory

Figure 10.24 — AKS creation via the Azure portal

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes

Using AKS 327

+ Creation via an az cli script: You can also use an az c11i script to automate the
creation of the AKS cluster. The script is shown here:

#Create the Resource group
az group create --name Rg-AKS --location westeurope
#Create the AKS resource

az aks create --resource-group Rg-AKS --name demoBookAKS
--node-count 2 --generate-ssh-keys --enable-addons
monitoring

The node-count property indicates the number of nodes, and the enable-
addons property enables us to monitor the AKS service.

+ Creation with Terraform: It is also possible to create an AKS service with
Terraform. The complete Terraform script is available in the Azure documentation
athttps://docs.microsoft.com/en-us/azure/terraform/
terraform-create-k8s-cluster-with-tf-and-aks, and to learn more
about using Terraform, you can read Chapter 2, Provisioning Cloud Infrastructure
with Terraform.

Now that the AKS cluster has been created, we will be able to configure the kubeconfig
file in order to connect to this AKS cluster.

Configuring the kubeconfig file for AKS

To configure the kubeconfig file used by kubect1 for connecting to the AKS service,
we will use the az c11i tool by executing the following commands in a Terminal:

az login

#If you have several Azure subscriptions

az account set --subscription <subscription Id>
az aks get-credentials --resource-group Rg-AKS --name
demoBookAKS

This last command takes the resource group as the parameter, and as the name of the
created AKS cluster. The role of this command is to automatically create a . kube\
config file and with this file configure kubect1 for connection to the AKS cluster, as
shown in the following screenshot:

e-AKS --name demoBookAKS

\.kube\config

Figure 10.25 - AKS getting credentials via az cli

https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks
https://docs.microsoft.com/en-us/azure/terraform/terraform-create-k8s-cluster-with-tf-and-aks

328 Managing Containers Effectively with Kubernetes

To test the connection to AKS, we can execute the following command, kubectl get
nodes, which displays the number of nodes that are configured when creating an AKS
cluster, as shown in the following screenshot:

>kubectl get node
MAME STATI

aks-nodepc

aks-no

Figure 10.26 - kubectl get nodes list

All of the operations that we have seen in the A first example of Kubernetes application
deployment section of this chapter are identical, whether deploying an application with
AKS or with kubect1.

After having seen the steps that are taken to create an AKS service in Azure, we will now
provide an overview of its advantages.

Advantages of AKS

AKS is a Kubernetes service that is managed in Azure. This has the advantage of being
integrated with Azure, as well as some other advantages listed here:

« Ready to use: In AKS, the Kubernetes web dashboard is natively installed, and the
documentation at https://docs.microsoft.com/en-us/azure/aks/
kubernetes-dashboard explains how to access it.

« Integrated monitoring services: AKS also has all of Azure's integrated monitoring
services, including container monitoring, cluster performance management, and log
management, as shown in the following screenshot:

Q® k8sdemo | Insights

Kubernetes service

0 Search (Ctrl+/) « () Refresh & View Al Clusters ([Recommended alerts (Preview) @ view Workbooks 2 Help v\ \ Feedback v

® Networking (Time range = Last 6 hours) (*y Add Filter) Live: (@ Off)

8% GitOps (preview)

What'snew |Cluster ~ Reports ~ Nodes Controllers Containers
& Deployment center (preview) ——

G Policies

Node CPU Utilization % Percentage of ©| Total capacity v| | | Node Memory Utilization % Percentage of ©| Total capacity (memory rss) v
0oe 5m granularity 5m granularity
11 Properties Avg | Min | 50th | 90th | 95th | Max | = Avg | Min | 50th | 90th | 95th | Max | &2
8 Locks 100% 100%
a0% a0%
Monitoring
60% 0%
@ Insights
0% 0%
N Alerts
20% 20%
fifi Metri
A Metrics o o
@ Diagnostic settings o8 Am 09 AM 10AM 1AM 12pm 016M 2pm o8 AM 09 AM 10AM 1AM 12om o1pM 02pM
Average Maimum Average Maxmum
@ Advisor recommendations Kscemo estemo sdemo sdemo
7.59% 13.53« 13.81« 16.93«
#® Logs

Figure 10.27 — AKS monitoring

https://docs.microsoft.com/en-us/azure/aks/kubernetes-dashboard
https://docs.microsoft.com/en-us/azure/aks/kubernetes-dashboard

Creating a CI/CD pipeline for Kubernetes with Azure Pipelines 329

 Very easy to scale: AKS allows the quick and direct scaling of the number of nodes
of a cluster via the portal, or via scripts.

As we can see in the following screenshot, we choose the number of nodes that we
want in the Azure portal, and the change is effective immediately:

|-_I/' demoBookAKS - Scale

Kubernetes service

« Cava Niceard
‘ D Search (Ctrl+/) | FHsave X piscard T Refresh

. Youcan scale the number of nodes in your cluster to increase the total amount of
Settings cores and memory available for your container applicati

recommended for a more resilient cluster.

£ Node poals (preview) Learn more about scaling your AKS cluster
© Upgrade Node count
7 Scale | O Standard DS2 v2 (2 vcpus, 7 GiB memory)
£ Networking Total cluster capacity
& Dev Spaces Cores 4 vCPUs
% Deployment center (preview) Memory 14 GiB

Figure 10.28 — AKS scaling

If we have an Azure subscription and we want to use Kubernetes, it's intuitive and quick to
install. AKS has a number of advantages, such as integrated monitoring and scaling in the
Azure portal. Using the kubect1 tool does not require any changes compared to a local
Kubernetes instance.

In this section, we have discussed AKS, which is a managed Kubernetes service in Azure.
Then, we created an AKS instance and configured the kubeconfig file in order to
connect to this AKS instance. Finally, we listed its advantages, which are mainly integrated
monitoring and fast scalability.

In the next section, we will see some resources for how to deploy an application in
Kubernetes by using a CI/CD pipeline with Azure Pipelines.

Creating a CI/CD pipeline for Kubernetes with
Azure Pipelines

So far, we have seen how to use kubect1 to deploy a containerized application in a local
Kubernetes cluster or in a remote cluster with AKS.

In the first edition of this book, I explained how to build a complete pipeline in Azure
DevOps, from the creation of a new Docker image pushed into Docker Hub to its
deployment in an AKS cluster.

330 Managing Containers Effectively with Kubernetes

Since this first edition, many features have been improved in the different CI/CD tools to
deploy in Kubernetes.

That's why in this second edition I won't explain it in detail anymore, but I'll provide you
with different resources that are useful for my daily work, as follows:

o The first resource is a great complete video that explains all the details for deploying
an application in AKS with Azure DevOps, found at the following link:

https://www.youtube.com/watch?v=K4uN16JA7g8

o On the same subject, there is a great lab on Azure DevOps at the following link:
https://www.azuredevopslabs.com/labs/vstsextend/
kubernetes/

o To create an Azure DevOps pipeline in YAML format for deploying to Kubernetes,
read the official documentation here:

https://docs.microsoft.com/en-us/azure/devops/pipelines/
ecosystems/kubernetes/aks-template?view=azure-devops

o Then, the following documentation also proposes a tutorial for use with Jenkins and
Azure DevOps to deploy an application to Kubernetes:

https://docs.microsoft.com/en-us/azure/devops/pipelines/
release/integrate-jenkins-pipelines-aks?view=azure-devops

In this section, we have reported some resources for an end-to-end (E2E) DevOps
CI/CD pipeline in order to deploy an application in a Kubernetes cluster (AKS for our
example) with Azure Pipelines.

In the next section, we will learn different ways to monitor applications and metrics on
Kubernetes and find out about the tools we can use to do this.

Monitoring applications and metrics in
Kubernetes

When we deploy an application in Kubernetes, it's very important—and I consider it

a requirement—to have a monitoring strategy for checking and debugging the life cycle of
these applications and checking the central processing unit (CPU) and random-access
memory (RAM) metrics.

We will now discuss different ways to debug and monitor your applications in Kubernetes.

Let's start with the basic way, which is the use of the kubect1 command line.

https://www.youtube.com/watch?v=K4uNl6JA7g8
https://www.azuredevopslabs.com/labs/vstsextend/kubernetes/
https://www.azuredevopslabs.com/labs/vstsextend/kubernetes/
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/aks-template?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/aks-template?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/integrate-jenkins-pipelines-aks?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/integrate-jenkins-pipelines-aks?view=azure-devops

Monitoring applications and metrics in Kubernetes 331

Using the kubectl command line

To debug applications with the kubect1 command line, run the commands
detailed next:

« To display the state of Kubernetes resources, run the following command:
kubectl get pods, svc

The output of the preceding command is shown in the following screenshot:

PS C:\Users\mkrief> kubectl get pods,svc

NAME READY STATUS RESTARTS AGE
pod/demochart—demobook-77u458bfd9f—hdmwy 1/1 Running 2 (3m27s ago) 6ddh
pod/webapp-799697d7d6—gjv7x 1/1 Running 2 (3m27s ago) 6d7h
pod/webapp-799697d7d6-rd96r 1/1 Running 2 (3m27s ago) 6d7h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/demochart-demobook ClusterIP 10.111.122.236 <none> 80/TCP 6duLh
service/kubernetes ClusterIP 10.96.08.1 <none> 4u3/TCP 8d

service/webapp NodePort 10.110.12.30 <none> 80:31000/TCP 6d6h

Figure 10.29 - kubectl getting resources
With this command, we can see if pods are running and find out about services'
statuses.

« To display application logs, run the kubectl logs pod/<pod name>
command, as illustrated in the following screenshot:

PS C:\Users\mkrief> kubectl logs pod/webapp-799697d7d6-gjvTx

AHO@558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.1.0.35. Set the 'ServerN
ame' directive globally to suppress this message

AHO@558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.1.0.35. Set the 'ServerN

ame' directive globally to suppress this message

[Sat Dec 11 20:57:07.523851 2021] [mpm_event:notice] [pid 1:tid 1460521422701696] AHOOU89: Apache/2.4.41 (Unix) configure
d —- resuming normal operations

[Sat Dec 11 20:57:07.532170 2021] [core:notice] [pid 1:tid 140521422701696] AHO0O9Y: Command line: 'httpd -D FOREGROUND'

Figure 10.30 — kubectl getting pod logs
This command displays the output of the application logs.

For more details on the use of kubect1 to debug applications, read the
documentation here:

https://kubernetes.io/docs/tasks/debug-application-cluster/
debug-running-pod/

With the kubect1 command, we can automate the debugging of applications, but it's
necessary to learn all command-line options.

Next, we will discuss debugging applications with some tools.

332 Managing Containers Effectively with Kubernetes

Using the web dashboard

As already explained in the first section of this chapter, Installing Kubernetes, we can
use the basic dashboard to display in the web user interface (UI) details of all resources
deployed in Kubernetes.

For cloud-managed Kubernetes services such as AKS for Azure, EKS for Amazon Web
Services (AWS), and GKE for Google Cloud Platform (GCP), we can use integrated and
managed dashboards. For example, for AKS in the Azure portal, we can easily see all logs
from the pods. Here's a sample of pod logs in the Azure portal:

Dashboard > vault-aks > aks-helloworld > aks-helloworld-7bfc99f965-m78dI

@ aks-helloworld-7bfc99f965-m78dl | Live logs - X

"= pod

0O search (Ctrl+/) | « () Refresh f® View in Log Analytics

B8 Overview Select a Pod

[search | [[oks-helloworld-7bfc9sfo65-m7adi <

B vamL

Events

Y

Looking for historical logs? View in Log Analytics
o Livelogs . .

2 item(s). Streaming logs 2 scroll
Timestamp 1 Pod Container ID Log content

11/12/2021,22:13:25 aks-helloworld-7bfc99f965-m78dl 9b2657c4a876328260: 6dddes b 97927e49c23133 2021-12-11T21:13:25.683Z [INFO] successfully synced service:
output="Registered service: aks-helloworld

11/12/2021, 22:13:25 aks-helloworld-7bfc99f965-m78dl 9b2657c4a876328 ddded 7f027€49c23133 Registered service: aks-helloworld-sidecar-proxy”
duration=17.700459759s

Figure 10.31 — AKS live logs

For more details about debugging on AKS, read the documentation here:

https://docs.microsoft.com/en-us/azure/architecture/
microservices/logging-monitoring

We can also use tier tools such as Octant or Lens.

Using tier tools

There are lots of tools or solutions to monitor and display all resources deployed in
a Kubernetes cluster. Among them are two free tools that I often use: Octant and Lens.

Octant

Octant is a VMware community project in a web application launched locally or in
a Docker container for visualizing Kubernetes resources and application logs.

The documentation of Octant is available here:

https://octant.dev/

https://octant.dev/

Monitoring applications and metrics in Kubernetes 333

The source code is available here:

https://github.com/vmware-tanzu/octant/blob/master/README.md

Lens

Lens is also a free tool that is installed by the client binary. For me, Lens is the best tool
for visualizing and debugging applications. The Lens documentation is available here:
https://k8slens.dev/.

You can see an overview of the Lens dashboard in the following screenshot:

VA vault-aks

Namespace Containers

Figure 10.32 - Lens dashboard

After discussing tools to debug applications, we will see how to display Kubernetes
metrics.

Monitoring Kubernetes metrics

All tools just described are great for debugging Kubernetes resources and applications
hosted in Kubernetes. But that is not enough—in terms of monitoring, we need to also
monitor metrics such as the CPU and RAM used by applications.

https://github.com/vmware-tanzu/octant/blob/master/README.md
https://k8slens.dev/

334 Managing Containers Effectively with Kubernetes

With the following basic kubect1 command line, we can display the CPU and RAM
used by nodes and pods:

PS C:\Users\mkrief> kubectl top nodes

NAME CPU(cores) MEMORY (bytes) MEMORY%
aks-default-29977126-vmss000000 133m 1875Mi 87%
aks-default-29977126-vmssf00001 147m 1986Mi 92%
aks-default-29977126-vmss@00002 342m 2017Mi 93%

PS C:\Users\mkrief> kubectl top pods -n vault

NAME CPU(cores) MEMORY(bytes)
aks-helloworld-7bfc99f965-m78d1l 15m 87Mi
consul-consul-connect-injector-webhook-deployment—79bub98ctt844 Um 38Mi
consul-consul-controller-5bdb877dfd-tUrlmw 2m 22Mi
consul-consul-gjtkq 8m 32Mi
consul-consul-kmcl8 8m 26Mi
consul-consul-server—@0 1dm 6UMi
consul-consul-tnlds 9m 23Mi
consul-consul-webhook-cert-manager-556d+5dbfd-kéwfp 3m 20Mi
vault-8 Um 53Mi
vault-1 6m 37Mi
vault-agent-injector-8u6+9f7bc6-76bjz Um 13Mi
web-0lenqv6avrgwggscxzhcsz6rgk—+598U776d-1kzzq Om OMi

Figure 10.33 - kubectl getting metrics

Among the best-known solutions are Prometheus and Grafana, which monitor the
metrics of Kubernetes and provide a lot of dashboard models.

For more details, you can read this article, which explains Kubernetes monitoring with
Prometheus and Grafana:

https://sysdig.com/blog/kubernetes-monitoring-prometheus/

In this section, we discussed some kubectl commands, tools, or solutions such as
dashboards, Octant, and Lens to debug applications on Kubernetes.

summary

In this chapter, we have seen an advanced use of containers with the use of Kubernetes,
which is a container manager.

We discussed the different options for installing a small cluster on a local machine using
Docker Desktop. Then, using the YAML specification file and the kubect1 command,
we realized the deployment of a Docker image in our Kubernetes cluster in order to run
a web application.

We installed and configured Helm, which is the package manager of Kubernetes. Then,
we applied it in practice with an example of a chart deployment in Kubernetes.

We also had an overview of AKS, which is a Kubernetes service managed by Azure,
looking at its creation and configuration and some resources links that explain how to
deploy applications with CI/CD pipelines with Azure DevOps.

Questions 335

Finally, we finished this chapter with a short list of Kubernetes monitoring tools such as
the kubectl command line, Lens, Prometheus, and Grafana for debugging Kubernetes
metrics.

The next chapter begins a new part of this book, which deals with application testing, and
we will start with application programming interface (API) testing with Postman.

Questions

What is the role of Kubernetes?

Where is the configuration of the objects that are written in Kubernetes?
What is the name of the Kubernetes client tool?

Which command allows us to apply a deployment in Kubernetes?

What is Helm?

What is AKS?

ALl

Further reading

If you want to know more about Kubernetes, take a look at the following resources:

o The DevOps 2.3 Toolkit: https: //www.packtpub.com/business/devops-
23-toolkit

o Hands-On Kubernetes on Azure: https://www.packtpub.com/
virtualization-and-cloud/hands-kubernetes-azure

o Hands-On Kubernetes on Azure - Second Edition: https://www.packtpub.
com/product/hands-on-kubernetes-on-azure-second-
edition/9781800209671

» Mastering Kubernetes - Third Edition: https: //www.packtpub.com/
product/mastering-kubernetes-third-edition/9781839211256

https://www.packtpub.com/business/devops-23-toolkit
https://www.packtpub.com/business/devops-23-toolkit
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure
https://www.packtpub.com/product/hands-on-kubernetes-on-azure-second-edition/9781800209671
https://www.packtpub.com/product/hands-on-kubernetes-on-azure-second-edition/9781800209671
https://www.packtpub.com/product/hands-on-kubernetes-on-azure-second-edition/9781800209671
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256

Section 4:
Testing Your
Application

This part explains some ways of testing APIs with Postman. Then we talk about static code
analysis with SonarQube and performance tests involving Postman.

This section comprises the following chapters:
o Chapter 11, Testing APIs with Postman

o Chapter 12, Static Code Analysis with SonarQube
o Chapter 13, Security and Performance Tests

11

Testing APIs
with Postman

In the previous chapters, we talked about DevOps culture and Infrastructure as Code
(IaC) with Terraform, Ansible, and Packer. Then, we saw how to use a source code
manager with Git, along with the implementation of a CI/CD pipeline with Jenkins and
Azure Pipelines. Finally, we showed the containerization of applications with Docker and
their deployment in a Kubernetes cluster.

If you are a developer, you should realize that you use APIs every day, either for client-side
use (where you consume the API) or as a provider of the APL

An API, as well as an application, must be testable, that is, it must be possible to test the
different methods of this API in order to verify that it responds without error and that the
response of the API is equal to the expected result.

In addition, the proper functioning of an API is much more critical to an application
because this API is potentially consumed by several client applications, and if it does not
work, it will have an impact on all of these applications.

The common API challenges are that we need to script or develop a dedicated application
client to test each API individually or a workflow of multiple API execution.

340 Testing APIs with Postman

In this chapter, we will learn how to test an API with a specialized tool called Postman.
We will explore the use of collections and variables, then we will write Postman tests, and
finally, we will see how to automate the execution of Postman tests with Newman in a CI/
CD pipeline.

This chapter covers the following topics:

« Creating a Postman collection

« Using environments and variables

o Writing Postman tests

« Executing tests locally

« Understanding the Newman concept
 Preparing Postman collections for Newman
« Running the Newman command line

« Integration of Newman in the CI/CD pipeline process

Technical requirements

In this chapter, we will use Newman, which is a Node.js package. Therefore, we need
to install Node.js and npm on our computer beforehand, which we can download at
https://nodejs.org/en/.

For the demo APIs that are used in this chapter, we will use an example that is provided
on the internet: https://jsonplaceholder.typicode.com/.

The GitHub repository, which contains the complete source code used in this chapter,
can be found at https://github.com/PacktPublishing/Learning-DevOps-
Second-Edition/tree/main/CHAP11.

Check out the following video to see the code in action: https://bit.1ly/3s7239U.

Creating a Postman collection with requests

Postman is a free client tool in a graphical format that can be installed on any type of OS.
Its role is to test APIs through requests, which we will organize into collections. It also
allows us to dynamize API tests through the use of variables and the implementation of
environments. Postman is famous for its ease of use, but also for the advanced features
that it offers.

https://nodejs.org/en/
https://jsonplaceholder.typicode.com/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP11
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP11
https://bit.ly/3s7239U

Creating a Postman collection with requests 341

In this section, we will learn how to create and install a Postman account, then we will
create a collection that will serve as a folder to organize our requests, and finally, we will
create a request that will test a demo API.

Before we use Postman, we will need to create a Postman account by going to https://
www . postman. com/ and clicking on the Sign Up for Free button. In the form, click on
the Create Account link, as shown in the following screenshot:

« > C O B hitpsy/www.postman.com v g8 b =

9 Product~ Pricing Enterprise~ Resources and Support v Explore @ search Postman signin l\

Build
APIs together

QOver 17 million developers use Postman. Get
started by signing up or downloading the desktop

app.

= e 2
Figure 11.1 — Postman signup
Now, you can either create a Postman account for yourself by filling out the form, or you

can create an account using your Google account.

This account will be used to synchronize Postman data between your machine and your
Postman account. This way, the data will be accessible on all of your workstations.

After creating a Postman account, we will look at how to download and install it on a
local machine.

https://www.postman.com/
https://www.postman.com/

342 Testing APIs with Postman

Installation of Postman

Once the Postman account has been created, those who are using Windows can download
Postman from https://www.getpostman.com/downloads/ and choose the
version to install. For those who want to install it on Linux or macOS, just click on the
link of your OS. The following screenshot shows the download links according to your

OS:

The Postman app

The ever-improving Postman app (a new release every two
weeks) gives you a full-featured Postman experience.

&8 Windows 32-bit 2% Windows 64-bit

By downloading and using Postman, | agree to the Privacy Policy and Terms.
Version 9.4.1 - Release Notes - Product Roadmap

Not your OS? Download for Mac (Intel Chip / Apple Chip) or Linux
(x64)

Figure 11.2 - Postman download

Once Postman is downloaded, we need to install it by clicking on the download file
for Windows, or for other OSes, follow the installation documentation at https://
learning.getpostman.com/docs/postman/launching postman/
installation and updates/.

We have just seen that the installation of Postman is very simple; the next step is to create
a collection in which we will create a request.

Note

The API that we will test in this chapter is a demo API, which is provided
freely on the following site: ht tps://Jjsonplaceholder.
typicode.com/.

https://www.getpostman.com/downloads/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/

Creating a Postman collection with requests 343

Creating a collection

In Postman, any request that we test must be added to a directory called Collection,
which provides storage for requests and allows for better organization.

We will, therefore, create a DemoBook collection that will contain the requests to the
demo API, and for this, we will perform the following tasks:
1. In Postman, in the left-hand panel, click on the Collections | + button.

2. Once the tab opens, we will enter the name DemoBook. These steps for creating a
new collection are illustrated in the following screenshot:

A Book New Import [New Collection X +

- & .. @ B v

Collections
> New Collectior

Authorization Pre-request Script Tests Variables
o _—
b This authorization method will be used for every request in this collection. You can override
the request.
Environments
Type No Auth ~
2

Mock Servers
Figure 11.3 — Postman collection creation
So, we have a Demobook collection that appears in the left-hand panel of Postman.

This collection is also synchronized with our Postman web account, and we can access it
athttps://web.postman.co/me/collections.

This collection will allow us to organize the requests of our API tests, and it is also possible
to modify its properties in order to apply a certain configuration to all the requests that
will be included in this collection.

These properties include request authentication, tests to be performed before and after
requests, and variables common to all requests in this collection.

To moditfy the settings and properties of this collection, perform the following actions:

1. Click on the ... button of the context menu of the collection.

2. Choose the Edit option, and the edit form appears, in which we can change all the
settings that will apply to the requests in this collection.

3. Switch between all configuration tabs for the edit authorization, scripts, tests, or
variables options.

https://identity.getpostman.com/login?continue=https%3A%2F%2Fweb.postman.co%2Fme%2Fcollections

344 Testing APIs with Postman

The following screenshot shows the steps that are taken to modify the properties of
a collection:

2 Book N Import [DemoBook X + e
[} + | = emoBook 2 snare DR ERCIRES
Collections
~ DemoBook Yy oo — - -
Authorization Pre-request Script Tests Variables | e
o This colle g
APIs Add a req This authorization method will be used for every request in this collection.
Move You can override this by specifying one in the request.

Environments Run collection

Type
Edit e No Auth v
= @

Mock Servers Add request

Add folder

Figure 11.4 - Postman edit collection

So, we have discussed the procedure that is followed in order to create a collection that is
the first Postman artifact, and this will allow us to organize our API test requests.

We will now create a request that will call and test the proper functioning of our
demo API

Creating our first request

In Postman, the object that contains the properties of the API to be tested is called a
request.

This request contains the configuration of the API itself, but it also contains the tests that
are to be performed to check that it is functioning properly.

The main parameters of a request are as follows:
o The URL of the API
« Its method: GET/POST/DELETE/PATCH
o Its authentication properties
o Its querystring keys and its body request

o The tests that are to be performed before or after execution of the API

Creating a Postman collection with requests 345

The creation of a request is done in two steps - its creation in the collection, followed by
its configuration.

1. 'The creation of the request: To create the request of our API, here are the steps that
need to be followed:

I. We go to the context menu of the DemoBook collection and click on the Add
Request option:

New ¥
Q + oos
History Collections ApE ==l
4+ New Collection Trash
DemoBook % 2

> b
2 requests ses o

~» Share Collection
Rename Ctri+E
Create a fork

Al
& Edit
&

il Add Request e

C3 AddFolder

Figure 11.5 - Add Request in Postman

346 Testing APIs with Postman
II. Then, in the new tag, enter the name of the request, Get all posts, as
shown in the following screenshot:
New Import [DemoBook GET New Request X + oo
+ | F | Getall post 1

v DemoBook

GeT New Request GET v Enter request URL

Params Authorization Headers (7) Body Pre-request Script Tests

Query Params
KEY VALUE

Key Value

Figure 11.6 — Get all posts in Postman

The configuration of the request: After creating the request, we will

configure it by entering the URL of the API to be tested, which is https://
jsonplaceholder.typicode.com/posts, in the GET method. After
entering the URL, we save the request configuration by clicking on the Save button.

The following screenshot shows the parameters of this request with its URL and method:

Q Filter

GET Get all posts X e
History Collections ~ APIs BFTA
» Get all posts
+ New Collection Trash
GET v https:/fjsonplaceholder.typicode.com/posts
DemoBook %
[
1 request
Params Authorization Headers Body Pre-request Script Tests Settings

s Getallposts of—
Query Params

KEY VALUE
Key Value
Response

Figure 11.7 - Postman edit request

https://jsonplaceholder.typicode.com/posts
https://jsonplaceholder.typicode.com/posts

Using environments and variables to dynamize requests 347

Finally, to complete the tests, and to add more content to our lab, we will add a second
request to our collection, which we will call Get a single post. It will test another
method of the API, and it will also ensure that we configure it with the https://
jsonplaceholder.typicode.com/posts/<ID of post> URL.

The following screenshot shows the requests of our collection:

(1=

i +

Collections
~ DemoBook
=] -
(s s] GET Get all posts
APls

CET Get a single post

=]

Envirenmeanls

Figure 11.8 - Postman request list

Note

Note that the Postman documentation for collection creation can be found
athttps://learning.getpostman.com/docs/postman/
collections/creating collections/.

In this section, we have learned how to create a collection in Postman, as well as how to
create requests and their configurations.

In the next section, we will learn how to dynamize our requests with the use of
environments and variables.

Using environments and variables to
dynamize requests

When we want to test an API, we need to test it on several environments for better results.
For example, we will test it on our local machine and development environment, and then
also on the QA environment. To optimize test implementation times and to avoid having
a duplicate request in Postman, we will inject variables into this same request to make it
testable in all environments.

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://learning.getpostman.com/docs/postman/collections/creating_collections/
https://learning.getpostman.com/docs/postman/collections/creating_collections/

348 Testing APIs with Postman

So, in the following steps, we will improve our requests by creating an environment and
two variables; then, we will modify our requests in order to use these variables:

1. In Postman, we will start by creating an environment that we call Local, as shown
in the following screenshot:

9 Home Workspaces ~ API Network ~ Reports Explore O\ Search Postman
2. Book New Import [S] New Environment X + e
| + = Local|
Collections
Globals VARIABLE INITIAL VALUE @
&b
APls Add a new variable
El
Enviranments
=
Mock Servers
,)
) You don’'t have any environments.
Manitors
An environment is a set of variables that allows
D_[g you to switch the context of your requests.

Flows B
Create Environment

L0
History

Figure 11.9 - Adding an environment in Postman

2. Then, in this Local environment, we will insert a variable named Post ID, which
will contain the value to pass in the URL of the request. The following screenshot
shows the creation of the Post ID variable:

Using environments and variables to dynamize requests 349

9 Home Workspaces - APl Network Reports Explore

Q search Postman [m

2 Book MNew Import [o] Local [+ e
(&} + = Local % Fork
Collections = =
Globals VARIABLE INITIAL VALUE @ CURRENT VALUE @
o
oo

%4 FostD 6 6
APIs Local e .
= Add a new variable
o
En\r\ronmanlo

=

Mock Servers

Figure 11.10 - Adding an environment variable in Postman

3. 'Thus, for the Local environment, the value of the Post ID variable is 6. To have a
different value for other environments, it is necessary to create other environments
using the same steps that we have just seen, and then add the same variables (with
the same name) and their corresponding values. This, for example, shows the
variable screen for the QA environment:

New Import [=] QA 5 4+ e
— r 1
+ = QA 7 Fork
Globals VARIABLE INITIAL VALUE @ CURRENT VALUE [
Local PostiD 7 7
QA Add a new variable
=

Figure 11.11 - Adding a second environment in Postman

350 Testing APIs with Postman

4. Finally, we will modify the request in order to use the variable that we have just
declared. In Postman, the usage of a variable is done using the { {variable name
} } pattern. So, first, we select the desired environment from the dropdown in the
top-right corner. Then, in the request, we will replace the post's ID at the end of the
URL with { {PostID} }, as shown in the following screenshot:

Get a single post ® + oo Local v
DemoBook | Get a single post B Save 000 £ 7 =
GET e https:ffjsonplaceholder.typicode.com/postsif{Postid}} m
Params Auth Headers (7) Body Pre-req. Tests Settings Cookies

Query Params

KEY VALUE DESCRIPTION ooo Bulk Edit

Key WValue Description

Figure 11.12 - Using a variable environment in Postman

Note

Note that the Postman documentation of environments and variables is
available at https://learning.getpostman.com/docs/
postman/environments and globals/intro to
environments and globals/.

In this section, we created a Postman request that will allow us to test an API. Then we
made its execution more flexible by creating an environment in Postman that contains
variables that are also used in Postman's requests.

In the next section, we will write Postman tests to verify the API result.

Writing Postman tests

Testing an API is not only about checking that its call returns a return code of 200, that is,
that the API responds well, but also that its return result corresponds to what is expected,
or that its execution time is not too long.

https://learning.getpostman.com/docs/postman/environments_and_globals/intro_to_environments_and_globals/
https://learning.getpostman.com/docs/postman/environments_and_globals/intro_to_environments_and_globals/
https://learning.getpostman.com/docs/postman/environments_and_globals/intro_to_environments_and_globals/

Writing Postman tests 351

For example, consider an API that returns a response in JSON format with several
properties. In the tests of this API, it will be necessary to verify that the result returned is

a JSON text that contains the expected properties, and even more so to verify the values of
these properties.

In Postman, it is possible to write tests that will ensure that the response of the request
corresponds to the expected result in terms of return or execution time using the
JavaScript language.

Postman tests are written in the Tests tab of the request:

GET Get a single post X + e

» Get a single post

GET ¥ | https://jsonplaceholder.typicode.com/posts/{{PostID}}
Params Authorization Headers Body Pre-request Script Tests Settings
1

Figure 11.13 - Postman Tests tab

To test our request, we will write several tests, which are as follows:
o That the return code of the request is 200
o That the response time of the request is less than 400 ms
« That the answer is not an empty JSON

o That the return JSON response contains the userId property, which is equal to 1
To perform these tests, we will write the code for the following in the Tests tab.

The following code illustrates the return code of the request:

pm.test ("Status code is 200", function () {
pm.response.to.have.status (200) ;

IO

352 Testing APIs with Postman

The following code illustrates a response time of less than 400 ms:

pm.test ("Response time is less than 400ms", function () {

pm.expect (pm.response.responseTime) .to.be.below (400) ;

1)
The following code illustrates that the response in JSON format is not empty:

pm.test ("Json response is not empty", function () {
pm.expect (pm.response) .to.be.json;

N
The following code illustrates that, in the JSON response, the userId property is equal to 1:

pm.test ("Json response userId eg 1", function () {
var jsonRes = pm.response.json() ;

pm.expect (jsonRes.userId) .to.eq (1) ;

1)

And so, finally, the Tests tab of our request, which tests our API, contains all this code, as
shown in the following screenshot:

» Get a single post

GET ¥ | https://jsonplaceholder.typicode.com/posts/{{PostID}}

Params Authorization Headers (8) Body Pre-request Script Tests @ Settings

1~ pm.test("Status code is 288", function () {

2 pm.response.to.have.status(288);

3 1)

a

5~ pm.test("Response time is less than 488ms", function () {
6 pm.expect(pm.response.responseTime).to.be.below(408);

7 1);

8

9 » pm.test("Json response is not empty”, function (){

10 pm.expect(pm.response).to.be.json;

1 });

12

13 ~ pm.test("Json response userld eq 1", function (){
14 var jsonRes = pm.response.json();

15 pm.expect(jsonRes.userId).to.eq(1);

16 });

17

Figure 11.14 - Postman Tests code

Executing Postman request tests locally 353

We have completed our Postman request with test writing, which will check the proper
functioning of the API according to its feedback code, performance, and response content.

Note

For more information about the Postman tests and scripts, you can read the
documentation at https://learning.getpostman.com/docs/
postman/scripts/intro to_ scripts.

In this section, we have just seen how, in Postman, we can write API tests to check the
proper functioning of our API. We will now run our Postman request locally in order to
test our APL.

Executing Postman request tests locally

So far, in Postman, we have created a collection in which two requests contain the
parameters and tests of our APIs that are to be tested. To test the proper functioning of
the APIs with their parameters and tests, we must now execute our requests that are in
Postman. Note that it will only be at the end of this execution that we will know whether
our APIs correspond to our expectations.

To execute a Postman request, perform the following actions:

1. You must first choose the desired environment.

2. Click on the Send button of the request, as shown in the following screenshot:

Local v ©

GET Get a single post X F e o #
» Get a single post Examples (0) +
GET ¥ https://jsonplaceholder.typicode.com/posts/{{PostID}} e m Save v

Params Authorization Headers (8) Body Pre-request Script Tests @ Settings Cookies Code Comments (0)

Figure 11.15 - Postman signup

https://learning.getpostman.com/docs/postman/scripts/intro_to_scripts
https://learning.getpostman.com/docs/postman/scripts/intro_to_scripts

354 Testing APIs with Postman

3. Inthe Body tab, we can then view the content of the query response, and if we
want to display it in JSON format, we can choose the display format. The following
screenshot shows the response of the request displayed in JSON format:

GET ¥ | hitps:/Jj eholder.typicode.com/p« {{PostID}} Save ~

Params Authorization Headers (8) Body Pre-request Script Tests ® Settings Cookies Code Comments (0)

Query Params.

KEY VALUE DESCRIPTION e+ | Bulk Edit
Key Value Description
Body Cookies (1) Headers (19) Test Results (4/4) Stalus: 2000 Time: 23ms Size: 932B Save Response ¥
Pretty Raw Preview VisualzeB™R JSON veB |mQ
- 1
2 “userId”: 1,
3 id": 6
a "title": "dolorem eum magni eos aperiam quia”,
5 “body”: "ut aspernatur corporis harum nihil quis provident sequi\nmollitia nobis aliquid molestiae\nperspiciatis et ea nemo ab reprehenderit accusantium quas\nvoluptate
dolores velit et doloremque molestiae”
o r

Figure 11.16 — Postman body response

4. 'The Test Results tab displays the results of the execution of the tests that we
previously wrote, and in our case, the four tests have been executed correctly—they
are all green, as shown in the following screenshot:

KEY VALUE DESCRIPTION e Bulk Edit
Key Value Description
Body Cookies (1) Headers (19) | Test Results (4/4) Status: 2000K Time: 23ms Size: 932B Save Response v
All Passed Skipped Failed

@ Status code i1s 200

Response time is less than 400ms
@ Json response is not empty e

@ Json response userld eq 1

Figure 11.17 — Postman Test Results

In the preceding screenshot, we can see that the return code of the Postman request is
equal to 200, which corresponds to the request's successful execution return code, and
its execution time of 23 ms, which is below the threshold (400 ms) that I set for myself as
an example.

Executing Postman request tests locally =~ 355

In the event that one of the tests fails, it will be displayed in red to clearly identify it. An
example of a failed test is shown in the following screenshot:

Body Cookies (1) Headers (19) Test Results (3/4)

All Passed Skipped Failed

@ Status code is 200

@ Response time is less than 400ms

@ Json response is not empty

Json response userld eq 1 | AssertionError: expected 1 to equal 10

Figure 11.18 — Postman test failed

We have just seen the execution of a Postman request to test an API, but this execution is
only for the current request. If we want to execute all Postman requests in a collection, we
can use Postman Collection Runner.

Postman Collection Runner is a Postman feature that automatically executes all the
requests in a collection in the order in which they have been organized.

You can learn more about the Collection documentation by visiting ht tps: //
learning.getpostman.com/docs/postman/collection runs/
starting a collection run/.

https://learning.getpostman.com/docs/postman/collection_runs/starting_a_collection_run/
https://learning.getpostman.com/docs/postman/collection_runs/starting_a_collection_run/
https://learning.getpostman.com/docs/postman/collection_runs/starting_a_collection_run/

356 Testing APIs with Postman

The following two screenshots show the Runner execution steps, in which we choose
the collection to execute, the environment, and the number of iterations. To start its

execution, we click on the Run DemoBook button:

2, Book New Import [v] Runner X + oee
i + [= " RUNORDER Deselect All Select Al Reset
Collections
~ DemoBook T oo
& = GET Get all posts terations
Share
APis)
GET GET Get a single post
Mave Delay
[E]
Environments Run collection
Data
Edit
3
Mock Servers Add request
Add folder
Manitors Monitor collection
off Mock cellection
EENS Create a fork
ED) Create pull request
History

Figure 11.19 - Postman Runner

Local

1
ms

Select File

[T save responses @
Keep variable values @
[] Run collection without using stored cookies

Save cookies after collection run @

Run DemoBook o

And so, in the Runner tab, we can see the test execution result of all the requests in the

collection, as shown in the following screenshot:

[*] DemoBeook hd 4+ oo
DemoBook Local, just now

All Tests Passed (4) Failed (0)

Iteration 1

GET Get all posts https://jsonplaceholder.typicode.com/posts | Get all posts

This request does not have any tests.

GET Get a single post https://jsonplaceholder.typicode.com/posts/{{PostiD}}

Pass Status code is 200

Pass Response time is less than 400ms
Pass Json response is not empty

Pass Json response userld eq 1

New

| Get a single post

@

Local

Export Results

2000 20ms 2B.657KB

2000K 48Bms 1421KB

Figure 11.20 - Postman Runner execution

Understanding the Newman concept 357

Note

The documentation for Postman Runner can be found at https://
learning.getpostman.com/docs/postman/collection
runs/intro to collection runs.

In this section, we have learned how to execute Postman requests in order to test an API
in a unitary way, before executing all the requests in the collection using Postman Runner.
In the following section, we will introduce Newman, which allows us to automate the
execution of Postman tests.

Understanding the Newman concept

So far in this chapter, we have talked about using Postman locally to test the APIs that we
develop or consume. But what is important in the unit, acceptance, and integration tests is
that they are automated so that they can be executed within a CI/CD pipeline.

Postman, as such, is a graphical tool that does not automate itself, but there is another tool
called Newman that automates tests that are written in Postman.

Note

We can also use another tool called Postman Sandbox to run the Postman API
in Node.js or a browser. For more information, read the GitHub repository
here: https://github.com/postmanlabs/postman-sandbox.

Newman is a free command-line tool that has the great advantage of automating tests
that are already written in Postman. It allows us to integrate API test execution in CI/CD
scripts or processes.

In addition, it offers the possibility of generating the test results of reports of different
formats (HTML, JUnit, and JSON).

Nevertheless, Newman does not allow us to do the following:

« To create or configure Postman requests; as we will see, requests that are executed
by Newman will be exported from Postman.

 To execute only one request that is in a collection—it executes all the requests in
a collection.

https://learning.getpostman.com/docs/postman/collection_runs/intro_to_collection_runs
https://learning.getpostman.com/docs/postman/collection_runs/intro_to_collection_runs
https://learning.getpostman.com/docs/postman/collection_runs/intro_to_collection_runs
https://github.com/postmanlabs/postman-sandbox

358 Testing APIs with Postman

Note

To learn more about Newman, you can visit the product page athttps://
www .npmjs.com/package/newman.

To use Newman, we will need—as stated in the Technical requirements section of this
chapter—to have Node.js and npm installed, which are available at https: //nodejs.
org/en/ (this installer installs both tools).

Then, to install Newman, we must execute this command in the terminal:
npm install -g newman

The following screenshot shows the execution of the command:

PS C:\Users\mkrief> npm install -g newman
C:\Users\mkrief\AppData\Roaming\npm\newman -> C:\Users\mkrief\AppData\Roaming\npm\node_modules\newman\bin\newman.js

+ newman@5.3.8
added 129 packages from 189 contributors in 23.971s

Figure 11.21 - Newman installation
This command installs the npm newman package and all its dependencies globally, that is,
it is accessible on the entire local machine.

Once installed, we can test its installation by running the newman --help command,
which displays the arguments and options to use, as shown in the following screenshot:

*newman --help
newman [options] [command]

-V, --ver output the version number
-h, --help output us information

Commands :
run [options] <collection» URL or path to a Postman Collection.

available options for a command:
an [command] -h

Figure 11.22 - Newman help command

In this section, we introduced Newman by talking about its advantages, and we learned
how to install it. In the next section, we will export Postman's collection and environment
for use with Newman.

https://www.npmjs.com/package/newman
https://www.npmjs.com/package/newman
https://nodejs.org/en/
https://nodejs.org/en/

Preparing Postman collections for Newman 359

Preparing Postman collections for Newman

As we have just seen, Newman is Postman's client tool, and in order to work, it needs
the configuration of the collections, requests, and environments that we have created
in Postman.

That's why, before running Newman, we will have to export Postman's collection and
environments, and this export will serve as Newman's arguments. So, let's start exporting
the DemoBook collection that we created in Postman.

Exporting the collection

The exporting of a Postman collection consists of obtaining a JSON file that contains all
the settings of this collection and the requests that are inside it.

It is from this JSON file that Newman will be able to run the same API tests as when we
ran them from Postman.

To do this export, perform the following tasks:

1.
2.
3.

Go to the context menu of the collection that we want to export.
Choose the Export action.

Then, in the window that opens, uncheck the Collection v2.1 (recommended)
checkbox.

Finally, validate by clicking on the Export button.

360 Testing APIs with Postman

These steps are shown in the following screenshot:

A Book New Import + oo Local w &
8 + =
Caollactions
~ DemoBook T ooo
=]
&n CET Ge
Share
APIs
GET Ge
Maove
[El

Envirsnments Run collection

Edit

= EXPORT COLLECTION X

Mock Servers Add request
Add folder . Need abetter & manageable way to share this? Invite your
. Jm. coworkers and use features like realtime sync, comments,
Monitors Monitor collection 4) Y 3 4 2
version control, etc for better collaboration. Invite Teammates
of2 Mock collection
LSl Create a fork DemoBook
will be exported as a JSON file. Export as:

LD Cr eques’

Histary ; @ Collection v2
AL @ Collection v2.1 (recommended)
View documentation

Learn more about collection formats
Rename Ctri+E o
Duplicate Ctri+D
Export e canee
Manage roles
Delete Del
E0 S Find and Replace [Console Bootcamp [Runner T Trash [E @

Figure 11.23 - Postman export collection

Clicking on the Export button exports the collection to a JSON format file, DemoBook .
postman_collection.json, which we save in a folder that we create, which is
dedicated to Newman.

After exporting the collection, we also need to export the environment and variable
information because the requests in our collection depend on it.

Exporting the environments

We could stop there for Newman's configuration, but the problem is that our Postman
requests use variables that are configured in environments.

Preparing Postman collections for Newman 361

It is for this reason, therefore, that we will also have to export the information from each
environment in JSON format so that we can also pass it on as an argument to Newman.

To export the environments and their variables, perform the following tasks:

1. Open ENVIRONMENTS from the left panel in Postman.

2. 'Then, click on the Export environment button.

These steps are shown in the following screenshot:

New Import [5] Local o 4+ ooe Local ~ @
+ = Local Y Fork | 0 A Share == e)
Globals VARIABLE INITIALVALUE @ CURRENT VALUE @ Set as active environment Il vy
[FostiD 6 3 Mave
Local o (] . o8
QA Add a new variable Export e
Duplicate Ctri+D

Create a fork

Manage Roles

Delete Del

Figure 11.24 - Postman Export environment

So, for each environment, we will export their configurations in a JSON file, which we
save in the same folder where we exported the collection.

Finally, we have a folder on our machine that contains three Postman JSON files:
e One JSON file for the collection

o One JSON file for the Local environment

o One JSON file for the QA environment

362 Testing APIs with Postman

The following screenshot shows the contents of the local folder that contains
Postman's exports:

Learning_DevOps » CHAPOS

Fat
Mom

LT DemoBook.postman_collection.json
5) Local.postman_environment.json

T aa. postman_envirenment.json

Figure 11.25 - Postman export file folder

We have just covered the export of all the configurations of our Postman requests,
including the collection and the environments, and we will now look at the execution of
the Newman command line.

Running the Newman command line

After exporting the Postman configuration that we saw earlier, we will run the Newman
utility on our local machine.

To execute Newman, go to the Terminal, then to the folder where the JSON configuration
files are located, and execute the following command:

newman run DemoBook.postman collection.json -e Local.postman
environment.json

The newman run command takes the JSON file of the collection that we exported as an
argument and a parameter, -e, which is the JSON file of the exported environment.

Note

For more details about all the arguments of this command, read the
documentation at https://www.npmjs.com/package/
newmanffnewman-options.

https://www.npmjs.com/package/newman#newman-options
https://www.npmjs.com/package/newman#newman-options

Running the Newman command line 363

Newman will execute the Postman requests from the collection we exported. It will also
use the variables of the exported environment and will also perform the tests we wrote in
the request.

The result of its execution, which is quite detailed, is shown in the following screenshot:

CA\Windows\System32\cmd.exe

C:\Users\Mikael\Documents\Postman [newman run DemoBook.postman_collection.json -e Local.postman_environment.json
newman

DemoBook

- Get all posts

- Get a single post

executed failed

total run duration: 338ms

total data received: 27.16KB (approx)

average response time: 1l@ms [min: 27ms, max: 194ms, s.d.: 83ms]

Figure 11.26 — Newman execution

364 Testing APIs with Postman

And here is another screenshot that shows the result of its execution in case there is an
error in the test:
C\Windows\System32\cmd.exe

C:\Users\Mikael\Documents\Postman>newman run DemoBook.postman_collection.json -e ga.postman_environment.json
newman

DemoBook

-+ Get all posts

+ Get a single post

executed

total run duration: 412ms
total data received: 27.@9KB (approx)

average response time: 141ms [min: 28ms, max: 254ms, s.d.: 113ms]

1. AssertionError Json response userId eq 1

Figure 11.27 - Newman failed tests

We can see the details of the test that shows an error and what is expected in the request.
In this section, we have learned how to run Newman on a local machine, and we will now
learn how Newman is integrated in a CI/CD pipeline.

Integration of Newman in the CI/CD pipeline process 365

Integration of Newman in the CI/CD pipeline
process

Newman is a tool that automates the execution of Postman requests from the command
line, which will quickly allow us to integrate it into a CI/CD pipeline.

To simplify its integration in a pipeline, we go to the first step in the directory
that contains the JSON files that were exported from Postman and create an npm
configuration file—package . json.

This will have the following content:

{

"name": "postman",
"version": "1.0.0",
"description": "postmanrestapi',
"scripts": {
"testapilocal”: "newman run
DemoBook.postman collection.json -e
Local.postman environment.json -r junit,cli -reporter
junit-export result-tests-local.xml",
"testapiQA": "newman run
DemoBook.postman collection.json -e
QA.postman environment.json -r junit,cli --reporter-junit
export result-tests-ga.xml"
}
"devDependencies": {

"newman": "*5.3.0"

}
}

In the scripts section, we put the two scripts that will be executed with the command
lines that we saw in the previous section and we add to them the -r argument, which
allows the output of the command with reporting in JUnit format, while, in the
DevDependencies section, we indicate that we need the Newman package.

That's it; we have all the files that are necessary for integrating Newman's execution into a
CI/CD pipeline.

366 Testing APIs with Postman

To show Newman's integration into a CI/CD pipeline, we will use Azure Pipelines—an
Azure DevOps service that we saw in Chapter 7, Continuous Integration and Continuous
Delivery, and Chapter 9, Containerizing Your Application with Docker, and which has the
advantage of having a graphic representation of the pipeline.

As a prerequisite for the pipeline, the directory that contains the JSON files of the Postman
export, as well as the package . j son file, must be committed in a source control version.
In our case, we will use the GitHub repository, which contains the complete source code
of this chapter: https://github.com/PacktPublishing/Learning-DevOps-
Second-Edition/tree/main/CHAP11.

Build and release configuration

In Azure Pipelines, we will create a build and release configuration by following
these actions:

1. We create a new build definition that copies the files that are needed to run
Newman into the build artifacts, as shown in the following screenshot:

Tasks \Variables Triggers Options History ‘= Summary [> Queue

Pipeline

Build pipeline Publish build artifacts @

== Get sources
€) PacktPublishing/Learning-DevOps-Second-Edition

¥ main

Task version | 1.* v

Display name *

Agent job 1
igr{un m{ agent + ‘ Publish Artifact: newman
f Publish Artifact: newman O i Path o publeh O

=mmm Publish build artifacts

‘ CHAP11

Artifact name* @)

‘ drop

Artifact publish location* ()

Azure Pipelines

Figure 11.28 — Azure Pipelines publish Newman files

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP11
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP11

Integration of Newman in the CI/CD pipeline process 367

We also enable the continuous integration option in the Triggers tab. Then, to run
this build, we save and queue this build definition.

2. 'Then, we create a new release definition, which will be in charge of running
Newman for each environment. This release will get the artifacts of the build, and
will be composed of two stages, DEV and QA, as shown in the following screenshot:

All pipelines > * Newman exec

Pipeline Tasks ~ Variables Retention Options History

Artifacts | + Add Stages | + Add v
& ' |
4
iy £ | DRV Q % | QA a
_Newman tests Q 1 job, 2 tasks S | 1job, 2 tasks
| |
© Schedule

not set

Figure 11.29 — Azure Pipelines Newman execution release
For each of these stages, we configure three tasks that go as follows, based on the
package. json file:
1. Install Newman.
2. Run Newman.

3. Publish the test results in Azure Pipelines.

368 Testing APIs with Postman

The following screenshot shows the configuration of the tasks for each stage:
All pipelines > % Newman exec
Pipeline Tasks ~ Variables Retention Options History

DEV

Deployment process
Agent job +
& Run on agent

npm install
npm

npm run newman
npm

Publish Test Results

Publish Test Results

¥ E El
e eoe

Figure 11.30 — Azure Pipelines Newman release steps

Let's look at the details of the parameters of these tasks in order.

Integration of Newman in the CI/CD pipeline process 369

npm install

The parameters of the npm install task are as follows:

DEV
Deployment process npm @
Agent job + Task version | 1.* w

B Run on agent

npm install (]
npm R
npm install

npm run newman
npm Command @

Display name *

install

Publish Test Results

Publish Test Results

Waorking folder that contains packagejson (i)

$(System.DefaultWorkingDirectory)/_Newman tests/drop

Figure 11.31 - Azure Pipelines npm install

Here, the command that is to be executed in the directory containing the artifact files is
npm install.

370 Testing APIs with Postman

npm run newman

The parameters of the npm run newman task are as follows:

DEV ven
Deployment process npm (D

Task version | 1.* ~

Agent job +

B Run on agent

m npm install Display name *

npm run newman
m npm run newman @& Command* (O

npm

a E Publish Test Results custom

Publish Test Results

Working folder that contains packagejson (3)

$(System.DefaultWorkingDirectory)/_Newman tests/drop

Command and arguments * D)

run testapilocal

Figure 11.32 - Azure Pipelines run newman

Here, the custom command that is to be executed is npm run testapilocal in

the directory that contains the artifact files, with the testapilocal command being
defined in the package . json file in the script section (as seen previously), and which
executes Newman's command line.

Publish Test Results

The parameters of the Publish Test Results task, which allows us to publish the results of
the tests that are performed by Newman in Azure Pipelines, are as follows:

Integration of Newman in the CI/CD pipeline process 371

DEV

Deployment process

Publish Test Results @&

Agent job + Task version | 2. w
& Run on agent
npm ir'lStEI" D|5p|a}r namet

npm

Publish Test Results

npm run newman
npm

Test result format* (i)

Publish Test Results : JUnit

Publish Test Resulis

¥ |[El El

Test results files* (i)

** fresult-tests-local.xml

Search folder (i)

5(System.DefaultWorkingDirectory)

Figure 11.33 — Azure Pipelines publishing result of the Newman tests

In the parameters of this task, we indicate the JUnit XML reporting files that are generated
by Newman, and in the Control Options field of this task, we select an option to execute
the task, even if the npm run newman task fails.

372 Testing APIs with Postman

The following screenshot shows the parameters of Control Options to run this task: Even
if a previous task has failed, unless the deployment was canceled:

m npm install
o

Advanced v
m npm run newman
e Control Options ~
Publish Test Results @ ii
&1 Publish Test Results & Enabled

D Continue on error

Timeout * @

0

Run this task (D)

Even if a previous task has failed, unless the deployment was canceled

Figure 11.34 — Azure Pipelines publishing result of the Newman tests option

The configuration of the pipeline is complete—we will now proceed to its execution.

The pipeline execution

Once the configuration of the release is finished, we can execute this release, and at the
end, we can see the reporting of the Newman tests in the Tests tab.

The following screenshot shows the reporting of the Newman tests in Azure Pipelines:

" Newman exec > Release-4 > DEV v

€~ Pipeline Tasks \Variables Logs | Tests > Deploy) Refresh /' Edit ~

~ Summary

1 Run(s) Completed (1 Passed, 0 Failed)

4 ‘8= 100% 854ms

Total tests 0 @ Others Pass percentage Run duration (@

Figure 11.35 - Azure Pipelines view result of the Newman tests

Integration of Newman in the CI/CD pipeline process 373

All Postman tests were completed successfully.

Here is a screenshot that shows the reporting of the tests in case one of the tests fails:

< Pipeline Tasks Variables

~ Summary

Logs

Tests

1 Run(s) Completed (0 Passed, 1 Failed)

4

'd

Total tests

S Filter by test or run name

3 Passed
1 @ Failed
0 Others

Test

v X

Newman exec (1/4)

* Json response

& Deploy

75%

Pass percentage

O Refresh

Z Edit ~

840ms O

Run duration @)

Tests not reported

Duration
0:00:00.840

0:00:00.210

Figure 11.36 — Azure Pipelines view result of the Newman failed tests

So, we integrated Newman's execution successfully, and thus we were able to automate the
requests of our API, which we had configured in Postman, in a CI/CD pipeline.

Regarding the integration of Newman executions in Jenkins, read the documentation at
https://learning.getpostman.com/docs/postman/collection runs/
integration with jenkins, and for integration with Travis CI, the documentation
can be found at https://learning.getpostman.com/docs/postman/

collection runs/integration with travis.

In this section, we learned how to create and configure a CI/CD pipeline in Azure
Pipelines, which performs Postman tests that have been exported for Newman.

https://learning.getpostman.com/docs/postman/collection_runs/integration_with_jenkins
https://learning.getpostman.com/docs/postman/collection_runs/integration_with_jenkins
https://learning.getpostman.com/docs/postman/collection_runs/integration_with_travis
https://learning.getpostman.com/docs/postman/collection_runs/integration_with_travis

374 Testing APIs with Postman

Summary

In this chapter, we introduced Postman, which is an excellent tool for testing APIs. We
created a Postman account and installed it locally.

Then, we created collections and environments, in which we created requests that contain
the settings of our APIs that are to be tested.

We also talked about automating these tests using the Newman command-line tool, with
the exporting of Postman collections and environments.

Finally, in the last part of this chapter, we created and executed a CI/CD pipeline in Azure
DevOps that automates the execution of API tests in a DevOps process.

In the next chapter, we will stay on the subject of testing, and we will look at the analysis
of static code with a well-known tool called SonarQube.

Questions
1. What is the goal of Postman?
2. What is the first element that needs to be created in Postman?

3. What is the name of the element that contains the configuration of the API that is to
be tested?

4. Which tool in Postman allows us to execute all the requests of a collection?

Which tool allows us to integrate Postman API tests in a CI/CD pipeline?

Further reading

If you want to know more about Postman, here are some additional resources:

o Postman Learning Center: https://learning.getpostman.com/

« Videos and tutorials about Postman: https://www.getpostman.com/
resources/videos-tutorials/

https://learning.getpostman.com/
https://www.getpostman.com/resources/videos-tutorials/
https://www.getpostman.com/resources/videos-tutorials/

12

Static Code Analysis
with SonarQube

In the previous chapter, we looked at how to test the functionality of an application
programming interface (API) with Postman, a free tool for testing APIs, and the
integration and automation of these tests in a continuous integration/continuous
deployment (CI/CD) pipeline using Newman.

Testing the functionality of an API or application is a good practice when we wish to
improve the quality of applications. In a company, the quality of an application must be
considered by all its members because an application that brings business value to users
increases the company's profits.

However, we often neglect to test the quality of an application's code because we think that
what matters is how the application works and not how it is coded. This way of thinking

is a big mistake because poorly written code can contain security vulnerabilities and can
also cause performance problems. Moreover, the quality of the code has an impact on its
maintenance and scalability because code that is too complex or poorly written is difficult
to maintain and, therefore, will cost more for the company to fix.

376 Static Code Analysis with SonarQube

In this chapter, we will focus on static code analysis with a well-known tool called
SonarQube. We will provide a brief overview of it and go over how to install it. Then, we
will use SonarLint to analyze the code locally. Finally, we will integrate SonarQube into a
CI/CD pipeline on Azure Pipelines.

In this chapter, we will cover the following topics:

« Exploring SonarQube
« Installing SonarQube
« Real-time analysis with SonarLint

« Executing SonarQube in a CI process

Technical requirements

To use SonarQube and SonarLint, we have to install the Java Runtime Environment
(JRE), which can be found at https://www.oracle.com/technetwork/java/
javase/downloads/jre8-downloads-2133155.html (an Oracle account

is required), on the server where we have SonarQube and on the local development
environment where we have SonarLint.

To integrate SonarQube into an Azure DevOps pipeline, we must install the
following extension on our Azure DevOps organization: https://marketplace.
visualstudio.com/items?itemName=SonarSource.sonarqube.

The complete code source for this chapter is available at https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAP12.

Check out the following video to see the code in action: https://bit.1ly/3s96XTR.

Exploring SonarQube

SonarQube is an open source tool from SonarSource (https://www.sonarsource.
com/) that's written in Java. It allows us to perform static code analysis to verify the
quality and security of an application's code.

https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://github.com/PacktPublishing/Learning_DevOps/tree/master/CHAP10
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12
https://bit.ly/3s96XTR
https://www.sonarsource.com/
https://www.sonarsource.com/

Installing SonarQube 377

SonarQube is designed for developer teams and provides them with a dashboard
and reports that are customizable so that they can present the quality of the code in
their applications.

It allows for the analysis of static code in a multitude of languages (over 25), such as PHP:
Hypertext Preprocessor (PHP), Java, .NET, JavaScript, Python, and so on. A complete list
can be found at https://www.sonarqube.org/features/multi-languages/.

In addition, apart from code analysis with security issues, code smell, and code
duplication, SonarQube also provides code coverage for unit tests. For more details about
these issue concepts, read the documentation here: https://docs. sonarqube.org/
latest/user-guide/concepts/.

Finally, SonarQube integrates very well into CI/CD pipelines so that it can automate
the code analysis during developer code commits. This reduces the risk of deploying an
application that has security vulnerabilities or code complexity that is too high.

On the other hand, it is important to note that they have a multitude of plugins that can be
paid for. A list of plugins is available here: https://www. sonarplugins.com/.

Now that we've provided an overview of SonarQube, we will look at its architecture and
components. Finally, we will look at the different ways of installing it.

Installing SonarQube

SonarQube is an on-premises solution—in other words, it must be installed on servers or
virtual machines (VMs). In addition, SonarQube consists of several components that will
analyze the source code of applications, retrieve and store the data from this analysis, and
provide reports on the quality and security of the code.

Before we install SonarQube, it is essential that we look at its architecture and
components.

Overview of the SonarQube architecture

SonarQube is a client/server tool, which means that its architecture is composed of
artifacts on the server side and also on the client side.

https://www.sonarqube.org/features/multi-languages/
https://docs.sonarqube.org/latest/user-guide/concepts/
https://docs.sonarqube.org/latest/user-guide/concepts/
https://www.sonarplugins.com/

378 Static Code Analysis with SonarQube

A simplified SonarQube architecture is shown in the following diagram:

Clients components Server components

Ul Web

Compute engine

Search engine

SonarQube Database
Scanners

Figure 12.1 - SonarQube architecture with Client and Server components

Let's look at the components that are shown in the preceding diagram. The components
that make up SonarQube on the server side are listed here:

A SQL Server, MySQL, Oracle, or PostgreSQL database that contains all the
analysis data.

A web application that displays dashboards.

The compute engine, which is in charge of retrieving the analysis and processes and
putting them in the database.

A search engine built with Elasticsearch.

The client-side components are listed here:

The scanner, which scans the source code of the applications and sends the data to
the compute engine.

The scanner is usually installed on build agents that are used to execute
CI/CD pipelines.

SonarLint is a tool that's installed on developers' workstations for real-time analysis.
We will look at it in detail later in this chapter.

Installing SonarQube 379

For more details on this architecture, we can consult the SonarQube architecture and
integration documentation, which can be found at https: //docs. sonarqube.org/
latest/user-guide/concepts/.

Now that we have looked at its architecture and components, we will learn how to
install it.

SonarQube installation

SonarQube can be installed in different ways—either manually or by installing a Docker
container from the Sonar image. Alternatively, if we have an Azure subscription, we can
use a SonarQube VM from the Marketplace. Let's take a closer look at each of

these options.

Manual installation of SonarQube

If we want to install the SonarQube server manually, we must take the prerequisites into
account. These prerequisites are that Java must already be installed on the server and that
we need to check the hardware configuration shown at https://docs. sonarqube.
org/latest/requirements/requirements/.

Then, we must manually install the server components in order, like so:

1. Install the database. This can be either MSSQL, Oracle, PostgreSQL, or MySQL.

2. 'Then, for the web application, download the Community Edition of SonarQube
from https://www.sonarqube.org/downloads/ and unzip the
downloaded ZIP file.

3. Inthe $SONARQUBE-HOME/conf/sonar.properties file, configure access to
the database we installed in Step 1 and the storage path of Elasticsearch, as detailed
in the following documentation: https://docs.sonarqube.org/latest/
setup/install-server/.

4. Start the web server.
To find out about all the details regarding this installation according to the chosen

database and our operating system (OS), we can consult the following documentation:
https://docs.sonarqube.org/latest/setup/install-server/.

https://docs.sonarqube.org/latest/user-guide/concepts/
https://docs.sonarqube.org/latest/user-guide/concepts/
https://docs.sonarqube.org/latest/requirements/requirements/
https://docs.sonarqube.org/latest/requirements/requirements/
https://www.sonarqube.org/downloads/
https://docs.sonarqube.org/latest/setup/install-server/
https://docs.sonarqube.org/latest/setup/install-server/
https://docs.sonarqube.org/latest/setup/install-server/

380 Static Code Analysis with SonarQube

Installation via Docker

If we want to install SonarQube Community edition for tests or demonstration purposes,
we can install it via the official Docker image that is available from Docker Hub at
https://hub.docker.com/ /sonarqube/.

Be careful as this image uses a small integrated database that is not made for production.

Installation in Azure

If we have an Azure subscription, we can quickly access the entire SonarQube server
using the SonarQube VM from the Azure Marketplace. Follow these steps to create a
SonarQube VM in Azure:

1. In the Azure Marketplace, search and select the SonarQube image. The following
screenshot shows the SonarQube page of the Marketplace:

SonarQube packaged by Bithami o add o ravorites

sonarqube Bitnami

% 5.0 (1 Azure ratings)

‘ Start with a pre-set configuration

Want to deploy programmatically? Get started

Overview Plans + Pricing Usage Information + Support Reviews

SonarQube is a quality management platform, designed for continuously analyzing and measuring code technical quality, from the earliest stages of planning to preduction. It
combines static and dynamic analysis tools for monitoring duplicated code, coding standards, unit tests, complex code, potential bugs, comments and design, and
architecture,

SonarQube is used for major programming languages such as C/C++, JavaScript, Java, C#, PHP, or Python, and is able to analyze several programming languages
simultaneously.

This open source solution is packaged by Bitnami. Learn how to install, configure, and manage it at docs.bitnami.com. For deployment issues, reach out our support team at
community.bitnami.com

Trademarks: This software listing is packaged by Bitnami. The respective trademarks mentioned in the offering are owned by the respective companies, and use of them does
not imply any affiliation or endersement.

Figure 12.2 — Azure SonarQube in the Marketplace
2. Click on the Create button to get started.

https://hub.docker.com/_/sonarqube/

Installing SonarQube 381

3. Inthe VM form, on the Basics tab, select the Resource group type and provide the
Virtual machine name information, as shown in the following screenshot:

Create a virtual machine

Basics Disks Networking Management Advanced Tags Review + create

Create a virtual machine that runs Linux or Windows. Select an image from Azure marketplace or use your own customized
image. Complete the Basics tab then Review + create to provision a virtual machine with default parameters or review each
tab for full customization. Learn more &

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
YOur resources.

Subscription * @ | Microsoft Azure Sponsorship ' ‘
L_ Resource group * © | (New) demo-sonar v ‘
Create new

Instance details

Virtual machine name * @ | demo-sonar v ‘
Region* @ | (Europe) West Europe ~ ‘
Availability options @ | Mo infrastructure redundancy required ~ ‘
Security type @ | Standard ~ ‘
Image * @ | —) SonarQube packaged by Bitnami - Gen’l ~ ‘

See all images | Configure VM generation

< Previous Next : Disks >

Figure 12.3 — SonarQube Azure creation

We can also change some optional VM options in the Disks and Networking tabs. Then,
we validate these changes by clicking on the Review + create button.

382 Static Code Analysis with SonarQube

At the end of the resource creation, we can view the status of the deployment in the Azure
portal, which in this case is successful:

® Your deployment is complete

@ Deployment name: CreateVm-bitnamisonarqube-6-4-2019072815... Start time: 7/28/2019, 3:40:26 PM

Subscription: Microsoft Azure Sponsorship Correlation ID: bbfacfb4-78eb-4e07-8f79-8
Resource group: demo-sonar

~ Deployment details (Download)

RESQURCE TYPE STATUS OPERATION DETAILS

@ demo-sonar Microsoft.Compute/virt... OK Operation details

® demo-sonar592 Microsoft. Network/netw... Created Operation details

(V] demosonardiag Microsoft.Storage/stora... OK Operation details

® demo-sonar-vnet Microsoft.Network/virtu... OK Operation details

® demo-sonar-nsg Microsoft.Network/netw... OK Operation details

® demo-sonar-ip Microsoft.Network/publ... QK Operation details

Figure 12.4 - SonarQube Azure deployment
4. To access the installed SonarQube server, view the details of the VM and get the
Public IP address value, as shown in the following screenshot:
Dashboard > CreateVm-bitnamisonarqube-6-4-20190728153635 - Overview > demo-sonar
demo-sonar
Virtual machine
‘ O Search (Cul+/) “| wwconnect P start Q! Restart M Stop % Capture M Delete) Refresh
B Overview a | Resource group (change) : demo-sonar Computer name : demo-sonar
Status : Running Operating system : Linux (ubuntu 16.04)
H Activity log
Location : West Europe Size : Standard D2 v2 (2 vcpus, 7 GiB memory)
..
@ Access control (1AM) Subscription (change) : Microsoft Azure Sponsorship Ephemeral OS disk : N/A
@ rgs Subscription ID : BaTaaces-T4aa-416(-bBed-2c29206304e5 | Public IP address : 168,]
X Diagnose and solve problems Private IP address : 10.00.4
1 Virtual network/subnet : demo-sonar-vnet/default
Settings L
DNS name : Configure

& Networking

Figure 12.5 - SonarQube Azure Internet Protocol (IP) address

Open a web browser with this IP address as a Uniform Resource Locator (URL).
The SonarQube authentication page will be displayed, as illustrated in the
following screenshot:

Installing SonarQube 383

« - C 0 168 /sessions/new?r... Yt

Log In to SonarQube
Login =

Password =

Cancel

Figure 12.6 — SonarQube login screen

The default login is admin and is accessible via the VM boot diagnostics information,
as indicated in the documentation (https://docs.bitnami.com/azure/faq/
get-started/find-credentials/). The following screenshot shows how to
perform password recovery via the Boot diagnostics option:

demo-sonar - Boot diagnostics

Virtual machine

«)
| £ Search (Ctrl+/) ‘ Q) Refresh B Settings
B3 Run command Screenshot | Serial |8 e

Updated: Sunday, July 28, 2019, 2:02:34 PM UTC Download serial log
Monitoring

® . . 2019/07/28 13:43:24.148124 INFO Running Agent 2.2.20 was not found in the agent manifest - adding to
Y Insights (preview)

list

B Alerts 2019/07/28 13:43:24.151222 INFO Agent WALinuxAgent-2.2.20 discovered update WALinuxagent-2.2.41 --
exiting

ilil Metrics [24.680561] bitnami[1548]: ## 2019-07-28 13:43:24+00:00 ## INFO ## 443 has been blocked

24.855875] bitnami[1548
24.861051] bitnami[1548
24.866468] bitnami[1548 Setting Bitnami application password to
24.872110] bitnami[1548]: (the default application username is ‘admin e
24.877797] bitnami[1548]:
24.889413] bitnami[1548]:
2019/07/28 13:43:24.577956 INFO Agent WALinuxAgent-2.2.20 launched with command ‘python3 -u /usr/sbin/
waagent -run-exthandlers' is successfully running
2019/07/28 13:43:24.594382 INFO Event: name=WALinuxAgent, op=Enable, message=Agent WALinuxAgent-2.2.20
€ Resource health launched with command ‘python3 -u /usr/sbin/waagent -run-exthandlers' is successfully running,
duration=e
2019/07/28 13:4
2019/07/28 13:4
Reset password 2019/07/28 13:4
A Redeploy 2019/087/28 13:4
2019/07/28 13:4.

Diagnostic settings

@ Advisor recommendations

]
ok W

B Logs

E& Connection monitor

Support + troubleshooting

Y

124.611336 INFO Determined Agent WALinuxAgent-2.2.41 to be the latest agent

124.968082 INFO ExtHandler Agent WALinuxAgent-2.2.41 is running as the goal state agent
124.979775 INFO ExtHandler Wire server endpoint:168.63.129.16

125.084339 INFO ExtHandler Start env monitor service.

:25.009041 INFO ExtHandler Configure routes

W W W

Figure 12.7 - SonarQube Azure password recovery

https://docs.bitnami.com/azure/faq/get-started/find-credentials/
https://docs.bitnami.com/azure/faq/get-started/find-credentials/

384 Static Code Analysis with SonarQube

Once authenticated, we can access the SonarQube dashboard, which looks like this:

sonarqube Projects Issues Rules Quality Profiles Quality Gates Administration Search for projects and files...

Al Perspective: | Qverall Status ~ | sortby:| Name -] 12 |Qsercnt 0 projects ®

Filters

Once you analyze some projects, they will show up here.

Quality Gate
o Here is how you can analyse new projects
0
Reliability (# Bugs)
0 of 0 shown
0 0
o 0

Figure 12.8 - SonarQube home page

We have learned the steps to install SonarQube inside a VM, so now, we will learn to
install SonarQube on Kubernetes.

Installing SonarQube on Kubernetes

For installing SonarQube on a Kubernetes cluster, we will use the helm-chart package
provided here: https://github.com/SonarSource/helm-chart-sonarqube/
tree/master/charts/sonarqube.

Before installing SonarQube on Kubernetes, it's important to read about the requirements
here: https://docs.sonarqube.org/latest/setup/sonarqube-on-
kubernetes/.

For installing SonarQube on Kubernetes, run the following script:

helm repo add sonarqube https://SonarSource.github.io/helm-
chart-sonarqube

helm repo update
kubectl create namespace sonarqube

helm upgrade --install -n sonarqube sonarqube/sonarqube

The first line of this script adds the SonarQube Helm registry locally.
The second line updates the index of this registry.
Then, the script creates the sonarqube namespace.

Finally, the last line installs the sonarqube Helm chart.

https://github.com/SonarSource/helm-chart-sonarqube/tree/master/charts/sonarqube
https://github.com/SonarSource/helm-chart-sonarqube/tree/master/charts/sonarqube
https://docs.sonarqube.org/latest/setup/sonarqube-on-kubernetes/
https://docs.sonarqube.org/latest/setup/sonarqube-on-kubernetes/

Real-time analysis with SonarLint 385

At the end of the execution of this script, the Helm chart execution displays the
script to use the installed SonarQube instance on the console, as shown in the
following screenshot:

Release -sonarquber does net exist, Tnstalling 5 mome e

NAME: sonarqube
LAST DEPLOYED: Sun Dec 19 15:85:26 2821

NAMESPACE: sonarqube
STATUS: deployed

REVISION: 1

NOTES :

1. Get the application URL by running these commands:
export POD_NAME=$(kubectl get pods --namespace sonarqube -1 "app=sonarqube,release=sonarqube" -o jsonpath="{.items[0].metadata.name}")
echo "Visit http://127.8.0.1:8080 to use your application"
kubectl port—forward $POD_NAME 80880:9600 —n sonarqube

Figure 12.9 - SonarQube installation on Kubernetes with Helm

Note

Before executing this script, check that all pods are running by executing the
following command:

kubectl get pods -n sonarqube

In this section, we have looked at the architecture of SonarQube, along with details about
the client and server components. Then, we looked at the different installation methods
that are available and the configuration of SonarQube. In the next section, we will look at
how developers can perform real-time code analysis using SonarLint before they commit
their code.

Real-time analysis with SonarLint

Developers who use SonarQube in a CI context often face the problem of having to wait
too long before they get the results of the SonarQube analysis. They must commit their
code and wait for the end of the CI pipeline before they get the results of the code analysis.

To address this problem and, therefore, improve the daily lives of developers,
SonarSource—the editor of SonarQube—provides another tool, SonarLint, which allows
real-time code analysis.

SonarLint is a free and open source tool (https://www.sonarlint.org/) that
downloads differently depending on your development tool and development language.
SonarLint is available for Eclipse, Intelli] IDEA, Visual Studio, and Visual Studio Code
(VS Code) integrated development environments (IDEs).

https://www.sonarlint.org/

386 Static Code Analysis with SonarQube

In this book, we will look at an example of using SonarLint on an application written

in TypeScript using the VS Code IDE. The prerequisite to using SonarLint is having

the JRE installed on the local development computer. It can be downloaded from
https://www.oracle.com/technetwork/java/javase/downloads/jre8-
downloads-2133155.html.

To learn more about the concrete use of SonarLint, follow these steps:

1. In VS Code, install the SonarLint extension by going to the following page on the
Azure Marketplace:

£ Extension: SonarLint X

SonarlLint

SonarLint 190 234K %3
) SonarSource

SonarLint is an IDE extension that hel
SonarSource

SonarLint is an IDE extension that helps you detect and fix quali s as you write code in JavaScript, Typ Python and PHP.

SonarLint for CacheQuality 10.
SonarLint is an IDE extension thaf
litesolutions-es

Install

Details Contributions Changelog

SonarlLint for Visual Studio Code

How it works
J5, TS, Python or PHP file, start coding, and you will start sex eported by Sonarlint. Issues are highlighted in your code, and also listed in the ‘Problems

hello.js

hellojs ® m e

Figure 12.10 - SonarLint VS Code extension

2. 'Then, in VS Code, in the User settings, configure the extension with the installation
path of the JRE, shown as follows:

User Workspace

asons, the token should not be stored in 5C

k1.8.0_161

C\\Program Files\\Java\\jre1.8.0_221

Figure 12.11 - SonarLint VS Code extension configuration

3. Inour project, create a t sApp folder. Inside that folder, create an app . ts
file that contains the code of our application. The source code is available here:
https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/blob/main/CHAP12/tsApp/app.ts.

https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP12/tsApp/app.ts
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP12/tsApp/app.ts

Executing SonarQube in a CI process 387

4. Note that in this SonarLint sample code, it states that the code is not correct, as
shown in the following screenshot:

X=4
if (x 8& x)

X: number

a
Jl Correct one of the identical sub-expressions on both sides of operator "&&"
(typescript:51764)

Figure 12.12 - SonarLint sample check code

SonarLint allows us to learn more about this error by displaying detailed information
regarding the error and how to fix it, as shown in the following screenshot:

i | 9r|x=a
2 T (x && x) {
g) 1 Bug @& Major

1 Open description of rule typescript:S1764 R B . . B B
g Using the same value on either side of a binary operator is almost always a mistake. In the

case of logical operators, it is either a copy/paste error and therefore a bug, or it is simply
wasted code, and should be simplified. In the case of bitwise operators and most binary
mathematical operators, having tt value on both sides of an operator yields
predictable results, and should be simplified.

Noncompliant Code Example

if (a=-=a) { // always true

Figure 12.13 - SonarLint sample check code error details

Thus, SonarLint and its integration with various IDEs allow us to detect static code errors
in real time as soon as possible—that is, while the developer writes their code and before
they commit it in the source control version.

In this section, we learned how to install SonarLint in VS Code and how to use it to
perform real-time code analysis.

In the next section, we will discuss how to integrate SonarQube analysis into a CI process
in Azure Pipelines.

Executing SonarQube in a Cl process

So far in this chapter, we have looked at how to install SonarQube and how developers use
SonarLint on their local machines.

Now, we will look at how to perform code analysis during CI to ensure that each
time a code commit is made, we can check the application code that's provided by all
team members.

388 Static Code Analysis with SonarQube

In order to integrate SonarQube into a CI process, we will need to perform the
following actions:

1. Configure SonarQube by creating a new project.

2. Create and configure a CI build in Azure Pipelines.

Let's start by examining the creation of a new project in SonarQube.

Configuring SonarQube
SonarQube's configuration consists of creating a new project and retrieving an
identification token. To create a new project, follow these steps:

1. Click on the Create new project link on the dashboard.

2. 'Then, enter a unique demobook key and a name for this project as demo-book in
the form.

3. To validate this, click on the Set Up button to create the project. The steps are
shown in the following screenshot:

Sort by:| Name -]z Q, search by project name or key - Create new project

Project key* @

| demobook |]

Once you analyze some projects, they will show up here.

Up to 400 characters, All letters, digits, dash, underscore, period

Here is how you can analyse new projects e
Display name* &

Create ject R
| F—

Up to 255 characters
_ 3

Figure 12.14 - SonarQube project creation

As soon as the project is created, the SonarQube assistant proposes that we create a token
(unique key) that will be used for analysis.

To generate and create this token, follow these steps:

1. In the input, type a desired token name.
2. 'Then, validate it by clicking on the Generate button.

3. 'The unique key is then displayed on the screen. This key is our token, and we must
keep it safe. The following screenshot shows the steps for generating the token:

Executing SonarQube in a CI process 389

- . _
Overview Issues Measures Code Activity Administration =

Analyze your project

Analyze your project We initialized your project on SenarQube, now it's up to you to launch analyses!
We initialized your project on SonarQube, now it's up to you to launch analyses!

° Provide a token

° Provide a token

l ci:lszhveuem.'Sezzsfgz P
Generate a token

The token is used to identify you when an analysis is performed. If it has been

|_7 compromised, you can revoke it at any point of time in your user account.
a

The token is used to identify you when an analysis is performed. If it has been
compromised, you can revoke it at any point of time in your user account.

Figure 12.15 - SonarQube token generation

The configuration of SonarQube with our new project is complete. Now, we will configure
our CI pipeline to perform the SonarQube analysis.

Creating a Cl pipeline for SonarQube in Azure Pipelines

To illustrate the integration of a SonarQube analysis into a CI pipeline, we will use
Azure Pipelines, which we looked at in detail in Chapter 7, Continuous Integration and
Continuous Delivery.

The application that we'll use as an example in this section has been developed in Node.js,
which is a simple calculator that contains some methods, including unit test methods.

Note

Note that the purpose of this section is not to discuss the application code, but
rather the pipeline. You can access the application source code athttps://
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAP12/AppDemo.

To use SonarQube in Azure Pipelines, we must install the SonarQube extension
in our Azure DevOps organization from the Visual Studio Marketplace,

which is located at https: //marketplace.visualstudio.com/
items?itemName=SonarSource.sonarqube, as described in the Technical
requirements section of this chapter.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12/AppDemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12/AppDemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP12/AppDemo
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube

390 Static Code Analysis with SonarQube

The following screenshot shows the header and button to install the extension from the
Visual Studio Marketplace:

Azure DevOps > Azure Pipelines > SonarQube

\ SonarQube
\ SonarSource | & 29378 installs | ko (42) | Free

Detect bugs, vulnerabilities and code smells across project branches and pull requests.

.:et it free

Figure 12.16 - SonarQube Azure DevOps extension

Once the extension has been installed, we can configure our CI build.

In Azure Pipelines, we will create a new build definition with the following configuration:

1. Inthe Get Sources tab, select the repository and the branch that contains the source
code of the application, as shown in the following screenshot:

Tasks Variables Triggers Options Retention History i= Summary > Queue

Pipeline

Mpc sipeline Select a source e
== Get sources o —

o /Leamning_DevOps 1 master —
Azure Repos Git GitHub GitHub Enterprise Subversion Bitbucket Cloud ~ Other Git
Server
Agent job 1 +
= Run on agent
(® Authorized using connection: GitHub connection 1~ Change v

Repository * | Manage on GitHub 12

| /Learning_DevOps ‘

Default branch for manual and scheduled builds *

| master ‘

Clean (O

false v

Figure 12.17 — Azure DevOps selected repository
2. 'Then, in the Tasks tab, configure the schedule of the tasks, shown as follows:

Executing SonarQube in a CI process 391

Pipeline
Build pipeline

== Get sources

© mikselkrief/Leaming_DevOps

Agent job 1

= Runon agent

|
\\\\.\
|
[l
\\\\.\
\\\

npm install
npm

Prepare analysis on SonarQ...

Prepare Analysis Configuration

npm build

npm

npm test
npm

Run Code Analysis

Run Code Analysis

Publish Quality Gate Result
Publish Quality Gate Result

3 master

0°:

Display name *

‘ Prepare analysis on SonarQube

SonarQube Server Endpoint *

‘ SonarQube Demo

(D) | Manage

~| O

Choose the way to run the analysis * [0)

. Integrate with MSBuild

© Use standalone scanner

Mode* (D

O Store configuration with my

© Manually provide configuration

Project Key * (D)

O Integrate with Maven or Gradle

Add SonarQube service connection

Connection name SonarQube
Server Url hittps//168.63 @

Token

® Allow all pipelines to use this connection.

‘ demobook

Project Name (D)

‘ demo-book

Project Version (D)

‘ $(Build.BuildNumber)

Sources directory root * @

‘ CHAP10/TsApp2/lib/

Figure 12.18 — Azure Pipelines SonarQube: preparing analysis

Here are the details of the configuration of these tasks:

1.

The Prepare analysis on SonarQube task includes configuring SonarQube with the

following:

* An endpoint service, which is the connection to SonarQube with its URL and
token that we generated previously in the SonarQube configuration

» The key and name of the SonarQube project

= The version number of the analysis

Then, we build and execute the unit tests of the application with npm build and

npm test.

The Run Code Analysis task retrieves the test results, analyzes the TypeScript code
of our application, and sends the data from the analysis to the SonarQube server.

Then, we save, start executing the CI build, and wait for it to finish.

392 Static Code Analysis with SonarQube

The SonarQube dashboard has been updated with the code analysis, as shown in the
following screenshot:

5 demo-book master © July 30, 2019, 1:20

Overview Issues Measures Code Activity Administration =

Quality Gate © (D About This Project

W Notags ~

New code; since 1.2.6
started 9 minutes ago @
25

? e O e Lines of Code

Bugs @ & New Bugs

Reliability Measures

TypeScript Il

started 21 hours ago Project Activity

Security Measures

O G O O e O July 30, 2019

B8 vulnerabilities © 8 Security Hotspots @ 8 New @ New Security
Vulnerabilities Hotspots

Quality Gate: Green (was Red)

July 20, 2019

. Quality Gate: Red (was Green)
10m|n 9 1 O 6 O July 30, 2019

Debt @ & Code Smells & New Debt & New Code Smells m
Show More

Maintainability Measures

Coverage Measures
Quality Gate

0 {Default) Sonar way
O 28.6% — _
Coverage on New Code Quality Profiles

Coverage @ B
(TypeScript) Sonar way

Figure 12.19 - SonarQube dashboard analysis

Here, we can see the measurements of bug numbers, code maintainability, and also code
coverage. By clicking on each of these pieces of data, we can access details of the element.

In this section, we have looked at how to integrate SonarQube analysis into a CI pipeline
that will provide a dashboard, along with the results and reports of the code analysis of
each code commit.

Summary 393

Ssummary

In this chapter, we looked at how to analyze the static code of an application using
SonarQube. This analysis can detect and prevent code syntax problems and vulnerabilities
in the code, and can also indicate the code coverage provided by unit tests.

Then, we discussed in detail the use of SonarLint, which allows developers to check their
code in real time as they write their code.

Finally, we looked at the configuration of SonarQube and its integration into a CI process
to ensure continuous analysis that will be triggered at each code commit of a team
member.

In the next chapter, we will look at some security practices by performing security tests
with the Zed Attack Proxy (ZAP) tool, executing performance tests with Postman, and
launching load tests with Azure DevOps.

Questions
Which language is SonarQube developed in?

1

2. What are the requirements for installing SonarQube?
3. What is the role of SonarQube?
4

What is the name of the tool that allows real-time analysis by developers?

Further reading

If you want to find out more about SonarQube, here is a resource to help you with this:

o SonarQube documentation: https://docs.sonarqube.org/latest/

https://docs.sonarqube.org/latest/

13

Security and
Performance Tests

In Chapter 11, Testing APIs with Postman, and Chapter 12, Static Code Analysis with
SonarQube, we talked about test automation with API tests with Postman and static code
analysis with SonarQube, respectively.

In this chapter, we will discuss how to carry out security and penetration tests on a web
application using the ZAP tool based on the OWASP recommendations. Then, we will add
to our Postman skills so that we can perform performance tests on APIs.

We will be covering the following topics:

» Applying web security and penetration testing with ZAP

« Running performance tests with Postman

396 Security and Performance Tests

Technical requirements

To use ZAP, we need to install the Java Runtime Environment (JRE), which is available at
https://www.oracle.com/technetwork/java/javase/downloads/jre8-
downloads-2133155.html (an Oracle account is required).

In this chapter, we'll talk about Postman, which we discussed in Chapter 11, Testing APIs
with Postman.

Check out the following video to see the Code in Action: https://bit.1ly/3HbOgDO.

Applying web security and penetration testing
with ZAP

Today, application security must be at the heart of companies' concerns. As soon as a
web application (or website) is publicly exposed on the internet, it is a candidate for an
attack by malicious people. In addition, it is important to note that application security
is even more important if it is used to store sensitive data such as bank accounts or your
personal information.

To address this problem, there's Open Web Application Security Project (OWASP)
(https://www.owasp.org/index.php/Main Page), a worldwide organization
that studies application security issues. The goal of this organization is to publicly highlight
the security problems and vulnerabilities that can be encountered in an application system.
In addition to this valuable security information, OWASP provides recommendations,
solutions, and tools for testing and protecting applications.

One of the important and useful projects and documents that's provided by OWASP is the
top 10 application security issues. This document is available at ht tps: //owasp.org/
www-project-top-ten/. The document is very detailed and provides an explanation,
examples, and a solution for each security issue. In this document, we can see that the top
security vulnerability that applications are most vulnerable to is injection vulnerability,
such as SQL injection, which consists of injecting code or requests into an application to
collect, delete, or corrupt data from the application.

At the time of writing, the top 10 OWASP mitigation techniques are as follows:
1. Ongoing risk assessment

2. Use automated as well as manual means for assessments

3. Choose a strong Web Application Firewall (WAF)

https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://bit.ly/3HbOgD0
https://www.owasp.org/index.php/Main_Page
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Applying web security and penetration testing with ZAP 397

4. Ensure that the web development framework and coding practices have
inbuilt security

5. Enforce multi-factor authentication (MFA)
6. Encryptall data

7. Apply all software updates instantly

8. Ensure that the web application is sanitized
9. Have formal awareness initiatives

10. Adhere to OWASP compliance standards

For more details about these mitigation techniques, read the following article: https: //
www . indusface.com/blog/owasp-top-10-mitigation-techniques/.

We also have another known security flaw in this document, which is cross-site scripting
(XSS). This consists of executing HTML or malicious JavaScript code on a user's web
browser.

The challenge for companies is to be able to automate the security tests of their
applications to protect them and take steps as quickly as possible when a flaw is
discovered.

There are many security and penetration testing tools available. A very complete list is
available at https://www.owasp.org/index.php/Appendix A: Testing
Tools. Among them, we learned about SonarQube in the previous chapter, which allows
you to analyze code to detect security vulnerabilities.

Another tool in this list that is very interesting is Zed Attack Proxy (ZAP) (https://
www .owasp.org/index.php/OWASP Zed Attack Proxy Project), which was
developed by the OWASP community.

Let's learn how to use ZAP to perform security tests on our applications.

Using ZAP for security testing

ZAP is a free and open source graphical tool that allows you to scan websites and perform
a multitude of security and penetration tests.

Unlike SonarQube, which also performs security analysis in the application's source code
but does not execute it, ZAP runs the application and performs security tests.

https://www.indusface.com/blog/owasp-top-10-mitigation-techniques/
https://www.indusface.com/blog/owasp-top-10-mitigation-techniques/
https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://www.owasp.org/index.php/Appendix_A:_Testing_Tools
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

398 Security and Performance Tests

When running, ZAP will act as a proxy between the user and the application by scanning
all the URLs of the application, then performing a series of penetration tests on these
different URLs. It is currently one of the most widely used tools in application testing
because, in addition to being free, it provides many very interesting features, such as the
ability to configure Ajax penetration tests, as well as also advanced test configurations. In
addition, it integrates very well with many CI/CD pipeline platforms. Finally, it is possible
to control it using REST APIs. The respective documentation is available at https: //
WwWw . zaproxy.org/docs/api/.

What I propose to do is make a small lab using ZAP on a public demonstration website
that has security holes. As we mentioned in the Technical requirements section, one
prerequisite of using ZAP is to have Java installed on the machine that will perform the
tests. It can be a local machine or a build agent.

We can download ZAP at https://www. zaproxy .org/download/; download the
package that corresponds to your OS.

Then, install ZAP by following the software installation procedures of your OS. Once the
installation is complete, we can open ZAP and access its interface.

The following screenshot shows the default ZAP interface:

W Untitled Session - 20190924-123004 - OWASP ZAP 2.8.0 - O X

File Edit Wiew Analyse Report Tools Import Online Help

[Gandadtiose W CEEH & B EEE ODEE 48 6P Po%ERE 06 e@®

J@sws]+] [&7 oucsten] = Reauest [Response = [
= Welcome to OWASP ZAP
v 5 Contots elicome 10
[E] Default Context ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications
@ sites

Ifyou are new to ZAP then itis bestto start with one of the options below.

| N B e

Automated Scan Manual Explore Learn More

News

X
‘ ZAP 2.8.0 includes an innovative 'Heads Up Display (HUD) ‘

Figure 13.1 - OWASP ZAP tool

We will perform our first piece of security analysis with ZAP by following these steps:

1. In the right-hand panel, click on the Automated Scan button, which will open a
form where we can enter the URL to be scanned.

https://www.zaproxy.org/docs/api/
https://www.zaproxy.org/docs/api/
https://www.zaproxy.org/download/

Applying web security and penetration testing with ZAP 399

2. Inthe URL to attack field, enter the URL of the website to analyze. In our example,
we will enter the URL of a demo site: http://demo.guru99.com/Security/
SEC_V1/.

3. 'Then, to start the analysis, click on the Attack button.

The following screenshot shows the preceding steps visually:

+ Quick Stari =+ Reguest | Response+

<] Automated Scan

This screen allows you to launch an automalad scan against an application - just enter its URL below and press "Altack’

Please be aware that you should only attack applications that you have been specifically been given permission to test

URL to attack: hitp:/idermo.guri99. com/SecuritySEC_V1 n

Use fraditional spider: o)

Use ajax spider. [with |Firefox Headless
[& Mtack || W Stop
Progress: Afta ete - see the Alerts fab for delails of any issues found

Figure 13.2 - OWASP ZAP - Automated Scan
We must wait for the security test analysis of this website to be completed.

4. Assoon as the analysis is completed, we can see what security problems were
encountered in the panel at the bottom left.

5. Finally, clicking on one of the alerts displays the details of the problem and helps us
solve it.

http://demo.guru99.com/Security/SEC_V1/
http://demo.guru99.com/Security/SEC_V1/

400 Security and Performance Tests

The following screenshot shows the analysis results that we have just mentioned:

Q Untitled Session - 20190924-123004 - OWASP ZAP 2.8.0 - a X

File Edit View Analyse Report Tools Import Online Help

(Sandardmode o) (1 S @B 5 & J0E 00 OODODE 48V 0P P ERE o €@
@ [% ouiskstan | = Request | Responses= | + |
sooo EE

> & Co HTTP/1.1 208 OK

Server: Apache
Cache-Control: max-age=66

» Bl ™ nttpidemo. gurugg.com

| [T

<link rel="stylesheet" type="text/css" href="../scripts/commonstyle.css"> e

<i-- Include the JavaScript files --»>
<SCRIPT LANGUAGE="Javascript” “../scripts/validate_login.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" src="../scripts/basic_functions.js"></SCRIPT>
<script language="JavaScript" src="JavaScript/test.js"></script> v

5] istory | @, searen M] outpun | 38 spider |) Active scan | = |
ee /s & [Cookie No HttpOnly Flag T
v 2 Alerts (8) ;Rl; ;Jﬂt:m!emoglm%comnsumncemnnaeump

» P Session ID in URL Rewrite C:"“d ueaw

ence: Medium
» B X Frame-
P X Frame-Options Header Not Set (72) lParameter PHPSESSID
» F Absence of Anti-CSRF Tokens (47)
¥ R Cookie No HitpOnly Flag (2) lovdence: SetCookie: PHPSESSD
[GET: hitp:ifdemo. gurugs.comiagile_ProjectiAgi_V1! e o
[GET: nitp:/ide mo.gurugg. comiinsurancen1index.np wasciD: 13
> P Cross-Domain JavaSeript Source File Inclusion (167) Q)| [source. passie (10010~ Gookie No Htponiy i)

» i Information Disclosure - Debug Error Messages Description:
» R Web Browser XSS Protection Not Enabled (193)
» R X-Content-Type-Options Header Missing (239) || Acookie has been set without the HitpOnly flag, which means thatthe cookie can be accessed by JavaSeript If a malicious Script can be run o this page
then the cookie will be accessible and can be transmitted to another site. fthis is a session cookie then session hijacking may be possible
Other Info:
Solution:
-
Ensure thatthe HiipOniy flag is setfor all cookies. 3
v
[Aers mo 2 e mo CurrentScans £3 0 0 @0) 1 @0 o S0 Ho

Figure 13.3 - OWASP ZAP scan result

With that, we've learned how to use ZAP, a graphical tool that's used to analyze the
security vulnerabilities of a website very quickly.

Now, let's look at the different ways to automate the execution of ZAP.

Ways to automate the execution of ZAP

We can also automate this ZAP analysis by installing it on an agent server of our CI/CD
pipeline and using the zap-c11i tool, which is available at ht tps: //github.com/
Grunny/zap-cli. This is used in the command line and calls the ZAP APIs.

The following screenshot shows using zap-c1li on the command line to analyze our
demo website:

Figure 13.4 - zap-cli scan command line

https://github.com/Grunny/zap-cli
https://github.com/Grunny/zap-cli

Running performance tests with Postman 401

In the preceding execution, two commands are used:

o 'The first, zap-cli active-scan, analyzes the website that was passed as a
command parameter.

o Thesecond, zap-cli report, generates a report of the scan result in
HTML format.

Note

In the preceding commands, we used the - -api -key parameter. To retrieve
your API key value, go to the Tools | Options | API menu in your ZAP tool
instance.

If we use Azure DevOps as a CI/CD pipeline platform, we can use the OWASP Zed
Attack Proxy Scan task of Visual Studio Marketplace, which is available at https: //
marketplace.visualstudio.com/items?itemName=kasunkodagoda.
owasp-zap-scan. If we have an Azure subscription, Azure Pipelines can also run ZAP
in a Docker container, hosted in an Azure Container instance, as explained and detailed at
https://devblogs.microsoft.com/premier-developer/azure-devops-
pipelines-leveraging-owasp-zap-in-the-release-pipeline/.

If we're using Jenkins as a build factory, then look at the following article, which explains
how to integrate and use the ZAP plugin when you're running a job: https://www.
breachlock.com/integrating-owasp-zap-in-devsecops-pipeline/.

We've just learned how to perform security tests on our web applications with ZAP,
which is developed by the OWASP community. We looked at its basic use via its graphical
interface and performed security tests on a demonstration application. Then, we saw that
it is also possible to automate its execution with zap-c11i so that we can integrate it into
a DevOps CI/CD pipeline.

Now, let's learn how to do performance tests with Postman.

Running performance tests with Postman

Among the tests that need to be done to guarantee the quality of our applications and
ensure they are functional, including code analysis and security tests, there are also
performance tests. The purpose of performance testing isn't to detect bugs in applications;
it's to ensure that the application (or API) responds within an acceptable time frame to
provide a good user experience.

https://marketplace.visualstudio.com/items?itemName=kasunkodagoda.owasp-zap-scan
https://marketplace.visualstudio.com/items?itemName=kasunkodagoda.owasp-zap-scan
https://marketplace.visualstudio.com/items?itemName=kasunkodagoda.owasp-zap-scan
https://devblogs.microsoft.com/premier-developer/azure-devops-pipelines-leveraging-owasp-zap-in-the-release-pipeline/
https://devblogs.microsoft.com/premier-developer/azure-devops-pipelines-leveraging-owasp-zap-in-the-release-pipeline/
https://www.breachlock.com/integrating-owasp-zap-in-devsecops-pipeline/
https://www.breachlock.com/integrating-owasp-zap-in-devsecops-pipeline/

402 Security and Performance Tests

The performance of an application is determined by metrics such as the following:

o Itsresponse times
o What resources it uses (CPU, RAM, and network)
o The error rates

o The number of requests per second

Performance tests are divided into several types of tests, such as load tests, stress tests, and
scalability tests.

Many tools are available to perform performance tests. The following article lists the

15 best ones: https://www.softwaretestinghelp.com/performance-
testing-tools-load-testing-tools/. Among the tools we've already seen in
this book, Postman is not a dedicated tool for performance testing, especially since it
focuses mainly on APIs and not on monolithic web applications. However, Postman can
provide a good indication of the performance of our API.

We discussed its usage in detail for API testing in Chapter 11, Testing APIs with Postman.
When you're executing a request that tests an API in a unitary way, Postman provides the
execution time of that API, as shown in the following screenshot:

CET Get a single Emplo... X + ese Local v
DemoBook-Tests / Get a single Employee v eao V=
GET v http://dummy.restapiexample.com/api/v1/employee/{{EmployeelD}}
Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies

Query Params

KEY VALUE DESCRIPTION eoo Bulk Edit
Key Value Description
Body Cookies Headers (20) Test Results @ Status: 200 OK || Time: Gsz{nj‘\s Size: 821B Save Response v
Pretty Raw Preview Visualize JSON v = EVENT TIME = Q
Prepare 8.5ms
tof 1
2 "status": “success”, Socket Initialization 0.49 ms
3 “data” DNS Lookup Cache
1 “idv: 1,
5 " n, owTs : " TCP Handshake Cache
employee_name"”: "Tiger Nixon",
5 “"employee_salary”: 320800, Transfer Start I c:cc:ms
7 “employee age”: 61, Download] 1s02ms
8 "profile_image": ""
9 b Process 0.59 ms
1@ "message”: "Successfully! Record has been fetched.™
11 E Total 670.22 ms |

Figure 13.5 - Postman performance test

https://www.softwaretestinghelp.com/performance-testing-tools-load-testing-tools/
https://www.softwaretestinghelp.com/performance-testing-tools-load-testing-tools/

Running performance tests with Postman 403

In addition, in Postman's Collection Runner, it is possible to execute all the requests of a
collection and indicate the number of iterations; that is, the number of times the runner
will execute the loop tests. This simulates several connections that call the API, and it is
also where the execution time that's rendered by Postman becomes very interesting.

The following screenshot shows the configuration of Postman's Runner with several

iterations in the input parameters:

CET Get a single Emplo... [*] Runner % + oo Local
RUN ORDER Deselect All Select Al Reset | Res
GET Get All Employees herations 1wy
GET Get a single Employee
Delay 0 ms
Data Select File

[] save responses @
Keep variable values @
[:] Run collection without using stored cookies

Save cookies after collection run @

Run DemoBook-Tests

Figure 13.6 — Postman Runner configuration test

404 Security and Performance Tests

The following screenshot shows the results of the runner:

GET Get a single Emplo... [*) DemoBook-Tests X + oo Local v ()

DemoBook-Tests Local, just now Pause

All Tests Passed (0) Failed (0)

Iteration 1

GET Get All Employees hitp://dummy. i i / Get All Employees 2000K 704ms 1.297KB
3
This request does not have any tests. 4
GET Get a single Employee http://c i i1, {i D)} / Get a single Employee 429 Too Many Requests 655ms 1228 KB 5

This request does not have any tests.

Iteration 2

GET Get All Employees http://dummy. i i / Get All Employees 2000K 788ms 1.297KB

This request does not have any tests.

GET Get a single Employee http://c i ifv1 {i D}} |/ Get a single Employee 2000K 758ms 821B 12

This request does not have any tests.

Figure 13.7 - Postman Runner test results

Here, we can see that the runner displays the execution time of each request, which means
we can identify overload problems on an API

Now that we've learned how to perform performance tests with Postman, let's summarize
this chapter.

Summary

In this chapter, we looked at how to use ZAP, a tool that's developed by the OWASP
community to automate the execution of web application security tests. We also saw how
Postman can provide information on API performance.

In the next chapter, we will continue to talk about security and DevSecOps by
learning how to automate infrastructure testing with Inspec, how to protect secrets
with Hashicorp's Vault, and using Secure DevOps Kit for Azure to check the security
compliance of Azure infrastructures.

Questions 405

Questions

Answer the following questions to test your knowledge of this chapter:

1. Is ZAP atool that analyzes the source code of an application?

2. In Postman, what is the metric that allows us to have performance information?

Further reading

To learn more about what was covered in this chapter, take a look at the following
resources:

o Learn Penetration lesting: https://www.packtpub.com/networking-and-
servers/learn-penetration-testing

o Pluralsight videos about OWASP and ZAP: https://www.pluralsight.com/
search?g=owasp

https://www.packtpub.com/networking-and-servers/learn-penetration-testing
https://www.packtpub.com/networking-and-servers/learn-penetration-testing
https://www.pluralsight.com/search?q=owasp
https://www.pluralsight.com/search?q=owasp

Section 5:
Taking DevOps
Further/More on
DevOps

This part explains advanced topics relating to DevOps processes with security integration
in DevOps (DevSecOps), some techniques concerning Blue-Green deployment, and how
to apply DevOps in an open source project.

This section comprises the following chapters:
o Chapter 14, Security in the DevOps Process with DevSecOps
o Chapter 15, Reducing Deployment Downtime
o Chapter 16, DevOps for Open Source Projects
o Chapter 17, DevOps Best Practices

14

Security in the
DevOps Process
with DevSecOps

So far in this book, we have discussed in detail the development-operations (DevOps)
culture as well as the DevOps tools that will facilitate communication and collaboration
between developers and operations people (information technology-operations,

or ITOps).

However, in this union, we have noticed that a very important aspect is often missing,
which is security. Indeed, continuous integration/continuous deployment (CI/CD)
pipelines and infrastructure as code (IaC) allow faster deployment of infrastructure and
applications, but the problem is that to deploy faster, we do not include security teams,
which causes the following:

« Security teams block or slow down deployments and therefore lead to longer
deployment cycles.

o Security problems are detected very late in the infrastructure and in applications.

410 Security in the DevOps Process with DevSecOps

This is why, for some time now, security has been included in the DevOps culture by
becoming a development-security-operations (DevSecOps) culture more broadly. There
is nothing outside the ambit of security. Since we are developing at rapid speeds, it makes
ample sense to make security part of the process rather than outside it.

The DevSecOps culture or approach is, therefore, the union of developers and operations
with the integration of security as early as possible in the implementation and design of
projects. The DevSecOps approach is also the automation of compliance and security
verification processes in CI/CD pipelines, to guarantee constant security and not slow
down application deployment cycles.

Today, the DevOps culture must absolutely integrate security teams but also all security
processes, whether on tools, infrastructure, or applications. This is to provide not only
better quality but also more secure applications.

In this chapter, we'll focus on the DevSecOps approach. First, we'll see how to test the
compliance of an Azure infrastructure using InSpec from Chef. Then, we'll learn how to
protect all infrastructure and application secrets with Vault from HashiCorp.

This chapter will cover the following topics:

o Testing Azure infrastructure compliance with Chef InSpec

+ Keeping sensitive data safe with HashiCorp Vault

Technical requirements

In this chapter, we'll see the use of InSpec, which requires Ruby version 2.4 or later to
be installed on the local machine. To install Ruby according to your specific operating
system (OS), read this documentation: https://www.ruby-lang.org/en/
documentation/installation/.

In the Keeping sensitive data safe with HashiCorp Vault section, we'll discuss the
integration between Vault and Terraform without looking into the details of Terraform, so
I suggest you first read Chapter 2, Provisioning Cloud Infrastructure with Terraform.

The complete source code for this chapter is available here:

https://github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAP14

Check out the following video to see the Code in Action:

https://bit.ly/3In9%b2

https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP14
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP14
https://bit.ly/3In9kb2

Testing Azure infrastructure compliance with Chef InSpec 411

Testing Azure infrastructure compliance with
Chef InSpec

One of the important practices of DevOps culture is [aC, detailed in Chapter 1, The
DevOps Culture and Infrastructure as Code Practices, which consists of coding the
configuration of an infrastructure and then being automatically deployed via CI/CD
pipelines. IaC allows cloud infrastructure to be deployed and provisioned very quickly,
but the question that often arises is: Does the automatically provisioned infrastructure meet
functional compliance and security requirements?

To answer this question, we'll have to write and automate infrastructure tests that will
verify the following:

o The infrastructure deployed corresponds well to the application and enterprise
architecture specifications.

 The company's security policies are properly applied to the infrastructure.

These tests can be written in any scripting language that can interact with our cloud
provider, and if we have an Azure subscription, we can use—for example—the Azure
command-line interface (CLI) or Azure PowerShell commands to code the tests of our
Azure resources. Also, if we use PowerShell, we can use Pester (https://pester.
dev/docs/quick-start/#what-is-pester), which is a library that allows us to
perform PowerShell tests and, combined with Azure PowerShell, allows us to perform
infrastructure compliance tests.

Note

To get an example of how to use Pester to test an Azure infrastructure, I
suggest you read this article: https://dzone.com/articles/
azure-security-audits-with-pester. Also, have alook at this
blog post: https://dev.to/omiossec/unit-testing-in-
powershell-introduction-to-pester-1de7.

The problem with these scripting tools is that they require a lot of code to be written. Also,
these tools are dedicated to a specified cloud provider, and they require learning a new
scripting language.

One of the [aC tools is InSpec (https://www. inspec.io/), which performs

infrastructure compliance tests.

In this section, we'll see in detail the use of InSpec to test the compliance of Azure
infrastructure and, to start with its implementation, I will provide you with an overview
of InSpec.

https://dzone.com/articles/azure-security-audits-with-pester
https://dzone.com/articles/azure-security-audits-with-pester
https://dev.to/omiossec/unit-testing-in-powershell-introduction-to-pester-1de7
https://dev.to/omiossec/unit-testing-in-powershell-introduction-to-pester-1de7
https://www.inspec.io/

412 Security in the DevOps Process with DevSecOps

Overview of InSpec

InSpec is an open source tool written in Ruby that runs on the command line and is
produced by one of the leading DevOps tools, Chef, whose website is https: //www.
chef . io/. It allows users writing declarative-style code to test the compliance of a
system or infrastructure.

To use InSpec, it's not necessary to learn a new scripting language; we should already have
enough knowledge to write the desired state of the infrastructure resources or the system
we want to test.

With InSpec, we can test the compliance of remote machines and data and, since the
latest version, it is also possible to test a cloud infrastructure such as Azure, Amazon Web
Services (AWS), and Google Cloud Platform (GCP).

After this little overview of InSpec, let's look at how to download and install it.

Installing InSpec

We have seen in the Technical requirements section that InSpec needs to have Ruby (>2.4)
installed on our machine.

InSpec can be installed either manually or via a script, as outlined here:

« Manually: This can be done by downloading the package corresponding to our OS
from https://www.chef.io/downloads/tools/inspec.

o With a script: We can install InSpec by executing the commands detailed next in
a terminal.

On Windows, we can download and install InSpec using the Chocolatey package at
https://community.chocolatey.org/packages/inspec with the
following command:

choco install inspec -y
On Linux, use the following script:

curl https://omnitruck.chef.io/install.sh | sudo bash -s -- -P
inspec

The following screenshot shows the installation of InSpec via the Chocolatey package:

https://www.chef.io/
https://www.chef.io/
https://www.chef.io/downloads/tools/inspec
https://community.chocolatey.org/packages/inspec

Testing Azure infrastructure compliance with Chef InSpec 413

By installing you accept licen for the package
Error retrieving packages from e "http:// -packages . talentsoft.com/nuget/TalentsoftChoco":

Le nom distant n'a pas pu étre résolu: ‘srv-rd-packages.talentsoft.com’
Progress: Downloading inspec 4.46.1 . 10e%

4.4 4
inspec package files install completed. P ~ installation steps.
3 ; run

Do you want to r

Downloading inspec 64 bit
from 'https://packages.chef.io/files/stable/inspec/4.46.13/windows/2016/inspec-4.46.13-1-x64.msi’"
Progress: - Completed download of C:\Users\mkrief\AppData\Local\Temp\chocolatey\inspec\4.46.13\inspec-4.46.13-1-x64.msi (127.29 MB).
Download of inspec-4.4 1-x64.msi (127.29 MB) completed.
Hashes match.
Installing inspec...
inspec has been installed.
inspec may be able to be automatically uninstalled.

Chocolatey installed 1/1 packages.
See the log for details (C: logs\chocolatey. log)

Figure 14.1 - InSpec installation on Windows

Note

For more information on the installation of InSpec for all OSes, refer to this
documentation: https://docs.chef.io/inspec/install/.

To verify that InSpec has been correctly installed and is working, we run the inspec
--version command to display its version, and the inspec command to display the
list of available commands.

The following screenshot shows the execution of these commands:

sers\mkrief> inspec
krief> inspec

PATH
act SUBCONMAND
LCONMAND or compliance SUBCOMMAND

inspec
inspec Output shell
i Run all tests at
Manage Habitat with .
be

LOCATION
habitat SUBCOMMAND
help [COMMAND]

i COMMAND

T
plugin SUBCOMMAND
shell

HEwom ek R B B B M B B oE R

inspec

Options
1, [-

[

[output .

[o 2] sable ¢ interaction

[ble loading all plugins that the user installed

L o Allow or disable telemetry

[-—chef-lice _LIC Accept the license for this product and any contained products:

Figure 14.2 - Checking the InSpec version and displaying InSpec options

https://docs.chef.io/inspec/install/

414 Security in the DevOps Process with DevSecOps

Also, as with many of the tools already detailed in this book, InSpec has been integrated
into the Azure Cloud Shell tool suite, as shown in the following screenshot:

Microsoft Azure

Bash v 7

Type "az" to use Azure CLI
Type "help” to learn about Clo

mikael@zure:~$ inspec

Commands :

J/opt/chef-workstation/embedded/1ib/ruby/gems/2.5.8/gems/thor-@.28.3/1ib/thor/shell/basic
inspec archive PATH # archive a profile to tar.gz (default) or zip

inspec artifact SUBCOMMAND # Manage InSpec Artifacts

inspec check PATH # verify all tests at the specified PATH

inspec compliance SUBCOMMAND # Chef Compliance commands

inspec detect # detect the target 05

inspec env # Output shell-appropriate completion configuration
inspec exec LOCATIONS # run all test files at the specified LOCATIONS.
inspec habitat SUBCOMMAND # Manage Habitat with InSpec

Figure 14.3 - InSpec in Azure Cloud Shell

We have just seen the different ways to install InSpec, and we'll now see the configuration
of Azure for InSpec.

Configuring Azure for InSpec

Before writing test cases to test the compliance of our Azure infrastructure, we need to
create an Azure service principal that has read permission on the Azure resources that will
be tested.

To create this Azure service principal, we'll use the same procedure that we already
detailed in the Configuring Terraform for Azure section of Chapter 2, Provisioning Cloud
Infrastructure with Terraform.

Using the Azure CLI tool, we execute the following az c1i command:

az ad sp create-for-rbac -name="<SP name> -role="Reader"
-scopes="/subscriptions/<subscription Id>"

This preceding command requires the following parameters:

o --name is the name of the Azure service principal to be created.

Testing Azure infrastructure compliance with Chef InSpec 415

o --scopes is the identifier (ID) of the subscription (or other scopes) in which
the Azure resources will be present.

o --role is the role name that the service principal will have on the specified
resource scope.

The execution of this preceding command returns the following three pieces of
authentication information relating to the created service principal:

o The client ID
o The client secret

e The tenant ID

Note
For more details on service principals, see the following documentation:
https://docs.microsoft.com/en-us/cli/azure/create-

an-azure-service-principal-azure-cli?view=azure-
cli-latest

We'll see how to use this authentication information when running InSpec, but before it is
executed, we need enough knowledge to write InSpec tests. Let's see how to do this.

Writing InSpec tests

After installing InSpec and configuring authentication for Azure, we can start using
InSpec. To show an example of InSpec tests, we'll write tests that will check that

the Azure infrastructure we provisioned with Terraform in Chapter 2, Provisioning
Cloud Infrastructure with Terraform, is compliant with the specifications of our Azure
infrastructure, which must be composed of the following:

 One resource group named bookRg
o One virtual network (VNet) with one subnet inside it named book - subnet

o One virtual machine (VM) named bookvm

As a first step in writing our InSpec tests, we'll create an InSpec profile file.

https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest

416 Security in the DevOps Process with DevSecOps

Creating an InSpec profile file

To create an InSpec profile file, we'll generate the test directory structure, then modify the
InSpec profile file that was generated.

To perform this manipulation, we create a test folder structure and an InSpec profile that
defines some metadata and the InSpec configuration. To create a structure and an InSpec
profile file, on your machine, go to the directory of your choice and execute the following
command:

inspec init profile azuretests

This command initializes a new profile by creating a new folder, azuretests, that
contains all of the artifacts needed for InSpec tests, with the following:

« Controls (tests)
o Libraries

o A profile file, inspec . yml, with some default metadata

Then, we modify this inspec . yml profile file with some personal metadata and add
the Uniform Resource Locator (URL) link from the InSpec-Azure resource pack to the
sample code, as follows:

name: azuretests
title: InSpec Profile
maintainer: Your name
copyright: Your name
copyright email: you@example.com
license: All Rights Reserved
summary: An InSpec Compliance Profile
version: 0.1.0
inspec_version: '>= 4.6.9'
depends:

- name: inspec-azure

url: https://github.com/inspec/inspec-azure.git

In this code, we have entered some personal information, such as our name, and
information about the license type of this code. Then, finally, in the last part of this file,
we indicated a dependency with the URL of the InSpec-Azure resource library pack.

Testing Azure infrastructure compliance with Chef InSpec 417

In fact, since version 2.2.7 of InSpec, we can use a set of InSpec libraries that use the Azure
API and hence allow us to access all Azure resources. From there, the InSpec team creates
an Azure resource pack that contains a lot of libraries to test a wide range of Azure resources
such as Azure users, Azure Monitor, Azure networking (VNet and subnets), Azure SQL
Server, Azure Virtual Machines (Azure VMs), and many other Azure resources.

Note

For a complete list of available Azure resources, refer to the InSpec
documentation for the InSpec Azure resource pack:

https://www.inspec.io/docs/reference/
resources/#azure-resources

After generating our directories that contain the tests and profile file updates, we'll write
our infrastructure compliance tests.

Writing compliance InSpec tests

To answer our example specification, we'll write tests that will verify our provisioned
infrastructure contains a resource group, VM, and subnet.

All of the tests we'll be drafting are located in the controls folder and are written in a
Ruby file (. rb) with very simple code that's human-readable.

To begin, we'll write a test that checks the existence of the resource group, and for this,
we'll delete the example . rb example file in the controls folder, which is an example
of the tests provided in the test templates, and create a new file named resourcegroup.
rb that contains the following code content:

control 'rg' do

describe azure resource groups do #call the azurerm resource
groups of Azure Resource Pack

its('names') { should include 'bookRg' } #test assert
end

end

418 Security in the DevOps Process with DevSecOps

In this declarative code, the desired state of the resources is described and the following
actions have been taken:

1. Create a control (or test) called test rg.

2. In this control, we'll create a method of the describe type, in which we use the
azure_resource groups library of the Azure resource packs, which allows us
to test the existence of a resource group.

3. Inthis describe method, we write a test assertions that checks whether there is a
bookRg resource group in the Azure subscription.

Then, we'll continue to write our tests for the VM and subnet. To do this, we manually
create a subnet . rb file in the controls directory that contains the following code:

control "subnet" do

describe azure subnet (resource group: 'bookRg', vnet: 'book-
vnet', name: 'book-subnet') do

it { should exist }
its('address prefix') { should eg '10.0.10.0/24' }
end

end

In this code, we use the azurerm_subnet library, which allows us to test the existence
of a subnet in a VNet. In this test, we check that the book - subnet subnet exists in the
book-vnet VNet and that it has the IP range 10.0.10.0.0/24.

Finally, here, we finish with writing the tests that allow us to check our VM with the
following code in the vm. rb file:

control 'vm' do

describe azure virtual machine (resource group: 'bookRg', name:
'bookvm')

do
it { should exist }
its ('properties.location') { should eq 'westeurope'}

its ('properties.hardwareProfile.vmSize') { should eg
'Standard DS1 v2'}

its ('properties.storageProfile.osDisk.osType') { should eq
'Linux' }

}

Testing Azure infrastructure compliance with Chef InSpec

419

end
end

In this code, we use the azurerm virtual machine library and test that the

VM named demovm exists in the bookRg resource group. We also check some of its

properties, such as region, OS type, and the size of the VM.

We have finished writing the InSpec tests that will be used to check the compliance of our

Azure infrastructure, and we'll now see the execution of InSpec with these tests that we

have just written.

Executing InSpec

To execute InSpec, we'll perform the following steps:

1. Well configure the InSpec authentication to Azure; for this, we'll create

environment variables with the values of the Azure service principal information
that we created previously in the Configuring Azure for InSpec section. The four

environment variables and their values are listed here:
* AZURE CLIENT ID with the client ID of the service principal
* AZURE_CLIENT SECRET with the secret client of the service principal

* AZURE_TENANT ID with the tenant ID

* AZURE_SUBSCRIPTION_ID with the ID of the subscription that contains the

resources and whose service principal has reader permissions

Here is an example of how to create these variables in a Linux OS:
export AZURE SUBSCRIPTION ID="<Subscription ID"
export AZURE CLIENT ID="<Client Id>"
export AZURE CLIENT SECRET="<Secret Client>"
export AZURE TENANT ID="<Tenant Id>"

2. 'Then, in a Terminal, we'll place ourselves in the directory containing the profile
file, inspec.yml, and run the inspec vendor . command to download all

dependencies and generate a lock file in the vendor directory.

3. 'Then, execute the following inspec command to check that the syntax of the tests

is correct:

inspec check .

420 Security in the DevOps Process with DevSecOps

The argument to be provided to this command is the path to the directory that
contains the inspec.yml file. Here, in this command, we use . (dot) in the
argument to indicate that the inspec.ym1l file is in the current directory, and the
following screenshot shows the result of the execution of this command:

PS \Learning—DevOps—Second—Edition\CHAPlﬂ\azurete5t5> inspec check
Location

Profile : azuretests

Controls : 3

Timestamp : 2021-12-26T16:21:45+01:00
Valid : true

No errors or warnings

Figure 14.4 - InSpec check profile

4. Finally, we execute InSpec to execute the tests with the inspec exec command,
as follows:

inspec exec . -t azure://

This command takes as an argument the path of the directory that contains the
inspec.yml file (here, it is the dot). We also add the -t option, which takes the
value of the tests to the target—that is, azure.

The following screenshot shows the result of the execution of this command:

\Learning-DevOps-Second-Edition\CHAP14\azuretests> inspec exec . -t azure://
: InSpec Profile (azuretests)
1 08.1.8
: azure://BaTaaceS-Tdaa-U16f-bBeli-2c292b6304e5
nanes is ex

k-subnet
book-subnet add:

Profile: Azure Resource Pack (inspec-azure)
Version: 1.84.
Target: azure://Ba7aace5-THaa-416f-bBeli-2c292b6304e5

No tests executed.

Profile Summary: ul controls, 0 control failures, 0 controls skipped
Test Summary: 7 © failures, 8 skipped

Figure 14.5 — InSpec exec tests

We can see from this result that all of the tests are green and therefore successful, so
the compliance of the infrastructure is very successful.

We have just explained in this section how to write InSpec tests and run them to verify the
compliance of our Azure infrastructure.

InSpec is a very powerful tool; it also allows you to test the configuration of a VM. That's
why I invite you to view the following documentation: https: //www. inspec.io/
docs/.

https://www.inspec.io/docs/
https://www.inspec.io/docs/

Keeping sensitive data safe with HashiCorp Vault 421

We have just seen here the installation of InSpec, then the writing of InSpec tests, and
finally how to use it with its command line to test the compliance of Azure infrastructure.
In the next section, we'll look at another aspect of security with the protection of sensitive
data using the secrets manager, Vault, from HashiCorp.

Keeping sensitive data safe with HashiCorp
Vault

Today, when we talk about security in information systems, the most expected topic is the
protection of sensitive data between different components of the system. This sensitive
data that needs to be protected includes server access passwords, database connections,
application programming interface (API) authentication tokens, and application user
accounts. Indeed, many security attacks occur because this type of data is decrypted
in the source code of applications or in poorly protected files that are exposed to local
workstations. Many known tools can be used to secure this sensitive data, such as these:

« KeyPass (https://keepass.info/)

o LastPass (https://www.lastpass.com/)

 Ansible Vault, the use of which we discussed Chapter 3, Using Ansible for
Configuring IaaS Infrastructure

+ Vault from HashiCorp
Also, cloud providers offer their own secrets protection services such as the following:

o Azure Key Vault: https://azure.microsoft.com/en-us/services/
key-vault/

» Key Management Service (KMS) for Google Cloud Platform: https://cloud.
google.com/kms/

o AWS Secrets Manager for AWS: https://aws.amazon.com/secrets-
manager/?ncl=h ls

Out of all of the tools we have mentioned, we'll look at the use of Vault from HashiCorp,
which is free and open source and can be installed on any type of OS as well as on
Kubernetes.

These are the main features and benefits of Vault:

o Itallows the storage of static secrets as well as dynamic secrets.

« Italso has a system for rotating and revoking secrets.

https://keepass.info/
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/
https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://aws.amazon.com/secrets-manager/?nc1=h_ls
https://aws.amazon.com/secrets-manager/?nc1=h_ls

422 Security in the DevOps Process with DevSecOps

o It allows data to be encrypted and decrypted without having to store it.
o Italso has a web interface that allows the management of secrets.

« It integrates with a multitude of authentication systems.

o All secrets are stored in a single centralized tool.

« It allows you to be independent of your architecture by being accessible with all
major cloud providers, Kubernetes, or even on internal data centers (on-premises).

Note

For more information on Vault features, see the product page at https: //
www.vaultproject.io/docs/what-is-vault/index.html.

With all of these very interesting features, Vault is therefore a tool that I recommend
for any company that wants to protect its sensitive information and integrate its secure
accessibility into a CI/CD pipeline. Indeed, in addition to being very efficient for data
protection, Vault integrates very well in CI/CD pipelines. These pipelines will be able to
use this protected data when provisioning infrastructure and deploying applications.

After an overview of Vault, we'll proceed with the installation of Vault on a local machine
and use it for encrypting and decrypting data. We'll also give an overview of the Vault
user interface (UI), and finally, we'll expose the process of how to retrieve data from Vault
in Terraform.

Installing Vault locally

If you decide to use Vault, it is important to know that it is a tool that is responsible for the
security of your sensitive infrastructure and application data. In practice, Vault is not just
a tool, and before installing it in production, you need to understand its concepts and its
different architectural topologies.

Note

To learn more about Vault architecture topologies, please refer to the
documentation at https://learn.hashicorp.com/vault/
operations/ops-reference-architecture.

The purpose of this chapter is therefore not to go into the details of the concepts and
architecture of Vault but to explain the installation and use of Vault in development mode.
In other words, we'll install Vault on a local workstation to have a small instance that's
used for testing and development.

https://www.vaultproject.io/docs/what-is-vault/index.html
https://www.vaultproject.io/docs/what-is-vault/index.html
https://learn.hashicorp.com/vault/operations/ops-reference-architecture
https://learn.hashicorp.com/vault/operations/ops-reference-architecture

Keeping sensitive data safe with HashiCorp Vault 423

We have already detailed the use of HashiCorp tools in this book with Terraform and
Packer, and similarly, Vault can be installed either manually or via a script, as follows:

« To install Vault manually, the procedure is exactly the same as that of installing
Terraform and Packer, so you need to do the following:

A. Navigate to the download page: https://www.vaultproject.io/
downloads.html.

B. Download the package related to your OS in the folder of your choice.

C. Unzip the package and update the PATH environment variable with its path
to this folder.

« To install Vault automatically, we'll use a script, the code of which depends on
our OS.

For Linux, in a Terminal, run the following script (from https://www.
vaultproject.io/downloads):

curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo
apt-key add -sudo apt-add-repository "deb [arch=amd64] https://
apt.releases.hashicorp.com $(1lsb release -cs) main"sudo apt-get
update && sudo apt-get install vault

This script performs the following actions:

1. It registers to the HashiCorp package registry.
2. Installs the Vault package.

For Windows, to install Vault via a script, we'll use Chocolatey, which is the Windows
software package manager (https://chocolatey.org/), by executing the following
command in a Terminal:

choco install vault -y

This command downloads and installs Vault from Chocolatey.

Apart from these scripts that allow Vault to be installed on a local workstation, HashiCorp
also provides Terraform code that allows you to create a complete Vault infrastructure on
different cloud providers.

https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/downloads
https://www.vaultproject.io/downloads
https://chocolatey.org/

424 Security in the DevOps Process with DevSecOps

Note

This Terraform code is available for Azure at https://github.com/
hashicorp/terraform-azurerm-vault; for AWS, it is available at
https://github.com/hashicorp/terraform-aws-vault;
and for GCP, it is available at ht tps: //github.com/hashicorp/
terraform-google-vault.

For Kubernetes, we can use a Helm chart to install Vault inside a Kubernetes instance
using the following script:

helm repo add hashicorp https://helm.releases.hashicorp.com
kubectl create namespace vault

helm install vault hashicorp/vault --namespace vault
In the preceding script, we perform the following actions:

1. Add the Hashicorp Helm repository locally.
2. Create a vault namespace.

3. Install Vault in the vault namespace using the Helm chart.

For more details about Vault installation on Kubernetes, read the tutorial here:

https://learn.hashicorp.com/tutorials/vault/kubernetes-raft-
deployment-guide?in=vault/kubernetes

After installing Vault, we'll test its installation by running the following command in
the Terminal:

vault --version

This command displays the installed version of Vault. We can also execute the vault
--help command to display a list of available commands.

We have just seen the different ways to install Vault on a local machine or on Kubernetes;
the next step is to start the Vault server.

Starting the Vault server

Vault is a client/server tool that consists of a client component that's used by developers
for applications and a server component that is responsible for protecting data in
remote backends.

https://github.com/hashicorp/terraform-azurerm-vault
https://github.com/hashicorp/terraform-azurerm-vault
https://github.com/hashicorp/terraform-aws-vault
https://github.com/hashicorp/terraform-google-vault
https://github.com/hashicorp/terraform-google-vault
https://learn.hashicorp.com/tutorials/vault/kubernetes-raft-deployment-guide?in=vault/kubernetes
https://learn.hashicorp.com/tutorials/vault/kubernetes-raft-deployment-guide?in=vault/kubernetes

Keeping sensitive data safe with HashiCorp Vault 425

Note

Vault supports a very large number of backends, a list of which is available
here:

https://www.vaultproject.io/docs/configuration/
storage/index.html

After installing Vault locally, we only have access to the client part, and to be able to use
Vault, we'll start the server component.

To start the Vault server component in development mode, we'll execute this command in
a second Terminal:

vault server -dev

This command starts and configures the Vault server with a minimal configuration that
contains an authentication token and a default backend called in-memory, which stores
all secrets data in the memory of the server, as shown in the following screenshot:

mikael@LP-FYLZ2X2:/mnt/c/Users/mkrief$ vault server -dev
==> Vault server configuration:

Api Address: http://127.0.0.1:8200
Cgo: disabled
Cluster Address: https://127.6.0.1:8201
Go Version: gol.17.
Listener 1: tcp (addr: "127.0.0.1:8200", cluster address: "127.0.0.1:8201", max_request_duration: "1m30s", max_request_size: "33554432", tls: "disabled")
Log Level: info
Mlock: supported: true, enabled: false
Recovery Mode: false
Storage: inmem
Version: Vault v1.9.2
Version Sha: f4c6d873e2767c0d6853b5d9FFC77b0d297bFbdf

==> Vault server started! Log data will stream in below:

WARNING! dev mode is enabled! In this mode, Vault runs entirely in-memory
and starts unsealed with a single unseal key. The root token is already
authenticated to the CLI, so you can immediately begin using Vault.

You may need to set the following environment variable:
$ export VAULT_ADDR='http://127.0.0.1:8200"

The unseal key and root token are displayed below in case you want to
seal/unseal the Vault or re-authenticate.

Unseal Key: 6LqjGz@nHV3iukdQjM9BRh8FET/+NjYjoa6URENTZCO=
Root Token: s.0Sr21LOmqxWwy908706pKrcTo

Development mode should NOT be used in production installations!

Figure 14.6 — Vault start -dev mode

Important Consideration

This Terminal must remain open to keep the Vault server running.

Also, since we are in development mode and the backend storage is just in memory, as
soon as the Vault server stops, all of the secret data is deleted from the memory.

https://www.vaultproject.io/docs/configuration/storage/index.html
https://www.vaultproject.io/docs/configuration/storage/index.html

426 Security in the DevOps Process with DevSecOps

Then, as indicated during this execution, we'll export the VAULT ADDR environment
variable with this command in another Terminal:

export VAULT ADDR='http://127.0.0.1:8200"
Finally, to check the execution status of the Vault server, we execute the following command:
vault status

Here is the command output, which displays the properties of the Vault server:

root@mkrief:/home/mikaelkrief# vault status
Key

Seal Type shamir

Initialized true

Sealed false

Total Shares 1

Threshold 1

Version 1.2.1

Cluster Name vault-cluster-9e7d6efd

Cluster ID 82bfd424-73ce-9¢c3d-1dd1l-dae6d88bbe04
HA Enabled false

Figure 14.7 — Vault status

Note

To learn more about the Vault server started in development mode, read
the documentation at https://www.vaultproject.io/docs/
concepts/dev-server.html.

Now that Vault is installed and the server is started, we'll see how to write data to Vault to
protect it, and read that data so that it can be used from a third-party application.

Writing secrets to Vault

When you want to protect sensitive data that will be used by an application or
infrastructure resources, the first step is to store this data in the secrets data manager that
has been chosen by the company. We'll see in practice the steps for writing data to Vault.

To protect data in Vault, we go to a Terminal and execute the following command:

vault kv put secret/vmadmin vmpassword=adminl23*

https://www.vaultproject.io/docs/concepts/dev-server.html
https://www.vaultproject.io/docs/concepts/dev-server.html

Keeping sensitive data safe with HashiCorp Vault 427

The following screenshot shows its execution:

root@mkrief:/home/mikaelkrief# vault kv put secret/vmadmin vmpassword=adminl23*
Key

created_time 2019-08-13T13:56:14.5200652Z

deletion_time n/a
destroyed false
version 1

Figure 14.8 - Vault put secret with vault kv put command line

The command, with the put operation, creates new secret data in memory with the title
vmadmin of the key-value type, which in this example is the admin account of a VM,
in the secret/ path.

In Vault, all protected data is stored in a path that corresponds to an organizational
location in Vault. The default path for Vault is secret/, and it is possible to create
custom paths that will allow better management of secret rights and better organization by
domain, topic, or application.

In terms of secrets stored in Vault, one of their advantages is that it is possible to store
multiple data in the same secret; for example, we'll update the secret data that we have
created with another secret, which is the login admin of the VM.

For this, we'll execute the following command that adds another key-value secret in the
same Vault data:

vault kv put secret/vmadmin vmpassword=adminl23*
vmadmin=bookadmin

As we can see in this execution, we used exactly the same command with the same secret,
and we added new key-value data—that is, vmadmin.

Note

For more information on this kv put command, read the documentation at
https://www.vaultproject.io/docs/commands/kv/put.
html.

We learned how to use commands to create a secret in Vault and the various uses of
secrets, and we'll now have a look at the command to read this secret in order to use it
inside an application or in infrastructure resources.

https://www.vaultproject.io/docs/commands/kv/put.html
https://www.vaultproject.io/docs/commands/kv/put.html

428 Security in the DevOps Process with DevSecOps

Reading secrets in Vault

Once we have created secrets in Vault, we'll have to read them to use them in our
applications or infrastructure scripts.

To read a key that is stored in Vault, we go to a Terminal to execute this command:

vault kv get secret/vmadmin

In this command, we use the kv operation with the get operator, and we indicate in the

parameter the complete path of the key to get the protected value within our example,
secret/vmadmin.

The following screenshot shows the command execution, as well as its output:

root@mkrief:/home/mikaelkrief# vault kv get secret/vmadmin

Key

created_time 2019-08-13T14:09:20.4661459Z
deletion_time n/a

destroyed false
version 2

vmadmin bookadmin
vmpassword adminl23*

Figure 14.9 - Vault get secret with vault kv get command line
What we notice in the output of this command is the following:
o The version number of the secret here is 2 because we executed the kv put
command twice, so the version number was incremented at each execution.
o There are two key-value data items that we protected in the secret in the previous

Writing secrets to Vault section.

If you want to access the data stored in this secret but from an earlier version, you can

execute the same command by optionally specifying the desired version number, as in
this example:

vault kv get -version=1 secret/vmadmin

Keeping sensitive data safe with HashiCorp Vault 429

The following screenshot shows its execution:

root@mkrief:/home/mikaelkrief# vault kv get/-version=1| secret/vmadmin
Metadata ======

created_time 2019-08-13T13:56:14.52006522Z
deletion_time n/a
destroyed false

version

adminl23*
root@mkrief: /home/mikaelkrief# I

Figure 14.10 - Vault get secret by its version

We can see in this output, in the Data section, version 1 of the key-value data we had
during the first execution of the kv put command.

Note

For more information on the kv get command, read the documentation at
https://www.vaultproject.io/docs/commands/kv/get.
html.

We have just seen the use of the kv get Vault command to retrieve all or specific
versions of the values of a secret; we'll now briefly see how to use the Vault UI web
interface for better management of secrets.

Using the Vault Ul web interface

One of the interesting features of Vault is that, apart from the client-side tool that allows
you to perform all operations on the Vault server, Vault has a UI web interface that allows
you to manage secrets, but more visually and graphically.

To open and use the Vault web interface to visualize the secrets that we have created with
the client tool, we must follow these steps:

1. Inabrowser, enter the URL provided when starting the server—that is,
http://127.0.0.1:8200/ui, which is the default local Vault URL.

https://www.vaultproject.io/docs/commands/kv/get.html
https://www.vaultproject.io/docs/commands/kv/get.html

430 Security in the DevOps Process with DevSecOps

2. In the authentication form, enter the token that was provided in the Terminal in the
root token information, as shown in the following screenshot:

root@mkrief: /home/mikaelkrief# vault server -dev
Vault server configuration:

Api Address: h ://127.0.0.1:8200
Cgo: disabled
Cluster Address: https://127.0.0.1:8201
Listener 1: tcp (addr: "127.0.0.1:8200", cluster address:
Log Level: info
Mlock: supported: true, enabled: f:

$ export VAULT_ADDR='http://127.0.0.1:8200

The unseal key and root token are displayed below in case you want to
seal/unseal the Vault or re-authenticate.

Unseal Key: fh7vj+J8LHHXr+AtTva4DU2Ru4kcPtqQuM9jKBoO1BA=

Root Token: s.6MGUVmHlbnhD36aWf@Fb9oR4 ————

Development mode should NOT be used in production installations!

Figure 14.11 - Vault getting the root token

3. Click on the Sign In button to authenticate, as illustrated here:

Sign in to Vault

Method

Token ‘:I'

Token

Figure 14.12 - Vault UI sign-in

<>

4. The home of the interface displays a list of secret paths, called Secrets Engines,
containing secrets that have been stored, as illustrated in the following screenshot:

Keeping sensitive data safe with HashiCorp Vault 431

' Secrets Access Policies Tools

Secrets Engines

cubbyhole/

cubbyhole_331cccfd

Figure 14.13 - Vault UI Secrets Engines

By clicking on each secret engine, you can see a list of secrets that have been saved.
The following screenshot shows the secret engine page, which displays the secret we
created on the command line in the previous section:

secrets secret

o= SECI'Et Version 2

Secrets Configuration

| Q, Filter secrets ‘

) vmadmin <

Figure 14.14 — Vault UI secret

432 Security in the DevOps Process with DevSecOps

6. By clicking on a specific secret, you can access a list of data that we have protected,
with the possibility of viewing the values of each key in cleartext. We can also
display the history of the content of a secret by selecting the desired version in the
History drop-down menu, as illustrated in the following screenshot:

secret ¢ vmadmin

vmadmin
(I JSON Version 2 History - Delete
Key Value View version history
vmadmin 2 @ | bookadmin VERSIONS
Version 2 (@)
vmpassword ¢t & SEEEEEEEEEEEE
Version 1

Figure 14.15 - Vault UL reading secrets' details

The Vault web interface also allows you to perform all management operations on secrets
and other Vault components.

Note

If you want to know more about this web interface, read this article:

https://www.hashicorp.com/resources/vault-oss-ui-
introduction

We have seen that the Vault web interface is a very good alternative to the client tool
that allows you to view and manage Vault elements. After this overview of Vault and
its operations, I propose a small Vault use case that shows you how to get secrets in
Terraform code.

Getting Vault secrets in Terraform

As we have already seen in Chapter 2, Provisioning Cloud Infrastructure with Terraform, it
is very important to protect the infrastructure configuration information that we write in
Terraform code. One way to protect this sensitive data is to store it in a secrets manager
such as Vault and recover it directly with Terraform dynamically.

https://www.hashicorp.com/resources/vault-oss-ui-introduction
https://www.hashicorp.com/resources/vault-oss-ui-introduction

Keeping sensitive data safe with HashiCorp Vault 433

Here is an example of Terraform code that allows you to retrieve the password of a VM
that you want to provision from Vault. This Terraform code example is composed of three
blocks, which are detailed as follows:

1. First, we use the Vault provider for configuring the Vault URL by executing the
following code:

provider "vault" ({

address = "http://127.0.0.1:8200" #Local Vault Url
}
The Vault provider is configured with the Vault server configuration and its
authentication.

In our case, we configure the Vault server URL in the Terraform code, and for
the authentication of a token, we'll use an environment variable when running
Terraform after an explanation of the code.

Note

For more details on the Terraform Vault provider and its configuration, see the
following documentation:

https://www.terraform.io/docs/providers/vault/
index.html

2. 'Then, we add the Terraform data block, vault generic secret, which is
used for retrieving a secret from a Vault server. The code is illustrated in the
following snippet:

data "vault generic_ secret" "vmadmin account" {

path = "secret/vmadmin"

}

This data block allows us to retrieve (in read-only mode) the content of a secret
stored in Vault. Here, we ask Terraform to retrieve the secret that is in the secret/
vmadmin Vault path that we created earlier in this section.

Note

For more details on vault generic secret data and its configuration,
see the following documentation:

https://www.terraform.io/docs/providers/vault/d/
generic_ secret.html

https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/providers/vault/d/generic_secret.html
https://www.terraform.io/docs/providers/vault/d/generic_secret.html

434 Security in the DevOps Process with DevSecOps

3. Finally, we add an output block to use the decrypted value of the secret, as follows:

output "vmpassword" {
value = "${data.vault generic secret.vmadmin account.
data ["vmpassword"] }"

sensitive = true

}

This block provides an example of the exploitation of the secret.

Thedata.vault generic secret.vmadmin account.data["vmpassword"]
expression is used to get the secret returned by the previously used data block. In the
data array, we add the name of only those keys for which we need the encrypted values
to be recovered. Also, this output is considered sensitive so that Terraform does not display
its value in plaintext when it is executed.

Note

The complete Terraform source code is also available here:
https://github.com/PacktPublishing/Learning-
DevOps-Second-Edition/blob/main/CHAP14 /vault/
terraform usevault/main.tf

We have finished writing the Terraform code; we'll now quickly execute it to see the
recovery of the secret.

Note

For the execution of the code, which we have already detailed in Chapter
2, Provisioning Cloud Infrastructure with Terraform, we'll only quote the
commands without further detailing them in this section.

To execute Terraform, we go in a Terminal to the folder that contains the Terraform code,
and then we proceed in this order:

1. Export the VAULT TOKEN environment variable with the value of the Vault token.
In our development mode case, this token is provided at the start of the Vault server.

The following command shows the export of this environment variable on a
Linux OS:

export VAULT TOKEN=XXXXXXXXXXXX

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP14/vault/terraform_usevault/main.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP14/vault/terraform_usevault/main.tf
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP14/vault/terraform_usevault/main.tf

Keeping sensitive data safe with HashiCorp Vault 435

2. 'Then, we'll execute Terraform with these commands:

terraform init
terraform plan

terraform apply

Here is a quick summary of the details of these commands:

= The terraform init command initializes the context and downloads all
necessary providers.

» The terraform plan command displays a preview of all changes that will be
applied by Terraform.

» The terraform apply command applies all changes on the infrastructure and
displays the output values.

Note

To learn all the details of the main Terraform commands and the Terraform
life cycle, read Chapter 2 of this book, Provisioning Cloud Infrastructure with
Terraform.

The following screenshot shows the execution of the apply command:

PS Learning-DevOps—Second-Edition\CHAP1U\vault\terraform_usevault> terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

Terraform will perform the following actions:
Plan: @ to add, @ to change, @ to destroy.

Changes to Outputs:
+ vmpassword = (sensitive value)

Do you want to perform these actions?
Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: yes

Apply complete! Resources: @ added, © changed, @ destroyed.

Qutputs:

vmpassword = <sensitive>

Figure 14.16 - Terraform sensitive output

436 Security in the DevOps Process with DevSecOps

We can see that the value in the Terraform output named vmpassword is not
displayed in clear text in the Terminal.

3. Finally, we display the Terraform output value in JavaScript Object Notation
(JSON) format with the terraform output command and the -json option,
as follows:

Learning—DevOps—Second-Edition\CHAP14\vault\terraform_usevault> terraform output -json

"vmpassword": {
"sensitive": true,

"type": "string",
"value": "adminl23*"

Figure 14.17 - Terraform output command in JSON format

We see that Terraform has displayed the value of the key that was in the secret, which we
had inserted in Vault. This value can now be used for any sensitive data that should not be
stored in Terraform code, such as VM passwords.

However, Be Careful

We have protected our Terraform code by outsourcing all sensitive data to

a secrets manager, but it should not be forgotten that Terraform stores all
information—including data and output information—in the Terraform state
file. It is therefore very important to protect it by storing the Terraform state
file in a protected remote backend, as we saw in the Protecting the state file in
a remote backend section of Chapter 2, Provisioning Cloud Infrastructure with
Terraform.

In this section, we have studied the use of HashiCorp's Vault, which is a secret data
manager. We have seen how the installation on different OSes can be done manually and
automatically. We used its command lines to protect and read data that we have protected
inside. Then, we discussed how to manage secrets in Vault using its web interface. Finally,
we wrote and executed Terraform code that uses the Vault provider and allows us to
retrieve secrets that we stored in a Vault server.

Summary

This chapter is dedicated to integrating security into DevOps practices. We presented
three tools to verify and secure your data and cloud infrastructure. We discussed how to
check the compliance of an Azure infrastructure using InSpec from Chef.

To do this and check infrastructure compliance, we installed InSpec and then detailed
the writing of InSpec tests. We used its command lines to verify the compliance of Azure
infrastructure.

Questions 437

In the last section, we saw how to protect sensitive data with Vault from HashiCorp. In
this section, we looked at data encryption and decryption in Vault and wrote Terraform
code that will dynamically retrieve the secrets stored in Vault.

In the next chapter, we'll present the concept of blue-green deployment with its
patterns for reducing deployment downtime. Then, we'll learn how to implement it in an
application as well as in the deployment of Azure infrastructure.

Questions
1. What is the role of InSpec?

2. What is the name of the package manager that allows you to download InSpec via
the command line?

Which InSpec command allows you to execute InSpec tests?
Who is the publisher of Vault?
Which command starts Vault in development mode?

When Vault is installed locally, can it be used for production?

N o e Ww

In local mode, where is Vault's encrypted data stored?

Further reading

If you want to know more about DevSecOps with InSpec, Vault, and Secure DevOps Kit
for Azure (AzSK), here are some resources:

« InSpec documentation: https://www.inspec.io/
» HashiCorp Vault documentation: https://www.vaultproject.io/docs/

o Learn about HashiCorp Vault: https://learn.hashicorp.com/vault

https://www.inspec.io/
https://www.vaultproject.io/docs/
https://learn.hashicorp.com/vault

15

Reducing
Deployment
Downtime

So far in this book, we have discussed DevOps practices such as Infrastructure as Code
(IaC), continuous integration/continuous deployment (CI/CD) pipelines, and the
automation of different types of tests.

In Chapter 1, The DevOps Culture and Infrastructure as Code Practices, we saw that these
DevOps practices will improve the quality of applications and thus improve the financial
gain of a company. We will now go deeper into DevOps practices by looking at how to
ensure the continuous availability of your applications even during your deployments,
and how to deliver new versions of these applications more frequently in production.

Often, what we see is that deployments require your applications to be interrupted
by—for example—infrastructure changes or service shutdowns. Moreover, what we also
see is that companies are still reluctant to deliver more frequently in production. They are
not equipped to test the application in the production environment, or they are waiting
for other dependencies.

440 Reducing Deployment Downtime

In this chapter, we will look at several practices that will help you improve application
delivery processes. We'll start with a way to reduce the downtime of your infrastructure
and applications during Terraform deployments. Then, we will discuss the concept and
patterns of blue-green deployment and how to configure it with some Azure resources.
Finally, we will present the details of implementing a feature flag in your application,
which will allow you to modify the operation of an application without having to redeploy
it in production.

You will also learn how to configure Terraform code to reduce application downtime.
You'll be able to configure Azure resources with blue-green deployment and implement
feature flags in your applications with either an open source component or the
LaunchDarkly platform.

In this chapter, we will cover the following topics:

« Reducing deployment downtime with Terraform

« Understanding blue-green deployment concepts and patterns
« Applying blue-green deployments on Azure

« Introducing feature flags

« Using an open source framework for feature flags

« Using the LaunchDarkly solution

Technical requirements

In order to understand the Terraform concepts that will be presented in this chapter, you
need to have read Chapter 2, Provisioning Cloud Infrastructure with Terraform.

We will look at an example of how to implement blue-green deployment in Azure. If
you don't have an Azure subscription, you can create a free Azure account here:
https://azure.microsoft.com/en-gb/free/.

Then, we will look at an example of how to use feature flags in an ASPNET Core
application. To use our example, you will need to install the NET Core software
development kit (SDK), which can be downloaded from https://dotnet.
microsoft.com/download.

For code editing, we used the free Visual Studio Code (VS Code) editor, which is
available for download here: https://code.visualstudio.com/.

The complete source code for this chapter can be found at https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP1S.

https://azure.microsoft.com/en-gb/free/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15

Reducing deployment downtime with Terraform 441

Check out the following video to see the Code in Action:

https://bit.ly/3hcvrVH

Reducing deployment downtime with
Terraform

In Chapter 2, Provisioning Cloud Infrastructure with Terraform, we detailed the use of
Terraform by looking at its commands and life cycle and put it into practice with an
implementation in Azure.

One of the problems with Terraform is that, depending on the infrastructure changes
that need to be implemented, Terraform may automatically destroy and rebuild certain
resources.

To fully understand this behavior, let's look at the output of this following Terraform
execution, which provisioned an Azure Web App in Azure and has been modified with a
name change:

X Windows Powershell - o x
PS D:\Repos\Learning_DevOps\CHAP13\terraform_webapp> terraform apply

azurerm_resource_group.rg-app: Refreshing state... [id=/subscriptions

azurerm_app_service_plan.serviceplan-app: Refreshing state... [id=/su s/rgApp/providers/Microsoft
.Web/serverfarms/planApp]

azurerm_app_service.webapp: Refreshing state... [id=/subscriptions/ga ers/Microsoft.web/sites
ebAppBook]

azurerm_app_service_slot.test: Refreshing state... [id=/subscriptions viders/Microsoft.web/sites/
MyWebAppBook/s1ots/StagedGreen]

An execution plan has been generated and is_shown below.
Resource actions are indicated with the following symbols:
/- destroy and then create replacement

/ create replacement and then destroy

Terraform will perform the following actions:
azurerm_app_service.webapp must be
resource rerm_app_service" "webapp” {
app_service_plan_i " /subscriptions/8a7aace5-74aa-416f-b8e4-2c292b6304e5/resourceGroups/rgapp/providers/Microsoft. web/serverfarms/planapp

app_settings
"WEBS ITE_RUN_FROM_PACKAGE 0"

~ client_affinity_enabled rue -> (known after apply)
client_cert_enabled

alse
~ default_site_hostname ‘mywebappbook.azurewebsites.net” -> (known after apply)
enabled rue
https_only

1se
= /subscriptions/8a7aace5-74aa-416f-b8e4-2c292b6304e5/resourceGroups/rgApp/providers/Microsoft.web/sites/MywWebAppBook™
-> (known after apply)

Tocation westeurope”
~ name

~ outbound_ip_addresses 52. . 33.131.224,52.233.128.247,52.233.129.243" -> (known after apply)

~_possible_outbound_ip_addresses = . . .233.135.180, 33.131.224,52.233.128.247,52.233.129.243,52.233.130.50,52.233.135. 227
ter apply)

resource_group_name
~ sw‘tefcredentia'l =

password = "Mn2GNkxvps7nRDr07hBHVt1BbWSrNUCVXg6UTtAZWSGETbPCpHxohizK1Fr4™
username = "$MyWebAppBook"

3,
1 -> (known after apply)
~ Source_control =

branch

"master™
repo_url "

1 ->" (known after apply)
s

~ tag = {} -> (known after apply)

Figure 15.1 - Terraform downtime

Here, we can see that Terraform will destroy the web app and then rebuild it with the new
name. Although destruction and reconstruction are done automatically, while Terraform
is destroying and rebuilding the web app, the application will be inaccessible

to users.

https://bit.ly/3hcvrVH

442 Reducing Deployment Downtime

To solve this problem of downtime, we can add the Terraform create before
destroy option, as follows:

resource "azurerm app service" "webapp" {

name = "MyWebAppBookl" #new name

location = "West Europe"

resource group name = "${azurerm resource group.rg-app.
name } "

app service plan id = "${azurerm app service plan.

serviceplan-app.id}"
app settings = {
WEBSITE RUN FROM PACKAGE = var.package zip url"

}

lifecycle { create before destroy = true}

}

By adding this option, Terraform will do the following:

1. First, Terraform creates a new web app with a new name.

2. During the provisioning of the new web app, it uses the Uniform Resource
Locator (URL) for the application package in ZIP format that's provided in the
app_settings property. Use WEBSITE RUN_ FROM PACKAGE to launch the
application.

3. 'Then, Terraform will destroy the old web app.

Using the Terraform create before destroy option will ensure the viability of
our applications during deployments.

However, be careful, as this option will only be useful if the new resource that's being
created allows us to have the application running very quickly at the same time as it's
provisioning so that a service interruption doesn't occur.

In our example of a web app, this worked when we used the WEBSITE RUN FROM
PACKAGE property of the web app. For a virtual machine (VM), we can use a VM image
created by Packer. As we saw in Chapter 4, Optimizing Infrastructure Deployment with
Packer, Packer contains information regarding the VM applications that have already been
updated inside the VM image.

Understanding blue-green deployment concepts and patterns 443

Note

For more information on the create before destroy option,
please view the following Terraform documentation: https://www.
terraform.io/language/meta-arguments/lifecycle.

We have just seen that, with Terraform and IaC, it is possible to reduce downtime during
deployments in the case of resource changes.

We will now look at the concepts and patterns of a practice called blue-green
deployment, which allows us to deploy and test an application in production with great
confidence.

Understanding blue-green deployment
concepts and patterns

Blue-green deployment is a practice that allows us to deploy a new version of an
application in production without impacting the current version of the application. In this
approach, the production architecture must be composed of two identical environments;
one environment is known as the blue environment while the other is known as the green
environment.

The element that allows routing from one environment to another is a router—that is, a
load balancer.

The following diagram shows a simplified schematic of a blue-green architecture:

Current version (version N)

Next version (version N+1)

Figure 15.2 - Blue-green architecture

As we can see, there are two identical environments—the environment called blue, which
is the current version of the application, and the environment called green, which is

the new version or the next version of the application. We can also see a router, which
redirects users' requests either to the blue environment or the green environment.

https://www.terraform.io/language/meta-arguments/lifecycle
https://www.terraform.io/language/meta-arguments/lifecycle

444 Reducing Deployment Downtime

Now that we've introduced the principle of blue-green deployment, we will look at how to
implement it in practice during deployment.

Using blue-green deployment to improve the
production environment

The basic usage pattern of blue-green deployment goes like this: when we're deploying
new versions of the application, the application is deployed in the blue environment
(version N) and the router is configured in this environment.

When deploying the next version (version N+1), the application will be deployed in the
green environment, and the router is configured in this environment.

The blue environment becomes unused and idle until the deployment of version N+2. It
also will be used in the case of rapid rollback to version N.

This practice of blue-green deployment can also be declined on several patterns—that is,
the canary release and dark launch patterns. Let's discuss the implementation of each of
these patterns in detail. We will start with the canary release pattern.

Understanding the canary release pattern

The canary release technique is very similar to blue-green deployment. The new version
of the application is deployed in the green environment, but only for a small, restricted
group of users who will test the application in real production conditions.

This practice is done by configuring the router (or load balancer) to be redirected to both
environments. On this router, we apply redirection restrictions of a user group so that it
can only be redirected to the green environment, which contains the new version.

Here is a sample diagram of the canary release pattern:

P— 90% ~
7

A AN -

7N -) i
~ 7 Current version (version N}
[|

| -

batfg nger /-

- , y .
4

Users T 10%-.

Next version (version N+1)

Figure 15.3 - Blue-green canary release

Understanding blue-green deployment concepts and patterns 445

In the preceding diagram, the router redirects 90% of users to the blue environment and
10% of users to the green environment, which contains the new version of the application.

Then, once the tests have been performed by this user group, the router can be fully
configured in the green environment, thus leaving the blue environment free for testing
the next version (N+2).

As shown in the following diagram, the router is configured to redirect all users to the
green environment:

e
£ A Mext version (version N+1)
. balancer
\
b
. =

Users R

Green

Current version (version N)

Figure 15.4 - Blue-green architecture with router

This deployment technique thus makes it possible to deploy and test the application in the
real production environment without having to impact all users.

We will look at a practical implementation of this blue-green deployment pattern in Azure
later in this chapter, in the Applying blue-green deployments on Azure section. But before
that, let's look at another blue-green deployment pattern— the dark launch pattern.

Exploring the dark launch pattern

The dark launch pattern is another practice related to blue-green deployment that consists
of deploying new features in hidden or disabled mode (so that they're inaccessible) into
the production environment. Then, when we want to have access to these features in the
deployed application, we can activate them as we go along without having to redeploy the
application.

446 Reducing Deployment Downtime

Unlike the canary release pattern, the dark launch pattern is not a blue-green deployment
that depends on the infrastructure but is implemented in the application code. To set

up the dark launch pattern, it is necessary to encapsulate the code of each feature of the
application in elements called feature flags (or feature toggles), which will be used to
enable or disable these features remotely.

We will look at the implementation and use of feature flags with an open source
framework and a cloud platform in the last few sections of this chapter.

In this section, we have presented the practice of blue-green deployment, along with

its concepts and patterns, such as the canary release and dark launch patterns. We have
discussed that this practice requires changes to be made in the production infrastructure
since it's composed of two instances of the infrastructure—one blue and one green—as
well as a router that redirects users' requests.

Now that we've talked about blue-green deployment patterns, we will look at how to
implement one in practice in an Azure cloud infrastructure.

Applying blue-green deployments on Azure

Now that we've looked at blue-green deployment, we'll look at how to apply it to an Azure
infrastructure using two types of components—App Service slots and Azure Traffic
Manager.

Let's start by looking at the most basic component—App Service slots.

Using App Service with slots

If we have an Azure subscription and want to use blue-green deployment without
investing a lot of effort, we can use App Service slots (Azure Web Apps or Azure
Functions).

In Azure App Services such as a Web App, we can create a second instance of our Web
App by creating a slot for it (up to 20 slots, depending on the App Service plan). This slot
is a secondary web app but is attached to our main web app.

In other words, the main web app represents the blue environment, and the slot represents
the green environment.

Applying blue-green deployments on Azure 447

To use this web app and its slot as a blue-green architecture, we will perform the following
configuration steps:

1. Once the web app slot has been created, the new version of the application will
be deployed in this slot and we can assign a percentage of traffic, as shown in the
following screenshot:

« Hssve X Discad o AddSiot % swap] logs T Refresh

Overview

@
=
@ Activity log 4. Deployment Slots
. Access control (1AM) Ny
€ Tags Deployment slots are live apps with their own hostnames. App content and configurations elements can be swapped between two deployment slots, including the
production slot.
2 Diagnose and solve problems
© Security NAME sTaTUs APP SERVICE PLAN TRAFFIC %
Events (preview) appdemobock Running ASP-demobookFF-b531 90

appdemobook-appdemobook-Green Running ASP-demobookFF-b531 h

Deployment

Quickstart

Deployment siots

@ Deployment Center

Figure 15.5 - Azure deployment slots
Here, we've assigned 10% of traffic to the web app slot, which includes changes to
the new version of the application.
2. Assoon as the new version of the application has been tested on the slot, we

can swap the slot to the main web app (the blue environment), as shown in the
following screenshot:

Dashboard > appdemobook Swap e X
== appdemobook | Deployment slots
App Senice ® source
£ Search (Ctri+/) « Save Disca Add Slot Swa [logs C Refresh appdemobook-appdemobaok-Green
® Overview © Target
.=l=l appdemobook
@ Activity log "+ Deployment Slots
Ay Access contrl (AM) @ swap vith preview can only be used with sites that have deployment slot settings enabled
® Tags Deployment slots are live apps with their own hostnames. App cantent and con Perform swap with preview
production slot.
/2 Diagnose and solve problems Config Changes
@ Security NAME STATUS This is a summary of the final set of configuration changes on the source and target deployment

. slots after the swap has completed.
Events (preview) appdemobook Running

® Source Changes ® Target Changes

Deployment appdemobook-appdemobook-Green Running

SETTING TYPE oLD VALUE NEW VALUE

Quickstart

PhpVersion General 56
= Deployment slots

WEBSITE_NODE DEF... AppSetting 691 Not set
@ Deployment Center

APPINSIGHTS_INSTR... AppSetting Not set 965(770b-c349-4095...
Settings N APPLICATIONINSIGH... AppSetting Not set InstrumentationKey=...
Il Configuration ApplicationinsightsA... AppSetting Not set ~2
& Authentication XDT_MicrosoftApplic... AppSetting Not set default
@ Application Insights

Identity =
Figure 15.6 - Azure swap slots

With this swap, the web app takes the content of its slot, and vice versa.

448 Reducing Deployment Downtime

The web app now contains the new version (N+1) of the application, and the slot contains
the older version (N). In case there is an urgent problem, we can recover the previous
version of the application by redoing a swap.

Note

To learn more about configuring and using Web App slots, you can read the
following documentation: https://docs.microsoft.com/en-us/
azure/app-service/deploy-staging-slots.

This is exactly what we saw in the canary release pattern, which allows us to distribute
production traffic for a group of users as well as route the application to the environment
that has the N+1 version of the application.

Now that we've discussed the use of slots, we'll take a look at the Azure Traffic Manager
component, which also allows us to implement blue-green deployment.

Using Azure Traffic Manager

In Azure, there is a component called Azure Traffic Manager that allows us to manage
traffic between several resource endpoints, such as two web apps.

To do this, we need to have two web apps: one for the blue environment and another for
the green environment.

Then, in our Azure subscription, we have to create a Azure Traffic Manager that we'll
configure with the following steps:

1. In the Traffic Manager, we will first configure a profile that determines the traffic
routing method. In our case, we will configure a Weighted profile—that is,
configure it according to a weight that we will assign in our web app. The following
screenshot shows the configuration of the profile by weight:

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots

Applying blue-green deployments on Azure

449

- trafdemoapp | Configuration
Traffic Manager profile

|;> Search (Ctrl+/) | « 5] save X Discard

& Overview - Routing method @

@ Activity log |Weighted 9
fa Access contral (IAM) DNS time to live (TTL) * (D

€ Tags | 60

22 Diagnose and solve problems i . . _
Endpoint monitor settings (0

Protocol

Settings

| HTTP
&= Configuration o
Part *

& Real user measurements | 20

Figure 15.7 — Azure Traffic Manager configuration

Note

To find out about the other profile configuration options and how they

work, you can read the following documentation: ht tps://docs.
microsoft.com/en-us/azure/traffic-manager/traffic-
manager-routing-methods.

2. Then, we will record the endpoints that make up our two web apps. For each of

them, we'll configure a preponderance weight, as shown in the following screenshot:

trafdemoapp | Endpoints »

Traffic Manager profile

|/” Search (Ctrl+/) ‘ « + Add () Refresh

& Overview ‘ﬂ Search endpoints

H Activity log Name Ty Status Ty Monitor status Ty Type Ty Weight Ty

A Access control (1AM) main Enabled Online Azure endpoint 1000 9
¢ Tags app-green Enabled Online Azure endpoint 1

£ Diagnaose and solve problems

Settings
Configuration
Real user measurements

=
L
& Traffic view
& Endpoints o

Figure 15.8 — Azure Traffic Manager endpoints

https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods

450 Reducing Deployment Downtime

Thus, the main endpoint (that is, the blue environment) has the maximum weight, which
is equivalent to 100% traffic.

Note

If you would like to know more about configuring Traffic Manager, you can
follow this tutorial: https://docs.microsoft.com/en-us/
azure/traffic-manager/tutorial-traffic-manager-
weighted-endpoint-routing.

As for the App Service slots, with Traffic Manager, we can adjust this weight according to
the traffic we want on each endpoint and then apply blue-green deployment.

We have just discussed the implementation of blue-green deployment and, more
specifically, with the canary release pattern in an Azure infrastructure using a couple of
solutions, as summarized here:

o For the first solution, we used a slot that was under a web app and we configured
their user-traffic percentage.

o For the second solution, we used and configured an Azure Traffic Manager resource
that acts as a router between two web apps.

Now, let's look at the dark launch pattern in detail, starting with an introduction to feature
flags and their implementation.

Introducing feature flags

Feature flags (also called feature toggles) allow us to dynamically enable or disable a
feature of an application without having to redeploy it.

Unlike blue-green deployment with the canary release pattern, which is an architectural
concept, feature flags are implemented in the application's code. Their implementation is
done with a simple encapsulation using conditional i f rules, as shown in the following
code example:

if (activateFeature ("addTaxToOrder")==True) {
ordervalue = ordervalue + tax
lelse{

ordervalue = ordervalue

https://docs.microsoft.com/en-us/azure/traffic-manager/tutorial-traffic-manager-weighted-endpoint-routing
https://docs.microsoft.com/en-us/azure/traffic-manager/tutorial-traffic-manager-weighted-endpoint-routing
https://docs.microsoft.com/en-us/azure/traffic-manager/tutorial-traffic-manager-weighted-endpoint-routing

Introducing feature flags 451

In this example code, the activateFeature function allows us to find out whether the
application should add the tax to order according to the addTaxToOrder parameter,
which is specified outside the application (such as in a database or configuration file).

Features encapsulated in feature flags may be necessary either for the running of the
application or for an internal purpose such as log activation or monitoring.

The activation and deactivation of features can be controlled either by an administrator or
directly by users via a graphical interface.

The lifetime of a feature flag can be either of the following:

« Temporary: To test a feature. Once validated by users, the feature flag will be
deleted.

+ Definitive: To leave a feature flagged for a long time.

Thus, using feature flags, a new version of an application can be deployed to the
production stage faster. This is done by disabling the new features of the release. Then, we
will reactivate these new features for a specific group of users such as testers, who will test
these features directly in production.

Moreover, if we notice that one of the application's functionalities is not working properly,
it is possible for the feature flags to disable it very quickly, without us having to redeploy
the rest of the application.

Feature flags also allow A/B testing—that is, testing the behavior of new features by
certain users and collecting their feedback.

There are several technical solutions when it comes to implementing feature flags in an
application, as outlined here:

+ You develop and maintain your custom feature flags system, which has been
adapted to your business needs. This solution will be suitable for your needs but
requires a lot of development time, as well as the necessary considerations of
architecture specifications such as the use of a database, data security, and data
caching.

452 Reducing Deployment Downtime

 You use an open source tool that you must install in your project. This solution
allows us to save on development time but requires a choice of tools, especially
in the case of open source tools. Moreover, among these tools, few offer portal or
dashboard administration that allows for the management of feature flags remotely.
There is a multitude of open source frameworks and tools for feature flags. Please go
tohttp://featureflags.io/resources/ to find them. Please refer to the
following as well:

» RimDev.FeatureFlags (https://github.com/ritterim/RimDev.
FeatureFlags)

» Flagr (https://github.com/checkr/flagr)

= Unleash (https://github.com/Unleash/unleash)
» Togglz (https://github.com/togglz/togglz)

= Flip (https://github.com/pda/£flip).

« You can use a cloud solution (a platform as a service, or PaaS) that requires no
installation and has a back office for managing feature flags, but most of them
require a financial investment for large-scale use in an enterprise. Among these
solutions, we can mention the following:

» LaunchDarkly (https://launchdarkly.com/)
= Rollout (https://app.rollout.io/signup)
» Featureflag.tech (https://featureflag.tech/)

= Featureflow (https://www.featureflow.io/).

In this section, we have talked about how the use of feature flags is a development practice
that allows you to test an application directly in the production stage.

We also mentioned the different feature flag usage solutions and illustrated their
implementation. Let's discuss one of its implementations with an open source tool known
as RimDev.FeatureFlags.

Using an open source framework for
feature flags

As we've seen, there are a large number of open source tools or frameworks that allow us
to use feature flags in our applications.

http://featureflags.io/resources/
https://github.com/ritterim/RimDev.FeatureFlags
https://github.com/ritterim/RimDev.FeatureFlags
https://github.com/checkr/flagr
https://github.com/Unleash/unleash
https://github.com/togglz/togglz
https://github.com/pda/flip
https://launchdarkly.com/
https://app.rollout.io/signup
https://featureflag.tech/
https://www.featureflow.io/

Using an open source framework for feature flags 453

In this section, we will look at an example of implementing feature flags within a NET
(Core) application using a simple framework called RimDev.FeatureFlags.

RimDev.FeatureFlags is a framework written in .NET that's free and open source
(https://github.com/ritterim/RimDev.FeatureFlags) and is packaged and
distributed via a NuGet package. It can be found here: https: //www.nuget .org/
packages/RimDev.AspNetCore.FeatureFlags.

To store the feature flag data, RimDev . FeatureFlags uses a database that must

be created beforehand. The advantage of RimDev.FeatureFlags is that once
implemented in our application, it provides a web user interface (UI) that allows us to
enable or disable feature flags.

As a prerequisite for this example, we need to have an ASPNET Core MVC application
already initialized. We will use a SQL Server database that has been created to store feature
flag data.

To initialize RimDev . FeatureFlags in this application, we will perform the
following steps:

1. The first step consists of referencing the NuGet RimDev . FeatureFlags package
in our application and modifying (with any text editor) the . csproj file of the
application, which is located at the root of the application's files and contains some
application parameters, by adding a PackageReference element, as follows:

<ItemGroup>

<PackageReference Include="RimDev.AspNetCore.
FeatureFlags" Version="2.1.3" />

</ItemGroup>

Alternatively, we can execute the following command in a terminal command line
to reference a NuGet package in the existing project:

dotnet add package RimDev.AspNetCore.FeatureFlags

2. 'Then, we'll go to the appsettings. json configuration file to configure the
connection string to the database we created beforehand with the following code:

"connectionStrings": {

"localDb": "Data Source=<your database
server>;Database=FeatureFlags.AspNetCore;User ID=<your
users>; Password=<password data>

}

https://github.com/ritterim/RimDev.FeatureFlags
https://www.nuget.org/packages/RimDev.AspNetCore.FeatureFlags
https://www.nuget.org/packages/RimDev.AspNetCore.FeatureFlags

454 Reducing Deployment Downtime

3. Inthe startup.cs file, which is located at the root of the application's files, we'll
add the configuration to RimDev . FeatureFlags with this block of code:

private readonly FeatureFlagOptions options;
public Startup (IConfiguration configuration)
{

Configuration = configuration;

options = new FeatureFlagOptions ()

.UseCachedSglFeatureProvider (Configuration.
GetConnectionString("localDb")) ;

}

In the preceding code snippet, we initialized the options of RimDev .
FeatureFlags by using the database connection. We can configure service
loading with the following code:

public void ConfigureServices (IServiceCollection
services)

{

services.AddFeatureFlags (options) ;

}

public void Configure (IApplicationBuilder app,
IHostingEnvironment env)

{

app.UseFeatureFlags (options) ;

app.UseFeatureFlagsUI (options) ;

}

As soon as the application starts, RimDev will load the feature flag data into the
application context. With this, we've configured RimDev . FeatureFlags in our
project.

Using an open source framework for feature flags 455

Now, we will create feature flags and use them in the application. For this example, we will
create a feature flag called ShowBoxHome that may or may not display the image in the
middle of our application's home page. Let's look at how to create and manipulate these
feature flags in our project, as follows:

1. First, we will create feature flags by creating a new class that contains the following
code:

using RimDev.AspNetCore.FeatureFlags;
namespace appFeatureFlags.Models
public class ShowBoxHome : Feature {
public override string Description { get;
} = "Show the home center box.";

}
}

This class contains the ShowBowHome feature flag. An override description is given
to this feature flag.

2. 'Then, in our controller, we call the ShowBoxHome class with the following code:

public class HomeController : Controller ({
private readonly ShowBoxHome showboxHome;
public HomeController (ShowBoxHome showboxHome) {
this.showboxHome = showboxHome ;
}
public IActionResult Index() {

return View (new HomeModel { ShowboxHome = this.
showboxHome .Value}) ;

}
}

The controller receives the values of the feature flags stored in the database, which
were loaded when the application was started.

456 Reducing Deployment Downtime

3. We'll also create a HomeModel class that will list all the feature flags needed for the
home page, as follows:

public class HomeModel

{

public bool ShowBoxHome { get; set; }

}

4. Finally, in Views/Home/index.chtml, we'll use this model to display the image
in the center of the home page, depending on the value of the feature flag, with the
following code:

@if (Model . ShowBoxHome) {

<div></div>

}

Once the development process has come to an end, deploy and run our application. By
default, there is no image in the middle of the home page, as shown in the following
screenshot:

appFeatureFlags Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

Figure 15.9 - Feature flag demonstration home application
To display the image, we need to activate the feature dynamically, like so:
1. Go to the back office at http://<yoursite>/ features. We'll see a switch
called ShowHomeBow.

2. We activate the flags by switching on the toggle, as shown in the following
screenshot:

Using an open source framework for feature flags 457

& C A | localhost:5001/_features w & O °

M Feature Flags

ShowBoxHome .
Show the home center box.

Figure 15.10 - Feature flag demonstration feature toggle

Reload the home page of our application. Here, we can see that the image is displayed in
the center of the page:

appFeatureFlags Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

DEMO FEATURE FLAG

Figure 15.11 - Feature flag demonstration application

By using the RimDev . FeatureFlags framework and feature flags, we were able to
enable or disable a feature of our application without having to redeploy it.

Note

The complete source code for this application can be found at https: //
github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAP15/appFF.

We have just seen how to use an open source tool to implement basic feature flags in
a .NET Core application. We noticed that, with the use of an open source tool, we
can create a database in our infrastructure. This use of feature flags is quite basic, and
moreover, access to the UI for managing feature flags is not secure.

Finally, as with any open source tool, it is important to check whether it is maintained and
updated regularly by its editor or community. However, the use of open source tools for
feature flags remains appealing and inexpensive for small business projects.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appFF
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appFF
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appFF

458 Reducing Deployment Downtime

Now, let's look at another tool solution for feature flags, which is to use a Paa$S solution in
the cloud. One example of such a solution is LaunchDarkly.

Using the LaunchDarkly solution

In the previous section, we discussed using open source tools for feature flags, which can
be a good solution but requires some infrastructure components and is dependent on a
development language (in our example, it was .NET Core).

For better use and management of feature flags, we can use a cloud solution that does not
require the implementation of an architecture and provides a lot of features around feature
flags.

Among these cloud solutions (software as a service, or SaaS$), there is LaunchDarkly
(https://launchdarkly.com/), which is a SaaS platform that is composed of a
feature flag management back office and SDKs that allow us to manipulate the feature flags
in our applications.

The LaunchDarkly SDKs are available for many development languages, such as .NET,
JavaScript, Go, and Java. A complete list of SDKs is available here: https://docs.
launchdarkly.com/sdk.

In addition to the classic version of feature flag management with RimDev .
FeatureFlags, LaunchDarkly allows feature flags to be managed by a user and also
provides A/B testing features that are linked to feature flags. A/B testing can measure the
use of the application's features through feature flags.

However, LaunchDarkly is a paid solution (https://launchdarkly.com/
pricing/). Fortunately, it provides a 30-day trial so that we can test it out. Please
take a look at how to use LaunchDarkly so that you can implement feature flags in
a .NET application.

For that, we will start by creating some feature flags, as follows:

1. First, log in to your LaunchDarkly account by clicking on the Sign In button that
is located in the top menu of the LaunchDarKkly site. Alternatively, you can go to
https://app.launchdarkly.com/.

2. Once we're connected to our account, in the Account settings section, we can
create a new project called DemoBook, as illustrated in the following screenshot:

https://launchdarkly.com/
https://docs.launchdarkly.com/sdk
https://docs.launchdarkly.com/sdk
https://launchdarkly.com/pricing/
https://launchdarkly.com/pricing/
https://app.launchdarkly.com/

Using the LaunchDarkly solution 459

Account settings

(2]

Members Teams m Projects Roles Authorization Relay proxy Billing Usage

Feature flags

u)
sers Projects 2

Q Find a project Tags: Any ~ Sort: Oldest v e
Segments

Experiments

Debugger
Audit log
Integrations

Account settings 1

Figure 15.12 — LaunchDarkly project creation
By default, two environments are created in the project. We'll be able to create
our own environments and then test the feature flags in different environments.
In addition, each of these environments has a unique SDK key that will serve as
authentication for the SD3.

1. 'Then, in the environment called Test, we'll navigate to the Feature flags menu
and click on the Create flag button, then we'll create a feature flag called
ShowBoxHome, as shown in the following screenshot:

LaunchDarkly = a @ @

DEMOBOOK a Feature flags
Test Use this page to see all feature flags in this project. Select a flag to manage the environment-specific targeting

and rollout rules.
Feature flags 2

1flag

I Y Filter v Sort: Newest ve Create flag =

Users

Segments

ShowBoxHome Added 2 years ago

Experiments shou-box- heme Evaluated 2 years m
ago
@ true, false 6

Debugger

Figure 15.13 — LaunchDarkly feature flag creation
Once created, we can activate it by clicking on the On/Off toggle switch.

Now that we have configured and created a feature flag in the LaunchDarkly portal, we
will see how we can use the SDK in the application code.

460 Reducing Deployment Downtime

Note

In LaunchDarKkly, the variations that are made to feature flags are done by users
connected to the application. This means that the application must provide an
authentication system.

To use the SDK and launch the application, follow these steps:

1.

The first step is to choose an SDK that corresponds to the application development
language. We can do this by going to https://docs. launchdarkly.com/
docs/getting-started-with-launchdarkly-sdks#section-
supported-sdks. In our case, we have a .NET application, so we will follow
this procedure: https://docs.launchdarkly.com/docs/dotnet -sdk-
reference.

Now, let's integrate the reference to the NuGet LaunchDarkly.ServerSdk
package (https://www.nuget .org/packages/LaunchDarkly.
ServerSdk/) in the . csproj file of our application by adding it to the reference
packages, like so:

<ItemGroup>

<PackageReference Include="LaunchDarkly.ServerSdk"
Version="6.3.1" />

</ItemGroup>

In the .NET code, we do this in the controller. To do this, we need to import the
SDK with the using command, as follows:

using LaunchDarkly.Client;

Still in the controller code, we add the connection to LaunchDarkly, as invoked by
FeatureFlag. The code is illustrated in the following snippet:

public IActionResult Index() {

LdClient ldClient = new LdClient ("sdk-eb0443dc-xxXXxX-XXX-
xXx-xxx") ;

User user = LaunchDarkly.Client.User.WithKey (User.
Identity.Name) ;

bool showBoxHome = ldClient.BoolVariation ("show-box-
home", user, false);

return View (new HomeModel { ShowBoxHome = showBoxHome}) ;

}

https://docs.launchdarkly.com/docs/getting-started-with-launchdarkly-sdks#section-supported-sdks
https://docs.launchdarkly.com/docs/getting-started-with-launchdarkly-sdks#section-supported-sdks
https://docs.launchdarkly.com/docs/getting-started-with-launchdarkly-sdks#section-supported-sdks
https://docs.launchdarkly.com/docs/dotnet-sdk-reference
https://docs.launchdarkly.com/docs/dotnet-sdk-reference
https://www.nuget.org/packages/LaunchDarkly.ServerSdk/
https://www.nuget.org/packages/LaunchDarkly.ServerSdk/

Using the LaunchDarkly solution 461

For the connection to LaunchDarkly, we need to use the SDK key that was provided
when the project was created. Then, in the preceding code, we connect the user who
is connected to the application to the feature flag that we created previously in the
portal.

5. Finally, in the Home/Index.chtml view, we add the following code to add a
condition that will display the image, depending on the value of the feature flag:

<div class="text-center"s>
@if (Model . ShowBoxHome) {
<div></div>

}

<div>

6. Finally, we deploy and execute the application. As illustrated in the following
screenshot, the home page shows the central image because the feature flags are set
to true by default:

appdemoLD Home Privacy Hello mikael@test.fr! Logout

Welcome

Learn about building Web apps with ASP.NET Core.

Figure 15.14 - LaunchDarKkly feature flag demonstration application

462 Reducing Deployment Downtime

7. Then, we go to the LaunchDarkly portal and modify the configuration of this
feature flag for the current user with a false value. On the Users management
page, we select the user, as illustrated in the following screenshot:

=i ~ Users

Use this page to find users in this environment. Users appear here when they have been identified or evaluated for a feature flag.

SO Find a user by name, key or email

Found 1 users

Debugger Name Key Email Last seen

A Audit log &) mikael@testfr e mikaelgtest.fr 27 days ago

Figure 15.15 - LaunchDarkly user

Then, we update the value of the feature flag to false, as illustrated in the
following screenshot:

Users / mikael@test.fr

2 mikael@test.fr

mikael@test.fr

Attributes Flag settings

key

SO Find a feature flag
mikael@test.fr

® ShowBoxHome

< I false - | X

Figure 15.16 - LaunchDarkly feature flag user settings

8. By reloading the page, we can see that the central image is no longer displayed, as

illustrated here:

appdemoLD Home Privacy Hello mikael@test.fr! Logout

Welcome

Learn about building Web apps with ASP.NET Core.

Figure 15.17 - Feature flag demo application with LaunchDarkly

Summary 463

This is an example of how to use LaunchDarkly, which has many other interesting
features, such as a user management system, feature usage with A/B testing, integration
with CI/CD platforms, and reporting.

Note
The complete code source for this application can be found at https: //

github.com/PacktPublishing/Learning-DevOps-Second-
Edition/tree/main/CHAP15/appdemolD.

What we have discussed in this section is an overview of LaunchDarkly, which is a feature
flag cloud platform. We studied its implementation in a web application with the creation
of feature flags in the LaunchDarkly portal.

Then, we manipulated this feature flag in the application code via the SDK provided by
LaunchDarkly. Finally, in the LaunchDarkly portal, we enabled/disabled a feature for a
user who wants to test a new feature of the application without having to redeploy it.

summary

In this chapter, we focused on improving production deployments. We started by using
Terraform to reduce downtime during provisioning and resource destruction.

Then, we focused on the practice of blue-green deployment and its patterns, such as
canary release and dark launch. We looked at the implementation of a blue-green
deployment architecture in Azure using App Service and the Azure Traffic Manager
component.

Finally, we detailed the implementation of feature flags in a .NET application using two
types of tools—RimDev.FeatureFlags, which is an open source tool that offers a
basic feature flag system, and LaunchDarkly, which is a cloud-based solution. It's not free
of charge but provides complete and advanced feature flag management.

The next chapter is dedicated to GitHub. Here, we will look at the best practices for
contributing to open source projects.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appdemoLD
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appdemoLD
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP15/appdemoLD

464 Reducing Deployment Downtime

Questions

1
2
3.
4

v

In Terraform, which option can we use to reduce downtime?
What is a blue-green deployment infrastructure composed of?
What are the two blue-green deployment patterns that we looked at in this chapter?

In Azure, what are the components that allow us to apply a blue-green deployment
practice?

What is the role of feature flags?
What is the RimDev . FeatureFlags tool?

Which feature flag tool discussed in this chapter is a SaaS solution?

Further reading

If you want to find out more about zero-downtime and blue-green deployment practices,
take a look at the following resources:

Zero Downtime Updates with HashiCorp Terraform: https://www.hashicorp.
com/blog/zero-downtime-updates-with-terraform

BlueGreenDeployment by Martin Fowler: https://martinfowler.com/
bliki/BlueGreenDeployment .html

Feature Toggles (aka Feature Flags) by Martin Fowler: https://martinfowler.
com/articles/feature-toggles.html

Blue-Green Deployment on Azure with Zero Downtime (article): http://work.
haufegroup.io/Blue-Green-Deployment-on-Azure/

Feature flag guide: http://featureflags.io/

LaunchDarkly feature flag use cases: https: //launchdarkly.com/
use-cases/

https://www.hashicorp.com/blog/zero-downtime-updates-with-terraform
https://www.hashicorp.com/blog/zero-downtime-updates-with-terraform
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
http://work.haufegroup.io/Blue-Green-Deployment-on-Azure/
http://work.haufegroup.io/Blue-Green-Deployment-on-Azure/
http://featureflags.io/
https://launchdarkly.com/use-cases/
https://launchdarkly.com/use-cases/

16

DevOps for Open
Source Projects

Until a few years ago, the open source practice, which consists of delivering the source
code of a product to the public, was essentially only used by the Linux community. Since
then, many changes have taken place regarding open source with the arrival of GitHub.
Microsoft has since made a lot of its products open source and is also one of the largest
contributors to GitHub.

Today, open source is a must in the development and enterprise world, regardless of
whether we wish to use a project or even contribute to it.

However, open source applications are not always free. There are sometimes licensing fees
for plugins, support, or enterprise features. Also, in terms of support, using open source
software can sometimes present difficulties and pitfalls when it comes to product support.

Throughout this book, we have seen many instances where open source tools such as
Terraform, Ansible, Packer, Vagrant, Jenkins, and SonarQube have been used. However,
one of the great advantages of open source is not only the use of products but also the fact
that we can contribute to them.

To contribute to an open source project, we need to participate in its evolution by
discussing issues with its use or by making suggestions regarding improving it. In
addition, if you are a developer, you can also modify its source code to make it evolve.

466 DevOps for Open Source Projects

Finally, as a developer or a member of an operational team, we can share our project in
open source and make it available to the community.

In this chapter, we'll discuss open source contributions and why it's important to apply
DevOps practices to all open source projects.

All of these practices, such as the use of Git, a CI/CD pipeline, and security analysis, have
already been discussed throughout this book. However, in this chapter, we'll focus more
on how to apply them in the context of our open source project.

We will start by learning how to share the code of a project in GitHub and how to
initialize a contribution to another project. We will also discuss how to manage pull
requests, which is one of the most important features of the contribution. In addition, we
will look at how to indicate version changes using release notes, and the topic of binary
sharing in GitHub Releases. We'll explain GitHub Actions, which allows us to created
CI/CD pipelines on open source projects that are hosted on GitHub. Finally, we will look
at the source code analysis of open source projects. We'll do this using SonarCloud, which
is used for static code analysis, and WhiteSource Bolt, which is used for analyzing package
security vulnerabilities that are contained in an open source project.

In this chapter, we will cover the following topics:

« Storing source code in GitHub

« Contributing to open source projects using pull requests
« Managing the changelog file and release notes

« Sharing binaries in GitHub releases

o Getting started with GitHub Actions

 Analyzing code with SonarCloud

« Detecting security vulnerabilities with WhiteSource Bolt

Technical requirements

In this chapter, we will use GitHub as a Git repository platform to store our open source
project. Therefore, you will need a GitHub account, which you can create for free at
https://github.com/. To fully understand the DevOps practices that will be used in
this chapter, you should be well-versed with the following chapters of this book:

o Chapter 6, Managing Your Source Code with Git

o Chapter 7, Continuous Integration and Continuous Delivery

o Chapter 12, Static Code Analysis with SonarQube

https://github.com/

Storing source code in GitHub 467

The complete code for this chapter can be found at https://github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAP16/.

Check out the following video to see the code in action:

https://bit.ly/3JJCboV.

Storing source code in GitHub

If we want to share one of our projects in an open source fashion, we must version its code
in a Git platform that allows the following elements:

o+ Public repositories; that is, we need to have access to the source code contained in
this repository, but without necessarily being authenticated on this Git platform.
« Features and tools for code collaboration between the different members of this

platform.

Two main platforms allow us to host open source tools: GitLab, which we looked at in the
Using GitLab CI section of Chapter 7, Continuous Integration and Continuous Delivery, and
GitHub, which is now the most used platform for open source projects.

Let's learn how to use GitHub so that we can host our project or contribute to another
project.

Creating a new repository on GitHub

If we want to host our project on GitHub, we need to create a repository. Follow these
steps to do so:

1. First, log in to your GitHub account or create a new one if you are a new user by
going to https://github.com/.

2. Once connected, go to the Repositories tab inside your account. Click on the New
button, as shown in the following screenshot:

1 Overview [Repositories o M Projects &) Packages Yy Stars

Find a repository... Type ~ Language ~ Sort ~ m

Figure 16.1 - Adding a repository

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/
https://bit.ly/3JJCb9V
https://github.com/

468 DevOps for Open Source Projects

3. Create a new repository form that can be filled in, as shown in the following
screenshot:

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Owner Repository name *
m mikaelkrief ~ / DemoApp v
Great repository names are short and memorable, Need inspiration? How about cuddly-memeory?

Description (optional)

Demeo for 0S5 projed|

@ Public

Anyone can see this repository. You choose who can commit.

@ Private
You choose who can see and commit to this repository.

Skip this step if you're importing an existing repository.

[J Initialize this repository with a README

This will let you immediately clone the repository to your computer.

Add .gitignore: None Add a license: None | (3)
Create repository

The information that needs to be filled in to create a repository is as follows:

Figure 16.2 — GitHub repository details

» 'The name of the repository.
» A description (which is optional).

» We need to specify whether the repository is Public (accessible by everyone, even
if they're not authenticated) or Private (available only to the members we give it
access to).

» We can also choose to initialize the repository with an empty README . md file, as
well asa .gitignore file.

Then, validate the form by clicking on the Create repository button.

Storing source code in GitHub 469

4. Assoon as the repository is created, the home page will display the first Git
instructions so that you can start archiving its code. The following screenshot shows
part of the instruction page of a new GitHub repository:

I mikaelkrief / DemoApp @ Unwatch~ | 1| HStar |0 | YFork 0

<»Code | (D) lssues 0 1l Pull requests 0 D Actions [Projects 0 EE Wiki W) Security il Insights £} Settings

Quick setup — if you've done this kind of thing before
EﬂSet up in Desktop 0r| HTTPS | SSH | https://github.com/mikaelkrief/Demofpp.git @.

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...or create a new repository on the command line

echo "# DemoApp" >> README.md B
git init

git add README.md

git commit -m "first commit"

git remote add origin https://github.com/mikaelkrief/DemoApp.git

git push -u origin master

Figure 16.3 — GitHub repository - first Git instructions
Everything is ready for archiving the code in GitHub. Do this by using the workflow and
Git commands we looked at in Chapter 6, Managing Your Source Code with Git.

This procedure is valid for creating a repository in GitHub. Now, let's learn how to
contribute to GitHub by using a project from another repository.

Contributing to a GitHub project

We have just learned how to create a repository on GitHub. However, what we need to
know is that, by default, only the owner of the repository is allowed to modify the code of
this repository.

Note

We can add people as collaborators to this repository so that they can make
changes to the code. For more information about this procedure, please go
tohttps://help.github.com/en/articles/inviting-
collaborators-to-a-personal-repository.

With the help of this principle, we don't have the right to modify the code of another
repository.

https://help.github.com/en/articles/inviting-collaborators-to-a-personal-repository
https://help.github.com/en/articles/inviting-collaborators-to-a-personal-repository

470 DevOps for Open Source Projects

To contribute to the code of another repository, we will need to create a fork of the initial
repository that we want to contribute to. A fork is a duplication of the initial repository
that is performed in our GitHub account, thus creating a new repository in our account.

Follow these steps to learn how to create a fork of a repository:

1. First, navigate to the initial repository that you want to contribute to. Then, click on
the Fork button at the top of the page, as shown in the following screenshot:

B PacktPublishing / GuUnwatch 3+ | ¥ Fork 8 | Y Star 7~
Learning-DevOps-Second-Edition ' Public

Figure 16.4 - GitHub - forking a repository

2. After a few seconds, this repository will be forked and duplicated, along with all its
content, in your account. By doing this, you get a new repository in your account
that is linked to the initial repository, as shown in the following screenshot:

O Search or jump to... Pull requests Issues Marketplace Explore

¥ mikaelkrief / Learning-DevOps-Second-Edition ' Public

| forked from PacktPublishing/Learning-DevOps-Second-Edition |

Figure 16.5 - GitHub fork link

3. Now, you have an exact copy of the repository that you want to contribute to in your
GitHub account. You are free to modify the code and commit your changes, all of
which will be archived in your repository.

However, even if there is a link between the initial repository and the fork, the code for
each repository is completely uncorrelated and the code isn't synchronized automatically.

In this section, we learned how to create a GitHub repository or to make a fork of another
repository so that we can contribute to it. Now, let's learn how to propose code changes
and merge our code into another repository using a pull request.

Contributing to open source projects using pull requests 471

Contributing to open source projects using
pull requests

When we want to contribute to an open source project in GitHub, we need to make
changes to the source code of the application that is in the repository of our GitHub
account. To merge these code changes to the initial repository, we must perform a merge
operation.

In GitHub, there is an element called a pull request that allows us to perform a merge
operation between repositories. In addition to performing a simple and classic merge
between code branches, a pull request also adds a whole new aspect of collaboration by
providing features that allow different contributors to discuss code changes.

Let's learn how to carry out a pull request:

1. After making changes to the code source in the repository in your account, you
must archive these changes by making a commit. The changes that have been made
are now ready to be merged with the remote repository. To do this, go to your
repository, go to the Pull requests tab, and click the New pull request button, as
shown in the following screenshot:

% mikaelkrief / Learning-DevOps-Second-Edition ' Pubiic @watch 0 - | F Fork 8 Wosar 0 -

forked from PacktPublishing/Learning-DevOps-Second-Edition

<> Code 19 pull requests () Actions B Projects 0 wiki @ Security |22 Insights 88 Settings

Filters ~ Q isiprisiopen © Labels 9 P Milestones 0 New pull request

Figure 16.6 — GitHub - New pull request

472 DevOps for Open Source Projects

2. 'The page that appears specifies all of the information regarding the pull request that
will be created, as shown in the following screenshot:

B PacktPublishing / Learning-DevOps-Second-Edition (Public ®uUnwatch 3~ % Fork 8 Wwostar 7 -

<> Code © Issues 171 Pull requests ® Actions 07 wiki 0] Security [# Insights by Settings

Comparing changes

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

1 base repository: PacktPublishing/Learning-Dev... ¥ | base:main~v | € | head repository: mikaelkrief/Learning-DevOps-.. ¥ | compare: main v o

+ Able to merge. These branches can be automatically merged. e

Discuss and review the changes in this comparison with others. Learn about pull requests Create pull request

-0- 2 commits 1file changed A1 contributor

-0 Commits on Jan 8, 2022

Update the readme - e Verified o 88dse7e <O
(@ mikaelkrief committed 41 minutes ago

Showing 1 changed file with 6 additions and 5 deletions. Split | Unified
v - 11 mmmEEo README.md () o D
L @@ -28,13 +28,13 @@ alt="https://www.packtpub.com/" border="5" /></a»
28 28 All of the code is organized into folders. For example, Chapter@2.
29 29
38 38 The code will look like the following:
31 -
31+ he
32 32 resource "azurerm_resource_group” "rg" { o
33 - name - var.resoure_group_name
3 4 name = var.resoure_group_name
34 34 location = var.location
35 = tags {
35 4 tags {
36 36 environment = “Terraform Azure™
37 - 1
37+ }

Figure 16.7 — GitHub pull request details

Contributing to open source projects using pull requests 473

The following information is displayed on the screen:
= The source repository/branch and the target repository/branch
* An indicator that shows whether there are any code conflicts
» The list of commits that are included in this pull request

= The code differences of modified files

3. To validate the creation of the pull request, click on the Create pull request button.

4. Enter the name and description of the pull request in the form that appears, as
shown in the following screenshot:

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

[base repository: PacktPublishing/Learning_Dev... ~ base: master ¥ | ® | head repository: mikaelkrief/Leaming_DevOps v compare: master ¥

+ Able to merge. These branches can be automatically merged.

m Update the README.md file o -} Reviewers o

No reviews

Write Preview M B i €K O EE=E @ Aok
Assignees el

Add description to the readme file N §

— o one—assign yourself
Labels k=
None yet
Milestone L]
No milestone
P
Attach files by dragging & dropping, selecting or pasting them. [M+]

Allow edits from maintainers. Learn more Create pull request ~ e

Figure 16.8 — GitHub pull request title and description

474 DevOps for Open Source Projects

This information is important because it will help the repository's target owner
quickly understand the objectives of the code changes included in this pull request.
In addition, from the right-hand panel, it is possible to select reviewers who will

be notified of the pull request by email. This will be done by the person who is in
charge of reviewing the code changes and validating or rejecting them.

5. Finally, validate the creation of the pull request by clicking on the Create pull
request button.

Once the pull request has been created, the owner of the original repository will see that
a fresh pull request has been opened (with the title you provided) in the Pull requests tab
of their repository. They can click on the Pull requests tab to access it and check all of its
details.

= PacktPublishing / Learning-DevOps-Second-Edition ' public @ Unwatch 3~ % Fork 8 % star 7~

<> Code © Issues 1% pull requests 10@ Actions 0 wiki © Ssecurity [# Insights 82 Settings

Filters v Q isiprisiopen © Labels 9 € Milestones 0 New pull request

O {9 10pen + 0Closed Author ~ Label ~ Milestones + Reviews ~ Assignee ~ Sort ~

U 1% Update the readme 9

#1 opened 16 seconds ago by mikaelkrief

Figure 16.9 - GitHub pull request list

Contributing to open source projects using pull requests 475

In the following screenshot, we can see the different options that have been proposed for
this pull request:

Update the readme #1

i9Ye-CLl mikaelkrief wants to merge 2 commits into PacktPublishing:main from mikaelkrief:main 2

0 Conversation © o Commits 2 [Checks 2 Files changed 1 o

©

mikaelkrief commented 4 minutes ago Collaborator | (2) +++

update the readme

E+ mikaelkrief added 2 commits 1 hour ago

- m Update README.md Verified 15efféc

O ') Update the readme -~ Verified = X 88d8e7e

Add more commits by pushing to the main branch on mikaelkrief/Learning-DevOps-Second-Edition

o Some checks were not successful e Show all checks

1 failing and 1 successful checks

This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge puII request - You can also open this in GitHub Desktop or view command line instructions.

{
@ Write Preview H B T i= < & = i= @ 2 &~
Leave a comment e

Attach files by dragging & dropping, selecting or pasting them.

0 o (EEED

@ Remember, contributions to this repository should follow our GitHub Community Guidelines.

Figure 16.10 - GitHub pull request validation

476 DevOps for Open Source Projects

The following are the different operations that the repository owner can perform on this
pull request:

« By clicking on the Files changed tab, the reviewer can see the changes that have
been made to the code and leave notes on each of the modified lines.

o The reviewer or repository owner can initiate a discussion on code changes and
click on the Comment button to validate their comments.

o Ifthe owner is satisfied with the code changes, they can click on the Merge pull
request button to perform the merge.

+ On the other hand, if the owner is not satisfied and refuses the pull request, they can
click on the Close pull request button, where the request is then closed.

o We can also perform some automated checks.

Once merged, the pull request will have a Merged status and the code of the original
repository will be updated with the code changes we have made.

In this section, we have seen that, with a pull request, we have a simple way of
contributing to an open source project in GitHub by proposing code changes. Then, the
project owner can either accept this pull request and merge the code or refuse the changes.
In the next section, we will learn how to manage the changes that we've made to our
project using the changelog file.

Managing the changelog file and release notes

When we host a project as open source, it is good practice to provide information to users
about the changes that are being applied to it as they occur. This change logging system
(also called release notes) is all the more important if, in addition to the source code, our
repository also publicly provides a binary of the application since the use of this binary is
dependent on its different versions and code changes.

Logically, we could find the history of code changes by navigating through the history of
Git commits. However, this would be too tedious and time-consuming for Git novices.
For these reasons, we will indicate the change in history with the code versions in a text
file that can be read by everyone. This file has no fixed nomenclature or formalism, but for
simplicity, we have decided to call it CHANGELOG . md.

So, this changelog file is a text file in markdown format, which is easy to edit with simple
formatting and is placed at the root of the repository. In this file, the history of the changes
is provided in a list and doesn't give away too many details about each change.

Managing the changelog file and release notes 477

For better visibility, this history of the most recent changes will be ordered from newest to
oldest so that we can quickly access the latest changes. To give you an idea of the shape of

the changelog file, here is a screenshot that shows an extract from the changelog file of the
Terraform provider for Azure:

1.30.1 (June 07, 2019)

BUG FIXES:

* Ensuring the authorization header is set for calls to the User Assigned Identity API's (#3613)

1.30.0 (June 07, 2019)

FEATURES:

* New Data Source: azurerm_redis_cache (#3481)
* New Data Source: azurerm_sql_server (#3513)

* New Data Source: azurerm_virtual network_gateway connection (#3571)

IMPROVEMENTS:

* dependencies: upgrading to Go 1.12 (#3525)

* dependencies: upgrading the storage SDKto 2019-84-81 (#3578)

* Data Source azurerm app_service - support windows containers (#3566)

e Data Source azurerm app service plan - support windows containers (#3566)

® azurerm_api_management - rename disable_triple des chipers to disable triple des ciphers (#3539)

® azurerm_application_gateway - support for the value General inthe rule_group_name field within the
disabled_rule group block (#3533)

® azurerm_app_service - support for windows containers (#3566)
® azurerm app_service plan - support for the maximum elastic worker count property (#3547)
® azurerm_managed_disk - support for the create_option of Restore (#3598)

® azurerm_app_service_plan - support for windows containers (#3566)

Figure 16.11 - GitHub changelog sample

Note

The complete content of this file is available here: ht tps: //github. com/
terraform-providers/terraform-provider-azurerm/
blob/master/CHANGELOG . md.

The important information to mention in this file is the version history of the changes that
have been delivered in this application. For each version, we write the list of new features,
improvements, and bug fixes that were delivered.

https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/CHANGELOG.md
https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/CHANGELOG.md
https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/CHANGELOG.md

478 DevOps for Open Source Projects

For each change, there is a very short description, and the commit number is assigned as a
link that allows us to view all the details of the changes by clicking on it.

Note

For full details on the format of the changelog file, take a look at the following
documentation: https://keepachangelog.com/en/1.1.0/.

Finally, for integration into a DevOps process, it is also possible to automatically generate
the changelog file using Git commits and tags.

Many scripts and tools allow this changelog to be generated, such as GitHub accounts
(https://github.com/conventional -changelog). However, if you are unsure
of whether you should write or generate this file, then here is a very interesting article
explaining the pros and cons of these two methods: https://depfu.com/blog/
changelogs-to-write-or-to-generate.

In this section, we learned how to inform users and contributors about the history of code
changes that are made to open source projects using a changelog file. Then, we looked at
the useful information we should mention in this changelog file so that users can find out
exactly what changes the application is undergoing between each version.

In the next section, we will learn how to share binaries in an open source project in
GitHub releases.

Sharing binaries in GitHub releases

The purpose of an open source project is not only to make the source code of a project
visible, but also to share it with public users. For each new version of the project (called
a release), this share contains a release note, as well as the binary resulting from the
compilation of the project.

Thus, for a user who wishes to use this application, they don't need to retrieve the entire
source code and compile it — they just have to retrieve the shared binary from the desired
release and use it directly.

Note that a release is linked to a Git tag, which is used to position a label at a specific point
in the source code's history. A tag is often used to provide a version number to the source
code; for example, the tag could be v1.0.1.

https://keepachangelog.com/en/1.1.0/
https://github.com/conventional-changelog
https://depfu.com/blog/changelogs-to-write-or-to-generate
https://depfu.com/blog/changelogs-to-write-or-to-generate

Sharing binaries in GitHub releases 479

Note

To learn more about tag handling in Git, read the following documentation:
https://git-scm.com/book/en/v2/Git-Basics-Tagging.

In GitHub, in each repository, it is possible to publish releases from Git tags, which will
have a version number (from the Git tag), a description specifying the list of changes, and
the application binaries.

Following this introduction to releases in GitHub, let's learn how to create a release in

GitHub using its web interface:

1. To create a GitHub release, go to the repository that contains the application code.

2. Click on the Releases link in the right panel, which can be found via the Code tab,
as shown in the following screenshot:

% mikaelkrief / MyShuttle2 ' Pubiic

forked from microsoft/MyShuttle2

<> Cc!e 1% Pull requests 1 ® Actions

¥ master ~ ¥ 2 branches

This branch is 9 commits ahead of microsoft:master.

! mikaelkrief update2

settings
gradle
src
gitignore

README.md

(N rairEl BN BN B

docker-compose.env.dev....

©1tag

Initial Commit
Initial Commit
Initial Commit
Initial Commit
update2

Initial Commit

B Projects

© Watch 0

0 Wiki @ Security [# Insights

Go to file Add file ~

1% Contribute ~ ' Fetch upstream ~

5712a33 on 21 Aug 2019 ' 10 commits

5 years ago
5 years ago
5 years ago
5 years ago
2 years ago

5 years ago

Figure 16.12 - GitHub - Releases link

- % Fork 55 ¥ Star 0 -

el Settings

About 83

The project containing the code for the
MyShuttle2 application that was showed
at Connect 2016

[0 Readme

W Ostars

& 0 watching

% 55 forks

Releases e

© 1tags

Create a new release e

https://git-scm.com/book/en/v2/Git-Basics-Tagging

480 DevOps for Open Source Projects

3. On the next page that appears, click on the Create a new release button to create a
new release. The release form is displayed and the release information is filled in, as
shown in the following screenshot:

© vi00 ~ o

v Existing tag

First release e

Write Preview

H B I = O & = = @ 2 &~ + Auto-generate release notes

This first release contain:

- feature 1
- feature 2

Attach files by dragging & dropping, selecting or pasting them.
J/ Attach binaries by dropping them here or selecting them. o
[This is a pre-release
‘We'll point out that this release is identified as non-production ready.

Publish release Save draft e

Figure 16.13 — GitHub - creating a release
In this form, we have entered the following information:

= The tag that's associated with the release.
= 'The title of the release.

» The description of the release, which may contain the list of changes (release
notes).

» We upload the application binary in a ZIP file format that corresponds to this
release.

» We also mark the checkbox regarding whether it's a pre-release.

Then, validate the new release by clicking on the Publish release button.

Sharing binaries in GitHub releases 481

4. Finally, we are redirected to the list of releases for the project that we have just
created, as shown in the following screenshot:

<> Code 19 Pull requests 1 ® Actions [Projects 0 wiki @ Security |~ Insights

Tags Draft a new release Q, Find a release

2minesage | First release () ’
@) mikaelkrief

© v1.0.0 This first release contain:

0 5712a33 (¥

ch

o feature 1

Compare ~
» feature 2

v Assets 3

156 Bytes

[7) Source code (zip)

[7) Source code (tar.gz)

Figure 16.14 — GitHub release details

In the preceding screenshot, we can observe the tag (v1.0.0) that's associated with the
release, the information we entered, and the binaries. zip file we uploaded. In
addition, GitHub has been automatically added to the release of other assets; that is,
the package (ZIP) that contains the source code of the application that's associated with
this tag.

We have just seen that, via the GitHub web interface, we can create a GitHub release that
allows us to share the release notes and binary files of a project with all users.

Note

It is also possible to integrate all of these steps into the CI/CD pipeline with
an automatic script using various GitHub APIs. The documentation for this
can be found at https://developer.github.com/v3/repos/
releases/.

In the next section, we will create this same pipeline but in GitHub using GitHub Actions.

https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/

482 DevOps for Open Source Projects

Getting started with GitHub Actions

GitHub has been integrating several other DevOps features into its repository source
platform. This allows it to be fully integrated with the repository's code.

At the time of writing, these new features are as follows:

« A GitHub Package registry, a package manager whose presentation documentation
can be found at https://github.com/features/package-registry

 GitHub Actions, a CI/CD pipeline manager whose presentation documentation can
be found at https://github.com/features/actions

In this section, we will provide an overview of the use of GitHub Actions, which allows
you to create CI/CD pipelines directly within GitHub. This will check and deploy the
source code that is hosted in your GitHub repository.

For this demonstration, we will create a CI pipeline in GitHub that will compile and run
the tests for our Node.js application. The resources for this can be found at https://
github.com/PacktPublishing/Learning-DevOps-Second-Edition/
tree/main/CHAP16/appdemo.

Follow these steps to create a CI pipeline with GitHub Actions:

1. Go to the repository that contains the source code to be deployed and click on the
Actions tab, as shown in the following screenshot:

% mikaelkrief / Learning-DevOps-Second-Edition ' Pubiic

forked from PacktPublishing/Learning-DevOps-Second-Edition

<> Code 19 Pull requests ® Actions M Projects 0 Wiki @ Security | Insights @3 Settings

Figure 16.15 - GitHub - the Actions tab

2. At this point, the GitHub interface will propose pipeline templates, called
workflows, according to the different development languages and target system,
such as VM or Kubernetes. We can also create a custom workflow by starting
with an empty template. The following screenshot shows the choices for creating a
workflow:

https://github.com/features/package-registry
https://github.com/features/actions
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo

Getting started with GitHub Actions 483

<> Code 19 Pull requests @ Actions [Projects 00 wiki @ Security 1~ Insights 8 Settings

Get started with GitHub Actions

Build, test, and deploy your code. Make code reviews, branch management, and issue triaging work the way you want. Select a workflow to get started.

Skip this and set up a workflow yourself -

Q Search workflows

Suggested for this repository

Docker image L NET 0 Jekyll o
By GitHub Actions By GitHub Actions By GitHub Actions
Build a Docker image to deploy, run, or push to a Build and test a .NET or ASP.NET Core project. Package a Jekyll site using the jekyll/builder Docker
registry. image

Configure Dockerfile @ Configure + @ Configure HTML @

Figure 16.16 - GitHub Actions workflow templates
In the preceding screenshot, we can see the link called set up a workflow yourself
for creating a custom workflow, as well as a textbox to search for workflow templates
and suggested templates.

3. For this demonstration, let's create a workflow from the workflow template that's
designed for Node.js applications by searching for node and clicking on Configure
in the Node.js template box:

Q. node o

Found 7 workflows

Deploy Node.js to Azure A Grunt 5] Gulp
Web App By GitHub Actions By GitHub Actions

By Microsoft Azure Build a NodelS project with npm and Build a NodeJS project with npm and
Build a Node js project and deploy it to an grunt gulp

Azure Web App.

Configure Deployment @ Configure JavaScript Configure JavaScript
Webpack @ Publish Node.js Package = Publish Node.js Package &)
By GitHub Actions to GitHub Packages By GitHub Actions
Build a NodeJS project with npm and By GitHub Actions Publishes a Node js package to npm
webpack. Publishes a Node.js package to GitHub

Packages.

Configure JavaScript Configure JavaScript Configure JavaScript

Node.js ‘

By GitHub Actions

Build and test a Nodejs project with npm.

Configure e JavaScript

Figure 16.17 — GitHub Actions - selecting the Node.js template

484 DevOps for Open Source Projects

4. GitHub will display the YAML code of the workflow that will be commuted in
anode.js.yml file, which will be automatically created in the . github/
workflows folder tree. In this YAML code, which is also available at https://
github.com/PacktPublishing/Learning-DevOps-Second-Edition/
blob/main/.github/workflows/node.js.yml, we can see the following:

» The runs-on property, which specifies the Ubuntu agent of the pipeline that's
provided by GitHub.

A list of steps regarding the use of an action block (actions/checkout) so
that we can retrieve the GitHub code, followed by a script block (npm) that will be
executed on the Ubuntu agent.

Before archiving this file, add a small piece of code to it, indicating the execution
path of the scripts, as shown in the following screenshot:

build:
runs-on: ubuntu-latest
strategy:
matrix:
node-version: [12.x, 14.x, 16.x]
See supported Node.js release schedule at https://nodejs.org/en/about/releases/
steps:
- uses: actions/checkoutfgv2
- name: Use Node.js ${{ matrix.node-version }}
uses: actions/setup-node@v2
with:
node-wversion: ${{ matrix.node-version }}
- run: |
[Tca CRAP16/appdemo |
npm ci

npm run build --if-present
npm test

Figure 16.18 - GitHub Actions workflow source code
The complete source code for this workflow is available at ht tps: //github.

com/PacktPublishing/Learning-DevOps-Second-Edition/blob/
main/.github/workflows/node.js.yml.

5. Commit this file by clicking on the Start commit button at the top of the code
editor. Once committed, the file will be present in the repository code and will
trigger a new CI pipeline.

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/.github/workflows/node.js.yml

Getting started with GitHub Actions 485

6. Finally, let's return to the Actions tab. We will see that a workflow has been
triggered and completed:

¥ mikaelkrief / Learning-DevOps-Second-Edition ' Pubiic <& pin @ Watch 0 ~ % Fork 8 % ostar 0~
forked from PacktPublishing/Learning-DevOps-Second-Edition

<> Code 11 Pull requests ® Actions [Projects 07 wiki @ Security |~ Insights 3 Settings

Workflows New workflow Node.js Cl

node jsyml
All workflows

Q Filter workflow runs
25 Nodejs CI 2

7 workflow runs Event = Status » Branch v Actor v
@ Update node.js.yml = B 3 minutes ago
Nodejs Cl #7: Commit 6ad4e76 pushed by mikaelkrief O 47s

Figure 16.19 - GitHub Actions workflow being run

Here, we can see the list of run executions for this workflow. By clicking on the run line,
we can view the details of the execution. The following screenshot shows the details of the
execution:

<> Code 171 Pull requests ® Actions B Projects 00 wiki @ Security | Insights €83 Settings

o Update node.js.yml Node js CI #7 G Re-run all jobs
@] Triggered via push 8 minutes ago Status Total duration Artifacts
Jobe ® mikaelkrief pushed - 6ad4e76 main Success 47s -
ol
@ build (12x)

. node.js.yml
© build (14x) on: push
@ build (16x)

Matrix: build

@ 3 jobs completed

Show all jobs

.—1

i
|

4

Figure 16.20 — GitHub Actions workflow execution details

The great advantage of GitHub Actions is that it natively provides a very extensive
catalog of actions in its GitHub Marketplace (https://github.com/
marketplace?type=actions) and that it can also develop and publish actions
(https://help.github.com/en/articles/development-tools-for-
github-actions).

https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://help.github.com/en/articles/development-tools-for-github-actions
https://help.github.com/en/articles/development-tools-for-github-actions

486 DevOps for Open Source Projects

In this section, we discussed implementing a CI pipeline in GitHub using the new GitHub
Actions feature, which allows you to integrate DevOps for open source projects. So far in
this chapter, we have focused on code management in GitHub and implementing CI/CD
pipelines for open source projects using GitHub Actions.

In the upcoming sections, we will talk about open source code security. We will start by
learning how to analyze code with SonarCloud.

Analyzing code with SonarCloud

In Chapter 12, Static Code Analysis with SonarQube, we explained the importance of
implementing static code analysis practices. For open source projects, code analysis is
more important because the source code and its binaries are published publicly.

One of the roles of open source is to provide code and components that can be used in
enterprise applications, so this code must be written correctly and without any security
issues.

Previously in this book, we have discussed the fact that SonarQube, with its installations
and uses, is one of the major tools that allows code analysis to take place for enterprise
applications. However, it requires an on-premises infrastructure to be installed, which is
more expensive for a company.

For open source project code analysis, it is possible to use SonarCloud (https://
sonarcloud. io/), which is the same product as SonarQube but comes in a cloud
solution that requires no installation.

SonarCloud has a free plan that allows us to analyze the code of open source public
repository projects from GitHub, BitBucket, or even Azure Repos. For more information
on its price plans, go to https://sonarcloud.io/pricing.

Let's look at how quick it is to set up code analysis for an open source project that's
hosted on GitHub. Before implementing the analysis itself, we will connect to our GitHub
repository in SonarCloud. To do this, we need to access the https://sonarcloud.
io/ page by following these steps:

1. From the aforementioned home page, click on the Log in button:

SonarCIOUd Features What we do v What's new Pricing Explore | Log in ‘

Figure 16.21 - SonarCloud - Log in

https://sonarcloud.io/
https://sonarcloud.io/
https://sonarcloud.io/pricing
https://sonarcloud.io/
https://sonarcloud.io/

Analyzing code with SonarCloud 487

2. Then, choose to log in with your GitHub account, as shown in the following
screenshot:

&

Log in or Sign up
to SonarCloud

) | with GitHub

B | with Bitbucket

W With GitLab

f:’ With Azure DevOps

By logging in, you're agreeing
to our Terms of Service.

Figure 16.22 - SonarCloud - logging in with GitHub

Now, we must configure SonarCloud so that we can create a project that will contain
the analysis of our GitHub project, which is available at ht tps: //github.com/
PacktPublishing/Learning-DevOps-Second-Edition/tree/main/
CHAP16/appdemo. To do this, follow these steps:

1. Once you've connected to SonarCloud with your GitHub account, click on the
Analyze new project button on the home page:

You don't have any favorite projects yet.

Here is how to add projects to this page

Analyze new project |‘ ‘ Favorite projects from your orgs = | | Favorite public projects

Figure 16.23 — SonarCloud - Analyze new project

https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo

488 DevOps for Open Source Projects

SonarCloud proposes a few steps for selecting the target GitHub repository for
analysis. First, choose to Import an organization from GitHub. Then, choose the
Only select repositories option and select the target repository:

®

Install SonarCloud

Install on your personal account Mikael 9

O All repositories
This applies to all current and future repositories.

@ Only select repositories

B Select repositories ~

Selected 1 repository.

% mikaelkrief/Learning-DevOps-Second-Edition X

Figure 16.24 - SonarCloud - selecting a repository

3. Next, mark the checkbox of your repository and associate it with your organization
by clicking on the Set Up button:

Analyze projects - Select repositories

Organization*

©) Mikael mikaelkrief - Import another organization

) Learning-DevOps-Second-Edition o

Don't see your repo? Check your GitHub app configuration

1 repository selected

1 repository will be created as a public project on SonarCloud

Set Up 2

Just testing? You can create a project manually.

Setup a monorepo.

Figure 16.25 - SonarCloud - setting up a repository

4. The project analysis dashboard will be displayed and indicate that the code has not
been analyzed yet.

Analyzing code with SonarCloud 489

With that, we have successfully configured the SonarCloud project. Now, let's analyze the
project in the most basic way by following these steps:

1. In SonarCloud Project, under Configure, choose the recommended option, which
is With GitHub Actions (as we learned in the previous section, Getting started with

GitHub Actions):
sonarcloud My Projects My Issues = Q
Learning-DevOps- Mikael / Leaming-DevOps-Second-Edition / Configure
L Second-Edition
rusLic () W

& Configure o

-

O
With GitHub Actions > e

Figure 16.26 - SonarCloud - using a GitHub Actions template

2. 'Then, follow the indications provided by SonarCloud to create GitHub secrets (with
the SONAR TOKEN secret) inside the GitHub repository and add a new file with
some Sonar configuration:

Learning-DevOps- Mikael / Leamning-DevOps-Second-Edition / Configure
Second-Edition

rusLic () W

L

Analyze with a GitHub Action

& Confi i
¥ Configure @ create a GitHub Secret

Main Branch In your GitHub repository, go to Settings > Secrets and create a new secret with the following details:

@ Inthe Name field, enter SONAR_TOKEN
Pull Requests

@ Inthe Value field, enter ¢] &
Branches
Create or update a .github/workflows/build.yml file

Figure 16.27 — SonarCloud GitHub Actions instructions

490 DevOps for Open Source Projects

3. 'Then, commit this new GitHub Actions workflow file. This will automatically trigger
the SonarCloud analysis of this project.

4. After a few minutes, you will see the result of two executions. First, you will see that
the GitHub Actions workflow has succeeded:

<>Code 11 Pullrequests ~ ® Actions [Projects M Wiki @ Security |+ Insights & Settings

Workflows New workflow Build

build.yml
All workflows

Q_ Filter workflow runs
% Build 1

2o NodejsCl 1 workflow run Event~ Statusv Branchv Actor~
@ Update sonar-project.properties e B 2 minutes ago
Build #3: Commit 1d7259c pushed by mikaelkrief e 2m24s

Figure 16.28 - GitHub Actions Sonar analyze

Then, you will see the analysis in the SonarCloud dashboard, as shown in the
following screenshot:

Learning-DevOps- Miel | Leaming-DevOps-Second-Edition | § main
Second-Edition
Summary Issues Security Hotspots ~ Measures Code Activity
pustc () W —
35k Lines of Code Last analysis 2 minutes ago: (@ 1d7259¢5 Update sonar-project properties

i Ooverview

Quality Gate 2

§ MainBranch o Not computed [setNew Code Defnition
The Quality Gate helps you see if your Nex s deployable o
i) Pull Requests)
4 Branches 1
¥¥ RELIABILITY @ MAINTAINABILITY
26 EO) e ()
9 & SECURITY @ SECURITY REVIEW
O Vulnerabilities o 9 Security Hotspots O 0.0% Reviewed G
€ Information
& Administration COVERAGE DUPLICATIONS
0, 0, 0\
00 A) Coverage 1 7 A) Duplications
& Collapse

Figure 16.29 - SonarCloud analysis results

So, with each new code commit on this repository, either directly or via merging a pull
request, code analysis will be triggered and the SonarCloud dashboard will be updated.

It is clear that our end goal is to integrate SonarCloud analysis into a CI/CD pipeline, so
here are some resources to help us integrate it:

« Ifyou're using Azure DevOps, here is a complete tutorial that will help you integrate
SonarCloud into the pipeline: https://docs.microsoft.com/en-us/
labs/devops/sonarcloudlab/.

https://docs.microsoft.com/en-us/labs/devops/sonarcloudlab/
https://docs.microsoft.com/en-us/labs/devops/sonarcloudlab/

Detecting security vulnerabilities with WhiteSource Bolt 491

« Ifyou're using Travis CI, which we looked at in this chapter, take a look at
the following documentation: https://docs.travis-ci.com/user/
sonarcloud/.

In this section, we learned how to configure SonarCloud, a cloud platform that analyzes
static code. We did this to analyze the source code of an open source project on GitHub

via a continuous integration process. Then, we looked at the result of this analysis on the
dashboard.

In the next section, we will look at another aspect of open source code security, which is
analyzing code vulnerabilities using WhiteSource Bolt.

Detecting security vulnerabilities with
WhiteSource Bolt

Due to their public visibility, open source projects or components are highly exposed
to security vulnerabilities because it is easier to unintentionally inject a component
(a package or one of its dependencies) containing a security vulnerability into them.

In addition to static source code analysis, it is also very important to continuously check
the security of packages that are referenced or used in our open source projects.

Many tools are available that we can use to analyze the security of referenced packages
in applications, such as SonaType AppScan (https://www.sonatype.com/
appscan), Snyk (https://snyk.1io/), and WhiteSource Bolt (https://bolt.
whitesourcesoftware.com/).

Note

For more information on open source vulnerability scanning tools, take a
look at the following article, which lists 13 tools that analyze the security of
open source dependencies: ht tps: //techbeacon. com/app-dev-
testing/13-tools-checking-security-risk-open-
source-dependencies.

Among all these tools, we will look at WhiteSource Bolt (https://bolt.
whitesourcesoftware.com/), which is available as a free plan, can analyze the
package code of many development languages, and allows you to directly integrate with
GitHub and Azure DevOps.

https://docs.travis-ci.com/user/sonarcloud/
https://docs.travis-ci.com/user/sonarcloud/
https://www.sonatype.com/appscan
https://www.sonatype.com/appscan
https://snyk.io/
https://bolt.whitesourcesoftware.com/
https://bolt.whitesourcesoftware.com/
https://techbeacon.com/app-dev-testing/13-tools-checking-security-risk-open-source-dependencies
https://techbeacon.com/app-dev-testing/13-tools-checking-security-risk-open-source-dependencies
https://techbeacon.com/app-dev-testing/13-tools-checking-security-risk-open-source-dependencies
https://bolt.whitesourcesoftware.com/
https://bolt.whitesourcesoftware.com/

492 DevOps for Open Source Projects

Note

The complete documentation on integrating White Source

Bolt in GitHub is available at ht tps: //whitesource.
atlassian.net/wiki/spaces/WD/pages/556007950/
WhiteSource+Bolt+for+GitHub.

In our case, we will use it directly in GitHub to analyze the security of an application
whose sources are available here: https://github.com/PacktPublishing/
Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo.

To do this security analysis, we must install and configure WhiteSource Bolt on our
GitHub account and trigger a code analysis. Follow these steps to learn how to do this:

1. Inaweb browser, gotohttps://bolt.whitesourcesoftware.com/
github/ and click on the GitHub APP button to install WhiteSource Bolt on your
GitHub account.

2. You will be redirected to the WhiteSource Bolt application, which can be found
on the GitHub Marketplace (https://github.com/marketplace/
whitesource-bolt). To install it using the free plan, click on the Install it for
free button at the very bottom of the page, as shown in the following screenshot:

Pricing and setup

WhiteSource Bolt $0 WhiteSource Bolt
Unlimited number of repositories per user. Up to 5 scans per repo per day. Wh |teS ource BO |t

Unlimited number of repositories per user. Up to 5
scans per repo per day.

+ Free

Account: mikaelkrief +

Install it for free Nexli Confirm your installation
location.

WhiteSource Bolt is provided by a third-party and is governed by
separate privacy policy and support contact.

Figure 16.30 — Installing WhiteSource Bolt

3. Confirm that you're purchasing the application for $0 by clicking on the Complete
order and begin installation button. Then, on the next page, confirm that
WhiteSource Bolt has been installed on your GitHub account.

https://whitesource.atlassian.net/wiki/spaces/WD/pages/556007950/WhiteSource+Bolt+for+GitHub
https://whitesource.atlassian.net/wiki/spaces/WD/pages/556007950/WhiteSource+Bolt+for+GitHub
https://whitesource.atlassian.net/wiki/spaces/WD/pages/556007950/WhiteSource+Bolt+for+GitHub
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/tree/main/CHAP16/appdemo
https://bolt.whitesourcesoftware.com/github/
https://bolt.whitesourcesoftware.com/github/
https://github.com/marketplace/whitesource-bolt
https://github.com/marketplace/whitesource-bolt

Detecting security vulnerabilities with WhiteSource Bolt 493

Once the installation has finished, you'll be redirected to the WhiteSource Bolt

account creation page, where you must fill in your full name and country and then
validate the form.

4. Now, activate the Issues features in GitHub by going to the Settings tab of the
repository, which contains the code to scan, and checking the Issues checkbox, as
shown in the following screenshot:

Features

Wikis

Restrict editing to collaborators only
Public wikis will still be readable by everyone.

Issues

Issues integrate lightweight task tracking into your repository. Keep projects on track with issue labels and milestones, and reference
them in commit messages.

Figure 16.31 - GitHub - activating issues

5. To configure the WhiteSource analysis on this repository, you must validate and
merge the new pull request that was automatically created when you installed

WhiteSource Bolt.
Filters ~ is;pr is:;open £ Labels 10 =* Milestones 0 New pull request
O [1 10pen + 1Closed Author + Labels Projects - Milestones + Reviews - Assignee + Sort +

F =
0 [) Configure WhiteSource Bolt for GitHub v
#2 opened 1 hour ago by whitesource-bolt-for-github | bot

Figure 16.32 - WhiteSource Bolt issue configuration
This pull request adds a . whitesource file that is used for configuration at the
root of the repository.

6. Finally, perform code analysis by committing the code of this application in the
GitHub repository.

494 DevOps for Open Source Projects

7. After a few minutes, you will see a list of security issues in the Issues tab of the
repository.

¢»Code (lssues 3 [Pullrequests © @ Actions [l Projects 0) Security |li Insights £ Settings

Filters « isissue is;open © Labels 1 =* Milestones 0 m

O @ 30pen v 0Closed Author » Labels » Projects = Milestones + Assignee ~ Sort -

O ® Ws-2018-0236 (Medium) detected in mem-1.1.0.tgz EC A ae]

#4 opened 1 minute ago by whitesource-bolt-for-github | bot

O @ CVE-2019-11358 (Medium) detected in jquery-3.3.1.min.js, jquery-3.3.1js

security vulnerability

#3 opened 1 minute ago by whitesource-bolt-for-github | bot

O ® Ws-2019-0019 (Medium) detected in braces-1.8.5.tgz

#2 opened 1 minute ago by whitesource-bolt-for-github | bot

Figure 16.33 — WhiteSource analysis issues on GitHub

8. To uncover the full details of a security issue, simply click on the desired issue,
read it, and take the information that's provided in the description of the issue into
consideration.

CVE-2019-11358 (Medium) detected in jquery-3.3.1.min,js, = | E2E=
jquery-3.3.1js #3

whitesource-bolt-for-github | bot | opened this issue 1 minute ago - 0 comments

|
n whitesource-bolt-... | bot | commented 1 minute ago +@ - o

v Assignees

No one—assign yourself

CVE-2019-11358 - Medium Severity Vulnerability

Labels o
v Bl vulnerable Libraries - jguery-3.3.1.min s, jquery-3.3.1js
» jquery-3.3.1.minjs

. ; Projects #

P jquery-3.3.1js

None yet
Found in HEAD commit: 64bf284ae4358b2a0bb8e5d7cf619e0050cb8ab0

Milestone o

v . Vulnerability Details
No milestone

jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles
jQuery.extend(true, {J, ..) because of Object.prototype pollution. If an unsanitized source object
contained an enumerable proto property, it could extend the native Object.prototype.

Notifications Customize

) Subscribe

Publish Date: 2019-04-20 You're not receiving notifications from

this thread.
URL: CVE-2019-11358

» @ cvss 3 score Details (6.1) 0 participants

> ‘ Suggested Fix

ﬂ Lock conversation

Figure 16.34 - WhiteSource Bolt — analyzing the details

Summary 495

We will have to fix all of these problems and redo code commits to trigger new
WhiteSource Bolt scans and ensure that we have a secure application for those who will
use it.

In this section, we learned how to analyze the code of open source projects using
WhiteSource Bolt. We installed it and triggered a code analysis that revealed security
issues in our demo application.

Summary

This chapter was dedicated to the DevOps best practices that can be applied to an open
source project, especially on GitHub. In this chapter, we learned how to collaborate on
open source code, starting with repository creation using GitHub and forks. Then, we
learned how to use pull requests and how to share binaries in GitHub Releases.

After that, we implemented continuous integration processes with GitHub Actions, which
is fully integrated with GitHub.

Finally, we learned how to analyze open source code for static code analysis with
SonarCloud and security vulnerability analysis with WhiteSource Bolt.

In the next chapter, we will summarize every DevOps best practice we have talked about
in this book.

Questions

1. In GitHub, can I modify the code of a repository of another user?

2. In GitHub, which element allows us to merge code changes between two
repositories?

3. Which element allows us to simply display the history of code changes in an open
source project?

4. In GitHub, which feature that was mentioned in this chapter allows us to share
binaries?

5. What two tools that we have looked at in this chapter allow us to analyze the source
code of an open source project?

6. In which GitHub tab are the security issues that have been detected by WhiteSource
Bolt listed?

496 DevOps for Open Source Projects

Further reading

If you want to learn more about using DevOps practices on open source projects,

take a look at GitHub Essentials, by Achilleas Pipinellis, published by Packt Publishing:
https://www.packtpub.com/in/web-development /github-essentials-
second-edition.

https://www.packtpub.com/in/web-development/github-essentials-second-edition
https://www.packtpub.com/in/web-development/github-essentials-second-edition

17

DevOps Best
Practices

We have reached the last chapter of this book and, finally, after reading everything, you
are probably asking yourself: What are the best practices to apply to effectively implement
a development-operations (DevOps) culture?

This chapter is a great overview of DevOps good practices that we have already seen and
that will allow you to practice all the elements we have seen in this book.

We will discuss best practices in automation, tooling choice, Infrastructure as Code
(IaC), application architecture, and infrastructure design. We will also discuss good
practices to be applied in project management to facilitate the implementation of

a DevOps culture and practices. Then, we will review best practices for continuous
integration/continuous deployment (CI/CD) pipelines, test automation, and the
integration of security into your DevOps processes.

Finally, we will end this chapter with some best practices for monitoring in a DevOps
culture.

498 DevOps Best Practices

This chapter covers the following topics:

« Automating everything

» Choosing the right tool

o Writing all your configuration in code

« Designing the system architecture

« Building a good CI/CD pipeline

 Integrating tests

o Shifting security left with development-security-operations (DevSecOps)
o Monitoring your system

« Evolving project management

Automating everything

When you want to implement DevOps practices within a company, it is important to
remember the purpose of the DevOps culture: it delivers new releases of an application
faster, in shorter cycles.

To do this, the first good practice to apply is to automate all tasks that deploy, test, and
secure the application and its infrastructure. Indeed, when a task is done manually, there
is a high risk of error in its execution. The fact that these tasks are performed manually
increases the deployment cycles of applications.

In addition, once these tasks are automated in scripts, they can be easily integrated and
executed in CI/CD pipelines. Another advantage of automation is that developers and the
operational team can spend more time and focus their work on the functionality of their
business.

It is also important to start the automation of the delivery process at the beginning of
project development; this allows us to provide feedback faster and earlier.

Finally, automation makes it possible to improve the monitoring of deployments by
putting traces on each action and allows you to make a backup and restore very quickly
in case of a problem.

Automating deployments will, therefore, reduce deployment cycles, and teams can now
afford to work in smaller iterations. Thus, the time to market (TTM) will be improved,
with the added benefit of better-quality applications.

Choosing the right tool 499

However, automation and orchestration require tools to be implemented, and the choice
of these tools is an important element to consider in the implementation of a DevOps
culture.

Choosing the right tool

One of the challenges a company faces when it wants to apply a DevOps culture is the
choice of tools.

Indeed, many tools are either paid for or free and open source and allow you to version
the source code of applications, process automation, implement CI/CD pipelines, and test
and monitor applications.

Along with these tools, scripting languages are also added, such as PowerShell, Bash, and
Python, which are also part of the DevOps suite of tools to integrate.

So, a question I'm often asked is: How do I choose the right DevOps tools that are useful for
my company and business?

In fact, to answer this question, we must remember the definition of DevOps culture
provided by Donovan Brown, which was mentioned in Chapter 1, The DevOps Culture
and Infrastructure as Code Practices, and reproduced here:

"The DevOps culture is the union of people, processes, and products to
enable continuous delivery of value to our end users."

The important point of this definition is that a DevOps culture is the union of Dev, Ops,
processes, and also tools. That is to say, the tools used must be shared and usable by both
Dev and Ops and should be integrated into the same process. In other words, the choice of
tools depends on the teams and the company model.

It is also necessary to take into account the financial system by choosing open source
tools, which are often free of charge; it is easier to use them at the beginning of the
DevOps transformation of the company. That is not the case with paid tools, which are
certainly richer in features and support but require a significant investment.

Concerning scripting languages, I would say that the choice of language must be made
according to the knowledge of the teams. For example, Ops teams that are more trained
on Linux systems will be able to make automation scripts better with Bash than with
PowerShell.

500 DevOps Best Practices

In this book, we have introduced you to several tools, some of which are open source and
free—such as Terraform, Packer, Vault, and Ansible—and others that are paid for—such
as Azure DevOps (for more than five users) or LaunchDarkly—and this is to help you
choose the tools that best suit you.

After this reflection on the choice of tools in the implementation of a DevOps practice, we
will look at another good practice, which is putting everything into code.

Writing all your configuration in code

We have seen throughout the book, especially with the first three chapters on IAC, that
writing the desired infrastructure configuration in code offers many advantages for the
productivity of both teams and the company.

It is, therefore, a very good practice to put everything related to infrastructure
configuration in code. We have seen this in practice with Terraform, Ansible, and Packer,
but many other tools exist that may be better suited to your needs and your organization.
Among these tools, we are not only talking about the major editors, but also about the use
of JavaScript Object Notation (JSON) files, Bash, PowerShell, and Python scripts that
we'll apply to this configuration. The key is to have a description of your infrastructure in
code that is easy for a human to read, and tools that are adapted to you, as discussed in the
previous section.

Moreover, this practice continues to evolve in other fields, as we have seen in Chapter 14,
Security in the DevOps Process with DevSecOps, with the use of InSpec, which allows
us to describe the compliance rules of the infrastructure in code.

We have also seen this IaC practice in several chapters of this book with what is called
Pipeline as Code (PaC), with GitLab CI, Travis CI, GitHub Actions, and also Azure
Pipelines, which also allows a YAML Ain't Markup Language (YAML) pipeline mode
(this mode has not been discussed in this book).

Putting any configuration into code is a key practice of the DevOps culture to take into
account from the beginning of projects for both operational and development teams. For
developers, there are also good practices for designing the application and infrastructure
architecture, as we'll discuss in the next section.

Designing the system architecture 501

Designing the system architecture

A few years ago, all services of the same application were coded in the same application
block. This architecture design was legitimate since the application was managed in

a waterfall model (https://activecollab.com/blog/project-management/
waterfall-project-management -methodology), so new versions of the
application were deployed in very long cycles. Since then, many changes have taken place
in software engineering practices, starting with the adoption of the agile method and

a DevOps culture, and then continuing with the arrival of the cloud.

This evolution has brought many improvements, not only in applications but also in their
infrastructure.

However, in order to take advantage of an effective DevOps culture to deploy an
application in the cloud, there are good practices to consider when designing software
architecture and also when designing infrastructure.

First of all, cloud architects must work hand in hand with developers (or solution
architects) to ensure that the application developed is in line with the different
components of the architecture and that the architecture also takes into consideration
the different constraints of the application.

In addition to this collaboration, security teams must also provide specifications that will
be implemented by developers and cloud architects.

In order to be able to deploy a new version of the application more frequently without
having to impact all of its features, it is a good practice to separate the different areas of
the application into separate code at first, and then into different departments at a later
stage. Thus, the separate code will be much more maintainable and scalable and can be
deployed faster without having to redeploy everything.

Note

This method of separating code into several services is part of the
architecture pattern called microservices; to learn more, read the following
comprehensive article: https://microservices.io/patterns/
microservices.html.

Once decoupled, however, there is still a need to control dependency in order to
implement a CI/CD pipeline that takes into account all the dependencies of the
application.

https://activecollab.com/blog/project-management/waterfall-project-management-methodology
https://activecollab.com/blog/project-management/waterfall-project-management-methodology
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html

502 DevOps Best Practices

In Chapter 15, Reducing Deployment Downtime, we discussed another good practice that
allows deployment in production more frequently, which consists of encapsulating the
functionalities of the application in feature flags. These feature flags must also be taken
into account when designing the application, as they allow the application to be deployed
in the production stage, enabling/disabling its features dynamically without having to
redeploy it.

Finally, the implementation of unit tests and the logging mechanism must be taken into
account as soon as possible in the development of the application because these allow
feedback on the state of the application to be shared very quickly in its deployment cycle.

A DevOps culture involves the implementation of CI/CD pipelines; as we have just seen,
this requires changes in the design of applications, with the separation of functionalities
to create less-monolithic applications, the implementation of tests, and the addition of

a logging system.

After considering good practices for application design, we will explore some good
practices for the implementation of CI/CD pipelines.

Building a good CI/CD pipeline

In this book, we have dedicated a complete chapter, Chapter 7, Continuous Integration
and Continuous Delivery, to the creation of CI/CD pipelines using different tools such
as GitLab CI, Jenkins, and Azure Pipelines, in which we have already mentioned the
prerequisites for the implementation of CI/CD pipelines.

We also discussed the CI/CD process in Chapter 16, DevOps for Open Source Projects, with
some examples of a CI pipeline for open source projects such as Travis CI and GitHub
Actions.

Building a good CI/CD pipeline is indeed an essential practice in a DevOps culture and,
together with the correct choice of tools, allows for faster deployment and better-quality
applications.

One of the best practices for CI/CD pipelines is to set them up as early as the project
launch stage. This is especially true for the CI pipeline, which will allow the code (at least
the compilation step) to be verified when writing the first lines of code. Then, as soon as
the first environment is provisioned, immediately create a deployment pipeline, which will
allow the application to be deployed and tested in this environment. The rest of the CI/
CD pipeline process's tasks, such as unit-test execution, can be performed as the project
progresses.

Integrating tests 503

In addition, it is also important to optimize the processes of the CI/CD pipeline by having
pipelines that run quickly. These are used to provide quick feedback to team members
(especially for CI) and also to avoid blocking the execution queue of other pipelines that
may be in the queue.

Thus, if some pipelines take too long to run, such as integration tests (which can be
long), it may be a good idea to schedule their execution for hours with less activity,
such as at night.

Finally, it is also important to protect sensitive data embedded in CI/CD pipelines. So, if
you use a configuration management tool in your pipelines, don't leave information such
as passwords, connection strings, and tokens visible to all users.

To protect this data, use centralized secret management tools such as Vault, which we saw
in Chapter 14, Security in the DevOps Process with DevSecOps, or use Azure Key Vault
(AKYV) if you have an Azure subscription.

These are some of the best practices for the implementation of CI/CD pipelines; we have
mentioned other good practices for CI/CD pipelines that you can study in the different
chapters of this book and in other books dedicated to DevOps cultures.

As a follow-up to the good practices for CI/CD pipelines, let's review good practices for
the integration of tests into DevOps processes.

Integrating tests

Testing is, in today's world, a major part of the DevOps process, but also of development
practices. Indeed, it is possible to have the best DevOps pipeline that automates all
delivery phases, but without the integration of tests, it loses almost all its efficiency. For my
part, I think that the minimum requirement for a DevOps process is to integrate at least
the execution of unit tests of the application. In addition, these unit tests must be written
from the first line of code of the application using testing practices such as test-driven
development (TDD) (https://hackernoon.com/introduction-to-test-
driven-development-tdd-61al3bc92d92) and behavior-driven development
(BDD), and in this way, the automatic execution of these tests can be integrated into the
CI pipeline.

However, it is important to integrate other types of tests, such as functional tests or
integration tests, that allow the application to be tested functionally from start to finish
with the other components of its ecosystem.

https://hackernoon.com/introduction-to-test-driven-development-tdd-61a13bc92d92
https://hackernoon.com/introduction-to-test-driven-development-tdd-61a13bc92d92

504 DevOps Best Practices

It is certainly true that the execution of these tests can take time; in this case, it is possible
to schedule their execution at night. But these integration tests are the ones that will
guarantee the quality of the application's smooth operation during all stages of delivery,
from deployment to production.

However, there is often a very bad practice of disabling the execution of tests in the

CI pipeline in case their execution fails. This is often done to avoid the blocking of the
complete CI process and thus deliver faster in production. But keep in mind that errors
detected by the unit tests, including ones that would have been detected by tests that have
been disabled, will be detected in the production stage at some point, and the correction
of the failed code will cost more time than if the tests had been enabled during CI.

We have also learned about other types of tests in this book, such as code analysis tests
or security tests, which are not to be ignored. The sooner they are integrated into CI/CD
pipelines, the more value will be added for maintaining code and securing our application.

To summarize, you should not ignore the implementation of tests in your applications and
their integration into CI/CD pipelines, as they guarantee the quality of your application.

After good practices for test integration, I suggest you see what good practices there are
for the integration of security in your CI/CD processes.

Shifting security left with DevSecOps

As we discussed in Chapter 14, Security in the DevOps Process with DevSecOps, security
and compliance analyses must be part of DevOps processes. However, in companies, there
is often a lack of awareness among development teams about security rules, and this is
why security is implemented too late in DevOps processes.

To integrate security into processes, it is, therefore, necessary to raise awareness among
developers of aspects of application code security, but also of the protection of CI/CD
pipeline configuration.

In addition, it is also necessary to eliminate the barrier between DevOps and security

by integrating security teams more often into the various meetings that bring together
Dev and Ops teams, thus ensuring better consistency between developers, operational
teams, and also security. Regarding the choice of tools, don't use too many different tools,
because the goal is for these tools to also be used by developers and be integrated into CI/
CD pipelines. It is, therefore, necessary to select a few tools that are automated, do not
require great knowledge of security, and provide reports for better analysis.

Monitoring your system 505

Finally, if you don't know where to start when it comes to analyzing the security of the
application, work with simple security rules that are recognized by communities, such as
the top 10 Open Web Application Security Project (OWASP) rules (https://www.
owasp.org/index.php/Category:OWASP Top Ten Project), which we saw in
Chapter 13, Security and Performance Tests. You can use the Zed Attack Proxy (ZAP) tool,
which uses these 10 rules, to perform security tests on a web application.

These are some good practices for integrating security into a DevOps culture in order to
achieve a DevSecOps culture. We will now view some good practices for monitoring.

Monitoring your system

One of the main elements for the success of a DevOps culture is the implementation of
tools that will continuously monitor the state of a system and applications. Monitoring
must be implemented at all levels of the system by involving all teams, with the aim of
having applications with real added value for the end user.

Indeed, the first component that can be monitored is the application itself, by
implementing, as soon as possible, a logging or tracing system that will serve to gather
information on the use of the application. Then, we will measure and monitor the state of
the infrastructure, such as the random-access memory (RAM) and central processing
unit (CPU) level of the virtual machines (VMs) or the network bandwidth. Finally, the
last element that must be monitored is the status of DevOps processes. It is, therefore,
important to have metrics on the execution of CI/CD pipelines, such as information on
the execution time of pipelines, or the number of pipelines that have executed successfully
or failed. With this data, for example, we can determine the deployment speed of an
application.

There are many monitoring tools, such as Prometheus, Grafana, New Relic, Nagios, and
others that are integrated into the various cloud providers, such as Azure Application
Insights or Azure Monitor Logs.

Concerning good practices for monitoring, I would say that it is important to target

the key performance indicators (KPIs) that are necessary for you and that are easy

to analyze. It is useless to have a monitoring system that captures a lot of data or an
application that writes a lot of logs, as it's too time-consuming when it comes to analyzing
this information. In addition, on the volume of the captured data, we need to take care

in ensuring its retention. The retention time of the data must be evaluated, and different
teams should be consulted. Too much retention can cause capacity saturation on VMs

or high costs for managed components in the cloud, and with too little retention, the log
history is shorter, and therefore you can lose track of any problems.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

506 DevOps Best Practices

Finally, when choosing a tool, you must make sure that it protects all the data that is
captured, that the dashboards the tools present are understandable enough by all team
members, and that it is integrated into a DevOps process.

We have explained that monitoring is a practice that must be integrated into a
DevOps culture, taking into account some points of good practice that can improve
communication between Dev and Ops and improve product quality for the end users.

After reviewing DevOps best practices with automation, CI/CD pipelines, and
monitoring, we will take an overview of DevOps practices for project management and
team organization.

Evolving project management

We have previously discussed some good DevOps practices to apply to projects, but all
this can only be implemented and realized with a change in the way that projects are
managed and teams are organized.

Here are some good practices that can facilitate the implementation of a DevOps culture
in project management within companies.

First of all, it should be remembered that a DevOps culture only makes sense with the
implementation of development and delivery practices that will allow applications to

be delivered in short deployment cycles. Therefore, in order to be applicable, projects
must also be managed with short cycles. To achieve this, one of the most suitable project
management methods to apply a DevOps culture that has proven its worth in recent years
is the agile method, which uses sprints (short cycles of 2 to 3 weeks) with incremental,
iterative deployments and strong collaboration between developers.

A DevOps culture just extends the agile methodology by promoting collaboration
between several domains (Dev/Ops/security/testers).

Note

To learn more about the agile method and its different frameworks (Scrum
and Extreme Programming (XP), for example), I recommend http://
agilemethodology.org/, which provides a lot of documentation.

http://agilemethodology.org/
http://agilemethodology.org/

Summary 507

In addition, for a better application of DevOps implementations, it is important to
change your organization by no longer having teams organized by areas of expertise,
such as having a team of developers, another team of operations, and a team of testers.
The problem with this organizational model is that the teams are compartmentalized,
resulting in a lack of communication (which we saw in Chapter 1, The DevOps Culture
and Infrastructure as Code Practices, with the wall of confusion). This means that different
teams have different objectives, which slams the brakes on applying good practices for

a DevOps culture.

One of the models that allow for better communication is feature team organization with
multidisciplinary project teams that are composed of people from all fields. In a team, we
have developers, operational staff, and testers, and all these people work with the same
objective.

If you want to know more about Microsoft's DevOps transformation, I suggest you
watch the presentation by Donovan Brown at https://www.agilealliance.org/
resources/sessions/microsoft-devops-transformation-donovan-
brown/, which explains how Microsoft has changed its organization to adapt to a
DevOps culture to continuously improve its products while taking into account user
needs.

We have just seen that to implement a DevOps culture in companies, organizational
changes are required, including agile project management and the composition of
multidisciplinary teams.

Summary

In this final chapter, we have seen that the implementation of a DevOps culture within
projects requires the use of best practices regarding the automation of all manual tasks,
the proper choice of tools, a less-monolithic project architecture, and the implementation
of monitoring.

On a large scale, for the organization of teams and the company as a whole, we have
seen that the agile method, as well as multidisciplinary teams, contribute strongly to the
implementation of a DevOps culture.

To finish this book, my advice to all you readers who are adopting DevOps practices is
to implement and monitor them on small projects and to start by using the tools that are
most familiar and accessible to you. Then, as soon as your DevOps process is working
properly, you can extend this to larger projects.

https://www.agilealliance.org/resources/sessions/microsoft-devops-transformation-donovan-brown/
https://www.agilealliance.org/resources/sessions/microsoft-devops-transformation-donovan-brown/
https://www.agilealliance.org/resources/sessions/microsoft-devops-transformation-donovan-brown/

508 DevOps Best Practices

Questions

SR

What are the advantages of deployment automation?

Is it necessary to use Terraform to do IaC?

What needs to be done to improve security in DevOps processes?

Does monitoring only concern monitoring of the condition of the infrastructure?
Which good practice should be implemented in the application architecture?

In a DevOps organization, how are teams constituted?

Further reading

If you want to know more about DevOps best practices, here are some articles to aid you
in this:

16 Best Practices Of CI/CD Pipeline To Speed Test Automation: https: //www.
lambdatest.com/blog/16-best-practices-of-ci-cd-pipeline-
to-speed-test-automation/

How To Implement Continuous Testing In DevOps Like A Pro?: https://www.
lambdatest.com/blog/how-to-implement-continuous-testing-
in-devops-like-a-pro/

Secure DevOps: https://www.microsoft.com/en-us/
securityengineering/devsecops

9 Pillars of Continuous Security Best Practices: https://devops.com/9-
pillars-of-continuous-security-best-practices/

Top 5 Best Practices for DevOps Monitoring: https://devops.com/top-5-
best-practices-devops-monitoring/

10 Pitfalls to Avoid when Implementing DevOps: https: //opensource . com/
article/19/9/pitfalls-avoid-devops

https://www.lambdatest.com/blog/16-best-practices-of-ci-cd-pipeline-to-speed-test-automation/
https://www.lambdatest.com/blog/16-best-practices-of-ci-cd-pipeline-to-speed-test-automation/
https://www.lambdatest.com/blog/16-best-practices-of-ci-cd-pipeline-to-speed-test-automation/
https://www.lambdatest.com/blog/how-to-implement-continuous-testing-in-devops-like-a-pro/
https://www.lambdatest.com/blog/how-to-implement-continuous-testing-in-devops-like-a-pro/
https://www.lambdatest.com/blog/how-to-implement-continuous-testing-in-devops-like-a-pro/
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.microsoft.com/en-us/securityengineering/devsecops
https://devops.com/9-pillars-of-continuous-security-best-practices/
https://devops.com/9-pillars-of-continuous-security-best-practices/
https://devops.com/top-5-best-practices-devops-monitoring/
https://devops.com/top-5-best-practices-devops-monitoring/
https://opensource.com/article/19/9/pitfalls-avoid-devops
https://opensource.com/article/19/9/pitfalls-avoid-devops

Assessments

Chapter 1: The DevOps Culture and
Infrastructure as Code Practices

1.

DevOps is a contraction that is formed from the words Development and
Operations.

DevOps is a term that represents a culture.
The three axes of DevOps culture are collaboration, process, and tools.

The objective of continuous integration is to get quick feedback on the quality of the
code archived by team members.

The difference between continuous delivery and continuous deployment is that
the triggering of the deployment in production is done manually for continuous
delivery, whereas it is automatic for continuous deployment.

Infrastructure as Code consists of writing the code of the resources that make up an
infrastructure.

Chapter 2: Provisioning Cloud Infrastructure
with Terraform

1
2
3.
4

The language used by Terraform is HashiCorp Configuration Language (HCL).
Terraform's role is as an Infrastructure as Code tool.
No. Terraform is not a scripting tool.

The command that allows you to display the installed version is terraform
version.

The name of the Azure object that connects Terraform to Azure is the Azure Service
Principal.

The three main commands of Terraform are terraform init, terraform
plan,and terraform apply.

510 Assessments

7. 'The Terraform command that allows us to destroy resources is terraform
destroy.

We add the - -auto-approve option to the terraform apply command.

9. 'The purpose of the Terraform state file is to keep the resources and their properties
throughout the execution of Terraform.

10. No, it is not a good practice to store a Terraform state file locally; it must be stored
in a protected remote backend.

Chapter 3: Using Ansible for Configuring laaS
Infrastructure

1. The role of Ansible, as detailed in this chapter, is to automate the configuration
ofa VM.

2. No. We cannot install Ansible on a Windows OS.

3. 'The two artifacts studied in this chapter that Ansible needs to run are the inventory
and the playbook.

4. The option is - -check.
The name of the utility used to encrypt and decrypt Ansible data is Ansible Vault.

6. When using dynamic inventory in Azure, the script is based on VM tags that are
used to return the list of VMs.

Chapter 4: Optimizing Infrastructure
Deployment with Packer

1. The two ways to install Packer are manually or via a script.

2. 'The mandatory sections of a Packer template that are used to create a VM image in
Azure are builders and provisioners.

The command used to validate a Packer template is packer validate.

4. The command that is used to generate a Packer image is packer build.

Chapter 5: Authoring the Development Environment with Vagrant

511

Chapter 5: Authoring the Development
Environment with Vagrant

1.
2.
3.

The role of Vagrant is to create a local development environment.
The Vagrant command to create a VM is vagrant up.

The Vagrant command to connect SSH to the VM is vagrant ssh.

Chapter 6: Managing Your Source Code
with Git

1
2
3.
4

Git is a distributed version control system (DVCS).
The command to initialize a repository isgit init.
The artifact is the commit that consists of saving part of the code.

The command that allows you to save your code in the local repository is git
commit.

The command that allows you to send your code to the remote repository is
git push.

The command that allows you to update your local repository from the remote
repository isgit pull.

The branch is the mechanism that allows you to isolate the code.

GitFlow is a branch management model in Git.

Chapter 7: Continuous Integration and
Continuous Delivery

1.

et

NS vk

The prerequisite for setting up a CI pipeline is to have its code in a source control

manager.

The CI pipeline is triggered every time a team member commits/pushes code.

A package manager is a central repository used to centralize and share packages,

development libraries, tools, or software.

The NuGet package manager allows you to store .NET libraries/frameworks.
Azure Artifacts is integrated into Azure DevOps.

No, it's an on-premises tool that you have to install on a server.

In Azure DevOps, the service that manages CI/CD pipelines is Azure Pipelines.

512 Assessments

8. 'The GitLab services consist of a source code manager, a CI/CD pipeline manager,
and a board for project management.

9. In GitLab CI, a CI pipeline is built with a YAML file named .gitlab-ci.yml.

Chapter 8: Deploying Infrastructure as Code
with CI/CD Pipelines

1. The tool used is Azure Pipelines.

2. 'The provisioning order is Packer, then Terraform, and finally Ansible.

Chapter 9: Containerizing Your Application

with Docker

Docker Hub is a public registry of Docker images.

The basic element is the Dockerfile.

The instruction is FROM.

The command to create a Docker image is docker build.

The instantiation command of a Docker container is docker run.

SR o e

The Docker command to publish an image is docker publish.

Chapter 10: Managing Containers Effectively
with Kubernetes

Kubernetes' role is to manage containers.

In Kubernetes, all objects are written in YAML specification files.

The Kubernetes CLI tool is called kubect1.

The command that applies a deployment in K8s is kubectl apply.

Helm is the package manager for Kubernetes.

AN L

Azure Kubernetes Services is a managed Kubernetes cluster in Azure.

Chapter 11: Testing APIs with Postman

513

Chapter 11: Testing APIs with Postman

Postman is a tool that allows you to perform API tests.
The first element to create is a collection.
In Postman, the API configuration is found in a request.

The collection runner allows you to execute all requests in a collection.

M e

Chapter 12: Static Code Analysis with
SonarQube

1. SonarQube is developed in Java.

2. To install SonarQube, it is necessary to have Java installed.
3. SonarQube is a tool for static code analysis.
4

SonarLint allows developers to do code analysis while they write code.

Chapter 13: Security and Performance Tests

1. No. ZAP is not a tool to analyze the source code of an application.

2. In Postman, the performance metric is the execution time of each request.

Chapter 14: Security in the DevOps Process
with DevSecOps

Its role is to test the compliance of a system or infrastructure.
The package manager is Gem.

The command is inspec exec.

Vault is edited by HashiCorp.

The command is vault server -dev.

No. When installed locally, it can only be used for development and testing.

NS vk WD

In this mode, the data is stored in memory.

Newman is a command-line tool that performs Postman tests in a CI/CD pipeline.

514 Assessments

Chapter 15: Reducing Deployment Downtime

1.
2.

The Terraform option that reduces downtime is create _before destroy.

A blue-green deployment infrastructure is composed of one blue and one green
environment and a router or load balancer.

Both patterns are canary release and dark launch.

The Azure components that allow blue-green deployment are app service slots and
Azure Traffic Manager.

The role of feature flags is to enable or disable features of an application without
having to redeploy it.

The FeatureToggle is a simple feature flag, open source framework for NET
applications.

LaunchDarkly is an SaaS$ solution that frees you from any installation.

Chapter 16: DevOps for Open Source Projects

1.

NS e D

No, to modify the code of another repository, you will need to create a fork of this
repository.

The element that allows the merge is the pull request.

The CHANGELOG . md file allows you to display the release notes.
A release is linked to a Git tag.

In Travis CI, the configuration of a job is written to a YAML file.
The two tools are SonarCloud and WhiteSource Bolt.

Security vulnerabilities are listed in the Issues tab.

Chapter 17: DevOps Best Practices

1.
2.

Deployment automation eliminates manual errors and reduces deployment cycles.

No. Any tool that allows you to script the configuration of an infrastructure can
be used.

Security teams must be integrated with Dev and Ops.
No, monitoring is about applications, infrastructure, and IC/CD pipelines.

In the application, it is a good practice to separate the features or domains of the
application to have code that can be easily deployed.

In the DevOps organizational structure, the teams are multidisciplinary.

Index

A Ansible execution
. log level output, increasing 88
agile method Ansible Galaxy

reference link 506
Amazon Elastic Container Registry (ECR)
reference link 280
Amazon Web Services (AWS) 263, 412
Ansible
configuring 73-75
executing 85, 86
installing 69
installing, with script 69-71
integrating, into Azure
Cloud Shell 71,72
preview/dry run option, using 87, 88

URL 84
Ansible, installing on local
VirtualBox environment
reference link 70
Ansible, installing on OS
reference link 70
Ansible, integrating into
Azure Cloud Shell
reference link 72
Ansible inventory
creating 76

d ic i t 76
running, in Azure Pipelines 252-257 yhathic iverory

using, in Packer template 120

variables, using for configuration 89-92
Ansible artifacts

hosts 73

inventory 73

reference link 78

static inventory 76
ansible-local provisioner

reference link 122
Ansible modules

playbook 73 ibfo ?tnsz link 82
ANSIBLE_CONFIG environment variable clerence
Ansible playbook

reference link 74

integrating, in Packer template 121, 122
Ansible configuration keys tiegrating, in acker template

reference link 121

f link 75
reference lin writing 120, 121

516 Index

ansible-playbook command
reference link 88
Ansible provisioner
reference link 122
Ansible variables
reference link 92
Ansible Vault
about 92
sensitive data, protecting with 93, 94
used, for protecting data 89
application programming
interface (API) 295, 421
apply command line
reference link 53
App Service slots
using 446-448
Artifact Hub
public Helm chart, using 317-320
URL 317
Artifactory from JFrog
reference link 280
automatic CI/CD process 58
automatic mode 94
automation best practices 498
AWS Secrets Manager
reference link 421
az cli command
authentication information 415
parameters 414
az resource
reference link 96
Azure
blue-green deployment, applying 446
configuring, for InSpec 414, 415
SonarQube, installing 380-384
Terraform, configuring 36
Azure Active Directory (AD) 36
Azure AD Service Principal (SP) 116

Azure Artifacts
about 198
advantages 198
Azure CLI command
reference link 37
Azure CLI tool 414
Azure Cloud Shell
Ansible, integrating into 71, 72
Packer, integrating with 108
reference link 34
used, for integrating Terraform 34, 35
Azure Cloud Shell tool suite 414
Azure Container Instances (ACI)
container, deploying with
CI/CD pipeline to 282
containers 291
Docker Compose containers,
deploying 299-301
reference link 282
Terraform code, writing 283-285
Azure Container Registry (ACR)
about 269
reference link 280
Azure DevOps
about 208
features 208
reference link 209
registering with 209
Azure environment variables for Ansible
reference link 95
Azure image
building, with Packer template 116-119
Azure infrastructure
deploying, by writing
Terraform script 40-45
dynamic inventory, using for 95-99
Azure infrastructure compliance
testing, with Chef InSpec 411

Index 517

Azure Key Vault azurerm provider
about 503 reference link 39
reference link 421 azurerm_public_ip
Azure Kubernetes Service (AKS) reference link 43
advantages 328 azurerm remote backend
creating 326, 327 about 60
kubeconfig file, configuring 327 reference link 62
monitoring 329 azurerm_storage_account
reference link 326 reference link 43
scaling 329 Azure SDK for Python
using 325 reference link 98
Azure Pipeline Azure Security Audits, with Pester
about 208, 285 reference link 411
Ansible, running 253-257 Azure Service Principal (SP)
build and release configuration, about 36
creating 366, 367 creating 36, 37
CI/CD pipeline, creating with 329, 330 reference link 36
Newman tests results, Azure Traffic Manager
displaying 372, 373 reference link 450
Packer, running 248-252 using 448-450
Terraform, running 252-257 Azure VMs
Azure Pipelines, for CI/CD about 417
CD pipeline, creating 222-229 creating, with Jenkins 200
CI pipeline, creating 212-221 Packer template, creating
pipeline definition, creating with scripts 109
in YAML file 229-236
using 208 B
Azure Provider
reference link 40 behavior-driven development (BDD) 503
Azure Repos best practices, DevOps
about 171 automation 498
code versioning, with Git 210, 211 CI/CD pipeline, building 502, 503
azurerm_image data block configuration, writing in code 500
reference link 131 project management 506
azurerm_linux_virtual_machine security, integrating 504, 505
reference link 44 system architecture, designing 501, 502
azurerm_network_interface system monitoring 505

reference link 43

518 Index

test integration 503, 504
tool, selecting 499
binaries
sharing, in GitHub releases 478-481
blue environment 443
blue-green deployment
about 443
applying, on Azure 446
canary release pattern 444, 445
dark launch pattern 445
production environment,
improving with 444
blue-green deployments, on Azure
App Service slots, using 446-448
Azure Traffic Manager, using 448-450
builders section, Packer template
about 110-112
code sample in JSON format 111
example code 110
reference link 111

C

canary release pattern 444, 445
centralized systems 154
central processing unit (CPU) 505
changelog file
managing 476-478
reference link 478
Chef
reference link 412
Chef InSpec
used, for testing Azure infrastructure
compliance 411
Chocolatey
about 32,107, 138, 316, 412
URL 32

Chocolatey package for Windows
reference link 423
CI/CD
about 7
implementing 7
CI/CD pipeline
best practices 502, 503
creating, for container 285
creating, with Azure Pipelines 329, 330
implementing 192
implementing, in Azure
Pipelines 285-290
Newman, integrating in 365, 366
tools, for setting up 194
used, for deploying container
to ACI 282
CI/CD process
CD phase 194
CI phase 193
workflow 192
CI pipeline
creating, for SonarQube in
Azure Pipelines 389-392
tasks, defining 218,219
CI process
SonarQube, integrating 387
Cl server 193
clean.sh script
reference link 122
code
analyzing, with SonarCloud 486-491
formatting 56
validating 57
command-line interface (CLI) 411
command-line tools
running, Docker used 293, 294
compute.tf script
reference link 132

Index 519

Concurrent Version System (CVS) 154

configuration in code
best practices 500
configuration manager 194
container
building, on local machine 273
CI/CD pipeline, creating 285
deploying, to ACI with CI/

CD pipeline 282
instantiating 275, 276
running, on local machine 273
testing, locally 276

containers 269
continuous delivery (CD) 10, 11
continuous deployment 7, 12, 13
continuous integration (CI)
about 7, 8
implementing 8, 9
cross-site scripting (XSS) 397
custom Helm chart
creating 321, 322
publishing, in ACR 323-325

D

dark launch pattern 445
data

protecting, with Ansible Vault 89

declarative types 15, 16
deployment downtime

reducing, with Terraform 441-443

destroy command
using, to rebuild 54, 55
destroy command line
reference link 56
development-security-operations
(DevSecOps) tools 196

DevOps
about 4-6
benefits 6
culture 24
best practices 497
key elements 4
DevOps transformation
reference link 507
distributed system 155
Docker
elements 269, 270
help command 268, 269
installing 263
installing, on Windows 265-267
SonarQube, installing via 380
used, for running
command-line tools 292-294
Docker client 263
Docker Compose
configuration file, writing 296

containers, deploying in ACI 299-301

executing 297-299
installing 295, 296
reference link 295
working with 295

Docker Compose binary on Linux
reference link 295

docker-compose CLI
reference link 297

Docker Compose in ACI
reference link 301

Docker daemon 263

Docker Desktop
about 264
enabling, in Kubernetes 306
installation link 266
reference link 265

520 Index

Docker documentation for OS
reference link 268
Docker FAQs
reference link 265
Dockerfile
about 269
creating 270
instructions 271
reference link 272
writing 270, 271
Docker Hub
registering 263-265
URL 264
Docker image
about 269
building 273-275
pushing, into ACR 280
pushing, to Docker Hub 277-279
pushing, to private registry
(ACR) 280-282
reference link 275
registering 264, 265
Docker Registry
about 263, 269
reference link 280
dynamic inventory
about 76
using, for Azure infrastructure 95-99
reference link 99

E

Elastic Kubernetes Service (EKS) 325
end-to-end (E2E) 209
environments

using, to dynamize requests 347-350
executable (EXE) file 266
Extreme Programming (XP) 506

F

feature flags
about 446- 452
LaunchDarkly solution, using 458-463
open source framework, using 452-457
technical solutions 451, 452
feature flags, lifetime
definitive 451
temporary 451
Featureflag.tech
reference link 452
Featureflow
reference link 452
feature toggles 446, 450
fork of repository
creating 470
fully qualified domain name (FQDN) 292

G
Git
command lines 168
configuring 166
installing 157-165
overviewing 154-156
principal command lines 154-156
vocabulary, overviewing 166, 167
Gitflow branch pattern
about 186, 187
strategy 186
tools 188, 189
GitHub
contributing, pull requests used 471-476
contributing to 469, 470
repository, creating 467-469
source code, storing 467

Index 521

GitHub Actions
reference link 482
working with 482-485
GitHub integration plugin 201
GitHub Microsoft repository space
reference link 199
GitHub Package registry
reference link 482
GitHub releases
binaries, sharing 478-481
reference link 481
GitHub webhook
configuring 201-203
GitKraken
URL 188
GitLab 467
GitLab CI
about 236
authentication 237, 238
CI pipeline, creating 242, 243
CI pipeline execution details,
accessing 244, 245
project, creating 238, 240
reference 236
source code, managing 240, 241
using 236
GitOps
about 24
reference link 24
Git process
about 171
code, committing 176-178
code, isolating with branches 181-186
code, updating 180
Git repository, configuring 173-176
Git repository, creating 173-176
remote repository, archiving 178, 179
repository, cloning 179, 180

updates, retrieving 180, 181
working with 172, 173
Git, with command lines
branches, managing 170, 171
commit, creating 169
file, adding for next commit 169
local repository, configuring 168
local repository, initializing 168
local repository, synchronizing
from remote 170
remote repository, retrieving 168
remote repository, updating 170
Google Cloud Platform (GCP) 412
Google Container Registry (GCR)
reference link 280
Google Kubernetes Engine (GKE) 325
Grafana 334
graphical user interface (GUI) 167
green environment 443

H

HashiCorp Configuration
Language (HCL) 28, 109
HashiCorp Vault
used, for protecting sensitive data 421
HCL format
Packer templates, writing with 127-131
HCL template format
reference link 130
HCL variables
reference link 128
Helm
about 315
as package manager 315
charts, publishing in private
registry (ACR) 323

522 Index

custom Helm chart, creating 321, 322

public Helm chart, using from
Artifact Hub 317-320
reference link 316
Helm client
installing 316
Homebrew 34
URL 107
hosted agents
about 216
reference link 216
hosts
configuring, in static
inventory file 78,79
HyperText Markup Language
(HTML) 270
Hypertext Preprocessor (PHP) 377
HyperText Transfer Protocol
Secure (HTTPS) 160

IaC languages and tools
about 14
declarative types 15, 16
programmatic types 16, 17
scripting types 14, 15
IaC topology
about 18
immutable infrastructure,
with container 20
infrastructure, deploying 18
Kubernetes, configuring 21-23
Kubernetes, deploying 21-23
server configuration 19, 20
identifier (ID) 241, 415

Infrastructure as Code (IaC)
benefits 14
practice 13
tools 102
init command line
reference link 50
in-memory 425
InSpec
Azure, configuring 414, 415
executing 419-421
installing 412-414
installing, via script 412
manual installation 412
overview 412
reference link 411
InSpec Azure resource pack
reference link 417
InSpec installation for OSes
reference link 413
InSpec tests
infrastructure compliance
tests, writing 417, 418
InSpec profile file, creating 416
writing 415
InSpec with Chocolatey package
reference link 412
instructions, Dockerfile
ADD 271
CMD 272
COPY 271
ENTRYPOINT 272
ENV 272
EXPOSE 272
FROM 271
RUN 272
VOLUME 272
WORKDIR 272

Index 523

integrated development
environment (IDE) 158
interactive mode 94
inventory file
reference link 77

J

JavaScript Object Notation
(JSON) 436, 500

Jenkins 199

Jenkins CI job
configuring 203-206
executing 206, 207

Jenkins, for CI/CD implementation
configuring 199-201
GitHub webhook, configuring 201-203
installing 199-201
Jenkins CI job, configuring 203-206
Jenkins job, executing 206, 207
using 199

K

Key Management Service (KMS) for GCP
reference link 421
KeyPass
reference link 421
key performance indicators (KPIs) 505
kind
reference link 307
kubeadm
reference link 307
kubectl command line
Kubernetes applications,
debugging with 331

Kubernetes
about 21, 424
applications, debugging with
kubectl command line 331
applications, debugging with
web dashboard 332
applications, monitoring 330
applications, monitoring
with tier tools 332
architecture overview 305
CI/CD pipeline, creating with
Azure Pipelines 329, 330
dashboard, configuring 309-311
dashboard, installing 308
Docker Desktop, enabling 306
installing, on local machine 306, 307
master 305
monitoring metrics 333, 334
nodes 305
pods 305
SonarQube, installing 384, 385
Kubernetes application deployment
example 311-314
kv get command
reference link 429
kv put command
reference link 427

L

LastPass

reference link 421
LaunchDarkly

URL 452

using 458-463
LaunchDarkly SDKs

reference link 458

524 Index

LaunchDarkly.ServerSdk
reference link 460
Lens
about 333
dashboard 333
URL 333
lifecycle Meta-Argument
reference link 443
Linux
Packer, installing by script 105, 106
Terraform, installing by script 29-31
Vagrant, installing by script 139

M

macOS
Packer, installing by script 107
Terraform, installing by script 34
master 305
merge operation 471
microservices
reference link 501
minikube
reference link 307
mitigation techniques
reference link 397
monitoring metrics, Kubernetes
about 333
reference link 334
multi-factor authentication (MFA) 397

N

network interface 42

Newman
about 357
command line, running 362-364
installing 358

integrating, in CI/CD pipeline
process 365, 366
Postman collections, preparing for 359
reference link 358
Nexus Repository 197, 198
Node.js
URL 358
Node Package Manager (npm) 32, 195
nodes 305
npm install task
parameters 369
npm run newman task
parameters 370
NuGet 32
NuGet package manager 195, 196
NuGet server instance
reference link 196

o)

Octant

about 332

URL 332
open source framework

using, for feature flags 452-457
Open Web Application Security

Project (OWASP)

about 396

reference link 396, 505
operating system (OS) 166

P

package manager 195

package manager, in CI/CD process
Azure Artifacts 198
Nexus Repository OSS 196-198
npm repository 196

Index 525

NuGet server 196
using 195, 196
Packer
about 442
configuring, for Azure
authentication 123, 124
download link 104
executing 123
image, using with Terraform 131, 132
installation, verifying 108, 109
installing 104
installing by script 104
installing by script, on Linux 105, 106
installing by script, on macOS 107
installing by script, on Windows 107
integrating, with Azure Cloud Shell 108
manual installation 104
overview 103
reference link, for installation 106
running, for VM image
generation 124-126
running, in Azure Pipelines 248-252
template validity, checking 124
Packer build command
reference link 127
Packer HCL
reference link 109
Packer plugins
reference link 128
Packer template
Ansible playbook, integrating 121, 122
Ansible, using 120
Azure image, building 116-119
builders section 110-112
creating for Azure VMs, with scripts 109
provisioners section 112-114
reference link 119
structure 110

variables section 115, 116
writing, with HCL format 127-131
PATH environment variable, for Linux
reference link 104
PATH environment variable, on Windows
reference link 104
penetration testing
applying, with ZAP 396, 397
performance testing tools
reference link 402
Pester
reference link 411
Pipeline as Code (PaC) 500
pipeline definition
creating, in YAML file 229-235
plan command line
reference link 52
Platform-as-a-Service (PaaS) 18
playbook
executing 80
improving, with roles 83, 84
reference link 84
writing 81
pods 305
Postman
about 340
account, creating 341
download link 342
environments, exporting 360, 361
installing 342
performance tests, running
with 401-404
reference link, for environments
and variables 350
URL 341
Postman Collection
creating, with requests 343
exporting 359, 360

526 Index

preparing, for Newman 359 Prometheus 334
properties, editing 344 provisioners section, Packer template
reference link 347 about 112-114
settings, editing 343 reference link 112,114
Postman Collection Runner Publish Test Results task
about 355 parameters 370-372
execution steps 356 pull requests
reference link 355 about 471
Postman request tests performing 471-476
executing, locally 353-355
Postman Sandbox R
reference link 357
Postman tests random-access memory (RAM) 505
reference link 353 real-time code analysis
writing 350-353 with SonarLint 385, 386
prerequisites for SonarQube registry 263
reference link 379 regular expressions (RegEx) 169
private container registry, release notes
creating with Azure CLI managing 476-478
reference link 280 remote backend
private container registry, creating about 60
with Azure portal reference link 60
reference link 281 used, for protecting state file 60-64
private container registry, creating remote repository
with Azure PowerShell archiving 178, 179
reference link 280 repository manager 194
private Helm repository request
reference link 323 about 344
using 323 configuring 346, 347
private registry (ACR) creating 345
Helm chart, publishing 323 dynamizing, with environments 347-350
production environment dynamizing, with variables 347-350
improving, with blue-green parameters 344
deployment 444 Postman Collection, creating 343
programmatic types 16, 17 RimDev.FeatureFlags
project management reference link 453

best practices 506, 507 role-based access control (RBAC) 308

Index 527

Rollout
reference link 452
Ruby 412

S

script
used, for installing Ansible 69-71
scripting types 14, 15
Secure Shell (SSH) 160
Secure Sockets Layer (SSL) 201
security integration
best practices 504
security testing
with ZAP 397-400
security vulnerabilities
detecting, with WhiteSource
Bolt 491-495
self-hosted agents
about 216
reference link 216
sensitive data
protecting with Ansible Vault 92-94
protecting, with HashiCorp Vault 421
SHA-1 166
Snyk
URL 491
software-as-a-service (SaaS) 194
SonarCloud
about 486
code, analyzing with 486-490
URL 486
SonarLint
about 385
URL 385
used, for real-time code
analysis 385, 386

SonarQube
download link 379
exploring 377
installing 377, 379
installing, in Azure 380-384
installing, manually 379
installing, on Kubernetes 384, 385
installing, via Docker 380
reference link 377
SonarQube architecture
client-side components 378
overview 377
reference link 379
server side components 378
SonarQube deployment, on Kubernetes
reference link 384
SonarQube extension
reference link 389
SonarQube, integrating into CI process
CI pipeline, creating for SonarQube
in Azure Pipelines 389-392
SonarQube, configuring 388, 389
task, performing 388
SonarQube plugins
URL 377
SonarQube server installation
reference link 379
SonarSource
URL 376
SonaType AppScan
URL 491
Sonatype company
reference link 196
source code
storing in GitHub 467
Source Code Manager (SCM) 8
source control version (SCV) 193

528 Index

Sourcetree
URL 188
stages 194
staging 10
state file
protecting, with remote backend 60-64
static inventory file
about 76-78
hosts, configuring 78, 79
parameters, configuring per host 78
testing 79, 80
Subversion (SVN) 154, 213
Sysprep usage in Packer templates
reference link 114
system architecture design
best practices 501, 502
system monitoring
best practices 505

T

tag handling, in Git
reference link 479
Team Foundation Version
Control (TFVC) 154
templates 103
Terraform
about 28, 293
advantages 28, 29
best practices 45-47
changes, applying 52-54
configuring, for Azure 36
configuring, for local development
and testing 39, 40
infrastructure changes,
previewing 50, 51
initialization 49, 50
installing 28

installing, by script 29
installing, by script on Linux 29-31
installing, by script on macOS 34
installing, by script on Windows 32
integrating, with Azure
Cloud Shell 34, 35
manual installation 29
Packer image, using with 131, 132
reference link 28
reference link, for installation 31
running, for deployment 47, 48
running, in Azure Pipelines 252-257
used, for reducing deployment
downtime 441-443
Terraform ACI resource
reference link 283
terraform apply command 435
Terraform code
example 433, 434
executing 434, 436
reference link 434
Vault secrets, obtaining 432, 436
writing, for Azure Container
Instances (ACI) 283-285
terraform fmt command line
reference link 56
terraform init command 435
Terraform life cycle
about 54
within CI/CD process 58, 59
terraform plan command 435
Terraform provider
configuring 38, 39
Terraform script
writing, to deploy Azure
infrastructure 40-45
Terraform style guide
reference link 56

Index 529

Terraform syntax Vagrant Boxes
reference link 41 about 140
terraform.tfstate 60 Vagrant Cloud, using for 140-142
Terraform Vault provider Vagrant CLI
reference link 433 used, for creating VM locally 145
test-driven development (TDD) reference link 146
reference link 503 Vagrant Cloud
test integration reference link 142
best practices 503, 504 Vagrant configuration file
tier tools elements 140
Lens 333 reference link 144
Octant 332 writing 140-144
time to market (TTM) 498 variables
token authentication, Kubernetes using, in Ansible for configuration 89-92
reference link 311 using, to dynamize requests 347-350
tool selection variables section, Packer template
best practices 499 about 115,116
Traffic Manager routing methods reference link 116
reference link 449 Vault
about 421
U features 421
local installation 422-424
Uniform Resource Locator (URL) 168 secrets, obtaining in Terraform
unique identifier (UID) 313 code 432,436
unit testing, in PowerShell secrets, reading 428, 429
reference link 411 secrets, writing 426, 427
universal package 198 server, running 424, 426
user interface (UI) mode 229 UI web interface, using 429-432
Vault architecture topologies
V reference link 422
Vault backends
Vagrant reference link 425
installing 136 Vault features
installing, by script on Linux 139 reference link 422
installing, by script on Windows 138 Vault for Linux
installing manually, on download link 423
Windows 136-138 vault_generic_secret data

reference link, for installation 139 reference link 433

530 Index

Vault installation on Kubernetes
reference link 424
Vault OSS Ul
reference link 432
Vault server in development mode
reference link 426
version control system (VCS) 208
Virtual Machine (VM)
about 199, 415, 442, 505
connecting to 147, 148
creating 146, 147
locally, creating with Vagrant CLI 145
virtual network (VNet) 415
Visual SourceSafe (VSS) 154
Visual Studio Code (VS Code) 156
Visual Studio Marketplace
reference link 288
Visual Studio Team Services (VSTS) 208
VM image
generating, with Packer 124-127
volumes 269
VS Code IDEs 385

W

waterfall model

reference link 501
Web Application Firewall (WAF) 396
Web App slots

reference link 448
web dashboard

Kubernetes applications,

debugging with 332

web security

applying, with ZAP 396, 397

WhiteSource Bolt
security vulnerabilities,
detecting with 491-495
URL 491
Windows
Packer, installing by script 107
Terraform, installing by script 32, 33
Vagrant, installing by script 138
Vagrant, installing manually 136-138
Windows Subsystem for Linux
2 (WSL?2) 265
Windows Subsystem for Linux (WSL)
reference link 266
worker nodes 305
workflows 482

Y

YAML Ain't Markup Language
(YAML) 295, 311, 500
YAML file
pipeline definition, creating 229-236

Z

ZAP plugin
reference link 401
Zed Attack Proxy (ZAP)
download link 398
execution, automating 400, 401
reference link 397
tool 505
used, for applying penetration
testing 396, 397
used, for applying web security 396, 397
used, for security testing 397-400

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

» Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

 Improve your learning with Skill Plans built especially for you
+ Get a free eBook or video every month
o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

532 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:
: B 7

DevOps Adoption
Strategies:
Principles, Processes,
Tools, and Trends

Embracing DevOps through effective culture,
p and processes

Martyn Coupland

DevOps Adoption Strategies: Principles, Processes, Tools, and Trends
Martyn Coupland
ISBN: 9781801076326

o Understand the importance of culture in DevOps

o Build, foster, and develop a successful DevOps culture

+ Discover how to implement a successful DevOps framework

o Measure and define the success of DevOps transformation

» Get to grips with techniques for continuous feedback and iterate process changes

« Discover the tooling used in different stages of the DevOps life cycle

https://www.packtpub.com/product/devops-adoption-strategies-principles-processes-tools-and-trends/9781801076326

Other Books You May Enjoy 533

e

Modern DevOps
Practices

Implement and secure DevOps in the public cloud
g d techniques

Gaurav Agarwal

Modern DevOps Practices
Gaurav Agarwal

ISBN: 9781800562387

« Become well-versed with AWS ECS, Google Cloud Run, and Knative

« Discover how to build and manage secure Docker images efficiently

 Understand continuous integration with Jenkins on Kubernetes and GitHub actions
« Get to grips with using Spinnaker for continuous deployment/delivery

+ Manage immutable infrastructure on the cloud with Packer, Terraform, and Ansible

« Explore the world of GitOps with GitHub actions, Terraform, and Flux CD

https://www.packtpub.com/product/modern-devops-practices/9781800562387

534

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.

packtpub. com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Learning DevOps - Second Edition, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801818967
https://packt.link/r/1801818967

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
DevOps and Infrastructure
as Code
	Chapter 1: The DevOps Culture and Infrastructure as Code Practices
	Getting started with DevOps
	Implementing CI/CD and continuous deployment
	Continuous integration (CI)
	Continuous delivery (CD)
	Continuous deployment

	Understanding IaC practices
	The benefits of IaC
	IaC languages and tools
	The IaC topology
	The evolution of the DevOps culture

	Summary
	Questions
	Further reading

	Chapter 2: Provisioning Cloud Infrastructure with Terraform
	Technical requirements
	Installing Terraform
	Manual installation
	Installation by script
	Integrating Terraform with Azure Cloud Shell

	Configuring Terraform for Azure
	Creating the Azure SP
	Configuring the Terraform provider
	The Terraform configuration for local development and testing

	Writing a Terraform script to deploy an Azure infrastructure
	Following some Terraform good practices

	Running Terraform for deployment
	Initialization
	Previewing the changes
	Applying the changes

	Understanding the Terraform life cycle with different command-line options
	Using destroy to better rebuild
	Formatting and validating the configuration
	The Terraform life cycle within a CI/CD process

	Protecting the state file with a remote backend
	Summary
	Questions
	Further reading

	Chapter 3: Using Ansible for Configuring IaaS Infrastructure
	Technical requirements
	Installing Ansible
	Installing Ansible with a script
	Integrating Ansible into Azure Cloud Shell
	Ansible artifacts
	Configuring Ansible

	Creating an Ansible inventory
	The inventory file
	Configuring hosts in the inventory
	Testing the inventory

	Executing the first playbook
	Writing a basic playbook
	Understanding Ansible modules
	Improving your playbooks with roles

	Executing Ansible
	Using the preview or dry run option
	Increasing the log level output

	Protecting data with Ansible Vault
	Using variables in Ansible for better configuration
	Protecting sensitive data with Ansible Vault

	Using a dynamic inventory for an Azure infrastructure
	Summary
	Questions
	Further reading

	Chapter 4: Optimizing Infrastructure Deployment
with Packer
	Technical requirements
	An overview of Packer
	Installing Packer

	Creating Packer templates for Azure VMs
with scripts
	The structure of the Packer template
	Building an Azure image with the Packer template

	Using Ansible in a Packer template
	Writing the Ansible playbook
	Integrating an Ansible playbook in a Packer template

	Executing Packer
	Configuring Packer to authenticate to Azure
	Checking the validity of the Packer template
	Running Packer to generate our VM image

	Writing Packer templates with HCL format
	Using a Packer image with Terraform
	Summary
	Questions
	Further reading

	Chapter 5: Authoring the Development Environment
with Vagrant
	Technical requirements
	Installing Vagrant
	Installing manually on Windows
	Installing Vagrant by script on Windows
	Installing Vagrant by script on Linux

	Writing a Vagrant configuration file
	Using Vagrant Cloud for Vagrant Boxes
	Writing the Vagrant configuration file

	Creating a local VM using the Vagrant CLI
	Creating the VM
	Connecting to the VM

	Summary
	Questions
	Further reading

	Section 2:
DevOps CI/CD Pipeline
	Chapter 6: Managing Your Source Code with Git
	Technical requirements
	Overviewing Git and its principal
command lines
	Git installation
	Git configuration
	Useful Git vocabulary
	Git command lines

	Understanding the Git process and Gitflow pattern
	Starting with the Git process
	Isolating your code with branches
	Branching strategy with Gitflow

	Summary
	Questions
	Further reading

	Chapter 7: Continuous Integration and Continuous Delivery
	Technical requirements
	CI/CD principles
	CI
	CD

	Using a package manager in the CI/CD process
	Private NuGet and npm repository
	Nexus Repository OSS
	Azure Artifacts

	Using Jenkins for CI/CD implementation
	Installing and configuring Jenkins
	Configuring a GitHub webhook
	Configuring a Jenkins CI job
	Executing a Jenkins job

	Using Azure Pipelines for CI/CD
	Versioning of the code with Git in Azure Repos
	Creating a CI pipeline
	Creating a CD pipeline – the release
	Creating a full pipeline definition in a YAML file

	Using GitLab CI
	Authentication at GitLab
	Creating a new project and managing your source code
	Creating a CI pipeline
	Accessing the CI pipeline execution details

	Summary
	Questions
	Further reading

	Chapter 8: Deploying Infrastructure as Code with CI/CD Pipelines
	Technical requirements
	Running Packer in Azure Pipelines
	Running Terraform and Ansible in Azure Pipelines
	Summary
	Questions
	Further reading

	Section 3:
Containerized Microservices with Docker and Kubernetes
	Chapter 9: Containerizing Your Application with Docker
	Technical requirements
	Installing Docker
	Registering on Docker Hub
	Docker installation
	An overview of Docker's elements

	Creating a Dockerfile
	Writing a Dockerfile
	Dockerfile instructions overview

	Building and running a container on a local machine
	Building a Docker image
	Instantiating a new container of an image
	Testing a container locally

	Pushing an image to Docker Hub
	Pushing a Docker image to a private
registry (ACR)
	Deploying a container to ACI with a CI/CD pipeline
	Writing the Terraform code for ACI
	Creating a CI/CD pipeline for the container

	Using Docker for running command-line tools
	Getting started with Docker Compose
	Installing Docker Compose
	Writing the Docker Compose configuration file
	Executing Docker Compose

	Deploying Docker Compose containers in ACI
	Summary
	Questions
	Further reading

	Chapter 10: Managing Containers Effectively with Kubernetes
	Technical requirements
	Installing Kubernetes
	Kubernetes architecture overview
	Installing Kubernetes on a local machine
	Installing the Kubernetes dashboard

	A first example of Kubernetes application deployment
	Using Helm as a package manager
	Installing the Helm client
	Using a public Helm chart from Artifact Hub
	Creating a custom Helm chart

	Publishing a Helm chart in a private
registry (ACR)
	Using AKS
	Creating an AKS service
	Configuring the kubeconfig file for AKS
	Advantages of AKS

	Creating a CI/CD pipeline for Kubernetes with Azure Pipelines
	Monitoring applications and metrics in Kubernetes
	Using the kubectl command line
	Using the web dashboard
	Using tier tools

	Summary
	Questions
	Further reading

	Section 4:
Testing Your Application
	Chapter 11: Testing APIs with Postman
	Technical requirements
	Creating a Postman collection with requests
	Installation of Postman
	Creating a collection
	Creating our first request

	Using environments and variables to dynamize requests
	Writing Postman tests
	Executing Postman request tests locally
	Understanding the Newman concept
	Preparing Postman collections for Newman
	Exporting the collection
	Exporting the environments

	Running the Newman command line
	Integration of Newman in the CI/CD pipeline process
	Build and release configuration
	The pipeline execution

	Summary
	Questions
	Further reading

	Chapter 12: Static Code Analysis with SonarQube
	Technical requirements
	Exploring SonarQube
	Installing SonarQube
	Overview of the SonarQube architecture
	SonarQube installation

	Real-time analysis with SonarLint
	Executing SonarQube in a CI process
	Configuring SonarQube
	Creating a CI pipeline for SonarQube in Azure Pipelines

	Summary
	Questions
	Further reading

	Chapter 13: Security and Performance Tests
	Technical requirements
	Applying web security and penetration testing with ZAP
	Using ZAP for security testing
	Ways to automate the execution of ZAP

	Running performance tests with Postman
	Summary
	Questions
	Further reading

	Section 5:
Taking DevOps Further/More on DevOps
	Chapter 14: Security in the DevOps Process
with DevSecOps
	Technical requirements
	Testing Azure infrastructure compliance with Chef InSpec
	Overview of InSpec
	Installing InSpec
	Configuring Azure for InSpec
	Writing InSpec tests
	Executing InSpec

	Keeping sensitive data safe with HashiCorp Vault
	Installing Vault locally
	Starting the Vault server
	Writing secrets to Vault
	Reading secrets in Vault
	Using the Vault UI web interface
	Getting Vault secrets in Terraform

	Summary
	Questions
	Further reading

	Chapter 15: Reducing Deployment Downtime
	Technical requirements
	Reducing deployment downtime with Terraform
	Understanding blue-green deployment concepts and patterns
	Using blue-green deployment to improve the production environment
	Understanding the canary release pattern
	Exploring the dark launch pattern

	Applying blue-green deployments on Azure
	Using App Service with slots
	Using Azure Traffic Manager

	Introducing feature flags
	Using an open source framework for
feature flags
	Using the LaunchDarkly solution
	Summary
	Questions
	Further reading

	Chapter 16: DevOps for Open Source Projects
	Technical requirements
	Storing source code in GitHub
	Creating a new repository on GitHub
	Contributing to a GitHub project

	Contributing to open source projects using pull requests
	Managing the changelog file and release notes
	Sharing binaries in GitHub releases
	Getting started with GitHub Actions
	Analyzing code with SonarCloud
	Detecting security vulnerabilities with WhiteSource Bolt
	Summary
	Questions
	Further reading

	Chapter 17: DevOps Best Practices
	Automating everything
	Choosing the right tool
	Writing all your configuration in code
	Designing the system architecture
	Building a good CI/CD pipeline
	Integrating tests
	Shifting security left with DevSecOps
	Monitoring your system
	Evolving project management
	Summary
	Questions
	Further reading

	Assessments
	Index
	About Packt
	Other Books You May Enjoy

