OREILLY"

Modern System
Administration

Managing Reliable and Sustainable Systems

Jennifer Davis
Foreword by Kelsey Hightower

Modern System Administration
Managing Reliable and Sustainable Systems

Jennifer Davis

Beijing + Boston + Farnham - Sebastopol - Tokyo

Modern System Administration

by Jennifer Davis

Copyright © 2023 Jennifer Davis. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Katherine Tozer
Copyeditor: Kim Wimpsett

Proofreader: Piper Editorial Consulting, LLC
Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea, Tomomi Imura

November 2022: First Edition

Revision History for the First Edition

http://oreilly.com/

e 2022-11-16: First Release

See http://oreilly.com/catalog/errata.csp?1sbn=9781492055211 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern
System Administration, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-05521-1
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492055211

Foreword

After a few years of job hopping, I finally landed a full-time job as a system
administrator at a sizable financial institution. The people managing servers
and executing shell scripts sat on the second floor, and the developers who
wrote the applications sat on the third. I never questioned why an elevator
separated us or why more communication happened over support tickets
than in person, but that was the hierarchy.

I joined the company during the winter holidays, and guess who didn’t have
any vacation time. I found myself sitting alone on the second floor
processing support tickets. Developers opened deployment request tickets,
and I ran scripts on each server to fulfill the requests and close the tickets. I
eventually got tired of that process and wrote a script that basically did my
job for me. Instead of spending 30 minutes running scripts across a set of
machines, I was able to do it in less than one. I was closing tickets almost as
fast as they were being opened. One day someone from upstairs came to
visit and asked me how I was moving so fast. I showed them how I
automated myself out of a job, and somehow I ended up with a better one. |
was continuously being presented with new challenges, at which point I
decided to cut out the go-between, and moved my desk to the third floor,
blurring the lines between dev and ops.

No good deed goes unpunished. My management chain informed me that I
was compromising existing processes designed around industry regulations
and setting the wrong expectations for the rest of the team, because
nowhere in the job description did it require system administrators to learn
how to code, help Q/A automate tests, or define new ways of doing things.
The more I colored outside the lines, the more problems I had with those
who drew them.

After about a year of successful projects, I grew to understand why my
unconventional working style was useful and important. I came to realize
that operating as a lone wolf wasn’t sustainable, and better tools were no
substitute for a better team. Around this same time, my director (the one I
once betrayed by pushing the bar without permission) had just returned

from a conference and pulled me to the side. He said, “I finally understand
what you are doing, and there is a word for it: DevOps.”

For the last decade, DevOps has been mistakenly used to describe modern
system administration, but the reality is that DevOps is just one of the new
practices we must adopt to thrive in our ever-changing environments.
Modern system administration is about more than a single practice. And it
can’t be fully defined by a single tool, or set of individual contributions,
either. Although it may have felt to some that the advancement of our
profession finally had a North Star in DevOps, far too many have set out on
a DevOps-only journey and gotten lost. This book represents a map that
highlights the many starting points and paths toward modern system
administration, written by someone who has traveled many of them.
Jennifer doesn’t simply give you the directions; she gives you the context to
help you understand why the trail exists—not only so you can follow in the
footsteps of others but to help you blaze your own.

Kelsey Hightower

Preface

When I started my first system administrator job, my mentors told me I
needed to read the Red Book (aka the second edition of UNIX System
Administration Handbook by Evi Nemeth et al. [Addison-Wesley]) and
attend USENIX LISA (the first conference dedicated to system
administration and targeting large-scale sites—which back then meant
serving more than one hundred users). Those mentors were right; I learned
so much from both experiences. Reading the Red Book gave me a solid
grounding on specific hardware and Unix services. It was much more
valuable than any available manuals because of its authors’ collective,
practical wisdom. At my first USENIX LISA, I learned from tutorials about
the importance of continuous learning (Evi Nemeth’s “Hot Topics in
System Administration” tutorials) and documentation techniques (Mike
Ciavarella’s Documentation Techniques for SysAdmins). I met countless
other sysadmins at informal gatherings and information-sharing sessions,
like the Birds of a Feather (BOF) and hallway tracks.

Beyond all of the specific skills or technologies, I learned the following:

e System administration work is often interdisciplinary, requiring
collaboration across different types of teams.

e Random knowledge can turn out to be unexpectedly useful.

e Stories are crucial to how we learn and teach (which is how those
random pieces of knowledge are sticky enough for use).

I still felt like there was a gap, a distance for me between system
administration as described and my experience of system administration in
practice. Since then, I’ve realized there is never going to be the book that
tells me exactly what I need to do for every given situation. Of course, we
learn from sharing stories, but each of us forges our paths for the specific
systems we need to maintain in the particular environments we find them.

Today, system administrators have an ever-growing list of technologies and
third-party services to learn about and use when building, deploying, and
running systems that have thousands, sometimes even millions, of users.

With that in mind, in this book, I want to share some of my stories and
focus on a distilled set of fundamentals and practices that will support your
journey to assemble, run, scale, and eventually hand off your systems.

Who Should Read This Book?

I wrote this book for all the experienced system administrators, I'T
professionals, support engineers, and other operation engineers looking for
a map to understand the landscape of contemporary operation technologies
and practices.

This book may also be helpful to developers, testers, and anyone who wants
to level up their operations skills. I recognize that sometimes a team is
made up of folks who only sometimes do “ops stuff”” but have a need to
understand the systems more clearly to be effective in their roles.

I’ve tried to focus on the principles and practices that support all modern
operations work. Still, I recognize that my experiences (lots of Unix-
flavored administration, primarily with distributed systems) have shaped
my perspectives. All of this book is relevant to most sysadmins, but every
organization has different needs that will drive the activities of those
sysadmin teams. For example, suppose your activities are primarily
managing site-based infrastructure (i.e., WiF1 hotspots, printers, and
phones). In that case, the material in Part III will not be as relevant.

What This Book Is Not

This book is not a “how-to” reference for tools, software applications, or
specific operating systems, as there are many quality reference materials to
dig into those particular topics. (However, where relevant, I will point out
some recommended materials to level up your skills.)

If you are looking for the instruction manual for a specific tool that gives
you a step-by-step guide to administering a system, this isn’t that book.
There are plenty of operating system and application-specific books and
resources out there. These are a few options I recommend:

e For general Unix administration, the latest version of the Red Book,
UNIX and Linux System Administration Handbook, 5th edition, by
Trent R. Hein et al. (Addison-Wesley)

e For general system and network administration and decades of
experience, two books from Thomas A. Limoncelli et al.

= The Practice of System and Network Administration: Volume 1:
DevOps and Other Best Practices for Enterprise IT, 3rd edition
(Addison-Wesley)

= The Practice of Cloud System Administration: DevOps and SRE
Practices for Web Services, Volume 2 (Addison-Wesley)

e For a deep dive on data application system concerns: Designing Data-
Intensive Applications by Martin Kleppmann (O’Reilly)

e Ifyou’re focused on managing microservices, check out Building
Microservices 2nd edition, by Sam Newman (O’Reilly)

Scope of This Book

As system administrators, our time focuses on the system level and how the
whole works holistically (for whatever slice of systems we are responsible
for). No one can tell you how to do everything, but I can guide you to

practices and tools that will help you engage with the craft, boost your
confidence, and connect with others who are on the same journey.

If | Could Tell You Only One Thing

Systems are fundamentally messy. We want to imagine that somewhere out
there someone has figured out how to manage systems perfectly and that
their processes and tools lead to pristine systems. Of course, there are
people with experience who can share recommendations, and while this can
be helpful, it’s important to keep the following ideas in mind:

e Their experience might not apply to your environment or challenges.

e They don’t know what they don’t know. They might not be aware of
additional factors that influenced their successful outcomes.

e Their best practices may exist because their systems reflect their
design and how they run them.

You’re not working alone anymore. Sometimes, your instinctual approach
might not be the right one. Technology evolves, change is constant, and
there i1s more than any one person can know. You can have shallow, broad,
generalist knowledge or in-depth, specific knowledge and still have
insufficient knowledge. Adopting collaborative practices allows you to plan
with insight from multiple perspectives and administer your systems
effectively. Working with others may mean taking a different approach than
usual. Collaboration also requires communicating intent so that others can
better understand the problem you are solving, why it matters to solve, and
your process.

If | Could Tell You Only One More Thing

When something goes wrong—and it will go wrong—it’s not your burden
to bear alone. Mistakes are going to happen. Ask for help. You carry a great
weight of responsibility in maintaining systems, and that responsibility can

lead to issues with your physical and mental health. There are multiple
ways to keep your systems running (and thriving) without sacrificing
yourself for that perfectly running system. Support yourself so that you can
have a lifelong career.

Conventions Used in This Book

The following typographical conventions are used in this book:
ltalic

Indicates new terms, URLSs, email addresses, filenames, and file
extensions

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords

Constant width bold

Shows commands or other text that should be typed literally by the user

TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING

This element indicates a warning or caution.

O’Reilly Online Learning

NOTE

For almost 40 years, O Reilly Media has provided technology and business training, knowledge,
and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit Attp://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https.//oreil.ly/modern-
sysadmin.

http://oreilly.com/
http://oreilly.com/
https://oreil.ly/modern-sysadmin

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
https.//oreilly.com.

Find us on LinkedIn: Attps://linkedin.com/company/oreilly-media.
Follow us on Twitter: https.//twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Writing a book is immensely hard. Writing a book through a pandemic
where millions of people perished and worldwide systems were strained to
capacity, creating inhumane conditions, is indescribable (especially when
writing a book about managing systems).

I am immensely grateful to many people for helping this book become a
reality.

I appreciate Evi Nemeth, who established the culture of sharing and
continuous learning in system and network administration with her “bibles”
of system administration and conference tutorials.

Thank you to the people who have reviewed drafts and provided feedback:
Chris Devers, Yvonne Lam, Tabitha Sable, Brenna Flood, Amy Tobey, Tom
Limoncelli, David Blank-Edelman, Bryan Smith, Luciano Siqueira, Steven
Ragnarok, ZAleen Frisch, Jess Males, Matt Beran, and Donald Ellis. I take
all responsibility for any mistakes in the final draft.

Thank you, Chris Devers—you’ve been there since that early first draft of
chapters contributing your ideas, words, and perspectives from your
personal experience.

Special thanks to Tomomi Imura for her incredibly gifted illustrations
throughout this book.

mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
https://oreil.ly/vmPXm

Thank you to the entire team at O’Reilly, who made this book a reality.
Special thanks to Virginia Wilson, the ever-patient development editor who
was crucial in helping me find the right words. This book and my writing
have immensely improved with her support.

I’m incredibly grateful for the love and patience that my family showed me
throughout this writing process. Without the support of Brian, keeping the
household running and Frankie entertained and being my first reader, this
book would not have been possible. Thank you, Frankie, for keeping me
mindful of the joy and imagination possible. I love you very much, Frankie,
Brian, and George.

Many thanks to everyone who has been active in the USENIX LISA,
SREcon, CoffeeOps, and DevOps communities who have shared their
stories and contributed to the evolution of industry technology and
practices. Much love to you all.

Introducing Modern System Administration

Systems are made up of a group of components and their relationships to
one another to form a complex whole. You are fundamentally trying to
navigate the chaos to manage your systems sustainably. There is no one
right way of system management, but there are paths you can take on your
journey to understanding your systems to reduce their physical and mental
toil and build a lifelong career tackling interesting challenges.

I’ve organized this book to provide the resources you need to prepare for
your journey to adopt modern system administration technologies, tools,
and practices. In this introduction, I will give you some high-level goals
that will help you forge your own path to take care of your systems reliably
and sustainably.

Map Your Journey

In many ways, system administrators are like hikers embarking into the
wilderness. Like Figure I-1 shows, we like to think that somewhere out
there is a map that will tell us exactly what to do and when to do it, and if
we follow that map, we will achieve a perfectly maintained system. We
imagine that the path we’re about to walk is well lit and that the map we
find will have clearly defined milestones and goals.

But modern system administration is more like Figure I-2. You can prepare
yourself for the journey with some universal tools: the fundamental and
critical practices of assembling, monitoring, and scaling any system. You
can’t predict which specific tools you’ll need on your journey or how
you’re going to need to use them, but you’ll be ready to make those
decisions and enact them when the time comes. And you don’t have to do it
alone!

S

A
."‘.u-‘!::','lr;:'||[| i
U

Figure I-1. This image shows what most of us imagine is possible—a clear map with clear goals and
a solitary journey—if only we find the right resources and learn the right things. This is not the
reality (image by Tomomi Imura).

You must tailor your journey to achieving effective system administration at

every organization and on every team you join. Ultimately, the milestones
and goals will vary.

When hiking, you don’t know each and every turn along the way. Even if
you’ve walked the same path, you may encounter new challenges: a path
washed out or wild animals you don’t want to disturb. In system
administration, you’re going to run into unexpected problems (twists and
turns) that impact the outcomes of your efforts. So you learn from your

mistakes, try different routes, ask for help, and keep trying until you reach
your goal.

Figure I-2. There is no such thing as the one resource that will tell us exactly what to do to manage

our systems. The path before us is unclear, and the terrain never matches the map, but with the right

tools and collaborators we can move forward with confidence that we’ll be able to handle whatever
lies ahead (image by Tomomi Imura).

This book supports you in establishing the patterns and behaviors to focus
your time and energy where you need to so that you can build quality,
reliable, and sustainable systems. The size and scope of your
responsibilities will vary. You may be responsible for everything and must
balance supporting the whole organization and specific engineering
initiatives. You may manage the “IT infrastructure” and how the company
conducts business. You may support the specific infrastructure for one
product.

When something goes wrong, you need to maintain your systems without
harming your own physical and mental health. You are not done when you
reach your goal. For a lifelong career, you’ll be constantly adjusting to new
trails and terrain as technology and practices evolve.

Embrace a Mindset Shift

Being prepared starts with a growth mindset, in which you believe you can
grow your capacities and talents over time. You can continue to update your
skills and knowledge and persist in facing challenges and failures.

Throughout the book, I share different models to enable you to think about
the systems you manage. Models enable understanding and communication
and help to explain concepts, represent ideas, and provide common ways of
talking to one another. No model is flawless. They aren’t meant to be. As
you think about the systems that the models represent, remember what
Vincent van Gogh wrote, “[Y Jour model is not your final aim,”" and be
cautious when the model isn’t giving you a good frame to maintain your
systems.

Take models like infrastructure as code and the five-layer Internet model to
process, visualize, and explain your systems. And build from your
experiences to develop new models to advance the practices and
technologies in system administration.

At the heart of modern system administration is the fact that your systems
are continuously growing in complexity and size as “software eats the
world.” To be effective, you must recognize change and develop your
understanding of what it means to do the job in practice, whether adopting
new practices or technologies.

What Is the Job?

You are responsible for building, configuring, and maintaining reliable and
sustainable systems, where systems can be specific tools, applications, or
services. While everyone within the organization should care about uptime,
performance, and security, your perspective focuses on these measurements
within the constraints of the organization or team’s budget and the specific
needs of the tool, application, or service consumer.

Whether you manage hundreds or thousands of systems, you are a sysadmin
if you have elevated privileges on the system. Unfortunately, many people

strive to define system administration in terms of the tasks involved or what
work the individual does. That’s often because the role is not well defined
and usually takes on an outsized responsibility of everything that no one
else wants to do.

Many describe system administration as the digital janitor role,? responsible
for cleaning up the systems, especially when they aren’t working as needed.
While the janitor’s role in an organization is critical, equating the two is a
disservice to both positions.

Closer metaphors for system administrators include plumber, electrician, or
HVAC specialist. People take it for granted that modern homes and
businesses have running water, electricity, and climate control systems, but
these systems require trained specialists to build, install, maintain, and
repair them so they run correctly and safely.

A ROLE BY ANY OTHER NAME

I have experienced dissonance over the past 10 years over the role of
“sysadmin.” There is so much confusion about what a sysadmin is. Is a
sysadmin an operator? Is a sysadmin the person with root? There has
been an explosion in terms and titles as people try to divorce
themselves from the past. So when someone said to me, “I’m not a
sysadmin; [’m an infrastructure engineer,” I realized that it’s not just me
feeling this.

Recognize that organizations have retitled their system administration
postings to keep current with the tides of change within the industry.
Don’t limit your opportunities by the name of the role.

Flavors of System Administration

The name for the people who manage systems widely varies (e.g.,
sysadmin, SRE,3 DevOps engineer, platform engineer, and cloud engineer
are just a few). The name of the role may indicate that slightly different
skill sets are required. For example, with “SRE,” there is often an

expectation that engineers are also software engineers with operability
skills. With DevOps engineers, there is often an assumption that engineers
are strong in at least one modern language and have expertise in continuous
integration and deployment. More often, it’s just a name and not always a
consistent one. Sometimes a team defines the role completely differently
and requires specific skills based on the needs of the organization. To avoid
a mismatch in expectations, check with the team directly when assessing
whether a role 1s a good fit for you. For example, the acronym SRE can
mean site, system, service reliability, or resilience engineering at different
organizations.

As an engineering discipline, system administration is one part art and one
part science. It’s an approach to your work (designing, building, and
monitoring your systems) that considers the implications to safety, human
factors, government regulations, practicality, and cost. There can be
hundreds of different ways to accomplish something. Your knowledge,
skills, and experiences will inform which of those many ways you will take
while leveraging your analytical skills to monitor for impact and success,
identifying when to spend (or save) money or time, and factoring in the cost
to humans to support the system.

Embrace Evolving Practices

As technology evolves, the practices to manage the technologies have also
adapted. Be prepared to adopt new techniques to stay abreast of changing
platforms to reduce a system’s impact and maintainability.

The fundamental sysadmin and dev dynamic changes when you measure
your system’s reliability and the organization shifts who 1s responsible for
reliability improvements. Today, it’s more common for everyone to improve
a product’s reliability than for a single team to carry the brunt of the support
work to keep a system or service running. SRE teams are empowered to
help reduce the overall toil of the systems.*

Embrace Collaboration

The pace of change, complexities of our environments, and risks inherent to
their failure require the following actions:

* Bringing together expertise from different areas (e.g., development,
operations, security, and testing)

* Integrating proposals rather than compromising so that the final
solution addresses multiple perspectives

It takes real effort to build the trust and psychological safety that
encourages people to voice their opinions and perspectives. When team
members have achieved psychological safety with one another, they feel
safe to take risks and be vulnerable. For example, an individual on a team
who feels high amounts of psychological safety will proactively share when
they need help. This can help prevent failures in the system because of an
established mutual support system.

Encourage a culture that enables and supports people asking probing
questions to help everyone come to a shared understanding (we’re working
toward the same goal) and promotes intellectual courage (experts are
fallible). Some questions include the following:

e Why? Why are we doing this? Why does it work this way?
e Could you help me understand your perspective?

e What other ways did you think about solving this?

TIP

Learn more about psychological safety, the number-one key dynamic of high-performing teams
that Google’s People Operations identified from its research with the re:Work program.

Embracing collaboration leads to working well with others so that when
you most need them, your collaborators will be available (and willing) to

https://oreil.ly/uTpZU

provide support because you have already built up and prepared for that
eventuality.

Embrace Sustainability

Sustainability is the measurement of a system that enables the humans in
the system to thrive, leading healthy lives while working. Regardless of the
size and scope of your work, eight measurements inform the sustainability
of your work:

Performance

Measures the system’s capability of doing useful work for a period of
time. System performance is defined differently depending on the
service or product you build.

Scalability

Measures the system’s adaptability to add and remove individual
components.

Availability
Measures the length of the time the system functions as expected.
Reliability

Measures how well a system consistently performs its specific purpose
for a period of time.

Maintainability

Measures the ease of deploying, updating, and deprecating a system.
Simplicity
Measures the ease of a new engineer understanding the system.

Usability

Measures user satisfaction with the system.

Observability

Measures how well you can figure out what is going wrong with a
system under observation, recognizing not all systems need a high level
of observability.

In the following chapters, I will share the different technologies and
practices that improve the goals you set for these measures and, ultimately,
the sustainability of your systems.

Wrapping Up

Your journey will be specific to your systems and the people who support
those systems. No one can provide that perfectly defined checklist to tell
you exactly what you need to learn or do and when. Still, you can better
prepare yourself with the appropriate toolkit (understanding the
fundamentals and key practices and assembling, monitoring, and scaling the
systems).

What it means to be a system administrator is constantly evolving.
Therefore, it would be helpful to adopt a growth mindset and foster the
talents and skills necessary to sustain a lifelong career with new technology
and practices.

Ask for help and build on collaborative practices that enable you to work
effectively with your team by building psychological safety. Use models to
inform your understanding, and build upon them to advance system
administration practices.

Embrace sustainability. You deserve to thrive and have a whole career
supporting the systems you manage.

1 Vincent van Gogh quoting Dickens: “[Y]our model is not your final aim, but the means of
giving form and strength to your thought and inspiration” in a letter to his brother.

https://oreil.ly/5nkDi

2 Check out the many roles of system administrators in Appendix B of Thomas Limoncelli et
al.’s book The Practice of System and Network Administration (Addison-Wesley Professional).

3 Learn more about being an SRE from Alice Goldfuss’s blog post “How to Get into SRE” and
Molly Struve’s blog post “What It Means to Be a Site Reliability Engineer”.

4 Learn about the reduction of toil and its impact on teams from Stephen Thorne’s Medium
article on the tenets of SRE.

https://oreil.ly/JYWCK
https://oreil.ly/wALwU
https://oreil.ly/35Es6
https://oreil.ly/SpiwZ

Part |. Reasoning About
Systems

The first four chapters share the fundamentals of systems and how to
choose between options. It isn’t helpful to talk about solutions in terms of
the “best.” Instead, you need to understand what is available and what it’s
“best for,” and its context in your system. That context is an evolving set of
conflicting goals, people, and the different parts that provide the functioning
system. “Systems thinking” encourages you to think about the different
parts of the system and how they interact in alignment with your current
problems, which leads to a better understanding of the system’s evolution
over time.

Chapter 1. Patterns and
Interconnections

Imagine you are making a cake with a friend. You followed the recipe,
mixing all the ingredients (oil, flour, eggs, and sugar), and it looks OK, but
when you taste it, something isn’t quite right. To be an accomplished baker,
you must understand all the elements of a cake (ratios of flour to fat, etc.)
and how they work together to impact the finished product’s quality (e.g.,
taste and texture). For example, in Figure 1-1, our bakers didn’t understand
that sesame oil wasn’t an appropriate oil to include in the cake.

Now replace baker with sysadmin, and replace the golden ratios of a
baker’s ingredients with the interconnected components in your system
(e.g., smartphones, embedded devices, large servers, and storage arrays). To
be an accomplished sysadmin, you need to understand how the components
connect in common patterns and impact your system’s quality (e.g.,
reliability, scalability, and maintainability).

In this chapter, I will help you reason about your systems to see the patterns
and interconnections in them so that you understand what informed the
choices behind your system’s design.

Figure 1-1. Modeling understanding a system (image by Tomomi Imura)

How to Connect Things

Engineers choose architecture patterns, the reusable solutions to address
typical workloads (e.g., batch processing, web servers, and caching). These
patterns are models that convey “a shared understanding of the system’s
design.”1

From on-prem to cloud computing environments, the reusable solutions are
evolving to support decomposed sets of smaller sets of services.? These
patterns shape systems’ reliability, scalability, and maintainability by
determining the components of the system and the connection between the
components.

Let’s examine three common architecture patterns used in system design so
you can see how their use informs (and limits) their evolution and system
qualities (reliability, scalability, and maintainability):

Layered architecture

The most common and familiar pattern is a general-purpose layered or
tiered architecture pattern. Engineers commonly use this pattern for
client-server applications like web servers, email, and other business
applications.

Engineers organize components into horizontal layers, with each layer
performing a specific role, separating the concerns of each layer from
the other layers. Layers are generally tightly coupled depending on a
request and response to and from the adjacent layers. As a result, you
can update and deploy components within each layer independently
from other layers.

A two-tier system is composed of a client and a server. A three-tier
system comprises a client and two other layers of servers; the
presentation, application, and data tiers are abstracted into different
components. Each tier may be split into separate logical layers in an N-
tier or multitier system. There may be more than three tiers depending
on the system’s needs (e.g., resilience, security, and scalability). With
each tier, scalability and reliability increase as the tiers create additional
separation between concerns that can be deployed and updated
independently.

Microservices architecture

A microservice system is a distributed architecture that, instead of tiers,
consists of a collection of small units of business code decoupled from
one another. Microservices are small and autonomous. Because each
service 1s separate, code can be developed and deployed independently.
In addition, each service can leverage the best language or framework
for its use case.

Microservices increase the system’s scalability and reliability because
they can be independently deployed as needed and isolated from the
points of failure in the system.

Decomposing a service into microservices decreases maintainability due
to the increased cognitive load on the sysadmins. To understand your

system, you need to know all the details about each separate service
(i.e., languages, frameworks, build and deploy pipelines, and any
relevant environments).

Event-driven architecture

An event-driven architecture is a distributed asynchronous pattern that
enables loose coupling between applications. Different applications
don’t know details about one another. Instead, they communicate
indirectly by publishing and consuming events.

Events are something that happens, a fact that can be tracked.® Systems
generate events. In event-driven systems, event producers create events,
brokers ingest events, and consumers listen and process events.

There are two main models for event-driven systems: messaging (or
pub/sub) and streaming.

The event producer or publishers publish events to a broker in an event
messaging system. The broker sends all posted events to event
consumers or subscribers. The message broker receives published
events from publishers, maintains the order of received messages,
makes them available to subscribers, and deletes events after they are
consumed.

In an event streaming system, events are published to a distributed log,
a durable append-only data store. As a result, consumers consume
events from the stream that they want and can replay events. In
addition, the distributed log retains events after they have been
consumed, meaning that new subscribers can subscribe to events that
occurred before their subscription.

Because components are loosely coupled, individual parts of the system
don’t have to worry about the health of other components. Loosely
coupled elements increase the resiliency of the overall system as they
can be independently deployed and updated. Event persistence enables
the replaying of events that occurred in the case of a failure.

Table 1-1 summarizes the relative comparisons of reliability, scalability, and
maintainability of the three common architecture patterns you will see in
systems.

Table 1-1. Comparison of reliability, scalability, and maintainability of
architectures

Layered Microservices Event driven
Reliability Medium (tightly coupled High High

systems)
Scalability Medium (limited within High High

layers)
Maintainability High Low (decreased Medium (decreased

simplicity) testability)
TIP

Of course, these are not the only patterns you’ll see in system design. Check out Martin Fowler’s
comprehensive website, the Software Architecture Guide.

How Things Communicate

A component of a system doesn’t exist in isolation—each component will
communicate with other components in the system, and that communication
may be informed by the architecture pattern (REST for N-tier architecture,
gRPC for event-driven architecture).

There a few different models used to represent how components
communicate, e.g., the Internet model, five-layer Internet model, TCP/IP
five-layer reference model, and TCP/IP model. While these models are very
similar, they have slight differences that may inform how people think
about the applications and services they build to communicate.

When an individual or group of engineers identify an area for improvement,
they author a Request for Comment (RFC) and submit it for peer review. As

https://oreil.ly/Sf5IC
https://oreil.ly/CmRCT
https://oreil.ly/MzO9n

an open international community that works to maintain and improve the
internet’s design, usability, maintainability, and interoperability, the Internet
Engineering Task Force (IETF) adopts some of the proposed RFCs as
technical standards that define the official specifications and protocols. The
protocol specifications define how devices communicate with one another
while loosely following the Internet model. And these protocols continue to
evolve as the Internet grows and the needs of people change (for an
example of this, check out Appendix B).

As depicted in Table 1-2, the five-layer Internet model shows five discrete
layers. Each layer communicates via the interfaces above and below via a
message object specific to the layer. Layering a system separates the
responsibilities at each layer and enables different system parts to be built
(and changed). It also allows differentiation at each of the layers.

Table 1-2. Five-layer Internet model
and example protocols

Layers Example protocols
Application HTTP, DNS, BGP
Transport TCP, UDP

Network IP, ICMP

Data Link ARP

Physical Copper, optical fiber, WiFi

Like the cake in Figure 1-1, there aren’t any crisp layers that inform you
precisely where a problem emerged. Protocol implementations are not
required to follow the specifications strictly and overlap layers. For
example, the protocol that determines the fastest and most efficient route to
transmit data is the Border Gateway Protocol (BGP). Because of the
implementation of the protocol, people may classify BGP at either the
application layer or the transport layer.

https://oreil.ly/ydfJn

The layers in the Internet model give you a way to frame the context and
narrow your focus to the ingredients of your application—the source code
and dependencies—or at a lower physical level, simplifying the complex
communication model into understandable chunks. However, sometimes
you will run into situations where the reduction in context doesn’t help you
understand what 1s happening. To level up your comprehension, you have to
know how everything works together to impact your system’s quality.

LEARNING MORE ABOUT PROTOCOLS

If your role entails managing networks or implementations of protocols,
check out Andrew Tanenbaum’s Computer Networks (Pearson), Kevin
R. Fall and W. Richard Stevens’s TCP/IP lllustrated, Volume 1. The
Protocols, 2nd edition (Addison-Wesley), and the website the RFC
Series.

Let’s look in more detail at the application, transport, network, data link,
and physical layers.

Application Layer

Let’s start at the top of the Internet model with the application layer. The
application layer describes all the high-level protocols that applications
commonly interact with directly. Protocols at this layer handle how
applications interface with the underlying transport layer to send and
receive data.

To understand this layer, focus on the libraries or applications that
implement the protocols underlying your application. For example, when a
customer visits your website using a popular browser, the following steps
happen:

1. The browser initiates library calls to obtain the IP address of the web
server using the Domain Name System (DNS).

2. The browser initiates an HTTP request.

https://oreil.ly/1DYQT

The DNS and HTTP protocols operate within the Internet model’s
application layer.

Transport Layer

The next layer in the Internet model, the transport layer, handles the flow
between hosts. Again, there are two primary protocols: the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP).

Historically, UDP has been the foundation of more rudimentary protocols,
such as ping/ICMP, DHCP, ARP, and DNS, while TCP has been the
foundation for more “interesting” protocols like HTTP, SSH, FTP, and
SMB. However, this has been changing, as the qualities that make TCP
more reliable on a per-session basis have performance bottlenecks in
specific contexts.

UDRP is a stateless protocol that makes a best-effort attempt to transfer
messages but does not attempt to verify that network peers received
messages; TCP, on the other hand, is a connection-oriented protocol that
uses a three-way handshake to establish a reliable session with a network
peer.

The essential characteristics of UDP are as follows:

Connectionless
UDP is not a session-oriented protocol. Network peers can exchange
packets without first establishing a session.

Lossy
There is no support for error detection or correction. Applications must
implement their fault-tolerance mechanisms.

Nonblocking

TCP is vulnerable to the “head of line blocking” problem, in which
missing packets or nonsequential receipt of data can cause a session to
get stuck and require retransmission from the point of the error. With

UDP, nonsequential delivery is not a problem, and applications may
selectively request retransmission of missing data without resending
packets that have been successfully delivered.

By comparison, the essential characteristics of TCP are as follows:
Acknowledgment

The receiver notifies the sender of the data receipt for each packet. This
receiver acknowledgment does not mean that the application has
received or processed the data, only that it arrived at the intended
destination.

Connection-oriented

The sender establishes a session before transmitting data.

Reliability

TCP keeps track of data that is sent and received. Receiver
acknowledgments can be lost so that a receiver won’t acknowledge
segments out of order; instead, it sends a duplicate of the last observed
ordered packet or duplicate cumulative acknowledgment. This
reliability can lengthen latency.

Flow control

The receiver notifies the sender of how much data can be received.

Notice that security wasn’t part of TCP or UDP’s design or fundamental
characteristics. Instead, lack of security in the initial designs of these
protocols drove additional complexity in application and system
implementation and further changes in the protocols.

Network Layer

In the middle, the network layer translates between the transport and data
link layers, enabling the delivery of packets based on a unique hierarchical

address, the IP address.

The Internet Protocol (IP) is responsible for the rules for addressing and
fragmentation of data between two systems. It handles the unique
identification of network interfaces to deliver data packets using IP
addresses. The IP breaks and reassembles packets as necessary when
passing data through links with a smaller maximum transmission unit
(MTU). IPv4 is the most widely deployed version of the IP with a 32-bit
address space represented in a string of four binary octets or four decimal
numbers separated by dots or quad-dotted decimal notation. The IPv6
standard brings advantages such as a 128-bit address space, more
sophisticated routing capabilities, and better support for multicast
addressing. However, IPv6 adoption has been slow partly because IPv4 and
IPv6 are not interoperable, and making do with the shortcomings of IPv4
has generally been easier than porting everything to the new standard.

The underlying binary definition informs the range in decimal notation for
IPv4 addresses of 0 to 255. In addition, RFCs define reserved ranges for
private networks that aren’t routable via the public internet.

The network layer’s IP protocol is focused on providing a unique address
for network peers to interact with, but it is not responsible for data link
layer transmission, nor does it handle session management, which is dealt
with at the transport layer.

Data Link Layer
Next, the data link layer uses the physical layer to send and receive packets.

The Address Resolution Protocol (ARP) handles hardware address
discovery from a known IP address. Hardware addresses are also known as
media access control (MAC) addresses. Each network interface controller
(NIC) assigns it a unique MAC address.

The industry intended for MAC addresses to be globally unique, so network
management devices and software assume this is true for device
authentication and security. Duplicate MAC addresses appearing on the

https://oreil.ly/QkHVN

same network can cause problems. But duplicate MAC addresses do appear
due to production errors in the manufacturing of hardware (or intentional
software design with MAC randomization).* Still, it can also happen with
virtualized systems, such as VMs cloned from a reference image. However
it happens, if multiple network hosts report having the same MAC address,
network functionality errors and increased latency can occur.

TIP

People can mask the MAC address presented to the network through software. This is known as
MAC spoofing. Some attackers use MAC spoofing as a layer 2 attack to attempt hijacking
communication between two systems to hack into one of the systems.

The Reverse Address Resolution Protocol (RARP) examines IP address to
hardware address mapping, which can help identify if multiple IP addresses
are responding for a single MAC address. If you think you have a problem
with two devices on the network sharing an IP address, perhaps because
someone has assigned a static [P when a DHCP server has already allocated
the same address to another host, RARP helps identify the culprit.

Physical Layer

The physical layer translates the binary data stream from upper layers into
electrical, light, or radio signals that are transmitted across the underlying
physical hardware. Each type of physical media has a different maximum
length and speed.

Even when using cloud services, you still have to care about the physical
layer, even though you don’t have to manage the racking and stacking of
physical servers. Increased latency can be due to the physical routing
between two points. For example, if something happens to a data center
(lightning strikes or squirrels damage cables), resources might get
redirected to alternate services farther away. Additionally, the networking
gear within a data center may need to be rebooted or have a degraded cable

https://oreil.ly/miV4u

or faulty network card. As a result, requests sent through those physical
components may experience increased latency.

Wrapping Up

You’ll find a mix of these patterns (layered, microservices, and event-
driven) and protocols in your environment. Understanding the system’s
architecture informs how the components relate and communicate with one
another, and your requirements impact the system’s reliability,
maintainability, and scalability.

In the next chapter, I’ll share how to think about these patterns and
interconnections and how they impact your choices for your computing
environments within your organization.

1 Martin Fowler, “Software Architecture Guide,” martinfowler.com, last modified August 1,
2019, www.martinfowler.com/architecture.

2 Learn more about decomposing services from Chapter 3 of Sam Newman’s Building
Microservices (O’Reilly).

3 CloudEvents is a community-driven effort to define a specification for describing event data
in a standard way that can be implemented across different services and platforms.

4 Learn more about the issues with MAC randomization from “MAC Address Randomization:
Privacy at the Cost of Security and Convenience”.

https://oreil.ly/SSx0B
https://cloudevents.io/
https://oreil.ly/31Hsf

Chapter 2. Computing
Environments

Let’s dig deeper into the fundamentals of reasoning about your system,
starting with your computing environment.

This chapter examines the fundamental building block of the system:
compute. Compute is the generic term used to encompass an instance that
has a set of resources (i.e., processing power, memory, storage, and
networking) associated with it. Contemporary computing is not just about
the technical implementation of a system,; it’s also about enabling methods
of collaboration when building, configuring, and deploying the compute
that your organization needs. In this chapter, we’ll explore the ways to
distinguish the types and environments of compute infrastructure so you
can customize your choices to your organization’s or team’s needs and
technology.

Common Workloads

Workloads are characterized by the amount and type of pressure on
resources that an application puts on a system.

The systems you manage will have a number of applications or services to
install, maintain, and run in production environments. Each of the
applications or services you manage will have a minimal and recommended
set of compute requirements (CPU, memory, and storage) that inform the
categorization of your application: CPU-bound, memory-bound, and
storage-bound.

NOTE

I will share more about storage and networks in Chapters 3 and 4, respectively.

CPU-bound applications benefit from high-performance processors.
Example workloads include the following:

Memory-bound applications benefit from more memory, and most of the

Batch processing

Gaming servers

High-performance computing (HPC)
Media transcoding

Machine learning

Scientific modeling

Web servers

execution time is spent reading and writing data. Example workloads
include the following:

Caching
Data analytics

Databases

Storage-bound applications benefit from low-latency and random /O
operations. Example workloads include the following:

Data warehouses
Data lakes
Databases

Distributed filesystems

e Hadoop
e Log or data processing applications

Knowing what type of workloads are part of your system informs how you
evaluate what you need for building out your system. For cloud
architectures, your options will often be framed in terms of systems that are
optimized for these workloads, i.e., CPU-, memory-, and storage-optimized.

TIP

You don’t have to make the exact right choice of compute when you build out your systems in the
cloud.

As long as you have guardrails that limit your spending, you can choose options that, while not
perfect, may be good enough. See Chapter 11 to learn about provisioning your infrastructure with
infracode.

Choosing the Location of Your Workloads

Your computing environments may be hosted in private data centers that are
self-maintained and controlled, otherwise known as on-prem. Or, you may
leverage service providers, otherwise known as cloud computing.

On-Prem

In an on-prem computing environment, you either rent or purchase
hardware to host the services that you need to power your organization’s
requirements.

You may decide to deploy different resources for your applications,
depending on each application’s workload. Standardized hardware
simplifies your deployments and configuration but can starve some
applications while not fully utilizing others. Deploying different hardware
specific to your application’s needs better matches the expenditure and
utility for those resources but increases the complexity required to manage
your infrastructure.

With the dedicated hardware, you may deploy different-sized hardware for
your different applications depending on whether they are CPU-, memory-,
or storage-bound. Having different hardware increases the complexity of
the server deployment and software configuration of the system.

Maintaining your own data centers may be advantageous if your
organization specializes in data center management or you have custom
needs not available from typical cloud service providers (e.g., compliance
requirements).

CONSIDER NEW WAYS OF DOING THINGS

Managing a data center, from sourcing equipment to deploying and
managing hardware, was an interesting chapter in my career. I managed
the purchase of millions of dollars’ worth of gear to support a
development environment that required hardware testing and evaluation
across a wide variety of storage and networking devices. From this
experience, | learned that I’'m really good at figuring out the complex
project and vendor management and navigating schedules of deliveries
and installs. But I really don’t like all the paperwork involved or the
brain-numbing experience of cabling and tracking system components.
I’m grateful for the advent of cloud computing and readily accessible
compute.

In Chapter 17, I’ll talk about monitoring your work and finding the
work you enjoy. It’s really easy to fall into the trap of doing what you’re
good at without considering that you might not enjoy it.

When deploying standardized hardware, you may find it useful to deploy
complementary applications on the same system. For example, hosting a
web server and a database server (two-tier system architecture) on the same
system can work well because it minimizes the network latency between
these services. On the other hand, running these services together can create
resource contention for the CPU, memory, or storage, and this, in turn, can
make it more difficult to make decisions about scaling vertically or

horizontally. Pay attention to your hot spots of resource-constrained
services and your cold spots of idle services and consider how best to
balance and grow your system’s ability to meet demand expectations.

Cloud Computing

Service providers use different terms to describe their offerings. Sometimes
this can cause confusion, especially when the same term means something
different.

Take a look at Figure 2-1. This matrix of terms shows how these different
concepts overlap. At the top of the stack, with functions as a service (FaaS),
you have the least amount of control over the running compute
infrastructure. At the bottom of the stack, with virtual machines, you have
the most control and flexibility in the use of the hardware but also the most
maintenance.

Resource Resource Cloud computing

type classification
Unikernels I Serverless j
Functions I Serverless Functions as aservice
App services Serverless
Container C : :
- ontainers
sarvicas Platform as a service
Kubernetes :
gamilsas Containers
_ _ Infrastructure as aservice
VMs Virtual machines

Figure 2-1. Cloud computing environments

Compute Options

Let’s look at the different types of compute (serverless, containers, and
virtual machines) available within these computing environments so you
have a standard frame of reference.

Serverless

Serverless architectures cover unikernels, functions, and app services (and
depending on the provider, occasionally also containers).

Unikernels

Unikernels are lightweight, immutable operating system (OS) images
compiled to run a single process. I’ve included them here based on their
specialized nature and size.

TIP

MirageOS is one of the longest-running library OSs for constructing unikernels. For a hands-on
approach to learning more about unikernels, try the MirageOS tutorial.

Functions

Functions are small (and ideally single-purpose) blocks of code. You pay a
hosted service to maintain the physical infrastructure that you need based
on demand, otherwise known as FaaS. The platform may provide you with
a specific runtime or allow custom-built runtimes. Runtime limitations may
include specific languages (e.g., Java or Go), specific versions of the
language, or specific embedded libraries. Popular hosted FaaS include the
following:

e AWS Lambda
e Azure Functions
¢ Google Cloud Functions

You can also deploy function frameworks to provide a functions service to
your organization with the following:

Fn
A lightweight Docker-based functions platform

OpenkFaaS

A framework for deploying functions to Docker or Kubernetes

OpenWhisk

https://oreil.ly/fwZex
https://oreil.ly/nZxd5
https://oreil.ly/UTsko
https://oreil.ly/KHVsw

A framework to execute functions in response to events, a large variety
of supported language runtimes, and customized runtimes supported
through Docker

Each platform has strengths and weaknesses depending on your use case. In
some cases, your implementation choices may lock your application to a
specific FaaS platform. This doesn’t mean you can’t migrate your
application, but the extra work to maintain the application’s capabilities
may be more than you want to spend.

Examples of additional FaaS capabilities include high availability, endpoint
load-balancing, request processing time, concurrency of requests, and
traffic management. You may be able to configure the number of CPUs and
the amount of memory you want. A key feature of using a FaaS platform is
that instances are ephemeral and up only when needed. For initial
prototyping of a new application and for test environments, spinning up an
environment can be inexpensive depending on the storage and networking
configurations.

Rather than designated instances of compute, service providers charge for
function invocation, network utilization, and length of time that a function
runs. Triggers define how a function is invoked. Common supported
triggers include the following:

e Scheduled
e HTTP requests

e Event-based triggers

App services

App services are generally larger than functions. Platforms cover the
physical infrastructure, including scaling the application to additional
physical infrastructure as needed, application runtimes, and the
dependencies needed for the offered languages.

Hosted app services include the following:

e DigitalOcean App Platform
e Google App Engine

While you get more configuration choices than FaaS, many of the same
capabilities of FaaS are handled for you. You can then focus on building
and deploying the application and monitoring the necessary system
environments.

Containers

Conceptually, a container is an isolated process with a portable runtime
environment. When talking about containers, it’s often more helpful to talk
about the container image and the container runtime as separate concepts.

A container image 1s the immutable packaged application along with any of
its required dependencies, including system libraries, utilities, and
configuration settings. Images are composed of layers added on top of a
base image or parent image.

A container runtime is the setup and running of the container. Low-level
runtimes have a limited set of capabilities (e.g., resource allocation and
process setup) and generally perform the key setup steps. High-level
runtimes have a rich set of capabilities (e.g., image management and
networking) and are where you will normally interact with the container
runtime.

Here are some examples of commonly used runtimes:
containerd

An open source low-level container runtime supported by Linux and
Windows

Docker

A high-level container system

runC

https://oreil.ly/uqDV3
https://oreil.ly/tMR6F

A standard low-level container runtime written in Go Windows
Containers

A container orchestrator manages clusters of containers taking care of
scaling, networking, and security.

Examples of orchestrators include the following:
e Kubernetes
e Google Cloud Run
e Amazon App Runner
e Amazon Elastic Container Service (ECS)
e Amazon Elastic Kubernetes Service (EKS)
e Azure Container Instances (ACI)
e Azure Kubernetes Service (AKS)
e Google Kubernetes Engine (GKE)
e Red Hat OpenShift

TIP

Read Julia Evans’s “What Even Is a Container: namespaces and cgroups” for a visual guide to
containers.

Virtual Machines

Whether virtual machines (VMs) are hosted or managed by your team,
server virtualization is the process of creating an environment where
multiple OS instances can run on a single physical server. With VM
technology, individuals can install and simultaneously run completely
different OSs on a single computer.

https://oreil.ly/1XDJQ

In practical terms, virtualization gives you the ability to use more of the
hardware resources that were idling on dedicated servers.

TIP

Packer is an open source software tool from HashiCorp for creating identical machine images
from a single configuration file for a variety of platforms, including Amazon EC2, Microsoft
Azure Virtual Machine, Docker, and VirtualBox. This can help you build similar images in a

repeatable fashion across providers as well as for local use.

The key to server virtualization is the hypervisor that coordinates the low-
level interactions between the VMs and host hardware.

NOTE

Hypervisors can be specialized hardware, firmware, or software. There are a variety of specialized
and comprehensive resources depending on your area of focus.

For example, check out Brendan Gregg’s blog post “AWS EC2 Virtualization 2017: Introducing
Nitro” for a deep dive into Nitro, the virtualization technology in use on Amazon Elastic Compute
Cloud (Amazon EC2).

The configuration file specifies the virtualized hardware resources,
including memory, CPU, and storage, that are allocated to the VM. Popular
desktop VM software includes the following:

e Microsoft Hyper-V (Windows)

e Oracle VM VirtualBox (Windows, Mac, and Linux)

e Parallels Desktop (Mac)

e VMware Fusion and Workstation (Windows, Mac, and Linux)

With virtualization, you don’t have to buy specialized hardware for each
service you run. You still have to manage the software on the VMs. Hosted
VM options include the following:

https://oreil.ly/IPzf8
https://oreil.ly/8Lisl
https://oreil.ly/BIFBK
https://oreil.ly/0LAc3
https://oreil.ly/TlcYV
https://oreil.ly/WfLYx

Amazon Elastic Compute Cloud (EC2)

Azure Virtual Machines

DigitalOcean Droplets

Google Compute Engine

Guidelines for Choosing Compute

Consider the following questions to identify impacts and choose appropriate
compute for your needs:

Do you have existing physical hardware that you want to use?

You can customize this dedicated hardware based on your internal and
external users’ needs. You could do the following:

e Dedicate a server explicitly to the system you need to manage
e Manage VMs (and the physical hardware)

e Manage containers (and the physical hardware)

Do you need a specific language or framework to run your application (that
you don t want to manage)?

Can you implement them with small units of business code? Use a
functions service. Otherwise, use an app service if your language is
supported, or a container service if not and customize your build image.
Do you need a specific OS?
You can use platform as a service (PaaS) or infrastructure as a service
(TaaS).
Do you need to respond to increased demand quickly?

Choose FaaS or PaaS.

https://oreil.ly/r8mgZ

How geographically distributed does your application need to be?

Check specific cloud providers to identify the best match of region
distribution.

ETHICAL CONSIDERATIONS IN SERVICE CHOICES

You should also consider whether a potential provider is socially and
ethically responsible (i.e., with regard to climate change, economic
inequality, or ethical sourcing as potential concerns). Negative
externalities in your supply chain are no longer opaque in the modern
world of social media. Numerous companies have had to halt
production and shift their suppliers due to public awareness of labor or
ethical issues.

Your organization should vet suppliers, and the people who are
responsible for supplier decisions should be able to make a business
ethics judgment call. Ethical concerns are now necessarily part of an
organization’s financial concerns.

Server virtualization, containerization, and serverless compute options all
enable running software in an isolated environment with consistent
dependencies, libraries, binaries, and configurations that you can repeat
reliably and consistently. There are differences in isolation, startup time,
and portability:

Isolation

With serverless compute, isolation is opaque. Your function or hosted
app may run in containers or a VM. With containers, a single Linux
kernel hosts multiple containerized applications. With virtualization, a
single hypervisor hosts multiple virtualized OSs, each with its own
independent kernel.

Your function will ideally be small, single-purpose, and use a platform’s
managed runtime. Your container encapsulates an application that may

be a few megabytes (MB). Finally, a virtual machine is going to be
larger because it must include a complete, runnable OS image. This can
run from hundreds of MB to a few gigabytes (GB) in size.

This means that isolation isn’t complete on containers, and if there is a
vulnerability with the container runtime or the host kernel, an attacker
could escape from the container and have access to the host machine.

Startup time

VMs need to be booted like any other computer, which can take several
minutes. Containers aren’t initializing hardware at startup, which means
they can be launched in seconds, and they can be spun down just as
quickly when they are no longer needed.

Portability

Containers are more suited for running many application instances on
the same host OS, while VMs are better suited for running a
heterogeneous mix of OSs on shared host server hardware.

Ultimately, when you are architecting your systems and considering a
serverless solution, there are three main areas to consider:

Greenfield development

Serverless compute can facilitate developing and scaling fast to deliver
business value. You can experiment and try out different ways of doing
something without investing large amounts on compute before you
know the actual demand of the system you are developing.

Replacing admin tasks

Instead of a dedicated server for administrative tasks, you can define
functions that have only the level of privilege and time needed. You
save money and improve security by eliminating the one administrative
server with root level privileges to ephemeral instances that spin up with

only the permissions necessary to run their tasks (e.g., mail merge,
infrastructure compliance runs).

Shifting operational and security concerns

If your team is comfortable with shifting the burden of operational and
security concerns early in the decision process, a devops approach (with
cooperation and collaboration between the different groups responsible
for the system) will support the complex decisions around serverless
patterns and implementation to avoid making costly mistakes (i.e.,
spending your entire budget or exposing your customer’s data on poorly
configured instances).?

It may be that, to begin with, the best choice is what gets you up and
running fastest so that you can focus on what brings core business value to
your organization. Over time, you’ll figure out whether you need to refine
and improve resource utilization.

By incorporating these considerations into your choice on compute, you
will be able to choose compute infrastructure customized to your
organization or team’s needs and technology.

Wrapping Up

Compute comprises all the components associated with a computer:
processing power, memory, storage, and networking and a runtime
environment to make use of these resources. Each application you manage
needs to be deployed with consideration of that application’s requirements
and constraints. For example, applications may be bound by CPU power, by
memory capacity, or by storage. Similarly, applications may have specific
needs, such as an ability to scale to support demand fluctuations, a need to
interact with particular hardware, or a requirement to use particular
languages, libraries, or operating systems.

Your computing environment will consist of a mix of compute systems
connected in different architecture patterns. Choose based on your

requirements, and factor in your needs for isolation, startup time, and
portability.

1 As an example of this, check out Julia Evans’s fantastic blog post explaining the difference
between IAM offerings from Google Cloud and Amazon Web Services.

2 You may notice that both “DevOps” and “devops” appear in this book. The choice is
intentional. When referring to titles or product names, [use “DevOps.” When referring to the
practice, I use “devops,” the original hashtag. The practice of devops encompasses the
underlying efforts to connect people and help them navigate working together, changing
conversations from us versus them to conversations that enable businesses to implement
practices that will be sustainable for people. Organizations can sell DevOps tools, but you can’t
buy devops.

https://oreil.ly/bCBhT

Chapter 3. Storage

Think about any contemporary product website; it’s the virtual front door of
a business and one common managed system. | have handled many
websites over the years with various responsibilities, including system
design; the web servers and database servers; backups; all the generated
assets, including pictures of products, testimonial videos, and logged user
activities like searches and purchases; and updates to any backend
inventory systems.

There are lots of hidden decisions for artifact storage. Imagine managing
that product website; when someone searches for the product on the website
and lands on the product page, the action generates multiple log entries that
have to stream somewhere. Every time someone purchases the product,
order information, shipment details, and the product’s availability need to
be updated because your company doesn’t want to sell something that it
doesn’t have. Building out the system you’d need for this website requires
planning the appropriately sized computing environment and appropriately
sized and scoped artifact storage to drive business decisions.

In the systems you manage, whether websites or some other system, you
create strategies and make decisions for storage because you need to
optimize assets differently. You don’t want to waste money on unneeded
storage, or infrequently accessed data on more expensive low-latency
storage. And for frequently accessed data, you want your users to have fast
responses, which may even include caching data in memory; it’s more
expensive, but happy users are worth it to your business.

There are many options, and you have to consider the data asset in question
in the design of your system. In this chapter, I will focus on framing your
storage strategy by laying out the landscape of storage technologies and the
associated practices to consider with those technologies.

Why Care About Storage?

Storage is an inextricable part of the systems you manage. Therefore, you
need to handle any data assets associated with your systems and minimize
the risk they pose to the business.

Decisions you make about data storage have long-term effects on your
systems’ durability, portability, flexibility, and consistency. Unfortunately,
there’s a perception that storage has become a commodity business, a cost
to contain. But in practice, take a more holistic approach and optimize the
storage of assets based on their characteristics. Again, think back to the
example product website—pictures shown to customers need to load
quickly; the history of activities needs to be stored accurately but doesn’t
require speedy access.

CAUTIONARY EXAMPLES IN EVALUATING THE VALUE
OF DATA

Often, the data you store is more valuable than the media you use to
store it because the information is far harder to replace. Examples of
organizations losing invaluable data to negligence, short-sightedness, or
disaster abound:

e NASA overwrote its original data tapes for the Apollo lunar
landings in the 1980s.

e The BBC routinely reused videotapes before 1978, erasing
thousands of hours of broadcast programming, notably early
Doctor Who episodes.

e The 2021 OVHcloud data center fire in Strasbourg, France,
destroyed one of four facilities, affecting 3.6 million websites.

There are many more data loss stories—you probably have some
yourself.

On the other hand, there are ongoing costs for storing data perpetually.
For example, many people are concerned about how organizations store
and aggregate their data. As a result, customers lose trust in
organizations that mess up data storage. In addition, legal frameworks
such as the European General Data Protection Regulation (GDPR)
compel companies to give people control over how their data is stored.
So if you mess up and store data against your committed policies, you
could have additional fines to pay on top of your storage costs.

Think carefully about what data you are storing and how you are
storing it. Then, regularly audit your data assets to ensure that your
expectations match the reality, and repair any identified problems.

Some data collection may include personally identifiable information (PII),
personal data, payment card information, and credentials and have explicit
legislation governing their storage. PII is mainly used within the United

https://oreil.ly/3YvhP
https://oreil.ly/pzefI
https://oreil.ly/dUdSk
https://oreil.ly/TkuKG

States, while personal data is associated with the EU data privacy law, the
GDPR.

Your users and their location inform requirements you must follow,
including ensuring that you store data in appropriate places:

e The National Institute of Standards and Technology (NIST) defines PII
as information that identifies or links an individual. An example of PII
is an individual’s Social Security number.

e The European Commission defines personal data as any information
that can directly or indirectly identify a living individual. An example
of personal data is a home address.

e Payment card information is data found on an individual’s payment
cards, including credit and debit cards.

e User credentials are how your site verifies that an individual is who
they say they are.

Examining your data can help qualify your liability based on privacy and
data retention laws and regulations. When dealing with PII, personal data,
payment card information, and credentials, ensure you investigate
requirements to comply with all relevant legislation.

Let’s look at the key characteristics of storage so you know how to evaluate
the options available when designing your systems and how to evaluate
improvements to existing artifact storage.

Key Characteristics

Even though you may be all in on cloud computing, the underlying
supported data storage media is the same as on-prem computing (hard
disks, solid-state disks, flash memory, magnetic tapes, and optical media).
And each type has varying performance characteristics, reliability, and
costs.

https://oreil.ly/cWklx
https://oreil.ly/ly7lP

If you’re managing physical hardware, you may need to dig deeper into
understanding the underlying storage, partitioning it, and getting it ready for
use for whichever OS you manage with the appropriate device drivers. On
the other hand, providers take care of many low-level intricacies if you’ve
migrated to the cloud.

TIP

One of the benefits of cloud computing is that you can characterize and optimize your storage
spend by testing the options available because the cloud provider manages the physical storage
systems.

You must understand your storage options regardless of your computing
environment (on-prem or cloud computing). Critical characteristics of
storage include these:

Capacity

The total disk space for a storage device.

Input/output operations per second (IOPS)

Measures read and write operations possible; storage devices can be
specialized for read or write operations and sequential or random
access.

Input/output (1/0) size/block size
The size of a request to perform I/O operations can vary depending on
the OS and application.

Throughput
Measures the data transfer rate between the application and the

filesystem in a specific time interval.

Latency

Measures the response time an application must wait for a request to
complete.

Applications access data with different patterns. So, when deciding how to
build systems and what resources to use, you’ll review resources with these
characteristics and narrow your options based on your needs. The
relationship of IOPS to throughput when considering storage performance
i1s IOPS = Throughput / I/O size.

Suppose you need to identify what kind of Amazon EBS storage volume to
attach to your Amazon EC2 instance. You understand how many requests
per second your application needs, the size of requests stored, and how that
maps to the throughput of the underlying filesystem. Then, you calculate
the minimum [OPS and evaluate what combination of storage solutions will
work based on what’s available.

In Table 3-1, I’ve captured some of the characteristics of EBS SSD
available in the August 2022 Amazon EBS Features documentation. The
first two options are similar and share the same cost, but the third option
(EBS General Purpose SSD) is quite different.

Suppose you determine that your application needs less than 16,000 IOPS
and no submillisecond latency or high durability commitments. In that case,
spending less on storage and receiving monthly free IOPS might be
beneficial.

https://oreil.ly/6vVPR

Table 3-1. Amazon EBS volume types in table format®

EBS general
EBS provisioned IOPS EBS provisioned purpose SSD

Volume type SSD (io2 Block Express) IOPS SSD (io2) (gp3)
Durability 99.999% 99.999% 99.8%-99.9%
Volume size 4 GB-64 TB 4 GB-16 TB 1 GB-16 TB
Max IOPS/volume 256,000 64,000 16,000
Max 4,000 MB/s 1,000 MB/s 1,000 MB/s
throughput/volume
Latency Submillisecond Single-digit Single-digit

millisecond millisecond

a “Amazon EBS Features—Amazon Web Services”, Amazon Web Services, Inc., accessed
August 15, 2022.

TIP

Optimizing performance for your specific workloads and applications is outside the scope of this
book. However, if this is an area of concern for you, investigate the particular recommendations
for your application, and leverage performance tools to identify and improve performance. For
example, on Linux, you can use iostat.

Storage Categories

Current storage categories are block, file, object, or database. Let’s examine
each of these to better understand the underlying storage abstraction layers
and the impact on your system design choices.

Block Storage

For computing environments, block storage is the most direct way to
interact with physical storage devices; the other forms of storage are at a
higher layer of abstraction. Block storage fragments data into segments of

https://aws.amazon.com/ebs/features

uniform size to write to the storage media. The system uses queues of reads
and writes to balance access to the media efficiently. Virtualized block
storage uses the same strategy but transparently adds a network layer and
stores the individual data segments on different drives, servers, or even data
centers.

Redundant array of independent disks (RAID) technology allows you to
configure multiple drives as a single logical block device, vertically scaling
the capacity and performance while adding a layer of data protection.
Storage networks extend this idea to scale across multiple servers
horizontally.

Block storage is ideal when you need to interact with raw storage volumes,
whether for the boot drive for a computer, the logical volumes used by
virtual machines and containerized images, or data drives used for
databases or file storage. In addition, block storage generally has the lowest
latency.

File Storage

File-oriented storage is the conventional filesystem interface, with nested
hierarchical folders containing files, each of which has attributes such as a
name, an owner, permissions, and access dates.

File storage may be local through your OS or networked. Examples of
networked file storage are Samba shares, NFS mounts, or a cloud-hosted
service like Dropbox, Google Drive, 1Cloud Drive, or Microsoft OneDrive.
These network storage services provide ways for your applications and OS
to interact with network-hosted storage in the same way as storage on
directly attached drives.

File-oriented storage is the approach for your typical “desktop computing”
needs, whether that means shared access to an office file server or a
subscription to a cloud-based service. This approach is also practical when
you need to allow a cluster of servers to have shared access to configuration
files, application data files, or software. Examples include media stores or
user home directories.

File storage can encounter scaling problems when dealing with large
numbers of files. Even as the backend network services scale to support
theoretically unlimited capacities, the frontend software interacting with the
storage can be a bottleneck. Conventional file browsers can fail when
working with directory trees many layers deep, with thousands or even
millions of files and subfolders. Organizing the data helps, but with large
file hierarchies, people may have different ideas on how best to manage
content.

Object Storage

In contrast to hierarchical file storage, object storage takes an unstructured
approach. Each piece of data and associated metadata is stored with a
unique identifier that individuals can quickly access on demand. Object
storage is appealing when you have a considerable quantity of static items
to store and you don’t need to organize individual items in any particular
way. So, use object stores for ordinary files: text, images, audio, video, or
any other data.

Note that object storage doesn’t organize objects into a hierarchical tree as
you would with a traditional filesystem. Instead, you have a list of objects
with nonsequential identifiers and annotated with metadata fields. You may
adopt a framework that treats objects as files in a structured file tree. Still,
interacting with object metadata provides many other ways to explore the
data, such as photos taken with a specific camera, on a particular date or
location, and using respective descriptive tags. Common use cases for
object storage include scalable and flexible storage for modern applications,
“big data” applications, backups, and media storage.

Database Storage

Relational databases are systems that often use a SQL dialect to organize
and access information in interconnected tables of rows and columns. In
databases, atomicity, consistency, isolation, and durability (ACID) are the
properties to guarantee data integrity. Think of banking or credit card

transactions, where funds must be simultaneously taken from one account
and added to another. If the system can’t complete the transaction, it must
cancel it with no change to either account balance. A database system that
promises ACID compliance promises to maintain a reliable data store that
can recover from any problems by either committing each state-changing
operation or rolling back to the most recent state before the attempted failed
update.

Scaling a relational database places pressure on this ACID guarantee. You
can scale vertically by adding storage and compute resources to handle the
load, but there’s only so much RAM, CPU, and disk that you can place into
a single server. Eventually, you will have to scale horizontally and add more
servers, and your application becomes distributed. Once you have a
distributed application, you have to make unavoidable trade-offs.

The CAP theorem explains a set of trade-offs: for a system to continue to
function in the presence of a network partition (partition tolerance), the
system can either ensure every request receives a response, though not
necessarily the latest write (availability), or ensure reads receive the most
recent write or an error (consistency). In summary, the system can’t
guarantee availability and consistency simultaneously.

The PACELC theorem extends the CAP theorem for distributed systems
running optimally (without a network partition); a system must choose
between low latency and consistency:

» [f your distributed application is sensitive to latency (meaning you
prioritize the speed of responses over accuracy), you prefer for the
response to a request to return before it has been validated to be the
latest version. This models eventual consistency in a system.

 [fyour distributed application absolutely must be consistent (meaning
you prioritize accuracy of the data), you prefer for the response to be
validated as the latest version. This will increase the latency of
requests depending on environmental resource contention,
concurrency, or total storage requests in flight at a given point.

In other words, your database management system guarantees that the
information is always consistent (e.g., Apache HBase), but people might
have to wait to get a response. Or, your database management system
maintains responsiveness but sacrifices consistency (e.g., Apache
Cassandra).

For many workloads, responsiveness can be at least as important as
consistency. Think of a social networking site where the default view shows
a set of posts from your friends, or a search engine that returns a list of
results for a query. The person using the site does not necessarily need to
see every post when they access that web page, but it is a big problem if the
page comes up empty. If the system can make a best-effort attempt to show
relevant results, this eventually consistent behavior is acceptable.

NoSQL databases are distributed systems that optimize for availability with
eventual consistency. Instead of using SQL to enforce a schema when
writing to a database, NoSQL databases enable the application developer to
enforce the schema at the application level. This delay solves the long
downtimes required for schema updates to a database by creating additional
complexity at the application level.

A few NoSQL database types include key-value stores, document-oriented
storage, graph, and wide-column databases:

Key-value stores

Like the associative arrays, dictionaries, or hashes provided by many
programming languages, key-value stores associate a piece of data with
an identifier key. Examples of key-value databases include Redis and
Amazon DynamoDB.

Use cases for key-value databases include workloads with simple
requirements to store, get, and remove data, for example, session
management.

Document-oriented storage

https://oreil.ly/v9yeR
https://oreil.ly/6X6As

Document databases associate keys with a structured format (JSON,
XML) known as a document. It is not necessary for the individual
documents in the repository to conform to a consistent schema. As with
object storage, document databases are a particular example of key-
value storage.

Use cases for document databases include workloads that require a
flexible schema, including user profiles, content management and
organization, and real-time business analytics.

Graph databases

Graph databases emphasize the fundamental interconnectedness of all
entities. A graph comprises an entity (i.e., a person or place) and a
relationship that enables analysis that is difficult with earlier relational
systems. Examples of graph databases include Neo4j and AWS
Neptune.

Use cases for graph databases include any system looking for patterns in
datasets: social networks, recommendation engines, fraud detection,
financial risk assessment, and bioinformatics.

Wide-column databases

Wide-column stores structure data around columns rather than rows to
optimize performance with common queries. Examples of wide-column
database applications include Apache Cassandra and Apache HBase.

Use cases for wide-column databases include distributed systems with
large-scale data requirements.

Many database products and hosted services support a mix of these options.
Building a complete solution that meets your organization’s needs will
involve identifying the type of data and metadata you will need to store and
assembling a mix of solutions that meet these needs.

Considerations for Your Storage Strategy

Now that you have a general sense of the storage options available, how do
you decide which ones to use?

The standard question at this point is: do you need a cloud, on-prem, or
hybrid approach to storage? Next, you’ll need to identify solutions that will
be appropriate for each niche of the system that you’re overseeing, which
may have varying needs (as discussed at the beginning of this chapter).

Generally, use whatever solution is appropriate and cost-effective for your
needs. More specifically, you need to examine your data and how it flows to
make decisions about storage.

Here are a few questions to consider about your data:
e What kind of data are you managing?
e How is it produced, and how is it consumed?
e How much data are you dealing with, and what are you doing with it?

¢ Who needs access to it, and how is it delivered? Are users internal or
external to your organization?

e What are your data retention requirements?

e Are there contractual, legal, or privacy considerations? Remember any
constraints both on what you must retain and what you must not retain.

e How frequently is the data being accessed?

e Are users primarily interacting with recent data, or are they analyzing
historical data?

e Do the individual users tend to access a lot of data in a single session?
» Are user applications intolerant of latency?

Here are a few questions to consider about the devices you manage:

e Do your computing devices need to be able to boot independently? If
so, they each need a boot drive. You can, of course, centralize
administration by setting up a netboot server for diskless systems.

e Do your computers need to access shared storage? Maybe it makes
sense to put things like config files and user home directories on a
central file server on the local network. Or perhaps you have remote
colleagues who don’t necessarily have ready access to a server at the
office, and it makes more sense to use a cloud-backed tool that
synchronizes local files to a service provider.

Investing in on-premises hardware solutions can provide high capacity and
throughput with low latency to internal users in a single geographic region.

There is a high up-front cost and an ongoing maintenance burden with
maintaining backups and monitoring hardware health. Scalability can be a
limiting factor, too. If a server runs out of capacity, your options are to
delete or offload data or add more servers, which may require significant
lead time.

By contrast, cloud-hosted solutions have minimal up-front costs and
maintenance requirements as you mix and match block, file, object, and
database storage solutions with virtually unlimited capacity to scale out as
your needs grow. In addition, you can choose to replicate data to different
regions to improve latency for global users.

These solutions require perpetual subscription costs that can unexpectedly
spike if you’re not placing boundaries on your storage consumption. In
addition to storage guardrails, you can migrate data that isn’t accessed
frequently to “cold” storage tiers with lower ongoing costs to constrain
expenses. Finally, you watch the cloud provider’s billing dashboards instead
of monitoring hard drive health reports.

For some organizations, there may be a strict requirement that you cannot
connect critical infrastructure to the internet. Some cloud providers do offer
solutions that meet government standards for housing sensitive information.

Still, for institutions that cannot even consider this possibility, on-prem
solutions are the only viable consideration.

Anticipate Your Capacity and Latency Requirements

Consider a video streaming service that provides a library of thousands of
movies and TV shows to their subscribers. Each piece of content gets
encoded in a range of quality settings, from standard-definition (SD) to
high-definition (HD) formats (720p, 10801, 1080p, 4K, and 8K). The
demands on bandwidth and storage increase rapidly with every
technological advance. Encoding formats or codecs can reduce the raw
amount of data these formats produce but increase the cost of computational
overhead and decreased picture quality.

The customers of video streaming services use various devices, from
mobile phones to personal computers to large-screen televisions. Moreover,
their connection speeds range from dial-up modem rates to gigabit or faster
broadband connections. As a result, services need to store dozens of
pregenerated formats to support this range of clients. It’s not hard to
imagine how keeping a single full-length movie in a range of high-quality
formats can require a terabyte of capacity, and a library of a thousand
movies would require a petabyte of storage. And that’s just for the raw data,
not including the overhead storage requirements of the databases and
software that manage access to the video library, not to mention backups.

Streaming services use content distribution networks (CDN5s) to replicate
data to worldwide facilities to minimize customer latency delays in different
regions. That petabyte of data for a movie library can end up being
duplicated to hundreds of locations. An additional infrastructure layer must
be in place to manage it, keeping the replication current and removing any
stale data.

Think about your own organization’s data requirements. Maybe you’re not
using data as voraciously as this, or perhaps you’re using even more.
Whatever the current rate, chances are good that it will keep doubling in the
future.

Retain Your Data as Long as Is Reasonably Necessary

Your data has a lifecycle. Some of it is ephemeral, and some 1s long-lasting.
Storage capacity has become inexpensive but isn’t free, and retaining data
has ongoing costs. Software that has to process more data either runs more
slowly or consumes more computational overhead to maintain
responsiveness.

Consider the infrastructure required to support the user of a fitness device
that records metrics about heart rate and count of footsteps. The sensors
record events with precision but don’t retain raw telemetry due to capacity
constraints. Instead, the device calculates configured rates and discards the
original telemetry. Finally, the user syncs their device and uploads the
summarized data to their account.

Users typically want to see trends over time but are less likely to look up
their step count from an afternoon several years ago. So it’s OK for the
application to retain summarized data with a granularity of a day, a week, or
even a month. Note that the system reduces incoming data to just what the
next step in the pipeline requires at each data collection stage.

A similar approach arises when dealing with an organization’s internal
processes. For example, when working on a project, you’ll often keep track
of things 1n tickets, chat systems, emails, and shared documents. Once the
project 1s complete, is it useful to be able to refer to such archived
discussions, or is it sufficient to have a summary report to inform future
work? Some organizations have policies that disallow retaining such
artifacts, while others encourage preserving this institutional knowledge.
Both approaches have strengths and weaknesses.

DELETION OF DATA WHEN DISPOSING OF EQUIPMENT

Your data retention policy also needs to extend to the disposition of
equipment that is no longer required. Before disposing of servers,
personal computers, mobile devices, portable drives, and so on, you
should always assume that people may have stored potentially sensitive
information on this equipment. Motivated people with access to the
right tools can, in some cases, recover “deleted” data from storage
devices.

If this risk is a concern, you may want to take additional steps to purge
the data, such as writing zeros or random data to the drives. Scrambling
the data can be an effective strategy for thwarting data recovery, but it is
time-consuming, and even this may not be enough assurance for some
organizations. For devices configured to use “whole-disk™ encryption,
the “deletion” process can be as simple as destroying the encryption
key, which can make the data unrecoverable to all but the most
committed of adversaries.

When in doubt, you should erase and physically destroy drives to be
sure that malicious actions cannot recover the data.

Respect the Privacy Concerns of Your Users

I can’t emphasize enough how important it is to respect the privacy
concerns of your users. Pay special attention to how you handle PII or
personal data. Often, there is a contractual or legal requirement to obtain
such information only for a specific purpose and to delete the information
as soon as it isn’t needed.

Privacy advocates have drawn attention to the problems that arise when
user data is collected, bought, and sold, often without fully informed
consent. In jurisdictions with “right to be forgotten” laws, people can
request that you remove their data, and you have both a legal and a moral
obligation to fulfill such requests.

Defend Your Data

Data breaches—privacy violations in which an unauthorized party copies,
steals, transmits, uses, or views private data—happen frequently. Such
breaches may include financial information, personal health information
(PHI), PII, trade secrets, and other intellectual property. These incidents can
have significant direct and indirect costs, ranging from remediation efforts
to reputational damage.

Data breaches happen for a variety of reasons. Both insiders and external
actors can cause them. They can be due to negligence, such as a misplaced
device, an easily guessed password, or a failure to use strong encryption, or
they can be due to deliberate action, such as hacking, sabotage, or theft.
Attack vectors can include malware, phishing, ransomware, social
engineering, and theft of physical media.

The principle of least privilege is one way to defend against these problems:
“every program and every privileged user of the system should operate
using the least amount of privilege necessary to complete the job.” This
philosophy has guided OS design for decades and is still applicable today.

Think about who needs access to your data at different stages. Consider
particular services your software provides. Do developers need full access
to everything, or 1s it sufficient if they merely have high-level metadata
access to validate that things are working? Or, to use a concrete example, do
admins need access to a user’s email account and Slack messages, or is it
sufficient to verify that the account is active and the user can access it?

Your system should encrypt data at both motion and rest to reinforce least-
privilege policies. Network protocols should encrypt data by default. The
days of using open standard protocols safely (i.e., HTTP and SMTP) have
been gone for years.

TIP

I know I’m repeating myself, but I can’t stress enough the importance of giving special attention
to how you handle financial, medical, and PII. The easiest way to defend this data is to not collect
it.

Data breaches can be costly. Disclosure of personal information can lead to
identity theft and other forms of fraud; victims of such crimes have come to
expect remediation measures such as credit monitoring, replacement credit
cards, and other forms of compensation. Disclosure of intellectual property
such as source code or other trade secrets can undermine a company’s
market competitiveness and give an unexpected advantage to competitors.
For example, data breaches at Yahoo in 2013 and 2014 exposed information
on three billion user accounts; when Verizon acquired Yahoo in 2016, the
company’s value was adjusted downward by $350 million to reflect the
damage—nearly 10% of the $4.8 billion acquisition price.

Be Prepared to Handle Disaster Recovery Situations

Assume that data loss is a fact of life. Individuals accidentally delete files or
reformat the wrong drive. Service providers have outages due to accidents
as well as physical hardware failures. Data centers are not immune to
natural disasters.

Consider your data availability expectations. Does “everything” need to be
backed up? How often? How timely? If a user created a file 10 minutes ago
and then removed it 5 minutes ago, could you recover it? What if they need
a deleted file from five months or years ago? Would it be acceptable if the
recovery takes an hour? A day? A week?

A backup that isn’t validated is just an aspiration. You need to simulate
various forms of data loss (and repeat this periodically) and prove that you
have a tested, documented procedure for getting the data back within a time
frame that meets expectations. The worst time to find out that the backups
don’t work is when someone with a deadline needs their data back.

CASE STUDY: PIXAR’S TOY STORY 2

In 1998, a Pixar employee accidentally deleted the entire film archive
after the computer-animated film 7oy Story 2 had been in production for
nearly two years. Unfortunately, backups had stopped working due to
the lack of available space. Luckily, Galyn Susman, the supervising
technical director, had been working from home and had a copy of the
data.

The team was able to use her copy, a two-month-old backup, and a
variety of cobbled-together assets from failed renders and animators’
local storage to painstakingly review tens of thousands of files to
assemble a new source tree for Toy Story 2.

Pixar later decided that the story wasn’t working, intentionally deleted
the film, and started over.

Consider the lessons here:
e Guard against deletions.
e Monitor your backups.
e Trust people with the autonomy to tend to their families.

e Sometimes, it’s OK to throw it away and start over again.

Wrapping Up

Data is generally your organization’s most valuable asset, and in a healthy
organization, it is continually growing. Traditional on-premise storage
technologies can offer high performance and large capacities but also have
high fixed costs and ongoing maintenance burdens; cloud-hosted solutions
offer unlimited scalability but incur recurring and potentially unpredictable
usage fees. Choose the portfolio of hardware and service solutions that meet
your needs.

MORE RESOURCES

Check out Modern Data Protection from W. Curtis Preston (O’Reilly)
for more in-depth resources on protecting your data with backups. See
Brendan Gregg’s Systems Performance (Prentice Hall) for more
detailed concepts, tools, and tuning for Linux operating systems and
applications.

If you are primarily focused on managing databases, check out these
resources:

e High Performance MySQL by Silvia Boltros and Jeremy Tinley
(O’Reilly)

e Database Reliability Engineering by Laine Campbell and Charity
Majors (O’Reilly)

Chapter 4. Network

Let’s round out the fundamentals of systems by talking about the network.
Networks are the communication bedrock of every system; they connect all
your resources and services. Problems with the network lead to system
failure. The critical nature of networks led to early specialization and
networking admins to manage the networking hardware. Microservices,
virtualization, and containerization have brought a tectonic shift to building
and managing today’s networks. More resources to interconnect, software-
defined networking, and latency-dependent applications have all upset prior
expectations of network admin skills, bringing some of these administration
responsibilities back into scope for the systems team.

In this chapter, I explain the landscape of networking technologies (network
virtualization, software-defined networks, and content distribution
networks) so you can collaborate with your network and network security
teams and build the skills to strengthen the interconnection of your system’s
components.

Caring About Networks

Let’s revisit the example from the previous chapter of a contemporary
product website; it’s the virtual front door of a business and an example
system you might manage.

A user opens up a web browser on their phone to buy a product from your
company. Their wireless service provider routes their request to a CDN that
operates in a data center physically close to them. If the CDN doesn’t have
the data to fulfill the request, their request is routed onward. Next, a load
balancer routes the request to a physical server on which the hypervisor
determines which VM to route to in your cloud-hosted infrastructure. Once
the VM’s Linux kernel has received the traffic, your application processes
the request, and the response follows a similar path back to the client.

A lot 1s going on here. How many different networks did you count? Each
network introduces some processing as a router determines the best path to
get to the next destination. More network hops and different network types
with varying transmission speeds lead to inconsistent and long response
times. How many types of network devices were involved?

Your users generally don’t care about these implementation details as long
as the traffic gets through reliably. However, when requests aren’t making it
through, it matters a lot, and you have to figure out what is happening now.
Rather than reacting to requests later, it’s helpful to understand the context
of your system’s networks and build and manage them based on that
knowledge. Understanding your system’s needs enables you to make
informed choices, as illustrated in the example of caching data closer to
clients with a CDN and routing requests to the appropriate destination with
load balancers.

As with all decisions in the building blocks of your systems, the context of
what you are building matters. Effective use of the resources and options
available to you will improve the cost to the humans on the team to manage
the system, the impact on your customers, and the business’s overall bottom
line.

Key Characteristics of Networks

As with storage, there are a couple of primary ways to think about network
options—wired versus wireless—and within each of these broad categories,
there are different media (e.g., copper wire, fiber-optic cables) and
communication protocols.

Networks have a topology, element arrangement, and data flow. Depending
on the medium, network topology will define the layout of the physical
cabling, the location of the different network resources, and embedded fault
tolerance. All of these factors play into the cost associated with the
network.

The key characteristics of networks include the following:

Bandwidth

The capacity of the communication channel usually described as a rate
for a fixed time; i.e., megabits per second (Mbps) or gigabits per second
(Gbps).

Latency

The time required for the signal to travel from one point to its
destination, which depends on the physical distance the signal has to
travel.

Network latency is more accurately defined by the end-to-end time to
transmit the message (transmission time), the time to process the request
by all the network devices along the way (processing delay), and the
length of time taken up by the queue of requests to be processed
(queuing delay).

Jitter

The variance from the median latency. For a specific request, you can
see the network latency. To calculate the expected latency, an average of
some number of data points will be used. The jitter 1s how to describe
the variance of that measurement. For workloads that depend on low-
latency networks (e.g., audio, streaming), jitter can be helpful to assess
the quality of the network in terms of consistency.

Availability

The measure of the probability of the network being available. Different
networks are capable of handling different numbers of failures.

Build a Network

Imagine that you’re responsible for deploying a system to a data center. The
system has a gateway that routes to an application that consists of a
database and a bank of web servers. The data center provides backbone

connectivity, but you’re responsible for everything else. So, what network
resources will you need? Here are some that come to mind:

e A firewall to filter ingress and egress traffic

e A gateway router to accept incoming traffic from the public internet,
steer it to internal resources that process that traffic, and relay
outbound traffic from the internal hosts onward back to remote clients

e A load balancer to distribute traffic among the web servers

e Intrusion detection systems to protect the network from unauthorized
external access and other suspicious network activity

* A VPN gateway that grants authorized remote users elevated access to
the private network

When factoring in your network’s needs, think about the traffic patterns,
type, and amount of traffic.

Often networks are described based on the available bandwidth. However,
even if two compute environments both have high bandwidth in their
connection to the broader internet, their physical separation may limit the
quality of interaction because of the latency or jitter.

The Open Systems Interconnection (OSI) reference model is a seven-
layered architecture that is used to visualize details about protocol and
interface implementation. For example, traditional load balancing is called
Layer 4 (L4) load balancing because it occurs at the fourth level, transport.
This type of load balancing occurs by the network device or application
distributing requests based on the source and destination IP addresses and
ports without deeper introspection into the content of the packets. Layer 7
(L7) load balancing occurs at the seventh level, application. Network or
applications that are using application load balancing distribute requests
based on the requests characteristics.

But the labels aren’t perfectly accurate; they capture enough context to
differentiate their use. For example, L4 load balancing could be more
accurately described as L.3/L.4 load balancing because the load balancer

uses network and transport characteristics in distributing requests. And L7
load balancing could be more accurately described as L5-L7 load balancing
because the load balancer uses session, presentation, and application
protocol characteristics to identify the best destination for requests.

Early L7 load balancing was very expensive due to the compute necessary
to process requests. Now, with the advance in technology, the cost between
L4 and L7 implementations is negligible compared to the benefits of more
flexibility and efficiency of L7 load balancing.”

Recall the five layers of the Internet model from Table 1-2.

Each layer communicates via the interfaces above and below via a message
object specific to the layer. Layering separates the roles and responsibilities,
enabling humans to build (and change) different parts of communication
protocols, which has fueled much of modern network transformation.

Virtualization

Creating a network comes down to two things: an ability to send and
receive data and a mechanism to make decisions about how to do so.

In the past, you would buy a dedicated single-purpose device for each
network function. Now you can deploy virtualized versions of these
components using techniques similar to your other infrastructure resources.
Just as service providers have virtualized traditional server roles (i.e.,
databases and web servers), providers virtualize network services with
anonymous network equipment, so you can run software that manages how
the hardware transmits and receives data.

However, you can’t virtualize all aspects of networking. For example,
communication with remote hosts necessarily involves physical data
channels, such as Ethernet cables, transoceanic fiber-optic lines, satellite
uplinks, or WiF1 adapters. These channels are different enough to require
specific hardware to handle the data link operations. But that’s the
advantage of the separation of protocol implementation and interfaces with
the internet. As long as the physical layer resources are in place and

working, you have the flexibility to set up the transport and network
resources as you see fit.

The ability to deploy arbitrary network functionality on generic hardware
empowers us with tremendous flexibility. You don’t have to acquire
specialized equipment and then go to a data center to “rack and stack™ it
when an API call can fulfill the same need. Instead, network resources can
scale vertically and horizontally with the rest of your infrastructure.

Software-Defined Networks

With the proliferation of deployed network resources at scale, your
challenge 1s managing and protecting these resources in a cohesive, holistic
way. Early approaches to internetworking used a decentralized philosophy
where routers had only a vague sense of how to relay traffic to its final
destination. A decentralized philosophy made the internet resilient enough
to recover from natural disasters but didn’t guarantee network stability.
Moreover, this approach didn’t account for the evolving nature of security.
While early engineers designed the internet to survive network
segmentation, they didn’t consider malware threats like the Morris worm or
the ubiquitous integration of computers into daily life, making everyone
much more vulnerable to malicious activity.

Consider the challenges faced by a university network administrator. The
institution provides certain computing resources (i.e., servers, workstations,
and printers) and allows students and faculty to use their own devices (i.e.,
laptops, tablets, and phones). While the IT department patches and
physically secures the university’s equipment, it’s much harder to enforce
specific security policies on other people’s equipment. As a result, it’s only
a matter of time before there’s a problem with malware, ransomware, or
viruses originating from unsecured personal devices.

Software-defined networking (SDN) provides tools to help you manage and
protect your resources. SDN is an approach to network management that
conceptualizes entire networks as a single programmable computer. Just as
conventional computers use an OS to orchestrate hardware resources on

behalf of high-level applications, SDNs introduce a centralized framework
for coordinating the operations of a distributed network, activating
resources as needed, automatically adapting to volatile conditions, and
allowing you to push out uniform policies.

So a network admin could run a threat intelligence management application
combined with shared threat sources to compile a denylist for malicious
websites. Then when device owners attempt to visit a malicious website,
they will be directed to a warning page so that they can take the appropriate
actions.

The defining attribute of SDNs is the use of a high-level control plane to
govern the operation of the activity on individual network devices. While
providers optimize software on the data or forwarding plane for speed,
simplicity, and consistency, the control plane provides a flexible interface
for defining policies and handling exceptions.

SDN architecture uses a centralized, programmable controller that oversees
network operations. This controller uses southbound APIs to push
information down to devices such as routers and firewalls and northbound
APIs that relay state information to the controller. Most SDN
implementations use the OpenFlow protocol to manage network devices in
a vendor-agnostic way. As long as the physical or virtual equipment
supports a programmatic interface for defining how to route or drop traffic,
you can govern it with an SDN controller.

Multiple SDN controller applications can participate simultaneously. For
example, some control plane applications focus on deployment and
provisioning operations, others may meter traffic for billing purposes, and
others can handle various aspects of network security.

Segmentation is another way to protect your networks. Segmenting your
network can optimize traffic flow for legitimate uses of the network and
classify the damage done in the event of a malware attack or data breach.
With machine learning, modern software-defined networks can
automatically learn to identify usage patterns and use this information to

https://oreil.ly/uetEd

guide the operation of microsegments. Still, as with all machine learning
systems, the outcomes are only as good as their training data.

Content Distribution Networks

A key element of smooth system operation is responsive network services.
Users have come to expect near instantaneous response times and assume
that things are broken if there are any delays. And yet, no amount of
computing power can overcome the speed of light. The further away your
users are, the more noticeable this is.

Consider a site operating from San Francisco as depicted in Table 4-1 with
the following assumptions:

e All sites are connected to San Francisco with fiber in a straight line at
the stated distance.?

» The speed of light is approximately 5 ms per 1,000 km for fiber.

Table 4-1. Distance and average latency from San Francisco to other sites

New York City London Tokyo Sydney
Distance from San 4,130 km 11,027 km 17,944 km 11,934 km
Francisco
Latency 21 ms 55 ms 90 ms 60 ms
Round-trip time 42 ms 110 ms 180 ms 120 ms

Now, multiply the round-trip time (RTT) by the request size. The difference
between users accessing the site from New York City and Tokyo is
markedly different. In the real world, we have to factor in the fact that most
places are not connected by fiber in straight lines, media has different
latencies, and for every network hop, the network devices add delay for

processing the route. Also, there are no guarantees about other traffic on the
same network segments.

To overcome the limitations of network latency between sites, you need a
copy of your site somewhere close enough to your customers so that these
delays are negligible. While you could do this by building out a global
network of your own, it’s far simpler to outsource the work to CDNs, which
take on the burden of operating a global array of data centers called points
of presence (PoPs). By distributing your site to a local PoP, you can lower
the response time for users close to those points to less than 1 ms.

Choose your CDN based on the set of features (e.g., availability, regions
served, and routing options) that optimize your expenditure. With a CDN,
you can do the following:

e Improve load times by distributing content closer to your consumers.

e Reduce the cost of bandwidth. Instead of making multiple redundant
cross-country trips, most requests stay on the edge and pull from
cached content.

e Increase availability and redundancy by having numerous global
copies of your content.

» Improve security by mitigating the impact of a distributed denial-of-
service (DDoS) attack. In a DDoS attack, malicious actors attempt to
flood a site with traffic to exhaust a system’s resources. Some CDN
providers can prevent the malicious activity from reaching your
servers, meaning that your system won’t experience perceived
downtime.

Using a CDN helps solve some of your problems, but it does add a layer of
complexity in managing services, the specific configurations provided by
your CDN, and your site’s caches.

If you are currently using a CDN, check your service provider’s
documentation to figure out when you should clear cached resources.
Consider situations such as these:

e Problems are occurring for a subset of your users. For example,
someone pushed a change that had unintended consequences based on
existing cached data.

e Problems are occurring for all of your users. For example, you had a
bad site build.

In general, avoid purging your entire cache because doing so would cause a
cascade of requests to repopulate the cache.

TIP

If you are using caches with a web server, take some time to learn about web cache poisoning, an
online attack on your cached data where an attacker leverages a vulnerability in your (unpatched)
web server that causes a change in your cache that is then served to other users. James Kettle
provides a great resource on how caches work and how web cache poisoning occurs.

Guidelines to Your Network Strategy

With your understanding of the landscape of networking technologies
(network virtualization, software-defined networks, and content distribution
networks), you can start to build your network strategy. Consider the
following:

e Understand your latency needs. Consider bringing necessary systems
closer to the end users to improve latency, whether through caching,
mirrored systems, or segmented data. This means having a good
understanding of how and where your users connect to you; 1.e., via
phones (unreliable wireless availability), laptops (mostly reliable
wireless connections), hardwired connections, and physical distance
like global markets.

e Leverage new protocols in your systems:

= Use HTTP/2 to provide a faster and higher-quality user
experience.

https://oreil.ly/74vNx

= Use QUIC networking to maintain a seamless connection even
when mobile users switch between network connections.

e Keep informed of internet security threats, and monitor advisories
related to the software you use.

Wrapping Up

Whether wired, wireless, or virtualized, networks are how the resources and
services that you manage exchange data with one another. Just as with the
rise of devops, the boundary between system administration and software
engineering has become blurred, and so too is the distinction blurring
between sysadmins and network admins.

Modern software-defined networks take a centralized approach to route
network traffic efficiently while providing network operators with tools to
regulate traffic, protect against malware, defend against unauthorized
activity, and handle billing for metered users. Similarly, content distribution
networks provide a better experience for a global population of users by
caching website data at facilities that are physically close to your users.

When you begin to set up and manage your network infrastructure, you
need to consider how different resources on your network communicate
with one another, how much data they’re exchanging, and how tolerant they
are of latency delays. Using modern approaches can provide you and your
users with a fast, secure, and resilient network.

1 Learn more about layer 7 load balancing from the NGINX documentation.

2 In reality, networks don’t connect this way. A complex set of partnerships and geographic
locations have different levels of network infrastructure. Learn more about internet exchange
points and how internet service providers and CDNs connect from the Cloudflare Learning
Center post.

https://oreil.ly/tFfiK
https://oreil.ly/Og7DC

Part ll. Practices

In Part II, I share the practices that have emerged to help reduce the impact
of evolving technologies on your systems and to improve your systems’
reliability and sustainability for the humans working on the systems.

This set of chapters helps you think about the different practices to apply to
your systems that will improve maintainability, simplicity, and usability. |
want you to feel enabled to adopt the practices to support you in supporting
your systems.

Chapter 5. Sysadmin Toolkit

A toolkit represents a collection of useful items to support a particular set of
purposes. In my early sysadmin years, I had a physical kit in my laptop bag
that included various items to support the work I encountered. It varied over
time, but essentials included a pen and a Sharpie for labeling, sticky notes
(folded over a cable; they were super helpful in tracing gnarly cable issues),
a mini screwdriver set to open cases and replace hardware, bootable CDs
for a wide spread of operating systems, and a lot of different cables and
dongles.

The modern sysadmin toolkit focuses more on nonphysical essential tools.
Your working environment is your first managed system and part of your
kit. This chapter shows you how to build your digital kit by adopting a
codified development environment so that you can automate everyday tasks
and improve collaboration with your users and colleagues by sharing your
kit or adopting tools or practices from theirs.

What Is Your Digital Toolkit?

As a system administrator, you are responsible for the reliability of systems.
Whatever your specific role is, whatever the system is, you need a safe way
to simulate a realistic model of your production environment to tinker with
and figure out workable processes. Ultimately, you want to identify resilient
and sustainable ways to operate.

Your digital toolkit is a development environment that helps you minimize
the risk to any customer-facing system by giving you the set of tools and
technologies to develop code isolated from a live environment. Your
environment can be on your laptop or workstation, and it can also be a
private sandbox on a remote system with a cloud provider.

Your toolkit may enable the following:

Working offline
Debugging code/configuration

Onboarding new employees or team members with the relevant
context necessary to do a specific task

Embracing policy compliance and recommended practices through
codified standards

HOW | LEARNED TO STOP WORRYING AND LOVE MY
DEVELOPMENT ENVIRONMENT
By Chris Devers

My work involves supporting broadcast production systems where
downtime can be massively disruptive, so I need to feel confident
before deploying the fix when problems arise. I might have ideas about
how to proceed with a solution, but conducting experiments in
production usually isn’t acceptable. So I need access to an environment
that meaningfully replicates production to try things out without
disrupting anyone or jeopardizing data or services.

For example, the software I deal with can back up material to LTO tape
media for cold archival storage. But all sorts of problems can arise with
the tape libraries: someone might have removed the necessary tape, or
the tape might be unreadable. Sometimes, a tape is physically OK, but
it’s unlabeled, so the library can’t scan the barcode. Or, the label jams
the robotic mechanism for shuttling tapes. Or the tape hardware is
working fine, but the data cable is not fully seated, so the hardware
intermittently disconnects from the server. Virtualized tape software is
available for “happy path” scenarios when the hardware is running. But,
if I need to be sure that the software will behave for hardware
anomalies, then I don’t feel confident deploying a fix I haven’t tried.

To deploy changes to production systems, I need to prove that the
changes work correctly in conditions comparable to where they will be
running and without introducing unwanted side effects. Local
development environments that replicate production provide me with a
way to prove that the changes I’'m working on will work as expected
without putting the production system at risk.

The Components of Your Toolkit

Your toolkit will be specific to the set of tasks and projects that your work
requires, including some combination of the following elements:

e An editor
e Programming languages

Frameworks

Libraries

Applications

And, of course, any configurations specific to any of these components.
Let’s review these components in more detail.

Choosing an Editor

Sysadmins write code, scripts, infrastructure, documentation, and tests. The
correct text editor reduces your overhead, helps you catch problems in your
code early, suggests code completions based on language semantics,
formats your code based on team expectations, and integrates with other
tools.

For example, you could manually craft a Dockerfile, the text file containing
the build instruction for a Docker container, looking up each build
instruction. With a contemporary editor, you get suggested snippets
corresponding to valid Dockerfile commands to quickly build out a new
Dockerfile to ease the creation of a Dockerfile as you compose the file. For
an existing Dockerfile, hovering over a command will give you a detailed
description of what that command is doing.

What should you look for in an editor? While you’re probably already
familiar with one or more text editors, there are features that can make it
worth learning another, such as these:

 Integrated static code analysis

e Code completion

¢ Indented code to match team conventions
e Distributed pairing

e Integrated workflow with Git

NOTE

Be open-minded about others trying and adopting different tools. For example, while vi or emacs
may have all the features you want and need, they may not be the right choice for others. Building
and learning the necessary editor context from scratch with all the unique mechanisms to operate
the editor may not be the best use of their time, especially when there is so much more to being an
effective system administrator than your editor.

Integrated static code analysis

You can speed up development and reduce potential issues by adding static
code analysis or linter extensions for the languages used. For example, you
can install shellcheck and the shellcheck extension for writing bash
scripts. Then, as you write shell code, the editor will alert you of potential
problems. In the following example, I wanted to find all the files with a
.png extension in the current directory, so I wrote some shell code:

#!/bin/bash

for file name in S$(ls *.png)
do

echo "S$file name"
done

My editor warned me that “iterating over 1s output is fragile.” So I updated
the code, removed 1s, and used globs as recommended:

for file name in *.png
do

echo "Sfile name"
done

Running a linter as you write code allows you to catch and fix problems.
There are linters for many files, from YAML to specific languages. Within
the editor, you can customize the options for how the lint runs, allowing
you to run linting as you type code or, if that is too distracting, after you
save your updates.

Code completion

Code completion improves the coding experience by providing educated
guesses about what you are trying to do. As you type, autocomplete options
will pop up. Some languages have better completions automatically; you
can add extensions to improve others.

Establish and validate team conventions

Many organizations use code linters to help enforce a consistent coding
style, making it easier for teams to maintain a shared code repository. For
example, the team can standardize the text indentation rather than debate
whether spaces or tabs are more readable. Each individual can customize
their editor to display their preferred indentation. Additionally, you can
convert the amount of spacing currently used within a file to conform to
new requirements.

Integrate workflow with Git

As you work on a project, it’s helpful to see your changes and whether
you’ve committed them. Seeing your intended changes can prevent
unfortunate surprises, such as forgetting to share your fixes for bugs back to
the shared source control repository.

Choosing Programming Languages

While you might not develop applications, honing development skills in
shell code and at least one additional language helps you collaborate better
and build the functionality that improves your team’s productivity. In
addition, automating work—from opening JIRA tickets with prepopulated
meta information to scanning compute instances for systems out of

compliance with required standards—frees up the team’s time to focus on
areas that need human thought and creativity.

Bash and PowerShell are reasonable choices in most environments, are
available on current versions of both Linux and Windows, and will be
handy daily. Once a shell script starts getting longer than 50 lines or needs
complex data structures, it becomes more difficult to understand, leading to
a fragile mechanism for managing a system. No one wants to break the
script. Reimplementing a script as a utility in a general-purpose
programming language can help in those cases. Languages like Python, C#,
Ruby, and Go can provide these benefits:

o Better error handling
e A rich community of libraries

e Additional debugging tools and utilities

So how do you choose a specific language? Think through these concerns:

What languages are already in use within your organization or team? How
much code in a specific language do you already have?

Learning how to read whatever language(s) your development team
uses can be beneficial. When the system isn’t working as expected, it
can be helpful to check whether the problem is with the code or tests of
that code.

You can also leverage the fact that multiple people can support
debugging or feature implementation.

Sometimes the right choice is to go along with popular opinion;
sometimes, the right choice is to buck the trend. For example, it’s OK to
choose languages and technologies based on existing skills on the team.

Are there tools and technologies that you or your team would like to adopt,
but they re implemented in a language that nobody on your team is familiar
with?

You could adopt an alternative technology that uses a language your
team already knows or take it as an opportunity to broaden your skill set
by learning a new language. And teams that don’t develop new skills
will stagnate, limiting their choices in software adoption because new
software often leverages contemporary languages.

Include the overall cost of using and supporting the tools in your
decision. For example, some teams value the collaboration possible
from the worldwide community of open source technologies. In
contrast, other teams benefit more from access to commercial training
and support. Of course, neither of these options is inherently better, but
choosing one that goes against your team culture will add to the
complexity of successful adoption.

Consider the impact of different kinds of changes:

e New language versions can break backward compatibility with
existing codebases.

e New libraries may simplify previously complex chores but require
refactoring legacy code.

e Security patches require cessation of vulnerable features that need
legacy refactoring with urgency. Any language popular enough to
have an active development community will be in flux. Therefore,
your options will include alternatives when planning what your team
wants to work on in the future.

NOTE

Documenting the reasons a team has chosen a language creates helpful reference material for the
future.

What languages are widely used by your industry peers?

Widely adopted languages within the industry will have more support
resources with documented example code in community forums.

What challenges are you facing with previous decisions about language
implementation?

Sometimes even though a particular language is widely used within
your organization, it has associated challenges that may hinder a new
project. Identifying and documenting your thinking process in your
decision 1s part of proposing and adopting a new language.

It takes time and energy to refactor a tool to a new language, and the
refactor could require you to support two different tools simultaneously.
Even if your team is sticking with one primary language, languages
evolve. It can be necessary to refactor legacy code to keep working with
new versions of the language or libraries. For example, organizations
trying to migrate from one infrastructure automation tool to another
often end up with both technologies rather than a clean migration. In
addition, applications with overlapping concerns add confusion and
complexity to the environment.

In the end, there is no right language to learn as a system administrator. So

instead, balance your experience with the features and the rest of the team’s
skills.

NOTE

Sometimes, your operating system will include a version of the language. Often this is an outdated
version, and you’ll need to update it to leverage the language’s latest features. Changing the
system-included language isn’t a recommended practice. Instead, install the desired version
separately and set execution paths appropriately to prefer the later version. The explicit external
installation will help prevent system instability due to modifying the software the system might
use. It also helps eliminate undefined dependencies in environments.

Frameworks and Libraries

Your organization’s service providers and languages will define what
additional frameworks or libraries you need. Some examples include the
following:

* AWS SDKs for specific languages,

e PagerDuty API client libraries to manage your PagerDuty
configurations

e ChatOps automation frameworks in a specific language

These will be highly specific to your environment and needs and potentially
problematic if functionality changes across library versions. Documenting
versions of these frameworks and libraries and codifying them into
environments prevents lost time debugging different outcomes.

Other Helpful Utilities

Beyond your editor, languages, frameworks, and libraries, additional
applications round out your toolkit. Different tools will be helpful in your
organization:

e Ticket or bug tracking
e Infrastructure and application monitoring
o Alerting

e Config management, container orchestration, and infrastructure
provisioning

e Pipelines

e Artifact repositories
e Builds

e Source code

e Chat

e Knowledge management

You can codify all of these tools with infrastructure code into prebuilt
containers or virtual machines or leverage a remote system provided by a
cloud provider.

Additionally, you can customize your command line with shell
customizations. Dotfiles are files that generally (but not always) start with a
dot and help us back up and customize our systems. You can share dotfiles
with other engineers to improve their productivity with new tools. Some
organizations use dotfiles to configure aspects of a new system for
productivity. While dotfiles may feel more familiar on Unix-like systems,
they are also available on Windows systems.

Be aware that you shouldn’t just adopt someone else’s dotfiles into your environment without
understanding all the code. Also, configurations that work for one person may not function
optimally for someone else.

Over time, you’ll also build out sets of tools that you rely on regardless of
your environment. [want to share some of my favorites. Many of the
following recommended tools are cross-platform, although some are UNIX-
specific:

The Silver Searcher

The Silver Searcher, or Ag for short, levels up searching through code
repositories. Ag is fast and ignores file patterns from .gitignore. It can
be integrated with editors as well. When debugging errors or other
“needles in the haystack™ of code, it can be super helpful to search for a
specific string to understand how it’s called.

bash-completion

Modern shells provide command completion by allowing you to start
typing the beginning of a command, hit Tab, and see potential

https://oreil.ly/Km2em

completions. bash-completion extends this feature and enables you to
add completion features. Extensions are shareable across the team.

cURL

cURL is a command-line tool and library to transfer data. For example,
you can use it to verify whether you can connect to a URL, which is one
of the first validations when checking a web service. You can also use it
to send or retrieve data from a URL or retrieve HTTP headers to see
specific server response codes.

Docker

Git

Docker provides a mechanism to create isolated environments called
containers. A Dockerfile encapsulates the OS, environment files, and
application requirements. You can add a Dockerfile to a project and
commit it to version control.

With Docker installed and access to a Dockerfile, onboarding a new
collaborator to a project can be as straightforward as running docker
run to get a working test environment up. This test environment would
match even more closely to a production environment if running
production on containers.

Using Git as version control and GitHub as the project repository, gh
extends Git functionality that helps with GitHub tasks from the
command line.

For example, if [want to test a pull request (PR) submitted to a project,
Icanuse gh pr checkout <issue-number> to check out that
specific pull request and do local testing in my environment before
approving the PR to be merged.

https://oreil.ly/dSBI3

Git is a distributed version control system. Look for more information
about version control in Chapter 6.

HTTPie

HTTPie is a command-line HTTP client to test, debug, and interact with
APIs with JSON support and syntax highlighting.

Jjq
jq is a lightweight and flexible command-line JSON processor.

Combined with cURL, you can process JSON output from the
command line.

mkcert

mkcert makes locally trusted development SSL certificates.

ShellCheck

ShellCheck is a utility that shows problems in bash and sh shell
scripts. It can identify common mistakes and misused commands. You
can ignore specific checks if they are not checks your team wants
running against your code with a configuration file.

tmux

tmux is a terminal multiplexer that allows you to switch between
several programs in one terminal.

tree

tree 1s a utility that’s a part of most OSs and lists the contents of a
directory in a tree-like format. It can be helpful to visualize the structure
of a filesystem, especially for documentation to show others what to
expect to see. Sometimes, showing that expectation rather than just
saying “in the current directory” can help uncover missed assumptions.

https://oreil.ly/T8R4i
https://oreil.ly/Qrkny

Wrapping Up

A sysadmin’s toolkit is a collection of codified tools and technologies to
minimize your cognitive load and maximize your efficiency by enabling
you to automate and manage the installation and configuration of your
system to have a consistent and repeatable base.

An excellent local development environment provides the right text editor,
programming languages, frameworks, libraries, and other applications to
experiment with, learn about, and evaluate changes to your production
environment.

Adopt what works for you, share with those working with you, and improve
the foundations required for collaborative work by collectively reducing the
load on any individual to get started on daily tasks.

MORE RESOURCES

Check out Thomas A. Limoncelli’s article “Low-Context DevOps” to
learn more about creating environments that support your productivity
regardless of your existing background knowledge.

And check out these resources on dotfiles:
e Dotfiles on Github

e Lars Kappert’s Medium post “Getting Started with Dotfiles”

https://oreil.ly/OtR64
https://oreil.ly/KwzW2
https://oreil.ly/I1zwu

Chapter 6. Version Control

Imagine you are running a small business with a partner who lives in
another location. You share a business bank account to pay the bills. While
online banking lets you log on at any time to see the state of your finances,
it doesn’t tell you about planned changes or provide insight into your
finance management. As a result, you often receive late fees from unpaid
bills and the occasional overdraft fees due to duplicate payments to the
same vendor.

You adopt a system that allows you to schedule your bills and track the
accountability of planned changes. The new system improves your
collaboration and enables you to do the work you want to do. Ultimately,
what differentiates your business from others isn’t how you manage your
money.

Now replace “shared bank account with a business partner” with the system
you need to manage. Your business partner is the rest of the team you have
to work with (including the future you at 2 a.m., who has to deal with the
system’s state and occasionally makes mistakes). Every individual on a
team could have different preferences for managing the system. Unless you
all agree on a common way of working with the system, you will
experience the pain and frustration of trying to fix it whenever there is
conflict. Instead, suppose you adopt version control and leverage the tools
already in your organization (e.g., Git, Artifactory, GitHub, and GitLab). In
that case, you get visibility, accountability, and alleviation of the pain of
conflicts.

In this chapter, I want to help you think about version control and enable
you to move your work into version control to manage and track changes
with reproducibility, accountability, and conflict management.

What Is Version Control?

Version control is confusing, partly because we use the same words and
abbreviations to mean different things. It’s an overused term with many
meanings.

Deploying a system requires the source code or binary packages,
configurations, deploy scripts, and all the processes to get everything in
place and monitored from end to end. The method of backing up and
minimizing risk to your system is version control.

Because we (mistakenly) use the terms source control and version control
interchangeably, we think of version control, the practice, as the domain of
(only) software developers to maintain source code. But the practice of
version control—managing and tracking change to configuration files,
scripts, and build images—is crucial to a system administrator’s ability to
create multiple environments with the same configurations, replicate and
restore systems to original states, and apply published recommended
practices to meet compliance standards.

Take a look at Figure 6-1. In the broadest sense, as depicted in the largest
rectangle (and the one I’'m going to focus on in this chapter), version
control is the practice of managing and tracking data changes. It can apply
to text files like source code or configuration files and build artifacts and
images.

Version control as a practice

f A

Version control systems/software
(e.g., Git, svn)

" Version control provider (e.g., GitHub,)
GitLab, Bitbucket)

" J

Version control service (self-managed)

b J

Figure 6-1. Examining the difference between version control as a practice, software, and service

The middle rectangle contains version control systems (VCSs). VCSs—
such as Git, a distributed system, and Subversion (svn), a centralized
system—are specific implementations of version control software that
handle the features of repositories and branching differently.

Artifact management systems are another type of version control system not
pictured in this figure. Artifact management systems manage repositories of
compiled binaries instead of text files.

Finally, the two inner rectangles represent the implementations of VCSs—
provider-managed (e.g., GitHub and GitLab) and self-managed.

Benefits of Version Control

Early into my first official job as a system administrator with the keys to the
kingdom in hand (aka the root password), my coworker walked me through
how to update a configuration. The first step was to make a backup copy of
the file so I could get back to a known good place if I needed to. Next was
to make the edits to the file. On some systems, that meant using ed, which
doesn’t have all the conveniences of modern editors. Making mistakes was
easy, and I often relied on the backup file to try again. Next, | restarted the
service and validated it was in a good state. As I got used to all the various
intricacies of managing the systems, I noticed a lot of old backup files
sitting in the service directories with random naming patterns from .bak to
.bak.date, .date.bak, .name.date.bak. Knowing which extraneous files to
save and which I could remove was difficult.

Today, you don’t have to configure systems directly. Instead, you can adopt
VCSs without having to create a unique backup naming scheme. And even
if you haven’t moved to a system that automatically handles your version-
controlled system configuration, you can still deploy version-controlled
configurations to your special snowflakes to maintain them in a systematic,
repeatable, and documented manner.

With a VCS, you get management and accountability for change with the
following:

e A copy of each version

e Access controls for creation, deletion, and modifications

History of changes, including who is responsible for a change

A process to prevent or handle conflict

The ability to document changes

As a sole administrator for a given system, you can leverage version control
to track the system’s state over time and document decisions about changes.
In addition, practicing version control is the foundation for collaborating
with others on your team and within the organization to help them
understand how you manage your systems using standard practices.

Leveraging version control with your infrastructure code, configuration
files, and system tools in addition to source provides important benefits:

Reproducibility

You can deploy a specific version of a system or an environment with
the scripts, configuration, and software artifacts.

Enculturation

You facilitate the onboarding of new team members with version
control changelogs, which can increase productivity and efficiency.

Visibility in change management

You can grant read access to your team’s repositories to non-team
members who want to view or discuss your projects. As a result, people
can see what changes and any work in progress. Additionally, you can
grant permissions that allow individuals to approve changes, which
would enable interaction without granting access to modify the
repositories.

Accountability

You use a VCS to track changes. The history of system changes
provides an audit trail, making it possible to answer questions about
who created each system and its intended purpose. In addition,
accountability can decrease costs because you can audit systems to
ensure they are still needed.

Organizing Infra Projects

There is no single right way to do project organization when choosing
between one project per repo (multirepo) or all projects within a single repo
(monorepo). Each approach includes a set of trade-offs, including code
organization, dependency management, and configuration control:

Code organization

With multirepos, you agree to one project per repo, but there is no
holistic definition of a project. As a result, some projects line up well
with the project definition, but other work might not be so clear-cut. For
example, think about this scenario: where would a single helper script
for configuring a laptop reside? You could put it in a single repository.
Or you could group it with other random helper scripts or all of your
workstation-related code.

So, how does your team find this helper script or identify whether the
script exists already? In a monorepo, the search is limited to one repo.
With multirepos, the team would need to know about all the repos to
search.

As projects grow in size in a monorepo, you can experience
performance impacts when checking out and building the project. For
multirepos, projects don’t impact one another. Multirepos can lead to
duplication of code or a complex web of dependencies.

Whichever model you follow, ideally, you have a standard practice
across the organization to reduce the cognitive load on humans to figure
out what to do when organizing a new project.

Versioning

With multirepos, versioning can occur separately for each project.

Dependency management

With a monorepo, you can lock your dependencies down to specific
versions, which can be helpful when your projects need the same
software version. However, if they require different versions of the
same software packages, you can run into problems trying to navigate

requirements, forcing one project to upgrade any code so that it can use
the latest version.

With a multirepo, each project can have dependencies locked to the
version needed without conflicts.

Configuration control

When separate functional teams need to collaborate on different projects
and to work on the monorepo in different ways, work preferences can
cause personal conflict between groups, causing problems in code
reviews and merging code.

Questions can also arise as to who “owns” the contents of a repository
that multiple teams contribute to and is therefore responsible for making
changes and verifying that these changes do not break things for other
teams.

Organizing material into smaller repos can minimize this problem but
steepen the learning curve for understanding which repos to work in for
a given change requirement.

This list of trade-offs is not comprehensive. Your team will have to decide
whether a monorepo or multirepo is more appropriate. It would be best to
document your preferences so that when it comes time to work with other
teams or onboard new contributors, your collaborators will understand the
agreed-upon approach.

Wrapping Up

Version control is the practice of managing and tracking changes to data.
Your system infrastructure and how you manage it is critical data. Adopt
version control to improve managing your system infrastructure. VCSs ease
management with the following:

e Accountability for change with an audit trail (information about each
change and version of the project)

e Access controls to regulate who can change data
e Mechanisms to handle conflict and provide visibility

These capabilities provide you and your team with a flexible toolkit for
collaboratively maintaining and extending your infrastructure.

Chapter 7. Testing

In many conversations with other sysadmins, I get the sense that they don’t
think of themselves as testers. Whether we think of ourselves as testers or
not, the reality is that we are using tests to give ourselves information on the
state of tasks and to explore our environments so we can understand them
better. We want to prevent those terrible 2 a.m. pages or at least learn to
remedy problems quickly. In this chapter, you’ll learn what tests to write to
leverage automated testing, evaluate the effectiveness of tests, and change
them to suit your needs. You’ll need these foundational concepts to apply
testing to infracode (Chapter 11) and infrastructure management

(Chapter 12).

You’re Already Testing

Have you ever run through installing a set of software on a nonproduction
or nonlive system, watching to see how the system responded and whether
any gotchas could impact users? This manual testing approach is known as
exploratory testing. The goal of exploratory testing is to help discover the
unknown by experimenting with the system and looking at areas that may
need more subjective analysis as to whether they are in a good state. In
“Exploratory Testing Explained”, James Bach defined exploratory testing as
“simultaneous learning, test design, and test execution.” In contrast to
scripted tests, exploratory testing is executed based on your knowledge and
perspectives, so it’s vulnerable to your personal biases.

You can level up your manual exploration and add some objectivity by
adopting more rigor in your analysis—defining testing objectives with short
feedback loops to inform your next steps. Then, working with software
engineers and testers, you can help shape the testing to eliminate some
manual testing for their scripts and infrastructure code (infracode). These
scripted tests provide the following benefits:

https://oreil.ly/BZEa1

Increase your team's confidence in your code

Tests help you reduce the fear of repercussions of making change.
Rather than expecting everyone to execute flawlessly, build safety nets
that help them make change confidently.

Speed up delivery of working tools and infrastructure

With tests in place, you can iterate on releases rapidly, confident in the
knowledge that if the tests have passed, then the release should be
reliable, too.

Tackle new projects

Other people can take on the responsibility for work you’ve completed
when automated tests exist. You’ve created a safe space for individuals
to learn and make changes.

Document the expectations and context of the code

Good tests can describe expected functionality well.

Testing helps you deliver a working product that includes the infrastructure
and scripts that will help your system run effectively, eliminates single
points of knowledge, and increases confidence that problems won’t easily
make it to end users.

NOTE

Having new team members explore products and processes during their onboarding is helpful.
They can bring unbiased insight to level up quality to correct problems with the product and
processes and clear up misunderstandings and inconsistencies that may already exist within the
team.

Let’s explore other common types of tests that you can script and leverage
to build out automated testing: linting, unit, integration, and end-to-end
tests.

Common Types of Testing

You can write more effective tools and infracode with testing.
Understanding the different types of testing, including their benefits and
drawbacks, helps you create appropriately leveled, maintainable tests. As
there 1s no exact definition of these test types, there may be different
interpretations of these tests depending on the team. For example, some
Google teams frame tests by size instead of type.

Linting

Linters are a basic form of static analysis to discover patterns or style
convention problems. With linting, you can identify issues with code early,
and you don’t have to write specific tests. In addition, it can uncover logic
errors that could lead to security vulnerabilities. Linting differs from
formatting changes to code because it analyzes how code runs, not just its
appearance.

TIP

You may get several warnings if you run a linting tool on an existing project. Modifying
functional code with stylistic changes may frustrate your team, especially if there are reasons for
those particular styles or conventions. Instead of immediately making changes, bring up the
results and document the conventions explicitly by configuring the linter.

There are three key reasons to adopt linting in your development workflow:
to discover bugs, increase readability, and decrease code variability.

Discover bugs

The best time to discover a bug is right after you create it, when your
code is fresh in your mind and you have clarity about what you intended
to write. Linting while you code allows you to fix it with that known
context. While you can lint manually, many editors have linting plug-ins
to receive near-instantaneous feedback about potentially problematic

https://oreil.ly/EgVgm

code. You fix issues as they arise instead of after you have committed
your code and submitted a pull request for review.

Increase readability

Consistent, readable code is easier to maintain, fix, and extend
functionality. When you need to work on an existing codebase, chances
are high that the original author will no longer remember the context,
but if they wrote clear code, it is easier to get up to speed. Linters help
enforce readability.

Decrease variability

Consistent standards and practices ensure that code is cohesive.
Encoded style prevents arguments over team conventions so you can
focus on discussing the changes that have an impact, for example,
specific architectural design or security fixes.

You configure your linter with a configuration file to implement the
team standards and ignore or modify default rules. For example, the
default line length configuration for RuboCop, the Ruby language linter,
is 80 characters. Contemporary displays are much larger than traditional
72-character TTY displays, and your team may want to enable more
characters per line. As depicted in Example 7-1, you can set the check
for line length to 100 by creating or updating the RuboCop
configuration file, rubocop.yml, within the project source code
repository. This ensures that everyone checking out the project will run
linting without getting a warning for the line length less than 100
characters.

Example 7-1. RuboCop configuration to update characters-per-line test

Metrics/LinelLength:
Max: 100

While individuals may prefer using two or four spaces and tabs instead of
spaces within their code, your team can validate their code and

https://oreil.ly/9pvRX

configurations against the team standards within their editor. This way, code
reviews can focus on implementation details rather than stylistic concerns.

Here are some linters for common languages that sysadmins use in their
daily work:

e ShellCheck for shell scripts

jsonlint for JSON

yamllint for YAML

Black for Python

Prettier for CSS, HTML, JavaScript, Markdown, and other languages

Unit Tests

Unit tests are small, quick tests that verify whether a piece of code works as
expected. They do not run against an actual instance of code that is running.
Any resources that depend on calls to external resources are stubbed (i.e.,
database requests or calls to specific services). Stubbing makes unit tests
super helpful for quickly evaluating code correctness because they are fast
(generally taking less than a second to run). With unit tests, you aren’t
checking code on actual system instances, so you don’t receive insight into
connectivity issues or dependency issues between components.

Unit tests are generally the foundation of a testing strategy for a project
because they’re fast to run, less vulnerable to being flaky or noisy, and
isolate where failures occur. They help answer questions about design,
regressions in behavior, assumptions about the intent in code, and readiness
to add new functionality.

When you write unit tests, ensure that they are testing your code. For
example, when you write infracode to configure a file or create a directory,
your unit test should validate that you wrote code to configure a file or
create a directory, not that your infracode platform knows how to execute
those tasks. Write tests that describe your desired outcomes and validate
your code.

https://oreil.ly/saNSu
https://oreil.ly/U3XTU
https://oreil.ly/Nvqgm
https://oreil.ly/QmFPJ
https://oreil.ly/tfMFe

Examples of a unit in infracode might be a managed file, directory, or
compute instance. The unit test to verify the example units would describe
the file, directory, or compute instance requirements, including specific
attributes. The unit test describes the expected behavior.

Integration Tests

Integration tests verify the behavior of multiple objects working together.
The specific behavior of integration tests can vary depending on how your
team views “multiple objects.” Integration tests can be as narrow as two
“units” working together or as broad as different, more significant
components working together. Integration tests run against an ephemeral
environment and don’t test every project element; they give insight into the
project’s behavior at a broader scope.

Because integration tests don’t test everything, problem determination isn’t
precise. For example, it would help if you understood the environmental
conditions of what went wrong and what caused the failure. In addition,
integration tests run in minutes due to the increased complexity in setting
up potential infrastructure dependencies, including other services and
software.

You might test whether a database successfully installs, configures, and
starts up appropriately, allowing for connections, for example.

End-to-End Tests

Finally, end-to-end (E2E) tests verify the flow of behavior of a project
function as expected from start to finish in a temporary environment with
realistic test data. E2E tests validate the applications and services defined
by the infracode work as intended. As you can imagine, it could take quite a
while to provision and configure new instances and run them through the
testing suite. In addition, an E2E test failure is not isolated and
deterministic to a single component. E2E tests check specific function
output and require more frequent changes to the test code. For example, a
test environment in an Amazon availability zone with network issues may

have intermittent failures. The flakier the tests, the less likely individuals
will spend effort maintaining those tests, which leads to lower quality in the
testing suite.

Even with these challenges, E2E tests are critical to a testing strategy. They
simulate a real user interacting with the system. Modern software can
comprise many interconnected subsystems or services built by different
teams inside or outside an organization. Organizations rely on these
external systems rather than expending resources to build them in-house
(which incidentally has even higher risk). System administrators often
manage these boundaries where systems need to interconnect.

NOTE

Identifying and reading the tests in your services product may help you identify tools or patterns
that can help you eliminate manual processes in your testing of infrastructure for those services.

Explicit Testing Strategy

One of the ways that the industry describes testing strategy is through the
metaphor of the test pyramid. In 2009, Mike Cohn coined the term zest
pyramid in his book Succeeding with Agile (Addison-Wesley Professional).
This pyramid serves as a visual representation of how to think about and
plan a system’s testing strategy.

As shown in Figure 7-1, the pyramid stresses the importance of the different
types of tests while recognizing that tests have different implementation
times and costs. As you move down layers, tests run faster because there is
a decrease in the scope and complexity.

https://oreil.ly/jmisr

End-to-end

Faster

\ 4

A good rule for writing tests is to push them as far down the stack as
possible. The lower in the stack, the faster the test will run, and the faster it
will provide feedback about the quality and risk of the software. This is
because unit tests are closer to the code testing specific functions. In
contrast, end to end is closer to the end-user experience; hence, the pyramid
shape 1s based on how much attention and time you spend writing the
particular type of test.

Figure 7-1. Test pyramid framework

You can examine the tests for a project and qualify the strategy based on the
number and type of tests to inform you of areas to add or eliminate tests.

Think of your tests as building blocks. For example, a unit testis 1 x 1. An
integration test will test multiple components and range in size, for
example, from 1 x 2 (to test 2 components) to larger. Your E2E tests will
vary in size, but you don’t have to get down into each component’s nitty-
gritty specifics, especially if you test the piece in an earlier (and faster) test.

In Figure 7-2, you can visualize the shape of your project’s testing strategy
based on the number and type of tests. On the left, in a healthy approach,
you use mostly unit tests, with integration tests bridging components and a
few end-to-end tests. On the right, in an unhealthy situation, you’ve got
many overly specific, E2E tests that will take longer to run.

Unit tests Tntegwenon 1ests

Figure 7-2. Assessing automated testing (image by Tomomi Imura)

Let’s model some different testing implementations to understand what
could be wrong and the steps to take, adding or removing tests. Examining
testing implementation can help you know how much invisible work is
being passed on to your team.

In Figure 7-3, having an approximately equal number of tests at every level
indicates that there are overlaps in testing; in other words, you’re testing the
same thing at different levels. This may mean longer test times and delayed
delivery into production. Identify the duplication in tests, and reduce those
testing areas within the E2E testing cycle.

End-to-end tests

Integration || Integration
test test

Unit Unit Unit
test test test

Figure 7-3. Testing square

In Figure 7-4, having more E2E tests and fewer unit tests indicates
insufficient coverage at the lower levels of unit and integration tests. This
may mean longer test times and delayed code integration because it will
take longer to verify that code works as expected. However, increasing the
unit test coverage will boost the confidence in code changes and reduce the
time it takes to merge code, leading to fewer conflicts!

End-to-end tests

End-to-end tests

Integration

test

Unit
test

Figure 7-4. Testing inverted pyramid

In Figure 7-5, having full coverage but having more E2E tests than
integration tests may indicate insufficient integration coverage. You could
also have more E2E tests than needed. E2E tests are more brittle, requiring
more care and maintenance with changes.

End-to-end tests

Integration
test

Unit Unit Unit
test test test

Figure 7-5. Testing hourglass

These different strategies may also indicate that the team spends more time
maintaining tests than developing new features. That said, infrastructure
code testing does not always follow these patterns. Specifically,
infrastructure configuration code testing does not benefit from unit tests
except when there may be different paths of configuration. For example, a
unit test is beneficial when there are differences in platform requirements
due to supporting different operating systems. It can also be beneficial when
there are differences in development, testing, and production environments
or when you need to make sure that production API keys don’t get deployed
in development and testing.

So, as shown in Figure 7-6, while you want to push tests as far down the
stack as possible, due to the nature of infrastructure code, integration testing
might be as far down as it makes sense to push tests.

End-to-end tests

Integration || Integration
test test

Figure 7-6. Modified testing pyramid for infracode

Improving Your Tests; Learning from Failure

It’s easy to write tests; it can be difficult to write the right test. As with any
skill, you should practice writing tests. To improve the quality of your tests,
reflect on failures and apply what you learn. Passing tests tell you that you
haven’t found a problem—yet. So let’s talk about how you leverage the
feedback you get from testing.

To assess and understand how to adopt tests into automation, you must
understand how tests fail. Failing tests tell you more than “found a problem
with your code.” Examining why tests fail and the different kinds of
feedback you are getting allows you to plan a roadmap and automate
responses as possible.

It would help to think about these as you create and update your test
automation. Automation without the ability to act on the feedback you get
from the tests adds work, which detracts from the value you could be
bringing to your customers and frustrates the team. You can plan how to
assess the different outcomes of tests and implement controls around what
can be automated versus what needs human intervention.

There are four main types of test failures to plan for:

Environmental problems

These are the most likely and fastest to resolve. Some environmental
issues include file permissions, network connectivity, hardware, or
variance between the testing and live environments.

Flawed test logic

This arises when the test isn’t testing the code correctly, whether due to

evolution in specifications or initial miscommunication about the intent
of the code.

Changing assumptions

Are issues in the test implementation due to your beliefs about how
something works? For example, you change the time when the tests run,

and all of a sudden, the tests fail, and there has been no change in the
code.

Code defects

These tend to be the least common source of test failures but the most
complex to identify and resolve. When you believe you’ve ruled out the

other possibilities, it may be time to fire up a debugger and start looking
for problems in the code.

TEST FAILURE ANALYSIS CASE STUDY
By Chris Devers

My team discovered that our test framework was reporting that web
services weren’t enabled when the deployment tool ran. However, it
was unclear why the error was suddenly showing up—we hadn’t
changed the code for the web service setup.

After investigation, we discovered that a broader system setup script
unconditionally ran the web service setup script, followed by a second
tool to set up other services. The second tool re-enabled the web
service, masking a bug in the setup script for the web service itself.
Unfortunately, when we reorganized the system setup script and
reordered the steps, the web service was shut down by its configuration
script and never restarted.

Think about how this shows different types of test failures. Fixing the
broader system setup script introduced an environmental problem that
hadn’t existed before. The rationale for fixing the dependency was
good, but we assumed that the individual steps were idempotent.
Ultimately, we traced the defect to the web service setup script we
might have discovered earlier with unit tests. On the other hand, even
without unit tests, the integration test framework detected the problem
before a customer noticed it, so this layered testing approach was still a
win.

It’s easy to blame code defects for test failures in an established project, but
code defects can be the most costly to uncover. Instead, rule out
environmental problems, test implementation, or changes in assumptions to
avoid wasting time changing code.

Next Steps

Testing comes in more varieties than I’ve covered in this chapter, such as
burn-in, performance, compliance, longevity, security, penetration, and

capacity testing, to name just a few. And you can continually improve code.
However, depending on your use case, you may need to adopt a different
testing strategy. For example, long-lived monolithic databases can be prone
to subtle resource allocation errors due to memory leaks. Unfortunately,
these problems can be hard to detect in shorter tests, leaving your live
production vulnerable to service outages. In this case, you’d run a simulated
workload on the testing environment for days or even weeks to hopefully
uncover problems before they arise in production.

If your production environment is ephemeral, where resources are short-
lived and regularly restarted, you don’t need to spend money on testing in a
long-running environment. As your testing skills evolve, you’ll discover
ways to understand the quality of your systems and potential vulnerabilities.
There are many resources dedicated to each of these different types of
testing; seek out information resources to address your specific context as
you need it.

Finally, you don’t need to start with a perfect testing strategy. Instead,
iterate and improve as you uncover the specific problems in your
environments.

Wrapping Up

Testing is one way to learn about your systems, work with new things, and
evaluate that changes will work as expected. When testing systems, use the
test pyramid model to organize your test efforts based on unit, integration,
and end-to-end tests.

Test frameworks that skew toward many high-level end-to-end tests are
labor-intensive and make it difficult to identify specific causes of failures.
On the other hand, a test suite that emphasizes unit tests lends itself to
automation; provides clear, rapid feedback; and is easy to extend.

When writing tests to validate your code, consider how to evaluate your
tests to understand the right tests to write. A passing test could mean that a
code change 1s good, but it could also mean that the test isn’t thorough

enough. Failing tests can have many root causes, from external
environmental factors that generate errors, as well as flaws in the tests
themselves, to outdated assumptions that cause errors with code that used to
work. These factors should be evaluated and eliminated before concluding
that the code has a defect.

Chapter 8. Infrastructure
Security

Early in my career as a Unix system administrator, I felt total dread when I
saw many failed login attempts coming from external IP addresses outside
of the US because we had only two people focused on security, covering
everything from the physical network to network and host intrusions for our
Unix systems. Seeing the failures made me wonder about other malicious
activity we weren’t detecting. Talking through these concerns with the
security team helped me better understand the risk and motivations of the
attackers, learn about the patterns of behavior and resources, and build up
the relationship between groups.

You can’t have perfect security, but you can collaborate with other parts of
the organization to establish acceptable levels of security. The amount of
security work that every organization needs to do to achieve “acceptable
levels of security” cannot be distilled and assigned to one team, especially
as the attacks evolve and become more costly to detect or repair. In this
chapter, I focus on sharing general security principles so you can define
security, explain threat modeling, and have a few methods for
communicating security values during architecture planning.

What Is Infrastructure Security?

Infrastructure security protects hardware, software, networks, and data from
harm, theft, or unauthorized access. Unfortunately, many people view
security as being at odds with desirable features and user convenience,
which can exacerbate implementation resistance even though the ultimate
purpose of security is to reduce the risk to people.

Your vulnerabilities may include risks to your networks, physical or virtual
machines, applications, or stored and processed data. When the pager goes

off, you don’t want to discover compromised systems, data corruption, or
defaced websites. So, how do you increase the security of your systems and
services?

Tackle security like you do other difficult problems. Break up the immense
task of “security” into smaller achievable tasks that the team iterates on.
Allow feedback and learning to inform and modify the team’s practice of
working in collaboration with software and security engineers.

Security incidents are not a matter of if but when. They impact companies
financially and reduce users’ trust. It’s fundamentally impossible to release
or manage a perfectly secure application or service when dependencies like
underlying libraries, operating systems, and network protocols can have
security issues. Whether you are building or deploying open source or
commercial software, plan a layered strategy to minimize vulnerabilities
and reduce an attacker’s opportunity to exploit them.

Share Security Responsibilities

When you choose hosted compute, you also choose to share the security
responsibility. The more operational burden you hand off to the cloud
provider, the more levels of security are taken care of for you. For example,
a cloud provider offering dedicated servers purchases the hardware,
connects it to the network for your access, and manages the physical access
to that server.

Let’s revisit computing environments from Chapter 2 from a security
perspective.

Starting from the bottom of Figure 8-1, if you manage dedicated physical
hardware, you are responsible for everything listed in the security
responsibilities column. As you move up the stack, your service provider
takes on below-the-line responsibilities.

NOTE

Different roles exist within security. An organization’s “security team” doesn’t necessarily own all
security responsibilities. You shouldn’t do security work without recognition, especially if you are
the one sysadmin managing and maintaining the systems. That’s a path to burnout. Instead, make
necessary work visible so that your team and management can assess and prioritize as necessary.

Your security responsibilities

by)

Serverless Functions asaservice | ~Data
) |+ Accounts and access management

r,
r *

Serverless + Applications
+ Network controls
Hosted Containers Platform as a service
¥ + Dperating system
Containers
Infrastructure as a service

——{ Virtual machines » Physical hosts

] » Physical network (ethernet, fiber,
On-prem) wireless)

Physical hardware « Physical datacenter

%, o r L e

Figure 8-1. Security responsibilities for different compute environments

Whether you use infrastructure as a service (IaaS), platform as a service
(PaaS), or functions as a service (FaaS) from a provider, you are still
responsible for parts of your security. You may assume that your service
provider takes care of all the infrastructure security when using their
services. But, at minimum, you must configure account and access
management, specify and configure endpoints, and manage data. For
example, it doesn’t matter if your cloud provider encrypts all data on disk if
you configure it to have worldwide public access.

For any service provider, ask and understand their security posture. When
someone leverages a vulnerability of your provider, if you tell your
customers, “It was our provider’s fault,” you will lose their trust and bear

the financial hit of the compromise. At a minimum, find out how the
provider handles notifications and the appropriate escalation path for
discovering security events.

Borrow the Attacker Lens

Borrowing the attacker lens, in other words, taking a different perspective
on the systems you manage, can help improve your systems’ security.

Threat modeling is a process by which you identify, prioritize, and
document potential threats to your organization’s assets, such as physical
hardware, software, and data, to help you build more secure systems.
Unfortunately, assets are not always well understood or recognized,
especially when you haven’t designed or deployed the system or service.
Sometimes, the threat modeling process identifies detailed data that
increases the risks to your organization without providing sufficient value;
therefore, they are strong candidates for removal, which can lower your
overall costs.

Next, consider the different vectors of attack or attack surfaces. Attack
surfaces are all the potential entry points of intrusion for each asset specific
to your organization. For example, look at the vulnerabilities of any
endpoints, database connections, and network transports.

THREAT MODELING TOOLS

Various threat modeling tools are available to help surface and examine
problems in your systems:

NIST Common Vulnerability Scoring System Calculator

Microsoft’s Threat Modeling Tool

Process for Attack Simulation and Threat Analysis (PASTA)'

OWASP Threat Modeling Control Cheat Sheet

If you aren’t using a threat modeling tool now, consider using one to
help understand vulnerabilities and areas for improvement. There is no
right way or tool; instead, learn from instigating the necessary
discussions.

Ask yourself these questions:
Who are your attackers?

Attackers can be anyone. They may be internal or external to your
organization. Based on the statistics from thousands of security
incidents analyzed in the yearly Verizon Data Breach Investigations
Report (DBIR), most attacks are external. There are occasionally
internal rogue system administrators, but internal security issues often
stem from system configuration errors or publicly publishing private
data. In Chapter 11, I’ll cover some tools and technologies to help
reduce the number of errors resulting in internal security incidents.

What are their motivations and objectives?

Attackers have different motivations and objectives for their activities.
The major motivations can be categorized into the following types:

e Amusement. Some attacks are carried out for no other reason than
for fun.

https://oreil.ly/MWlE6
https://oreil.ly/lT8Ml
https://oreil.ly/QS72x
https://oreil.ly/pWfI7

e Personal beliefs. Insiders might have personal agendas outside of
the organization’s values and interests.

e Ideology. People with social or political ideological differences from
the organization might want to harm your organization’s reputation
or deny services to your customers.

e Revenge. An insider with a grudge against your organization might
want to cause harm.

e Financial gain. Some organized attacks use PII or personal data to
apply for credit cards, sell to spam campaigns, use existing payment
card information fraudulently, or gain access to an individual’s
resources and services.

e Espionage. Nation-state attacks are a growing threat. Numerous
breaches to gain intelligence about state secrets, intellectual
property, and influence politics have occurred.

What kind of resources do they have to attack?

The attacker’s resources include time, money, infrastructure, and skills.
Tools are evolving that reduce the knowledge required for an individual
attacker to obtain their target assets. While you can’t necessarily prevent
every attack, you can make each attack more expensive to the attacker.

What are their opportunities to attack?

Opportunities are the windows of access to a particular asset. For
example, when a vulnerability or flaw in software is discovered and
released, there is a window of time to exploit that vulnerability on
unpatched systems and services. Therefore, successful mitigation
requires awareness of necessary patching and adequate time and
authority to complete the work.

In some cases, there may be assets outside of your responsibility that
attackers leverage to get into production systems. Minimize these

https://oreil.ly/BVku1

opportunities by tracking all assets and promptly patching OSs and
software.

TIP

Check out Ian Coldwater’s talk from KubeCon + CloudNativeCon 2019, “Hello from the Other
Side: Dispatches from a Kubernetes Attacker” for more on what you can learn by borrowing the
attacker lens.

Another good resource is the yearly Verizon Data Breach Investigations Report (DBIR), which
analyzes thousands of security incidents and breaches and provides insight into evolving security
trends.

Design for Security Operability

Layer your strategies to reduce risk to services and applications, limiting
the attacker’s opportunity and the scope of damage of a potential breach.
This approach is known as defense in depth. Layering defenses means that
if one defense in your system fails, you can contain the blast radius of the
compromise. For example, build defenses at the edges of your networks
with firewalls, and configure subnets to limit network traffic from approved
networks. Locally on systems, lock down elevated-privilege accounts.
Additionally, recognize that 100% secure software is impossible and
assume zero trust. Zero trust means having no implicit trust in any services,
systems, or networks, even if you leverage cloud services.

Participating in the early architecture and design process with a security
operability mindset provides early feedback on the system architecture,
reducing the risk of needing a refactor to incorporate security later. Case in
point: I once joined a relatively new team building a multitenanted service
for an internal audience. I reviewed the architecture and realized that the
code relied on having no MySQL root password. With hundreds of backend
MySQL servers planned for this service, many unsecured services worried
me.

The following lists some of the potential attack vectors:

https://oreil.ly/KsOSO
https://oreil.ly/g77MX

* A misconfigured subnet could make these servers directly accessible to
the broader internet.

e Malicious attackers that breached systems on the internal network
could easily compromise unsecured systems.

Working with the security engineering team, I managed to prioritize the
work to repair this design defect. Identifying the issue before deployment to
production felt great. However, if we’d started in a more collaborative place
with the design, we could have avoided the development cost of repairing
the assumptions that depended on a completely open database.

Often, product decision makers forget to invite system administrators to
design meetings. By fostering and building relationships with the people
designing and building the software, you can create opportunities to get
those invitations. Having early access means you can influence decisions
about the system’s operation before it exists. And when you need changes
implemented, you’ll have developed the necessary relationships to prioritize
your work.

One way to collaboratively uncover security requirements and prioritize
work is to use the CIA triad model. This model provides a way to establish
a shared context and align values for feature work. CIA stands for
confidentiality, integrity, and availability:

Confidentiality

The set of rules that limits access to information to only the people who
should have it

Integrity

The assurance that information is true and correct to its original purpose
and that it can be modified only by those who should be able to modify
it

Availability

The reliable access to information and resources for the individuals who
need it when it’s needed

In the case of the root password for the MySQL issue I described earlier,
anyone with access would have been able to log in to the database
management system (compromised confidentiality) and look at and edit any
available data stored (compromised integrity). Sysadmins can flag CIA
issues as part of the software acceptance criteria and incorporate operability
stories to prioritize them appropriately. Having intentional conversations
about the design and tracking those conversations helps inform the
development and product teams’ decisions.

For web applications and web services, the Open Web Application Security
Project (OWASP) provides a set of requirements and controls for designing,
developing, and testing called the Application Security Verification
Standard (ASVYS).

TIP

If you find it challenging to get executive support for your efforts to design and implement quality
continuous integration and deployment mechanisms, reducing the impact of security
vulnerabilities is an excellent use case.

Categorize Discovered Issues

No matter how much effort the team makes to examine software and
services from the attacker’s perspective and to design systems to
incorporate a security mindset, there will still be security issues. People
may find issues with your company’s software, or the problem may be with
software you use directly or indirectly. As a standard, organizations track
vulnerabilities in publicly released software packages with Common
Vulnerabilities and Exposures (CVE) Identifiers.

When quantifying the cost and potential impact of a discovered issue,
categorize issues through labeling (i.e., bug or flaw) to convey additional

https://oreil.ly/CuLHL
https://oreil.ly/rZ7gf
https://oreil.ly/UrrSp

context.

Implementation bugs are problems in implementation that lead to a system
operating in an unintended way. Implementation bugs can sometimes cause
serious security vulnerabilities, for example, Heartbleed.? Heartbleed was a
vulnerability in OpenSSL that allowed malicious folks to eavesdrop on
presumed secure communications, steal data directly from services and
users, and impersonate those users and services.

Design flaws are issues that prevent the system from operating as intended;
the problem is with the design or specification. Design flaws can be super
costly to repair, especially if other tools are built on the system as currently
designed or depend on its implementation. Thus, sometimes flaws are too
expensive to change and carry specific warnings about use.

While you don’t want metrics that incentivize discovering flaws and bugs
over other types of sysadmin work, you need to surface the work in
progress, especially when the work prevents a compromise or security
incident. Measuring the prevention of an incident establishes a clear signal
about your intent and the outcomes of the work, even though the event that
didn’t occur isn’t measurable.

By categorizing the work, you can better identify the different types of
appropriate and valuable work. You build stronger relationships and trust as
others have more visibility and context of the work that you’ve done and
how it relates to the business’s bottom line.

TIP

Check out these examples of implementation bugs:

e MS17-010/EternalBlue
» CVE-2016-5195/Dirty COW

And check out these examples of design flaws:

e Meltdown

» KRACK (WPA2 key reinstallation)

Wrapping Up

Infrastructure security is the practice of protecting your systems from
threats. Of course, perfect security doesn’t exist, but with careful vigilance
and a layered approach, you can reduce your systems’ risks.

Infrastructure security is a shared responsibility; if there aren’t already
practices in place, you can lead the establishment of recommended practices
in your organization. A good strategy for establishing practices is to
consider who might want to attack your systems, what they might hope to
gain by doing so, and what resources they can bring to bear. Each of these
can suggest lines of defense to use. Then, when building and deploying
your systems, leverage the confidentiality, integrity, availability triad model
to identify security requirements for implementation.

Categorizing infrastructure security issues provides additional context
around cost and potential impact. For example, one label set is “bugs” and
“design flaws.” Implementation bugs result from programming errors that
usually lend themselves to patch fixes. Design flaws are architectural
problems that may be more challenging to mitigate without fundamentally
redesigning parts of the system.

https://meltdownattack.com/

1 Check out the presentation from the OWASP Foundation on threat modeling of banking
malware-based attacks that introduced PASTA.

2 “The Heartbeat Bug,” Synopsis, Inc., last modified June 3, 2020, Attps.//heartbleed.com.

https://oreil.ly/GgZfR
https://heartbleed.com/

Chapter 9. Documentation

It was the early days of my first sysadmin job, and everything felt so new.
Every step I took felt vital to system availability and performance. All of
the rote sysadmin tasks I learned quickly by reading a book didn’t tell me
when to use some root privileged commands. Thankfully, experienced
sysadmins had adopted a culture of sharing knowledge. Our docs site was a
wiki with a theme derived from the Cheapass Games card game “Give Me
the Brain” (GMTB). GMTB’s basic gameplay was that you were a zombie
working at a fast-food restaurant with one brain to pass around. Only one
person could “have the brain” at a time. Associating the documentation to
this game embedded the behaviors expected of the team, especially with the
idea that your documentation was setting your future 2 a.m. zombie self up
for success during an incident.

In this chapter, I want to help you think about documentation. I want you to
feel enabled to adopt the practices that support quality documentation that is
accurate, available, accessible, organized, and maintainable because
documentation is part of the system.

Know Your Audience

People need insights into the information relevant to their responsibilities,
ranging from “nuts and bolts” details of the operation of a specific system
to “bird’s-eye” overviews of the activity in an overall environment.

Presenting people with relevant, accurate, and timely information helps
them carry out their duties effectively. If individuals aren’t taking everyday
actions, this may be because their data is stale, vague, or inapplicable. If
teams overfocus on short-term speed and execution at the expense of long-
term strategy, this could indicate a broken feedback loop.

https://oreil.ly/u2f04

In Figure 9-1, the writer of the documentation tries to help everyone,
leading to extraneous information that might not be useful to a specific user.
In Figure 9-2, the writer of the documentation targets the user and provides
just the information to do the tasks the user needs when needed.

Figure 9-1. Documentation with extraneous information

Figure 9-2. Documentation with user-focused specific information

Observe that of the two paths, the user-focused path is shorter and follows a
direct route to the goal. One path isn’t better than the other. Again, consider
your audience and what they need when you are writing. For example,
consider the needs of someone debugging a specific problem. They need
task-oriented documentation with a very specific set of information.
Extraneous information is frustrating. Here are a few prompts to help you
reflect and connect with your audience:

e Who is your audience?
e What is important to them?
e What do you want them to know or do?

e What do they already know?

e What is their preferred method of consuming information?
e How does your data make your point?
e Does documentation already exist?

* Do you know what your audience needs?

Audiences need different levels of detail. Depending on where people are
on their journeys, their needs may change. And the documentation they
encounter will bring them to the next stage on their journey and affect what
further documentation they need. If they have a lot of experience, they may
need direct-to-the-point information. If they have little to no experience or
knowledge, they may need a longer, more detailed, conceptual explanation
in addition to the relevant context. If you don’t know what your audience
needs, interview them to identify what is useful.

Dimensions of Documentation

You may write documentation for yourself, your team, your broader
organization, or wider groups of people outside of your organization. You
may read the documentation online (e.g., monitor or mobile) or on print
media. You’ll write different documents, including records, conceptual
documentation, task documentation, reference guides, and planning
documentation:

Records

A reference to decisions, actions, or discussions. Records include
meeting notes and decision records. They provide a historical resource
and can help you figure out why choices were made and inform future
decisions.

Conceptual documentation

Explains general information. Conceptual documentation includes topic
introductions. Use this documentation type when the reader needs to
understand the terminology, ideas, or abstractions.

Task documentation

Guides readers through steps to accomplish a specific goal. Examples of
task documentation include how-to guides and tutorials. Use this
documentation type when the reader needs to know how to do
something or understand what happens. Sometimes, you can use this
documentation to guide the automation of tasks.

Reference guides

Detailed documentation, often in the form of a list or a table. Examples
of reference guides include operation and troubleshooting manuals. Use
reference guides when you have a lot of information to organize and

group.

Planning documentation

Provides the shape of larger projects to be done. This documentation
type often includes a project’s scope or objective and provides
necessary background information, the plan, and potentially time
estimates and any necessary resources to support the plan. Reviewing
project plans with the rest of the team can help surface potential
concerns and areas that might need further refinement.

Finally, effective documentation summarizes experience and knowledge
integrated across many people collaborating. Collaboration requires a
shared understanding of the goal, a style guide to inform a consistent
writing style, and a set of procedures to follow.

TIP

Creating and sharing templates allows individuals to quickly spin up the required type of
documentation following expected style guides.

Organization Practices

Information architecture is the structural organization of your information.
Quality organization of information supports the following:

Reuse

You can reuse documentation in different ways to support the axes of
inclusivity, the levels of knowledge, and the way people learn.

Change management

You can add, update, version, and deprecate documentation.

Governance

Documentation has clear roles and responsibilities, enabling
contributions and enabling ownership.

Connectedness

Documentation can show connections between topics.

Organizing a Topic

When structuring a topic, have a clear and specific title. However, titles
should not be too general. You organize information into sections with
liberal use of headings and subheadings. Once you write the text, revisit the
headers to check the flow of information. Ideally, reading the table of
contents created from the headings makes sense to your reader. Write your
introduction and conclusion last because the content will have changed
from when you initially thought about the topic.

Topics follow a (documented) and defined lifecycle to enable change
management and provide a framework for governance. Figure 9-3 depicts a
possible document lifecycle, where you research and analyze a topic, create
(or update an existing) document, verify that the information is correct,
version the topic, and release the document. Feedback on the topic or
change in systems continues to drive the lifecycle until analysis identifies
that it’s time for the document to be deprecated and eventually archived.

1. Analysis
Lo

\ 4

2. Creating/
updating

[4. \ersioning]4—[3. Verification] [7. Archival]

Figure 9-3. Document lifecycle

5.Releasing 6. Deprecation

Organizing a Site

Organize the information for discoverability and connectedness when
structuring all the information topics. The site should inform the standard
structure of the topics. Consistency in the topic organization supports the
reader in understanding how to find relevant information that reduces the
cognitive load.

Depending on the team’s culture, there may be a preference for a single
long document or many small pages for organizing the team’s knowledge
base. There is no one right way. A single lengthy document may take time
to download from a remote system and readers may have inconsistent
experiences depending on their browser. But by providing documentation in
one page, the reader can scan for information and know that it’s missing if it
is not found.

Small pages will load quickly but require a search and indexing system to
improve discoverability. Readers may not find the information and either
spend more time searching or mistakenly conclude that information is
missing.

Whichever your team chooses, be consistent so that the team knows what to
expect from the documentation and when to ask for help or contribute
documentation.

Recommendations for Quality
Documentation

So you’ve’ bought in on the need for quality documentation, but it doesn’t
feel like people are reading or contributing to the documentation. Instead of
assuming that people are not reading the documentation, consider the
following:

e Are you giving them time to read the documentation?
e Are you using terminology without defining it?

e [s the information too vague?

e [s the information too scattered?

Instead of focusing on people not creating or updating documentation,
reflect on these questions:

» Are they given sufficient time to write the documentation?

¢ Does documentation need to be written?

Are they given sufficient time to organize the documentation?

Do people know who the audience is or what they need?

Do the tools support contributing in the existing workflow?

Then, assess your documentation for the following qualities to identify
areas of improvement:

Accuracy

Accurate documentation is current, complete, and correct. The
documentation contains what the reader needs to do their task promptly.
It increases the successful completion of the job and reduces the risk of
errors.

Available

The available documentation is accessible when you need it. So make
sure to print out any relevant emergency response guides in case there is
a network or power outage that would limit access to online manuals
that help you get the systems back up and running.

Accessible

Accessible documentation is inclusive and meets the reader where they
are. You may need to present the same information in multiple ways
based on the reader’s level.

Organized

Organized documentation enables readers to find the document they
need.

Maintainable

Maintainable documentation supports the writer in adding, updating,
and deleting documents effectively. Storing documentation in a version
control system provides change management and accountability and
enables you to leverage the same workflows already in use in your
organization.

Regularly review documentation to measure the quality of your
documentation for these characteristics. Codify documentation hygiene so it

becomes a regular part of the team’s processes.

Wrapping Up

Effective documentation requires knowing your audience, understanding
the dimensions of your documentation (e.g., online or print media, and
records, conceptual, task, and reference guides), and organizing your
documentation for reuse, change management, governance, and
connectedness.

In the next chapter, I’ll extend some of the concepts from this chapter to
distilling and presenting information in different formats.

MORE RESOURCES

In Docs for Developers: An Engineer s Field Guide to Technical
Writing (Apress), Jared Bhatti et al. provide detailed practices for all
stages of the documentation lifecycle specifically around software
development but applicable to sysadmins managing systems as well.

In Living Documentation: Continuous Knowledge Sharing by Design
(Addison-Wesley Professional), Cyrille Martraire offers up
Documentation 2.0 and explains how to use well-crafted artifacts and
automation to improve documentation.

Chapter 10. Presentations

Stories are the fundamental way that humans organize and make sense of
information. Stories provide structure and purpose to data. Effective system
administrators recognize the power of a good narrative and use different
mediums to share messages effectively. They organize their information and
communicate beyond text to tell a story with images, photos, graphs, charts,
audio, and even video. So often, when mentoring other sysadmins trying to
make a change in their organization, I share some key concepts about data
organization and presentation.

Show 5 clever people the same data, and they’ll develop 10 interpretations.
You can’t assume that others will draw the same conclusions unless you put
in the effort to craft a narrative that will lead and influence people. In this
chapter, I want to help you learn how to distill information and present it
compellingly to tell the necessary stories to influence people regardless of
authority.

Know Your Audience

Just like when writing documentation, you need to assess your audience to
make custom and specific visualizations when preparing and presenting the
information.

In the movies, the protagonist can often determine the next right step based
on a single query or dashboard that integrates all the necessary data. They
glance at this digital display of information and have the right context to
make a fast decision.

And in the real world, while your management may request a “single pane
of glass™ to distill and manage your complex systems into a single
dashboard that provides all the context needed to support all decision-
making, a single view of all the data is not possible. Of course, you can

dump all the possible options into a single console, but the cognitive
overload affects the efficiency of accessing the necessary and timely
information you need now.

TIP

If your manager asks for a “single pane of glass,” figure out what question they are trying to
answer or what problem they are trying to solve and provide them with that set of visualizations.
It’s OK to give each person a custom dashboard and have your own that reflects the context you
need.

You are competing for attention and acknowledging that you have the
supporting data for your conclusions, so make sure you reflect on the
audience prompts in Chapter 9. No single graphic or dashboard can
aggregate information in a way that is useful for everyone. So instead, tailor
each graph and dashboard to narrowly focus on the needs of a specific
audience.

I sat in yet another meeting as a coworker tried to convey the importance of
a new project. He read sentences directly off his slides describing tedious
maintenance work that could save money already spent. Unfortunately, the
large numbers from his measurements didn’t alleviate the boredom or
compel me to participate in the additional toil to achieve his project goals. It
wasn’t clear why this would be the team’s highest-priority work or whether
we had the right tools to eliminate the toil.

DON’T BURY THE LEDE

Instead, when you need help, tell people what you are asking for so that
they have the necessary context when listening to your pitch. For
example, sysadmin and author Thomas Limoncelli offers the following
examples of some of his introductory sentences:

e [’m here to ask for funding [or resources or money].
e [’m here to ask for a policy decision.

e I’m here to ask for advice [on how to do something or who to talk
to].

e [’m here to give a status update.

Executives have several stakeholders that they are responsible for and
busy schedules. They also have limited levers to control outcomes:
providing resources, clarifying policy, and referring you to different
resources.

This kind of experience reminds me of a Mark Twain quote: “Often, the
surest way to convey misinformation is to tell the strict truth.” It’s not
enough to give people the cold facts and trust that you’ll inspire them to
action; you have to demonstrate why those facts are compelling and how
they relate to larger goals and then create an emotional connection so
people want to help your cause.

As shown on the left in Figure 10-1, if you have a bunch of text on the
screen, your audience will read the text and potentially shut down. On the
right, if you distill the data into charts, your peers are more likely to be
inspired and motivated to take the actions that you need them to promptly.

https://oreil.ly/UcJF8

— T —

® Tin our pswilrvegion, thave ove RHEL Seyveys — @redi @ upaede
50 new Sevuexs thok need 4o be o S b

deploytd 55 sustems dndt need to
be pardred with new Rppli Conohs
or lilbviries . and 100 S SemS thak
need 4o be upayeded 1o the lakest
suppor-ted RHEL 05. 250 Sevwas

ore in4he Ghood Stpde pund in LS

Figure 10-1. Presentation styles (image by Tomomi Imura)

And, if you craft high-level scorecards for your technical director, they are
more likely to fund your initiative. Don’t bog them down with all the details
and minutiae.

NOTE

Sometimes you can’t land the change you seek regardless of how you modify your message. This
lack of action signals that people aren’t taking time to reflect on how their work aligns with the
organization’s goals or a systemic problem in the environment due to broken feedback loops.

In that case, consider letting it go. Constantly chasing after an unachievable outcome is going to
exacerbate any potential burnout. And it might be that if you wait, the system will change, and
you’ll be able to achieve what you initially set out to do.

Choose Your Channel

Once you’ve reflected on the questions about your audience, think about
what you want them to do. Then decide if verbal or written communication
is best—this will depend on your objective and message type.

Verbal communication mostly happens in real time and allows you to
convey feelings along with facts. It’s most valuable when there is a

component of emotion or sensitivity you want to communicate or if you
need immediate feedback.

TIPS FOR SPEAKING

The more you present information through public speaking, the better
you will get at it. Beyond practice, there are a few tips that I’ve learned
over the years that may help you level up your speaking:

Breathe

Especially if you are nervous, you may find yourself breathing
faster or holding your breath. Altered breathing can impact your
speech and pace, affecting how well people understand you. You
can prepare by adding cues to your speaker notes to remind yourself
to breathe and leverage explicit pauses for emphasis or laughter as
appropriate for your content.

Vocabulary

Your speech needs to sound like conversation and use clear and
natural words, especially for technical talks. The environment of the
room and the listener’s experience and knowledge will affect how
they parse and understand what you are saying. Avoid jargon and
acronyms, and make sure the audience understands any technical
terms you need to use, taking a moment to define any potentially
unfamiliar concepts.

Pitch

Modulate your voice to create inflections to drive interest in your
message. Practice this on different words to see how it changes the
message. When you find the right fit, make notations to your
presentation.

Pace

The right pace for your talk varies depending on your audience. In
general, for simple, straightforward topics, it’s OK to speed up the
pace. For more complex topics, you want to slow down. When you
have a mixed audience of beginners and experts, this is where you

can enter the dreaded middle ground of expectations where
beginners may feel you went through the material too fast, while
experts may feel you went through it too slowly. Be thoughtful and
consistent in your delivery, and you’ll satisfy at least half of your
audience.

Authenticity

Match your expression to your words. Your body language and
expressions convey information. For example, smiling can give
energy and engagement to your topic. However, if your message
and manner don’t match, it brings a dissonance that your audience
generally interprets as dishonest. For example, when someone says,
“I’m so excited to share” in a dull and disinterested voice, do you
believe them?

Setting

Finally, in-person presentations are very different from virtual ones.
When presenting to people, there can be an energy feedback loop
that you tap into as you respond to the audience responding to your
content. In front of the camera, it can feel draining. You can level up
speaking to a camera by creating a virtual audience—set up a side
channel with live supporters to whom you can direct your attention
rather than just looking at a camera.

Often, written communication is asynchronous, whether through proposals,
design documentation, code, or reviews. However, some communication,
like chat and messaging, can be either real-time or asynchronous. Written
communication is a better choice when you want to focus on facts or need
time to think before responding and have less urgency about getting a
response. However, for more complex messages, written communication
with verbal communication may be necessary and more meaningful.

Either of these communication methods can benefit from visualizations to
complement the words you use. Choose your specific visualizations based
on the type of information that you are sharing and the stories you want to
leverage. And both methods require time and effort to get right.

Choose Your Story Type

You can use stories to reflect on the past, explain what happened, and
provide future direction. Each type of story reveals information slightly
differently, and choosing a compelling story to present information drives
your reader’s reaction toward your desired outcome. Some example story
types include the following:

Factoid

Factoids distill data into interesting data points, highlighting the most
common trends or notable outliers. An exciting story may drive interest
in exploring the rest of the data. For example, you can show the total
number of community members using a specific technology or unique
visitors to a website; marketing commonly uses factoids in dashboards
for website stats or product newsletters.

Interaction

Interactions show relationships between different datasets. Positive
correlations between datasets move together: when one set moves up or
down, the other trends in the same direction. Negatively correlated sets
move in contrast to each other, with one moving down when the other
moves up. Identifying a positive or negative relationship is helpful but
doesn’t explain why datasets move together. Be mindful that
correlations may be spurious, where the connection is just a
coincidence. A compelling story shows the correlation and establishes
that the data is meaningfully linked."

For example, you can show a graph of MySQL query times and end-to-
end request latency to observe better whether the performance is related

to the workload or if an increase in end-to-end latency is due to a
problem in the database configuration that has become a bottleneck.

Change

Stories about change are a way to describe how something evolves over
time. For example, you can use change stories in capacity management
and problem detection. You can use a graph to show the growth of your
current used capacity as it approaches the total configured capacity over
time. In addition, it can show the velocity (change in use from one point
of time to another) and acceleration (slope between the lines) to
illustrate how urgent it is to plan or increase capacity.

Comparison

Comparison stories are a way to show the impact of data that tells
different stories. For example, you can show the various performance
characteristics of rolling out a managed relational database from a
service provider versus a self-managed MySQL instance in a scorecard.
It could aggregate essential metrics like cost (including the cost of in-
house support), performance, scalability, and reliability.

Personal

Personal stories connect to real-world experiences. For example, you
show an incident summary that contextualizes technical issues with
individuals’ experiences and choices based on their understanding.

Storytelling in Practice

I want to share a few scenarios from my career where presenting data to
teams has been worthwhile. I shared a visualization in the first case to
inform and change assumptions about my team’s work. In the second case, |
shared the data that different audiences needed.

Case #1: Charts Are Worth a Thousand Words

It was the dreaded quarterly planning, a time for the team to assess the
accomplishments of the previous quarter and commit to projects in the next.
I was new to the team, and I had few expectations. My coworkers expressed
frustration because “they never had time to work on team projects to
resolve technical debt because of customer interruptions.”

An undisclosed motivation for joining the team was that I had heard that
there were challenges with visibility into the work queue and that requests
were often delayed or incomplete with no notice. The manager had sought
me out explicitly to bring engineering excellence and follow-through
execution to the team.

After the planning meeting, I figured out what data to collect around the
goals. I worked with the team to categorize the work based on incoming
requests and operational debt. I wrote some Perl code to query the internal
bug API and, based on the classification of requests, created a few different
dashboards to visualize the work. In the next meeting, I presented the image
in Figure 10-2, showing that contrary to assumptions, we focused primarily
on the work we chose rather than customer interruptions or requests.

Work distributed by type

Interruts
4.7%

Corp-driven
14.3%

Project

Ops-driven 9.5%

62.0%

Customer-driven
9.5%

Figure 10-2. The categories of work completed in a quarter based on tagged associations

I could have written up a report, but this simple graphic was easily
understood and, combined with access to the underlying data, influenced
changes in how we prioritized work as a team and led to further
improvements for customers in visibility into the work.

Case #2: Telling the Same Story with a Different
Audience

Before I get to a story in this example, there is some important context to
consider. For projects where you need to focus on data analysis and
presentation, think about who you are presenting information to and how to
frame the data, especially around the language used. Figure 10-3 may better
illustrate what I mean here, but remember that your team and organization
may differ.

Peer teams

Figure 10-3. Visualizing the shared language when communicating with different audiences; the
larger the slice, the more shared context

Let’s examine the layers in Figure 10-3:

e The team is the largest layer with a lot of shared language and context.
They work together closely, sharing tools and processes. They might
even have team slang or reuse specific terminology to mean something
special in the context of their systems. As a result, they benefit from
having all the information available when managing their systems.
Improvements may help any individual’s workflow when handling on-
call or touching production systems.

e Peer teams may share some common terminology, but it’s helpful to
establish a shared context and understand their expectations. In some

cases, talking through jargon may reveal incorrect assumptions about
concerns.

e Leadership may understand some terminology depending on their
background. Still, the broader their scope and responsibilities, the
more vocabulary may need to be translated to set the appropriate
context and risk level.

e Finally, customers may share language, but it will be much harder to
scale translation across all customers. Customer communication
requires the most care and diligence to communicate and set
expectations correctly.

So when presenting information to each of these different audiences,
customize what you share so that you provide them with the right level of
information at the right time. A single dashboard or set of visualizations
might be too broad.

Now let me share a personal story from my experience. First, senior
leadership announced the closure of several colocation facilities (colos) to
cut costs. As a result, we needed to migrate data to the closest regions and
minimize customer latency and availability impacts. As a result, I needed to
think through what actions we could take as a team to limit the impact on
day-to-day activities (1.e., upgrades to software and hardware maintenance)
and customer activities (1.e., onboarding new customers and increasing
capacity). Part of the data that needed to migrate was customer data. We
provided a NoSQL, multitenanted database made up of a number of tables.
We managed the database tables for the customers so they could focus on
their applications. So, I also needed to think about how to limit the impact
on our customers’ data.

Based on the different timelines for each colocation, I could aggregate
where each customer had data and the best configuration to minimize
latency impacts in addition to new projects and capacity constraints of the
overall system. I spun up a plan of migrations that balanced out speed,
performance, and capacity. Then, I wrote some Perl to query the different
service APIs and some JavaScript using the D3.js library to create charts.

For each customer table in each region that required a move, we needed to
do the following:

1. Issue a table copy.
2. Monitor the table copy progress.
3. Verify the table copy completion.

Multiple table copies and other administrative activities on that table could
not coincide.

For each region, we needed to do the following:

1. Wait for all customers to migrate their service over to their new
endpoint (minimize latency issues).

2. Update table configurations to drop the tables in the region .
3. Shut down all the servers in the region.

4. Notify SiteOps to shut down and deprovision servers.

Team dashboard

The team dashboard looked like Figure 10-4. The table contained an
ordered prioritized list of tasks with regions, jobs in progress (P), unaffected
regions, and completed work (C). This information allowed the ops team to
quickly identify whether new customer requests to change a specific table
required stopping a task or waiting until the job was complete.

Regionl Region2 Region3 Region4 Region5 Region6

Taskl C C C C C C
Task2 - & - P C C
Task3 C C C C P C
Task4 C - - C C P

Figure 10-4. Shared context for the team of planned work, locality of the work, and state of the work

Looking down the table row, any SRE could quickly see which regions
were completely done and which had work in progress. For a region that
had work in progress, we knew when we needed to take extra care with
upgrades, either pausing data migration or redirecting customer traffic to
the next colo to minimize disruption.

Finally, with minimal coordination, everyone could complete upgrades,
compute, and table deployments for a completed region. And ultimately,
deprovision and request SiteOps to shut down equipment when all
customers had completed their migration work.

Manager dashboard

The manager dashboard looked like Figure 10-5. They didn’t need to know
all the specifics about every single task. They just needed to know what
work was in progress, if we were blocked, and whether we would finish on
time.

Region1
60 80 100

B)

Projected completion date: 2022-09-01

Region 1replica
60 80 100

B)

Projected completion date: 2022-10-01

Region 2
60 80 100

T

Projected completion date: 2022-11-01

Region 2 replica
20 40 60 80 100

e | [)

Projected completion date: 2022-12-01

Figure 10-5. Manager-specific context showing planned work state, current work state, and projected
work state

This dashboard shows a gauge for each region and replica, showing all the
effort in a colo. The graphs updated daily based on the work completed. For
example, with a glance at this dashboard, management could see that three
of the regions were within the scheduled completion time and one was not.
Then they asked crucial questions of the team and had the updated
information to provide to stakeholders.

Since this was a long-running project, it provided management with the
necessary information to reprioritize any work and assign additional
interrupt work because they could immediately see the impact to the
timeline for this project.

Customer dashboards

Finally, in Figure 10-6, the customer dashboards let customers know where
their database tables were available, what we had planned for their tables,
estimated completion dates, and where their tables were unavailable.

Region1 Region2 Region3 Region4d Regiona
Tablel Ready foruse |Ready foruse |Mayl May 15 Ready for use
Table? _ Ready foruse | Ready for use
Table3 Ready foruse |Readyforuse |Mayl15 Ready for use
Table4 Ready foruse |Ready foruse |Readyforuse |Ready foruse

Figure 10-6. A simplified customized customer view

Note that customers didn’t need to know about the region replicas. The
replicas were in place to handle low-latency backups within the same colo.
However, management cared about this detail because it impacts whether
they are meeting the success metrics of getting services shut down in time
within a colo.

Each customer didn’t have to reach out to us for updates on their tables.
Instead, they could proactively migrate when they were ready and ensure
they didn’t add latency to their requests by deploying services to the wrong
regions.

I did send out email summaries when we completed all activities for their
tables. With the updated visualization, they could prioritize their colo-
migration work.

The Key Takeaways

These different visualizations reduced the number of support and status
requests, allowing team members to focus on the work. Adapt your message
based on what your audience needs. Everyone doesn’t need all the data
collected. Instead, focus your message on the information that matters to the
individuals. Tell your audience what data is missing and what they can learn
from the information collected.

Know Your Visuals

The greatest value of a picture is when it forces us to notice what we
never expected to see.

—John W. Tukey

I showed a few ways to visualize data in the previous two scenarios. Still,
there are many more visualizations to choose from to transform your data
into compelling stories. You can also use design principles to help your
audience see what you want.

Visual Cues

Visual cues can help you display information that others can process
without conscious thought. The four basic visual cues are color, form,
movement, and spatial position:

Color

You can imply relationships between two metrics or points in time by
varying the hue. You can indicate quantity or strength by varying the
saturation. You can adjust the temperature or the perceived warmth or
coolness of color to focus attention. Warmer colors advance into the

foreground, while cooler colors fade into the background. Use color to
show important data points, but don’t rely on it as the sole expression of
that data.
Form
You can change length, width, orientation, size, and shape. For example,
increase the size of something or use space to emphasize its importance.
Movement

Flicker and motion can call attention to specific areas of importance but
can also be distracting or annoying. You can imply motion through the
other visual properties rather than using motion directly.

Position

You can use a 2D position and spatial grouping.

Sometimes cues are inappropriate if they mislead or hinder your audience’s
interpretation of your visualizations. For example, don’t use different-sized
circles for categorical data if the magnitude difference of the categories
doesn’t hold any significance.

TIP

Learn more about design principles from Robin Williams’s The Non-Designer s Design Book
(Peachpit Press).

Chart Types

Instead of just sharing lines of data or sticking to the pie chart, choose your
chart based on your data.

Data tables

Data tables organize data into rows and columns. Tables can be a valuable
tool to do the following:

Plan
For example, you can itemize a list of requirements for a proposal,
brainstorm quarterly projects, and elaborate on details that apply to each
identified element, such as the proposer or length of time.

Document
For example, to lay out a list of options or provide comparisons between
different tools and services.

Define
Lists as a quick periodic review for tactical direction. Examples include
top pages or sources for websites.

Explore

Large sets to filter, display data, and drill down into individual queries.

Tables can be an overwhelming way to present a large volume of data, so
complement them with other visualizations to draw attention to trends,
outliers, and different patterns in the raw table data.

In Table 10-1, the table format is used to compare the on-demand and
provisioned Amazon DynamoDB throughput limits. The format works
because there isn’t a lot of data, and it’s clear what 1s different.

Table 10-1. Amazon DynamoDB throughput limits in table format®

Per table

Per account

Minimum throughput for any table

or global secondary index

On-demand

40K read request units and
40K write request units

Not applicable

Not applicable

Provisioned

write capacity unit

40K read request units and
40K write request units

80K read capacity units and
80K write capacity units

One read capacity unit and one

a “Service, Account, and Table Quotas in Amazon DynamoDB”, Amazon, last modified

December 15, 2020.

In Figure 10-7, from an excerpt of data on the Honeycomb Play with Live
Rubygems.org data playground, the table format is used with visual cues to
the raw event logs in the data table. Rows have alternating backgrounds to

make it easier to read the table.

Tinestanp [N

Figure 10-7. Raw data in table format for Rubygems.org2

ToAeT 1642142328101 73 1 BEeZ I cETEA 1 £2be a0 TET R 1 209 BT8R Fdeas

cache_status client_ip_hash content type gea_c
2821-81-18 21:15:28 HIT binaryfoctet- cambr:
BaBb1 869121 Tanddf6f TI0T1 36 2008524351 ded 1 533542841 180901 1 fbBas2 stroam
Z821-81-18 21:15:25 HIT ashbai
dbdbda2adsTESFeanSe29dd1bf 2456001 ATFFAF90Tdd fadad B2 Taba 5920 TEe spplicationfoctat-
STroasm
2821-81-18 21:15:25 HIT
AdbeAaB289636TB5550887 fenided5ScAT Sbacd! 1156838141c27d6T7ITI62 040 applicationfoctet- louds
ELFEaE;
charset=utf-8
F821-a1-18 I1:15:25 HIT toxt/plain; nshbai
Totadfedeb® fate? b8 SeabBachadtlefAT1 Feaas4d ol TedB29113baT cBdd12 charsat=utf-8
2021-81-18 21:18:28 HIT dubli
cbfBabTBScI6TO6T1 51 F5762 5996039327 1400 T 2add 1 347 Ba 9030070 4 5ebat applicationfocten-
stream;
charset=utf-8
H21-81-18 21:18:28 HIT binary/octet- londal
afcad2bed?adad T2092 864 Sdb b S 6ddaT AT 5994 TRakb24 Bodc 1 ea SB6T7 80 161 stroam
T821-81-18 21:15:85 HIT aan ji
BlchabbfBREIbodB2 TIebSca B2 45636171 baB394 BobI@ T 501 71 20ed 2 an9b2 ampplicationfoctet-
stroam;
charsat=utf-8
2021-91-18 21:15:25 HIT text/htel pavas

https://oreil.ly/M2cjV
https://oreil.ly/hmGNE

Bar charts

Bar charts are useful for quantified categories of data that you want to
compare when you have more than two or three categories. Compound bar
charts extend the idea of visualizing how the proportion of elements within
a category contributes to the total for each bar. Bar charts are often
displayed vertically, primarily when representing time-series data, but a
horizontal orientation can work better when using long category names.

For example, I’ve used bar charts to visualize system audits across multiple
colos to see the number of nodes running out-of-date operating systems.
Other uses for bar charts include displaying the disk consumption of a list
of directories, partitions, or servers to help explain the use of storage
capacity.

Line charts

Line charts plot changes in value and show patterns over time or
relationships between two variables. Add lines to the chart to show trends
between series. These are often the go-to for showing time-based trends and
differences between series.

Often the vertical axis will represent a statistic like the count, sum, or
average of a measured attribute across a dataset. Use a continuous interval
on the horizontal axis, for example, time.

Figure 10-8 1s another example from the Honeycomb live Rubygems.org
data playground. The line chart shows the counts, and the table provides the
legend in addition to the total count of cache hits, misses, errors, and passes
over time.

https://oreil.ly/AzouI

&

i lw.ﬂm“w'w‘*WWWMMM Wﬂ A M

 gyssssusg §

S e ———S—SRSs———— P e P TS ———

¥ T T T ¥ 1
2050 b Z1R0 Fhe] T Fal

wacha_piatus COUNT
B s 24,365, 134
[B 847,957
B s 206, T
B ress 6,952
wlacted ouary tise: S84 JI2EXJma rows sxamined: 41 080.BM noded recorilnal 10
Figure 10-8. A line chart depicting Rubygems.org results
Area charts

Area charts are based on line charts and show quantitative data over time.
Stacked area charts help show part of the whole or cumulative values.

Heat maps

Heat maps show data patterns through shading or color. One of the
challenges of these kinds of graphs is ensuring that the color schemes are
accessible and don’t create artificial gradients. Heat maps can also be
problematic when there isn’t a discernible pattern that can hinder
comprehension.

Flame graphs

Flame graphs are a way to visualize profiled software and help debug
resource exhaustion problems.

Treemaps

Treemaps use tiles of varying sizes to illustrate proportions; they are, in
effect, two-dimensional compound bar charts. Treemaps help show how a

total value is composed of many smaller elements. In addition, tiles can be
color-coded to convey additional information.

For example, use a treemap to show space on a hard drive with large
rectangles for files using a lot of disk space and clusters of rectangles for
directories. Color-code individual tiles to indicate attributes such as file
types, ages, or ownership.

ADDITIONAL RESOURCES FOR CHART
VISUALIZATIONS

To learn more about information visualization, check out Edward
Tufte’s books The Visual Display of Quantitative Information,
Envisioning Information, Visual Explanations, and Beautiful Evidence
(Graphics Press).

For more on other charts, see AnyChart’s “Chart Type: Chartopedia”.

Learn more about Flame graphs from the inventor of Flame graphs and
system performance subject matter expert, Brendan Gregg.

Recommended Visualization Practices

In presenting information, you control the narrative and provide a way to
interpret the data. Modern tools allow us to explore the data and interact,
verify, or provide alternative narratives to explain what is happening.

Imagine you manage a cluster of load-balanced web servers. You might
have a line chart of total errors with a different color line per server.
Multiple lines can be visibly noisy but quickly show outliers in error types.

You might also have server graphs showing different shapes per error type.
Using different shapes shows at a glance when a particular server serves
more errors and whether the errors are associated with a specific type of
error.

Apply these recommended practices when presenting visualizations:

https://oreil.ly/YgGks
https://oreil.ly/S7dVS
https://oreil.ly/tHfqS

e Distill your key points. Don’t rely on text alone. Instead, choose the
right visualizations to support your key points.

e Use consistent colors in a dashboard with multiple charts and within a
chart. Color directs focus. Lower the saturation for supporting or less-
critical data. Limit the number of colors in use. While color can be
helpful, charts must be understandable even when reduced to
grayscale.

e Graphs should always have labeled axes and a legend. Eliminate
duplicate information within the graph, though. For example, a legend
isn’t helpful if you use bar charts with labeled categories.

e Include references to the sources of data. Then, if something looks off
about the chart, people can go back to the data to verify and dig deeper
if needed.

e Design for the format. For presentations, lots of words will be hard to
read and might obscure the most important message. You’ll appreciate
more detail with clear and specific steps on your on-call dashboard for
those 2 a.m. pages.

e Point out key observations using annotations and highlighting when
visualizing a specific dataset.

e Construct dashboards so that charts can explain each step of discovery,
especially if you rely on that dashboard for on-call support in the
middle of the night.

TIP

See different visualizations of one dataset and how they change the message with Nathan Yau’s
“One Dataset, Visualized 25 Ways” on FlowingData.

Wrapping Up

https://oreil.ly/DmUGO

An effective presentation provides audiences with the interpreted data and
the context to understand and make decisions promptly. Tell a compelling
story tailored to the needs and interests of your audience. Consider the
nature of your data, the message, and the expression of the data
interpretation. Remember that stories are at the heart of effective
communication. So when you’re preparing to present information—to
fellow sysadmins, to leadership, to customers—ask yourself:

e Who is your audience? What do they care about, and what do they
need?

e What is the nature of the data? What kind of story are you telling?

e What format will be most effective in reaching this particular
audience? Should you present your information in writing, verbally,
graphically, or as a multimedia presentation?

e What interpretation do you want the audience to understand? What
context do they need to reach the conclusions you have in mind?

e What information does the audience need to understand your story?
What information should you omit because it distracts from the story?
What information should you include, even if it might undercut your
narrative, to allow the audience to reach conclusions you might not
have considered?

e Visualizations can be an effective way to convey meaning concisely.
What type of visuals would be effective for telling your story?

You’ll know your presentation is successful when your audience
understands your message and can promptly make decisions based on your
information.

1 Check out “Beware Spurious Correlations” from Harvard Business Review, which shares
more about why you want to be careful with correlations.

2 “Honeycomb’s Play with Live Rubygems.org,” Honeycomb.

https://oreil.ly/qU688
https://honeycomb.io/

Part lll. Assembling the System

In Part II, you learned about the practices that support maintaining reliable
and sustainable systems. In Part III, I’'m going to focus on assembling the
system, which pulls together all the practices from Part 11 along with the
fundamental building blocks (computing environments, storage, and
networking) from Part 1. Infrastructure is vast and varied. It’s a widely
accepted practice to eliminate snowflake servers with infrastructure as code.
Yet, every organization has its unique methods, which leads to challenges in
solving infrastructure management and needless arguments about the one
way to do it.

I’ve seen a number of tools, techniques, and practices to manage
infrastructure advocated for in my years in the industry. Some have
weathered time and some have not. Ultimately, you need to build reusable,
versioned artifacts from source. This will include building and configuring
a continuous integration and continuous delivery pipeline. Automation of
your infrastructure reduces the cost of creating and maintaining
environments, reduces the risk of single points of critical knowledge, and
simplifies the testing and upgrading of environments.

https://oreil.ly/zWuZ4

Chapter 11. Scripting
Infrastructure

I talked about baking in Chapter 1 when reasoning about your systems.
Let’s use another baking metaphor because baking is a really useful way to
explain systems. Cookies are a delightful small, sweet treat generally
composed of some ratio of sugar, fat, and flour. You might buy ready-made
cookies, bake them from prepackaged cookie dough, or assemble them
from scratch from the ingredients you have in your kitchen.

Likewise, with your infrastructure, you can use services, buy prepackaged
resources, or pull your own from what you have available. All the problems
that can occur with your infrastructure (the process, resource state, or
environmental conditions) can be remediated by scripting your
infrastructure with infracode and creating the necessary recipes for your
infrastructure. In this chapter, I will explain why you need to script your
infrastructure regardless of your infrastructure choices and the different
infrastructure lens to plan your infrastructure project.

NOTE

This chapter will focus on infracode, the literal Ruby, YAML, or other language used to describe
your infrastructure. In Chapter 12, I’1l discuss the Infrastructure as Code model and the practices
applied to your infracode.

Why Script Your Infrastructure?

I’ve seen organizations where the pace of change in practices was stagnant
because there was always so much urgent and interrupting work that there
was no time to invest in scripting. Sometimes there is fear that automation
will somehow take away the job. To manage infrastructure automatically,

you can write infracode, human- and machine-readable language to
describe the hardware, software, and network resources to automate
consistent, repeatable, and transparent management of resources.

Regardless of the type of infrastructure management automation tools you
adopt into your organization, you can do the following:

e Increase your speed at deploying the same infrastructure

* Reduce infrastructure risk by eliminating errors introduced through
manual configuration and deploys

» Increase the visibility across the organization to governance, security,
and compliance controls

e Standardize configuration, provisioning, and deployment tools

These outcomes might not map to specific business values, so it is
sometimes difficult to secure a sufficient budget or support for an infracode
project. And on some level, this makes sense: it takes time to automate what
you do manually, and there may be complexities that are not automatable.

So, to motivate your team and inspire stakeholder alignment, especially
when there are competing priorities for the team’s time, try the following:

e Think about and document the manual resource provisioning,

configuration, and deploys (the what, how, and any corner cases
handled).

e Identify small projects that can successfully be completed and support
your vision.

Let’s look at a few ways that you could describe a vision with goals that
align with business values:

Consistency

You deploy and configure systems uniformly that have been tested and
documented. This aligns to business values because consistency can
increase the productivity and efficiency of the team.

Scalability

Infracode streamlines the provisioning and deprovisioning process,
allowing you to activate and deactivate fleets of systems as required
with minimal effort. This effort can take the form of easy manual scale-
up and scale-down, fully automated cloud management, or any
combination, allowing the system to dynamically respond to peaks and
troughs in demand while also giving humans the authority to govern the
operation of the automation system. This aligns to business values
because scalability can increase revenue, add product differentiation,
reduce always-on infrastructure costs, and increase user satisfaction.

Empowerment

You define layers of responsibility to allow different teams to have
autonomy over their resource governance. You represent how to share
responsibility between infrastructure, security, and application teams,
enabling self-service within negotiated boundaries and maintaining
overall visibility.

This aligns to business values because empowerment can decrease the
friction of deploying new products while keeping spending within
acceptable boundaries, enabling operational teams to review resource
usage to ensure departments are using their budgets effectively. This
autonomy leads to increased revenue and differentiation in product
development.

Accountability

Tracking infracode changes with version control gives you a history of
system changes and an audit trail so that anyone can answer questions
about systems created. This aligns to business values because
accountability can decrease costs because you can deprovision systems
that should no longer be in use and revisit decisions where assumptions
have changed and a different solution may be a better alternative.

Enculturation

Version control changelogs facilitate onboarding new team members.
They can see how you do the work and can copy the same processes.
This aligns to business values because enculturation can increase
productivity and efficiency.

Experimentation

Infracode can allow people to spin up test environments easily, try new
technologies, and quickly push them to production when such
experiments are successful. This aligns to business values because
experimentation can increase revenue and help the team focus on
market differentiation.

You know your organization and its leaders best. Based on the company and
larger organization objectives, define a project scope and goals that align
with those objectives. Once you’ve got your project scope and goals, you
can use a specific perspective to model your infrastructure to successfully
land your project and goals.

Three Lenses to Model Your Infrastructure

Think about the infrastructure that you are managing. You may have the
physical hardware or compute instances with various dependent services.
Each compute entity will have an OS and may have several containers or
virtual machines. Networking connects different entities with access control
lists or policies that allow or restrict communication. Now, think about how
you describe your infrastructure.

At a high level, you may provision in a cloud-first manner with each
resource over their whole lifecycle, from provisioning to removal from
service, as shown on the left in Figure 11-1. Or you could focus on a low
level, as depicted on the right, and configure a single compute instance to
match up to a specific set of policies to build machine images in a
repeatable, consistent, and reusable fashion.

Figure 11-1. Deciding on an approach to infracode, all are valid (image by Tomomi Imura)

NOTE

Technological advancement is like a biological ecosystem with various habitats, niches, and
species. With technology, some new tool comes along and fulfills a need. The community adopts
the practices, if not the technology, leading to collaboration and communication pattern changes.
Other technology platforms change to mirror the community’s new needs.

I hope to show you general patterns in this book because books reflect a point in time, and at the
moment you read this book, newer tools, technologies, and practices will exist. Look at the
documentation for the specific version of your chosen tool for up-to-date recommended practices.

With this perspective in mind, when choosing a tool, think about what lens
fits your immediate need for infrastructure management, encoding your
infrastructure to do the following:

e Build machine images

e Provision infrastructure resources

e Configure infrastructure resources

Code to Build Machine Images

Early in my career, I deployed and maintained many physical systems.
Thankfully, at one job, I had a hard drive duplicator that allowed me to
clone multiple drives simultaneously from a single hard drive to speed up
the deployment process. Of course, I still had to update the configurations
for each system after installing the newly cloned drive, but it saved hours of
OS installation and update time. This process was manual but faster than
building the physical machine, installing the OS via CDs, and then figuring
out how to update the system while it was still potentially vulnerable.

This pattern is known as building from a golden image: a perfect, known
good mold from which you create more imaged systems. Workflows today
conceptually descend from this approach, where a machine image (e.g.,
Amazon Machine Images or VMware templates) serves much the same
purpose as golden images. With machine images, you automate system
builds, harden the OS to reduce vulnerabilities, preinstall any necessary and
standard tooling, and ultimately provision your compute resources from a
more secure and robust base.

An essential task for system administrators has been deploying physical
computers, but what this entails has evolved; the compute infrastructure you
manage could include physical machines, virtual machines, and containers.

NOTE

Because technologies reuse many of the same concepts, infrastructure automation developers tend
to reuse terminology, but this can create confusion when you need to be specific about the level of
abstraction that you’re using. For this explanation, I’'m going to refer to machines and machine
images, with the understanding that, in practice, machines have a spectrum of meanings, from
physical systems and virtual machines to containers.

Take a look at Figure 11-2, a machine image for a server that will run a
specific OS and a set of containerized applications.

Application

Container

Application

Container

[Application]
Container

Operating system

Figure 11-2. Building machine images

Examples of tools that build machine images include:
e Packer for multiplatform machine images

e EC2 Image Builder for Amazon Machine Images

e Buildah to build Open Container Initiative (OCI) container images
You may want to write code to build machine images if you need to:

e Ensure systems have a standard updated base image
e Install a set of common tools or utilities on all systems

o Use images built internally with the provenance of every software
package on the system.

Code to Provision Infrastructure

When providers introduced cloud architectures, I relished the opportunity to
quickly access complex infrastructure with simple APIs. No more racking
and stacking, tracking cabling, and configuring network ports in addition to
installing the application. Instead, the installation of provider SDKs and
tooling allowed me to quickly provision and configure the necessary
infrastructure. Provisioning cloud resources through infracode enables you
to:

Specify the virtual machines, containers, networks, and other API-
enabled infrastructure needed based on your architecture decisions

Connect the individual infrastructure components into stacks

Install and configure components

Deploy your stack as a unit

Take a look at Figure 11-3, depicting provisioning individual resources
(e.g., servers and databases).

Database

Figure 11-3. Provisioning resources
Examples of tools that provision infrastructure resources include these:
e HashiCorp Terraform
e Pulumi

AWS CloudFormation

Azure Resource Manager

Google Cloud Deployment Manager

Writing valid infracode requires a lot of knowledge to successfully
provision and configure infrastructure resources. Additionally, while cloud

providers often offer fundamentally similar services, there are subtle
differences in capabilities. Trying to map one-to-one functionality between
providers, especially with infracode, can be frustrating because syntax and
abstractions vary widely. If you have a multicloud architecture, you most
likely will benefit from leveraging frameworks like Pulumi and Terraform,
which can deploy to multiple platforms.

Infracode obfuscates the underlying “how does this work.” Humans work with these systems and
must understand more than just deployment automation. When problems occur (and they will),
you need to know where to debug.

For example, suppose you write infracode to manage your DNS records for mail and forget SPF
and DKIM records. In that case, this misconfiguration could disrupt mail delivery from your
domain to most providers. Unfortunately, checking for valid syntax doesn’t prevent operability
mishaps in the code. In addition, redeploying the infracode won’t catch the missing
configurations.

You may want to write code to provision infrastructure if you have or need
the following:

Systems that are already partially using provisioning

Multicloud support

Multitier applications

Repeatable environments, for example, a testing environment that is a
smaller clone of the production environment

Code to Configure Infrastructure

Configuring infrastructure resources through infracode allows you to handle
software and service configuration once hardware infrastructure is
available. Take a look at Figure 11-4, depicting the configuration of the OS
and applications to be consistent, repeatable, and reliable.

Server

Application

Application

Application

Operating system

Figure 11-4. Configuring infrastructure
Here are some examples of tools that configure infrastructure resources:
e CFEngine
e Puppet
Chef Infra

Salt

Red Hat Ansible

https://oreil.ly/8v4HK
https://oreil.ly/dTIk8
https://oreil.ly/n62da
https://oreil.ly/BfTSD
https://oreil.ly/olg8H

Each option implements configuration management slightly differently with
different terminology to describe the building blocks that represent the
abstractions of configuring infrastructure.

You may want to write code to configure infrastructure if you’re going to do
the following:

e Manage installation and configuration of software installed on systems
e Configure OS parameters
e Repeat installation and configuration of a system

e Automate repair of manual changes made directly to systems

Getting Started

I’ve shared three lenses that can help you narrow your infracode research.
Different tools have supporting features depending on the infrastructure you
want to manage, which may lead you to reconsider your underlying
technology choices, too!

If you aren’t using infracode, consider how the tool fits within the context
of your environment. For example, apply the decision framework for
choosing a programming language from the Sysadmin Toolkit (Chapter 5)
to determine your infrastructure management tools.

Selecting and implementing infracode platforms has long-lasting impacts
on the team, if not the entire organization. It’s difficult to retire technology
that’s still in use—difficult, but possible. The field is evolving quickly, and
some tools may lock you into using a specific vendor’s toolset, which may
not be an acceptable trade-off.

Deploying your chosen tool depends on whether you’re adopting it for a
new environment (greenfield deployment) or need it to solve struggles in an
existing environment (brownfield deployment). In a greenfield deployment,
try to use the selected tooling for all the workflows where it is relevant to
encourage the adoption of infracode habits and highlight any workflow

issues. You may solve the problems by changing processes and tools or find
that you need to rescope the project.

In a brownfield deployment, prioritize workflows and gradually apply the
new tool. Focus on one area for improvement at a time. For example, you
might manage all SSH configuration with Puppet or Chef and then move on
to other parts of the web server configuration for a single server. If the
automated process asserts reasonable defaults, then the team will see this as
a labor-saving improvement and will likely get on board with finding other
automation opportunities. On the other hand, if folks are manually
configuring systems, they will view the automation as counterproductive
and seek ways to bypass and undermine efforts to automate processes.

Additionally, be wary of taking on projects that are too complex or try to
force one tool to fix everything. For example, if you have numerous
platforms but mostly Linux, focus on the Linux platform before trying to
adapt your infracode to multiplatform and support Windows. You may find
that you need entirely different workflows and tools rather than trying to
force a single tool for all platforms.

Often your infracode solution is a multiprong approach that accommodates
the complexity of your infrastructure. A multiprong solution is OK. It’s
perfectly reasonable to adopt Packer to build machine images, Terraform
for immutable ephemeral containers in the cloud, and Terraform with Chef
for longer-lived instances; you can devise a cohesive approach that weaves
together these tools into a sustainable solution.

Wrapping Up

The purpose of infracode is to enable you to manage your infrastructure
collaboratively as a team in a consistent, reliable, and scalable way. Current
widely used infracode tools generally focus on three main use cases:
building machine images, provisioning infrastructure resources, and
configuring existing infrastructure. With these guidelines, you can create an
infracode journey customized to your organization or team’s needs,
technology, strengths, and weaknesses.

You may have an existing brownfield environment with pain points that
you’re struggling to deal with, or you may have an opportunity to set out on
a new greenfield project where you have wide latitude to select the latest
and greatest tools. In both cases, you need to think about the relevant
workflows people need to handle and find tooling that can best meet the
needs of these workflows. With these guidelines, you can assemble an
infracode toolbox customized to your team’s needs, technology, strengths,
and weaknesses. In Chapter 12, I’ll share ideas for sustainably managing at
scale by looking at how to use infrastructure as code and infrastructure as
data.

Chapter 12. Managing Your
Infrastructure

Contemporary computing environments range from managed compute to
container orchestrators like Kubernetes with virtualized storage and
networking. As discussed in Chapter 11, you can choose a variety of tools
to define these critical resources with infracode.

Once, I discovered 11 different active ways of managing parts of the
configuration and deployment for a single service. I’d completed an
upgrade with a shadow, so I attempted the next upgrade solo. Except, this
one process wasn’t automated and depended on a developer-generated
package that didn’t exist. So, while I followed the extensive checklist and
executed the various shell scripts leveraging the 11 different configuration
systems, I had upgraded only part of the thousand-node system, which put
the entire system in a precarious state.

It’s not sustainable to manage systems even with a thorough checklist and
infracode. This chapter introduces infrastructure models to improve and
modernize infrastructure management and provides getting-started
recommendations. You can navigate thorny infrastructure scenarios and
incrementally adopt more contemporary (and sustainable) practices.

Infrastructure as Code

Let’s start with the more well-known model: infrastructure as code (IaC).
IaC is taking time-tested recommended practices from software
development and applying them to improve quality and visibility in
infrastructure management.

TIP

IaC is all the software development practices applied to infrastructure code, while infrastructure
code is the Ruby, YAML, or language used to describe your infrastructure.

The industry will adopt new practices as software development evolves.
Current approaches include storing infrastructure code (infracode) in
version control, code reviews, automated testing, and deployment
automation:

Infracode

In Chapter 11, I introduced infracode, the human- and machine-readable
language, to describe the hardware, software, and network resources to
automate consistent, repeatable, and transparent management of
resources.

Version control

In Chapter 6, I introduced the fundamental practice of version control;
you can store infracode in version control for reproducibility, visibility

(how have resources changed and when), and accountability (who made
what change).

Code review

Storing infracode in version control is great because it gives you insight
into the changes made. How do you introduce change and decide
whether you want to incorporate it into the system systematically and
repeatedly?

Code review is the process of a peer looking over code (and, in some
cases, before merging into the main branch of a version control
repository). The goals of a code review include the following:

e Verifying the implemented solution

e Verifying that the problem was understood and solved

e Sharing knowledge about the requested change

e Providing opportunities for mentorship as the code creator or the
reviewer

e Supporting the enforcement of coding standards and finding bugs
earlier

Ultimately, code review is one of the ways that your code becomes
the team’s code and is a practice in navigating disagreements.
Therefore, your team’s code review practices will evolve as you
learn from each other.

Automated testing

As discussed in Chapter 7, tests help to build confidence and eliminate
some of the fear of making a change. The goals of testing infracode are
to help you assess risk, respond to and recover from problems quickly,

and improve your delivery processes.

Executable automated testing is the only way to manage the needs of
contemporary work supporting systems with the rapid pace of
deployment, dependency vulnerability announcements, and evolution of
infrastructure.

Continuous integration (CI)

ClI is the practice of automatically merging multiple contributors’ work
into a single branch of a shared code repository. CI platforms enable
teams to automate testing and get rapid feedback about the quality of
potential changes prior to merging the code.

Continuous deployment (CD)

CD 1s the practice of automatically deploying tested software releases.
CD platforms enable teams to automate deployments, enabling faster
feedback from customers about new features and improvements.

Deployment automation

With the appropriate tests as validation gates, you can set up a build or
continuous integration/continuous delivery or deployment (CI/CD)
pipeline, describing the method of automated integration code and
automated builds. The steps or phases in a pipeline will be distinct
subsets of tasks grouped by different stages.

Figure 12-1 illustrates an example of deployment automation, with a
build pipeline that has distinct phases and grouped tasks.

'

Continous delivery | Monitoring
or deployment

\

Continuous integration
Release | Deploy Validate

M
J

Figure 12-1. The different phases of a build pipeline

Within the CI phase, there are three steps:
1. Build

The project is compiled with the proposed changes.

2. Test

Scripted tests run against the project.

3. Merge

Changes are merged into the main branch.

Within the CD phase, there are two steps:

1. Release

A version of the project is published to an artifact repository.

2. Deploy

A specific project version is deployed to a live environment, either
upgrading an existing system or deploying to newly provisioned

resources.

Finally, within the monitoring phase is the last step:

1. Validate

The production environment is validated against expectations. While
this final phase monitors the artifact deployed to production, monitoring

occurs to validate each task within each of the other phases as well.

NOTE

Applications built to run on serverless compute have significantly different architecture demands
for local development, testing, and monitoring. You can use whatever CI infrastructure to promote
change in the application through the various phases of the development lifecycle.

Additionally, because sysadmins aren’t managing the hardware, promoting the application
between environments is faster. Finally, serverless relies on underlying cloud-provided services,
so your application may run differently when those services change.

Realistically, your pipeline should model your build processes, which may
mean not having these exact phases. Instead, you may have different
pipelines per project or specific configurations that direct the flow based on
the part of a single project.

Let’s follow the path of your pull request after you write, lint, and test your
code on your local development environment (Figure 12-2).

You submit a pull request, and the deployment automation software is
triggered, which sends a notification to the team chat, a Slack channel, and
triggers a build of the software with your proposed change. At this stage or
in a later stage after tests, your team may review the code and approve or
reject the pull request.

The automation runs unit tests and sends the outcomes to Slack. On a
successful code build that passes unit tests, automation kicks off a container
build that builds, tags, and pushes the container image to an artifact registry.

Trigger Trigger Depl Deplo
h'ﬁﬁd _ ploy Deploy

PR :
y build
Local Git Shared Git Automation N Container Staging

repository repository service environment
Chatbox Outcome

notifications l

) P Build] _rlntegrat'mn1
Build image testing

Proclu-::tiun]

DLrlﬁtm me l - ’ l
notifications| Upit : Load
testing Tagimage testing
Push image
Outcome to registry
notifications o

Figure 12-2. A more complex build process incorporating integration of code changes and
deployment to production

A successful container image delivery to the registry triggers the
provisioning of a staging environment, an ephemeral environment that
emulates production, to start the second round of testing, which may
include integration, load, and other tests. Finally, after successful testing,
the image is deployed into production, where further validation testing may
occur.

At any point, failure triggers a signal to the team chat.

Following are examples of tools that support automated testing and
deployment automation:

e GitHub Actions
e CircleCI

e Jenkins

e Azure DevOps
e Google Cloud Build
o AWS CodePipeline

NOTE

Often IaC is conflated with [aaS, but these are two different concepts. You can use laC with on-
prem hardware and cloud computing environments. laaS is a service a cloud provider offers and a
service delivery model.

DECLARATIVE VERSUS IMPERATIVE INFRACODE

Infrastructure management tools take two main approaches with
infracode: declarative and imperative. With declarative infracode, you
describe the desired end state, and the tool handles the implementation.
In contrast, with imperative infracode, you specify the procedure for
achieving a task.

In practice, tools that confine you to either of these extremes are
difficult to work with because of your resources. For example, a
declarative framework might work for most common deployments but
be too limited to express what has to happen for other scenarios. An
imperative framework might provide better expressiveness for those
edge cases. Still, it is too cumbersome for when you just want to deploy
a standard image with only a few minor tweaks through custom
variables. The infracode tools that find widespread adoption tend to
balance the declarative-imperative axis, providing straightforward and
flexible ways to implement many deployment pipelines.

Treating Your Infrastructure as Data

In a 2013 blog post for the O’Reilly Radar, “The Rise of Infrastructure as
Data”, Michael DeHaan, creator of Ansible, wrote, “Infrastructure is best
modeled not as code, nor in a GUI, but as text-based, middle-ground, data-
driven policy.” He coined the term infrastructure as data (1aD) to expand
on the concept of declarative infracode.

So, should you think about infrastructure as data or as code? There is
something compelling about modeling infrastructure as data with a data
model and as code with infracode and all of the respective practices, much
like light can be modeled as a wave or a particle. Instead of choosing one or
the other, choose both.

Reflect on what you learned in Chapter 3 about the importance of data and
its value to a company. Your job is to keep data safe, managed, and
available. When you create an infrastructure data model, you recognize the
strategic value of all the fundamental resources required for your system to
function. Consider the following:

e Where is your data model stored?
e Where is the metadata about your data model kept?

e How do you keep track of the changes in the data model?

https://oreil.ly/n2xUH

WHAT ABOUT GITOPS?

GitOps 1s a newer infrastructure management model (compared to [aC
and IaD) that arose from managing Kubernetes clusters in 2017.
OpenGitOps 1s the community-driven set of standards that describes the
recommended practices and principles around GitOps. The v1.0.0
principles are as follows:

e Declarative infracode
e Versioned and immutable state
e Resources pull approved configuration from the central repository

e Resources continuously reconcile the actual state from the desired
state

The principles of GitOps are not new; GitOps is a repackaging of
components of the existing models (infracode, version control,
deployment automation from IaC, and immutable state from [aD).
Regardless, there is value in GitOps if it helps you adopt improved
infrastructure management practices in your organization.

Getting Started with Infrastructure
Management

With [aC and IaD models in mind, you can now think about adopting
practices to improve and modernize your infrastructure management
incrementally. In an organization with few to no current practices, adopting
and modernizing your infrastructure is a significant technical change that
requires process change and skill updates in addition to the practices and
technology. For example, if you’re not creating and managing your
infrastructure with code now, it can feel overwhelming to identify a place to
start. In an organization with current practices, it may be challenging to

https://opengitops.dev/

understand all of the systems in place, let alone how to make
improvements.

A key component of success is ensuring that your team and stakeholders
have a shared vision of the specific proposed parts of infrastructure
management you want to improve. If you don’t have alignment, you will be
hard-pressed to complete your project.

Additionally, ensure that your project isn’t “automate all the things.”
Instead, scope your project to a specific goal. Automating everything is a
multiquarter, potentially multiyear, project, which means an extended time
to reach success criteria. Examples of potential well-scoped infrastructure
management projects include the following:

e Improving time-to-deploy for development environments

» Helping a geographically distributed infrastructure team collaborate
asynchronously by turning real-time system configuration tasks into
scheduled code changes at optimal times

e Streamlining onboarding, making it easier to accept part-time
assistance for specific projects while facilitating cooperation among
different teams

* Considering the pain points that arise during on-call rotations and how
automating chores can make these shifts go more smoothly

Identifying the challenge is key; infracode is not an end unto itself, even if
that is what your leadership is saying and attempting to measure.

Once you have a goal, break it down into smaller measurable objectives or
milestones: version control, code reviews, automated testing, and
deployment automation for your infracode, leveraging whatever is in place
as necessary:

Start with version control

In a team that has already adopted version control software, decide
where infracode will be located (with the project or in its dedicated code

repository). If your team isn’t using version control yet, revisit
Chapter 6, and learn more about how to get started with version control.

Implement code review processes

In a team already doing code review, assess and document the current
process.

Identify or choose your infrastructure management tool(s)

In Chapter 11, I introduced three infracode models to help you identify
and assess tools in use and choose additional infrastructure management
tools.

Implement single points of authority over elements of infrastructure

Eliminate areas where multiple tools are updating the same resources.
Conflicts in updates will cause pain, frustration, and needless paging.

Don t sacrifice collaboration

The long-term success of an infrastructure management project requires
considering the workflows the tool will encourage and how those
workflows will change the dynamics of your team. Once your team
adopts an infrastructure automation tool, that tool makes the future
relevant system changes. So, everyone on the team needs to understand
the adopted mechanism well enough to use it daily.

If the infrastructure management project feels like it belongs to only a
subset of the team, those people will become a bottleneck when the rest
of the team asks them to make changes they used to make themselves.
Everyone gets frustrated in this scenario. Be sure to build adoption by
inviting the whole team to give input and get targeted demos that make
real day-to-day struggles easier.

Check for single points of failure

Remember that infrastructure includes the software to be deployed. So
make sure a single person understands the application definition and the

context of when and why the application runs. For example, cloud
applications leveraging serverless infrastructure should be defined in
source control and deployed automatically to the cloud provider.
Creating a standard project skeleton can be an example for engineers to
start by encapsulating specific security patterns and preventing the ad
hoc creation of resources without oversight.

Identify the necessary skills required to be successful

Even the most experienced among us need some training to bootstrap
the successful adoption of technology. If you haven’t used version
control before, that’s the first skill to obtain, along with creating
accounts on whatever version control system is in use. For example, for
Terraform, you may need a combination of training in HashiCorp
Configuration Language (HCL), Terraform, and Terraform
implementation within your organization.

Build quality with automated tests

Think about the infracode practices in use or planned. You can integrate
testing into your initial plans or add them afterward for existing
infracode. Many times, automating infracode tests (infratests) at all is a
big step.

https://oreil.ly/6sgXp

TIPS FOR CODE REVIEWS

Navigating the perils of reviewing others’ work 1s not an easy task.
When you reach that special flow state with another human, you
develop language that communicates more than what is said. But,
outside of the flow state, words can be taken so many different ways,
and adding more words won’t necessarily solve the problem.

Here are a few tips I’ve learned over the years:

e Code doesn’t need to be perfect. Before you assess someone’s

code, establish some understanding of the review process. Maybe
you’ll adopt some form of conventional comments that enable a
consistent format to improve expectations. Then when reviewing,
you can apply labels that signal whether your feedback blocks the
merge of a proposed change or if it’s a preference. This way, you
can share your feelings and not slow down progress. It’s OK to
integrate code that improves the system’s state even if it’s not
100% perfect.

Don’t forget to review the comments. Comments in the code
should explain why code exists and not what the code is doing
(except for complex things like regular expressions).

Don’t forget to praise the good stuff. So often, reviews focus only
on what’s problematic; encourage appreciation for recommended
practices.

Don’t use hyperbolic words like always and never because
generally there will be some context that breaks the rules.

Most important, be kind. I’'m not saying that you shouldn’t address
problematic code—honestly, it’s not especially kind to avoid
saying the hard things people need to hear. Instead, especially
when there are problems, take the extra time to deliver the
feedback thoughtfully.

https://oreil.ly/P3gM1

If you have deep concerns about code, consider whether an “out-of-
band” approach, such as an in-person conversation or a private Slack
message, might improve the outcomes of your concerns. Sometimes,
people interpret written reviews more harshly due to the lack of
contextual clues. If you use a more personal approach like pairing over
the revised draft, your team members can learn from you and not
misinterpret intentions.

NOTE

Recall from Chapter 7 that the challenge of writing tests for infracode is that it can be
straightforward to test the infrastructure platform in use rather than your code. Think about
whether you are verifying your code as written or testing that the infrastructure management
software is working. Unless it’s an in-house developed system, trust that the software does what it
is supposed to do. Even if you are working with an in-house configuration system, test that
platform in its Git project separately from your infracode project.

Let’s revisit the four testing types from Chapter 7: linting, unit, integration,
and end-to-end testing, specifically with infracode.

Linting

Because of the nature of linters and the evolution of recommended
practices, linter versions can be especially sensitive to change. If one person
has one version of lint software on their system and someone else has a
different version, the linter will influence their code, causing needless

conflicts when working on the same project. As with other tools in the
environment, ensure that everyone uses the same version of linter software.

When your linter returns an error, it doesn’t necessarily mean that the code
needs to be changed. Instead, examine the issues and identify whether you
have a real problem or an area where you can customize the project’s lint
configuration.

Writing Unit Tests

With infracode unit tests, there generally is a specific package that maps out
to testing the platform you are using. For example, Chef has Chefspec, and
Puppet has rspec-puppet. Infracode can get complicated when you have
specific customizations, for example, different operating systems, compute
instances, or the environment in which the system exists in test or
production. Valuable unit tests will test those inputs that change how the
code runs so that you can have deterministic outputs. They help future
sysadmins modify your code and see issues early.

Generally, very simple infracode doesn’t require unit tests because we can
assume that the infrastructure management system manages the individual
resource blocks as intended. I know, that’s shocking advice that contradicts
the premise of the testing pyramid, but the reality is that for infracode, only
complex patterns require object-level testing. It’s helpful to assess the value
of tests regularly because you must maintain them. Crufty tests can inhibit
folks from collaborating!

Writing Integration Tests

Recall from Chapter 7 that integration tests are defined differently within
organizations. Integration tests may be narrow (testing two components) or
broad (testing multiple components). Before you implement tests against
infracode, align on the implementation goal. For example, given infracode
to configure a third-party service, would you test an active configuration or
mock out a connection to the service and assume it would work in different
environments?

NOTE

Think about scripts containing system commands that have different responses depending on
external factors. For example, when integration testing, you might want to control the system
command output because you aren’t testing the system command; you are testing the script you
are writing that includes the system command. Mocking is a crucial technique you can leverage to
ensure reproducibility and focus your test.

Writing End-to-End Tests

E2E tests verify that a project’s behavior functions as expected from start to
finish on a production-like ephemeral environment, which means that there
1s some non-negligible cost associated with running them. Therefore, there
is a danger that if the CI system doesn’t clean up the testing infrastructure,
you will spend money on unnecessary resources.

MANAGING YOUR TESTING INFRASTRUCTURE:
SHORING UP THE TEST LEVEE

By Chris Devers

When it comes to maintaining and extending a product line for years,
I’ve found that an organization’s test environment (the tests,
framework, and testing infrastructure) is equally as important as the
system maintenance for your product. The good: my team’s test
framework notices most problems before customers do so that we can
get fixes out early and prove new ideas. For example, helper tools for
spinning up integration tests helped my team consider new ways to
deploy and manage production systems, making our products work
better for current and future customers.

The problem is when the test framework itself becomes unmaintainable.
The same test framework that is catching problems early and allowing
us to experiment with new ideas is also suffering from these problems:

A “tragedy of the commons” problem

It’s a benefit to many developers, but no one person or team is
genuinely responsible for the maintenance and quality of the
framework itself. So it suffers and becomes unmaintainable as even
more people make heavier use of it.

A “who watches the watchers?” problem

For a given reported test failure, it can be difficult to determine if
the problem was an error in the test itself in trying a scenario that
“can’t happen in production” or if the problem is an actual defect in
the production software and the “can’t happen in production”
scenario might not be so implausible.

A “boy who cried wolf” problem

Alerts are being triggered for issues that have already been fixed,
because the alerts themselves are misinterpreting the test runs, and

developers are having to second-guess the test results to figure out
which problems are real and which ones are artifacts and echoes
from the earlier defects.

Avoid this trap by expending time and regular resources to keep the
documentation about the systems in use, including your testing systems,
up to date. And see Appendix B for information about how to expend
time and resources to resolve the four types of failures that can occur
with your testing environment so that you can keep it in a good state.

Follow these guidelines, and you can adopt 1aC and IaD practices
customized to your organization or team’s needs, technology, strengths, and
weaknesses; manage your infrastructure more efficiently; and collaborate
more effectively.

Wrapping Up

In an era where you manage resources with software, [aC and IaD practices
are a customizable framework for building, testing, deploying, and
managing your systems’ infrastructure. Practices such as version control,
code review, and automated testing have been standard for software
development teams for many years. And these practices are helpful to adopt
in managing our infrastructure.

Adopting [aC and IaD into an organization without these practices may
require an incremental approach. Look for specific areas where advancing
practices can help your team be more effective in making early progress and
iterate on specific improvements.

MORE RESOURCES

Learn more about the [aC practices from Kief Morris’s updated
Infrastructure as Code (O’Reilly).

https://oreil.ly/xxTX8

Chapter 13. Securing Your
Infrastructure

Your organization may have security professionals dedicated to securing
infrastructure. Or, you may have no one with “security” in their job title or
someone with little to no subject-matter expertise. Whether you have the
opportunity to collaborate with others or need to figure out what to do on
your own, you can improve your infrastructure’s security by adopting a
security mindset.

Ideally, securing infrastructure starts when you plan and build out your
system’s required resources. But how do you figure out where to start when
dealing with existing infrastructure? Defense in depth tells you to apply
security practices at different layers to deter harm to your infrastructure, but
it doesn’t mean it’s possible to do everything simultaneously. However, by
adopting a security mindset, you can improve the reliability, robustness, and
general operability of the specific systems you manage, including your
applications, tools, and services (i.e., desired attributes of your particular
baked goods).

In this chapter, I model an approach for securing your infrastructure. First,
assess attack vectors of a generic build pipeline to find your vulnerabilities,
and adopt different lenses to narrow your mitigation efforts (i.e., managing
identity access and secrets and securing compute and network) so you
address the most frequent attacks. Then, I finish with a set of recommended
guidelines for your infrastructure management. This chapter by no means
provides an exhaustive method to secure your infrastructure. It barely
scratches the surface. But, it does offer you a way to think about breaking
the critical security work into smaller achievable pieces.

NOTE

Review infrastructure security (Chapter 8) for more details on underlying security practices.

Assessing Attack Vectors

While figuring out how to fully assess attack vectors in your environment is
well beyond the scope of this book, improving your infrastructure security
starts with thinking about the potential entry points of intrusion for assets
specific to your organization.

Let’s examine the generic build pipeline from Chapter 12 for areas of
vulnerability in Figure 13-1.

.1

Continous delivery | Monitoring

Continuous integration
or deployment

=

VCS | L N= e . ' Monitoring
data

] Metrics, logs.
i.e., compute, network, , 10g5,
storage resources, and data

Release (Deplr:ry Validate

Source

L. -1 Atifact | softwareproviders,
i.e., compute, network, repositories and services
Stﬂfﬂge resources, .
software providers, €+ Software packages
and services and container images

Figure 13-1. Examining build process for areas of vulnerability
At each point, there are different vectors of attack. Here are just a few:
e Your version control system

e The resources in your build environment

The build platform

The software packages and container images in your artifact
repositories

The resources in your production and other environments

The data about all your infrastructure and what is happening

Risks to resources early in the process can impact all the resources built
later. Following are some common attacks on these resources:

Compromised credentials (e.g., a site getting compromised and
exposing the username and password pairs and a user who reuses a
username and password pair across multiple sites, including the
compromised site)

Weak credentials (e.g., an easily guessable password, like “123456)

Misconfiguration (e.g., a service configuration that doesn’t require
authentication and authorization)

Vulnerabilities to the software packages and container images (e.g.,
unpatched Docker images)

Unpatched operating system and software (e.g., installing an OS and
not updating to the latest patched version)

How do you improve your security posture to resolve these challenges?
With infracode, you can minimize errors and misconfigurations,
compartmentalize your architecture with zero trust, and limit the exposure
of resources to the broader internet that aren’t needed. As with IaC and IaD,
incrementally adopt practices to improve the security of your infrastructure
management. Let’s look at different lenses to focus your attention:

Manage identity and access (supports 1, 2)
Manage secrets (supports 1, 2)

Securing your compute (supports 3, 4, and 5)

e Securing your network (supports 4)

Manage Identity and Access

Depending on the length of time you have been administering systems, the
OSs 1n your environment, and the use of hosted services, you may have
managed users and access in a variety of ways, including the following:

Synchronizing /etc/passwd and preventing duplicate user IDs

Managing an LDAP server, Kerberos services, or Active Directory

Managing identities in an Atpasswd file

Running SQL scripts to add users and grant roles to MySQL databases

Some of these processes may remain valid methods of managing user
access. However, new techniques and technologies can facilitate
automation, transparency, and compliance.

How Should You Control Access to Your System?

Identity and access management (IAM) is how you configure roles and
privileges for users, groups, and services and the underlying technology and
processes that support the allocation and revocation of privilege. There are
three core elements of IAM:

Authentication

A user is who they say they are.

Authorization

A user has the privilege to do the requested action.

Activity logging

User actions are recorded via logging.

In addition to in-house solutions you manage, external services implement
IAM with different terminology and concepts. Unique IAM implementation
can occur across services offered by a specific provider (e.g., compute
instance versus database authentication and authorization). You’ll need to
read the service documentation you plan to use to understand how to
authenticate, authorize, and log activity. If you are starting a new position,
migrating to a different cloud, or using a new web service, don’t assume
that identity implementations are the same.

Examples of service providers and their identity services include Amazon
AWS Identity and Access Management, Google GCP Cloud Identity and
Identity and Access Management, and Microsoft Azure Active Directory.
Because of the differences between services and providers, you can
accidentally weaken your system with misconfigurations.

Listed here are some examples of changes in modern infrastructure identity
practices:

» Instead of a single factor of authentication such as a password to log
into a system, use multifactor authentication (MFA), which requires
multiple pieces of evidence. With MFA, individuals verify who they
are with something known (e.g., a password or PIN) and something
held (e.g., a security token or card).

 Instead of synchronizing and centralizing /etc/passwd across many
Unix systems or binding them to an LDAP directory, you might rely
on configuration infracode to ensure users have accounts only on the
systems they need.

IAM can get complex. For example, in a hybrid scenario where you manage
identities with a corporate user directory separate from your service
provider, you might have to manage trust relationships and federation
between different services. This allows you to share authentication methods
across services so that users can use existing credentials.

Complexity is also increased by the need for [AM in different domains,
such as corporate identities within an organization, service identities to

enable communication between applications, and consumer identities to
access customer-facing services.

Most likely, the set of tools you use for IAM for the variety of services you
manage 1s more complex than it used to be. Leveraging infracode allows
you to have consistent, repeatable, and testable configurations. You’ll also
need transparent processes, especially around the on-boarding and off-
boarding of employees, to configure anything that doesn’t integrate with
automation.

Creating more developer-friendly ways to manage the provisioning of
resources will require additional guardrails and audits. For example, one of
the most common access misconfigurations with object storage services like
AWS S3 is configuring full anonymous access to a bucket or allowing
anyone to read or write to the bucket. How does this happen? Many how-to
guides illustrate the concepts behind services by having developers
immediately open up access to make it easy to focus on learning the service
and don’t explain what those configurations do. Unfortunately, these
patterns then get copied into live environments and create vulnerabilities.
Providing example infracode snippets that reflect best practices can help
make it easier for others and keep settings uniform across your
organization.

You may need to audit environmental issues and educate engineers within
your organization to use specific technology. For example, you may want to
ensure everyone has MFA enabled for their accounts. You might set up an
automation that regularly scans for accounts missing MFA and notifies the
account holder to remediate by adding MFA or deactivating the account.

You can leverage your infracode tools of choice to track, audit, and modify
corporate and service identities to your systems as part of your provisioning
process. Using infracode tools ensures the settings you encode are applied
uniformly and updates pushed out as needed.

Who Should Have Access to Your System?

Once you figure out how you control access to your variety of systems, then
it’s a matter of figuring out who should have access to your system. When
reviewing application or service documentation, you can often find
guidance about expectations on running the systems, including what
accounts are needed and any associated permissions. You should also ask
yourself:

e Are elevated privileges required for individual or service accounts?
e Should there be time boundaries around access?

e Do users who have logged in require a different experience from a
casual, anonymous user?

You can minimize possible harm to your system by applying the principles
of least privilege and segregation of duties when granting access to your
systems. Using these principles ensures that a user or component has access
and authority only to what they need, versus having root or administrator
accounts. In other words, with a compromised account, harm is limited to
components of the system that the account has access to or authority.

You can examine what application programming interfaces (APIs) are
available. Often, people see APIs as the realm of developers, but they are a
critical vector of attack. Most modern web applications expose APIs to
users in some form. For example, in hosted services, you configure and
manage access to all of your systems and data via a provider’s API gateway.
Check what your service grants by default with open access.

IAM and logging are analogous to the door locks, security cameras, and
other physical controls of an on-premises data center or server closet.
Infracode is a practical necessity to ensure these “doors” remain
appropriately “locked” and access monitored.

Manage Secrets

Engineers want to get work done as quickly as possible with the least
amount of barriers, sometimes trusting the privacy of applications that don’t

have any notion of privacy or accidentally adding them to source control.
However, often you have incomplete visibility of the risks from exposed
secrets because there may be secrets embedded in code, and different
services require different processes. Secrets include passwords, mTLS
certificates, bearer tokens, and API keys.

Secrets are subject to a bootstrapping problem: how do I access a particular
resource? If [need a password, how do I get that password? Early in my
career, | remember being handed a carefully written sticky note and
informed that it was critical to memorize the password and then destroy the
note. Resetting the root and administrator passwords when anyone left the
team while ensuring everyone remaining had the password was
problematic.

In contemporary environments, you also need to keep more than host
passwords secret from people who shouldn’t have access to them. Using
infracode to establish best practices around secret management can help
you increase adoption and track your progress. However, infracode also
introduces new challenges for secret management, as the infracode tools
require access to the secrets. Let’s examine the concerns to help you
manage secrets.

Password Managers and Secret Management Software

Sometimes secrets need to be accessed or used by humans, automated
processes, or both. These access patterns dictate what type of interface is
best, so secret management software is usually tailored mainly for one use.

When the primary concern is interactive use by humans, secret management
software 1s usually called a password manager or privileged access
management application. You can generate and store strong, unique
passwords using a password manager. Password managers reduce the risk
of reused passwords and enable sharing secrets across the team without
resorting to insecure methods like writing them down or sending them over
collaboration services or email. Some well-known password managers
include the following:

1Password

LastPass

KeePass

Bitwarden
* pass

Secret management software for other applications is a key-value database
with authentication and auditing features. Vendors add value to their secret
management solution by integrating with different software ecosystems or
supporting specific usage patterns. The primary purpose of a secret
management platform is to allow you to decouple the storage of secrets
from the code or configuration that consumes the secrets. Besides the
ability to support that decoupling, you should evaluate secret management
software for other concerns, including these:

Centralization
All secrets are stored in one place, reducing the risk of leaking secrets
via storing them in the code or forgetting about their existence.
Revocation

Marking a secret invalid and no longer trusted.

Rotation

Updating credentials for an identity. This may include versioning the
secrets allowing for the progressive rollout of a new secret so that you
don’t create brittle interdependencies between secrets and applications.

Isolation

Ability to assign secrets to individuals or roles so that you grant the
least amount of privilege. A single application doesn’t need full access
to all project secrets.

https://1password.com/
https://www.lastpass.com/
https://keepass.info/
https://bitwarden.com/
https://www.passwordstore.org/

Inventory
Visibility of secrets being stored (separate from access to secret data) to
eliminate secret sprawl.

Storage
Visibility and configuration of how and where secrets are stored and
replicated.

Auditing

Interactions with secrets are logged and monitored.

Encryption
Secrets are encrypted at rest and during transit. Secrets shouldn’t be
written to disk or transmitted over networks in clear text.
Generation

Creation of new secrets.

Integration support

Usability with other services and ability to integrate with your software.

Reliability

Secret access needs to be reliable. How do specific services and systems
work if the secret store is down?

Defending Secrets and Monitoring Usage

Monitoring access to and using credentials and other secrets is essential to
your defense-in-depth strategy. Secrets can leak in many ways, so it’s
important to have mechanisms to detect and respond when that happens.
Some ways that secrets get revealed include command history, debug logs,
and the use of environment variables. Environment variables deserve

special attention because they are available to the process, and secrets may
be exposed through a process listing with no audit logs to trace exposure.

In 2020, Ubiquiti engineers detected rogue activity within the network
traced back to the misuse of an IT administrator’s credentials that had been
inside LastPass. The lack of logging made it impossible to track what had
been done by malicious attackers while they had access to the systems.
Even if you assume that anyone who has access to your system should have
access to all secrets at any time, think about the risk from third-party
services that ingest logs that may contain the secret in plain text. Consider
the journey of a logged secret during a problem; for example, it may be
ingested by Splunk, included in a PagerDuty alert, and sent through email
and text messaging.

You want to know what systems are available (and should be!) and be able
to detect the use of credentials in unexpected ways (from different source
IPs or at other times). Many applications and services provide account
anomaly detection through machine learning to enable you to see
unexpected behavior.

To identify the breadth and depth of compromise, you need a
comprehensive and clear data management strategy for audit logs. Use
separation of privileges so that system administrative activities are separate
from audit logs’ activities.

In traditional environments, you have to worry about managing user access.
Now, you need to worry about service access as well. Tools and techniques
have evolved, yet secret management is still problematic, especially for
machine-to-machine communication. Often you have incomplete visibility
into risks from exposed secrets because there may be secrets embedded in
code, and different services require different processes. Access logs from
secret management software can help with this problem: services that
access secrets will have a certain pattern, which can help make anomalous
access more visible. Also, you can audit which services or applications
don’t use the chosen secret management software as a potential risk.
Infracode can help close those gaps.

https://oreil.ly/g42C5

Securing Your Computing Environment

Securing your computing environment minimizes your systems’ attack
vectors by ensuring the confidentiality, integrity, and availability of your
systems’ OS, services, and tools. Your efforts to secure your compute
infrastructure depend on your service types. For example, part of the cost
you incur from using managed services includes the service provider’s
responsibility of securing the infrastructure.

For virtual machines and containers you choose to build and run, the service
provider provides only the physical security and operating environment
(hypervisor or container host) for your running workload. Managing your
infrastructure configuration with infracode can make it easier to secure your
responsibilities to your stack.

Operating systems and applications often default to open configurations
prioritizing ease of use over security. As a result, you reduce the exposed
attack surface if you secure the configuration for services requiring OS and
application management. This 1s a common compliance requirement under
many regulations and standards, including the Payment Card Industry Data
Security Standard (PCI-DSS), ISO 27001, and the US Sarbanes-Oxley Act
(SOX) and Federal Information Security Management Act (FISMA).

For guidelines, see the following resources:

e The Center for Internet Security (CIS) implementation guides

e The Security Technical Implementation Guides (STIGs)

These peer-reviewed standards are available for many OSs, popular
applications, and network devices. They have detailed instructions for
tightening all sorts of security-related settings, some of which may not be
appropriate for your situation. Review standards and implement
recommendations that make sense for your industry and environment.

https://oreil.ly/4Ises
https://oreil.ly/4aLd3

DOCUMENT DEVIATIONS FROM STANDARDS
By Chris Devers

My team had a new manager who wanted us to update our company’s
offerings to comply with CIS recommendations. One of their
recommendations was that Linux hosts follow certain practices for
isolating standard top-level directories on different partitions. What this
new manager didn’t realize was that we had found that in practice, a far
more common source of instability was that when one partition filled
up, logs stopped updating and databases stopped appending new
records. We had already weighed the pros and cons of this partition
scheme versus just consolidating to a more straightforward layout and
decided that unifying most of the partitions would be a net-win.

It was important for us to understand the rationale behind industry-
standard guidelines, evaluate our systems and conformance to
standards, and decide whether it was worthwhile to adopt a
recommendation that might cause more problems than it solves.

If you decide to deviate from a “best practice,” consider whether an
alternative approach solves a problem that might be more critical to
your needs than the situations the standard is meant to address, and
document that decision in policy and its outcomes.

Another crucial part of managing the security of compute infrastructure is
patching the OS, installed packages, and applications. Unfortunately,
patching can be complex because of many reasons, including application
dependencies on specific versions of OS or other packages, unsustainable
deployment practices, or fear of compatibility and stability problems.

Again, infracode helps address these concerns. Application dependencies
can be documented and ensured in infracode. The automated, repeatable
nature of infracode encourages frequent deployment and can enable testing
of patches for critical systems. You can implement automated tests of
different versions of dependencies to expose the risk to patching and
provide peace of mind to proceed with patching as needed.

You need to update a containerized application the same way you would
need to update it if the application were running directly on a server. Most
container images include a significant number of OS packages that will
require periodic updates. You can use infracode to build new, patched
container images and then test and deploy them.

A popular software methodology, the twelve-factor app,’ recommends that
you explicitly declare and isolate dependencies, which eliminates the
implicit dependence on system-wide packages. By including a manifest
with specific versions of applications, you can reproduce builds reliably
without impacting the underlying OS. Additionally, it provides a path to test
builds with new versions by updating the manifest rather than relying on
available upgrades from your OS vendor. If you isolate dependencies,
remember that in addition to OS patching, you need to plan to keep your
dependency manifest up to date as well, which includes rebuilding, testing,
and redeploying your application.

Securing Your Network

Network controls provide defense in depth for networked services. If an
attacker is unable to communicate with a service, they can’t attack that
service directly regardless of vulnerabilities or misconfigurations it may
have. This basic insight led to the development of the classic standard
networking topology; sysadmins would create a trusted core network to
contain most of an organization’s systems and configure firewalls to limit
incoming access to that core from outer, less-trusted network zones. In this
topology, publicly accessible systems such as web servers would go in the
outermost zone, often called the demilitarized zone (DMZ). Everything
outside the core and DMZ is not trusted and must be vetted before passing
to the core.

This topology has been described as “candy bar network security”: crunchy
on the outside, chewy on the inside. The idea is that attacker’s attention is
focused on the perimeter and assumes that anyone accessing internal

https://oreil.ly/45S4A

resources is doing what they need to and needs a minimal-friction
experience.

The shortcomings of this trust-based network become apparent when that
network 1solation starts being used as the primary defense for insecure
systems or protocols, for example, an attacker who can gain access to one
system in the trusted core, then enters a playground of insecure systems.

An early method for improving network security might be to implement
virtual local area networks (VLANSs) to segment the network. Ultimately,
while this provides some additional layers, it’s still effectively a flat
network that depends on some amount of varying “chewiness.”

A more advanced approach would be to adopt a software-defined firewall,
pushing firewalls to each of the compute and storage nodes. Now, not only
does a system have to be internal to the network, but it also has to be
configured to have access. Software-defined networking products are
designed specifically to adapt their configuration quickly and easily as you
add and remove servers and services. When new systems are being added,
consider what services they need to communicate with and restrict network
communication to only those services. The initial effort of mapping these
network dependencies is rewarded later by an easier-to-understand
architecture with data flows explicitly documented in the infracode.

Overall, the industry is moving toward an approach that adopts the zero
trust architecture model. The key principles of zero trust are as follows:

e No implicit trust is granted between entities based on their location.

e The model requires resources to have valid authentication and
authorization.

» Protection is oriented around resources rather than network segments.

In other words, it’s less about securing the network and more about
enabling each authorized and authenticated entity on the network (such as a
server or a person’s workstation) to communicate only with the services
allowed based on established policies.

The dynamic nature of containerized and serverless workloads presents
further challenges and opportunities for network segmentation. Most
products and services have built-in or add-on features to enable zero-trust-
style networking integrated with the workload orchestration. For example,
Network Policies in Kubernetes can target specific pods according to the
familiar selectors admins and developers use for everything else. If you
want to use Network Policies in Kubernetes, it’s important to make sure
your chosen Kubernetes network plug-in supports the features required to
achieve your network security goals.

Security Recommendations for Your
Infrastructure Management

If your organization currently has little to no adopted IaC/IaD practices,
start with understanding what is in use or planned. Integrate security into
your initial plans or add them to your overall strategy.

Here are my general recommendations (regardless of the state of your
infrastructure management):

» Verify who has the access to run automation and infracode. Make sure
that this privilege is limited to only what is necessary to perform those
tasks and is isolated from modification of the logging of those tasks.

» Generate and store credentials safely.

e Don’t reuse user or service credentials. With [AM, it’s possible to
generate and revoke the credentials to be used as needed.

e Check that provisioning infracode grants only the necessary privileges
required to users and resources (e.g., VMs).

e Check for resource configurations that can strengthen the integrity of
the resources you are using.

 In cloud computing environments, limit the impact radius of
compromises by associating one account per workload.

e Automate policy compliance against your computing environments.
For example, if you were using Google Cloud Storage as an online file
store, you might consider addressing only access concerns as identified
earlier in this chapter. For this specific resource, it’s possible to encrypt
the objects in the bucket, which adds another layer of security if
someone managed to obtain access to the bucket directly. With this
Terraform snippet, you can enable uniform bucket-level access and
provide the key used to encrypt objects in a Google Cloud Storage
bucket:

resource "google storage bucket" "static-assets" {
name = "static.example.com"
uniform bucket level access = true

encryption {

default kms key name = "static-assets-key"

e Add static code analysis to scan your infracode for security
misconfigurations or missing best practices. This can be added directly
into your deployment automation tool as one of the gating factors for
automated deployment. For example, checkov 1s an open source tool to
scan infracode. Running a scan on the previous Cloud Storage bucket
Terraform example returns the following:

terraform scan results:
Passed checks: 2, Failed checks: 0, Skipped checks: 0

Check: CKV_GCP _5: "Ensure Google storage bucket have
encryption enabled"
PASSED for resource: google storage bucket.static-assets
File: /gcp bucket.tf:1-7
Guide: https://docs.bridgecrew.io/docs/bc _gcp gcs 1

https://oreil.ly/imioB
https://oreil.ly/mzuBD

Check: CKV_GCP 29: "Ensure that Cloud Storage buckets have
uniform
bucket-level access enabled"
PASSED for resource: google storage bucket.static-assets
File: /gcp bucket.tf:1-7
Guide: https://docs.bridgecrew.io/docs/bc _gcp gcs 2

e Scan your version control repositories for secrets. For example,
gitleaks 1s an open source tool that detects hardcoded secrets within
Git repos. Hosted source control services like GitHub have started
providing secret scanning services that alert repository admins and
organization owners about potential leaks.

» Finally, you can use infracode to help enforce security policy for your
organization. Consider ways to harden the tools you’re already using,
employ automation to validate that policies are being followed,
leverage change control systems to simplify preparing documentation
in tandem with policy updates, and provide visibility by making your
security policies and compliance auditable.

Wrapping Up

Whether or not security is part of your job title, maintaining the security of
systems you oversee is a major aspect of your job as a system administrator.
Think about the potential attack vectors that could harm the systems you
manage and the reasons these vectors exist: mishandled credentials,
misconfigured software, and uninstalled patches. To counter these risks, you
need a multipronged approach to protect accounts, secrets, and
infrastructure resources.

Traditional network security topologies focus on gateway firewalls, but this
leads to a “candy bar” syndrome where the network perimeter was crunchy
but the interior was soft and chewy. In a zero-trust model, the focus on the
perimeter is dropped in favor of a “never trust, always verify” approach that

https://oreil.ly/6tnYR
https://oreil.ly/6wck4

places the emphasis on validating that each attempt to access any resource
must come from a verified account on a trustworthy device, regardless of
where the traffic originates. This also has the virtue of moving away from
godlike root administrative accounts that have full control over things and
toward a model of delegating accounts just enough access to perform the
tasks they need to accomplish.

The zero-trust approach to security relies on an identity access management
framework that allows you to audit the users and services authorized to
access your resources, which in turn depends on a secrets management
approach to protect the passwords and other access tokens used to gain
access to resources.

When considering bringing a security mindset to your work, as with
infrastructure as data and infrastructure as code, take an incremental
approach, looking for specific areas where you can develop consistent,
maintainable, and scalable security standards.

MORE RESOURCES

You can learn more about zero trust from the following:

e John Kindervag’s “No More Chewy Centers: Introducing the Zero
Trust Model of Information Security” published by Forrester
Research.

e Google’s implementation of the zero trust model: BeyondCorp.

e [fyou are looking for a formal reference, check out NIST SP 800-
207.

To learn more about securing your infrastructure, see the following
resources:

e SLSA, an effort to create a set of industry standards on improving
infrastructure resources

e Container Security from Liz Rice (O’Reilly)

e A wide variety of security topics from experts in the industry with
the book 97 Things Every Information Security Professional
Should Know edited by Tobias Macey (O’Reilly)

1 Learn more about the twelve-factor methodology that emerged from Heroku engineers who
“witnessed the development, operation, and scaling of hundreds of thousands of apps.”

https://oreil.ly/7Nuaa
https://oreil.ly/CLGm7
https://oreil.ly/GiQXj
https://oreil.ly/AmWmy
https://12factor.net/

Part IV. Monitoring the System

You may be running any number of different systems. The following four
chapters introduce a framework for identifying effective monitoring
strategies, evaluating current monitoring tools and frameworks, and
managing your monitoring data and your work through monitoring your
career.

Complex systems monitoring adds application insights and deeper
observability into the components of your system. In the past, system
administration focused more on system metrics. And as you scale to larger
and more complex environments, system metrics are less helpful and, in
some cases, unavailable. In addition, individual systems are less critical as
you focus on the quality of the application and the impact on your users.

Chapter 14. Monitoring Theory

Monitoring 1s measuring, collecting, storing, exploring, and visualizing data
from infrastructure (including hardware, software, and human processes).
Monitoring helps you answer the “when” and “why” questions of your
work, and it informs business decisions that support humans working
sustainably (e.g., hiring so that your sysadmins are not constantly working
at total capacity).

In this chapter, I will help you think about monitoring by providing a
framework for identifying effective monitoring strategies. I will
differentiate monitoring from observability and explain the elements and
steps of the monitoring process and how they work together. Understanding
these mechanics at a high level will help you prioritize the other desirable
outcomes monitoring makes possible, decide how and what you monitor,
and increase visibility into your workflow, systems, and teams, regardless
of the tools you choose.

Why Monitor?

There are many reasons to monitor and increase system visibility: to bring
attention to weakness, fragility, or risk and to help you make better
decisions. Some reasons for visibility include the following:

Problem discovery

You are identifying problems and understanding issue resolution. For
example, you could discover problems by monitoring latencies of web
requests and identifying when slow MySQL queries are impacting
customers.

Process improvement

You are continuously improving team processes to increase accuracy
and speed of task resolution, automate toil work, and improve overall
efficacy while not overworking the team. For example, you could

improve processes by monitoring work queues to identify the impact on
the team.

Risk management

You are identifying, evaluating, and prioritizing potential problems. For
example, you could manage risk by monitoring software deployments
and adjusting automation or processes to reduce the frequency and
severity of surprises.

Baseline behaviors

You are indexing typical system behavior under a standard load. For
example, you could establish baseline behavior by monitoring data over
an extended period to see your service trends and analyze the impacts of
special periods like holidays, weekends, and predictable news events
like elections and sports.

Budget setting

You are identifying, evaluating, and prioritizing infrastructure
investment and enforcing spending accountability. One way to set a
budget is by monitoring infrastructure spending to identify areas where
different solutions may be more cost-effective or set up constraints that

enable engineers to test new solutions without worrying about a surprise
bill.

Capacity management

You are building sustainable capacity based on business demand. For

example, you could manage your capacity by monitoring infrastructure
to identify when reserved instances will save money over ad hoc
instances.

Monitoring is much more than implementing a single tool; it’s identifying
what you’re trying to learn and desirable outcomes, assessing available
tools, and implementing practices that best help you get there. In addition,
thinking about why you are monitoring and establishing specific monitoring
objectives encourages critical thinking around your business context so that
you avoid copying a service provider’s monitoring practices if they aren’t a
good fit for your goals.

BE YOUR OWN AUTHORITY

Many practitioners tell us what to monitor and why, but I’'m here to tell
you that you are the best authority on the systems in your environment.
Imagine, for example, that you are running a web service for your
company. While it might be the same software in use at other
organizations, the specifics of your web service will vary from other
organizations. You know the risks of failure in different parts of the
service and who is accountable for the live running of that service, from
development to support. Software, configurations, processes, and
people all affect your monitoring strategy to derive the most business
value while helping the humans who run the software.

How Do Monitoring and Observability Differ?

Rudolf E. Kalméan introduced the concept of observability for linear
dynamic systems in the ’70s. Observability measures how well you can see
inside a system under observation with just the outputs. A system, in this
case, 1s the collection of interrelated objects that are treated as a whole to
model behavior. For example, you might want to observe a single host,
container, or complete distributed service.

Observability is not monitoring, and monitoring is not observability.
Observability is a system property; monitoring is a multistep process of
observing a system. Often, individuals think of monitoring as dashboards
and production alerts. Framing monitoring in this manner leads people to

define monitoring as a subset of observability. The problem with this
definition then becomes: what do you call the other activities that you need
to monitor? You end up with overlapping terminology to cover all the
potential use cases while also increasing the potential for misunderstanding.
Monitoring has always been a process with various practices across
organizations.

In some ways, it’s a lot easier to think about the “unobservability” of a
system. For example, imagine that your customers experience a problem
that your dashboards and alerts don’t identify or explain. If your underlying
data doesn’t help you explain why and how the problem occurred, that
indicates a lack of observability.

You can monitor the observability of your systems by assessing the variety
of problems that occur, how often you can answer questions with existing
data, and how often the final assessment of why a problem occurred is “I
don’t know.”

It would help if you had observability when you want to find problems you
don’t know about and better tune the system’s response. Observability is in
the details.

You don’t need observability in every system. So, for example, if you only
care about whether a specific system is up and running and aren’t trying to
tune its resources, you don’t need to figure out that system’s observability.
Implementing extensive tracing, even with sampling, just like configuring
every metric on the off chance you need it, is a negative pattern.

Let’s examine a real-world scenario. When I’'m working on my MacBook
Pro and the system starts to lag, how do I figure out the underlying cause?
System logging collects events by default. I have installed iStat Menus to
collect data from the physical components so I can see CPU, memory, and
network exhaustion at a glance. And I haven’t invested in any other
monitoring, so when something goes wrong, I have to dig into system tools
to observe the system.

How observable is my system? It depends. If I collected every single metric
on my system, it would become unusable. So, instead, I have application

and system tools as needed to trace down problem areas. I don’t have deep
visibility or automated problem identification and resolution of my system,
but I do have the tools necessary to figure out most software issues on my
laptop.

NOTE

Terms are constantly evolving across teams, organizations, and the industry. As a result, conflict
arises in the monitoring community of practice, signaling a lack of shared context over how terms
such as monitoring and observability are used and whether observability is a subset or superset of
monitoring. When vendors want to market their solution, they may use the same terminology with
subtle differences in meaning, leading to increased misunderstanding.

Take time to build the shared context within the team around your use of monitoring terms. Then
as you assess different vendors’ monitoring offerings, you will be better prepared to compare
implementations and choose solutions that support your team.

Monitoring Building Blocks

Let’s start by understanding the building blocks of monitoring: events,
monitors, and the data to be collected.

Events

An event is a thing that happens, a fact you can track. An event may be
system, application, or specific service. Events occur regardless of whether
you monitor them. Here are some examples of events:

e CPU utilization at a particular time
e The execution of specific code

* A sysadmin shutting down an application

Monitors

A monitor is a tool that defines and captures the events of interest. Monitors
are either fixed (predefined things you know about) or flexible (ad hoc

things you don’t know about yet). Fixed monitors are specific functional
checks against known issues you don’t customize at runtime. You might use
fixed monitors with event logs and CPU or memory gauges. Flexible
monitors are checks that you can change ad hoc. Tracing is an example of a
flexible monitor that captures and records events. For instance, on a Linux
system, you can run strace on a process to capture all the system calls made.
You use flexible monitors when diagnosing issues, qualifying performance,
or exploring how the system works.

Additionally, monitors can be either narrow or broad. Narrow monitors
might define an event as a single instruction, like a triggered log. Broad
monitors might define an event as an aggregate of instructions, for example,
a single web request that results in many system activities.

Monitors can be event-driven or sampled periodically. Event-driven
monitors execute when the event occurs and aggregate over the reporting
period. Periodic sampling monitors run at a specific time interval, collecting
a statistically significant number of events.

Data: Metrics, Logs, and Tracing

Montitors collect data about configured events into three main types:
metrics, logs, and tracing. You automatically collect data from systems,
devices, applications, and networks. You may be able to apply filters to
limit your data collection or selectively sample to estimate rather than
collecting everything accurately. I will dig into the finer details of
monitoring data in Chapter 16.

First-Level Monitoring

The monitoring process includes a set of sequential steps: event detection,
data collection, data reduction, data analysis, and presentation (see
Figure 14-1).

(M)

Event detection Data collection
An event (or absence thereof) The monitor collects data about
triggers a monitor. the event.

First-level

2 monitorin :
Presentation 5 Data reduction
Present compelling visualizations . "N P’ Monitoring platform aggregates
to drive tactical or strategic actions. i, and reduces collected data.

Data analysis
Discover useful information
about the data.

Figure 14-1. The five steps in first-level monitoring

Let’s look at these five steps as depicted in Figure 14-1 individually.

Event Detection

The first step in the monitoring process is event detection; events trigger
monitors. In addition, some monitors track the absence of expected events.

Data Collection

The second step in the monitoring process is data collection, when monitors
collect data about triggered events. Monitored data can be collected by the
monitored system in the following ways:

e Pushing the data to the central monitoring server on a schedule or
based on an event

e Signaling the server to push the data

e Pulling data via a health check

NOTE

Depending on the size of your environment and what you are measuring, a centralized monitoring
system pulling data can create a scaling issue to process the number of monitored events on time
and not make a backlog that impacts the performance of the service or discarded events.

The method of collection may create an observer effect; imagine the impact
of a time-based collection strategy where every monitor checks at midnight.
This frequency of monitoring can cause CPU or disk resource exhaustion,
which increases latency and leads to unnecessary alerting.

The collection method may change what you monitor and how you monitor
it. For example, metrics are generally event-driven and aggregated over
time to compress data.

NOTE

If you have metrics representing people, ensure you protect their privacy and obtain their consent
to collect their data. With personal data and PII, you may have additional rules and regulations to
follow, so avoid infringing user privacy by not tracking it in the first place.

Additionally, don’t assume permanent consent, especially if you change the context or method of
data collection. An example where you might need to think about this is telemetry data collected
and logged from an individual’s use of an application.

Data Reduction

In the third step, your monitoring platform aggregates and reduces the data.
While data aggregation and reduction may happen at collection time, you
may want to isolate these activities, particularly with distributed data.

Your monitoring agents collect data from many different sources. Your
monitoring platform may aggregate, edit, sort, or compress the data into its
essential parts.

For metrics, the older data is sometimes aggregated for storage purposes
while providing some historical accounting to show differences against
baselines. “Older” is contextual and could be weeks, months, or years. For

example, monitoring request counts might not need six months of five-
minute interval data. Instead, aggregate the count data for a baseline to
compare against, accepting that you can’t examine the original data with the
reduced resolution.

Utilization over time of some metrics may be less useful. But on the other
hand, storing metrics costs money, so aggregation is a balance of cost and
usefulness.

Data Analysis

In the fourth step, you analyze the data to discover useful information about
business and direct action. During this analysis, you identify a set of
service-level indicators (SLIs) that help you measure the reliability of your
system. Reliability may be measured by different dimensions depending on
your service:

e Availability measures the length of the time the system functioned as
expected.

e Latency measures the end-to-end time from source to destination to
service a request. Latency of successful requests should be measured
separately from failed requests. Often failed requests can be very fast.

e Throughput measures the number of requests passing through the
system.

e Durability measures long-term data protection; the stored data doesn’t
degrade or get corrupted.

Once you have SLIs, you can identify the achievable and appropriate levels
of reliability through setting service-level objectives (SLOs), which
measure the expected system behaviors. Because it is challenging (and
costly) to provide better reliability than what you depend on from external
service providers, you must factor in those dependencies when setting your
targets. Don’t forget to factor in network and DNS.

TIP

Learn more about SLOs in Chapter 4 of Google’s Site Reliability Engineering book and how to
implement them in Chapter 2 of The Site Reliability Workbook.

Learn more about the practical implementation of SLIs, SLOs, and error budgets from Alex
Hidalgo’s Implementing Service Level Objectives (O’Reilly).

Data Presentation

The fifth step in the monitoring process is the presentation of information.
To transform data into information, you create visualizations. First, you
collect charts into dashboards covering known bottlenecks and elevated risk
areas. Next, you make other ad hoc visualizations to explore available data.

You may create charts based on real-time oftline data. For example, alerts
should be as close to real-time data as possible to limit the impact of
problems. Quarterly capacity planning for a Hadoop cluster may be
aggregating various data sources and processing offline.

Dashboards aggregate a set of visualizations to communicate information
and are specific to your needs. For example, you could make a one-time
strategic decision, determine day-to-day operational direction, or review the
system weekly or monthly to establish a tactical approach. These
dashboards are products that drive action. Outcomes and information
should feed back into the various team and organizational processes.

Second-Level Monitoring

Your systems exist to do something, to provide a specific service.
Monitoring doesn’t keep your systems “safe.” It helps you provide your
organization’s particular services by supporting the “when” and “why” of
your work. Sidney Dekker introduced the concept of drifting into failure,
that systems decline gradually and incrementally due to normalized growth
of risk:

https://oreil.ly/KCy2H
https://oreil.ly/acmoK

Drifting into failure is not so much about breakdowns or malfunctioning
of components, as it is about an organization not adapting effectively to
cope with the complexity of its structure and environment.

Jens Rasmussen developed a state-based model of a sociotechnical system
surrounded by three boundaries (economic failure, unacceptable workload,
and acceptable performance) to conceptualize the risks to the system of
operating near these boundaries.?

Adding more critical analysis—double-loop learning—adds a second level
of monitoring as you incorporate the data from your first-level monitoring
back into your system to visualize better where the system is heading and
the emergence of the system properties in operation. Double-loop learning
is predicated on leadership entrusting people to learn incrementally through
trial and error, analysis, and reflection and make the appropriate changes.

TIP

Learn more about this state-based model from Dr. Richard Cook’s 2013 Velocity NY speech
“Resilience in Complex Adaptive Systems".

Wrapping Up

You need a data-driven approach to manage your infrastructure and
implement a monitoring framework to answer “when” and “why” questions
about your systems. The information provided by monitoring can help you
discover problems, improve processes, mitigate risks, validate resource
allocation choices, and make informed capacity planning decisions.

Monitoring and observability aren’t the same concepts; depending on who
you ask, you may get a different answer. Observability is an intrinsic
property of a system that exists regardless of whether you are monitoring
that system; monitoring is the multistep process of observing the system.
Monitoring involves event detection, collecting, filtering, distilling,

https://oreil.ly/l1fw7

analyzing data, and presenting. This process drives decisions you make
about how to manage your systems.

By adopting double-loop learning and incorporating feedback from your
monitored system to introduce change in your system, you better avoid
drifting into failure.

1 Sidney Dekker, Drift into Failure: From Hunting Broken Components to Understanding
Complex Systems (Boca Raton, FL: CRC Press, 2011).

2 Read more about modeling risk management from Jens Rasmussen’s paper “Risk
Management in a Dynamic Society”.

https://oreil.ly/ewYMX

Chapter 15. Compute and
Software Monitoring in Practice

Supporting a service for a long time attunes you to operational cues that
warn of system problems. You can quickly glean helpful information from
event logs. But someone new to the team doesn’t have the benefit of time
and experience with your systems, so they won’t be able to get useful
information from trawling through the same event logs and metrics.
Moreover, if the job requires distilling all the nuance about the system from
logs and metrics alone, there is inadequate monitoring and documentation.

If you manage a wide range of systems, the questions you must answer are:

what can you monitor, and what has business value? Your environment and
business goals are unique, so your answers to these questions may not look

like anyone else’s. For this reason, I will not prescribe a specific monitoring
strategy in this chapter or tell you to monitor four metrics to complete your

monitoring setup.

Instead, in this chapter, I will help you discover what monitors matter to
you and offer methods for evaluating different tools and frameworks to help
you imagine how to use them. Monitoring outputs must tie directly to your
business value and encourage team resilience.

Identify Your Desired Outputs

When planning a monitoring strategy, many start with “What should I
monitor?” Instead, I propose that the first question should be “What do |
need now?”” or “What is causing problems with the way my team works?”

At the top of Figure 15-1, the typical metrics show everything is fine, but
the customer has a specific expectation for the cupcakes and is unhappy. Of
course, the system administrator could add chocolate. Still, effective

administration requires considering what data to collect, how to capture it,
and what overall service level indicators should be used to change the
system’s outcomes.

At the bottom of Figure 15-1, the system administrator identifies a missing
quantitative measure of chocolatey-ness. There are still standard metrics to
assess the final product. And they’ve added a monitor that measures the
chocolate of the instance so that they can add more chocolate as needed by
a customer’s specific expectations. Now they can respond directly to the
customer’s needs and improve the value of the delivered service.

Figure 15-1. A system administrator monitoring the output of their system, adding a new monitor,
identifying that they have insufficient chocolate monitoring, and responding accordingly (image by
Tomomi Imura)

Recall the steps in the monitoring process from Chapter 14, as shown in
Table 15-1.

Table 15-1. Examples of the different monitoring outputs

Monitoring process step Outputs

Event detection Monitors

Data collection Metrics, logs, traces

Data analysis Service level indicators, logging platform queries, alerts
Data presentation Service level objectives, charts, dashboards

Each step of the monitoring process has specific artifacts that arise as
outputs. So instead of thinking about what to monitor (and focusing on
event detection), think about the specific outputs that will improve your
processes or overall outcomes (e.g., dashboards, service level indicators,
detailed metrics, or monitors).

Of course, outputs that come later in the monitoring process depend on
earlier steps, so when planning a project, recognize those limitations in
dependencies to limit unexpected slips and missed deadlines.

Now that you’ve considered the different monitoring steps, consider what
you should monitor.

What Should You Monitor?

Start where you are. Use what you have. Do what you can.
—Arthur Ashe

Figuring out precisely what you, in your specific situation, should be
monitoring requires a multipronged approach: narrow the scope of what
you’re trying to accomplish in any project to increase your chances of
success (do what you can now), figure out the right questions to ask
yourself (monitor what matters), and then make small changes with an
iterative approach and a continuous learning mindset.

Do What You Can Now

Monitoring can be overwhelming, especially when you know some of what
needs to change and those changes all require funding and executive buy-in
that will take months to achieve. The secret to sustainable real-world
monitoring is to focus on what you can do now—make incremental changes
possible today and continuously work toward your larger goals. Monitoring
is never “done.” So it’s best to get yourself into a continual-process
mindset.

I’ve been part of many “implement monitoring” projects where
management wanted a quick win and to be finished with monitoring. If you
find yourself in this situation, repair the misunderstanding about your
project. Narrow the scope of your monitoring project to something you can
track successfully and ensure the opportunity to improve.

Think back to the six areas of monitoring covered in Chapter 14: problem
discovery, process improvement, risk management, baseline behaviors,
budget setting, and capacity management. The first step in communicating
your project’s scope is to define your focus areas. The more areas you
include in the project, the bigger and more prolonged the project. The
longer the project, the harder it will be to come up with an accurate
completion date. As with software development, you should prefer small
incremental changes to your monitoring strategy because this allows you to
roll back or modify changes that are not helpful (or actively harmful).
Explicitly communicating your project goals can help convince upper
management of the changes you suggest.

Define explicitly what your project entails and don’t try to do everything
immediately. Narrow your focus and start with what you have now,
including the benefits and problems with your current solution. Think about
which outputs of your monitoring process will be improved or changed.
When communicating to your management and peers, be clear about the
objectives rather than overusing terminology (e.g., “Improve problem
discovery for identifying issues in long-tail web requests” versus “Fix

monitoring”). Don’t get into how your methods might change as you
progress in your project, but provide the desired outcomes.

Assess what you have in place now. Note how the current implementation
helps or hinders the monitoring process, including how to analyze and
present information. For example, while you can collect data about all the
different applications, operating systems, and compute resources, are you
trying to create a single dashboard to encompass all of the collected data?
Simplify the dashboard to focus on what matters most to your customers, as
you can’t pay attention to everything. Even trying may hinder you from
seeing key problems that impact customers. Doing this review may help
you uncover an area of focus that is highest in priority.

Suppose you are trying to implement exploratory monitoring with the
ability to analyze data for unknown trends or performance issues. In that
case, you probably want a minimal proof of concept focusing on areas that
can show business value.

TIP

Document issues in your work tracking system as this information adds depth and coverage to
your monitoring assessment. For example, each page out to an on-call engineer that led to no
completed work is a rich area for process improvement. Without supporting documentation, you
may not focus on the most necessary improvements.

Monitors That Matter

You may have heard of the four golden signals (latency, errors, traffic, and
saturation) from Chapter 6 of the Site Reliability Engineering (O’Reilly)
book from Rob Ewaschuk. In addition to the four golden signals, there are a
couple of other commonly recommended monitoring methods:

e The RED Method, a microservices-oriented pattern for instrumenting
and monitoring introduced by Tom Wilkie that encourages you to
monitor the following (for every resource):

= Rate (the number of requests per second)

https://oreil.ly/HqYFQ

= Errors (the number of requests that are not successful)
= Duration (the length of time that a request takes)

e The USE Method, a system performance methodology introduced by
Brendan Gregg that encourages you to monitor the following (for
every resource):

= Utilization (the percentage of time that the resource was busy)

= Saturation (the amount of work the resource has to do, often
queue length)

= Errors (the number of error events)

If you look at your environment from the top down, from the user’s
perspective, focus on the RED method. Otherwise, use the USE method if
approaching from the bottom up and focusing on the resources with user
impact.

You may have noticed that these signals aren’t sufficient to cover your
concerns in your environment. That’s OK! Golden signals are a starting
point and do not apply to every environment. My goal here is to encourage
and empower you to decide for yourself what is most important for you to
monitor.

Plan for a Monitoring Project

Start with reviewing the architecture for the specific system associated with
the problem you want to solve. This may be a single system with different
components or a complex service with multiple applications. As you go
through the process, you can update your architecture diagrams. Ask
yourself these questions:

e What OS is used (including specific distribution, version, patch level,
and installed packages)?

https://oreil.ly/H4N9E

Are there any network access control lists (ACLs): subnet
configurations?

What does my traffic look like (e.g., requests per second, request
types, and data written/read)?

What kind of computing environments are in use (e.g., how much, and
what type? What are the specific configurations in use?)?

How is my compute infrastructure built, configured, and updated?
Is there an application service layer that is serving requests?
What are the different services running on the system?

How is data stored? There might be multiple data stores.

Is there a backend database? If so, what database software, software
version, and database schemas are in use?

Is data replicated to a secondary location?
Is data backed up?

Are there data processing pipelines? Are they stream-based or batch-
oriented?

Is there a load balancer? What kind of load balancer?

Are there specific user API endpoints? Are there system-level API
endpoints that users shouldn’t use?

Where is caching enabled? At the application level, within a database,
in memory, externally on a CDN, or within a user’s browser?

Is there a message queue?

Readily available tools in self-managed infrastructure are not generally available with serverless
platforms. So you can see overall health, but digging into specific problems can be confusing, if
not completely impossible.

Monitoring serverless services may require additional collaboration with the software engineering
team building the functions, apps, or containers. For functions, all the code needed at function
invocation time needs to be bundled in with the function deployment. You will need to write and
commit the monitoring code directly to the project repository to deploy it with the function’s code.

As you examine and assess your environment, think about these questions:

e What data am I missing about events in my environment?
e What data am I collecting?
e What data should I stop collecting?

You may have overlap in monitors, although sometimes this is for different
purposes with varying levels of granularity. Intentional overlapping
monitors are acceptable if you don’t use the monitors for the same purpose.
For example, if a single event causes multiple pages to an on-call engineer,
that is problematic because it contributes to alert fatigue (desensitization to
noisy alerts) and should get deduplicated.

Assess and document which of the various OS, system-level, network, and
application monitors are informing which parts of necessary monitoring,.
You don’t want to accidentally remove critical monitors. Sometimes as your
monitoring matures, it seems like an easy win to simplify and ease storage
costs by removing monitors. However, if you are looking only at a single
focus of visibility (i.e., problem discovery), you might miss the reason for
those monitors’ existence (i.e., budget planning or capacity management).

Remember, there is a difference between what you monitor and what you
alert on. Consider eliminating alerting on some events. Continue to refine
what you are working on, and don’t try to do everything; start with what
you have and work on the problems with your current solution. If you have
no monitoring, that’s the first problem to solve!

Think about the underlying TCP/IP limitations and whether network
bandwidth limitations constrain the total number of metrics and logs you
can measure in a time period. Note all the tools and scripts in use for
monitoring. Document overlapping monitors and their purpose. Note areas
where refactoring of monitors may improve storage and network costs.
Also, document areas where visualizations are confusing or distracting.

There may be additional areas to assess for missing monitors. Don’t get
distracted trying to identify all missing monitors, as that is a large-scale
project. Instead, be really specific about the focus area of your system.

Recall from the Introduction that reliability measures how well a system
consistently performs its specific purpose. To measure reliability, you must
understand the system’s purpose and underlying expectations. Each
infrastructure component will have a different way to assess reliability.

CASE STUDY: EXAMINING A MESSAGE QUEUE

Let’s look at an example of assessing reliability for a single component
of a system—a message queue. Recall from Chapter 1 that a message
queue comprises an event producer, a queue, a broker, and event
consumers. Based on the implementation, consider these areas when
collecting information to measure reliability:

Message storage

The size of messages stored.

Message latency

How quickly does a message of a specific size take to get from
producer to consumer? Depending on the architecture of your
system, you may need multiple metrics that cover within a single
region and across regions.

Message throughput

The size and rate of messages sent and consumed per time period.

Consumer lag

The number of messages waiting to be consumed by a consumer.

Connection load
The number of message producers and consumers and the number
of concurrent connections the system supports.

Hot topics

Topics that have higher rates of requests.

Quotas

If a quota is implemented to prevent hot topics, be aware of
limitations as topics approach that quota.

Errors

And of course, you want to collect any errors that are reported by
your system.

The message queue software will also have specific application metrics
based on its architecture. In addition, the underlying compute
infrastructure may have other metrics that matter.

This is just a single component of a system, and if you alert on every
single part of this component, you could get duplicate alerts when
something goes wrong. Depending on your monitoring framework, a
standard recommendation or dashboard may present data as long as you
are collecting it. (e.g., Datadog, a monitoring and analytics platform,
provides a Kafka dashboard.)

These recommendations might be a good starting place for you if you have
no monitoring, but you are the best expert to analyze which data has direct
business value.

What Alerts Should You Set?

In the past, sysadmins based alerts on system metrics like low CPU and
memory or latency of requests rather than any direct user impact.
Unfortunately, focusing on system metrics can lead to excessive effort and
disruption in daily work.

In large-scale environments I’ve managed in the past, this might look like
getting paged for a disk failure, high CPU utilization, or a stopped single
virtual machine. And, when there was a real problem with the service,
multiple alerts would go out. I would have to acknowledge alerts when |
was already figuring out what was wrong. During my regular workday;,
these excessive alerts were yet another interruption. But, at night, these
interruptions could add to significant sleep disruptions. At the time, this was
considered acceptable. I was frustrated. During planning cycles, these

https://oreil.ly/s8K3R

interruptions were considered nonimpactful, so no one felt any urgency to
repair the underlying problems.

So how do you get out of this style of alerting trap? First, what is important
about the system(s)? What is urgent to repair? For every alert, it should be
evident what the impact of the failure is, even if the underlying cause isn’t
understood. Present the data that has led to the alert so that the on-call
engineer can take the appropriate next steps.

Based on the assessment of your environment, your system should produce
data that you can use to measure your system’s state with the sustainability
measurements that matter. Then, look at the data and identify suitable
candidates for SLIs or service quality measurements that align with user
impact. A good SLI measures from the user’s perspective. For example, for
a web service, taking a user perspective might be whether a page loaded
successfully and in a timely manner.”

MEASURING IN PERCENTILES

Tracking every event in your system is prohibitively expensive. Instead,
sample. A sample is a part of the total population of measurements.

Percentiles are a common statistical measurement that splits a sample
into one hundred equal-sized intervals. Percentiles are more accurate
than averages, which assume that the distribution of measurements
follows a bell curve. With percentiles, you can better communicate the
measurements’ distribution.

Learn more about sampling from “Cheap and Accurate Enough:
Sampling” (Chapter 17) of Observability Engineering from Charity
Majors et al. (O’Reilly).

As with other parts of your monitoring strategy, you should continuously
improve the alert configuration as you learn from the system.

TIP

Talk about alerts. The earlier, the better. When alert fatigue sets in, people start ignoring alerts or
disabling them, and those adjustments can get lost in the mix of all the other work leading to more
impactful system failures.

Sometimes, you may avoid alerting by incorporating failure handling within
the system’s design. For example, your system might automatically serve a
degraded service rather than error out. While you still want it measured, the
paging service doesn’t need to alert you at 2 a.m. because your system is
still serving your customers.

From SLIs, you can identify acceptable reliability and define your service-
level objectives (SLOs). To start, your SLOs need to match up to your
current environment. Then, as you make improvements to the system, you
can update those SLOs. SLOs are either a specific target value or a range of
values for a system that you are measuring. For example, the web service
from the previous example might have an SLO of “99% of web service
requests should complete successfully in less than 1 second.”

You may modify these up or down depending on the team’s current state.
For example, for teams that spend too much time on the toil work to keep
the live site up, it might be that adjusting the SLO down to spend
engineering cycles to improve the systems in use is critical.

TIP

As mentioned in Chapter 14, Alex Hidalgo’s Implementing Service Level Objectives is a great
resource for learning the practical implementation of SLIs, SLOs, and error budgets.

Examine Monitoring Platforms

Early monitoring shaped many of our current platforms and assumptions
about monitoring. One of the first-generation monitoring platforms was
Nagios, open source software that provides monitoring and alerting along

https://oreil.ly/oDQsk

with community-contributed plug-ins. Many sysadmins deployed Nagios
for host monitoring and alerting. However, there were no ready-made
packages and configurations, no infrastructure as code, and no GitHub.
While Mark Burgess had introduced CFEngine, it was not widely
understood or used.

You had to download the Nagios source code, configure the software, and
build it before installing it. The configuration of the running system was
complex, and if there was a misconfiguration, it was possible to break your
monitoring. If you didn’t have monitoring for your monitoring server, it
could be difficult to recognize that you didn’t have active monitoring of the
rest of your site or services.

You configured Nagios per host with associated services and specific
checks. That check was the event monitor deployed to the system. Over
time, with increasing complexity in systems, the limitations of Nagios
frustrated users. Some of these limitations included the following:

e Duplication of alerts leading to excessive notifications

e Static configuration that isn’t easily updated in a dynamic environment
(e.g., every time an IP address changed, you had to restart Nagios)

e Easy to forget to turn a silenced alert back on
e People forgetting to silence alerts for planned outages
e Challenge to maintain checks

e Lack of complex integrated service checks

Even with all these frustrations, Nagios enabled sysadmins to discover
problems before support calls, which helped reduce customer support costs
and increased business value.

https://oreil.ly/FdZRS

TIP

Be aware that there are still many environments that use Nagios. However, it is possible to have
an improved alerting system through modern integrations with incident resolution service
platforms like PagerDuty.2

Montitoring platforms continue to evolve as the community shares
recommended practices, leading to improvements in the platforms, new
practices, and specialization to focus on specific parts of the monitoring
process. Platforms are getting more complex and changing rapidly, so look
directly at the resources for those platforms to get up-to-date information
and how-to guides.

There is no single solution for all steps in the monitoring process, so
depending on your project scope, make sure that the solutions you are
examining target that particular step of the process. You can install and
manage the software yourself, or leverage hosted solutions like these:

e Metrics Collection (e.g., Prometheus, Graphite, InfluxDB, Datadog,
Azure Monitor, AWS CloudWatch, and Google Cloud Operations)

e Visualization (e.g., Grafana and Kibana)

e Alert Management (e.g., PagerDuty, Opsgenie, VictorOps, and
xMatters)

e Log Management (e.g., Splunk and Humio)
e Data Analysis (e.g., Google Data Studio)

Choose a Monitoring Tool or Platform

The challenge of choosing a monitoring tool or platform can be complex
and fraught with emotion. Hosted monitoring solutions can be perceived as
expensive compared to in-house custom solutions. Individuals can be wary
of security compromises because there may be personal data that hasn’t
been adequately filtered out of logs. So when the CIO or CTO hears that

https://oreil.ly/u35Bz

fancy and convincing marketing presentation on observability and decides
the organization will implement monitoring based on a specific tool, they
may not have the specific context of what is already happening. Given some
top-down-driven request, your first job is to find out what is already in use
and if it’s working or not.

TIP

Suppose you are managing an in-house custom monitoring system. In that case, this is an
opportunity to escalate to your leadership to obtain a budget (resources and time) to assess and
eliminate the bottlenecks preventing your team from having a contemporary monitoring strategy
that leverages available solutions. The work of maintaining a custom system hinders your ability
to focus on the systems that derive business value to your organization. In addition, it requires
specialist knowledge about the custom monitoring solution that may not be translatable to other
common skills in the industry (making it harder for you to find new opportunities in an industry
where you can apply those skills).

To implement monitoring platforms (whether self-managed or hosted), you
will likely need a combination of tools rather than one single tool to provide
all desired results. There are two absolutes:

* Don’t choose a tool because it’s the one everyone else is using.

e Determine your outcome and desired behaviors before selecting a tool.

If you’re looking to track and display and analyze collected, fixed monitors
(i.e., you want to configure specific events against known thresholds), ask
yourself these questions when evaluating monitoring platforms:

e How are metrics collected?

e What data model is used for metrics collection, and how is it stored?
(Don’t make assumptions about how data is stored. Just because a
specific monitored event occurred does not mean that data about that
specific event is stored in a way that you can describe it accurately
based on querying your metrics data later.)

e Can you query the raw data? Do you need to learn a different
language, and is it similar to other languages that your team already
knows?

e How is data aged out?

e What integrations do you need? Do you have third-party services that
the tool needs to work with? Are there ready-made integrations
available, for example, Slack or PagerDuty?

e [s the tool extendable with plug-ins or mix-ins?

» For application monitoring, are the languages used within your
applications supported with instrumentation? (Even if developers are
responsible for instrumenting the code they write, you still need to
understand what 1s happening and how it’s getting monitored. You may
need to provide guidance on what to instrument and the specific tool
usage.)

e How quickly do events get detected, collected, reduced, and
presented?

One challenge to be aware of when looking at data collection of a
monitoring platform is the data resolution. You need subsecond monitoring
when building platforms and services that require customer commitments of
seconds. If your monitoring system can get data only at one-minute
intervals, the sampling is biased and may not be accurate to the customer
experience.

Another challenge is that you may need to connect and contextualize data
from different applications, systems, regions, or colocated data centers to
identify and debug a problem. Time is relative, especially if NTP isn’t
running, and timestamps for connected events widely vary.

If looking at hosted services, examine the following:

e Integration with configuration management systems.

e Ephemeral instances can be costly depending on whether the cost of
the service is per instance and the period at which instances are
counted.

e Whether it’s possible to test integrations.
e [solation of non-prod from production systems.

For visualization, don’t limit yourself to what your monitoring platform
provides. For example, with R and D3, it’s possible to create visualizations
as long as you have access to the raw data. Every tool will have strengths
and weaknesses depending on what you are monitoring.

You may want to reread Chapter 10 to apply the skill of distilling
information to convey meaning and drive your desired goals with your
systems.

Wrapping Up

This chapter provided a framework to assess and plan monitoring projects
to meet your organization’s needs. Consider the problems you might want
to address: problem discovery, process improvement, risk management,
baseline behaviors, budget setting, and capacity management. Achieving all
of these in a single project is unrealistic. Narrow the project’s scope,
communicate specifics with stakeholders, and include assessments for what
is in use.

A reliable system should be a sustainable one in which you are not paged
needlessly. Service-level indicators (SLIs) help you define benchmarks for
the metrics that matter and the results that align with customer impact. With
the right SLIs in place, you can define service-level objectives (SLOs) that
set expectations for how well the system performs. SLOs can be a valuable
lens for ensuring that the high-level results your customers want to see and
the backend technical details your team needs to manage are appropriately
aligned.

Several products have emerged to deliver facets of monitoring pipelines. If
your organization uses homegrown tools, it may be time to consider a
modern approach. Additionally, consider how a collection of these different
tools can fit together to give you and your stakeholders a complete picture

of your system’s reliability and sustainability.

1 If you’re working with websites, you need to understand why page load time matters.
Pingdom.com offers data analysis on bounce rates based on page load time.

2 One integration is the Perl Wrapper Nagios Integration for PagerDuty.

https://oreil.ly/m82hX
https://oreil.ly/v9fBp

Chapter 16. Managing
Monitoring Data

Five hundred years ago, sailors learned that casting a line behind their ships
could calculate how fast they were moving. They used a line knotted at
regular intervals and a log tied to the end. First, they would toss the log
overboard and count how many knots on the rope had spooled behind the
ship in 28.8 seconds to calculate its speed. Then, they would record the
observed speed (number of knots) in a logbook or log journal.

These logbooks became an essential reference source, recording daily
information and significant events, including speed, course, astronomical
observations, weather events, crew information, ports visited, and
maintenance records, which are vital for safely navigating journeys across
the open ocean. In addition, navigators used the journals in future trips with
the additional context about the present weather conditions to decide what
course to steer to reach the desired destination safely. Finally, the logbooks
are used as official evidence if an unfortunate event occurs.

Modern computing doesn’t use knotted ropes, but it still uses logs
metaphorically, in addition to metrics and tracing. So, just as sailors used
maritime logs to record observations of speed and position on journeys
across the oceans, you keep track of your systems with metrics, logs, and
tracing so that you, as the “navigator” of these systems, can keep track of
the state of your systems and make predictions. This chapter will help you
manage your monitoring data (metrics, logs, and tracing) as a crucial part of
your journey to navigate present and future system conditions and provide
historical context when debugging an event.

What Is Monitoring Data?

The call comes in. It’s late, after midnight. A critical outage is in progress,
and the team has been trying to figure out the problem for hours, but they’re
stuck, and now you’ve been pulled in. Where do you start?

With your monitoring data. Monitoring data 1s all the events that you’ve
decided are necessary to collect about your systems. This data may be in the
form of metrics, logs, and tracing. It may be temporary or saved to disk,
continuous or rare. As discussed in Chapter 14, there are many reasons to
collect this data.

Effective monitoring data management requires that the data is immutable,
that it can’t be modified once created, that it has an explicit policy around
how long it’s stored, and that you have the correct data accessible when
needed.

There are trade-offs to consider when implementing metrics, logs, or traces.

Metrics

Metrics are measurements of event properties of interest. Most system
metrics are timestamped numeric values represented as a counter or gauge.
For example, you might collect requests per second for a web service to
measure a site’s popularity.

A gauge is a value that reflects a point in time, although it doesn’t tell you
anything about the previously measured values.

A counter is a cumulative value that reflects events since a point in the past.
It may roll over when a counter reaches its upper or lower limit. For
example, you can use counters to measure per time interval and reset at the
time interval. You can also reset counters based on certain system events
(such as reboots) or on request.

Let’s look at the difference between a gauge and a counter. A car’s
speedometer is a gauge that tells you how slow or fast you are driving. You
use that information to guide your immediate actions by knowing whether
you are traveling within posted speed limits. On the other hand, the car’s

odometer is a counter that tells you how far you have gone. You use that
information to guide preventive services like tire rotation and oil changes.

NOTE

For each monitoring platform under evaluation, carefully examine the provided metric types, as
the implementation will affect how the data about your events is collected and stored. For
example, if the platform reduces or aggregates data too early, it may provide insufficient
information for debugging purposes. On the other hand, if data reduction and aggregation are too
late, your monitoring traffic may flood your network, impacting network performance and the
quality of service.

Logs

Logs are append-only, immutable, timestamped records of events. Logging
allows you to preserve a history of activities on a system. Events such as
system startup and shutdown, service start and stop, and network activity
are examples of recorded activities in logs. When you need to know what
has happened on a computer, you depend on logs to provide this
information. Here are some examples:

e At boot time, your OS dutifully checks for obsolete and inapplicable
hardware—floppy drives, modems, printers, fax machines—and
reports a “warning” or “error” if such hardware isn’t detected.

e A cron job runs every 10 minutes and logs to the system logs the status
of its run.

» A background process faithfully logs an error in a config file
thousands of times daily.

Generally, logs are unstructured; the file format does not provide context or
meaning to fields. Everyone has different ideas about what activity goes
into a log file and how it should be structured. While certain conventions
exist per language or application, people don’t always choose to follow
conventions.

For example, consider timestamps. Applications log in different date
formats (e.g., YY/MM/DD, MM/DD/YY, DD/MM). Then there are time
zones and daylight saving time adjustments. A typical exercise of collating
a sequence of events from different log files becomes a journey of
discovery with your favorite scripting language’s regular expression syntax.
Moreover, event timestamps are only as precise as the date format allows:
reconstructing a rapid sequence of events that spans multiple sources is
difficult if the dates don’t have subsecond precision.

TIP

Learn about different log formats in Graylog’s tech series post called “Log Formats—A (Mostly)
Complete Guide”.

Structured Logs

Structured logs have a key-value format that makes it easier for computers
to process but harder for humans to read. Application configuration changes
may affect which fields are displayed but won’t impact existing scripts to
parse logs.

Structured logs allow applications to use arbitrary text to describe events
but enforce consistent use of a defined list of fields with uniform data types.
Dates, for example, are encoded in UTC with microsecond precision or
better; the log management software handles rendering timestamps in a
user-friendly format. This is also more space-efficient: a text timestamp like
“Thursday, May 4, 2017 6:09:42 AM GMT-04:00" is 42 characters long but
is 1,493,908,962,000 microseconds in Unix epoch time, which can be
encoded as a 4-byte decimal integer.

Early sysadmins became fluent with reading through streams of log text,
but this doesn’t scale for the complex systems you oversee today. First,
there’s too much inconsistency in the individual log files; maintaining tools
for analyzing such text streams is a never-ending task. Worse, there are just
too many logs for anyone to read them all.

https://oreil.ly/Xim6V

Modern operating systems provide a logging framework consisting of an
indexed database with structured fields: journald on systemd-enabled Linux
distributions, Apple System Log (ASL) on macOS, and the Windows Event
Log on Windows.

Tracing

Tracing is a specialized form of logging that allows you to see into a
running system. A trace is a rich set of data that tells the (ordered) story of
an event through a system. Examples of tools that provide tracing include
strace and tcpdump.

Distributed Tracing

Distributed tracing is a specialized form of tracing that instruments an
application to provide rich logs and metrics across different systems to
connect contextual data across systems.

Consider the (simplified) sequence of events involved in responding to a
user request for a contemporary product website:

1. Browser resolves website URL into an [P address.
2. Browser sends a web request (e.g., HTTP, HTTP/2 or QUIC).

3. Server responds (i.e., 200 for success, 400 errors for client side errors,
or 500 errors for backend server errors) with static resources such as
images, CSS files, and JavaScript.

4. Browser begins to render the page.

5. Browser issues additional requests.

A tech-savvy user can use browser-based tracing to step through the
elements of such a transaction, providing feedback about how long each
stage of the request took to fulfill and any reported errors.

For your system, you need instrumented deployed code that tells you what’s
happening during request processing. There is no guarantee that you will be

able to replicate what a user is experiencing from your own browser, and
you are not guaranteed a tech-savvy user who can provide you with a
detailed browser-based trace.

TIP

OpenTelemetry is an open source collection of tools, APIs, and SDKs for providing telemetry in
software. In OpenTelemetry, a span is a single named and timed operation. Multiple spans make a
trace.

Choose Your Data Types

How you collect, store, and explore your monitoring data is the basis for
answering questions about what your systems are doing and what you need
them to do next. Because most metrics are numeric values, they are
optimized for storing, processing, and analyzing large amounts of data. As a
result, metrics are great for dashboards, historical trends, and the system’s
overall health but provide only a limited amount of context, which
minimizes the number of overall resources required to store them. In
addition, they have a consistent format so you can easily size them over
time; if you have a week’s worth of a metric, you can estimate the growth
of storage you will need over time.

Logs give you more context for the data you collect, but they take up more
room in storage and take more time to process. Traces have the highest
amount of context per event and require the most storage resources. With
both logging and tracing, data can be lost. Logging libraries that leverage
the Reliable Event Logging Protocol (RELP) can improve the reliability of
message delivery, but this reliability does come with increased costs in
infrastructure and may result in duplicate messages.

https://opentelemetry.io/

TIP

The cost of reliability with protocols like RELP may be worthwhile only for financial data,
billing, or payment or to meet compliance regulations.

Additional thoughts to consider when choosing the type of data you need:
e Measure your daily volume and account for spikes.
e How long do you need the data?
e How are you going to use the data?

e Do you need live monitoring? (This requires low latency.)

Retain Log Data

Unbounded, log data will grow until it fills up the disk it is stored on.
Traditional log management approaches to this problem included the
following:

e Rotating log files regularly
e Compressing older logs
e Removing logs when they reach certain size or age thresholds

Unfortunately, some services don’t play nicely with log rotation and will
continue to write to the “old” log if allowed. So, your log rotation tools
need to implement logic to force the software to reset itself at log rotation
time when needed. Because log rotation typically happens once a day, if an
application goes haywire, it can fill up the disk before the daily cleanup gets
a chance to run, requiring manual intervention to resolve.

Modern log management frameworks handle log rotation automatically,
allowing admins to set simple rules such as “use no more than 10 GB” or
“keep at least 5 GB free.” Furthermore, these policies are adhered to
continuously, so if a service generates a sudden flood of log events, the

framework takes action as needed to ensure that the rules are always
followed.

Analyze Log Data

With traditional logs, finding a specific word meant opening the log in a
text editor or leveraging a command-line tool like grep to search through
the events in the file. Of course, this slowed down as log files grew.
Filtering events by time spans, host, or other criteria is all possible, but
knowing how to use regular expressions to construct complex search filters
was a necessary skill.

When the logging framework is a database, you can issue queries in a mode
similar to using SQL SELECT statements, using any of the indexed fields
as filters. With an indexed database, the data is organized in a way that
makes it efficient to randomly access information scattered throughout even
large volumes of event data, for example, “Show me all events of severity
WARN or higher since yesterday” or “Show me the events prior to the
previous reboot.” You can even perform retroactive debugging by
requesting a detailed view of recorded events.

Monitoring Data at Scale

Now that you’ve aggregated all of this data, you need a framework for
understanding what your systems are doing.

It’s critical to record and expose the right information. Recall from
Chapter 14 that observability is a property of a system—how much insight
into your system’s operation you are able to gain from the monitoring you
have. Improving your systems’ observability is an iterative process. If this
is your first monitoring project in this system, you’ll have only your team’s
experience and intuition as a guide. That’s OK. As you gain system
experience, be sure to incorporate that knowledge into your data pipeline.

Post-incident review is a great place to assess your monitoring data.
Consider the following:

e How much of the troubleshooting was done by viewing your
monitoring data? Those are your wins; your data saved you time and
effort in those cases.

e Based on what you are already collecting, how much more could have
been done? Those are data presentation opportunities. When it makes
sense, add additional dashboards, alerting, or other visualizations to
get more help from the data you already have.

e What troubleshooting steps had to be taken ad hoc because the
necessary data didn’t exist? Are you able to gain access to that data
somehow? Perhaps the events are being collected but not stored, or
there are additional configurations to increase the verbosity of logs. If
your organization writes the software in question, should additional
logging features be added to enable better detection or prevention of
this type of incident?

Storing and analyzing monitoring data is costly, especially with logs and
traces, so regularly check your data to ensure it is still valuable. You may be
able to save money by reducing your collection parameters or incorporating
more sampling.

Access control and data governance is another key concern for a maturing
log management project. Perhaps you start by aggregating logs for your
sysadmin team; everyone has access to everything. In that case, you won’t
have strict access control needs, but if your system is successful at saving
you effort, word will get around. Soon others will want to share those
benefits. Logs frequently contain sensitive data, and sharing everything
with everyone isn’t appropriate. Privacy requirements will dictate who can
access logs that contain personal information. Data lifespan policies are also
likely to apply depending on the data’s nature and your environment. You
may only be allowed to retain some logs for only a certain time—or
required to keep others for at least some time.

Wrapping Up

Your monitoring data is crucial knowledge about your working systems that
provides a historical recording of events and the success and failures that
occurred. Effective system monitoring accounts for collecting the right data,
storing it in a useful way, auto-expirating data that is no longer relevant, and
using systematic methods for analyzing and presenting the information
obtained about the running system.

Metrics are data presented in gauges and counters that provide insight into
how the system is operating at a point in time and can be rendered in charts
that reveal trends, patterns, and anomalies over time. Logs are how software
records a history of events, and traces are a specialized form of logs used to
provide a more detailed understanding of a particular aspect of how the
system is operating. Both logs and metrics are useful for understanding the
behavior of your systems, understanding the root causes for incidents, and
making forecasts about how the system will need to evolve in the future.

Monitoring data, like any other data, needs to be managed thoughtfully. As
your monitoring data archive grows over time, you’ll need to pay attention
to how much storage it consumes. Use your monitoring data to study
incidents occurring on your systems, review how the data helped solve
problems, and learn what gaps you need to fill. Making sense of incidents
that span fleets of systems can be a real challenge, but a well-tuned
approach to monitoring data can make this work easier.

Chapter 17. Monitor Your Work

Do not confuse things that are hard with things that are valuable. Many
things in life are hard. Just because you are giving a great effort does not
mean you are working toward a great result.

—James Clear

Across my career in operations engineering, I’ve experienced a challenge
that stymies many in our industry: inadequate visibility. It is frustrating to
have my impact minimized or misunderstood; finding the right narrative
takes having the right metrics to tell that story. And, [haven’t ever seen
lines of code or the number of resolved issues as quality metrics to show
my impact.

As an industry, we are starting to recognize the importance of sustainable
systems. A system’s health affects an individual’s health, and their health in
turn can impact the managed systems. In this chapter, I show the
importance of monitoring your work so you can improve your effectiveness
—much like your managed systems. The result is improving your
consistency and reliability and achieving sustainable outcomes—for the
system and yourself.

Why Should You Monitor Your Work?

Monitoring your work is about explicitly coordinating and collaboratively
identifying appropriate and valuable work. In addition, visualizing the data
you collect about your work helps you show your work in context versus
using a list of completed tasks and projects.

Unfortunately, external pressures may push you to work on the wrong
things or the right things at the wrong time. Sometimes you may feel driven
by your expectations; your identity and self-worth often get intrinsically

tied to specific work that may not serve you as a way to grow or leverage
new opportunities.

Monitoring your work provides a mechanism that can signal when you
reach a career rut. Doing the same task over and over can lead to stagnation,
especially when it’s work that you don’t enjoy. It happens easily if you are
good at that work, especially if no one else takes responsibility for it.

TIP

Stagnation in a job is when you’ve done a job for 10 years but you don’t have 10 years of
experience. When you interview for a new job, prospective employers want to see that you have
10 years of different experiences showing your growth, not repetitive task management.

As illustrated in Figure 17-1, when you visualize your work, you can see
better how your skills and talents overlap with the work you enjoy doing. It
can also help you know where to focus your skill development and hone
your abilities. And, it can help you see why you may be unhappy with your
current job if you aren’t doing any fun work.

Finding
enjoyable work

\,

Enjoyable
tasks

Figure 17-1. Finding the work you enjoy doing

You can do many types of work in your career as a sysadmin. Choose your
path intentionally rather than letting arbitrary deadlines and emergencies
dictate your direction.

When you track your work, you can better see your successes and use your
time effectively.1 It can also improve your feelings of agency:

e Feeling control and autonomy
¢ Identifying work that matters
e Responsibility

 [dentifying competence and expertise

IMPACTS OF MONITORING YOUR WORK

Monitoring your work can have impacts beyond you. Consider the
following:

e At the team level, you build stronger relationships and trust by
seeing your coworkers’ progress on critical tasks and projects by
monitoring your work.

In addition, visibility in the team’s work helps to inoculate the
team against support heroics by measuring and supporting
sustainable practices.

e At the company level, monitoring your work helps to provide
team-level evaluations and shift the perception of operations from
the lone sysadmins to one of more collaboration and visual
feedback.

Manage Your Work with Kanban

There are many different ways to monitor and share the progress of your
work. One option is Kanban, the Japanese word for visual signal and a
visual workflow management system developed initially by Taiichi Ohno,
an industrial engineer working for Toyota in the 1940s.

TIP

Adopting Kanban for your personal use is different than planning and implementing it for a team;
in a team, no person should dictate how the team implements Kanban. Instead, team processes
should support and integrate each person’s needs, and people should be involved in designing and
implementing a board that will manage their work.

Kanban hinges on understanding where you are now and your current state
and provides mechanisms for introducing change in manageable ways. For

a personal Kanban, the following rules will help you align with this
objective:

e Start with what you do now.

e Agree to pursue incremental change.

The core principles of Kanban serve as guidelines for organizing and
managing work:

e Visualize your workflow by tracking your work on a board.

e Limit your work in progress (WIP) so you can focus on completing
what you start.

e Manage your work’s flow to monitor its progress and understand how
quickly you get tasks done.

e Continuously improve by evaluating the data about your work to
identify areas of improvement and reduce the constraints that reduce
the speed of work, also known as your bottlenecks.

Break work into chunks that you can get done in an approximate time.
Remember, these are just estimates; no one expects you to predict the future
successfully. Rather than nail down a specific time with numbers, use a “T-
shirt size” that reflects the estimation. It helps avoid misusing or
misunderstanding the time estimate. In Table 17-1, you can see an example
of breaking down chunks of work into sizes.

Table 17-1. Approximating sizes for tasks

Size Timing

XS <1 hour

S <4 hours (1 day max)

M < 8 hours (2 days max)

L < 20 hours (a week)

XL > L; This is a project, not a task.

For example, adding a user to a system would be an “XS” task. Adding a
new user to all the systems and services in an environment might be an “S”
task based on the complexity of your environment. Setting up a new service
would need to be broken up into several jobs, including setting up system
accounts, which could be a large task or something more extensive than a
task.

Projects have a more extensive scope and would have a different set of
sizes. Table 17-2 shows how I size projects.

Table 17-2. Approximating sizes

for projects

Size Timing

S > 1 week
M > 1 month
L > 1 quarter
XL >L

Imagine that there is a critical upgrade that must happen by January 1. You
estimate that this project is “Large.” Based on that estimation, you won’t
complete the requirements if you wait until December 10 to start the work.

Having a way to visualize this requirement provides you with the ability to
push back on nonurgent, nonimportant requests that could make this slip.

TIP

When used in a team, sizes can support discussions with external stakeholders about prioritizing
tasks and projects based on what’s currently in progress when additional work is requested.

Once you can size your work, you can approximately compare it, and
you’re ready to map tasks to cards. Create a card for each task. Label the
card with the information about the task (e.g., name, estimated scope,
category of work). These cards can be different colors for various types of
tasks. You might also add additional information like the value of the job
(i.e., business value, customer requests, employee-driven). Furthermore,
talk to a business stakeholder who can help you understand the critical
measurements that they track. And then identify how to categorize your
work to measure that impact.

TIP

Business needs and customer needs are often conflated. Something may be necessary to the
business that isn’t directly of interest to your customer. Additionally, you might identify critical
work that isn’t perceived as business value to your company. If you ignore all the things you think
are important, you will not be happy. Finding the right work to provide the most value for the
company and sustain your psychological and physical effort is essential.

You can start with a chart with three columns (ready, doing, and done) that
represent a basic workflow:

Ready

A bucket of your incoming work. This column reflects your to-do list.

Doing
For all the work you have started (but have not yet completed).

Done

For the work you have completed.

TIP

Over time, you may want to evolve the columns in your board so you can measure your workflow
accurately and identify areas of improvement. Start by thinking about how you completed tasks
and projects. Phases of the work should be reflected in the columns. You may find that tasks and
projects have different phases. For example, maybe you regularly find your work blocked by
someone else, and you want to keep track of that bottleneck (e.g., how long you have to wait on
someone else to do the next steps in a task or how many blocked tasks you have at one time).

After you have the board and cards, stick the notes in the appropriate
columns based on the task’s phase. Now, you can view your backlog and
active and completed work.

Next, you do work! When someone asks you to do something, you start
working on a task, or you complete a task, and the card representing that
task progresses through the stages.

Don’t forget to track metrics about the work. These metrics may be
something you manually have to update in a spreadsheet or provided by
your chosen tool. After a couple of weeks, review the work you’ve
completed and assess what you’ve accomplished. Then, think about a
potential change you could make to improve your effectiveness.

Choose a Platform

There are so many tools available to track and visualize your work with
varying levels of customization, including Trello, Atlassian Jira, GitHub
Projects, Kanbanize, and Microsoft Azure Boards. Each tool varies in cost,
metrics collected, dashboards, and API integrations. If a platform doesn’t
have integrated metrics, measure your work manually at the start so you
have information about the impact of changes you make.

NOTE

When making decisions for a team-based tool, know that no platform or technology will be
perfect, especially if multiple teams have to use it. Sometimes sacrifices in the workflow have to
be made based on cost and visibility across the organization. Management needs to be aware of
that impact, help folks navigate the differences as much as possible, and recognize the criticality
of the work that folks do regardless of the tools chosen.

For example, Scrum is generally not a great way for sysadmins to work, but plenty of folks try to
force the team into that working model because Scrum is already in use within the organization.
Tools implementing a Scrum style of project and task management will be frustrating if the team
isn’t already scrumming.

No generalized list will dictate what tool you choose personally, as every
sysadmin will have different responsibilities and ways of doing their work.
Some factors to consider, though, include the following:

Budget

If you have to pay out of pocket for a tool, you may consider free
options (i.e., GitHub Projects or Google Sheets).

Existing tools

If your team is already implementing work tracking, you may want to
use what’s already in place. Additionally, you may be using other tools
that can easily support you in importing your work into a visualization.

Features

Every tool will have features; some have better metrics collection and
visualization than others.

Another feature might be the available APIs for integration. In the past,
I have leveraged integration APIs to pull data from Bugzilla to populate
Leankit. While the underlying concepts differed between Leankit (i.e.,
Board, Cards, and User) and Bugzilla (i.e., Product, Bug, and User), |
wrote scripts to map those concepts to Task, Project, and Goal. Without
the APIs, there wouldn’t have been a way for me to map these one to

one, and I would have had to wait for Leankit to provide that
functionality.

Here are some additional questions that may help you decide:

Can you query the raw data? Do you need to learn a different language
to access the raw data? It’s not helpful to put a bunch of data into a
system if you can’t get it back out in a usable way.

Is data aged out?

What integrations do you need? Do you need to work with third-party
services? Are there ready-made integrations available?

Is the tool extendable with plug-ins or mix-ins?
What reports or dashboards are available to you?

Can you categorize a task in multiple ways (i.e., with some tag)?

Even if additional reports or dashboards are not directly available in the
platform, if you can pull raw data out to leverage other tools to create the
necessary reports or dashboards, this may be sufficient for your purposes.

Find the Interesting Information

Once you track your work with a management system, you can start
analyzing your collected data. Again, depending on the tool and what work
management tool you use to track your work, you will have different
metrics and visualizations available.

Let

’s look at interesting data from a “Ready, Do, Done” Kanban board

(Table 17-3).

Table 17-3. Metric types for “Ready, Do, Done”” Kanban
Type Definition

Speed The time that it takes for you to move a task from Ready, Doing, and Done,
also known as the lead time

Throughput The total number of jobs you completed for a unit of time
Load The number of tasks in Do, also known as WIP

Process Efficiency Work in progress/speed, also known as Little’s law

By collecting metrics (i.e., speed, throughput, load, and process efficiency),
you might find some interesting information:

Variability

Keeping track of speed per task type can help you uncover areas of
variability. For tasks with lower variability, you can better estimate the
time it will take to complete a request.

Keeping track of the types of work you are doing can help you monitor
your job stagnancy. In this case, lower variability over time can signal
that you should consider alternate work to ensure career growth.

Too much work in progress

Keeping track of your load can show you how much context-switching
you may be doing, impacting how quickly you can get work done or
your overall throughput of completing tasks.

The balance of thoroughness and efficiency

You are always making a trade-off between the resources (time and
effort) you spend on researching and preparing to do an activity
(thoroughness) and the resources (time, effort, and materials) you spend
doing it (efficiency). This trade-off is known as the efficiency-
thoroughness trade-offs (ETTO) principle.? When you prioritize
throughput, efficiency is more important than thoroughness. When you

prioritize the outcome’s quality, thoroughness is more important than
efficiency.

If you spend too much time thinking about how to solve the problem,
you might not have enough time to do the work, and you might miss
incoming requests. On the other hand, if you act too quickly without
sufficient thought, you might not have enough information to do the
right work, or you’ll be poorly prepared.

You can understand and analyze any adjustments for every task to approach
the task type more systematically. Additionally, you can examine the
specific categorization of tasks and look at the following:

e Specific types of tasks that take longer.
e Tasks that get blocked frequently. Look for bottlenecks.

e Tasks where the work gets scrapped regularly. Lower the priority and
urgency when you get these kinds of requests.

o Tasks that were fun (or problematic). If you can categorize things in
different ways or mark tasks with this sentiment, you can measure the
psychological effort of the workload and the impact of those tasks on
your total throughput.

e Time spent learning or practicing specific skills. You can be more
intentional about improving your skills in an area.

Wrapping Up

Once you have a method for tracking your work, you may want to support
this more broadly across your team. Work with your team on making
everyone’s work visible.

In Chapter 21, I share a bit more about how to monitor your team’s work.
You need to integrate many people and diverse perspectives to get the job
done. Bringing everyone together to share their vision can help visualize

cross-team dependencies to understand better and prevent long wait times
or wasted work.

MORE RESOURCES

Learn how to manage your work and identify areas that may improve
your processes with Dominica Degrandis’s book Making Work Visible:
Exposing Time Theft to Optimize Work and Flow (IT Revolution Press).

1 Learn how to better manage your time from Thomas Limoncelli’s Time Management for
System Administrators: Stop Working Late and Start Working Smart (O’Reilly).

2 Erik Hollnagel, The ETTO Principle: Efficiency-Thoroughness Trade-Off: Why Things That
Go Right Sometimes Go Wrong (Boca Raton, FL: CRC Press, 2009).

https://oreil.ly/va8cC

Part V. Scaling the System

In the final part of this book, we’ll examine how to prepare your system to
scale (whether expanding or shrinking). It’s not easy to know what and
when to consider system changes. While experience can inform your
approach in different environments, relying solely on this experience
increases your risk of bias-informed planning. Eventually, you are going to
do the wrong thing. Instead of trying to attain perfection and always do the
right thing, build the guardrails in your system that support you when you
make an incorrect prediction so that your system can adapt sustainably to
the humans who are part of the system.

The landscape of user expectations has changed, with visible places of
customer (dis)satisfaction. And to maintain the trust of your users (and
potential users) so that you have the opportunity to grow your systems, you
need the following:

Capacity planning

Resilient on-call practices

Robust incident response to issues when you discover them (or worse,
when your users find them)

Leadership that empowers and fosters learning

Chapter 18. Capacity
Management

Capacity management 1s the process of maximizing system output based on
customer demand and business value while minimizing the costs to the
humans supporting the systems. Historically, sysadmins focused on tuning
system utilization to maintain good latency for real-time access systems or
to reduce job runtime on batch systems. In contemporary environments,
sysadmins may focus on scaling resource pools in self-maintained data
centers, applications in cloud services, or both for hybrid environments.

In this chapter, I define capacity and capacity management and provide a
framework to help you understand your capacity management planning
process. This will help you prioritize the different engineering tasks
involved in capacity management.

What Is Capacity?

Before I define capacity management, [need to talk about capacity.
Capacity goes beyond just the absolute value of CPU, disk, or memory.
Defining capacity also includes the measurable quantity of output
producible while maintaining standards of quality and performance.

Capacity is not an exact measurement in systems but rather an
approximation based on the information that you have. Over time,
accumulated experience with how your customers use your system will
allow you to fine-tune the capacity indicators you use to understand your
system’s capacity.

There are different measurements of capacity, depending on the specific
metrics that matter to the system you are supporting. And there are a few
ways to define capacity when describing your systems:

Design capacity

When designing or evaluating the architecture of a system, you estimate
the maximum potential output based on whatever tools you may have or
previous experience. This estimation is the design capacity of that
system. For example, you may benchmark a website and identify as a
result that it supports one thousand concurrent user logins.

Production capacity

When your system is faced with actual normal working conditions, you
will be able to measure the real maximum output possible (including all
of the operating constraints), and this is your production capacity. When
a system is live, you have the data to drive observations based on the
site’s usage under normal working conditions to better qualify the
capacity of the system. For example, users start experiencing impactful
latency in your deployed system in production before hitting one
thousand concurrent user logins. The site’s production capacity is eight
hundred concurrent user logins.

Effective capacity

When your system is under normal working conditions and real-world
constraints are added (impacts due to seasonal or economic events),
maximum output is your effective capacity. For example, during an
after-Christmas sales event, you notice that there are a number of
cascading degradations in the system, leading to an effective capacity of
three hundred concurrent user logins.

When describing capacity, be specific about which of these—design,
production, or effective capacity—you are measuring or analyzing. The
capacity constraints are the resources that limit the output of the system and
can help you think through likely failure scenarios. These are sometimes
called the bottlenecks and are generally where the system will fail first.
Capacity constraints in your system might be limitations due to an
underlying service dependency, specific hardware resources, or available

individuals to do work. Based on the risk of the event, you can plan whether
the constraint is acceptable or needs mitigation.

The Capacity Management Model

Capacity management is one area of engineering that sysadmins have the
opportunity to focus on when not overwhelmed with toil work. Some parts
of capacity work are day to day, and other parts are medium- to long-term
design and planning projects.

Operational cost reduction is not the goal of capacity management, though
it may be an outcome of applying quality capacity management practices.
The goal of capacity management is to balance resource costs and customer
demands through the following actions:

e Gathering knowledge over time to guide growth and declines

¢ Qualifying availability of people and resources to support new projects
and changes in current projects

 Identifying periodic cycles from holidays, special events, site-specific
tax season in the US, and elections.

With capacity management, it’s crucial to understand the business value of
the system you are managing. Failing to practice capacity management
leads to missed deadlines, lost opportunities, and customer attrition.

Take a look at Figure 18-1 for the four resource components of capacity
management.

Procurement Justification

Resource

Monitoring Management

Figure 18-1. Capacity management model

O

Let’s look at these different components in more detail, starting with
procurement.

Resource Procurement

Procurement processes vary based on the behaviors and structures of
differently sized companies. Small companies may pay more for equipment
or resources because of the size of their order but may have fewer gating
factors to approval, while larger companies may be oriented to have

multiple groups involved and approvals needed before a requisition can
begin in earnest.

When planning for the data center, factor in overhead, long-term hardware
costs, and supply-chain constraints. In the cloud, you have increased
reliability but the possibility of unconstrained complex costs.

The complexity of setup within a data center versus cloud varies widely.
For example, compare the long lag times for hardware delivery and setup in
the data center versus the near-immediate delivery from a cloud provider.

Regardless of your environment, ask yourself these guiding questions:
e How much performance and availability do you need? Is it variable?

o Will the cost for static instances or servers be more than the cost of
auto-scaling options month over month? Year over year?

e Should capacity be built to handle the spikes in activity or regular
load?

Justification

Understanding the procurement process that you need to navigate helps
inform your justification process. If you have long delivery times, you may
need to do the appropriate work to justify resource purchases well before
you need them. If resources can be made readily available at a moment’s
notice, you can delay justification until you are ready to do the necessary
associated work around deploying the resources. As with procurement, the
processes required within an organization to justify resource procurement
vary in implementation, from something ad hoc to very formal, with a
review board assessing the strength of the proposal.

Even if the environment doesn’t require a formal review process, it’s
important to have this information on hand to better understand the
decisions made, including what was considered and ultimately discarded.
Circumstances change, and maybe a formerly inappropriate solution
becomes a better fit for a future project or a new direction for the current

project. And it can also be worth having a record of why a particular
solution was discarded—maybe there’s a fundamental flaw that others
should steer clear of as well.

Document the following items:

e Describe your problem assuming no prior understanding of the
circumstances.

» Describe the potential solutions.

e Explain your choice of solution, for example, “With this resource, |
expect this amount of improvement in a specific measured value with
an estimated increase in revenue or business value.”

e Provide supporting data for answering why and how much.

e Address any other potential constraints and risks to success.

Management

Resource management covers the entire lifecycle of resources from
deploying to deprovisioning and varies based on the type of resources and
how much automation is in use. A resource’s lifecycle helps you to plot a
set of actions in alignment with business objectives.

As shown in Figure 18-2, with managed physical infrastructure hardware,
you plan provisioning, configuration, deployment, and eventual retirement;
you have to think about these concerns before you even purchase the
hardware.

Dispose

Retire

Figure 18-2. Physical infrastructure hardware asset lifecycle

These are the phases of the hardware asset lifecycle:
Plan

You plan hardware purchases, taking into account space, cooling, and
power needs in addition to your currently owned hardware.

Procure

After identifying the hardware, you determine whether you are buying
or leasing it based on the availability of the hardware and vendor
pricing aligned to your plan. Building solid relationships with vendors
in servers, storage, and networking helps you get the best prices and
necessary support for your hardware.

Deploy

Once the equipment arrives, you need to verify that the systems come as
specified. A different team may be responsible for the physical
deployment into the racks, or it may be part of your job responsibilities.

You install the required OS and necessary updates. Generally, hardware
follows a “bathtub curve,” where defective components show failures
early in their lifecycle. You may perform some amount of burn-in
testing to verify that the system isn’t going to fail prematurely, the
system behaves as expected, and there are no component performance
differences.

Finally, you install and deploy the necessary software and services to
make the system live.

Maintain

You update the OS and upgrade any hardware as necessary to support
the required services.

Support

You monitor the hardware for issues and repair based on any
expectations of services. This may mean coordinating support or
physically swapping in new hardware as necessary.

Retire

You identify when the hardware is no longer needed and deprovision
running systems. This may be a long process to identify any access to
the system.

Sometimes, new hardware is brought into service to replace older
hardware. If the system architecture can be scaled up gracefully by
adding new hardware and then scaled down by removing the older
hardware, this allows for easier retirement and deployment processes
with minimal impact on the end customer. If you have to shut down a
system to remove hardware altogether, this will cause some amount of
end-user impact.

Dispose

Once you have retired software from the system and removed it from
service (and if it is no longer useful within your organization in any
other capacity), you have to dispose of the hardware. In addition to
ensuring that no sensitive data remains on the system, you may need to
be aware of specific laws and regulations around the disposal.

When planning hardware requirements, it’s common to think about a three-
to five-year life span for nonspecialized hardware. In part, this is due to
advancements in physical technology that improves the cost of running
servers. It is also due to advancements in the system software, where older
hardware might not support current operating systems.

With specialized hardware like storage appliances, the lifecycle changes
slightly in that the costs can range from the tens of thousands to close to a
million dollars. On top of that, maintenance and support are separate costs
and longer-term investments.

NOTE

It’s not uncommon for IT departments to be structured organizationally within finance, leading to
accounting depreciation schedules that trickle down into IT policy.

Organizations may use a different strategy for depreciation, and there may also be specific
legal/tax guidelines to follow, but three- to five-year schedules dovetail with how the expense of
expensive equipment is amortized over multiple years.

PLANNING FOR FAILURE AS PART OF CAPACITY
MANAGEMENT

Consider the “bathtub curve,” the curve of a bathtub with steep sides
and a flat bottom, as depicted in Figure 18-3.

Premature failures

Wear-out failures

A === === Observed failure (bathtub curve) :

Failure rates

Time

Figure 18-3. Charting hardware failures over time with premature, constant, and wear-out
failures

This model depicts observed hardware failures over time. Physical
resources typically follow one of three phases: premature failure due to
defective products, random failure during regular use, or end-of-life
failure due to wear. Observed rate of failures will follow this bathtub
curb with a high number of issues early (so make sure to exercise the
hardware with a burn-in to cause this fast failure outside of production
environments) and toward end of life (make sure to monitor the age of
hardware, and preemptively plan to cycle it out).

Even if a system is still doing useful work, like an older car, it’s
necessary to evaluate whether the ongoing cost of repairs exceeds the
cost of replacing it and avoiding failure completely.

When implementing quality hardware management in your infrastructure
strategy, challenges with staffing, tool availability, and the complexity of
hybrid environments will arise. Operation engineering teams are often
understaffed, which can lead to not having enough time to spend on
developing quality practices for managing hardware effectively. This could
mean hardware arrival and delayed deployment or a lack of retiring aging
systems in a timely manner.

Another challenge is the lack of investment or availability of quality tools.
Often spreadsheets are used to design data centers (including cooling and
power) and manage vendor relationships and inventory (from the physical
hardware itself to the cabling organization). This can hinder collaboration,
communication, and knowledge transfer throughout the organization.

A hybrid environment where part of the infrastructure is on-prem and part
is managed by a cloud provider adds additional complexity. This might be
acceptable if there is no in-house knowledge for managing necessary
services.

Take a look at Figure 18-4. With cloud services, consider this modified
lifecycle of assets. The service provider handles the physical racking,
stacking, security of the hardware, maintenance, and disposal of systems.
You are left with the following phases.

Procure]

Deploy]

Figure 18-4. Cloud asset lifecycle

Plan

You focus on identifying specific cloud services to use (e.g., specific
machine types or reserving capacity versus on-demand) and budget
forecasting.

Procure

Instead of having to plan for expenditures all at once, you set budgets
per individual or team to align spending and leverage purchasing power
across the organization. You build relationships with different cloud
providers and identify compatible services that align with business
requirements.

Deploy

Instead of physically deploying servers, you write infrastructure code to
provision, verify, and deploy necessary cloud resources
programmatically.

Support

Through careful monitoring of systems in use, you identify areas for
cost savings. You assess, monitor, and repair security vulnerabilities in
the software and underlying layers depending on the service in use. You
may also be the central contact with the service provider to coordinate
support.

Retire

Rather than worry about maximizing the value of physical hosts for
three to five years, configure instances to live only as long as needed,
eliminating cloud resources that are running and providing no value-
add. You can configure policies to shut down and deprovision resources
that are no longer in use.

Migrating to the cloud may ease some of the stress on operation
engineering teams, allowing them to focus on the practices involved in
managing infrastructure. However, with the ease of quickly provisioning
resources, visualizing resources in use is critical to preventing costly
mistakes.

Finally, take a look at Figure 18-5. Serverless is a special type of cloud
compute, storage, and networking. With serverless, the lifecycle of assets is
simplified because the provider handles many of the step.

Plan

Deploy]

Figure 18-5. Serverless asset lifecycle

Plan

You need to research and design the architecture and services necessary
to provide the expected experience.

Deploy

You need to deploy any configurations, applications, connected
services, and instrumentation for monitoring,.

Support

You are responsible for your users getting the benefit of your systems.
When something goes wrong, you need to use logging and traces to
handle and debug problems.

Monitoring

Resource monitoring is monitoring the specific resources in use with the
goal of balancing resource costs, customer demand, and business value.
This area of capacity management is covered in detail in Part IV.

The Framework for Capacity Planning

You should consider documenting capacity management components per
environment, as underlying processes to follow will vary from team to team
and across organizations. While I can’t define what they will look like for
you, I can provide a framework to guide you on what you can do next once
you understand the processes and policies in place within your environment
(Figure 18-6).

Are you
meeting
objectives?

Assess
future needs

Isita
capacity
problem?

Figure 18-6. Capacity planning process framework

Let’s look at the steps in Figure 18-6:

1. Measure the current workload for all the components of the object in
your system under evaluation.

2. Evaluate whether you are meeting the SLOs based on demand.

3. If you are meeting objectives, spend time assessing your future needs
(e.g., is there new compute technology that may replace current
requirements?).

4. If you are not meeting the objectives, assess whether this is a capacity
problem. Sometimes you need to resolve other issues before making
changes to capacity. There may be optimizations possible in
configuration tuning that will lead to performance improvements.

5. If it is a capacity problem, identify changes that can be made and apply
one of the changes to see the impact of making that change. Make sure
that information gleaned about the change is understood by the
relevant team or teams to help guide future decisions. If you don’t
have enough information because you don’t have the right
measurements, make changes to your measurements.

HOW ORGANIZATIONAL STRATEGIES INFLUENCE
PLANNING

Organizations use three main strategies to assess future needs: lead, lag,
and match. Any of these strategies can help inform and prioritize action
and reduce friction.

With the lead strategy, you add capacity as you receive indicators that
system demands will increase. Often employed with on-premises
resource management, this strategy compensates for not being able to
make fast changes in the event that demand is higher than capacity
since ordering and delivery of hardware can be highly variable.
Overhead costs increase if user demand doesn’t materialize after
capacity is increased.

With the lag strategy, you meet demand after it occurs. If you cannot
fulfill demand in a timely manner, the lag strategy can increase the
chance of losing customers and impact trust or confidence in the
company. The lag strategy isn’t realistic for on-prem resource
management for small companies due to the length of time it takes to
order and receive hardware. In large companies, resource allocation to
individual teams can be made from other teams within the organization.
Resource-driven conflict occurs when popular projects that didn’t do
adequate capacity management “steal” resources, leading some teams to
greatly exaggerate the estimations on resources that they need to
accommodate for losing some portion of expected resources, which can
reduce financial investment for other projects.

The match strategy attempts to compromise between the lead and lag
strategy by incrementally increasing capacity with demand. For
example, capacity may be preemptively expanded by a fraction of the
forecasted future need, with the remainder waiting until the need
actually appears.

Another term for the lag strategy is just in time (JIT) approach to
resource allocation.. With JIT manufacturing, rather than maintaining

inventories of components, parts are acquired as they are needed based
on production demand. This reduces costs and minimizes unwanted
surpluses, both of which increase profitability. But this efficiency relies
on accurate predictions of future demand; incorrect predictions will
disrupt the pipeline.

Consider the economic effects of the COVID-19 pandemic on global
supply chains. Shortages of products like toilet paper arose not because
people started using more toilet paper; offices and schools didn’t need
commercial single-ply toilet paper, but consumers needed more
household toilet paper. It took time for paper manufacturers to shift
production from commercial to domestic distribution, and in the
meantime, retail shelves were empty even as warehouses of commercial
toilet paper piled up.

As you evaluate your capacity planning needs, think about the variables
that inform your predictions, and consider contingency plans for how
you can respond to unexpected shifts in demand.

Do You Need Capacity Planning with Cloud
Computing?

Even when using cloud services, you need to develop an explicit capacity
management strategy. Even for services that provide dynamic scaling, at
minimum, you need to focus on resource management and monitoring.
Consider the following limitations:

e Time to spin up new resources.

e Resource ceilings set by the provider based on instance types chosen.
CPU, network, and storage throughput are limited to what you chose in
the initial configuration. While in some cases these can be changed,
downtime may be required, depending on the cloud provider. Some
limits require contacting the cloud provider to adjust, which can have
varying times to resolve. Contrary to the idea that everything is API

based and instantaneous in the cloud, service providers institute certain
limits to better serve the average use case.

e Managed datastore configuration limitations. Cloud providers create
tiered offerings that simplify some of the management challenges of
sizing databases, but you may need flexibility you hadn’t anticipated.
The more expensive the offering, the more of the fine-tuning with
resource management they generally cover. You still have to select the
specific functionality, whether sharding, replicating, or load balancing,
and these choices can be very expensive. Right-sizing your resources
follows the flow of the capacity planning process.

o (Capacity limitations of the cloud provider itself. At certain levels of
scale, the assumption that more resources can be added on demand
breaks down due to the real limits of how much hardware the provider
has available.

e External dependencies may have additional limits or lack dynamic
scaling functionality. Examples include gateways and proxies.

Cloud computing makes it easier to adjust dynamically to real demand.
Engineering requirements can be more finely tuned to better approximate
the variable nature of demand and inform staft of the impact of making
changes to core infrastructure.

Service providers set varying limits for services. While the service provider
handles scaling, individuals still have to be aware of the impact of
dependent services and the limits across all of these services as well.
Without oversight, it could be quite easy to run afoul of these limits (e.g.,
75 GB max limit on function and layer storage in AWS).

Wrapping Up

The future is unpredictable; deploying new resources can take time, but
over-provisioning costs money. Capacity planning is the art and science of
matching your resources to anticipated future needs aligned with the

https://oreil.ly/jmOPe

demands of your organization without constraining your system’s potential
or spending too much.

Take these steps when considering the capacity of your systems:

1. Identify the need and justify how a particular resource will meet that
need.

2. Procure the resource, along with any overhead expenditure to maintain
the resource.

3. Monitor the resource.

4. Manage the resource throughout its lifecycle.

Capacity planning is important for all resources you oversee, including both
physical and cloud-hosted systems, but the procurement characteristics are
distinct. With hardware systems, it takes time to acquire and deploy new
equipment, and it’s generally harder to scale up or down as demand
evolves. With systems built with cloud services, scaling can be automated,
but it’s also easy to overspend if you aren’t keeping an eye on things.
Effective capacity planning requires ongoing assessment and adjustments to
your processes.

MORE RESOURCES

Check out these additional resources on capacity management:

e Learn more about capacity planning for websites from The Art of
Capacity Planning: Scaling Web Resources in the Cloud by Arun
Kejariwal and John Allspaw (Pragmatic Bookshelf).

e See the case study of capacity management from Capital One from
Kevin McLaughlin at Velocity 2016 New York “Is Capacity
Management Still Needed in the Public Cloud?”

https://oreil.ly/MHR8v

Chapter 19. Developing On-Call
Resilience

The most visible responsibility of supporting a service or system is on-call
and managing impactful events. When your alerting system constantly
pages you, you may not have the time or energy to improve the system’s
infrastructure effectively. In extreme situations, you may avoid thinking
about the on-call experience when you are not on-call because it feels better
to accomplish project work. In this chapter, I propose a framework for
building resilience, investing early and regularly to prepare for on-call so
that you can cope with the challenges and stress that come from being
available to handle any issues that arise.

What Is On-Call?

On-call 1s a temporary rotating role assignment that may include being
reachable outside of normal business hours (e.g., evenings, weekends, and
holidays) to answer requests for support and handle discovered alerts. When
you are on-call, you are one of the people responsible for this work for a
specific length of time. Depending on the size and distribution of the team,
on-call rotations may consist of 8- to 24-hour shifts for one to two weeks.

On-call duties vary widely within different organizations, from failed
application services to power outages. You may be the person to respond to
services going offline or provide escalation support. You may have to
investigate why a website went offline in the middle of the night or
scramble to restore backups when a file server crashes. Some on-call is for
the sporadic issues “just in case”; in others, paging is so frequent that it
feels like a full-time job. Often on-call and interrupt-driven work tend to
merge into a single work queue.

Many contributing factors lead to unsustainable on-call practices that
transform the sysadmin job into task-based reactive work that lacks growth
opportunities. Two prime factors are misalignment in severity and priority
assessment.

When individuals assess the severity of a problem as too severe, they may
demand a fix for an issue even if a viable workaround exists; setting the
severity too low can lead to under-prioritizing a problem that affects many
people. The operations team may have difficulty assigning priority.
Problematic practices include the following:

e Automatically setting all interrupts at a high priority
e Failing to rank incoming issues
e Not combining duplicate reports that are the same issue

 Failing to clean up known problems to eliminate the possibility of
duplicate reports

Ideally, the urgency of a request and the impact of the problem are known
and shared, including the following issues:

e How many people are affected?

 [s there a satisfactory workaround?

e [s data at risk?

e What’s the business impact on your organization?
e What’s the business impact on your customer(s)?

Let’s discuss what tools and techniques can help you improve your
resilience by refining the on-call process.

Humane On-Call Processes

I’ve been there. Late-night pages and interrupted sleep. Years of waking up
in a panic, wondering if I missed an alert. Skipping vacations and missing
meals or eating whatever cold pizza was left from the team huddle as we
resolved a significant revenue-impacting incident. Missing out on family
and friends’ events, and relatives expecting that I would bail again. I have
painful memories of on-call that have had long-term impacts on my
relationships and mental and physical health. I eliminated the very activities
that could have helped because I didn’t see the path to a more sustainable
experience.

It doesn’t have to be this way. While you have an obligation to your
company, you also have a responsibility to yourself and your health. You
can be a responsible and attentive worker who is on-call while
simultaneously advocating for yourself and maintaining relationships with
your friends and family.

In the following few sections, I will share my recommendations for a
sustainable on-call shift, from the preparation steps you can take before on-
call even begins through your on-call shift and the handoff meeting. Then,
compare your processes to what I describe here and adopt practices that
help you.

Check Your On-Call Policies

Ideally, the on-call policy is documented clearly. If there isn’t a documented
policy, when I’m looking to understand expectations, I ask these questions:

e Am I compensated for my time on-call or when I’m actively working
outside of normal business hours? This includes compensation for on-
call and call-out, whether additional time off or additional pay for the
impact of needing to be available for out-of-hours work.

e How does the team prioritize incoming requests? How do I know
which problems must be resolved outside of business hours? Prioritize
requests to clearly define examples of what constitutes high impact
and high urgency to guide effective and consistent collaboration.

Use Figure 19-1 to categorize request types. The items that have high
urgency and impact have higher prioritization than items that are low
urgency and low impact.

High

(107 (o1 R S ————

High
Low Urgency

Figure 19-1. Impact and urgency matrix

e How long do I have before I'm expected to respond? Do different
types of requests have different levels of response?

e Who else can I page if I need help in networking or security? What are
the on-call support expectations for subject matter experts, especially
for areas where there is only a single person with expertise?

e Who do I need to notify about incidents, and when should I notify
them? Does the escalation process vary during working hours and after
hours?

e How long am I on-call for?

e How long do I need to sustain active call-outs? Is there a route to
rotate to the next on-duty if I have a significant issue?

Preparing for On-Call

During the weeks leading up to your first on-call shift, ensure you know
about all the systems you’re responsible for and the escalation path, in other
words, who you ask for help and when you should pull them in. Part of
understanding your systems is knowing the availability expectations for the
systems you are responsible for: in some cases, an outage of minutes or
even seconds is a critical problem, while in others, an outage might not
have a customer-visible impact, and it’s enough to leave a note for someone
to deal with it the next day.

Regardless of whether there is a formal process of participating with other
on-call engineers (also known as shadowing on-call), ask if you can shadow
others on the team. Shadowing allows you to see tools and processes in use,
see examples of how to respond and interact with the team, and assess the
cost of the on-call experience to you.

Shadowing also helps you get a sense of paging frequency and the typical
response norms:

e How are new incidents reported?

 [s there an email or SMS message, a notification in a messaging
service like a Slack channel, or a status report in a dashboard?

e Does a service ticket get generated?

 [fso, does this happen automatically, or does someone need to file one
manually?

e How promptly do requests need acknowledgment?
e How quickly is a resolution required?

» [fa solution requires specific expertise, what is the escalation
procedure?

* When is it considered appropriate to escalate?

e After resolving an issue, what additional steps do you take to ensure
the problem doesn’t happen again?

Make sure your laptop and phone are charged and up to date with software
requirements and that you can access the services you need from home and
wherever you may be during your on-call shift: your favorite coffee shop,
the soccer field, or bike path. Depending on the nature of your on-call
rotation, you should have the latitude to do these sorts of things as long as
you receive and acknowledge requests promptly and are prepared to help
resolve problems.

Bookmark the different services you need, and make sure you can log in
and access them. Then, when you get paged, you don’t want to be fumbling
around trying to find where you need to go to learn more about the pages.

Configure your phone and other devices in your alerting service. Services
have different escalation policy customizations, so make sure to enable
more than just email. For example, I focus on alerts when I’m on-call, so I
prefer to minimize the distraction of future alerts on the same issue while
still enabling redundancy. For an expected response time of 15 minutes, |
like email and SMS, with a 10-minute follow-up phone call if I haven’t
responded. This configuration gives me 10 minutes to respond to the SMS
before I get another alert, which reduces potential duplicate alerts and gives
me time to respond within 15 minutes.

While teams have a specific expected response time, you can also configure
your preferences. It’s essential to consider the requirements of the on-call
rotation and response time and your way of working. Find the balance of
being responsive while not getting frustrated by noisy notifications.

Check your company’s expense policy and talk to your management about
expensing additional charging cables for all your devices to help eliminate
the dreaded ““did I leave that cable” panic. For example, I like to have extra
power cords for my laptop and phone in my on-call bag, ensuring that |
don’t have to break down any part of my day-to-day setup or worry that
I’ve forgotten a cable.

NOTE

Battery packs or power banks can give you extra time to resolve issues on your phone and laptop.

While you may not make and receive phone calls regularly, be prepared to
have voice or video conferences during your on-call rotation with a hands-
free headset so you can continue to type without sacrificing sound quality

with the speakerphone.

A mobile hotspot or WiFi tethering device can support sustainable on-call
rotations by enabling you to work from anywhere. Instead of being limited
to the distance between your working station and the expected response
time to resolve an issue, you can find an available spot and connect when
you get paged. Having a mobile hotspot allowed me to enjoy family picnics
and log in from the park to resolve issues that often took only a few
minutes.

A separate device allows you to use the phone to further alert on other
1ssues or dial into conferences as needed. In addition, it increases the
diversity of connection options—if your phone has service from one
provider and the device gets service from another, you’re more likely to
have access to a viable signal.

One Week Out

The week before your on-call shift, you can notify any stakeholder teams
depending on your work and update associated project tickets to share
status information. Updating the project tracking system with information

about your upcoming on-call will minimize the unplanned stress folks
might have about specific work. Ideally, proactive updates also reduce the
project work interrupting on-call. If there are critical time-bound tasks, let
your manager know, and support the delegation of those tasks. An up-to-
date documented state of the project means others can chip in to keep the
project moving forward if you get pulled into supporting a long-running
incident.

If possible, send test alerts to confirm that you’re enabled to receive alerts.
Even if you have checked for past rotations, ensure configuration changes
haven’t eliminated your notifications. I have uncovered problems with
alerting services blocking my phone provider, which saved me from dealing
with failed system alerts and debugging why the phone provider was
blocked.

Plan your snacks and meals ahead of time. Self-care is especially critical
during an on-call shift. When and how often you’ll get paged is unknown.
While you can estimate what will happen based on past performance, it’s
not a guarantee. For the things that you can plan, this will help eliminate
additional stressors when cascading failures occur. Energy bars can fill the
gap, for example, when you have to start your day earlier than expected and
need something quick to get your brain going.

NOTE

Relationship building: do you have family or friends you can depend on to support you through
on-call? Ask for help. Bring people into your experience. You don’t have to be isolated, and
giving people the opportunity to help you can help build connections, especially if you reciprocate
when you’re no longer on-call.

Plan for any additional coverage. Do you have a long commute or a
regularly scheduled doctor’s appointment? Do you need to drop your kids
off at day care or attend a soccer game? Do you need to take your pet to the
vet? Talk to the secondary or, ideally, another engineer that can provide
coverage. Remember to reciprocate support when others need it.

Configure these overrides in advance. On-call rotations need to factor in the
actual demands of personal life responsibilities and be flexible. A team that
already practices this will be more able to handle additional short-term
demands from outages.

TIP

While you don’t have a responsibility to reach out to everyone on-call, doing so helps build and
sustain meaningful connections for successful, minimum-drama rotations. By reaching out, [’ve
identified gaps in coverage where folks hadn’t identified replacement coverage for their planned
vacation. Instead of experiencing the support gap during my rotation, I helped get support
coverage.

It’s also helpful when the on-call team is a virtual team composed of folks from different roles
who may not be aware of the other skills that the individuals bring to the on-call rotation.

Connect with the rest of the on-call team. Ideally, the on-call team is made
up of a primary and secondary on-call engineer, individuals who are
designated escalation points of contact, and an on-call incident manager.
Meeting with the rest of the on-call team helps make sure that everyone is
ready to be on-call. As the primary, you get additional peace of mind about
the support available to you.

Connect to specialized engineers. While they might not be officially on-call,
you need the contact details for your security, network, or database engineer
if there are single points of responsibility within the organization. Since a
single person can’t support an on-call rotation sustainably, document under
what escalation conditions you should notify them.

Talk to your family or roommates about upcoming on-call. Set the
expectations around what an event looks like and the expectations they may
have of you. Set boundaries around acceptable behaviors (e.g., no hosting
parties on your on-call weekends).

Preparatory work 1s necessary for going on-call. Make sure that time
allocated for the week doesn’t focus on a project’s progress to the detriment
of on-call preparation.

The Night Before

Verify that your notification device is charged and not silenced or in do-not-
disturb mode. Get enough sleep; feeling rested is a crucial component to
being able to sustain alertness in a changing environment. If you’re fatigued
going into an on-call rotation, it will hinder your effectiveness at sustained
attention.

Often overlooked is preparing comfort for future you. Here are a couple of
suggestions from other experienced sysadmins:

Keep a warm hoodie/dressing gown near the bed for less cognitive load
on those 2 a.m. wakeups.

—Sera (@tsdubz), September 19, 2021

Tea/coffee beverage of choice set up and ready to make should you get
paged in the night.

—Yvonne Lam (@yvonnezlam), September 19, 2021

Think about the specific accommodations (beverages, food, and/or
clothing) that will provide comfort of convenience when your time is
constrained to respond to an outage that may last for a while.

Your On-Call Rotation

Throughout your on-call rotation, the overall process may vary based on
your team’s expectations, but a general approach includes the following:

e Receive alert(s)
= Acknowledge the alert(s)
= Triage
= Fix

e Improve on-call experience

= Documentation

= Monitoring
= Assessing normal

When you receive an alert, the first action is to acknowledge the page. An
acknowledgment lets folks know that you have received the alert and will
help minimize further interruptions for the same issue. Next, triage or assess
the severity and urgency of the problem and, based on these factors, route
the alert to the appropriate action. Finally, fix the problem that is being
alerted. Fixing includes adjusting a noisy alert that pages with no expected
action.

Assess your on-call readiness. High-impact lengthy incidents and numerous
frequent alerts are both concerning. It may be better for you and the team to
hand off primary on-call to someone while you take a break.

FORMALIZING ON-CALL PROCESSES

Assessing on-call readiness needs to be formalized within the team’s
processes. This helps set expectations and supports modifications to
working norms that otherwise might affect an individual’s health or the
perception of that individual’s work ethic. Here are a few examples of
what that would look like:

e [fateam member gets paged after standard working hours and the
issue takes more than an hour to resolve, they may modify their
core working hours the following day.

o [fa page takes more than eight hours to resolve during the
workday or four hours to resolve after hours, then the team
member automatically gets the next work day off.

With these kinds of explicit policies, individuals have more certainty
about expectations and are more willing to be a member of the on-call
rotation and provide coverage when someone needs a break.

During the typical on-call workday, when not receiving an alert, the focus is
on improving the on-call experience (versus working on project work).
Workday tasks could be improving documentation or monitoring or
learning more about what “normal” behavior looks like in your systems.
Sometimes in the process of examining the live system, you’ll discover
something that needs to be fixed. Make sure that these discoveries are
documented (in the work queue as well as the on-call handbook) and alerts
are configured.

On-Call Handoff

OK, so the clock hits the magic hour, and you are no longer the designated
on-call. You want to be done. But you’re not done yet. You still need to
hand off to the next on-call engineer. Making this an official sync meeting
will do two things. First, it will support the incoming engineers by
informing them of the past week’s issues and any remaining open issues so
they’re set up for success. Second, it will give you a much-needed
psychological release to have an explicit stopping point to the
hyperalertness required of being on-call for production. It’s a ritual of
finality that tells your body it’s OK, you can stop now, and it is glorious.

But it’s also a ritual of beginning because it sets the starting point for when
the next person needs to take on the mantle of hyperalertness. When it’s
time for you to start on-call, your colleagues should be handing off to you
in the same way; otherwise, you may stress more about expectations and
whether something is already a problem depending on the state of the
systems you are managing.

You may think, “My environment doesn’t have these concerns, my
environment isn’t that complex, we don’t get paged a lot, etc.” But we’re
not trying to optimize for environments that are calm without regular issues;
we’re trying to create team processes that are sustainable regardless of the
inevitable issues and incidents that may arise: data corruption, loss of data
centers or cloud provider outages, or security incidents. A clean handoff
sets yourself and your team up for success when problems do arise because
the team 1is already well practiced in how to hand off responsibility with

ongoing issues so that individuals are well rested and at their best when
tackling thorny or complex ongoing problems.

Part of the handoff includes a weekly review document. Here’s an example
of information that could be included:

e Time period

* Individuals who made up the on-call team for the time period

¢ Incidents and relevant links to more information about those incidents
e Open incidents

e Resolved incidents

* Incidents that were not captured by alerts

e Manual work

e Opportunities for automation and improvement

e Open questions; while there may no longer be an impact on
consumers, there might still be unanswered questions

 (Call-outs for specific items that went well and what needs
improvement

The weekly review document is crucial. I can trust that the person before
me has handled things and is supporting me through documentation, and the
next person can trust that I will handle things and will support them through
my documentation.

Handoff procedures are vital for effective collaboration across regions. A
good practice is to have quick standup video conferences for shift
transitions, where the people who are ending their day can bring the next
group up to speed on what they’ve been working on. On an ongoing basis,
sharing case notes in a ticketing system like Zendesk or a chat system like
Slack can make it much easier for regional teams to be able to pick up
where their colleagues left off. Additionally, searchable case notes lay the

groundwork for internal and customer-facing documentation, as well as bug
reports for the software team.

The Day After On-Call

When you’re finished being on-call, it doesn’t mean that you’re finished
working to improve on-call. While the events are fresh (either the same day
as the handoff or the very next day), revisit the issues you filed. This is the
best time to have those creative epiphanies to improve what you just
experienced. Update necessary documentation, clean up any noisy alerts
(which includes reducing the severity of alerts as appropriate), and record
any project-related work required for long-term improvements. For any
incidents, add relevant information to the incident report.

TIP

One way to help continuously improve on-call alerts is to have a regular alert review with your
team to talk through the impacts and values of the alerts.

VARIABILITY IN THE ON-CALL EXPERIENCE
By Chris Devers

Reading this chapter, I was struck by how the on-call experience where
I work differs from what this chapter describes. Most of the on-call
work I’ve had in my career deals with humans as much as it deals with
the systems, e.g., “The news system just crashed, and we’re on the air
in 17 minutes, help!” Yes, there’s a technical aspect to the response, but
there’s a great deal of human interaction, talking to frustrated people
and improvising solutions to get them to acceptable states of resolution.

My employer builds solutions for the media and entertainment industry,
where on-site server deployments continue to play important roles.
People working in this field need to deal with things like cameras, tape
decks, satellite links, broadcast systems, and vast archives of media,
and the servers we build help tie it all together so that the show, as they
say, can go on.

Many of the systems we sell are physical servers, which our customers
install and manage themselves at their studios, offices, and data centers,
wherever in the world they may be. Routine administration of these
systems is the customer’s responsibility, but if they run into problems,
they can turn to us. Our tech support staff are, in effect, a team of
consulting sysadmins, providing escalation assistance for the on-site
admins at individual customer locations.

We’re not a huge company. But we do have offices around the world,
and this has been key to maintaining a sustainable approach to on-call
work. If a broadcaster in India reports an overnight problem, the on-
duty team in Europe is ready to assist; if the problem extends past the
end of the workday in Europe, the case is handed off to the Americas
team as their workday begins. Similarly, global staffing allows holiday
coverage. Regions adjust shifts to provide coverage so that we
minimize impact to customers when our regional offices close for
holidays, whether it’s Lunar New Year in East Asia or Thanksgiving in
North America. And when the COVID-19-driven shift to widespread

remote work came along, we took this in stride, because we were
already used to collaborating with remote colleagues and customers.

We do a shift rotation for weekend coverage that resembles the rotation
described elsewhere in this chapter: people need to watch email and
Slack notifications on their phones and be ready to get on a laptop at a
moment’s notice. Or perhaps a customer has scheduled a weekend
maintenance window, and the engineer on duty knows in advance how
their Saturday is going to unfold. But late-night investigations are rare,
because cases are handed off regionally, just as they are during the
workweek.

We also encourage a close working relationship between our support
and dev teams, which brings a variety of benefits. The support team, of
course, is keenly aware of the customer pain points, but they also get
excellent feedback about how to improve and extend the product. At the
same time, it can be rewarding for developers when they see that the
work that they’re doing is meaningfully improving things, not only for
customers but also for support staff. This collaboration also helps
distribute knowledge: if a particular individual is a recognized subject
matter expert on a particular aspect of the product, it makes everyone’s
jobs easier when that person shares their bag of tricks. Obviously,
having a lot of interruptions can make it difficult to focus and get things
done, and everyone tries to be mindful of this. But when the benefits of
such collaboration are recognized, it seems to be easier to get more
people on board, and this can lead to a positive feedback loop: the
support team levels up, the escalations get less frequent, and the devs
aren’t consulted as often.

Each organization needs to craft an approach to on-call that is adapted
to the problems you need to solve and the resources you have to work
with. In my case, working with a global team has led to a low-impact
approach to on-call duty. Think about how your own organization may
apply creative solutions to sustainable on-call coverage.

Monitor the On-Call Experience

Once again, monitoring is not just for production systems; it’s also
important to monitor the human systems. The on-call process itself requires
monitoring in order to be aware of what is not working and proactively
iterate on improvements. This is tied into advocating for yourself. To know
whether on-call sucks and to provide that supporting information to
management who can make change, you have to have monitoring that
measures and presents that information in compelling ways. See Chapter 11
and apply these improvements to how you share the measurements you
make about on-call.

The first measurement includes monitoring work in progress, even if you’re
the solo on-call engineer and you don’t need to explain your work to
anyone. Ideally, work associated with alerts should come into a shared work
queue. You want to be able to share visualizations over time of the work,
and when you make a change, you want to be able to see the impact. By
measuring first, you can establish the baseline and can then observe the
impact that changes (like more people on-call, specific improvements to
code or infrastructure) can have on the work being measured.

Here are a few questions to think about and consider monitoring:
e How many on-call hours are there per time period?
e How many active on-call hours are there per time period?
e How often does an alert page?
e How often is it actionable? Does the alert self-resolve?
e When was the alert last updated?
e When was documentation last updated?

e What is the impact of the failed system? Does it need to alert outside
of hours?

e How much coverage is available? If an individual is paged out and
resolving an issue, who takes the next page?

e How often does the person on-call get diverted from normal life
activities, including sleep, meals, and showers?

e How often are family gatherings and obligations interrupted? There are
many activities that can’t be rescheduled and are critical to maintaining
healthy relationships.

Rather than just focusing on system time to recovery and time to discovery,
these metrics help to classify and direct improvement in the on-call
experience. During production meetings, it’s helpful to talk about these
metrics so that the team notes the necessary action items to improve the
observed trends.

If your team has periodic retrospectives, think about the on-call progress.
Potential remediations you can suggest may include updating the paging
schedule and escalation policies. (If your team doesn’t have retrospectives, I
encourage you to suggest them.)

Let’s look at some other mitigation strategies once you’ve identified
specific issues with your on-call:

You’re having a difficult time unwinding after an on-call rotation

Look at the underlying cause. Is this about the total amount of time
required for the job, and is your availability to do the rest of your work
leading to incomplete recovery?

The mitigation here is to make sure you are tracking how much free
time you actually have and how restricted you are with that free time
and the type of activities you can do. The problem is with the system if
you have insufficient unrestricted free time. Work with your
management and your team to identify ways to repair this; long term,
this 1sn’t healthy. Left unchecked it will lead to fatigue and emotional
exhaustion and eventually burnout. Set healthy boundaries for yourself.

If it’s not because of work, it may be that you have other areas you need
to invest in. It’s OK to ask for accommodations to support you resetting.

People who are on-call don 't know enough about the system

The mitigation here is to help folks grow their skills to understand more
about the system. Take this as an opportunity to grow the knowledge
base about the system and find areas of improvement. If you are the
person who doesn’t know enough about the system, if you are in an
environment that encourages psychological safety and sharing your
concerns, speak up about what you need. You can ask to have a shadow
or to shadow someone else’s on-call shift to get better acquainted with
the system.

There are not enough people to cover the hours expected for on-call

Unless you are a manager, this is a really hard problem. Document the
cost to you and your team. Based on this data, ask for either additional
head count whether that means hiring additional people, proposing that
others in the company also take on-call responsibilities, or consider
lowering the priority of responding to on-call, i.e., availability is only
during normal working hours. If you can’t change the system’s
expectation, you need to change your job. It becomes harder to navigate
the interview process for other companies when you are burned out, and
your health will continue to suffer.

There is an inconsistent approach to on-call

First, inconsistency in itself isn’t a problem. While you may want to
have a nice, neat, perfect system, people are going to be messy and
inconsistent; no one can predict how any human will respond on a given
day. This is one reason that solving problems gets so ambiguous at
larger scales.

If the inconsistent approach is caused by lack of understanding or
education, fix the documentation. If the inconsistent approach is
intentional and harming the team, there are two possibilities of action: a

team with high psychological safety can hold its members accountable
for the work and the expectations of the work, otherwise, management
needs to take on this role and set the expectations clearly and follow
through when expectations aren’t met to repair the harm.

On-call shifts are unpredictable

On-call by its nature will be unpredictable. The better you and your
team get at handling and prepping the live environment, the more
unpredictable the work can get, especially as the usage of your system
grows. Monitoring for patterns early and distributing work fairly can
help individuals on the team feel mutually supported to weather any
unpredictableness.

Lack of compensation for perceived work

This is outside your scope as an individual contributor. Take a look at
Chapter 21 for ideas on how to mitigate this, and share with your
manager if you need help in this area. I included this in this list of
challenges because when individuals start feeling this way, it can impact
how they approach on-call and the work as a whole, even if they don’t
feel the same way about their compensation. Rather than take it out on
each other, recognize that this 1s a valid concern that individuals may
have.

Wrapping Up

Supporting your system through participating in an on-call rotation is part
of managing systems, but on-call can be handled in a humane way that is
compatible with a healthy lifestyle that includes spending time with friends
and family and engaging in activities outside of work that you are
passionate about. You can take time to step back from your usual routine
and focus on how the systems you oversee can be managed in a more
maintainable and sustainable way.

MORE RESOURCES

Check out these resources about on-call:

e “Crafting Sustainable On-Call Rotations” by Ryn Daniels

e “The On-Call Handbook” by Alice Goldfuss and contributors
(GitHub)

e Chapter 10, “Notifications,” in The Art of Monitoring by James
Turnbull (Turnbull Press)

https://oreil.ly/eaCvN
https://oreil.ly/zJKwv
https://oreil.ly/p6bMj

Chapter 20. Managing Incidents

As we explored in Chapter 19, the purpose of on-call is to be aware of your
systems so you can keep them healthy. But as much as you strive to reduce
risk, failure will happen—there will be incidents. Incident management
begins when you detect a problem during an on-call rotation, but
management often extends beyond on-call when other subject matter
experts and teams are required for issue resolution. The aim of incident
management is to minimize the impact of an incident.

You, as an individual, need the kinds of tools, techniques, and practices that
will not only get you through an incident with minimal suffering but will
also help you feel prepared ahead of time and able to react effectively when
an incident occurs. You need good, clear communication across teams so
that the appropriate subject matter experts can share their knowledge and
minimize time to resolution. And you need a way to capture and apply what
you learned from the incident to improve overall production, reduce future
impacts to customers, and reduce the team’s toil.

In this chapter, I share the framework for collaborative and sustainable
incident management from identifying incidents to conducting post-incident
reviews and identifying the actions required to improve the live
environment.

NOTE

[am assuming your team has incident management and that you’ll have some framework to which
you can apply what I’m sharing to improve your experience. If your team doesn’t currently do
incident management, then share this book or Chapter 21 with your leadership team.

What Is an Incident?

The definition of “incident” varies across organizations; an incident may be
anything that pages the on-call engineer, or it can specifically mean security
breaches. In this book, I define an incident as an exception to a live site,
service, or software application that has an impact.

Let’s break this definition down into the components, starting with
exceptions. Exceptions occur when the system doesn’t behave in an
expected way. Exceptions can be bugs in the code, failures in underlying
systems (like DNS or the network), or misunderstanding in the project
planning that led to a different implementation.

A live site, service, or application is something that is in use by clients or
customers. In many cases, this is the production environment for a site or
service but also includes applications installed on devices.

Impact is the qualitative effect that the exception has on the clients or
customers. Sometimes, this impact may be visible externally. Other times,
the impact isn’t visible and a decision needs to be made about whether to
disclose the incident or not.

Here are some examples of incidents:

e In October 2021, the loss of IP routes to Facebook DNS servers led to
a global outage of more than six hours to Facebook and its
subsidiaries’ sites. When the system went down, it also took down the
system that controlled keycard access to the buildings and server
rooms, so nobody could access the servers remotely and the sysadmins
on-site couldn’t get into the buildings and server rooms to do hands-on
mitigations.

e In July 2020, an expired server certificate and a data outage prevented
the California Reportable Disease Information Exchange from
accepting COVID-19 lab results from external partners, leading to
discrepancies and under-reporting of case information.

e In October 2019, Docker experienced an incident where the Docker
Hub registry was down. Any organization that relied on directly
pulling images from the registry would have experienced issues.

Organizations that cached Docker images or hosted their own registry
would have minimized their impact.

e In May 2019, Slack started a deploy of a feature that prevented some
customers from connecting to and using Slack. For organizations that
were impacted, this was a complete outage.

As you can see from these examples, incidents can vary in degrees of
external impacts. Additionally, incidents may be near misses that your
customers have not (yet) observed.

What Is Incident Management?

Managing an incident is more than responding to the impactful event and
restoring your system to its operational state. Incident management is the
process of planning, preparing, responding, investigating, and learning from
the incident.

Take a look at Figure 20-1, which shows this continuous learning cycle.

Plan

[Prepare]

Respond]

Investigate

Figure 20-1. Incident management cycle

Outcomes of these different parts of incident management lead to the
following:

https://oreil.ly/Z18FC

Reducing damage, costs, and recovery time

Identifying code or process issues
» Repairing issues to prevent repeat incidents
e Documenting incidents

e Learning from the investigation

Each step in the incident management cycle shares basic principles that
include clearly defined roles and responsibilities, as well as opportunities
for continuous collaborative learning. Effective incident management may
lead to data to support head-count requests, improved training, and
promotion artifacts.

RECOGNIZING WHEN IT’S REALLY THE SYSTEM, NOT
YOU

In Chapter 19, I talked about building your individual resiliency to
support your production services during on-call. Yet, sometimes there
are components of the work that are outside of your control, and no
amount of individual resilience is going to support sustainable work.

When it comes to managing incidents, there are some warning signs
that your role has limited growth opportunities, including:

e Lack of transparency around failure

e Blame and fear culture where folks are afraid to talk about
mistakes

e Repetitive incidents without improvement or long-term correction

There are other problematic issues, but these are especially harmful
because they hinder learning, disrupt trust and relationship building,
and promote burnout, which can compound the impact of incidents. If
you see these signals and can’t change your work to make it more
sustainable, find a new opportunity before you burn out because it is
especially challenging to interview for a new job when you’re already
depleted.

Planning and Preparing for Incidents

While you can hope that nothing happens during your on-call rotation,
inevitably something will happen, so have a plan and regularly prepare for
incidents. With contemporary systems, this requires collaboration and
coordination within and across teams to communicate to the various
stakeholders with a consistent and reliable response. In some organizations,
an ad hoc temporary team such an incident response team (IRT) or incident

management team (IMT) is created to coordinate and collaborate to resolve
an incident.

The following subsections cover the planning and preparation steps you
need.

Set Up and Document Communication Channels

During an incident, a team shouldn’t be trying to figure out the process for
how everyone will communicate, especially when individuals might not be
in the same place or even time zone.

There is no one right way to handle incident discussions. One approach is to
create a single #oncall channel where on-call discussion occurs. When a
significant incident is identified in the discussion channel, a new

#incident NUMBER channel is created, keeping the primary #oncall
channel uncluttered by the highly focused incident needs so that other
potential problems aren’t hidden. A problem with this approach is
managing and tracking a lot of short-lived channels.

Another approach is to create a single #oncall channel and discuss incidents
in threads. This helps with organization and visibility of incidents, but it can
also make the channel overwhelming, especially when incident-related
threads stretch to hundreds of messages.

A third approach is a compromise: start with threads in the main #oncall
channel and be mindful of the scope of the investigation. Break out into
separate channels when it becomes necessary.

Choose a standard, and change the approach based on how it works for your
team.

Train for Effective Communication

Being explicit about the expectations around communication during an
incident reduces mistakes and time to resolution. Recall “Case #2: Telling
the Same Story with a Different Audience”, and consider also the level of
detail that is appropriate for your different audiences: internal teams

working a case need to share unfiltered real-time information, but managers
overseeing things might want only periodic status reports, and customers
and other external stakeholders may need only a brief summary.

People practicing communication protocols helps encourage speaking up
and sharing their knowledge during an event.

THE LAUNCH OF CREW RESOURCE MANAGEMENT IN
AIRLINE TRAINING

On December 28, 1978, as the landing gear of United Airlines Flight
173 was lowered on approach to Portland International Airport, the
crew felt problems with the aircraft and didn’t have a solid signal that
the landing gear had lowered successfully. The crew asked for a holding
pattern so they could prepare passengers for a potential emergency
landing. The captain was focused on resolving the landing gear issue
and wasn’t monitoring the fuel gauges. Flight engineers expressed
concerns over the fuel but didn’t manage to successfully communicate
the concern to the captain. When some of the engines flamed out due to
the lack of fuel, they had to try to land immediately and crashed.

After investigation by the National Transportation Safety Board
(NTSB), other flight accidents were discovered to have been caused by
similar problems with lack of communication and ability to work
together; some crew members had critical information and didn’t share
it or question the decisions that were made. The NTSB identified a need
for new training that would improve how the crew would make
decisions, solve problems, and work together effectively. NASA’s Ames
Research Center developed the original crew resource management
(CRM) training through a workshop in 1979."

Collaboration 1s difficult. You have to understand how to do it and
regularly practice it, and it’s going to vary across situations and the
people that make up the team. You don’t want to try to learn how to do
this when the incident occurs.

Additionally, you need to build the confidence that enables you to
question leaders or subject matter experts. Everyone makes mistakes. If
you hesitate to speak up when you observe mistakes, it could lead to
more negative outcomes.

Create Templates

Templates help guide consistency across incident management and improve
efficiency because individuals have a structure and layout to start from.
Templates set expectations and standards.

TIP

People may chafe at templates with too many rows or fields. Make sure that templates focus on
the minimal required information.

Maintain Documentation

On-call and incident handling documentation should be reviewed and
updated regularly. Stale documentation that doesn’t reflect the processes in
use hinders organizational learning as well as frustrates engineers. Make
sure to review the processes to handle alerts, disaster recovery, and other
artifacts that might not seem to be documentation at first glance.

Document the Risks

What are the risks that you are exposed to, what’s the probability of those
risks occurring, and what are the associated impacts? The goal of incident
management isn’t to eliminate incidents but to reduce risks in a way that
lets your organization continue to make changes.

Imagine potential failures and explain what would cause them. This also
helps you prepare backup plans and highlight factors that could influence
successful resolution.

TIP

Read more about risk in Chapter 3 (written by Marc Alvidrez) of Site Reliability Engineering
from Google.

Practice Failure

https://oreil.ly/es3Qs

Exercise and review your incident handling procedures so that the steps are
automatic. Much like testing in development and the live running of your
system, practicing your response to simulated failure is a very different
experience from handling a live incident. But even with a practice run, you
can still identify gaps in documentation and processes that will provide a
much better experience for you when responding to an event at 2 a.m..

Understand Your Tools

Your team will have a collection of tools, practices, and processes for
incident management. Table 20-1 shows examples of tools to be aware of.

Table 20-1. Tool categorizations

Category
Monitoring

Alerting

Chat service

Video chat

Incident tracking

Documentation

Issue tracking

Purpose
Measure, collect, store, explore, and visualize data from infrastructure.

Manage on-call rotations and escalations and notify designated on-call
responders.

Provide real-time communication to share observations, links, and
screenshots.

Provide real-time communication to discuss and agree on approaches for
incident response.

Process, troubleshoot, and track the overall progress of the incident.

Categorize and aggregate artifacts (incident management reports, incident
research).

Process, troubleshoot, and track the overall progress of issues with your
systems and software. This may or may not be the same tool used for tracking
incidents.

Make sure that you have an account on each of these tools as necessary and
the method for accessing each tool, whether it’s a special application that
you install on your phone or a URL.

Clearly Define Roles and Responsibilities

Incident response teams vary across organizations. If your organization has
an IRT, there may be different names for specific roles and more or less
differentiation. A few significant functions (whether they have these names
or not within your organization) are the incident commander, subject matter
expert, liaison, and note taker:

Incident commander (IC)

Responsible for driving an incident to resolution. During an incident,
there is always a single acting lead to coordinate the various activities.
The responsibility may be passed from one individual to another
throughout the resolution of the incident.

Subject matter expert (SME)

The on-call engineer or the designated owner of a particular part of the
service. A number of SMEs may be required to resolve a specific
incident.

Liaison

Responsible for communicating internally and externally about the
status of a current incident. There may be multiple liaisons for handling
the different messaging internally and externally for a specific incident
depending on the scope of the incident.

Note taker

Takes notes, filling in details about the important actions and follow-ups
that occur during the incident. The note taker can use software that
responds to special commands or a chatbot. Handling incidents via a
chat tool like Slack or a recorded video conference can fulfill this role
too, because both of these provide timestamped transcripts of what was
discussed. These notes are critical for providing the context for the
narrative that will drive learning for the incident later.

If your organization doesn’t have an official defined process for incident
response, this may be an area to refine to help support sustainable on-call
and incident management. This will require leadership buy-in.

Understand Severity Levels and Escalation Protocols

When you are paged while on-call, you need a reliable way to prioritize
pages and identify an issue as an incident; understanding how your team
assesses severity levels helps you decide what to do and who to tell.

Lower-number severity levels generally indicate more highly impactful
incidents. This might look like the following:

Severity 1

A critical incident with high impact; for example, this could be a
completely compromised system that is impacting all customers, a
privacy breach due to a hacked system, or the loss of customer data.

Severity 2
A major incident with significant impact; for example, this could be a
degraded system that is impacting some customers.

Severity 3

A minor incident; for example, the system may be slower to respond but
not completely down.

When a team has a common understanding of what severity levels mean,
they can communicate the severity level and quickly initiate appropriate
escalation protocols that bring the right level of response. The more severe
the incident, the more important it is to have different people handling the
different roles of incident management.

Responding to Incidents

Every team has some sort of process (whether documented or not) for
handling incidents. Reflecting and explicitly documenting what each part of
the process looks like can help in improving coordination when you are
actually handling an incident. Figure 20-2 is an example of the process of
managing your incident response with clear roles and responsibilities for
the different parts of the incident management team.

Assess

)

Figure 20-2. Incident response cycle

The IC assesses the incident through the observed symptoms, scope of the
problem, and potential risks based on the symptoms.

When it’s time to act, the following steps occur:
1. The IC identifies possible actions and associated risks.

2. The IC makes a decision, saying their decision out loud if on a call and
in a channel if on a chat platform.

3. The IC obtains consensus on the decision by asking whether there are
strong objections. The IC adjusts actions based on feedback, but
ultimately the IC makes the final determination.

4. The IC delegates stabilization actions. The assignments must be clear
and specific with explicit timing information about when the

individual will update the team with progress.

Sometimes, an individual might not have the skills to do the identified
action. It could be a good time for the individual to learn from
someone with the experience. If there 1sn’t sufficient time or there are
too many tasks, the stabilization step should be handed off to someone
more experienced.

Assignments should be adjusted based on feedback and required
timelines. Depending on the severity of the incident, this may require
pulling people on to the incident response team to complete the
required tasks in a timely fashion.

The next phase of the cycle is to inform. Depending on the size of the team
handling an incident, the IC may name an explicit liaison to handle updates.
Liaisons shouldn’t be actively investigating and repairing the system.
Shifting contexts from debugging to communications to executing critical
commands can exacerbate stress and increase mistakes.

When the live site is in a degraded state, clear, timely communication to
customers requires skill. Poorly worded explanations can cause more
problems than the actual outage.

The liaison sends regular updates to the team, customers, and executives.
The frequency and content of the communications will vary by audience.
Updates should include what is happening and the steps taken. As an
individual’s expertise is no longer needed, the IC reduces the scope of the
incident. The IC informs the incident response team, who is still required to
resolve the incident and encourages folks who are no longer needed to take
a break.

The final step in the incident response cycle is to verify. This includes
checking that stabilization actions are complete and verifying the outcomes
of those actions. If there is continued impact, the incident commander
repeats the steps starting from the assessment of the incident.

Learning from the Incident

After the incident has been resolved, collate information from all the
participants of the incident response. The goal of this is not to place blame
but to uncover what happened and drive conversations. One way to help
prevent blame is to make sure that the focus is on what happened and what
people decided to do based on that information rather than on what should
have happened or could have been done.

How Deep Should You Dig?

Organizations vary in size and complexity. There may be regular incidents
of varying degrees. Have you ever been in a post-incident review meeting
where it felt like the goal was just to go down a checklist rather than focus
on the impact of the incident and how it was handled? I’ve definitely sat in
my share of meetings thinking about strategies to avoid those meetings ever
again. To learn from an incident, you need to be open to discovery and
exploration rather than follow a strict checklist.

Every incident is a special snowflake; even when it looks familiar. The
combination of computing, storage, or network choices in the system
implementation might be different. It could be a different software (or
version or or configuration of software). It could be different people.
Depending on the maturity of your organization, the set of tools you have,
and the people in the mix, there may be limited time to analyze all
incidents. So, how do you figure out what to investigate and to what
degree? Really, it depends on what your team wants or needs to learn.
Interesting incidents might include those that involve multiple teams or
large impacts, incidents due to new systems or features, or events where an
incident was actually avoided.

THE DANGER OF COGNITIVE BIASES

A number of cognitive biases can hinder your identification of the
systemic causes of incidents:

Anchoring bias

Relying on one piece of information or single source when making
a decision rather than considering things holistically. Checklists
reduce anchoring bias by helping you make sure that important
details haven’t been overlooked.? Following a checklist isn’t a sign
of incompetence; it’s an admission that even professionals make
mistakes and seek to minimize them.

Availability bias

Occurs when you are influenced by memorable or easily accessible
events. One way to minimize this bias is to maintain a searchable
library of previous incidents so that you can compare the current
incident to ones that your team has handled in the past.

Confirmation bias

Relying on data that agrees with your preexisting opinions and
beliefs while filtering out evidence that doesn’t. To counter this
bias, look for and include countering evidence and include diverse
perspectives and points of view.

Hindsight bias

Assuming that it was possible to predict that a particular event
would occur.

Status quo bias

A preference for things staying the same, leading to a resistance to
change.

To counter biases:

1. Obtain the facts first without assuming an immediate cause.
2. Flag potential causes.
3. Look for and evaluate contradictory evidence.

4. Revisit the data.

Aiding Discovery

The “should’ve” and “could’ve” can derail learning about what happened.
This doesn’t mean you shouldn’t acknowledge mistakes. Mistakes need to
be talked about and understood. Without psychological safety on a team, it
can be really hard to admit to being wrong or having made a mistake. If
people don’t speak up because they are afraid they did something wrong,
you miss an opportunity to repair systemic problems or mistaken
assumptions about recommended actions.

Depending on your role in the discovery and investigation process,
especially if you weren’t part of the incident response team, you can ask the
following questions:

e How were you notified of the event?

Has this type of incident occurred before?

If the incident has occurred before, what was the past impact?

What surprised you about the incident?

Could this incident occur again?

You may discover varying perspectives on the system and what went wrong
as well as hidden differences in how people make decisions about managing
the systems.

Documenting Incidents Effectively

Incident reports are artifacts for the team to help spread knowledge and
prevent stagnation. Team artifacts should be stored in a central place.
Depending on the organization, these artifacts may be useful to other teams.

Each artifact may have slightly different content based on the nature of the
incident. The intended audience of the team incident report is the
individuals on the team, so these reports can be longer and more detailed
than external or executive briefings. Here is an example template for a team
incident report:

 Title.

e Date.

e Author(s).

e Summary of the incident.

 Incident participants and their role(s).

e Impact.

e Timeline.

e Graphs and logs that help support the facts described in the timeline.
e Lessons learned about what went well and what needs improvement.

* Action items—these should include who, what, type of action, and
when. Others outside of the incident response team might think of
additional action items after reviewing the narrative.

Everyone involved in the incident response should review the record of the
incident and add information that might be missing, including areas where
they might have been confused or uncertain about next steps.

Team incident reports aren’t the only artifacts of interest. In my experience,
when the focus is on creating a single artifact, it can feel like a way to direct
blame and can lead to ingrained fear that hinders collaboration on learning

what happened. A lot of data is generated, many graphs are examined, and
many people may have been involved in getting the service back into a
healthy state. Sift through all this information and compose the necessary
artifacts; this may be an executive report for a CEO or customer
communication, in addition to the team incident report.

Distributing the Information

After documenting the incident, share what you learned from the incident
with the organization. You might do this by sending an email, updating a
website, or presenting the information in a meeting. The post-incident
meeting is a critical part of continuous learning in an organization.

Everyone heading to this meeting should have shared objectives to help
align efforts. A post-incident meeting without shared objectives is often
worse than no meeting at all. If there are misaligned incentives or
individuals are not getting recognized for the value they bring to the
process, this can lead to heroics or dismissal of the whole process.

Objectives shouldn’t reflect an idealistic “perfect” world. For example,
there is no way to prevent incidents from ever occurring, so having an
objective to eliminate incidents isn’t reasonable or attainable.

Instead, aim not to repeat the same incident in the same way. Other helpful
objectives might include identifying specific areas where information about
why something occurred isn’t understood clearly and where single
individuals knew specific information that wasn’t known by the entire team.
In other words, the outcome of this meeting should increase knowledge and
identify areas of focus. Some documentation may need to get updated after
information has been distributed to the larger group.

Next Steps

Often, incident management success metrics are focused on improvements
to mean time between failures (MTBF), mean time to failure (MTTF), mean
time to detection (MTTD), and mean time to recovery (MTTR). These

metrics were useful when reading hardware specifications to schedule
optimum proactive replacements to avoid outages. These metrics are much
less valuable when it comes to modern cloud-centric systems, because their
focus on predicting hardware failure trends no longer applies, now that the
focus has shifted from physical servers to virtualized compute.
Additionally, averaging response times for different times of failures isn’t
providing useful and actionable information. Better success metrics can be
uncovered through continuous collaborative learning from incident reports.

A successful incident management process could result in the following
outcomes:

» Less people in incident response (folks feeling more confident in the
process)

e More people attending incident reviews (folks feeling like the use of
their time is valuable)

e More time allocated for event investigation

Wrapping Up

Incidents are exceptions to a production system that have an impact on the
users of that system. It’s unrealistic to think you can eliminate all incidents.
Instead, focus on improving your incident response with deliberate and
measured change. Consider how well your team responds to and learns
from incidents.

You and your team can prepare for incidents by establishing processes for
communication, training, and documentation. When an incident happens,
communicate clearly to internal and external stakeholders, customers, and
the team; pull in the necessary subject matter experts; and learn from the
outages to improve the systems.

Incident resolution needs to include sharing learning from the incident,
identifying where things went wrong, and considering changes to reduce

future risks where patterns can be detected around events that affect your
systems or across incidents that occur.

MORE RESOURCES

Learn more about incident management from the following:

e Vanessa Huerta Granda’s blog post “Making Sense Out of Incident
Metrics”

e John Allspaw’s blog post “Moving Past Shallow Incident Data”

e Richard Cook’s treatise on the nature of failure, “How Complex
Systems Fail”

e Community-curated collection of resilience engineering papers

1 Jerry Mulenburg, “Crew Resource Management Improves Decision Making”, APPEL
Knowledge Services, last modified May 11, 2011.

2 As an example, even highly trained surgeons benefit from checklists; surgical safety
checklists have proven to be an effective way to improve medical outcomes for surgery
patients.

https://oreil.ly/mLpOt
https://oreil.ly/SLnMR
https://oreil.ly/uxHqA
https://oreil.ly/xjkf1
https://oreil.ly/Z5cbE
https://oreil.ly/DSJIq

Chapter 21. Leading
Sustainable Teams

Let’s revisit some concepts from the previous chapters and apply a
leadership lens. Throughout my career, I’ve seen how the overall systems
impact the flexibility and capabilities of a team. As a leader, there are
additional opportunities to foster and support the team by changing how the
overall system works.

OK, this chapter is explicitly for individuals in leadership positions. While |
believe strongly that everyone can be a leader, | know that different
organizations block functional leadership. If you aren’t leading now, I
encourage you to read this chapter and share it with your management if
you like what you read here.

In this chapter, I will share how to lead teams with a whole-team approach
that centers on continuous learning throughout every phase of a system’s
lifecycle without siloing or centering any specific role (i.e., development,
quality assurance, or operations).

Collective Leadership

A leader is not one who wishes to do people s thinking for them, but one
who trains them to think for themselves.

—Mary Parker Follett

Leading is required when the problem is bigger than one person can solve
or influence. It’s not specifically about management, and it’s not telling
someone to do something. It’s a lot of work to convince others that a
problem exists and that you can fix it together.

Additionally, I recognize that there is formal power in an organization. The
individuals with authority over money decisions (e.g., hiring, firing,

retention, reorganizations) have more capabilities in creating and
maintaining sustainability.

NOTE

Leading comes with great responsibility and privilege. What happens on your team and at your
work impacts people’s lives, health, personal relationships, personal goals, and dreams. You affect
how they spend their time, the most precious resource any of us have. You have a responsibility to
the company but an equal commitment to the people.

Instead of a lifecycle that silos development and operations, in Figure 21-1,
I present a devops lifecycle model of continuous learning that eliminates the
silo and focuses on continuous learning throughout every phase with
monitoring to enable observation and experimentation regardless of role or
stage.

Code
Plan Build
Run Q . ; Test
[Deliver/deploy Release

Figure 21-1. A modern devops lifecycle requires continuous learning

Organizations often base funding decisions (head count, projects, tools, and technology) on early
requirements and ignore the rest of a system’s lifecycle. For example, when building software,
resource allocation is centered on the developer’s experience and coding rather than on making a
system supportable after it has graduated into production. In addition, people take for granted that
“somebody” will know when something has gone wrong and will be there to respond immediately.

Watch out for this pattern in your organization, as it signals that the human(s) responsible for the
system’s operation will bear the brunt of running the system.

Adopt a Whole-Team Approach

A whole-team approach is one in which the team includes everyone (e.g.,
system administrators, developers, security admins, network admins,
product managers) involved with the system, and everyone is held
responsible and accountable for the success of the system.

This approach requires that every person values the strengths and skills of
the others on the team. There is no way to know everything, and operating
in isolation limits the perspectives anyone can take in solving the problems.

Consider a whole-team approach to maximize the comprehension of
complex environments where a shared understanding of the system’s
components helps mitigate the risks that can negatively impact the
experience of using or running the system. You are not striving for a
“perfect” system with zero downtime where you eliminate all risks. Chasing
zero downtime is costly to the business and potentially harmful to the
humans supporting the systems.

Combining a whole-team approach with a question culture encourages
individuals to ask for clarification, which supports an increased shared
understanding, as people don’t make assumptions in isolation.

NOTE

An important note, particularly for managers, is that while retrospectives and reviews of incident
response protocols have their place, you want to avoid second-guessing the details of the
resolution while you’re trying to provide social support. In research founded in the Jobs Demands-
Resources model, both autonomy and social support may reduce exhaustion and other
consequences from heavy workloads," and even a well-meaning and insightful critique can appear
to yank away both when someone is sleep-deprived and frazzled.

Let’s look at adopting a whole-team approach to on-call and building a
resilient on-call team.

Build Resilient On-Call Teams

A resilient on-call team is one that can manage the stress of handling the
unknown problems that occur in a system. It’s the virtual team of folks who
care about the service or system and treat the live system with a co-
ownership model to distribute responsibility.

On-call provides direct insight into the value of the software in use and
customer commitments. The people who build the product have the most
understanding and context about how the product should work. Still, the
system administrators have often learned how the product works in the
production environment. Having developers respond to first-level alerts
ensures that the people building the product have insight into the most
painful parts of the system.

Additionally, when developers handle on-call, they can better prioritize
feature work, whether refactoring existing systems, implementing new
features, or removing functionality crucial to the system’s operation.
Finally, when developers ask for infrastructure support, they will better
assess the severity of the problem based on their knowledge of the system’s
operation.

Some organizations embraced adding developers to on-call rotations and
started to advocate for the elimination of operations teams. A “no-ops”
team can be problematic because many developers don’t have operability

skills. Lacking these skills isn’t a reflection on the individuals; there is
always a trade-off in skill specialization. Developers often focus on the
software to solve a specific business problem, whereas sysadmins specialize
in reasoning about the systems in operation. The problem arises when you
don’t have the perspective of people who understand the systems in
operation that need continuous care and feeding. One way of identifying
whether this is causing a problem in your organization is to examine
whether there 1s friction in describing the team’s work.

While devs may be on-call for a specific component, sysadmins are usually
the ones with knowledge about the interoperation of all of the different
systems. Operations teams play a part in on-call, whether through primary
rotations or second- or third-tier support. Beyond first-tier support, system
administrators assist product integration with other dependencies or
standard operability (i.e., backups and recovery).

Sysadmins often have administrator visibility across system resources with
cloud providers and third-party services. As a result, they have insight into
how production systems can vary from other engineers’ experimental and
testing instances.

It can be hard to change a team dynamic where folks assume on-call work
is the responsibility of a single individual who must be held accountable.
Incentives and rewards need to align with the importance of the customer-
impacting environment. Support the co-ownership model and keep the
reliability and robustness of the live system in as high esteem as feature
work.

TIP

Check out this case study on changing the on-call practice at LinkedIn.

You don’t have to set on-call rotations in stone. They can be the plan of
record that allows and responds to changing situations. Form a supportive

https://oreil.ly/DYZjR

team with sustainable practices that encourage folks to sub in and swap
mid-rotation, thus giving the on-call engineer respite as necessary.

Update On-Call Processes

High-stress on-call without relief harms mental health and can lead to
anxiety, depression, burnout, and other issues. Also, individuals may
ruminate about production in unproductive ways, shifting focus away from
the creativity required to work on complex projects and develop plans that
can efficiently solve the underlying problems.

Teams that apply continuous learning to on-call can help lower the risks of
this harm to the individual and improve the team’s resilience to respond to
outages. Suppose on-call is sustainable to the engineers responding. In that
case, everyone benefits from having the mental space to incubate ideas
because people no longer have to worry or fear more significant impacts or
interrupts.

Update the on-call process by doing the following:
Monitoring the on-call experience

Lots of pages and long-running events tire out on-call engineers. When
folks are tired, they are more likely to make mistakes. Monitoring the
on-call experience improves the general health of individuals and the
team by ensuring tired folks don’t stay on-call and encourages a culture
of support and care.

To do this successfully, you must have earned the team’s trust so that
individuals don’t feel like someone is virtually looking over their
shoulder, holding them accountable to optimize key performance
indicators. Instead, the whole team is approaching the goal of this
initiative to measure, learn from, and alleviate the innate pressures of
the work to enact sustainable and lasting change.

Embracing the whole-team approach

Encourage folks to reach out for help to increase the overall resilience
of the team. Planned escalations reduce the stress of the unknown.

Monitoring and maintaining alerts

Noisy alerts are frustrating and reduce vigilance (alert fatigue),
increasing the risk of mistakes. If you use an SLO handbook, make sure
that documentation is updated to reflect changes to the SLIs, including
why you made the change.

Establishing incident protocols

Not every event needs to be measured. Not every measured event
should be an alarm that pages individuals. Not every page is an incident.
Establishing explicit, clear protocols helps reduce fatigue and promotes
alert maintenance. It also provides people with a process to follow for
those business-critical pages at 2 a.m.

Monitoring the impact of the schedule

Humans make schedules that others may perceive are unfair or
unbalanced. Proactively planning and adding individual needs can
promote better, more flexible schedules that work with humans.

Ultimately, companies that build sustainable on-call will have a competitive
advantage over those that don’t, as systems take on more complexity.

TIP

Incident teams should have a plan for obtaining inclusive snacks and meals. For distributed teams,
it’s critical to have contact information for the on-call engineers and delivery options or have a
policy that grants a stipend for folks to expense a meal.

People forget to eat when focused on repair and recovery. This exacerbates the fatigue that comes
from sustained attention to a specific problem. Team leadership should make part of the
assessment process a check-in with the humans that are part of the system.

Monitor the Team’s Work

As I discussed in Chapter 14, you monitor to increase the visibility into
your systems and the potential risks to those systems, which includes
gaining more visibility about the people and processes. When thinking
about a team’s work, what are you trying to assess, and what are the
desirable outcomes? What are the signals that will help you identify and
reach your goals? How do you determine the complex issues that need to be
solved to improve the team’s efficiency?

Why Monitor the Team?

Montitoring at the team level helps build stronger relationships and trust as
the individuals on the team have more visibility and context of the work
each contributes to the team effort. Visibility into all the work also helps to
inoculate the team from support heroics by measuring and supporting the
right actions.

Providing team-level evaluations of work can help shift the perception of
operations from the lone sysadmin to one of more collaboration and visual
feedback. It also allows for in of how individuals do the job. allowing the
most important and urgent work to get done while also providing the
flexibility to incorporate other work as needed in the absence of that
urgency.

The monitoring process is iterative. Monitoring provides information to
help you analyze what is happening and gives you the supporting evidence
to educate the team and drive changes. Sometimes these changes are to the
compute infrastructure; other times they are to the human processes. People
are part of the systems you manage, from development to support in
production.

For example, I have been in environments where the average workload for
the ops team meant that we each worked at our full capacity. If anyone took
time off, whether planned or unplanned, this led to extra stress on the
system, which led to increased mistakes in resolving incidents and

frustration among team members. Monitoring helped us establish that we
needed additional people on the team based on our expected workload. This
gave us extra capacity when everyone was available but reduced friction
when people needed time off.

INCREASING STAFFING

If you recognize that your team is chronically understaffed, how do you
go about getting more people? There are different ways to approach this
problem, especially if you are on a “team” of one, but here’s my advice.

First, do not start any request with “We’re understaffed.” Also, when
growing the team, recognize there are limits to how many new people
can start at any one time. Research, plan, get buy-in, and execute as
with any project:

Research

Identify who has decision-making authority. Don’t undercut your
manager or skip levels. Find the critical, impactful projects your
team has been involved with that have value to the authority.
Brevity is key here; don’t document everything you’ve done.

Plan

Put together your proposal with the specific work that the additional
people will do and what impact they will directly have. Speak in the
language of the business and the decision-making authority. Provide
possibilities that might not be top of mind: internships, temporary
team rotations, etc.

Get buy-in
Empower your manager and skip levels to support your efforts by
inviting them to review, give feedback, and approve your plan.

Execute

If you get the head count, write up that job requisition based on
your plan. Then, follow through on the commitment so that what
you promised happens such that people want more.

If you don’t get the head count, hear the feedback and act on it.
Maybe the team is working outside its remit and should stop doing

some of that work. Sometimes this means part of the system starts
failing. Recall from earlier in the chapter that you’re not trying to
have a perfect system and that the failure may be acceptable to the
business.

What Should You Monitor?

Talk about the meta-work, how you do the work, to identify the events to
monitor. Also, this discussion isn’t a one-and-done. Over time, the team’s
processes will evolve, and regular retrospectives to document emerging
practices need to occur.

A retrospective is a meeting held at the end of a specific period to reflect on
how the team works and identify ways to improve.? When work is visible,
folks can reflect on the data and make decisions based on that data rather
than on what they imagine has happened based on memory.

Recall “Case #1: Charts Are Worth a Thousand Words”, the story I shared
about tracking work. In addition to prioritizing work as a team and visibility
improvements to our stakeholders, we had better visibility about what was
happening. With regular retrospectives, we identified and corrected the
underlying problem of having too much work in progress.

When we implemented a shared board for tracking our work, regular
retrospectives helped narrow our goals to what we could accomplish in a
quarter (decreasing our work in progress). As a result, we incrementally
made a few changes in our processes: we postponed big projects to ensure
that everyone had one large project at a time, and we increased our
frequency of retrospectives from once per quarter to biweekly.

Even though we had more meetings, these changes helped us accomplish
more per quarter because each of us as individuals could focus our efforts.

During the retrospective, when you reflect on what has gone right, include
information about who and what supported successful outcomes.
Recognizing contributions is a way to fuel trust within the team, even if the

assumption is that folks are “just doing their job.” When you reflect on
what went wrong, include the details about what hindered the goals.

Over time, quality retrospectives can turn teams into great teams through
continuous improvement. Without retrospectives, work can feel chaotic and
unproductive, and vital tasks and projects get delayed while the wrong ones
get completed. Initial topics to discuss within a team include the team’s
objectives, task and project definitions, and descriptions of the work and the
phases it goes through.

Keep in mind that, in general (regardless of the type of job), people need
five things:3

Freedom

Having control and autonomy over their work

Challenge
Feeling that their mind is stimulated; they think and fully use their skills
to research, design, or implement new approaches.

Personally meaningful contribution

Feeling that their work matters

Positive atmosphere

Feeling connected with their coworkers in a positive way
Education

Increasing competence and growing expertise

Incorporate this understanding into conversations about the team’s work.
For example, instead of telling someone, “Do this, that way,” ask, “What do
you think we need to do to solve this problem?”

What are the team’s objectives?

The objectives will be the overarching goals of the team that help align the
incoming work and performance of the team. For example, suppose the
team completes incoming work that is not supporting a team objective. In
that case, it’s essential that management either help the team to update the
objectives so that the individuals doing this work get credit for contributing
to company objectives or help the team to say no. For embedded teams, if
the leader does not include the sysadmin work in the overall objectives of
the team, this work may not be valued and rewarded!

NOTE

Individuals don’t define team objectives. When this happens, the individual who forms the
objectives often has to push for those objectives to be met. Ideally, individuals pull work because
they are motivated and interested in accomplishing the tasks and not having the work pushed at
them to complete.

What is the team’s definition of a task?

A task should be something discrete that can be tracked through the stages
of work and accomplished within a specific time frame; for example, use
real tasks to illuminate where differences in definitions may be occurring.
The specific time frame could be an hour, day, or week. For example,
setting up a new service on some teams might be considered a task; for
others, it might be a project.

TIP

Future discussions can also include characterizations of tasks; is something rote that you can
document with a playbook or checklist, or is it novel and requires additional planning time?

What is the team’s definition of a project?

I’ve found it’s pretty hard to nail down more than a week to apply myself to
a single workstream consistently, so breaking it down gives me a way to
progress toward achieving the larger objective. So, I generally consider

anything that requires more than a week of my time a project, meaning that
there are additional steps that [need to take to ensure its completion.

A project is composed of a number of tasks. To make the work visible,
individuals should divide a project into the required tasks and split larger
tasks into smaller ones.

NOTE

There may be additional terminology that you need to define collaboratively with your team to
come to a common understanding. For example, I use the word program to describe work that is a
project with additional collaborators from external teams who may desire different outcomes but
have a common purpose in the collective efforts.

What is the service catalog that your team offers?

The service catalog is your team’s organized and curated collection of
services. Discuss all the different types of work and skill levels so that you
can organize (and curate) this offering. The first step is just figuring out the
complete list of work and then deduplicating descriptions of the work. Once
the team has reached a place of team psychological safety, it can be helpful
to ask, “Why do we do this work?”” The team may discover that there is
work that needs to be deprioritized to focus on the real differentiators in
what the team can accomplish.

Examine the work

Once you have the list of work, examine the work more closely and the
phases or stages that work goes through. Are they the same or vastly
different? Here’s an example of what this categorization might look like
based on the type of work:

e Bug fixing
e Incident response

e Administrative tasks

 Interrupt-driven requests

e Recurring meetings, including one-on-ones
e Watercooler talk

e Specific project work

Some of this work (such as one-on-ones and watercooler opportunities)
can’t be automatically monitored or visualized qualitatively. Work
following a similar path can be grouped and use the same visualization
when monitoring. If work doesn’t follow a single path, you shouldn’t try to
shoehorn it together into a single workstream. Each stage needs to clear
boundaries with defined exit and entrance conditions.

On reflection, you may uncover differences in opinions on what stages
mean. For example, what does an “Accepted” stage mean? Has the team
committed to doing the work? Does it mean someone is responsible for
doing this work this week? Giving further definitions helps clarify intent
and establish a common understanding.

TIP

Make it a habit to update the team’s onboarding documentation with updated taxonomy, processes,
and policies with each retrospective.

Measure Impact on the Team

Recall from Chapter 20 that metrics like MTBF, MTTF, MTTD, and MTTR
aren’t valuable for modern system administration; they incentivize the
wrong improvements (e.g., not the right work or work done at the wrong
time) or devalue the individual’s work and demotivate them by pressuring
them to provide metrics that don’t make sense (recall the importance of
control and autonomy and work that matters to individuals).

Instead of these metrics, based on the business goals, identify how those
goals are being met (or missed), and implement dashboards that can support

achieving those goals with continuous collaborative learning. If there is no
current monitoring, leverage the narratives from what is available. The key
point here, though, and it bears repeating, is measure to learn.

When you are assessing the system, sometimes you’ll see patterns where
the system is the problem. For example, in a past job, testing could trigger a
flaw with the network devices. There was an expectation that I would be
ready at a moment’s notice to come in on the weekend to power cycle a
network device that had crashed to ensure that automated testing could
continue. The cost at the time to invest in better network gear (tens of
thousands of dollars) or a switched power distribution unit (approximately
$1,000 per device) never occurred to management as a viable option
because my time was not valued, even though I was not being paid for on-
call work or weekend work in any capacity.

Falsely pushing capacity limitations to humans creates unsustainable work.
Examples of this include the following:

e Not investing in appropriate tools

e Not investing in or supporting enough people for the work required to
support the infrastructure needed for a service

Capacity limitations create an additional human workload that 1s
erroneously often seen as “free” but has high costs, like travel time, work
time, and the research on the maximum capacity of effective work.

Sometimes you (or your management) may make an intentional decision
not to invest in automation or tools because the underlying complexity of a
system causes a high risk of failure during implementation. When
complexity hinders automation implementation, it may be an area to
improve to ease the cost of manual support.

To be proactive at capacity management, you need to understand the labor
required to support the current systems. I don’t mean predicting the specific
labor costs (skills vary across teams, and emergencies and vacations do
happen) but knowing how much of a team’s time is consumed by each
system.

What could be a way to measure this kind of impact? You can better assess
time and labor if team members regularly check in about their work (which
requires a foundation of psychological safety) and share how much time is
needed to support specific projects. Of course, everyone will have a
different mix of time spent on types of work, but having everyone on the
team share the data allows you to create a shared visualization of the work
to surface some of its specificity. Analyzing this data can uncover areas for
improvement.

You can use regular surveys to take a pulse on other metrics like these:

 Satisfaction with compensation
e How demanding a particular task or project was
e How work impacted activities outside of business hours

e How individuals were able to relax outside of business hours

TIP

Encourage “swarming” to tackle larger problems that can be broken down into discrete pieces.
Swarming engages multiple people from the team to help tackle the task or problem. The
individual feels supported, and the team gains a broader understanding of the work.

Support Team Infrastructure with
Documentation

Very rarely is it a person choosing just not to do work and shift it onto
others. Instead, theres something about the system that we ve created in
the team/company that is making that the only option for them. So the fix
isn 't telling them to do better but to change the system.

—Carolyn Van Slyck (@carolynvs), October 15, 2021

The team is constantly evolving; when someone new joins or an existing
member leaves, documentation provides the scaffolding for how the team

works and continues to work through change. In addition to documenting
the definitions discovered through the meta-work discussions, other areas to
support the team include the following:

Include project documentation in the definition of done

This can consist of all the related tickets, associated communication
over ChatOps, and releases or deployments.

Treat documentation like your software

Version, test, and release.

Document explicit norms and demonstrate those norms

Sometimes, it can be hard to know what to document and how much
time to spend writing, especially when it’s unclear who the audience is
and you’re faced with a blank screen. Managers can help to set the
priority of this work, ensure the appropriate tools are available, and
clear any potential roadblocks. Leaders can show the way by sharing
their documentation, creating templates, and making it easy for others to
follow.

TIP

Just because norms are documented doesn’t mean that someone will follow those norms.
When someone isn’t following standards, rather than assuming the problem is with the
individual, it’s essential to take time to understand why.

Document policies explicitly; don’t assume that everyone has the same
expectations or understanding. For example, as mentioned in
Chapter 19, your on-call policy should be clearly documented.

Budget a Learning Culture

As mentioned in the Introduction and throughout the book, the tools,
technologies, and third-party services are multiplying. However, if you
focus on how things are now and do not incorporate new information, data,
tools, and processes, you can get stuck in “how things were.”

Funding a learning culture requires process change, time to learn and adapt
to change, and money. To estimate and plan for a learning culture, consider
the following four items and re-evaluate your assessments on a regular
basis:

Establish a training budget

In addition to establishing a training budget, include time to allow
individuals to use the funding.

Encourage sharing of knowledge

Share knowledge actively with learning sessions (e.g., brown bags,
reading groups) or passively through write-ups (e.g., “What I learned
from this conference, talk, research”).

Practice failure

Incidents will happen. Teams should practice the process for handling
incidents and testing various scenarios that might occur. Much like
testing in development, practicing failure is very different from handling
a live incident, but it does have value. It can help expose gaps in
documentation and help you better understand processes before you
have to respond to an event at 2 a.m. or deal with differences in skill

gaps.

Provide time for analysis of the work

Give individuals the time to improve the system. For on-call work, this
could be identifying weaknesses in the system and addressing or
documenting missed expectations. For toil work, this could be
identifying repetitious work and making time to automate tasks.

Adapt to Challenges

Old-school management focused on people as resources and managed those
resources as replaceable cogs. Modern management recognizes the
nonhierarchical, more matrix-like form of contemporary organizations;
people have relationships and emotions and aren’t interchangeable.

4

The old-system administration model separates humans from work; this
doesn’t work because it creates two parallel systems—the humans and the
managed system.

The current system administration model recognizes that humans and work
are inseparable. Humans are part of the system. Each human has a distinct
set of skills, talents, interests, motivations, work styles, triggers,
perspectives of the world, and preferences on how they work. Think of
systems more humanely, on the whole, to make them sustainable for the
humans in them. People have limited capacity and are prone to “failures.”
I’m not being callous and advocating treating people like machines because
they are part of the system. When the system expects people to do harmful
things like 24/7 on-call and then doesn’t recognize the impact on the
individual, that’s inhumane.

You can’t control outputs and outcomes, and people are part of the chaos in
systems that make them messy. So, you have to be authentic and appreciate
people where they are now and all of their emotions and work with them.

At Yahoo, I never thought about myself as part of the system until I took
my first vacation and everything caught on fire, even though I’d left several
checklists and playbooks. As an industry, we talk about single points of
failure in the design of the systems. But, we don’t look at the people with
the knowledge, understanding, context, or support when evaluating the
system. These are all fragilities in the system. You can’t automate these
fragilities away. Building a self-healing system just makes the system that
much more complex to understand for the human that will eventually have
to debug or support it.

These systems are built in our image, modeling our relationships. Look to
human relationships to inform how we treat the system to better build
sustainable systems that support the humans in the systems. Examples are
encouraging mutual support, knowing that it’s safe to say you don’t know
something, and understanding that others will support you.

A person’s on-call shift should not be solely their responsibility. The
team, the environment, the situation, and the system all have to support
the person.

—Ryan Kitchens (@this_hits home), October 15, 2021

What sustains people—connecting with people, opportunities to learn, and
feeling valued (recall these three needs of the five common needs everyone
has from “What Should You Monitor?”’)—must be part of a systems
assessment. Without this assessment, you may be putting people at risk of
burnout. And this can create additional tension between teams.

Our work is becoming more complex, and the pressures on the systems are
becoming more complex. You have to plan for unexpected events that are
out of your control because they happen all the time (e.g., floods and power
outages). Look at COVID-19 in 2020 and what it did to the system: lower
team capacity (the formulas for calculating an individual’s capacity
remained the same) with accelerated demands on the team, which increased
the rate of burnout.

Human capacity changes over time and is unpredictable. To be successful,
your team needs to adapt to a complex set of messy and chaotic challenges
to the system. People need to feel trusted and empowered and build trust in
each other so that they will be supported when needed. Managers need to
recognize and bring people in to help the team or cut scope and ease the
load based on the actual capacity.

Wrapping Up

Lead with a whole-team approach that centers on continuous learning
throughout every phase of a system’s lifecycle by adopting these behaviors:

e Hold extensive one-on-ones.

e Manage scope and cross-organizational relationships.

e (reate space for the team to engage with each other as people.
e Encourage collaborative work and accountability to each other.

e Minimize process overhead that is not helping to ship or pay down
technical debt.

e Encourage a whole-team approach to solving common challenges.

e Provide clear and regular feedback about the team’s priorities and
limitations.

e Empower people to speak in the way they want to share.

e Encourage open and transparent environments.

1 A. B. Bakker et al., “Job Resources Buffer the Impact of Job Demands on Burnout,” J.
Journal of Occupational Health Psychology 10 (2005): 170-80.

2 Learn more about retrospectives in Agile Retrospectives: Making Good Teams Great from
Esther Derby and Diana Larsen (Pragmatic Bookshelf).

3 Sheila Henderson, “Follow Your Bliss: A Process for Career Happiness,” Journal of
Counseling and Development 78 (2000): 305-3, https://doi.org/10.1002/].1556-
6676.2000.tb01912.x.

4 “DevOps Culture: Westrum Organizational Culture”, Google Cloud, accessed June 13, 2022.

https://doi.org/10.1002/j.1556-6676.2000.tb01912.x
https://oreil.ly/Ar8OL

Conclusion

You’ve reached the end of the book, and I hope you feel better prepared to
face the multiple paths before you, to navigate the chaos in your systems
reliably and sustainably, and to adopt modern system administration
technologies, tools, and practices.

Throughout this book, I’ve set a path—to help you understand your existing
systems and practices, assemble systems with those practices and
infrastructure code, and monitor and scale those systems. You may have
followed that path one chapter after another, or you may have skipped
around to the most pressing issues you’re facing right now. Regardless of
where you are in your journey—whether you’re an experienced system
administrator or an engineer early in your career learning about operability
—this resource has given you a path to reason about your systems and
understand how to tackle the next challenge, one step at a time.

Recall Figure I-2 from the Introduction and the comparison of system
administration to hiking (reproduced here as Figure C-1).

Figure C-1. The future is bright, and your path may be unclear. Still, with your knowledge,
experiences, growth mindset, and collaborators, you can confidently move forward, knowing that
you’ll be able to handle whatever lies ahead (image by Tomomi Imura).

In hiking, once you reach the summit, you must descend again in order to
ascend the next mountain. Likewise, with system administration, you must
leave a system before you can tackle your next challenge. Leaving might
mean migrating your existing customers to a new system, deprecating a
system gracefully, handing off the system to be maintained by new
engineers, or leaving a company to start a new role entirely. And, as with
every journey, you have the opportunity to grow, learn, and adapt your
approach as you tackle the new path before you.

Just as I’ve shared some of my stories and challenges, I encourage you to
share your stories and experiences through conference participation (e.g.,
hallway tracks, birds of a feather, or presenting), blogging (e.g., dev.to, the
seasonal sysadvent, or your own platform), or shorter snippets (e.g.,
LinkedIn posts).

Feel free to share with me by tagging me on LinkedIn or dev.to.

https://www.linkedin.com/in/sigje
https://dev.to/sigje

—Jennifer

Appendix A. Protocols in
Practice

Building on Chapter 1, let’s look at an example of web protocols in
practice: HTTP, QUIC, and DNS. Understanding protocols will help
explain the reality of systems communicating. And these protocols are
evolving as the needs of the web evolve.

Hypertext Transfer Protocol

HTTP covers a set of web standards describing how systems communicate
on the web. A number of different HTTP server types are optimized for
different use cases, from application servers that run web app code like
Apache Tomcat to cache servers like Squid to web servers like the Apache
HTTP Server Project. A modern web stack may incorporate multiple HTTP
servers to provide service.

Originally, HTTP was designed as a client/server, one-request/one-response
protocol. You could use Wireshark and tcpdump to look at sniffed traffic
and reconstruct web conversations because communication was done in
plain text.

Over time, HTTP has evolved. One of the adaptations includes using HTTP
headers to pass additional information with an HTTP request or response.
Historically, custom proprietary headers used the X- prefix, but that’s been
deprecated. HTTPS over HTTP/1 and HTTP/2 uses TLS, TCP, and IP (see
Figure A-1).

https://tomcat.apache.org/
http://www.squid-cache.org/
https://httpd.apache.org/
https://oreil.ly/z87B9
https://oreil.ly/baSAc

HTTP/Tand HTTP/2

TCP

IP

Figure A-1. An HTTPS stack using the TCP/IP model

Before two systems can communicate over HTTP/1, they must establish a
TCP connection. HTTP/1.0 opens a separate TCP connection for each
HTTP request/response. Establishing a series of individual TCP sessions for
each HTTP request adds significant overhead.

HTTP/1.1 introduced the Connection header to allow for subsequent
requests to the same server to reuse the TCP connection. Reusing an
established TCP connection reduces the overall latency of a request
especially when the client is not local to the server because of the overhead
of setting up the three-way handshake of a TCP connection.

With the new binary framing layer, HTTP/2 optimizes transport for HTTP
requests and reduces the latency of loading web pages with the following:

e Request and response multiplexing over a single TCP connection
e Data compression of HTTP headers

e Request prioritization

e Server push

HTTP/2 maintains the core concepts of HTTP/1.0 and HTTP/1.1, including
the methods, status codes, headers fields, and URIs. So you don’t have to
change existing web applications to benefit from the performance
improvements. Instead, HTTP/2 changes how the data is formatted and
transported between the client and server.

Multiplexing connections allows multiple streams of data to be processed
independently, and packet loss with one stream will not interfere with other
streams. But running HTTP/2 over TCP is still vulnerable to head-of-line-
blocking problems that can disrupt data flow if any of the packets are
delayed or dropped.

TIP

The HTTP/3 standard switches from single TCP sessions to QUIC connections, as discussed in
the next section.

While HTTP has driven web adoption for many years, its architecture was
based on trust between peers. People didn’t design for integrity or
confidentiality because the goal was open access to research and
communication, not protection from malicious users modifying or reading
traffic. These days, by default, most browsers at minimum require HTTP/2
over TLS and will raise a warning when trying to access an older,
unsecured web server.

You can set up a 301 redirect from http:// to https://, but that doesn’t
eliminate the window of opportunity when a malicious attacker could
capture cookies or session IDs or force a redirect to a phishing site. An
HTTP Strict Transport Security (HSTS) header tells the browser that it
should never use HTTP and should automatically convert to HTTPS
requests instead (see Example A-1).

Example A-1. Basic syntax for the HSTS header

Strict-Transport-Security: max-age=<EXPIRY TIME>

https://oreil.ly/raR0k

The process looks like this:
1. The browser accesses your site using HTTPS for the first time.
2. Your site returns the HSTS header.

3. The browser stores this information, and all future connections will use
HTTPS (within the max-age seconds of the expiry time).

As long as a user visits the site within the max-age seconds specified in the
header, the browser will automatically connect to the secure connection
without even trying HTTP. Adding a flag to the header to set
includeSubDomains will apply this policy to all subdomains as well.

TIP

Be careful with using the includeSubDomains flag. If your organization operates legacy
services that cannot be updated to support SSL/TLS, this can cause issues that may become
difficult to troubleshoot.

If an HSTS-compliant browser can’t confirm the security of the certificate,
it aborts the connection to an HSTS-compliant server.

TIP

Learn more about HSTS at the following:

» OWASP HTTP Strict Transport Security Cheat Sheet
o “HTTP Strict Transport Security (HSTS),” RFC 6797

The client verifies the authenticity of the server using the server certificate.
During the initial TLS handshake, the client and server exchange a secret,
which is used to encrypt the session. This secret is required to decrypt and
analyze HTTP/2 capture packets. Without it, you can capture the encrypted
packets, but you won’t have a way to decrypt and make sense of them. Set

https://oreil.ly/09Wim
https://oreil.ly/eLrbS

the environment variable SSLKEYLOGFILE before starting up a capture in
order to capture session keys. Browsers will append keys to the file that you
define.

TIP

If you want to debug a session, on your client, set the environment variable SSLKEYLOGFILE
before starting up a capture in order to capture session keys. Your browser will append keys to the
file that you define.

To learn more about TLS protocol, see “The Transport Layer Security (TLS) Protocol Version 1.3,
RFC 8446.

QuicC

Originally introduced by Google in 2012, the QUIC (“quick”™) protocol
addresses shortcomings in the user experience of the HTTP application
layer and the TCP transport layer and became a proposed standard in May
2021.

The emerging HTTP/3 standard, officially an a proposed standard as of
June 2022, includes traditional HTTP semantics (request methods, status
codes, and message fields) that leverage the QUIC protocol. As of
November 2022, three-quarters of web browsers and one-quarter of
websites already support HTTP/3, and these ratios are likely to grow
rapidly as the HTTP/3 protocol moves through the IETF approval process
to become an official standard, as QUIC itself has already done.

As you can see from Figure A-2, HTTP/2 appears to have clean, discrete
layers, but the HTTP/3 slice has overlap as the QUIC protocol is one part
application layer and one part transport layer.

https://oreil.ly/9YiIi
https://oreil.ly/IRdTS
https://oreil.ly/6Mg5J
https://oreil.ly/uSfvB
https://oreil.ly/n3qVI
https://oreil.ly/bViGD

Application layer

Transport layer

Network layer

Figure A-2. Comparison of HTTP/2 to HTTP/3—it may help to picture it like a layered cake; you can
slice right through each layer

QUIC overcomes the limitations of HTTP/2 by switching from TCP to
UDP for transporting HTTP/3 and later traffic. Using UDP eliminates the
overhead required for TCP session management, and while this heightens
the risk of uncaught errors, in practice, on a relatively stable network, the
packet loss rate is low. The occasional need to retransmit data takes less
time it took to manage TCP sessions.

Other advantages conveyed by leveraging the QUIC protocol include the
following:

e Forward error correction is implemented at the application layer to
address the lack of error handling due to running without TCP’s
session management capabilities.

e TLS encryption is mandatory and has an efficient approach to
establishing secure session keys as part of the initial handshake.
Session keys are then used for individual request/response cycles, and
each packet is individually encrypted with the key, unlike TCP, which

typically must wait to encrypt the overall bytestream. This makes
QUIC more secure regardless of the service.

e [t has better support for network-switch events with connection
migration, such as when a mobile device toggles between WiFi and
cellular data connections, which would change the IP address of the
device. With TCP, this would cause all active connections to time out
and fail and then be restarted from the new link. QUIC avoids this
problem by seeding each connection with a unique identifier for the
client to respond with, so when a network switch occurs, the server
recognizes that the same device is now using a different IP address,
and the existing multiplexed session can continue as before.

Software attempting to use HTTP/3 must fall back to more traditional
protocols when necessary. For example, some network administrators may
have chosen to restrict UDP traffic outside their perimeter.

Domain Name System

An organization keeps track of all the hosts within its domains and shares
this data with other sites via DNS. DNS is a distributed, hierarchical, and
replicated database that maps human-readable addresses to IP addresses.

NOTE

DNS is separate from domain name registration. Registries manage the top-level domains (TLDs),
the last segment of a domain name including .com, .net, and .org. Registries delegate domain
registration to registrars, and then these registrars handle the reservation of domain names.

Some system administrators manage DNS servers. With the advent of cloud
services, system administrators more typically use managed DNS services
because it’s one less service to misconfigure that can bring down a whole
site. With global service providers, DNS issues do still occur, but they are
much less likely to happen. At approximately $.50 per record, this allows
sysadmins to focus time on other operational concerns.

The DNS protocol consists of two parts: the query/response for resolving
DNS queries and the exchange of database records between DNS servers.

A DNS query consists of a fully qualified domain name (FQDN), the name
that refers to the specific resource within the DNS hierarchy. Clients and
DNS servers may provide cached responses up to the time in seconds
specified by the time to live on the record. Otherwise, authoritative servers
provide DNS responses.

DNS is also used to provide the following features in addition to name
resolution:

Load distribution

Round-robin DNS can be used to provide load distribution without any
extra hardware or software. To implement a Round-robin DNS for a
stateless service, include IP addresses for all the replicas of the service
in the DNS entry. With each query for the IP address, the DNS server
will reorder the IP address response so that host requests will be
distributed. If one replica fails, DNS does not do any verification, so
some percentage of requests will fail until the cache for its IP address is
cleared based on the TTL and any client-side caching.

Feature management

Often, customers use a fully qualified domain name to access a service.
By setting up CNAMES that point to specific versions of deployed
software, you can update where the CNAME points to when you want
to release a new version of the software.

Service discovery

Domain owners define service endpoints by adding an SRV record with
the host, accessible port number, priority, and weight for specified
services.

Email authorization and authentication

With the increase in phishing and spoofing, mechanisms have been
added to leverage DNS to authenticate email, including DKIM and SPF.

As with HTTP, the original DNS protocol did not have any security features
and so is vulnerable to problems started by misconfigured or malicious
actors. For example, forged or manipulated data can be used for DNS cache
poisoning attacks to redirect traffic to impostor sites. The DNS Security
Extensions (DNSSEC) specifications provide a backward-compatible way
to protect DNS traffic by using cryptographic authentication, data integrity
promises, and other improvements. However, DNSSEC does not provide
privacy by encrypting DNS traffic itself, so protocols such as DNSCrypt,
DNS over TLS (DoT), and DNS over HTTPS (DoH) have emerged to
protect DNS traffic.

MORE RESOURCES

To learn more about DNS, check out these resources:
e DNS and BIND Cookbook by Cricket Liu (O’Reilly)
e “Domain Names: Implementation and Specification RFC 1035”

If you are responsible for managing email or sending email campaigns
within your organization, make sure to look into DKIM, SPF, and
Domain-based Message Authentication, Reporting, and Conformance
(DMARC):

e DKIM
e DMARC Overview

e Email Authentication for Internationalized Mail RFC 8616

https://oreil.ly/OhGCx
https://oreil.ly/26quq
http://www.dkim.org/
https://dmarc.org/overview
https://www.rfc-editor.org/info/rfc8616

Appendix B. Resolving Test
Failures

Building on Chapter 7, let’s learn more about the different types of test
failures (environmental problems, flawed test logic, changing assumptions,
flaky tests, and code defects).

Test Failure Type #1: Environment Problems

Environmental problems can be super frustrating because so much can go

wrong, especially in the larger end-to-end tests that test between different

services. Make sure to have sufficient unit test coverage because unit tests
are not vulnerable to environmental problems. There are many issues with
environments that can arise, including these:

e The testing environment doesn’t match the production environment in
scale or function.

e Elements of functionality can be costly, for example, monitoring
agents that shouldn’t have an impact but do.

e There is no local testing environment setup due to lack of
understanding that it’s possible to have a local testing environment.

* Dependencies aren’t locked down and vary in environments.

e Third-party continuous integration and deployment services are having
failures.

These are just a few examples of environmental problems that can cause
tests to fail.

Problems with shared test environments can lead to folks insisting that no
testing environment is needed, and they instead test directly in production

with feature flags and canary testing. Feature flags make features available
to a subset of users in a controlled manner or turn off a feature if necessary.
Canary testing allows you to provide a subset of users access to a feature or
product to determine if the quality of the release is OK and, if so, to
continue to deploy. If the users report issues, you can migrate them back to
the standard experience.

There 1s no way to replicate a test environment that matches production
exactly. So feature flags and canary testing in production are crucial ways to
improve feedback and reduce the risk of mass changes to production.

They don’t replace the need for ongoing fast and early feedback to
developers from the test environment. When you have extended lead times
for feedback (i.e., waiting for deployment into production), you lose the
context of your work. In this situation, it’s the difference between minutes
to potentially days, which adds up over time.

Additionally, shared test environments create a safe place for
experimentation and exploratory testing. However, leadership can view
shared test environments as an expense without adequately evaluating the
return on investment.

One way to minimize what folks might consider a waste of resources is to
monitor and manage the creation and decommissioning of test
environments through infrastructure automation. Test environments are
available when needed and are consistent and repeatable so that engineers
needing to test can get access when they need them. You can eliminate idle
systems and time wasted queueing up to use a single test environment.

Sometimes environmental conditions are entirely outside of your control,
such as when third-party CI/CD services have failures like GitHub, Travis,
or CircleCI being down. Outsourcing these services has short- to medium-
term value in terms of not having individuals specialize in ensuring these
work as needed locally. Third-party services will have failures. It’s
guaranteed. Consider these questions to plan for mitigations:

e How will you work on code while third-party services are down?

e How will you test?
e How will you deliver value to your customers?

e What if there is data loss?

If, for example, the tests aren’t warning of failures, this isn’t a guarantee
that everything is OK. It could be that the third-party system has failed and
no longer thinks it is managing the project.

Test Failure Type #2: Flawed Test Logic

Sometimes the problem you discover is due to how you have interpreted the
requirements or how a customer expressed their needs. The code does the
right thing, but the tests are failing. These failing tests expose some issues
with collaboration or communication. For example, there could be missing,
unclear, or inconsistent information. Worse, you may not discover the
problem if you aren’t testing the right thing. When you detect failures due
to flawed test logic, modify the test, review the processes that led to the
missing context, and address them.

Products evolve. Sometimes specifications change from the initial design
meetings to developer implementation, and tests that at one point were valid
can now cause failures.

So if a test failure is due to flawed test logic, fix the test and also assess
where the problem occurred:

e Did the initial discussions not include the required people?

e Did the process of requirements gathering align the testing acceptance
criteria with the customer requirements?

e Did feedback not make it back to discussions and design when the
implementation changed?

Depending on your development pipeline and the different gates that you
have for software to progress, there are various areas where communication

and collaboration can fail.

Test Failure Type #3: Changing Assumptions

Sometimes you can make assumptions about how something happens, and
you can be right; other times, not so much. Those assumptions aren’t visible
until the underlying circumstances change. For example, maybe you change
when a test runs, and now different tests are failing that don’t align with any
revised code. Assumptions can also become visible when the order of
operations of a particular task changes and when the database changes.

Failures due to changed assumptions expose previously unknown fragilities
in the code or tests.

Automated tests need to be deterministic, so uncovering hidden
assumptions and making them explicit will help eliminate flapping tests. It
also might be an area where instead of doing an end-to-end test, there could
be room for tests closer to the components themselves so that interface
changes don’t cause failures.

Test Failure Type #4: Flaky Tests

A flaky test is a nondeterministic test, passing or failing with the same
configuration, and is generally found in more complex tests like integration
and end-to-end tests. When we identify nondeterministic tests, it’s crucial to
refactor or eliminate them so that they stop being noisy.

Some common reasons that a test may be flaky include the following:
Caches

Does the application rely on cached data? There are many types of
caches and ways a cache can cause problems with testing. For example,
with a web cache, files that are critical for rendering a web page may be
cached on the web servers, on edge services, or locally within the

browser. If the data is stale in the cache at any of these levels, tests can
become nondeterministic.

Test instance lifecycle

What are the policies regarding the setup and teardown of the testing
instance? Tests may be invalid or return inconsistent results if the
environment is reused or multitenanted. Practicing regular hygiene in
test environments and simplifying the setup and cleanup of all test
instances reduces the risk of flaky tests.

Configuration inconsistencies

When environments are not consistent or the testing situations don’t
match up with real-world production experiences, this can cause
problems. For example, suppose something is time-dependent and one
environment is syncing to an NTP server and the other is not. In that
case, there may be conflicts in how the test responds, especially in
special conditions (i.e., during the daylight saving time change).
Therefore, use infrastructure code for test environments to maintain
configuration consistency.

Computing environment failures

Sometimes the test itself isn’t flaky, but it exposes underlying problems

with your computing environment. There should be some monitoring to

expose these problems as they occur rather than wasting time debugging
issues that don’t exist.

Third-party services

Your organization will rely on more and more third-party services to
ensure it focuses on the areas of business value. When problems occur
with those services, it can cause issues with your integration and end-to-
end tests. Therefore, it’s important to isolate those challenges and make
sure you can pinpoint where problems are occurring, much like with
your infrastructure failures.

Test Failure Type #5: Code Defects

Code defects are last on my list because you have created your tests to look
for code defects. So when you are assessing the test failure, it can be easy to
focus first on code defects rather than looking at anything else. Instead,
look at your environmental conditions, consider flawed test logic, and see if
any assumptions have changed before you dive into addressing code
defects.

When you discover a problem with code and have been able to verify
whether it’s repeatable and how often it happens, follow these steps:

1. Describe the problem clearly, including information about what
happened and how, the steps to replicate it, and the version of any
infrastructure (software, application, computing environments). If you
discovered the problem manually, add a test that will find it
automatically next time.

2. Once you write the defect report, you need to track it and ensure that
someone is responsible for resolving the problem.

3. Work with the team to prioritize the report based on what is in the
work queue. Once the team fixes the problem, verify it’s fixed, revisit
any boundary conditions that might need to be changed, and close the
defect report.

4. If the priority of the bug is not high enough to get worked on or
assigned a responsible owner, examine whether the report should stay
open. Long-term bug reports remaining open puts a cognitive load on
the team.

I’m not advising that you assign or close all reports immediately. I am
saying, assess the problems and actively advocate for significant problems
that you want to make sure get resolved.

IndeXx

A

access control (in log management projects), Monitoring Data at Scale

access logs from secret management software, Defending Secrets and
Monitoring Usage

access management (see identity and access management)

accessibility of documentation, Recommendations for Quality
Documentation

accountability, Benefits of Version Control
with infrastructure scripting, Why Script Your Infrastructure?
accuracy (documentation), Recommendations for Quality Documentation

ACID (atomicity, consistency, isolation, and durability) properties,
Database Storage

activity logging, How Should You Control Access to Your System?,
Defending Secrets and Monitoring Usage

Address Resolution Protocol (ARP), Data Link Layer

admin tasks, replacing in serverless computing, Guidelines for Choosing
Compute

Ag (Silver Searcher), Other Helpful Utilities

airline training for crew communication in incidents, Train for Effective
Communication

alerting, Understand Your Tools

alert fatigue, Plan for a Monitoring Project
alert management hosted solutions, Examine Monitoring Platforms

deciding what should alert, What Alerts Should You Set?-Examine
Monitoring Platforms

developing on-call resilience, Developing On-Call Resilience
(see also on-call resilience)

difference between monitoring and, Plan for a Monitoring Project

duplicate alerts, Plan for a Monitoring Project

improving on-call alerts, The Day After On-Call

monitoring and maintaining alerts, Update On-Call Processes

processes during your on-call rotation, Your On-Call Rotation

testing alerts for your on-call duties, One Week Out

Amazon DynamoDB, Database Storage

Amazon EBS, type of storage volume attached to EC2 instance, Key
Characteristics

Amazon Web Services (see AWS)

anchoring bias, How Deep Should You Dig?

anonymous access, How Should You Control Access to Your System?
Ansible, Code to Configure Infrastructure

APIs (application programming interfaces)

assessing as attack vectors, Who Should Have Access to Your System?

mapping work tracking information from one platform to another,
Choose a Platform

app services, App services
application layer, Application Layer, Build a Network

Application Security Verification Standard (ASVS), Design for Security
Operability

applications, patching, compute infrastructure security and, Securing Your
Computing Environment

architecture patterns

about, How to Connect Things

communication among system components, How Things
Communicate

layered, microservices and event-driven, examination of, How to
Connect Things

reliability, scalability, and maintainability, comparison of, How to
Connect Things

area charts, Area charts
ARP (Address Resolution Protocol), Data Link Layer

assumptions, changing, causing test failures, Improving Your Tests;
Learning from Failure, Test Failure Type #3: Changing Assumptions

atomicity (in databases), Database Storage

atomicity, consistency, isolation, and durability (ACID) properties,
Database Storage

attack surfaces, Borrow the Attacker Lens
attack vectors, assessing, Assessing Attack Vectors

attacker lens, borrowing, Borrow the Attacker Lens-Design for Security
Operability

asking what are attackers’ resources, Borrow the Attacker Lens
asking who are your attackers, Borrow the Attacker Lens

determining attacker motives and objectives, Borrow the Attacker
Lens

identifying opportunities for attacks, Borrow the Attacker Lens
authentication, How Should You Control Access to Your System?
multifactor (MFA), How Should You Control Access to Your System?
authorization, How Should You Control Access to Your System?
automated testing, Infrastructure as Code
autonomy and social support (teams), Adopt a Whole-Team Approach

availability, Embrace Sustainability, Data Analysis

in CIA model, Design for Security Operability

data availability expectations, Be Prepared to Handle Disaster
Recovery Situations

of documentation, Recommendations for Quality Documentation
network, Key Characteristics of Networks
trade-off with consistency in databases, Database Storage
availability bias, How Deep Should You Dig?
AWS (Amazon Web Services)

CloudFormation, Code to Provision Infrastructure

Identity and Access Management (IAM), How Should You Control
Access to Your System?

Simple Storage Service (S3), How Should You Control Access to Your
System?

Azure
Active Directory, How Should You Control Access to Your System?

Resource Manager, Code to Provision Infrastructure

B

backups, Be Prepared to Handle Disaster Recovery Situations, Benefits of
Version Control

in Pixar’s Toy Story 2 (case study), Be Prepared to Handle Disaster
Recovery Situations

bandwidth, Key Characteristics of Networks, Build a Network
network bandwidth limitations, Plan for a Monitoring Project
bar charts, Bar charts
baseline behaviors, Why Monitor?
Bash, Choosing Programming Languages
bash-completion, Other Helpful Utilities
block storage, Block Storage
brownfield deployment, Getting Started
browser-based tracing, Distributed Tracing
budget setting, Why Monitor?
bugs
discovering with linting, Linting

implementation, Categorize Discovered Issues

build pipeline

incorporating integration of code changes and deployment to
production, Infrastructure as Code

phases in, Infrastructure as Code
Buildah, Code to Build Machine Images

business needs, conflation with customer needs, Manage Your Work with
Kanban

business value of the system, capacity management and, The Capacity
Management Model

business values

goals of infrastructure scripting aligned with, Why Script Your
Infrastructure?

outcomes of infrastructure management automation tools and, Why
Script Your Infrastructure?

C

caching

clearing cached resources when using a CDN, Content Distribution
Networks

in content distribution networks, Content Distribution Networks

poisoning of caches, Content Distribution Networks

CAP theorem, Database Storage

capacity (storage), Key Characteristics

anticipating your capacity and latency requirements, Anticipate Your
Capacity and Latency Requirements

capacity management, Why Monitor?, Capacity Management-Wrapping Up
capacity, What Is Capacity?
capacity limitations, effects on teams, Measure Impact on the Team

capacity planning needs with cloud computing, Do You Need Capacity
Planning with Cloud Computing?

framework for capacity planning, The Framework for Capacity
Planning-The Framework for Capacity Planning

model for, The Capacity Management Model-The Framework for
Capacity Planning

justification, Justification

management, Management

monitoring, Monitoring

resource procurement, Resource Procurement

resources for further learning, Wrapping Up

career ruts, Why Should You Monitor Your Work?

CDNs (content distribution networks), Anticipate Your Capacity and
Latency Requirements, Caring About Networks

Center for Internet Security (CIS), Securing Your Computing Environment

implementing recommendations of, Securing Your Computing
Environment

centralized monitoring systems, Data Collection
CFEngine, Code to Configure Infrastructure
change management (documentation), Organization Practices

change, stories about, Choose Your Story Type

charts

in data presentation, Data Presentation
resources for additional visualizations, Treemaps

types of, Chart Types-Treemaps

chat service (incident management), Understand Your Tools
Chef Infra, Code to Configure Infrastructure

CI/CD (continuous integration/continuous deployment), Infrastructure as
Code

CIA model (confidentiality, integrity, and availability), Design for Security
Operability

cloud computing, Choosing the Location of Your Workloads, Cloud
Computing

capacity planning needs with, Do You Need Capacity Planning with
Cloud Computing?

cloud asset lifecycle, Management

cloud storage, Considerations for Your Storage Strategy

infrastructure provisioning, Code to Provision Infrastructure

security responsibilities and, Share Security Responsibilities
code completion (editors), Code completion

code defects, test failures from, Improving Your Tests; Learning from
Failure, Test Failure Type #5: Code Defects

code organization, Organizing Infra Projects

code review, Infrastructure as Code

implementing in infrastructure management, Getting Started with
Infrastructure Management

cognitive biases hindering identification of incident causes, How Deep
Should You Dig?

collaboration, Embrace Collaboration

in creating documentation, Dimensions of Documentation
in incident management, Train for Effective Communication

maintaining in infrastructure management projects, Getting Started
with Infrastructure Management

in uncovering security requirements, Design for Security Operability
color, Visual Cues
command line, customizing with shell customizations, Other Helpful
Utilities
comments, Getting Started with Infrastructure Management

Common Vulnerabilities and Exposures (CVE) Identifiers, Categorize
Discovered Issues

communication among system components, How Things Communicate
comparison stories, Choose Your Story Type

compensation for on-call work, Check Your On-Call Policies, Monitor the
On-Call Experience

complexity in identity and access management, How Should You Control
Access to Your System?

compute options, Compute Options-Guidelines for Choosing Compute

containers, Containers-Containers

guidelines for choosing, Guidelines for Choosing Compute
serverless, Serverless
unikernels, Unikernels
virtual machines, Virtual Machines
compute, defined, Computing Environments

computing environments, Computing Environments-Cloud Computing

cloud computing, Cloud Computing
common workloads, Common Workloads-Common Workloads

computing devices you manage, considerations when choosing
storage, Considerations for Your Storage Strategy

failures exposed by flaky tests, Test Failure Type #4: Flaky Tests
on-prem, On-Prem

securing, Securing Your Computing Environment-Securing Your
Computing Environment

security responsibilities for different environments, Share Security
Responsibilities

conceptual documentation, Dimensions of Documentation
confidentiality (CIA model), Design for Security Operability

configurations

code to configure infrastructure, Code to Configure Infrastructure

common misconfiguration for object storage services, How Should
You Control Access to Your System?

configuration control, Organizing Infra Projects

configuring your linter, Linting

faulty system configuration, causing security vulnerabilities, Borrow
the Attacker Lens

leveraging version control with configuration files, Benefits of Version
Control

open, operating systems and applications defaulting to, Securing Your
Computing Environment

confirmation bias, How Deep Should You Dig?

connectedness (documentation), Organization Practices

connecting things, How to Connect Things-How Things Communicate
Connection header, Hypertext Transfer Protocol

consistency
in databases, Database Storage

trade-offs with availability and latency, Database Storage
with infrastructure scripting, Why Script Your Infrastructure?
containers, Containers-Containers, Other Helpful Utilities
automated builds, Infrastructure as Code
container images, Containers
container runtimes, Containers
security, Securing Your Computing Environment

updating containerized applications, Securing Your Computing
Environment

content distribution networks (CDNs), Anticipate Your Capacity and
Latency Requirements

about, Content Distribution Networks

advantages of, Content Distribution Networks

continuous deployment (CD), Infrastructure as Code

(see also CI/CD)
steps in CD phase of build pipeline, Infrastructure as Code

continuous integration (CI), Infrastructure as Code

(see also CI/CD)
steps in build pipeline, Infrastructure as Code
control plane (SDN), Software-Defined Networks
controllers (SDN), Software-Defined Networks
correlations, caution with, Choose Your Story Type
counters, Metrics
gauges versus, Metrics
COVID-19 lab results, incident involving, What Is an Incident?

COVID-19 pandemic, economic effects on global supply chains, The
Framework for Capacity Planning

CPUs

cloud architectures and, Common Workloads
CPU allocated to virtual machines, Virtual Machines

CPU-bound applications, Common Workloads

crew resource management in airline training, Train for Effective
Communication

cURL utility, Other Helpful Utilities

customer dashboard, Customer dashboards

customer needs, conflation with business needs, Manage Your Work with
Kanban

D

dashboards, Know Your Audience, Data Presentation

customer, Customer dashboards
leadership, Manager dashboard
recommended practices, Recommended Visualization Practices
team, Team dashboard
data
defending against breaches and privacy violations, Defend Your Data

deletion when disposing of equipment, Retain Your Data as Long as Is
Reasonably Necessary

evaluating importance of, Why Care About Storage?

loss of, Be Prepared to Handle Disaster Recovery Situations

Pixar’s Toy Story 2 (case study), Be Prepared to Handle Disaster
Recovery Situations

metrics, logs, and tracing, collection by monitoring, Data: Metrics,
Logs, and Tracing

from monitoring, What Is Monitoring Data?-Distributed Tracing

choosing your data types, Choose Your Data Types
logs, Logs

metrics, Metrics

monitoring data at scale, Monitoring Data at Scale
tracing, Tracing

questions about, related to choosing storage, Considerations for Your
Storage Strategy

retaining as long as reasonably necessary, Retain Your Data as Long as
Is Reasonably Necessary

data analysis, Data Analysis

hosted solutions for, Examine Monitoring Platforms
data breaches, Defend Your Data

high costs of, Defend Your Data

Verizon Data Breach Investigations Report (DBIR), Borrow the
Attacker Lens

data centers
maintaining your own, On-Prem
private or on-prem, Choosing the Location of Your Workloads
data collection, Data Collection
data link layer, Data Link Layer, Build a Network
data presentation, Data Presentation
data reduction, Data Reduction
data tables, Data tables
databases, Database Storage-Considerations for Your Storage Strategy

logging framework, issuing queries against, Analyze Log Data

debugging infracode, Code to Provision Infrastructure

declarative versus imperative infracode, Infrastructure as Code
defense in depth, Design for Security Operability

dependencies, How Things Communicate

application, patching and, Securing Your Computing Environment
in container images, Containers

multirepos leading to complex web of, Organizing Infra Projects
security and, What Is Infrastructure Security?

undefined, eliminating in environments, Choosing Programming
Languages

dependency management, Organizing Infra Projects
deployments

automation of, Infrastructure as Code

tools supporting, Infrastructure as Code

continuous (see CI/CD)

greenfield or brownfield, Getting Started
design capacity, What Is Capacity?
design flaws, Categorize Discovered Issues

examples of, Categorize Discovered Issues

designing for security operability, Design for Security Operability-Design
for Security Operability

developers in on-call, Build Resilient On-Call Teams

development environment, What Is Your Digital Toolkit?

local, replicating production environment, What Is Your Digital
Toolkit?

devops, Wrapping Up
DevOps, Collective Leadership
digital toolkit, What Is Your Digital Toolkit?
discovery, aiding in incident management, Aiding Discovery
distributed tracing, Distributed Tracing
DNS (Domain Name System), Application Layer, Domain Name System
Docker, Other Helpful Utilities

incident with Docker Hub registry down, What Is an Incident?
Dockerfiles, Other Helpful Utilities

writing manually, Choosing an Editor
document-oriented storage, Database Storage

documentation, Documentation-Wrapping Up

dimensions of, Dimensions of Documentation

for incident handling, Maintain Documentation
for incident management, Understand Your Tools
of an incident, Documenting Incidents Effectively

knowing your audience, Know Your Audience

documentation with extraneous or user-specific information,
Know Your Audience

questions to ask, Know Your Audience

organization practices, Organization Practices

organizing a site, Organizing a Site
organizing a topic, Organizing a Topic

quality documentation, recommendations for, Recommendations for
Quality Documentation-Recommendations for Quality Documentation

resources for further learning, Wrapping Up

supporting team infrastructure with, Support Team Infrastructure with
Documentation

dotfiles, Other Helpful Utilities

durability, Data Analysis

in databases, Database Storage
spending on storage and, Key Characteristics

system, effects of data storage on, Why Care About Storage?

E

E2E tests (see end-to-end tests)
EC2 Image Builder, Code to Build Machine Images
editors, Wrapping Up

choosing an editor, Choosing an Editor

code completion, Code completion

establishing and validating team conventions, Establish and
validate team conventions

integrated static code analysis, Integrated static code analysis

integrating workflows with Git, Integrate workflow with Git

integration of Ag Silver Searcher, Other Helpful Utilities

linting plug-ins, Linting
education (for work), What Should You Monitor?
effective capacity, What Is Capacity?
efficiency, balancing thoroughness with, Find the Interesting Information

empowerment with infrastructure scripting, Why Script Your
Infrastructure?

encryption of data, Defend Your Data

enculturation, Benefits of Version Control

with infrastructure scripting, Why Script Your Infrastructure?
end-to-end (E2E) tests, End-to-End Tests
writing, Writing End-to-End Tests

environmental problems causing test failures, Improving Your Tests;
Learning from Failure, Test Failure Type #1: Environment Problems

errors, Monitors That Matter

escalation protocols, Understand Severity Levels and Escalation Protocols
planned escalations, Update On-Call Processes

espionage and nation-state attacks, Borrow the Attacker Lens

/etc/passwd directory, Manage Identity and Access, How Should You
Control Access to Your System?

event detection, Event Detection
event-driven architecture, How Things Communicate

about, How to Connect Things

events, How to Connect Things, Events

eventual consistency, Database Storage
exceptions, What Is an Incident?

experimentation, enabled with infrastructure scripting, Why Script Your
Infrastructure?

exploratory testing, You’re Already Testing

F

FaaS (functions as a service), Cloud Computing, Functions

security responsibilities and, Share Security Responsibilities

Facebook, incident with loss of IP routes to DNS servers, What Is an
Incident?

factoids, Choose Your Story Type

failures

checking for single points of failure, Getting Started with
Infrastructure Management

improving tests by learning from failure, Improving Your Tests;
Learning from Failure-Improving Your Tests; Learning from Failure

incorporating failure handling in system design, What Alerts Should
You Set?

planning for in capacity management, Management
practicing in incident management, Document the Risks

resolving test failures, Resolving Test Failures-Test Failure Type #5:
Code Defects

systems drifting into failure, Second-Level Monitoring

Federal Information Security Management Act (FISMA), Securing Your
Computing Environment

file storage, File Storage
firewalls, Build a Network
software-defined, Securing Your Network
first-level monitoring, First-Level Monitoring-Data Presentation
data analysis, Data Analysis
data collection, Data Collection
data reduction, Data Reduction
event detection, Event Detection
flaky tests, Test Failure Type #4: Flaky Tests
flame graphs, Flame graphs

flawed test logic, Improving Your Tests; Learning from Failure, Test Failure
Type #2: Flawed Test Logic

form, Visual Cues
frameworks, Frameworks and Libraries
freedom (in work), What Should You Monitor?
functions, Functions
function platforms, Functions
functions as a service (FaaS), Cloud Computing, Functions
funding decisions in organizations, Collective Leadership

future needs, strategies for assessing, The Framework for Capacity Planning

G

gateway router, Build a Network
gauges, Metrics
counters versus, Metrics

GCP (Google Cloud Platform)

GCP Cloud Identity and Identity and Access Management, How
Should You Control Access to Your System?

gh utility, Other Helpful Utilities
Git, Other Helpful Utilities
integrating workflows with, Integrate workflow with Git
GitHub, Other Helpful Utilities
GitOps, Treating Your Infrastructure as Data
golden image, building from, Code to Build Machine Images
golden signals, Monitors That Matter
Google Cloud Deployment Manager, Code to Provision Infrastructure
Google Cloud Platform (see GCP)
governance, Organization Practices
data governance in log management projects, Monitoring Data at Scale
graph databases, Database Storage
greenfield development, Guidelines for Choosing Compute, Getting Started

gRPC, How Things Communicate

H

handoff to next on-call engineer, On-Call Handoff

hardware

for data centers, Resource Procurement
hardware asset lifecycle, Management
planning requirements for, Management

HashiCorp Configuration Language (HCL), Getting Started with
Infrastructure Management

HashiCorp Packer, Virtual Machines

HashiCorp Terraform, Code to Provision Infrastructure

heat maps, Heat maps

hindsight bias, How Deep Should You Dig?

hosted monitoring solutions, Examine Monitoring Platforms

HSTS (HTTP Strict Transport Security), Hypertext Transfer Protocol

HTTP, Application Layer, Hypertext Transfer Protocol-QUIC

HTTP Strict Transport Security (HSTS) header, Hypertext Transfer
Protocol

HTTP/1.1, Hypertext Transfer Protocol

HTTP/2, Guidelines to Your Network Strategy, Hypertext Transfer
Protocol

HTTP/3 draft standard, Hypertext Transfer Protocol
leveraging QUIC, QUIC

HTTPie client, Other Helpful Utilities

HTTPS stack using TCP/IP model, Hypertext Transfer Protocol

hybrid approach to storage, Considerations for Your Storage Strategy
hybrid environments, Management

hypervisors, Virtual Machines, Securing Your Computing Environment

[aaS (infrastructure as a service)

IaC versus, Infrastructure as Code
security responsibilities and, Share Security Responsibilities

[aC (infrastructure as code), Infrastructure as Code-Infrastructure as Code
IaaS versus, Infrastructure as Code

IaD (infrastructure as data), Treating Your Infrastructure as Data

IC (incident commander), Clearly Define Roles and Responsibilities

in incident response, Responding to Incidents

identity and access management, Manage Identity and Access-Who Should
Have Access to Your System?

controlling access to the system, How Should You Control Access to
Your System?

changes in modern infrastructure identity practices, How Should
You Control Access to Your System?

deciding who should have access to your system, Who Should Have
Access to Your System?

IETF (Internet Engineering Task Force), How Things Communicate

impact, What Is an Incident?

impact and urgency of on-call requests, What Is On-Call?, Check Your On-
Call Policies

imperative versus declarative infracode, Infrastructure as Code
implementation bugs, Categorize Discovered Issues

examples of, Categorize Discovered Issues

incident commander (IC), Clearly Define Roles and Responsibilities

in incident response, Responding to Incidents
incident management, Managing Incidents-Wrapping Up

about, What Is Incident Management?

incidents, What Is an Incident?

learning from an incident, Learning from the Incident-Distributing the
Information

aiding discovery, Aiding Discovery

danger of cognitive biases, How Deep Should You Dig?
deciding how deep to dig, How Deep Should You Dig?
distributing the information, Distributing the Information

effective documentation of an incident, Documenting Incidents
Eftectively

more resources for learning, Wrapping Up

planning and preparing for incidents, Planning and Preparing for
Incidents-Understand Severity Levels and Escalation Protocols

clearly defining roles and responsibilities, Clearly Define Roles
and Responsibilities

creating templates, Create Templates

maintaining documenttion, Maintain Documentation
practicing failures, Practice Failure

setting up and documenting communication channels, Set Up and
Document Communication Channels

training for communication, Train for Effective Communication

understanding severity levels and escalation protocols,
Understand Severity Levels and Escalation Protocols

understanding your tools, Understand Your Tools

recognizing when it's the system, not you, What Is Incident
Management?

responding to incidents, Responding to Incidents-Responding to
Incidents

success for the incident manaagement process, Next Steps
incident management team (IMT), Planning and Preparing for Incidents
incident response cycle, Responding to Incidents
incident response team (IRT), Planning and Preparing for Incidents
incident tracking, Understand Your Tools
incidents, about, What Is an Incident?
information architecture, Organization Practices

information presented to different audiences, right level of, Case #2: Telling
the Same Story with a Different Audience

infracode, Why Script Your Infrastructure?, Infrastructure as Code

declarative versus imperative, Infrastructure as Code

infrastructure

code testing, modified testing pyramid for, Explicit Testing Strategy

code to configure, Code to Configure Infrastructure

scripting (see scripting infrastructure)

treating as data (IaD), Treating Your Infrastructure as Data
infrastructure as code (see 1aC)

infrastructure code, Infrastructure as Code

(see also infracode)
leveraging version control with, Benefits of Version Control
infrastructure projects, organizing, Organizing Infra Projects
infrastructure security (see security)
input/output (I/O) size/block size (storage), Key Characteristics
input/output operations per second (IOPS) for storage, Key Characteristics
calculating, Key Characteristics
integrated static code analysis, Integrated static code analysis

integration tests, Integration Tests

for infrastructure code, Explicit Testing Strategy
writing, Writing Integration Tests
integrity (CIA model), Design for Security Operability
interactions, stories about, Choose Your Story Type
Internet Engineering Task Force (IETF), How Things Communicate
intrusion detection systems, Build a Network

IP (Internet Protocol), Network Layer

1solation

concerns in choosing compute options, Guidelines for Choosing
Compute

in databases, Database Storage

issue tracking, Understand Your Tools

J

JIT (just in time), The Framework for Capacity Planning
jitter, Key Characteristics of Networks
jq (command-line JSON processor), Other Helpful Utilities

JSON, Database Storage, Other Helpful Utilities
jq processor, Other Helpful Utilities

linter for, Linting

K

Kanban, managing your work with, Manage Your Work with Kanban-
Manage Your Work with Kanban

metric types for Ready, Do, Done, Find the Interesting Information

key-value stores, Database Storage

L

lag strategy, The Framework for Capacity Planning
latency, Data Analysis, Monitors That Matter
network, Key Characteristics of Networks

between sites, Content Distribution Networks

understanding your needs, Guidelines to Your Network Strategy

storage, Key Characteristics

anticipating capacity and latency requirements, Anticipate Your
Capacity and Latency Requirements

trade-off with consistency in databases, Database Storage

layered architecture, How to Connect Things

five-layered internet model and example protocols, How Things
Communicate

layered Internet models

advantage of, Virtualization

layers, Build a Network
lead, lag, and match, The Framework for Capacity Planning
leadership dashboard, Manager dashboard
leadership, collective, Collective Leadership-Collective Leadership
leading sustainable teams (see teams (sustainable), leading)
learning culture, funding, Budget a Learning Culture

liaison (incident management), Clearly Define Roles and Responsibilities,
Responding to Incidents

libraries, Frameworks and Libraries
line charts, Line charts

linters, Integrated static code analysis

commonly available, listing of, Linting

configuring, Linting

configuring with documented styles and conventions, Linting
linting, Linting, Linting
benefits of, Linting

live site, service, or software application, exceptions to, What Is an
Incident?

load (in your work), Find the Interesting Information
load balancers, Caring About Networks, Build a Network
load balancing, Build a Network

layer 7 (L7), Build a Network
logging, Logs

(see also logs)

loss of data, preventing, Choose Your Data Types
logging frameworks

databases, issuing queries against, Analyze Log Data

retention of log data, Retain Log Data

logs, Data: Metrics, Logs, and Tracing, Choose Your Data Types, Wrapping
Up

about, Logs

analyzing log data, Analyze Log Data

in historical and modern use, Managing Monitoring Data

log management hosted solutions, Examine Monitoring Platforms
retaining log data, Retain Log Data

structured, Structured Logs

MAC (media access control) addresses, Data Link Layer

MAC spoofing, Data Link Layer

machine images, Three Lenses to Model Your Infrastructure
code for building, Code to Build Machine Images

machines, Code to Build Machine Images

maintainability, Embrace Sustainability

comparison for layered, microservices, and event-driven architectures,
How to Connect Things

of documentation, Recommendations for Quality Documentation

managing infrastructure, Managing Your Infrastructure-Wrapping Up

getting started, Getting Started with Infrastructure Management-
Writing End-to-End Tests

identifying necessary skills to be successful, Getting Started with
Infrastructure Management

linting, Linting
managing testing infrastructure, Writing End-to-End Tests

well-scoped infrastructure management projects, Getting Started
with Infrastructure Management

writing end-to-end tests, Writing End-to-End Tests
writing integration tests, Writing Integration Tests
writing unit tests, Writing Unit Tests

GitOps, Treating Your Infrastructure as Data

goal, breaking down to smaller objectives, Getting Started with
Infrastructure Management

infrastructure as code, Infrastructure as Code-Infrastructure as Code

treating infrastructure as data, Treating Your Infrastructure as Data

manifests, including with applications, Securing Your Computing
Environment

match strategy, The Framework for Capacity Planning

mean time between failures (MTBF), Next Steps

mean time to detection (MTTD), Next Steps

mean time to failure (MTTF), Next Steps

memory-bound applications, example workloads, Common Workloads
message queue, examining (case study), Plan for a Monitoring Project
messaging (in event-driven systems), How to Connect Things
metadata (object), Object Storage

metrics, Data: Metrics, Logs, and Tracing, Wrapping Up

about, Metrics

benefits and use cases, Choose Your Data Types
collection platforms, Examine Monitoring Platforms
data reduction and, Data Reduction

helping to classify and improve on-call experience, Monitor the On-
Call Experience

incident management success, Next Steps

measuring system impact on a team, Measure Impact on the Team

metric types for Ready, Do, Done Kanban, Find the Interesting
Information

provided metric types from monitoring platforms, Metrics
representing people, ensuring privacy of, Data Collection

tracking for your work, Manage Your Work with Kanban

MFA (multifactor authentication), How Should You Control Access to Your
System?

microservices architecture, How to Connect Things

Microsoft Azure (see Azure)

MirageOS, Unikernels

mistakes, acknowledging and learning from, Aiding Discovery

mitigation strategies for your on-call issues, Monitor the On-Call
Experience

mkcert utility, Other Helpful Utilities

mobile HotSpot or WiFi tethering device for sustainable on-call, Preparing
for On-Call

monitoring

of alerts, Update On-Call Processes

compute and software, in practice, Compute and Software Monitoring
in Practice-Wrapping Up
choosing monitoring tool or platform, Choose a Monitoring Tool

or Platform-Wrapping Up

deciding what should alert, What Alerts Should You Set?-
Examine Monitoring Platforms

deciding what to monitor, What Should You Monitor?-Monitors
That Matter

examining monitoring platforms, Examine Monitoring Platforms
identifying desired outputs, Identify Your Desired Outputs

planning for a monitoring project, Plan for a Monitoring Project-
Plan for a Monitoring Project

in incident management, Understand Your Tools
managing data from, Managing Monitoring Data-Wrapping Up

types of monitoring data, What Is Monitoring Data?-Distributed
Tracing

of the on-call experience, Monitor the On-Call Experience-Monitor the
On-Call Experience, Update On-Call Processes

questions to think about, Monitor the On-Call Experience
of resources, Monitoring

of teams and their work, Monitor the Team’s Work-Measure Impact on
the Team

benefits of, Why Monitor the Team?

factors to monitor, What Should You Monitor?-Examine the work
theory, Monitoring Theory-Wrapping Up

being your own authority instead, Why Monitor?

building blocks of monitoring, Monitoring Building Blocks

first-level monitoring, First-Level Monitoring-Data Presentation

observability versus monitoring, How Do Monitoring and
Observability Differ?

reasons for monitoring, Why Monitor?-Why Monitor?

second-level monitoring, Second-Level Monitoring

terminology, How Do Monitoring and Observability Differ?
of your work, Monitor Your Work-Wrapping Up

benefits of, Why Should You Monitor Your Work?

choosing a platform, Choose a Platform-Choose a Platform

finding the interesting information, Find the Interesting
Information

impacts beyond you, Why Should You Monitor Your Work?

managing your work with Kanban, Manage Your Work with
Kanban-Manage Your Work with Kanban

monitors, Monitors
identifying missing monitors, Plan for a Monitoring Project
overlapping, Plan for a Monitoring Project

movement, Visual Cues

MTBF (mean time between failures), Next Steps

MTTD (mean time to detection), Next Steps

MTTF (mean time to failure), Next Steps

multifactor authentication (MFA), How Should You Control Access to Your
System?

multiplexing connections, Hypertext Transfer Protocol

N

N-tier architecture, How Things Communicate

Nagios monitoring platform, Examine Monitoring Platforms
nation-state attacks (security), Borrow the Attacker Lens
network interface controllers (NICs), Data Link Layer
network layer, Network Layer, Build a Network

networked file storage, File Storage

networks, Network-Wrapping Up
building, Build a Network-Build a Network

content distribution networks, Content Distribution Networks

guidelines to your network strategy, Guidelines to Your Network
Strategy

key characteristics of, Key Characteristics of Networks

securing, Securing Your Network-Security Recommendations for Your
Infrastructure Management

software-defined, Software-Defined Networks-Software-Defined
Networks

virtualization in, Virtualization
NoSQL databases, Database Storage

note taker (incident management), Clearly Define Roles and
Responsibilities

(0

object storage, Object Storage

common misconfiguration for object storage services, How Should
You Control Access to Your System?

observability, Embrace Sustainability

differences from monitoring, How Do Monitoring and Observability
Difter?

improving, Monitoring Data at Scale
on-call resilience, Developing On-Call Resilience-Wrapping Up
building resilient on-call team, Build Resilient On-Call Teams

humane on-call processes, Humane On-Call Processes-The Day After
On-Call

checking on-call policies, Check Your On-Call Policies
day after on-call, The Day After On-Call
night before duties commence, The Night Before
on-call handoff, On-Call Handoff
one week out, One Week Out
preparing for on-call, Preparing for On-Call
your on-call rotation, Your On-Call Rotation
more resources about on-call, Wrapping Up
on-call, about, What Is On-Call?
updating on-call processes, Update On-Call Processes
variability in the on-call experience, The Day After On-Call
on-prem environments, Choosing the Location of Your Workloads

on-premises environments

computing environment, Choosing the Location of Your Workloads

storage, Considerations for Your Storage Strategy

drawbacks of, Considerations for Your Storage Strategy
Open Systems Interconnection (OSI) reference model, Build a Network
OpenTelemetry, Distributed Tracing
operating systems
need for a specific OS, Guidelines for Choosing Compute
patching, Securing Your Computing Environment

programming languages included with, Choosing Programming
Languages

security versus ease of use, Securing Your Computing Environment
operations team

difficulties in assigning priority to on-call requests, What Is On-Call?

playing a part in on-call, Build Resilient On-Call Teams

working at full capacity, Why Monitor the Team?

operations, considerations in choosing serverless, Guidelines for Choosing
Compute

organizational strategies, influence on capacity planning, The Framework
for Capacity Planning

P

PACELC theorem, Database Storage
Packer, Virtual Machines, Code to Build Machine Images
password managers, Password Managers and Secret Management Software

patching, compute infrastructure security and, Securing Your Computing
Environment

patterns and interconnections, Patterns and Interconnections-Wrapping Up

Payment Card Industry Data Security Standard (PCI-DSS), Securing Your
Computing Environment

performance, Embrace Sustainability
system, optimizing, Key Characteristics
personal stories, Choose Your Story Type
personally meaningful contribution (in work), What Should You Monitor?
physical data channels (in networks), Virtualization
physical layer, Physical Layer, Build a Network

PII (personally identifiable information), Why Care About Storage?,
Respect the Privacy Concerns of Your Users

monitoring and, Data Collection
pipeline (CI/CD)
phases of build pipeline, Infrastructure as Code

Pixar’s Toy Story 2 (case study), Be Prepared to Handle Disaster Recovery
Situations

planning, documentation of, Dimensions of Documentation

platforms

tracking and visualizing your work, Choose a Platform-Choose a
Platform

platforms, infracode, Getting Started
points of presence (PoPs), Content Distribution Networks

policies (on-call), Check Your On-Call Policies, Your On-Call Rotation

portability, Guidelines for Choosing Compute

position, Visual Cues

positive atmosphere (in work), What Should You Monitor?
post incident reviews, Monitoring Data at Scale
PowerShell, Choosing Programming Languages
preparation for on-call, Preparing for On-Call

presentation layer, Build a Network

presentations, Know Your Audience

choosing your communication channel, Choose Your Channel
choosing your story type, Choose Your Story Type
data presentation, Data Presentation

knowing your audience, Presentations-Know Your Audience

distilling data into charts, Know Your Audience

tailoring each graph and dashboard for audience, Know Your
Audience

knowing your visuals, Know Your Visuals-Recommended
Visualization Practices

chart types, Chart Types-Recommended Visualization Practices
visual cues, Visual Cues

recommended visualization practices, Recommended Visualization
Practices

storytelling in practice, Storytelling in Practice-The Key Takeaways

charts are worth a thousand words, Case #1: Charts Are Worth a
Thousand Words

key takeaway, adapt your message to audience needs, The Key
Takeaways

telling your story to different audiences, Case #2: Telling the
Same Story with a Different Audience-Customer dashboards

tips for speaking, Choose Your Channel

principle of least privilege, Defend Your Data, Design for Security
Operability

priority assessment and severity, misalignment in, What Is On-Call?

privacy concerns

defending data against breaches, Defend Your Data

respecting for users in storage solutions, Respect the Privacy Concerns
of Your Users

private networks, IP addresses, Network Layer

privileged access management applications, Password Managers and Secret
Management Software

privileges, Who Should Have Access to Your System?
problem discovery (by monitoring), Why Monitor?

problems, misalignment of severity and priority assessment, What Is On-
Call?

process efficiency, Find the Interesting Information

process improvement, Why Monitor?

production capacity, What Is Capacity?

programming languages for sysadmin, Choosing Programming Languages

projects

approximate sizes for, Manage Your Work with Kanban

team definition of a project, What is the team’s definition of a project?
protocols, How Things Communicate

application layer, Application Layer

data link layer, Data Link Layer

network layer, Network Layer

new, leveraging, Guidelines to Your Network Strategy

in practice, Protocols in Practice-Domain Name System

DNS, Domain Name System
HTTP, Hypertext Transfer Protocol-QUIC
QUIC, QUIC
transport layer, Transport Layer
provisioning

access management and, How Should You Control Access to Your
System?

in cloud-first manner, Three Lenses to Model Your Infrastructure
code to provision infrastructure, Code to Provision Infrastructure
Pulumi, Code to Provision Infrastructure

Puppet, Code to Configure Infrastructure

Q

question culture, combining with whole-team approach, Adopt a Whole-
Team Approach

QUIC networking, Guidelines to Your Network Strategy
QUIC protocol, QUIC

R

RARP (Reverse Address Resolution Protocol), Data Link Layer
readability of code, increasing, Linting

records (documentation), Dimensions of Documentation

RED (rate, errors, duration) method, Monitors That Matter

Red Hat Ansible, Code to Configure Infrastructure

Redis, Database Storage

refactoring tools to a new language, Choosing Programming Languages
reference guides, Dimensions of Documentation

relational databases, Database Storage

reliability, Embrace Sustainability, Plan for a Monitoring Project

comparison for layered, microservices, and event-driven architectures,
How to Connect Things

cost with protocols like RELP, Choose Your Data Types
examples of, Data Analysis
Reliable Event Logging Protocol (RELP), Choose Your Data Types
reproducibility, Benefits of Version Control

resources

capacity planning needs with cloud computing, Do You Need Capacity
Planning with Cloud Computing?

justification of, Justification
management of, Management
monitoring, Monitoring

procurement, Resource Procurement

responsibilities, defining for incident management, Clearly Define Roles
and Responsibilities

responsiveness in databases, Database Storage
REST, How Things Communicate
retrospectives, What Should You Monitor?
improving teams with, What Should You Monitor?
reuse (documentation), Organization Practices
review document (weekly) for on-call handoff, On-Call Handoff

risk management

modeling, Second-Level Monitoring
through monitoring, Why Monitor?
rogue activity, Defending Secrets and Monitoring Usage

roles, defining for incident management, Clearly Define Roles and
Responsibilities

S

Salt, Code to Configure Infrastructure

Sarbanes-Oxley Act (SOX) in the US, Securing Your Computing
Environment

saturation, Monitors That Matter

scalability, Embrace Sustainability

comparison for layered, microservices, and event-driven architectures,
How to Connect Things

with infrastructure scripting, Why Script Your Infrastructure?
scale, monitoring data at, Monitoring Data at Scale

scaling

in data centers versus cloud, Resource Procurement

dynamic, with cloud services, Do You Need Capacity Planning with
Cloud Computing?

scripted tests, benefits of, You’re Already Testing

scripting infrastructure, Scripting Infrastructure-Wrapping Up

benefits of, Why Script Your Infrastructure?-Why Script Your
Infrastructure?

getting started, Getting Started

lenses for modeling your infrastructure, Three Lenses to Model Your
Infrastructure-Code to Configure Infrastructure

code to build machine images, Code to Build Machine Images
code to configure infrastructure, Code to Configure Infrastructure
code to provision infrastructure, Code to Provision Infrastructure
SDNs (see software-defined networks)
second-level monitoring, Second-Level Monitoring

secrets, managing, Manage Secrets-Securing Your Computing Environment

defending secrets and monitoring usage, Defending Secrets and
Monitoring Usage

password managers and secret management software, Password
Managers and Secret Management Software

security
concerns in serverless, Guidelines for Choosing Compute

infrastructure, Infrastructure Security-Wrapping Up, Securing Your
Infrastructure-Wrapping Up

about, What Is Infrastructure Security?
assessing attack vectors, Assessing Attack Vectors

borrowing the attacker lens, Borrow the Attacker Lens-Borrow
the Attacker Lens

categorizing discovered issues, Categorize Discovered Issues

designing for security operability, Design for Security
Operability-Design for Security Operability

managing identity and access, Manage Identity and Access-Who
Should Have Access to Your System?

managing secrets, Manage Secrets-Securing Your Computing
Environment

securing the compute environment, Securing Your Computing
Environment-Securing Your Computing Environment

securing the network, Securing Your Network-Security
Recommendations for Your Infrastructure Management

sharing responsibilities for, Share Security Responsibilities

keeping informed of internet security threats, Guidelines to Your
Network Strategy

lack of, in TCP and UDP initial designs, Transport Layer

programming languages and security patches, Choosing Programming
Languages

roles in, Share Security Responsibilities

The Security Technical Implementation Guides (STIGs), Securing Your
Computing Environment

segmentation (network), Software-Defined Networks

self-care during on-call shifts, One Week Out

inclusive meals for incident teams, Update On-Call Processes
preparing for comfort, The Night Before

serverless architectures, Serverless
app services, App services

applications’ demands for local development, testing, and monitoring,
Infrastructure as Code

functions and functions as a service (FaaS), Functions
main considerations in choosing, Guidelines for Choosing Compute
monitoring serverless computing, Plan for a Monitoring Project
serverless asset lifecycle, Management
service catalog of a team, What is the service catalog that your team offers?
service-level indicators (SLIs), Data Analysis, What Alerts Should You Set?

service-level objectives (SLOs), Data Analysis, What Alerts Should You
Set?

services

accessing secrets, Defending Secrets and Monitoring Usage

serverless, monitoring, Plan for a Monitoring Project

third-party, causing problems with tests, Test Failure Type #4: Flaky
Tests

session layer, Build a Network

severity and priority assessment, misalignment in, What Is On-Call?
severity and urgency of on-call requests, assessing, Your On-Call Rotation
severity levels, Understand Severity Levels and Escalation Protocols
shadowing on-call, Preparing for On-Call

shared language (presentations and visualizations), Case #2: Telling the
Same Story with a Different Audience

shellcheck, Integrated static code analysis
ShellCheck, Other Helpful Utilities

shells, Choosing Programming Languages

command completion, Other Helpful Utilities

customizing command line, Other Helpful Utilities

writing shell code, using an editor, Integrated static code analysis
Silver Searcher (Ag), Other Helpful Utilities
simplicity, Embrace Sustainability
site (documentation), organizing, Organizing a Site
site reliability engineer (SRE), Flavors of System Administration
Slack, What Is an Incident?

SLIs (service-level indicators), Data Analysis, What Alerts Should You Set?

SLOs (service-level objectives), Data Analysis, What Alerts Should You
Set?

social responsibility, gauging for providers, Guidelines for Choosing
Compute

social support and autonomy (for teams), Adopt a Whole-Team Approach
software-defined networking products, Securing Your Network

software-defined networks, Software-Defined Networks-Software-Defined
Networks

source control versus version control, What Is Version Control?
speaking, tips for, Choose Your Channel

speed (in your work), Find the Interesting Information

SRE (site reliability engineer), Flavors of System Administration
SSL certificates, mkcert utility, Other Helpful Utilities

stagnation in a job, Why Should You Monitor Your Work?
startup time, Guidelines for Choosing Compute

state-based model of risk management, Second-Level Monitoring
status quo bias, How Deep Should You Dig?

storage, Storage-Wrapping Up

categories of, Storage Categories-Considerations for Your Storage
Strategy

block storage, Block Storage

databases, Database Storage-Considerations for Your Storage
Strategy

file storage, File Storage

object storage, Object Storage

considerations for your strategy, Considerations for Your Storage
Strategy-Wrapping Up

anticipating capacity and latency requirements, Anticipate Your
Capacity and Latency Requirements

defending against data breaches, Defend Your Data

respecting privacy concerns of users, Respect the Privacy
Concerns of Your Users

retaining data as long as reasonably necessary, Retain Your Data
as Long as Is Reasonably Necessary

costs for specialized hardware storage appliances, Management

important concerns with, Why Care About Storage?

key characteristics of, Key Characteristics-Key Characteristics
storage-bound applications, example workloads, Common Workloads
story types for presentations, Choose Your Story Type

storytelling in practice, Storytelling in Practice-The Key Takeaways

charts are worth a thousand words (case 1), Case #1: Charts Are Worth
a Thousand Words

telling the same story to a different audience (case 2), Case #2: Telling
the Same Story with a Different Audience

customer dashboard, Customer dashboards

key takeaway, adapt your message to audience needs, The Key
Takeaways

leadership dashboard, Manager dashboard

team dashboard, Team dashboard

streaming (event streaming systems), How to Connect Things
structured logs, Structured Logs
stylistic concerns in code, Linting

subject matter expert (SME) in incident management, Clearly Define Roles
and Responsibilities

supply chains (global), effects of COVID-19 pandemic on, The Framework
for Capacity Planning

sustainability, Embrace Sustainability
swarming, Measure Impact on the Team
sysadmin toolkit, Sysadmin Toolkit-Wrapping Up
choosing an editor, Choosing an Editor-Integrate workflow with Git

choosing programming languages, Choosing Programming
Languages-Choosing Programming Languages

components, The Components of Your Toolkit
digital toolkit, What Is Your Digital Toolkit?
frameworks and libraries, Frameworks and Libraries
other helpful utilities, Other Helpful Utilities
resources for more information, Wrapping Up
sysadmins
blurring distinction between network admins and, Wrapping Up
increased cognitive load of microservices, How to Connect Things

rogue internal administrators, Borrow the Attacker Lens

role in on-call, Build Resilient On-Call Teams
security work, Share Security Responsibilities
as testers, Testing
writing code, Choosing an Editor

system administration
conclusion, Conclusion

current model, recognizing inseparability of humans and work, Adapt
to Challenges

differing interpretations of the role, What Is the Job?
embracing collaboration, Embrace Collaboration
embracing evolving practices, Embrace Evolving Practices
flavors of, What Is the Job?

old-school model, Adapt to Challenges

sustainability of your work, Embrace Sustainability

system tools, leveraging version control with, Benefits of Version Control

T

tables, Data tables
task documentation, Dimensions of Documentation

tasks

breaking work into, Manage Your Work with Kanban
characterization of, What is the team’s definition of a task?

variability in your speed on, Find the Interesting Information

TCP (Transmission Control Protocol), Transport Layer
essential characteristics, Transport Layer
TCP/IP limitations, Plan for a Monitoring Project
TCP/IP model, HTTPS stack using, Hypertext Transfer Protocol

team conventions, establishing and validating, Establish and validate team
conventions

team dashboard, Team dashboard

teams (sustainable), leading, Leading Sustainable Teams-Wrapping Up

adapting to challenges, Adapt to Challenges-Adapt to Challenges

adopting a whole-team approach, Adopt a Whole-Team Approach-
Update On-Call Processes

budgeting a learning culture, Budget a Learning Culture

collective leadership, Collective Leadership-Collective Leadership

building resilient on-call team, Build Resilient On-Call Teams
updating on-call processes, Update On-Call Processes

monitoring the team's work, Monitor the Team’s Work-Measure
Impact on the Team

benefits of monitoring teams, Why Monitor the Team?
deciding what to monitor, What Should You Monitor?
examining the work, Examine the work

increasing team staffing, Why Monitor the Team?
measuring impact on the team, Measure Impact on the Team

objectives of the team, What are the team’s objectives?

service catalog offered by the team, What is the service catalog
that your team offers?

team definition of a project, What is the team’s definition of a
project?

supporting team infrastructure with documentation, Support Team
Infrastructure with Documentation

telemetry, Distributed Tracing

terminology, customizing for your audience, Case #2: Telling the Same
Story with a Different Audience

Terraform, Code to Provision Infrastructure, Getting Started with
Infrastructure Management

testing, Testing-Wrapping Up
automated, Infrastructure as Code, Infrastructure as Code

building quality with automated tests, Getting Started with
Infrastructure Management

common types of, Common Types of Testing-End-to-End Tests

end-to-end tests, End-to-End Tests
integration tests, Integration Tests
linting, Linting

unit tests, Unit Tests

explicit strategy for, Explicit Testing Strategy-Improving Your Tests;
Learning from Failure

modeling different testing implementations, Explicit Testing
Strategy

test pyramid, Explicit Testing Strategy

thinking of tests as building blocks, Explicit Testing Strategy

exploratory, You’re Already Testing
further steps in improving, Next Steps

improving tests by learning from failure, Improving Your Tests;
Learning from Failure-Improving Your Tests; Learning from Failure

test failure analysis, case study, Improving Your Tests; Learning
from Failure

types of test failures, Improving Your Tests; Learning from
Failure

linting with infracode, Linting

managing testing infrastructure and shoring up test levee, Writing End-
to-End Tests

resolving test failures, Resolving Test Failures-Test Failure Type #5:
Code Defects

assumptions changed, Test Failure Type #3: Changing
Assumptions

code defects, Test Failure Type #5: Code Defects

environmental problems, Test Failure Type #1: Environment
Problems

flaky tests, Test Failure Type #4: Flaky Tests

flawed test logic, Test Failure Type #2: Flawed Test Logic
scripted, You’re Already Testing
writing end-to-end tests, Writing End-to-End Tests

writing integration tests, Writing Integration Tests

writing unit tests, Writing Unit Tests

third-party services, Test Failure Type #4: Flaky Tests
thoroughness, balancing with efficiency, Find the Interesting Information
threat modeling, Borrow the Attacker Lens
tools for, Borrow the Attacker Lens
throughput, Data Analysis
for your work, Find the Interesting Information
storage, Key Characteristics
time management, Why Should You Monitor Your Work?
timestamps, Logs
TLS (Transport Layer Security)
HTTP/2 over, Hypertext Transfer Protocol
learning more about, Hypertext Transfer Protocol
use by HTTP, Hypertext Transfer Protocol
tmux (terminal multiplexer), Other Helpful Utilities
tools

for building machine images, Code to Build Machine Images
for configuring infrastructure, Code to Configure Infrastructure

identifying and choosing infrastructure management tools, Getting
Started with Infrastructure Management

incident management, Understand Your Tools

for provisioning infrastructure, Code to Provision Infrastructure

in self-managed infrastructure for serverless platforms, Plan for a
Monitoring Project

in self-managed infrastructure for serverless computing, Plan for a
Monitoring Project

supporting automated testing and deployment automation,
Infrastructure as Code

topics, organizing documentation into, Organizing a Topic
tracing, Data: Metrics, Logs, and Tracing
about, Tracing
benefits of traces, Choose Your Data Types
distributed, Distributed Tracing
traffic, Monitors That Matter
transport layer, Transport Layer, Build a Network
tree utility, Other Helpful Utilities
treemaps, Treemaps
troubleshooting, using monitoring data, Monitoring Data at Scale
trust, assuming zero trust, Design for Security Operability

Twelve Factors methodology, Securing Your Computing Environment

U

UDP (User Datagram Protocol), Transport Layer
unikernels, Unikernels

unit tests, Unit Tests

in infrastructure code testing, Explicit Testing Strategy

writing, Writing Unit Tests
units in infracode, Unit Tests
urgency and impact (on-call requests), Check Your On-Call Policies
urgency and severity of on-call requests, assessing, Your On-Call Rotation
usability, Embrace Sustainability
USE method (utilization, saturation, errors), Monitors That Matter

User Datagram Protocol (see UDP)

\'

variability in your speed per task, Find the Interesting Information
variability, decreasing, Linting
VCSs (see version control systems)

vectors of attack or attack surfaces, Borrow the Attacker Lens, Design for
Security Operability

assessing attack vectors, Assessing Attack Vectors
verbal communication, Choose Your Channel

Verizon Data Breach Investigations Report (DBIR), Borrow the Attacker
Lens

version control, Version Control-Wrapping Up, Infrastructure as Code

about, What Is Version Control?
benefits of, Benefits of Version Control
for documentation, Recommendations for Quality Documentation

for infrastructure projects, Organizing Infra Projects

versus source control, What Is Version Control?

starting with, in infrastructure management, Getting Started with
Infrastructure Management

version control systems (VCSs), What Is Version Control?
versioning, Organizing Infra Projects
video chat (incident management), Understand Your Tools

video streaming services, anticipating capacity and latency requirements,
Anticipate Your Capacity and Latency Requirements

virtual machines (VMs), Cloud Computing, Virtual Machines, Caring
About Networks

security, Securing Your Computing Environment
virtualization in networking, Virtualization
visibility in change management, Benefits of Version Control

visualizations, Choose Your Channel

charts are worth a thousand words, Case #1: Charts Are Worth a
Thousand Words

in data presentation, Data Presentation

knowing your visuals, Know Your Visuals-Recommended
Visualization Practices

chart types, Chart Types-Recommended Visualization Practices
visual cues, Visual Cues
in monitoring platforms, Examine Monitoring Platforms

not limiting to those provided by monitoring platforms, Choose a
Monitoring Tool or Platform

recommended practices, Recommended Visualization Practices

telling the same story to different audiences, Case #2: Telling the Same
Story with a Different Audience-Customer dashboards

VPN gateway, Build a Network

vulnerabilities (security), What Is Infrastructure Security?

identifying attack surfaces, Borrow the Attacker Lens

tracking vulnerabilities in publicly released software packages,
Categorize Discovered Issues

W

web applications and web services, Open Web Application Security Project
(OWASP), Design for Security Operability

web cache poisoning, Content Distribution Networks
weekly review document for on-call handoff, On-Call Handoff

whole-team approach, Adopt a Whole-Team Approach-Update On-Call
Processes

wide column databases, Database Storage

work in progress

limiting, Manage Your Work with Kanban
too much, Find the Interesting Information
workflows, integrating with Git, Integrate workflow with Git

workloads

choosing location of, Choosing the Location of Your Workloads-Cloud
Computing

cloud computing, Cloud Computing
common, Common Workloads-Common Workloads

written communication, Choose Your Channel

Y4

zero trust, Design for Security Operability

About the Author

Jennifer Davis is an experienced engineering manager, operations
engineer, international speaker, and author. Her other books include
Effective DevOps and Collaborating in DevOps Culture. She is passionate
about community, has organized and contributed to a number of
conferences, and founded CoffeeOps, a worldwide community to facilitate
conversations and collaboration across companies. Jennifer has worked for
a variety of companies, from startups to large enterprises, improving
operability practices and encouraging sustainable work.

Colophon

The bird on the cover of Modern System Administration is a common
paradise kingfisher (Tanysiptera galatea). There are nine species of
kingfisher, only two of which have a presence outside of Papua New
Guinea (in Australia and Indonesia). The common paradise kingfisher lives
in the island’s rainforests.

Paradise kingfishers have striking bold blue feathers from the crown of the
head to the tail feathers and a white breast. The beak is bright reddish-
orange, long, and pointed. Two tail streamers extend beyond the tail
feathers, stretching the birds’ length to 13—17 inches. Common kingfishers
weigh about two ounces. They eat insects such as worms and grasshoppers,
which they find in the forests they inhabit.

The paradise kingfisher has a conservation status of Least Concern. Many
of the animals on O’Reilly’s covers are endangered; all of them are
important to the world.

The color illustration is by Karen Montgomery, based on a black and white
engraving from English Cyclopedia Natural History. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Foreword
	Preface
	Who Should Read This Book?
	What This Book Is Not
	Scope of This Book
	If I Could Tell You Only One Thing
	If I Could Tell You Only One More Thing
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Introducing Modern System Administration
	Map Your Journey
	Embrace a Mindset Shift
	What Is the Job?
	Flavors of System Administration

	Embrace Evolving Practices
	Embrace Collaboration
	Embrace Sustainability
	Wrapping Up

	I. Reasoning About Systems
	1. Patterns and Interconnections
	How to Connect Things
	How Things Communicate
	Application Layer
	Transport Layer
	Network Layer
	Data Link Layer
	Physical Layer

	Wrapping Up

	2. Computing Environments
	Common Workloads
	Choosing the Location of Your Workloads
	On-Prem
	Cloud Computing

	Compute Options
	Serverless
	Unikernels
	Functions
	App services

	Containers
	Virtual Machines

	Guidelines for Choosing Compute
	Wrapping Up

	3. Storage
	Why Care About Storage?
	Key Characteristics
	Storage Categories
	Block Storage
	File Storage
	Object Storage
	Database Storage

	Considerations for Your Storage Strategy
	Anticipate Your Capacity and Latency Requirements
	Retain Your Data as Long as Is Reasonably Necessary
	Respect the Privacy Concerns of Your Users
	Defend Your Data
	Be Prepared to Handle Disaster Recovery Situations

	Wrapping Up

	4. Network
	Caring About Networks
	Key Characteristics of Networks
	Build a Network
	Virtualization
	Software-Defined Networks
	Content Distribution Networks
	Guidelines to Your Network Strategy
	Wrapping Up

	II. Practices
	5. Sysadmin Toolkit
	What Is Your Digital Toolkit?
	The Components of Your Toolkit
	Choosing an Editor
	Integrated static code analysis
	Code completion
	Establish and validate team conventions
	Integrate workflow with Git

	Choosing Programming Languages
	Frameworks and Libraries
	Other Helpful Utilities

	Wrapping Up

	6. Version Control
	What Is Version Control?
	Benefits of Version Control
	Organizing Infra Projects
	Wrapping Up

	7. Testing
	You’re Already Testing
	Common Types of Testing
	Linting
	Unit Tests
	Integration Tests
	End-to-End Tests

	Explicit Testing Strategy
	Improving Your Tests; Learning from Failure
	Next Steps
	Wrapping Up

	8. Infrastructure Security
	What Is Infrastructure Security?
	Share Security Responsibilities
	Borrow the Attacker Lens
	Design for Security Operability
	Categorize Discovered Issues
	Wrapping Up

	9. Documentation
	Know Your Audience
	Dimensions of Documentation
	Organization Practices
	Organizing a Topic
	Organizing a Site

	Recommendations for Quality Documentation
	Wrapping Up

	10. Presentations
	Know Your Audience
	Choose Your Channel
	Choose Your Story Type
	Storytelling in Practice
	Case #1: Charts Are Worth a Thousand Words
	Case #2: Telling the Same Story with a Different Audience
	Team dashboard
	Manager dashboard
	Customer dashboards

	The Key Takeaways

	Know Your Visuals
	Visual Cues
	Chart Types
	Data tables
	Bar charts
	Line charts
	Area charts
	Heat maps
	Flame graphs
	Treemaps

	Recommended Visualization Practices
	Wrapping Up

	III. Assembling the System
	11. Scripting Infrastructure
	Why Script Your Infrastructure?
	Three Lenses to Model Your Infrastructure
	Code to Build Machine Images
	Code to Provision Infrastructure
	Code to Configure Infrastructure

	Getting Started
	Wrapping Up

	12. Managing Your Infrastructure
	Infrastructure as Code
	Treating Your Infrastructure as Data
	Getting Started with Infrastructure Management
	Linting
	Writing Unit Tests
	Writing Integration Tests
	Writing End-to-End Tests

	Wrapping Up

	13. Securing Your Infrastructure
	Assessing Attack Vectors
	Manage Identity and Access
	How Should You Control Access to Your System?
	Who Should Have Access to Your System?

	Manage Secrets
	Password Managers and Secret Management Software
	Defending Secrets and Monitoring Usage

	Securing Your Computing Environment
	Securing Your Network
	Security Recommendations for Your Infrastructure Management
	Wrapping Up

	IV. Monitoring the System
	14. Monitoring Theory
	Why Monitor?
	How Do Monitoring and Observability Differ?
	Monitoring Building Blocks
	Events
	Monitors
	Data: Metrics, Logs, and Tracing

	First-Level Monitoring
	Event Detection
	Data Collection
	Data Reduction
	Data Analysis
	Data Presentation

	Second-Level Monitoring
	Wrapping Up

	15. Compute and Software Monitoring in Practice
	Identify Your Desired Outputs
	What Should You Monitor?
	Do What You Can Now
	Monitors That Matter

	Plan for a Monitoring Project
	What Alerts Should You Set?
	Examine Monitoring Platforms
	Choose a Monitoring Tool or Platform
	Wrapping Up

	16. Managing Monitoring Data
	What Is Monitoring Data?
	Metrics
	Logs
	Structured Logs
	Tracing
	Distributed Tracing

	Choose Your Data Types
	Retain Log Data
	Analyze Log Data
	Monitoring Data at Scale
	Wrapping Up

	17. Monitor Your Work
	Why Should You Monitor Your Work?
	Manage Your Work with Kanban
	Choose a Platform
	Find the Interesting Information
	Wrapping Up

	V. Scaling the System
	18. Capacity Management
	What Is Capacity?
	The Capacity Management Model
	Resource Procurement
	Justification
	Management
	Monitoring

	The Framework for Capacity Planning
	Do You Need Capacity Planning with Cloud Computing?
	Wrapping Up

	19. Developing On-Call Resilience
	What Is On-Call?
	Humane On-Call Processes
	Check Your On-Call Policies
	Preparing for On-Call
	One Week Out
	The Night Before
	Your On-Call Rotation
	On-Call Handoff
	The Day After On-Call

	Monitor the On-Call Experience
	Wrapping Up

	20. Managing Incidents
	What Is an Incident?
	What Is Incident Management?
	Planning and Preparing for Incidents
	Set Up and Document Communication Channels
	Train for Effective Communication
	Create Templates
	Maintain Documentation
	Document the Risks
	Practice Failure
	Understand Your Tools
	Clearly Define Roles and Responsibilities
	Understand Severity Levels and Escalation Protocols

	Responding to Incidents
	Learning from the Incident
	How Deep Should You Dig?
	Aiding Discovery
	Documenting Incidents Effectively
	Distributing the Information

	Next Steps
	Wrapping Up

	21. Leading Sustainable Teams
	Collective Leadership
	Adopt a Whole-Team Approach
	Build Resilient On-Call Teams
	Update On-Call Processes

	Monitor the Team’s Work
	Why Monitor the Team?
	What Should You Monitor?
	What are the team’s objectives?
	What is the team’s definition of a task?
	What is the team’s definition of a project?
	What is the service catalog that your team offers?
	Examine the work

	Measure Impact on the Team

	Support Team Infrastructure with Documentation
	Budget a Learning Culture
	Adapt to Challenges
	Wrapping Up

	Conclusion
	A. Protocols in Practice
	Hypertext Transfer Protocol
	QUIC
	Domain Name System

	B. Resolving Test Failures
	Test Failure Type #1: Environment Problems
	Test Failure Type #2: Flawed Test Logic
	Test Failure Type #3: Changing Assumptions
	Test Failure Type #4: Flaky Tests
	Test Failure Type #5: Code Defects

	Index

