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Preface

Rapid technological advances have made the Internet ubiquitous around
the globe. Access speeds and reliability of access are always improving,
and as a result, diverse services provided on the Internet are greatly im-
pacting every aspect of our day-to-day lives. Using these services, peo-
ple routinely depend on the Internet to share confidential and valuable
personal and professional information. Because smooth functioning of
society depends highly on the Internet, individuals with bad intentions
routinely exploit inherent weaknesses of the Internet to paralyze tar-
geted services all over the net. With increasing incidences of network
attacks, detecting such unwelcome intrusions has become an impor-
tant research area. Among all the threats for which network defenders
need to watch out, Distributed Denial-of-Service (DDoS) attacks are
among the most common and most devastating. In this attack, peo-
ple with malice use tools that are frequently available on the net to
disrupt Websites, databases or enterprise networks by first gathering
information on their weaknesses and later exploiting them. DDoS is
a coordinated attack, launched using a large number of compromised
hosts. A DDoS attack is considered high-rate when it generates a large
number of packets or extremely high-volume traffic within a very short
time, say a fraction of a minute, to disrupt service. An attack is re-
ferred to as a low-rate attack, if it is mounted over minutes or hours.
To counter DDoS attacks, several significant defense mechanisms have
been developed.

This book discusses the evolution of DDoS attacks, how to detect a
DDoS attack when one is mounted, how to prevent such attacks from
taking place, and how to react when a DDoS attack is in progress with
the goal of possibly tolerating the attack and doing the best under the
circumstances without failing completely. It introduces types of DDoS
attacks, characteristics that they demonstrate, reasons why such at-
tacks can take place, what aspects of the network infrastructure are

xXix



XX PREFACE

usual targets, and how these attacks are actually launched. The book
elaborates upon the emerging botnet technology, current trends in the
evolution and use of this technology, and the role of this technology
in facilitating the launching of DDoS attacks, and challenges in coun-
tering the role of botnets in the proliferation of DDoS attacks. The
book introduces statistical and machine learning methods applied in
the detection and prevention of DDoS attacks in order to provide a
clear understanding of the state of the art. It presents DDoS reaction
and tolerance mechanisms with a view to studying their effectiveness
in protecting network resources without compromising the quality of
services. Further, the book includes a discussion of a large number
of available tools and systems for launching DDoS attacks of various
types and for monitoring the behavior of the attack types. The book
also provides a discussion on how to develop a custom testbed that can
be used to perform experiments such as attack launching, monitoring
of network traffic, detection of attacks, as well as for testing strate-
gies for prevention, reaction and mitigation. Finally, the reader will
be exposed to additional current issues and challenges that need to be
overcome to provide even better defense against DDoS attacks.
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Chapter 1

Introduction

Rapid technological advances in accuracy, speed, and reliability of the
modern Internet infrastructure have made significant impacts on our
daily lives. With the proliferation of Web-enabled applications, the
flow of valuable and confidential information is growing across public
as well as private networks. Networks are designed to share assets and
resources efficiently among network users, and Web-enabled applica-
tions play a vital role in our day-to-day personal and professional lives.
In recent years, the Internet has provided a global computational and
communication environment by interconnecting billions of computers.
In addition, the integration of the Internet with wireless and mobile
technologies is ushering in an impressive wave of modern devices and
applications on these devices. Figure 1.1 shows the statistics of Internet
users in the world up to the year 2014.

People depend on the Internet to share confidential and valuable
personal and professional information with other network users. On
the other hand, because of general high reliance on the Internet, some
people also exploit the weaknesses of the Internet to paralyze targeted
segments of it. A common example of such weaknesses of the Inter-
net is mismatch of speeds between core and edge routers. Another
major weakness of the Internet arises due to inappropriate configu-
rations of routers. Such weaknesses often cause a networked system
to become a target of attacks, which are launched to gain unlawful
access to valuable and confidential information or damage private or
professional resources. Although, a good number of firewall and crypto-
graphic systems have been developed in recent years, these are not free
of limitations. Defense mechanisms that identify intrusions as they
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Figure 1.1: Number of Internet users up to 2014.

happen or are about to happen, provide another way to defend net-
worked systems from any attack. In spite of tremendous efforts made
by defenders, zero-day and other complex attacks are being launched
almost every day. Among all the threats for which network defenders
need to watch out, denial-of-service (DoS) attacks are considered the
most common and often the most devastating ones.

1.1 Anomalies in Networks

Attacks in a network are also called anomalies in network traffic. Gen-
erally, anomalies or attacks are network events that deviate from the
normal, expected or usual behavior, and are suspect from a security
perspective. Such anomalies in a network may be due to two basic
types of reasons [243]: performance-related and security-related. Be-
cause many individual entities are put together to form a computer
network to contribute toward providing complex communication ser-
vices, things may go wrong with any of the interacting entities. A
performance-related anomaly may occur due to malfunction of net-
work devices, e.g., because of a router misconfiguration. On the other
hand, security-related anomalies occur due to malicious attempts or
activities to disrupt normal functioning of the network. Anomalies
caused due to security-related reasons may be of six distinct types [24]:
infection, explosion, probe, cheating, traverse and concurrency. An in-
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fection attempts to tamper with a system to install malicious files or
executables such as viruses or worms to infect the target system. The
second category, i.e., explosion anomalies attempt to cause overflow
in the target system with bugs. A commonly known example of this
category of anomalies is buffer overflow. A probe attempts to gather
information to identify the vulnerabilities of systems. Nmap is a com-
mon example of a utility to perform probe. The fourth category, i.e.,
cheating, attempts to use fake or abnormal addresses for sources or
destinations for information requests. A common example of cheat-
ing is spoofing of IP addresses or MAC addresses. A traverse attack
attempts to compromise the target system by matching possible key
pieces of information required to protect the system. Two common
examples of traverse attempts are brute force attacks and dictionary
attacks. The fifth category is more serious and attempts to victimize
a system or a service by sending mass requests beyond the capacity of
the system or the service. A common example of this category is the
Distributed Denial-of-Service attack. In addition to these, almost every
day new attacks are being created and many do not belong to any of
these categories. Most newer attacks attempt to infect a target system
by exploiting undiscovered weaknesses or bugs in the system.

1.2 Distributed Denial-of-Service (DDoS)
Attacks

DDoS is a coordinated attack, launched using a large number of com-
promised hosts. At an initial stage, the attacker identifies the vulner-
abilities in one or more networks for installation of malware programs
in multiple machines to control them from a remote location. At a
later stage, the attacker exploits these compromised hosts to send at-
tack packets to the target machine(s), which is (are) usually outside
the original network of infected hosts, without the knowledge of these
compromised hosts. Depending on the intensity of attack packets and
the number of hosts used to attack, commensurate damage occurs in
the victim network. If the attacker can exploit a large number of com-
promised hosts, a network or a Web server may be disrupted within
a short time. Some common examples of DDoS attacks are fraggle,
smurf and SYN flooding. DDoS attack statistics up to the year 2014



4 CHAPTER 1. INTRODUCTION

30 +
25 -

20 -

10 -

Figure 1.2: DDoS attack statistics up to the year 2014 (DDoS attack
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are shown in Figure 1.2. It can be seen in the figure that among the
commonly used DDoS attacks shown on the z-axis, TCP SYN, HTTP
GET, UDP, and ICMP flooding are most frequently used.

1.3 Causes of DDoS Attacks

DDoS attacks are catastrophic and can bring down a server or network
very quickly. Generally, a DDoS attacker forms (or hires) a network
with compromised hosts to launch DDoS attacks. The attacker takes
advantage of these compromised hosts to gather security related infor-
mation. Eight prominent reasons for DDoS attacks are the following:
(i) High interdependencies exist in Internet security. (ii) Internet re-
sources are limited. (iii) Many unwittingly compromised hosts, pup-
peteered by one or more dangerous masters, conspire against a few
targeted servers or hosts. (iv) Intelligence and resources that may be
used to thwart impending attacks are not usually collected. (v) Sim-
ple and straightforward routing principles are used on the Internet.
(vi) There are mismatches in design and speeds between core and edge
networks are commonplace. (vii) Network management is frequently
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slack. (viii) The common and useful practice of sharing resources has
its drawbacks.

1.4 Targets of DDoS Attacks

Generally a DDoS attacker aims to attack any of the following targets:

(i) Routers

(ii) Links

(iii) Firewalls and defense systems,
(iv) Victim’s infrastructure

(v) Victim’s OS

(vi) Current communications

(vii) Victim’s applications.

1.5 Launching of DDoS Attacks

There are four basic steps in launching a DDoS attack. (a) Selection of
agents. The master attacker chooses the agents that will perform the
attack. Based on the nature of vulnerabilities present, some machines
are compromised to use as agents. Attackers victimize these machines,
which may have abundant resources, so that a powerful attack stream
can be generated. In the early years, the attackers attempted to acquire
control of these machines manually. However, with the development of
advanced security attack tool(s), it has become easier to identify these
machines automatically and instantly. (b) Compromise. The attacker
exploits security holes and vulnerabilities of the agent machines and
plants the attack code. The attacker also takes necessary steps to pro-
tect the planted code from identification and deactivation. In the direct
DDoS attack strategy, the compromised nodes, aka agents or zombies
situated between the attacker and the victim, are unwitting accomplice
hosts recruited from among a large number of unprotected hosts on the
Internet with high-bandwidth connectivity. The DDoS attack strategy
is usually more complex due to inclusion of an intermediate layer of
nodes between the zombies and victim(s). It further complicates the
traceback of the path from the victim to the attackers mostly due to
(i) the complexity in untangling the traceback information because of
the involvement of multiple machines, and/or (ii) having to retrace the
connection back via a large number of distributed routers or servers.
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Unless a sophisticated defense mechanism is used, it is usually difficult
for the users and owners of the compromised agents to realize that they
have become a part of a DDoS attack system. (c) Communication. The
attacker communicates with any number of handlers to identify which
agents are up and running, when to schedule attacks, or when to up-
grade agents. Such communication among the attackers and handlers
can be via various protocols such as ICMP, TCP, or UDP. Based on
the configuration of the attack network, agents can communicate with
a single handler or multiple handlers. (d) Attack. The master attacker
initiates the attack. The victim, the duration of the attack, as well
as special features of the attack such as the type, the length of TTL
(time-to-live), and port numbers can be adjusted. The attackers use
available bandwidth and each sends a huge number of packets to the
target host or network to immediately overwhelm the resources.

1.6 Current Trends in Botnet Technology

A botnet is defined as a large group of malware-infected machines, re-
ferred to as zombies, which are controlled by a malicious entity, referred
to as the botmaster. The botmaster is used to control the zombies
remotely and to instruct them through commands to perform mali-
cious activities. Bots are controlled using a botnet architecture and
a command-and-control system, which may be based on P2P, IRC,
HTTP or DNS. People with malice can use botnets to commit cyber
crimes such as launching DoS attacks, sending spam mail or stealing
personal and valuable data such as login IDs and passwords for mail
accounts or bank credentials. It is common knowledge that a major-
ity of email traffic is spam and most of the messages are sent through
botnets.

1.7 Machine Learning in DDoS Attack
Handling

The coordinated nature of DDoS attacks with variable packet inten-
sity involving a large number of compromised nodes demands a cost-
effective detection mechanism, which can distill the voluminous anoma-
lous traffic from normal traffic in real time or near real time with a
minimum number of false alarm(s). In such a detection mechanism,
the following components play major roles.
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1.7.1 Traffic Attributes and User-Parameter Selection

To make a defense system cost-effective, the number of network traf-
fic attributes selected for analysis of captured and preprocessed traffic
data should be as low as possible. The most influential attributes to
take part in the anomaly detection process can be identified using ap-
propriate attribute selection or ranking methods. In practice, most
DDoS defense systems have been found to operate successfully using
only 2 to 3 traffic attributes.

A most desirable quality of a network or application defense system
is low dependency on user parameters (if not totally independent of
such parameters), apart from other qualities such as cost effectiveness,
easy implementability, reliability, robustness, scalability, high accuracy
and low collateral damage. Most practical defense systems are heavily
dependent on multiple user parameters, and the performance of these
systems is highly sensitive to these parameters. On the other hand,
due to rapid technological advancement, significant changes routinely
occur in a network’s operating environment or scenario. As a result,
the parameter values valid for network scenario 1, may not be effective
for scenario 2. Thus, development of appropriate heuristic methods to
support selection of the proper values for these parameters can alleviate
this problem of parameter selection.

1.7.2 Selection of Metrics or Measures

Generally, central to a machine learning method for traffic analysis,
is the use of a similarity or dissimilarity (distance) metric or measure.
Sometimes, such metrics or measures are integral to the machine learn-
ing method. For example, in ROCK [93] clustering, the concept of a
“link” is integral to the method. On the other hand, many other meth-
ods are not bound to a specific measure. For example, in k-means [251]
clustering, the proximity measure can be Manhattan, Euclidean, or Co-
sine distance or even others. However, the performance of the method
may be dependent on the measure used. Hence, depending on the sit-
uation, and the type and nature of data selected for analysis, a careful
selection of the metric or measure can help improve the accuracy of
clustering or classification significantly.
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1.7.3 Analysis of Data

In the recent past, spurred by the evolution of new DDoS attack tools,
several novel and practical machine learning approaches have been used
for DDoS attack detection and prevention. The relevance and effective-
ness of such methods are mostly based on their performance in terms of
classification accuracy and execution time. These approaches belong to
four basic categories, viz., statistical, knowledge-based, soft computing-
based, and other data mining and machine learning approaches [24].

Statistical techniques fit a statistical model to the given data and
then apply a statistical inference test on an unseen instance to deter-
mine if it can be explained by this model. In knowledge-based meth-
ods, predefined rules or patterns of attack are checked against connec-
tion events to test their legitimacy. Soft computing techniques apply
problem-solving technologies such as fuzzy logic, probabilistic reason-
ing, neural networks and genetic algorithms. Machine learning or data
mining techniques include clustering, classification, and association rule
mining. Clustering is a technique that is also known as unsupervised
classification. It does not need to be trained with a training dataset
and the strength of clustering lies within the algorithm itself. Hence,
it is very popular. Classifiers such as SVM [149], [51] and HMM [24]
are also used in many detection approaches. An association mining
technique works using a support-confidence framework and typically
it comprises two steps, i.e., frequent itemset generation and rule gen-
eration. It finds the frequent itemsets by computing the frequency of
occurrences of the itemsets in a database of transactions individually
as well as in association. Once frequent itemsets are found, rule gener-
ation becomes trivial. A detailed discussion on these three basic data
mining techniques are given in [24].

1.7.4 Mode of Detection

A DDoS defense system can operate in a centralized or in a distributed
mode depending on the deployment of its modules. In a centralized
DDoS defense system, all modules comprising the system are deployed
at the same location, whereas the modules of a distributed DDoS de-
fense system are usually deployed at different places and they attempt
to identify attacks quickly at multiple places with additional resources
in a coordinated manner. With limited resources, a centralized defense
system is usually unable to identify all classes of DDoS attacks in real
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time. KEspecially, when the attack intensity grows very rapidly, it is al-
most impossible for such systems deployed at the victim end to counter
the flooding, and often such systems themselves become victimized by
attackers.

On the other hand, distributed defense systems are usually more
powerful with sufficient resources to counter high-rate as well as low-
rate DDoS attacks. Due to the ability to inspect network traffic at
several places on edge networks as well as the cooperative approach
they take, such a system can identify anomalous traffic quickly.

1.7.5 Generation of Alarm Information and Reaction

After the preprocessed traffic data has been analyzed with appropri-
ate machine learning techniques, the next step is to decide whether a
packet is to be identified as anomalous or normal. If it is found anoma-
lous with reference to the value of a user threshold, the system needs
to decide on the information to generate along with some alarm for
subsequent action. To react with proper action to block of such an
attack type now and also in the future, the generation of the alarm
with adequate explanatory information (e.g., protocol or source IP) is
important. Most mitigation strategies are based on a dynamically up-
dated black list of IPs and thus anomaly identification should help the
generation of such a list.

1.8 DDoS Defense

Building adequate defense against DDoS attacks is a non-trivial prob-
lem for the network administrator as well as the network security re-
searcher. If attackers have high skill levels, existing defense may not be
able to handle all types of new DDoS attacks in near real time. Many
real-time DDoS attack detection methods have been published in the
literature. But there is still no defense mechanism that can handle
all classes of DDoS attacks in real time, let alone doing so with low
computational overhead. Since a DDoS attacker uses a large number
of compromised nodes to flood the network instantly, early detection
of an attacker’s preparatory activities is essential so that the attack
can be mitigated immediately. It is also expected that the detection
system should not be a cause of high collateral damage. Thus, detect-
ing attacks without affecting legitimate traffic when there are a large
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number of distributed attack sources, IPs are spoofed, and attack rates
are dynamic, is definitely a big challenge. The six major problems to
be addressed by a DDoS defense system are: (i) handling of dynamic
rate attacks, (ii) identification of spoofed IP addresses, (iii) handling
a large number of attack sources, (iv) ensuring minimum degradation
on legitimate services, (v) creating a minimum number of false alarms,
and (vi) doing all this using a generic threshold setting for parameter
values.

1.9 Modules of a DDoS Defense System

A generic DDoS defense system is composed of three modules, viz.,
monitoring, detection and reaction. Network monitoring collects infor-
mation regarding the network used by the target as well for nodes that
can be used to launch the attack. On the other hand, traffic analy-
sis allows the defender to see services being used on a network and to
compare against activities that should be seen. This allows one to iden-
tify unauthorized services within a network. In order to perform basic
network monitoring, one needs to collect information on the traffic at
various points within the network. A detection module produces re-
ports to a management station. Some detection modules may attempt
to stop an intrusion attempt but this is neither required nor expected.
An intrusion detection module is primarily focused on identifying possi-
ble incidents, logging information about them and reporting attempts.
A detection module can be used for various purposes such as iden-
tifying problems with security policies, documenting existing threats
and deterring individuals from violating security policies. A detection
module gathers and analyzes information from various sources within a
computer or a network to identify possible security breaches, which in-
clude both intrusions and misuse. A reaction module follows a two-step
process. The first set of procedures constitutes the passive component,
involving inspection of the systems configuration files to detect inad-
visable settings, inspection of the password files to detect inadvisable
passwords, and inspection of other system areas to detect policy viola-
tions. The second set of procedures constitutes the active component.
Here, mechanisms are set in place to react to known methods of at-
tack and to generate system responses. Intrusion Detection Systems
(IDSs) can respond to suspicious events in several ways, which include
displaying an alert, logging the event, or even paging an administrator.
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1.10 Types of DDoS Defense Systems

With the rapid emergence of external and internal threats to networks
and resources, system administrators and defenders must think about
security all the time. As a result, researchers have looked at a variety
of approaches to confront DDoS attacks in a network.

1.10.1 Based on Approach

Based on the approach used to confront intrusions, intrusion defense
systems can be categorized into four types: DDoS detection, DDoS
prevention, DDoS response, and DDoS tolerance.

1.10.1.1 DDoS Detection

A DDoS detection system is an application to monitor a network or
system for non-conforming or malicious activities or policy violations.
If it detects any such activities, it alerts the system or network adminis-
trator. A detection system uses a set of techniques to detect suspicious
activities either at the network or at the host levels.

1.10.1.2 DDoS Prevention

A DDoS prevention system is an “upgraded” version of a DDoS de-
tection system because both monitor network traffic and/or system
activities for malicious instances. The main difference is that intru-
sion prevention systems are able to actively block intrusions that are
detected. An intrusion prevention system can take actions such as
sending an alarm, dropping malicious packets, resetting the connection
and/or blocking traffic from the offending IP addresses.

1.10.1.3 DDoS Response

A DDoS response system, by contrast, continuously monitors system
health based on alerts generated by a DDoS detection system, so that
malicious or unauthorized activities can be handled effectively by ap-
plying appropriate countermeasures to prevent problems from worsen-
ing and to return the system to a healthy mode. A notification system
generates alerts when an attack is detected. An alert can contain in-
formation such as attack description, time of attack, source IP, and
user accounts used to attack. A DDoS response system automatically
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executes an appropriate set of response actions based on the type of
attack.

1.10.1.4 DDoS Tolerance

A DDoS tolerance system takes a fault-tolerant design approach to de-
fend network resources against DDoS attacks. Abandoning the conven-
tional aim of preventing all intrusions, intrusion tolerance instead uses
mechanisms that prevent intrusions from leading to complete system
failure so that the system can still function at a reduced, but reasonable
level.

1.10.2 Based on Nature of Control

In this section, we discuss types of defense systems based on the control
structure used to counter attack traffic. There are three locations where
the processes used to control detection and prevention can be situated.
These are centralized, hierarchical and distributed.

1.10.2.1 Centralized DDoS Defense

In this type of defense system, each detection element produces alerts
locally. The generated alerts are sent to a central server that plays
the role of a correlation handler and analyzes them. Using centralized
control, an accurate detection decision can be made based on all avail-
able alert information. The main drawback of this approach is that the
central unit is a single point of failure; any failure in the central server
leads to the collapse of the whole process of correlation. In addition,
the central unit should be able to handle the high volume of data which
it may receive from the local detection elements in a short amount of
time.

1.10.2.2 Hierarchical DDoS Defense

Such a system is divided into several small groups based on similar
features such as geography, administrative control, and use of similar
software platforms. Such a defense system works as a detection element
at the lowest level, while at a higher level it is furnished with both a
detection element and a correlation handler, and it correlates alerts
from both its own level and lower levels. The correlated alerts are
then passed to a higher level for further analysis. This approach is
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more scalable than the centralized approach, but still suffers from the
vulnerability of the central unit. Besides, the higher-level nodes have
higher-level abstraction of the input, which limits detection coverage.

1.10.2.3 Distributed DDoS Defense

In distributed DDoS defense, there is no centralized coordinator to pro-
cess the information; it is a fully autonomous system with distributed
management control. All participating detection and prevention sys-
tems have their own components communicating with each other. A
major advantage of such a system is that the network entities do not
have complete information of the network topology, and as a result,
it is possible to have a scalable design since there is no central entity
responsible for doing all the correlation work. Local alarm correlation
is simpler in this structure. However, two major disadvantages of the
approach are that (a) information on all alerts is not available during
decision making, and as a result, accuracy may be low; (b) the alert
information usually has a single feature (like an IP address), which is
too narrow to detect large-scale attacks.

1.10.3 Based on Defense Infrastructure

In this section, we discuss various defense systems that are developed
based on the infrastructure used. These are two basic types, viz., host-
based and network-based.

1.10.3.1 Host-Based DDoS Defense

In this architecture, data is analyzed by individual computers that
serve as hosts. The network architecture used is agent based, which
means that a software agent resides on each of the hosts in the system.
Thus, a host-based DDoS Detection and Prevention System processes
data that originate on the individual computers themselves, such as
event and kernel logs. Such a system can also monitor which program
accesses which resources and may flag anomalous usage. Such a system
also monitors the state of the system and makes sure that everything
makes sense, which is necessary for the use of anomaly filters.
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1.10.3.2 Network-Based DDoS Defense

A network-based DDoS defense system examines data exchanged among
computers. Such systems are supposed to be capable of monitoring and
collecting system audit trails in real time as well as on a scheduled ba-
sis, thus distributing both CPU utilization and network overhead and
providing a flexible means of security administration. A network-based
DDoS defense system captures network traffic from the wire as it trav-
els to a host. This can be analyzed for a particular signature or for
unusual or abnormal behaviors. Several sensors are used to sniff pack-
ets on the network; these are computer systems designed to monitor
network traffic. If any suspicious or anomalous behavior occurs, it trig-
gers an alarm and passes the message to the central computer system or
an administrator, in addition to generating an appropriate automatic
response.

1.10.4 Based on Defense Location

A DDoS defense system can be deployed in three possible locations:
victim end, intermediate, and source end. Each has its own advantages
and disadvantages.

1.10.4.1 Victim-End DDoS Defense

Victim-end DDoS detection methods are generally employed in the
routers of a network that may potentially become the victim of a DDoS
attack. This includes any network worth much these days, especially
those belonging to large company, non-profit or government networks.
The detection software stores information about known intrusion signa-
tures or profiles of normal behavior. This information is updated by the
processing elements as new knowledge becomes available. The stored
intrusion signatures (or references or profiles) and also procedures for
other critical events such as false alarms are updated. The processing
element in a detection engine frequently stores intermediate results in
what is called configuration data. Detecting attacks at the victim end
is relatively easy because a DDoS attack at the victim is indicated by
higher resource consumption all of a sudden, and the detection mech-
anism looks for abnormal rise in such consumption. However, an im-
portant and obvious disadvantage is that these approaches detect the
attack only after it reaches the victim and detecting an attack when
legitimate clients have already been affected is pyrrhic victory.



1.10. TYPES OF DDOS DEFENSE SYSTEMS 15

1.10.4.2 Source-End DDoS Defense

A source-end DDoS defense system attempts to prevent congestion not
only on the victim side, but also in the whole intermediate network.
The main difficulty with this approach is in its implementation. This is
because during these attacks, sources are widely distributed and a single
source is likely to behave almost as normal traffic. Another crucial
problem is the practical difficulty of deploying a system at the source
end without prescient knowledge of where an attack may originate from
millions of small or big networks on the Internet, dispersed around the
globe. In addition, if there is a rogue network, why would it allow
outsiders to place detection mechanisms on it or why would it monitor
itself on behalf of others?

1.10.4.3 Intermediate Network DDoS Defense

The intermediate network DDoS defense system tries to strike a balance
between detection accuracy and attack bandwidth consumption, which
are the major issues in the previous two approaches, i.e., source-end
and victim-end defense. Such schemes apply rate limits on connections
passing by a router after comparing with stored normal profiles. The
main difficulty with this approach is deployability. To achieve full de-
tection accuracy, all routers on the Internet will have to employ this
detection scheme, because unavailability of this scheme in only a few
routers may cause failure to the entire detection and traceback pro-
cesses. Thus, full practical implementation of this scheme is unattain-
able because it requires re-configuring all routers on the Internet.

1.10.5 Based on Technique Used

Many techniques have been developed to detect and prevent intrusion.
We categorize them as misuse detection and anomaly detection.

1.10.5.1 Misuse Detection

In misuse detection, we characterize abnormal system behavior first
and then define any other behavior as normal. In other words, any-
thing we do not know is considered normal. For example, one could
develop patterns for attacks such as pulsing, increasing, constant rate
or subgroup DDoS attacks, and try to identify whether any traffic pat-
tern conforms to any of these patterns. Thus, misuse detection systems
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attempt to detect only known attacks based on predefined character-
istics. However, a novel and effective attack may take place using
unexpected patterns of traffic and it will be missed. As a result, the
accuracy of such IDSs depends solely on how well the knowledge of at-
tack information has been captured, preprocessed and fed to the IDS’s
detection engine. However, well-crafted expert knowledge of known
attacks can enable misuse detection-based IDSs to perform accurately
with low false positives.

1.10.5.2 Anomaly Detection

These techniques are based on first establishing the normal behavior of
a subject, e.g., a user or a system. Any action that significantly deviates
from the normal behavior is considered intrusive. If we can establish a
normal activity profile for a system, we can flag all system states that
vary significantly from established profile. Anomaly-based techniques
try to detect the complement of bad behavior whereas misuse-based
detection tries to recognize known bad behavior. The main advantage
of anomaly detection is that it can detect unknown attacks.

1.11 DDoS Tools and Systems

In recent years, a large number of tools for DDoS attack launching as
well as for network defense have been developed. These tools can be
used to capture, to visualize, to analyze and to detect various attack
types with multiple objectives. Some commonly used detection, cap-
turing and analysis tools include LOIC, HOIC, Wireshark, Gulp and
Ntop. These tools support capturing live network traffic, preprocess-
ing raw traffic, selection of relevant features, analysis of vulnerabilities,
visualization of traffic over a subset of selected traffic attributes and
actual detection of attacks.

People with malice may use attack tools to disrupt a network for
many different purposes. Attackers generally target Websites or
databases as well as enterprise networks by gathering information on
their weaknesses. Typically, for a chosen class of attacks, the attackers
explore and use relevant tools to launch the attack. A large number of
defense tools also have been made available by various network secu-
rity research groups as well as private security professionals to counter
attacks mounted using attack tools. The available tools have different
purposes, capabilities and interfaces. We categorize existing tools into
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two major categories: tools for attackers and tools for network defend-
ers. In this book, we discuss a taxonomy of the tools used for attack
generation as well as attack detection.

1.12 DDoS Defense Evaluation

There is a critical need for a common evaluation methodology for
Distributed Denial-of-Service (DDoS) defenses, to enable independent
evaluation and comparison. An evaluation or assessment of quality or
accuracy of a system, mechanism or method is usually a snapshot in
time. With the passage of time after a system is initially built, the en-
vironment changes and new vulnerabilities arise, and accordingly, the
evaluation must be performed again after updates and possible param-
eter tuning. Many performance metrics have been proposed to assess
the effectiveness, cost and security of defense systems. However, it is
worth mentioning that the information obtained during one round of
evaluation plays a significant role in subsequent evaluations as well as
in the final end product that results.

1.13 Prior Work

In the past decade, several similar and relevant books have been pub-
lished.
The ones we have found are listed below.

(i) Internet Denial-of-Service: Attack and Defense Mechanisms by
Jelena Mirkovic, Sven Dietrich, David Dittrich and Peter Reiher,
published by Prentice Hall, 2005.

(ii) An Investigation into the Detection and Mitigation of Denial-of-
Service (DoS) Attacks: Critical Information Infrastructure Pro-
tection by S.V. Raghavan (Ed), E Dawson (Ed), published by
Springer, 2011.

(iii) Network Security and DDoS: Cooperative Defense against DDoS
attack Using GOSSIP protocol by Imran Sohail, Sikandar Hayat,
published by Lambert Academic Publishing, June, 2010.

(iv) An Introduction to DDoS Attacks and Defense Mechanisms: An
Analyst’s Handbook by B. B. Gupta, published by Lambert Aca-
demic Publishing, December, 2011.
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(v) A Defense Framework Against Denial-of-service in Computer Net-
works by Sherif Khattab, published by ProQuest, 2008.

(vi) A Nowel Distributed Denial-of-service Detection Algorithm by Brett
Tsudama, published by California Polytechnic State University,
2004.

(vii) A Defense Framework for Flooding-based DDoS Attacks by Yonghua
You, published by Queen’s University, Canada, 2007.

(viii) Practical Packet Analysis: Using Wireshark to Solve Real-World
Network Problems by Chris Sanders, published by No Starch
Press, Second Edition, 2011.

(ix) Network Flow Analysis by Michael W. Lucas, published by No
Starch Press, July, 2010.

In (i), the authors present how DoS attacks are waged and how
to improve a network’s resilience to such attacks. The authors de-
scribe several measures and laws involved and their implications, and
the kinds of damage they can cause. Some real examples of DoS at-
tacks are discussed from the view-points of the attacker, victim, and
unwitting accomplices. This book discusses only DoS attacks. In (ii),
the authors provide insights into the complexity of the DoS and DDoS
problem to be solved as well as the breadth of research being conducted
on various facets of the DoS/DDoS problem. Some areas covered are
understanding DDoS behavior in real-time at high-packet rates; man-
agement of Web services during a DDoS attack; creating conducive
environments for DDoS prevention through provable authentication
protocols; identification of vulnerabilities specific to DDoS in emerg-
ing technologies; and the process of sustaining a legal, regulatory, and
policy focus with international cooperation. In (iii), the authors show
the effectiveness of an algorithm using OmNet++ Ver. 4.0 simulation
in detecting DDoS attacks. The authors also show how the nodes can
be protected from such an attack using the GOSSIP protocol. In (iv),
the author discusses how DDoS attacks are prepared and executed, how
to think about DDoS from a defense perspective, and how to provide
for computer and network defenses. The book also presents a suite of
actions that can be taken before, during and after an attack. In (v),
three resource-efficient dodging-based DoS defense algorithms are dis-
cussed. Honeybees combine channel hopping and error-correcting codes
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to achieve bandwidth-efficient and energy-efficient mitigation of jam-
ming in multi-radio networks. In roaming honeypots, dodging enables
the camouflaging of honeypots or trap machines as real servers, mak-
ing it hard for attackers to locate and avoid traps. Furthermore, shuf-
fling requests among servers opens up windows of opportunity, during
which legitimate requests are serviced. Live baiting efficiently identi-
fies service-level DoS attackers by employing results from group-testing
theory, discovering defective members in a population using a minimum
number of tests. The cost and benefit of the dodging algorithms are an-
alyzed theoretically, in simulation, and using prototype experiments. In
(vi), the applicability of implementing ratio-based SYN flood detection
(RSD) on a network processor is explored, and results are presented. In
(vii), the authors introduce and describe a distance-based distributed
DDoS defense framework which defends against attacks by coordinat-
ing between the distance-based DDoS defense systems at the source
end and the victim end. In (viii), the author discusses network proto-
cols in various contexts, including a large number of new scenarios. It
teaches how to make sense of PCAP data. The book also includes a
separate section on troubleshooting slow networks and packet analysis
for security to help understand how modern exploits and malware be-
have at the packet level. Finally, in (ix), the author shows how to use
open source software to build a flow-based network awareness system.
The author also discusses the use of network analysis and auditing to
address problems and improve network reliability. Unlike most of these
DDoS security books, we focus on the following.

(a) DDoS attacks|types, characteristics, causes, targets and how they
are launched.

(b) Botnet technology|evolution, trends and challenges.

(c) Statistical and machine learning approaches applied in the detec-
tion and prevention of DDoS attacks in order to provide a clear
understanding of the state of the art.

(d) DDoS reaction and tolerance mechanisms to study their effective-
ness in protecting network resources without compromising the
quality of services.

(e) Practical use of a large number of tools and systems for launching
DDoS attacks of various types and for monitoring the behavior of
the attack types.
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(f) Practical knowledge of developing a custom testbed for attack
launching, monitoring, detection, prevention, reaction and miti-
gation.

1.14 Contribution of This Book

The following are the major contributions of this book.

(a) An in-depth discussion on botnet technology, its evolution, trends
and challenges botnet technology presents in countering DDoS at-
tacks.

(b) A systematic presentation of various statistical, machine learning,
know-ledge-based and soft computing methods for DDoS detection,
prevention, reaction and tolerance in networks and clouds.

(c¢) Discussion of a large number of practical tools and systems that
are used by malicious actors to launch DDoS attacks of various
types and also tools and systems used by defenders for monitoring
and mitigating such attacks. We also discuss how researchers can
develop a custom testbed to experiment and understand how mali-
cious actors launch attacks so that defenders can monitor, detect,
prevent and mitigate such attacks.

(d) A list of important unresolved issues and research challenges.

1.15 Organization of This Book

This book discusses distributed denial-of-service (DDoS) attacks in net-
works, the evolution of such attacks, and methods for DDoS detection,
prevention, reaction and tolerance. To clearly understand how attacks
are launched by malicious actors, we discuss how such launches are
performed in the context of a private network from the perspective of
an attacker. Such experiments should be performed by students, re-
searchers and professionals in a restricted context so that things do not
get out of hand but at the same time they can get insights into the
minds of attackers as well as the techniques used for better prevention
and mitigation. This book also discusses a large number of DDoS de-
fense mechanisms and systems developed using statistical and machine
learning techniques. To understand the effectiveness of such a method
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or a system, we also discuss performance metrics that can be used in a
real-life as well as in a simulation environment.

In Chapter 1, we provide an introduction to anomalies in networks,
why anomalies come into existence, the targets anomalies aim to attack
and recent trends in anomaly generation. This chapter also introduces
various types of DDoS defense systems to protect network resources.
Chapter 2 delves deeper into various issues related to design of mod-
ern networks, followed by discussion of vulnerabilities that may affect
the performance and security of a modern network. Chapter 3 dis-
cusses DDoS attacks, strategies adopted by attackers and a taxonomy
of DDoS attacks. This chapter discusses characteristics, models and ar-
chitectures of botnet technology used to launch various DDoS attacks
at various scales. In Chapter 4, we discuss how to develop a custom ex-
perimental testbed and a DDoS attack tool to (i) launch both high-rate
and low-rate DDoS attacks, (ii) monitor and analyze network traffic,
and (iii) visualize the traffic patterns graphically to support building
DDoS defense. Chapter 5 presents an overview of a DDoS defense
system that has been developed, followed by an in-depth discussion of
various DDoS defense approaches, the nature of control among the par-
ticipants in DDoS defense, defense architectures, deployment of these
systems on the network, and the underlying mathematical as well as
algorithmic techniques used. In Chapter 6, we discuss several popular
and highly cited (as per Google Scholar) DDoS defense systems. This
chapter also discusses performance metrics that can be used to evaluate
a DDoS defense system. Chapter 7 concludes the book with a discus-
sion of research issues and challenges in this evolving field of network
security research.






Chapter 2

DDoS, Machine Learning,
Measures

The Internet impacts greatly upon every aspect of our lives, and hence
is a critical resource for everyone. Any disruption or unavailability of
this resource may lead to serious impacts at various levels of our society.
As the dependency on the Internet keeps on growing at an exponen-
tial rate, the threats to the availability of network resources have also
been increasing rapidly. Threats which aim to overcrowd networked
computer systems or resources and consequently make unavailable le-
gitimate services are typically referred to as Denial-of-Service (DoS)
attacks [6]. When such a threat is activated through a large group of
compromised machines, called zombies or bots, which send coordinated
traffic to the victim, in an attempt to exhaust the network resources
such as CPU, memory or link bandwidth of the victim, we refer to it as
Distributed Denial-of-Service (DDoS) flooding attack. Currently, the
DDoS flooding attack is generally considered the strongest weapon of
choice by intruders who want to block availability of Internet services
by overwhelming a network with unsolicited traffic. The ever-increasing
lethality of DDoS attacks pose a serious concern to network health and
as a result, has spurred sustained research in finding effective and effi-
cient methods to handle these attacks. In a DDoS attack, the victim
can range from a single Web server to the Internet connection to an
entire university or an entire city or even an entire country. In most
cases, the users of the compromised machines that participate in an
attack are unaware of the fact.

23
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The easy accessibility of a large number of attack tools floating in
the public domain is a major cause for networks or organizations fre-
quently coming under DDoS attacks. One can easily set up and use
these tools to launch attacks by sending unsolicited traffic to the vic-
tim from distributed armies of bots or compromised computers on the
Internet [6]. This unsolicited traffic is enough to paralyze the victim
so that it no longer functions or provides service to legitimate users by
consuming all of its resources and network bandwidth. Since the conse-
quences of such attacks may leave a victim losing millions of dollars and
many customers, both industry and academia are continuously working
on finding new and improving existing defense mechanisms to counter
DDoS flooding attacks. However, parallel with the continuous efforts
made by defenders, attackers are also improving their skills to launch
attacks at varied scales and levels of craftiness to keep themselves al-
ways one step ahead to evade detection mechanisms. In addition, the
pregnable architecture of the Internet is another major cause, allow-
ing the attacker to easily spoof the source IP (SIP) addresses of attack
packets, thus making it more difficult to detect the attack. Further, the
detection of malicious traffic becomes even harder, if its size and pat-
tern are similar to those of legitimate traffic, making malicious traffic
unobtrusive. As a result, the following are the major issues that need
to be addressed when developing a solution to counter DDoS attacks.

(a) Resources of any Internet host are limited, and they can be easily
exhausted by a sufficiently large number of user requests.

(b) If an attacker is able to acquire more resources than the resources
of a victim before mounting an attack, the DDoS attack is likely
to be successful.

(c) Intelligence and resources are often not collocated. Typically, the
intelligence needed for service guarantees is located at end hosts,
but high-bandwidth pathways required for large throughput are
usually situated in the intermediate network. Attackers attempt
to exploit abundant resources present in unwitting parts of the
network to launch a successful flooding attack.

(d) Compromised hosts, which may be handlers or masters, are capa-
ble of controlling a large number of agents by sneaking in special
programs that run on the agents.



2.1. ISSUES IN INTERNET DESIGN 25

(e) Attack daemon agents or zombie hosts are commonly external to
the victim’s own network, making it difficult to deliver efficient
counter responses from the victim. They are external to the net-
work of the attacker and can renounce liability if the attack is
successfully traced back.

(f) Internet security is highly interdependent among the many players
that reside on it. No matter how secure a victim’s system may be,
whether or not this system will be a DDoS victim depends on what
is brewing in the rest of the global Internet.

2.1 Issues in Internet Design

The Internet was originally designed to provide a scalable and open
networking and resource sharing environment among academics and
research professionals [6]. However, with the ever-increasing growth
of the Internet in the past two decades, security threats have also been
growing exponentially. In this section we discuss the design issues of
modern networks, the ones that have given rise to the growth of most
DDoS attacks.

2.1.1 Complex Edge but Simple Core

According to [209], end-to-end protocol design should rely on main-
tenance of state outside the network, i.e., at the end points, so that
the state can only be destroyed when the end points themselves break.
Such a principle will lead to a simple Internet architecture with complex
edges but a simple network layer [40]. However, with such a simple
interconnection network, one cannot expect an intermediate router to
be equipped with all the necessary functionality to counter illegitimate
traffic. It will not be practical, if we engage a router in processing pack-
ets rather than routing them. Further, to provide support for DDoS
detection and prevention, if the intermediate network router is loaded
with a significantly high amount of additional work, it will definitely
lead to performance degradation, which is not desirable!

2.1.2 Link Bandwidth Mismatch between Core and Edge

The modern Internet has a provision for maintaining varied link band-
width between core and edge networks. To accommodate heavy traffic
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either as a receiver or as a sender, core networks are provisioned with
high link bandwidth, whereas an edge network is provisioned with low
link bandwidth because it supports a smaller number of end users.
However, in a situation where a large number of sources attempt to
communicate with a single destination, such a high-bandwidth core link
may overwhelm a low-bandwidth edge link, and may cause a denial-of-
service situation.

2.1.3 Routing Principles

The present Internet architecture aims to provide the best possible ser-
vices and manage to survive even under the worst of conditions. It
can perform multi-path routing to support continued communication
even when gateways or routers fail. Thus, it can help bypass failed
portions of the network and choose alternative paths to forward traffic.
Consequently, such provisions also allow attackers to send spoofed at-
tack traffic. Since packets from the same source can be routed through
multiple paths, on detection of a potential attack, it becomes difficult
to trace back to the origin of attack accurately.

2.1.4 Lack of Centralized Network Management

The distributed management approach of the Internet, i.e., the lack of
a centralized mechanism for management of Internet resources: is an-
other major design issue. The Internet was designed and can be viewed
as an interconnection of a large number of smaller-sized enterprise net-
works, aiming to provide global access to each end user. Although
such an approach has helped the Internet grow fast, it has also enabled
users with malign intentions to access resources easily to create denial-
of-services by blocking them using a coordinated approach. Even if
we develop several DDoS defense solutions for multiple locations, due
to lack of a centralized management authority, global deployment and
effective control of attacks is a major issue.

2.1.5 Sharing of Reserved Resources across Data Cen-
ters

As stated earlier, IP networks were designed to provide the best possible
packet-switched services by allowing users to share all resources. Due
to such a sharing of resources, the service provided to one user may
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be affected by improper behavior of another user. A user with malign
intentions can easily disturb other legitimate users by unnecessarily
occupying most of the shared resources. Such inter-user dependencies
on the Internet are considered one of the major causes of most DoS
and DDoS attacks.

2.2 DDoS Attacks and Their Types

Using client/server technology, a perpetrator can multiply the effec-
tiveness of the DoS attack significantly by harnessing the resources of
multiple unwitting accomplice computers, which serve as attack plat-
forms. Generally, a DDoS attack is considered more damaging than a
DoS attack and it usually takes more planning and diligence to mount
a DDoS attack. A DDoS attacker generally follows four steps. In step
1, the attacker scans the whole network to find and recruit vulnerable
host(s). The vulnerable hosts are then compromised for exploitation
by the attacker using malware or backdoor programs in step 2. In step
3, the attacker infects the compromised hosts to create a base for effec-
tive launching of the attack. Finally, the attack is launched using the
compromised hosts in step 4. Figure 2.1 shows how the typical DDoS
attack works.

__________ Attackers machine

. e Maslers

Recruit, exploit, infect

Allack commands
Allack traflic

=]

e Viclim

Figure 2.1: DDoS strategy: Recruiting, exploiting, infecting, and at-
tacking.
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2.2.1 Agent-Handler and IRC-Based DDoS Attack Gen-
eration

Sprecht and Lee [226] discuss the pros and cons of two types of architec-
tures, viz., (i) the agent-handler and (ii) the Internet relay chat (IRC).
In (i), the three main role players, i.e., clients, handlers, and agents
are organized as in Figure 2.2(a). To initiate an attack, the attacker
establishes communication with the client to interact with the rest of
agent system. The attacker installs malicious software throughout the
Internet and these installations are used as handlers. Such handlers are
used by the clients to exchange messages with the agents. The com-
promised systems are used to host instances of the agent software and
ultimately to execute the attack. Interestingly, the existence of such
malicious software as well as the communication between the client and
the agents are not known to the owners and the users of the systems.
In (ii), for communication between the client and the agents, an IRC
channel is used, as shown in Figure 2.2(b). The agents communicate
through IRC ports, making it difficult for the defender to trace DDoS
command packets.

2.2.2 Types of DDoS Attacks

DDoS attacks are classified by various researchers in different ways
following different criteria. The following subsections present DDoS
attack types based on OSI layers, approaches used to launch attacks,
volume of traffic generated, and based on attack rate dynamics. Various
types of DDoS attacks are also discussed in more detail in [101], [170].

2.2.2.1 Layer-Specific DDoS Attacks

Based on Open Systems Interconnection (OSI) layers, whose services
are used to carry out attacks, DDoS attacks can be classified into two
categories, i.e., application layer DDoS and transport and network layer
DDoS. In an application layer attack, the attacker uses layer 7, i.e.,
application layer protocols such as HI'TP and HTTPS, to send traffic
to the victim. Such traffic normally carries CPU-intensive queries to
the server and makes it busy forever. The volume of traffic needed to
put a server down is comparatively lower than that of the other type,
i.e., a network layer attack. The traffic in an application layer attack
is indistinguishable from legitimate traffic, making it very difficult to
detect. A detailed description of application layer DDoS attacks can
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(b) IRC architecture
Figure 2.2: Agent handler and IRC architectures.

be found in [63]. In a network or transport layer attack, the attacker
tries to exhaust resources such as the bandwidth of the links which
carry traffic to the victim, or the memory of devices such as routers,
switches, and firewalls. To achieve this objective, the zombies send
huge amounts of traffic in layers 3 and 4 to the victim. Such an at-
tack is normally large in volume ranging from a few Mbps to several
hundreds of Gbps. Different network layer protocols such as Internet
Control Message Protocol (ICMP), User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) are used in such an attack.
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The most commonly used network layer DDoS attacks are TCP SYN
flooding [46], ICMP echo [39], UDP flooding [45], DNS amplification
[252], and NTP [96], [197].

2.2.2.2 Direct and Reflector-Based DDoS Attacks

In a DDoS attack, it is not always the zombies that send attack traffic
to the victim. Servers running UDP-based services are often used by
attackers to carry out massive DDoS attacks. Such servers are used as
reflectors by the attacker. Based on the nature of the attacking ma-
chines, DDoS attacks are classified into two categories, viz., direct and
reflector-based. In a direct attack, the attacker uses zombies directly
to launch DDoS attacks of various types. In contrast, in a reflection or
amplification attack, many innocent intermediate nodes, known as re-
flectors, are used to generate an attack. The attacker sends requests to
the reflector servers by spoofing the source IP as if it were the victim’s
IP. As a result, these servers reply to the victim by sending messages
whose volume is normally many times larger than the original request
message size. Hence, this type of DDoS attack is also called an ampli-
fication attack. The attacker uses this technique to amplify the attack
traffic up to several hundred times. DNS amplification attacks and
NTP attacks are examples of reflection-based DDoS attacks (DRDoS).
Figures 2.3 and 2.4 present schematic views of direct and indirect
DDoS attacks. A detailed description of how reflection attacks with
different UDP services and amplification factors can be used to am-
plify attack traffic can be found in [6].

Figure 2.3: Direct DDoS attack.
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Figure 2.4: Reflector-based DDoS attack.

2.2.2.3 Direct and Indirect DDoS Attacks

One can also classify DDoS attacks based on whether the attack traffic
is sent to the victim directly or through intermediaries. In a direct
attack, the attacker sends the attack traffic directly to the victim using
a large number of compromised machines. In contrast, in an indirect
attack, the attacker, instead of attacking the victim directly, attacks
the links and other services that are important for the victim to remain
functional. Link-flooding attacks such as crossfire [129] and coremelt
[235] are examples of indirect DDoS attacks.

2.2.2.4 High-Rate and Low-Rate DDoS Attacks

DDoS attacks can also be classified based on the volume of attack
traffic, as low and high. In a low-rate DDoS attack, the attacker usually
performs the attack by sending attack traffic at a low rate matching the
legitimate traffic profile. For example, in case of an application layer
attack, the attacker tries to exhaust the victim’s processing resources
by sending it CPU-intensive queries. Similarly, in a shrew attack [53],
[64], the volume of the attack traffic is comparatively low. In a high-
rate DDoS attack, the attacker sends a huge volume of attack traffic
toward the victim. It is the most common type of DDoS attack. High-
rate traffic, sometimes called a flash crowd [52], is often mistaken for a
DDoS flooding attack, resulting in dropping of legitimate user requests.
However, as pointed out in [64], a flash crowd can be distinguished
from malicious traffic by observing the rate of introduction of new IP
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addresses over a sequence of time intervals. In a flash crowd, new IP
addresses are introduced suddenly, resembling a flooding attack, but
the rate of introduction of new IP addresses drops after some time,
though the high request rate from legitimate users may persist.

2.2.2.5 Attack Types Based on Rate Dynamics

In addition to the classification mentioned above, DDoS attacks can be
classified based on other traffic characteristics, such as the dynamics
of the attack traffic rate. Mirkovic et al. [167] classify DDoS attacks
based on attack rate dynamics into four categories.

(a) Constant rate attack: The attack rate reaches its maximum within
a very short period of time. All zombies, after receiving a command
from an attacker, start sending attack traffic at a constant rate.
This type of attack creates a sudden packet flood at the victim
end.

(b) Increasing rate attack: Instead of attacking the victim with full
force instantly, the attacker gradually increases the traffic intensity
toward the attacker. An increasing rate attack approach is adopted
by the attacker to understand the victim’s response to attack traf-
fic, so that the attacker can attempt to evade the victim’s detection
mechanisms.

(¢) Pulsing attack: In this type of attack, the attacker activates a group
of bots periodically to send attack traffic to the victim. Such a
mechanism is used to remain undetected by a detection mechanism.
Shrew 52 is an example of a pulsing rate DDoS attack, sending
short synchronized bursts of traffic to disrupt TCP connections on
the same link, by exploiting a weakness in the TCP retransmission
timeout mechanism.

(d) Subgroup attack: As in the case of a pulsing rate attack, here also
the attacker sends pulses of attack traffic to the victim. However,
the zombies are divided into groups and these groups are activated
and deactivated in different combinations. Such a subgroup attack
approach is used by the attacker to remain disguised and carry on
the attack for a longer period of time [169].

Figure 2.5 shows these four different attack types.
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Figure 2.5: Constant-rate, increasing, pulsing, and sub-group attacks.

2.3 DDoS Attack Targets

The target of a DDoS attack can range from a single Web server to the
Internet connection to an entire university or an entire city or even an
entire country [130]. Typically, a DDoS attacker chooses any of four
common targets on the victim network, as stated below.

2.3.1 On Infrastructure

Many DDoS attackers aim to paralyze a networked system by targeting
its underlying infrastructure. Such infrastructure may range from the
smallest wireless access point to a large public key infrastructure spread
out over the entire globe or a global domain name system (DNS). The
larger the coverage of the infrastructure, the greater the impact of
DDoS attacks.

2.3.2 On Link

A very common target of DDoS attacks is the link. An attacker can
launch a DDoS attack successfully by sending a large amount of coor-
dinated traffic to exhaust the link completely. As a consequence, many
legitimate packets may be dropped.
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2.3.3 On Router

IP routers are often targets of DDoS attacks. A common approach to
launch a DDoS attack on a router is to overwhelm the routing table
by populating it with a very large number of routes, causing the CPU
power to be insufficient or the router’s memory to run out. Many
attackers also take advantage of the weaknesses of routing protocols to
launch such attacks.

2.3.4 On OS

The operating system (OS) can play an important role in protecting
resources from an application DDoS attack. As a result, many attackers
target the OS itself. If such an attack can be launched successfully, it
may cause serious damage to all applications running on the OS.

2.3.5 On Defense Mechanism

The target of DDoS attacks can be the defense system itself. The
firewall and the DDoS detection mechanism are often targeted by DDoS
attackers. Firewalls, which can be stateful or stateless, can be targeted
to exhaust the resources by sending a large volume of traffic, which
may lead the firewall to maintain excessive states and finally may lead
to it run out of memory. However, in case of a defense mechanism, the
impact or consequence of a DDoS attack will be different. For example,
the mechanism may fail to perform correctly, and as a consequence, may
lead to the generation of a large number of false alarms.

2.4 Current Trends in DDoS Attacks

DDoS attacks have been rampant for more than a decade. With ev-
ery passing day, the availability of the sophisticated tools and other
resources to perform a DDoS attack is becoming more plentiful. As a
result, the frequency and the power in terms of complexity and volume
of DDoS attacks are increasing. Arbor Networks Worldwide Infrastruc-
ture Security Report, Volume X [4] reports that the volume of DDoS
attacks has increased hundreds of times over the last few years. Figure
2.6 shows the increase in DDoS attack volume over the last few years.
From the same report, a few observations are summarized below to
help assess current DDoS attack trends.
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Figure 2.6: Current trends in DDoS attacks.

(a) A key factor causing increased attack trends up to several hundred
Gbps-sized DDoS attacks, is the use of reflection and amplification.

(b) The use of multi-vector DDoS attacks, where a combination of dif-
ferent attack policies are used to evade the detection mechanism
of the victim, is another reason. One of the most commonly seen
multi-vector attacks in recent times is a SYN flood attack compris-
ing of two types of SYN packets— first, regular SYN packets and
second, large SYN (more than 250 bytes) packets. The advantage
of this combination is that it can exhaust the victims CPU as well
as network bandwidth.

(¢) Application-layer DDoS attacks such as HTTP flooding contribute
another common serious security threat. These attacks are low-
rate attacks and are difficult to easily distinguish from legitimate
traffic.

(d) DDoS attack frequency has been increasing while attack durations
are getting shorter. Figure 2.7 shows the distribution of the num-
ber of DDoS attacks experienced per month across the Internet and
the distribution of attack durations.

The Incapsulas Q2 2015 DDoS Global Threat Landscape Report ! un-
derscores the same facts about current trend in DDoS attacks. An
up-and-coming pervasive network scenario called the Internet of Things
(IoT), whose basic idea is to interconnect electronic objects with diverse

"https://www.incapsula.com
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Figure 2.7: DDoS attack frequency.

capabilities and in diverse locations, such as home security systems,
TVs, medical devices, GPS and smart watches, sensors, handheld de-
vices, weather observations, control valves at power plants, door locks
in prisons, traffic signals, and embedded systems to facilitate greater
connectivity among the things in this world, is expected to bring in
more opportunities to create mischief for the DDoS attackers. IoT will
drastically increase the population of IP-enabled devices on the Inter-
net, most of which will be equipped with light security mechanisms, 2
opening up a new range of candidate devices for the attackers to recruit
as zombies [17].

2.5 Strength of DDoS Attackers

Recent statistics on occurrences of DDoS attacks (see Figures 2.7 and
2.8), show that attack frequency is increasing from year to year. Be-
low, we enumerate some important features of current DDoS attackers,
which tell us that it is not straightforward to entirely eliminate DDoS
attacks from the Internet.

(a) The attacker can spoof the source IP address inscribed in the attack
packets, which gives the attacker two crucial advantages: first, the
attacker can hide its identity; second, the attacker can use this
mechanism to amplify the attack traffic hundreds of times as in
the case of DRDoS attacks.

(b) The attackers can arbitrarily change values of fields in layer 3, 4
and 7 protocol headers. For example, in a TCP SYN flooding

http:/ /www.cio.com.au/article/570160/3- reasons-wary-internet-things/
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attack, the attacker can alter fields like the SIP and TTL of the
IP layer header as well as set and reset TCP flags in the transport
layer header.

(c) The attacker can change the attack rate, the secret cabal of at-
tacking bots, and even the identity of the victim dynamically and
at will. The attacker can also mix multiple attack vectors, even
across layers, as in the case of a multivector DDoS attack, making
defense more difficult.

(d) The attack traffic can be made completely indistinguishable from
the legitimate traffic in terms of content. For example, in a HTTP
GET or POST flooding attack [273], the attacker sends a huge
number of seemingly legitimate HTTP GET or HTTP POST re-

quests to the victim.

2.6 Desired Characteristics of DDoS Defense
System

The primary goal of the defending side of a DDoS attack is to keep
the victim alive and reachable by legitimate users even if the victim is
under a DDoS attack. Thus, an appeal to DDoS defense has to have
the following characteristics.

(a) Real-time Performance: A defense system should be able to de-
tect an ongoing, and possibly impending attack before the attack
paralyzes the victim with its overwhelming malicious traffic.
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(b) Scalability: Since the attack rates of today’s DDoS attacks are
hundreds of Gbps, both the time and space complexities of the
detection mechanism play important roles in the scalability of the
defense system.

(¢) Maintaining QoS: A major obstacle in defending against a DDoS
attack is that the attack traffic, especially in the case of a low-rate
DDoS attack, is indistinguishable from legitimate traffic in content.
Hence, just detecting an attack is not enough to protect the victim;
special mechanisms are needed to separate legitimate traffic from
attack traffic with high confidence, so that the QoS to legitimate
users can be maintained.

(d) Source Identification: A DDoS attack defense system should be
robust against IP spoofing. It should have a suitable mechanism
such as traceback or pushback to locate the attack sources.

2.7 Recent DDoS Attacks

Large networked server sites like Google and Facebook are equipped
with huge pools of computing and storage resources. Such giant sites
with ample resources can usually mitigate the impact of DDoS attacks
in real-time but may still be in trouble on rare occasions. However,
other Web entities like networks of government sites, news sites, tech-
nical repositories, gaming servers are often successfully attacked and
put down. Below, we report a few recent DDoS attacks that were
successfully launched.

(a) Against Dutch Government sites: On February 10, 2015 the sites
of the federal government were subject to a massive DDoS attack
and the sites were down for 10 hours.®> Other sites hosted on the
same network were also affected by the attack.

(b) Against the National Security Agency (NSA) of the United States:
On October 25, 2013, the NSA site was attacked and was fully par-
alyzed for an extended period of time.* The attack was suspected

3http:/ /www.pcworld.com/article/2883092/ddosattack-takes-dutch-
government-sitesoffline-for-10-hours.html

“http:/ /www.ibtimes.com /nsa-website-down-following-apparent-ddos-attack-
possiblyanonymous-or-foreign-government-1442452
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to be performed by the loosely associated international network of
activists and hacktivists called Anonymous.?

(c) Against Github: On March 24, 2015, Github, a code repository
hosting service that is widely used by software developers around
the world to manage source code, was under a massive DDoS at-
tack.® The attack was reported to continue for 24 hours with partial
success. The attacker used TCP layer 7 to mount the attack.

(d) Against thousands of French websites: During the second week of
January 2015, more than 19,000 Websites ranging from those of
military regiments to pizza shops were under minor DDoS attacks.
This was an unusual and peculiar attack.”

The above mentioned incidents indicate the urgent need to put together
serious efforts by each country to counter and mitigate possible threats
caused by DDoS attacks.

2.8 Machine Learning Background

Machine learning is a broad, inter-disciplinary area of research which
includes the study of techniques that computers can use to learn from
data. Problems which can be solved using computers can be divided
into two basic categories. For category 1 problems, human experts
have adequate knowledge and expertise to develop algorithms, write
code, and implement. Of course, category 1 problems can be non-
trivial and complex. In contrast, the category 2 problems are also non-
trivial and complex, but ones for which straightforward coding skills
are not enough to find appropriate solutions. Machine learning aims
to address questions for category 2 problems with a high degree of cost
effectiveness in terms of accuracy and resources, by learning patterns
from data.

To explain the role of machine learning, let us take an example
research question from microarray data analysis in computational biol-
ogy. What are those rare genes not participating in any of the groups

Shttps://en.wikipedia.org/wiki/ Anonymous

Shttp://thehackernews.com/2015/03/github-hit-by-massive-ddos-attack-from
27.html

"http://money.cnn.com/2015/01/15/technology /security /french-websites-
hacked/
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of co-expressed gene patterns in a given yeast dataset? If prior knowl-
edge is not provided or available to solve such a problem, a machine
learning researcher will focus on developing an unsupervised learning
(discussed in detail in Section 2.8.1) mechanism with the primary ob-
jective of achieving high accuracy and efficiency. To find the solution,
one may use a data mining approach such as an efficient clustering
or outlier mining technique with an appropriate proximity measure
to support the unsupervised learning mechanism. A biologist might
collaborate with a statistician to test hypotheses and to validate the
solutions provided by the machine learning technique.

Machine learning researchers have classified the task of learning in
different ways following different criteria. One common approach for
classification distinguishes between analytical and empirical learning.
In analytical learning, the learner does not require any external in-
put, whereas, in empirical learning, some form of external knowledge
or experience is a must. In analytical learning, the learning program
can achieve improved performance by analyzing and solving various
instances of the problem repeatedly over time, and by remembering
the past outcomes. In contrast, in empirical learning, the learning pro-
gram can improve its performance only by using external experience or
knowledge.

2.8.1 Supervised and Unsupervised Machine Learning

The most common way of classifying machine learning methods is to
separate them into supervised and unsupervised learning. In supervised
learning, the method needs prior knowledge in the form of labeled in-
stances or examples given by “domain experts,” which are used by the
method in classifying or assigning a label to a new instance or an ob-
ject. In unsupervised learning, the method analyzes and attempts to
learn from data without any prior knowledge, human intervention or
supervision.

Thus, a supervised learning method typically builds a prediction
model for normal or known attack classes based on prior knowledge
and attempts to assign class labels to an input test instance with refer-
ence to the learned prediction model. To assign a class label, a typical
approach is to compare the test instance (e.g., by computing similar-
ity or dissimilarity) with the reference model(s) to decide the class to
which the instance belongs. So, a supervised learning method is highly
dependent on the prior knowledge or labeled traffic. But if the knowl-
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edge is inadequate or inaccurate, it may lead to a high level of false
alarms. In the past two decades, a large number of supervised learning
methods have been introduced for DDoS detection. We discuss some
prominent supervised learning methods in Chapter 5 and analyze pros
and cons.

In contrast, the unsupervised learning methods are mostly depen-
dent on certain assumptions. For example, while addressing the prob-
lems of network anomaly detection, some machine learning researchers
assume that (i) anomalous or attack traffic has high intra-class simi-
larity and (ii) attack traffic is statistically different from normal traffic.
So, if these assumptions are not true for a given network scenario, such
methods will suffer from a large number of false alarms. In Chapter 5,
we discuss several prominent DDoS detection methods developed using
the unsupervised learning approach. It will be worthwhile to mention
that a common feature of both these types of learning methods is the
dependency on a proximity measure for effective comparison of a test
instance to decide whether it belongs to a pre-defined class or a pre-
assumed group. So, selection of an appropriate measure for effective
comparison is an important task to achieve good performance. The
performance of most supervised and unsupervised machine learning
methods may suffer if an inappropriate proximity measure is used, one
that fails to capture the essence of a real-life application mostly due
to (i) high dimensionality of the data, (ii) selection of an inappropriate
subset of attributes to describe data instances, and (iii) dependency on
multiple sensitive input parameters during comparison and analysis.

Next, we introduce a set of popular proximity measures that have
been used commonly by machine learning researchers for DDoS defense.

2.8.2 Measures: Similarity and Dissimilarity

As discussed in the previous section, the performance of identifying the
class label of a test instance in a supervised learning method or deciding
the belongingness of a test instance to any of a pre-assumed set of
unlabeled groups of instances in an unsupervised learning method, is
highly influenced by the selection of a proximity measure. Proximity is
a measurement of similarity or dissimilarity between a pair of objects or
instances. A proximity value measures similarity if the larger the value
for a pair of objects, the closer or more alike the objects are. Examples
of similarities are cooccurences, interactions, statistical correlations,
associations, social relations, and reciprocals of distances. A proximity
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value measures dissimilarity if the smaller the value for a pair of objects,
the closer or more alike we think they are. Examples of dissimilarity
measures are distances, differences, and reciprocals of similarities. The
proximity from object P to @ is the same as proximity from object @
to P. In other words, proximity follows the property of symmetricity.

Mathematically, the similarity between a pair of instances, i.e., say
S(P, Q) is a numeric quantity that represents the strength of closeness
between the instances, possibly considering two subsets of attributes of
the instances. In contrast, dissimilarity or distance between a pair of
objects, i.e., say D(P, Q) is a quantitative measure or value of how apart
or distant the objects are. So, if S(P,Q) represents the normalized
similarity between a pair of instances (P, Q) and D(P, Q) represents the
normalized dissimilarity between (P, Q), then D(P,Q) =1 — S(P,Q).

So, for two identical instances, the similarity becomes 1 whereas
the dissimilarity or distance becomes 0. Mathematicians, statisticians,
and machine learning researchers have introduced a large number of
similarity and dissimilarity measures to help answer research questions
in various domains. Keeping in view the difficulty of selecting an ap-
propriate measure for network anomaly detection with high detection
accuracy, we introduce some commonly used measures [29], [138],
[37], [192], [48], [128], [28], [22], [133], [8], [153]in DDoS detection
under the categories of dissimilarity measures, correlation measures, di-
vergence measures, and information metrics. We also present results of
some empirical studies for the benefit of researchers and professionals.

2.8.2.1 Dissimilarity Measures

In this section, we introduce four well-known distance measures com-
monly used by network security researchers.

(a) Manhattan or Ly Distance: The Manhattan distance between two
points, P and @, each with n dimensions, is calculated as

d(P,Q) =P —Qlh=_Ipi— qi

i=1

where P and @) are vectors P = (p1,p2,...,pn) and Q = (¢1,42,- .-, Gn)-
The Manhattan distance is always greater than or equal to zero.
The measurement is zero for identical points and high for points
that show little similarity.
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(b) Euclidean or Lo Distance: The Euclidean distance between two
points, P and Q, with n dimensions is calculated as

The Euclidean distance is always greater than or equal to zero.
The measurement is zero for identical points and high for points
that show little similarity.

(c) Cosine Measure: Given two vectors of attributes, P and @, the
Cosine measure, cos(f), is represented using a dot product and
magnitude calculation as

cos(6) PQ 2 Fix Qi

PRI VI (PR x Vo Qi)

(d) Hamming Distance: Hamming distance calculates the number of
positions at which the corresponding symbols of two equal-length
strings are different. This measure is faster than most other mea-
sures. For example, two strings P(101001) and @(101101) are dif-
ferent by one symbol, and hence the Hamming distance of P and
Q@ is 1. Similarly, Hamming distance between strings angel and
demon is 5.

2.8.2.2 Correlation Measures

In this section, we present five established correlation and residue mea-
sures. These are Pearson correlation [28], [143], Spearmen Rank
Correlation [61], Kendall correlation [133], shifting-and-scaling correla-
tion [8], and Normalized Mean Residue Similarity (NMRS) [158] mea-
sure. We also analyze their effectiveness in distinguishing two objects
or instances, where one object may be a transformation variant of the
other.

(a) Pearson Correlation: The correlation between two sets of data is a
measure of how well they are related. The most common measure of
correlation in statistics is the Pearson Correlation [28], [143]. The
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full name is the Pearson Product Moment Correlation or PPMC.
It computes if there exists a linear relationship between two sets of
data. The sample Pearson 7 is calculated as follows:

— 2.1
T'pq 7p04 ) (2.1)
where cov, is defined as
N
L P/ L /
COUpq = Z (pz N)E‘]zl Q )
i=1

In the above, we have variables P and @) for which we have N
paired observations. P’ and @’ are the mean values for P and
Q, respectively. The value of Pearson r is a standardized covari-
ance, and ranges from —1, indicating a perfect negative linear
relationship, to +1, indicating a perfect positive relationship. A
value of zero suggests no linear association, but does not mean
two variables are independent, an extremely important point to
remember.

Spearman Rank Correlation: Spearman rank correlation [61] is a
non-parametric test that is used to test the association between
two ranked variables, or one ranked variable and one measurement
variable. It was developed by Spearman, and thus it is called the
Spearman rank correlation. The Spearman rank correlation test
does not make any assumptions about the distribution of the data
and is appropriate when the variables are measured on a scale that
is at least ordinal and scores on one variable are related to the
other variable.

The following formula is used to calculate the Spearman rank cor-
relation: 2
6> d;
—=t 2.2
where p is Spearman rank correlation, d; is the difference between

the ranks of corresponding values p; and ¢;, and n is the number
of values in each data variable.

p=1-

Kendall’s correlation: The Kendall rank correlation [133] is also
a non-parametric test that measures the strength of dependence
between two variables. If we consider two samples, P and @), where
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each sample size is n, we know that the total number of possible
pairings between P and @ is n(n — 1)/2. The following formula is
used to calculate the value of Kendall’s rank correlation:

(nc - TLd)
= 2.3

tn(n—1) (2:3)
where n. is the number of concordant values and ny4 is the number
of discordant values.

Shifting-and-scaling correlation:  This measure, also referred to
as the SSSim measure, is a robust correlation measure that can
handle shifting, scaling, absolute, and shifting-and-scaling correla-
tions between a pair of objects. SSSim was introduced to detect
gene pairs with high correlation in gene expression data [8]. It
is robust to noisy expression values because this measure uses the
idea of local means computed using consecutive values within small
running windows. Some basic definitions used in this measure are
given below.

(i) Local mean: The local mean of an object P; for a condition
¢;j € C is the mean of the values Pi(cj—1), P;(cj) and Pi(cjy1)
for j # 1 and j # n and n is the total number of conditions.
If j =1, local mean = mean| Pi(c;), Pi(¢jy1)]. If j =n, local
mean = mean| P;(cj—1), Pi(c;)].

(ii) Baseline condition pair: This is a pair of conditions or at-
tributes that is used as the reference condition or attribute
pair. The ratio between differences with other condition (at-
tribute) pairs and this pair is used in the computation of
SSSim score.

Let Plz{plu D2, P3, P4y - - -, pn}7 P2:{QI7 q2, 43, q4, - . ., QTL} exhibit
shifting-and-scaling patterns and the first and second conditions be

baseline condition pairs for 1 < k < (n —1). Then we have [272]:

Pk+1 — Pk _ qk+1 — Qk. (2.4)
P2 —q1 q2 —q1
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Based on this equation, the SSSim measure [8] was proposed. If
(P1, Py) is a pair of objects, then SSSim of (P, P) is given as

n—1 [Pkl =Pi il =di
po—pl a2—4q1

 Pit1 Py G4
i—2 Q*maz(\lmeanlfﬁ\,|lmeamfﬁ|)

SSSzm(Pl, PQ) =1-

I

n—2
(2.5)
1—a; big1—bi aiya—aii1 biyo—bi o
where Imean;= mean(agl_a?l, gl_blz, “222_321“, Hlé—bllﬂ ), ifi =2

a;i—ai—1 bi—bi—1 aiy1—a; biy1—bi\ e .
as—ay1 ' bo—by ’ as—a1 7 by—b1 )7 lf t=n 1
a;i—ai—1 bi—=bi_1 ait1—a; bir1—b; ajro—a;r1 bipo—bi1
as—ay1 ’ bao—b1 ’ as—a1 ’ by—by az—ay bo—b1

mean(

mean otherwise.
( ),

The range for the SSSim score for any gene expression pair is [0, 1]
and there is no need for normalization. If the value of the SSSim
score is 1, the objects perfectly exhibit shifting-and-scaling corre-
lation. The measure introduces the local mean, i.e., Ilmean;, of
an object for a condition or attribute instead of the mean of all
expressions in order to make it robust to noisy values.

Normalized Mean Residue Similarity: NMRS [158] is a correlation
measure which can distinguish shifted patterns (with a value 1)
from a shifted and anti-correlated pattern (with a value 0) between
two given objects.

The NMRS between a pair of objects P = {aq, az, a3 ...a,} and
Q = {b1, ba, b3 ...b,} is defined as

P
‘ |a; — @mean — bi + bmean|
NMRS(P,Q) =1— = : ,
2 x max(z ’ai - amean’u Z |bz - bmean‘)
i=1 i=1

(2.6)
where ameqn is the mean of all the elements of object Pi;
Amean = {a1+ a2+ as+ ... +an} / nj
bmean 18 the mean of all the elements of object Q1;
bmean = {b1+ bo+ b3+ .. .—I—bn} / n

2.8.2.3 f-Divergence Measures

In this section, we introduce four f-divergence measures. These are
K-L-divergence, Hellinger distance, Total Variation Distance (TVD),
and a-divergence, and are useful in faster anomaly detection.
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(a)

K-L Divergence: The K-L divergence Dy of a probability distri-
bution @ from another distribution P is an asymmetric measure
of difference that quantifies the information lost when @ is used
to approximate P. The K-L divergence measure can be defined as
follows:

PHQ sz logQ

Thus, the above equation gives the expected logarithmic difference
between P and (), where the expectation is based on the probability
distribution P.

Hellinger Distance: The Hellinger distance between two probabil-
ity distributions, say P and @, can be defined as follows.

DyPIQ) = 5.\ [ SV = V)

=1

It is a type of f-divergence measure and is defined in terms of the
Hellinger integral, introduced by Ernst Hellinger in 1909 [48]. This
distance measure has a direct relation to the Euclidean norm of the
square root vectors difference, i.e.,

Dy(P|IQ) = jiwﬁ— Valls

and is a special case of the Mahalanobis distance, when the given
two classes have different standard deviations but similar means.
In such a case, the Mahalanobis distance tends to zero, but the
Hellinger distance grows depending upon the difference between
the standard deviations. This was a major motivation for its in-
troduction.

Total Variation Distance (TVD): TVD measures the largest pos-
sible distance between P and () as

PHQ Z’pz_%

The total variation distance is bound in terms of the K-L diver-
gence.
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(d) a-divergence: The a-divergence measure is a generalization of K-L
divergence between P and @ of order « and is defined as

Dy(Pl|Q) =

logg Zplo‘qz1 ), where a > 0.

When a =1, the a-divergence reduces to K-L divergence as
Do=1(P||Q) = sz log

We evaluate all four measures in the detection of DDoS flooding at-
tacks, and for a-divergence we heuristically obtain the appropriate
value for a to achieve the best possible classification accuracy.

2.8.2.4 Information Metrics

Entropy measures have been effectively used in distinguishing anoma-
lous events from legitimate ones. In information theory, one can expect
smaller entropy values, especially when low randomness is observed in
the information variable, whereas for an information variable with a
larger amount of uncertainty or randomness, such entropy value is ex-
pected to be high [92]. To estimate the randomness of a system ac-
curately, researchers design measures based on statistical properties of
variables. Shannon entropy [218], Renyi’s quadratic entropy [204],
Hartley entropy [218], Shannon’s Generalized Entropy, generalized in-
formation distance, and K-L divergence are some well-known infor-
mation theoretic measures that have been useful in network anomaly
detection.

(a) Hartley Entropy: For a given discrete probability distribution, P =
P1,D2, D3, »Pn, such that > " p; = 1, P, > 0, we can define
Hartley Entropy as  Hy = logon, where, the values of the p;s are
the same and as a result, the maximum entropy value is achieved.

(b) Shannon entropy: If « — 1, then H, converges to Shannon en-
tropy, which is defined as follows.

Hi(zx) == pi loga pi.

(¢) Renyi’s Quadratic Entropy: If o = 2, it is referred to as Renyi’s
Quadratic Entropy, which is defined as follows:

Hy(z) = —loga Y1 | p?.
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(d) Renyi’s Entropy of order a: If « > 0, « # 1 and P; > 0, it

(e)

converges to Renyi’s Entropy of order o which is given below.
Ha(x) = 125l0g2(307, pf).

Generalized Information Distance: ~ We can define information
distance as an estimate of the divergence between a given pair of
probability distributions. If P and @) are two discrete probability
distributions, where P = p1,po,ps...0n, @ = ¢1,G2,43, - - -, Gn, and
Yo = Yoy q = 1,4 =1,23,---,n, then the generalized
information distance between P and @) of order « is as follows.
Da(P||Q) = Fi7log2(37, pPa; ™)

K-L Divergence: In the above expression for generalized infor-
mation distance between a pair of discrete probability distribu-
tions, i.e., P and @, the value of o can be an arbitrary positive
integer. When a — 1, the above expression converges to the
Kullback-Leibler divergence measure [35], which is given below.
Dy(P|Q) = =22y pi loga 2.

This measure is effective in differentiating attack traffic from legit-
imate traffic.

2.8.3 Discussion

Based on the above discussions, we observe the following.

e Mathematically, a similarity measure quantifies the strength of
closeness between two instances using either all or a subset of at-
tributes. In contrast, a dissimilarity or distance measure between
a pair of instances quantifies how far apart they are.

e Typically, for two identical instances, the similarity is 1, whereas
the dissimilarity is 0.

e Some proximity measures, such as Pearson correlation coefficients,
Spearman rank correlation, or Hamming distance, are useful only
after applying adequate preprocessing to avoid bias or outlier in-
fluence. However, such preprocessing often causes degradation of
performance.

e Some proximity measures cannot retain the significance of indi-
vidual attributes in high-dimensional space and hence result in
unrealistic performance.
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e For DDoS detection, the measure should be easy to implement,
fast, sensitive, and accurate.

e To capture attribute-specific regulation (such as increase or high,
decrease or low, and neutral) information, correlation-based mea-
sures are relevant.

e To compute significant differences in terms of selective attributes
or features based on probability distributions, information met-
rics are useful.

2.9 Some Empirical Studies

DDoS attackers are continually improving their skills and sophistication
to launch attacks by infecting unsuspecting hosts. There are normally
two types of DDoS attack traffic that can compromise a host or a net-
work: (a) high-rate DDoS attack traffic, which is similar to a flash
crowd and (b) low-rate DDoS attack traffic, which is similar to legit-
imate traffic. Since both have characteristics of legitimate traffic, the
use of appropriate measures or metrics is highly essential to distinguish
between them accurately within a short interval of time.

Although several useful proximity measures or information metrics
have been introduced by researchers as discussed above, each has its
own advantages as well as disadvantages in the context of network in-
trusion detection. The performance of a machine learning based DDoS
detection approach in terms of time and accuracy, is largely influenced
by selection of a proximity measure or metrics. In this section, we
present some empirical studies using benchmark and real-life DDoS at-
tack datasets using three different groups of proximity measures and
analyze their effectiveness in network anomaly detection. The proxim-
ity measures are chosen for the empirical study based on three factors:
(i) speed, (ii) accuracy, and (iii) simplicity. We believe that such ex-
perimental analysis will help students and researchers in assessing the
usefulness of such measures.

2.9.1 Using Information Metrics

Information metrics are known to be sensitive, scalable, and simple
to implement when distinguishing anomalous traffic from legitimate
traffic. In this experimental study, we make the following assumptions.
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o Assumption 1: All TCP, UDP and ICMP flooding attack traffic
generated and used at the victim end for this study, follow the
rate dynamics specified by Mirkovic et al. [169].

o Assumption 2: Normal traffic follows the Gaussian distribution,
whereas attack traffic is generated following the Poisson distribu-
tion.

o Assumption 3: Traffic is sampled every ¢, minutes globally and
the traffic for each global time interval is further sampled at ¢;-
second time intervals locally. In this study, ¢, and ¢; are consid-
ered 5 minutes and 10 seconds, respectively.

o Assumption 4: The in-and-out flow traffic is controlled at a
router.

Table 2.1: Information metrics and variables used.

Name of Metric Representations Variables
Used
Hartley entropy Hy = logan n
Shannon entropy Hi(z) = =" piloga pi Dis N
Renyi’s  quadratic | Ha(z) = —loga > &, p? Diy M
entropy
Generalized entropy | Hy(z) = ﬁlogg(zyzl p?) Diy T, QU
K-L divergence Di(Pl|Q) = =31 piloga % pi, n, P,Q
Generalized  Infor- | D, (P||Q) =|pi,n, PQ,
mation Distance Lloga(30 4 g ) !

It is also assumed [92] that the entropy value increases with the increase
in randomness in the information variables, whereas with a decrease
in uncertainty in the information variables, the entropy value becomes
smaller. An information metric is useful in measuring such randomness
in a system. In this empirical study, we use six different metrics to
quantify the randomness in our network system (i.e., the testbed as
shown in Figure 2.9). The names of the measures, their representations,
and variables used are shown in Table 2.1.
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Figure 2.9: TUIDS testbed architecture with the DMZ.

2.9.1.1 Testbed Used

The TUIDS testbed was developed in the Network Security Laboratory
of Tezpur University. It includes multiple networks and the hosts are
divided into several VLANs. The testbed architecture with a demili-
tarized zone is shown in Figure 2.9. Each VLAN is attached to an L3
switch or an L2 switch inside the testbed. One can attack from both
wired or wireless networks (possibly with reflectors), but the victim
is inside the network. The attackers used the TUCANNON+ tool to
launch attack traffic of all types, such as constant rate, increasing rate,
pulsing rate, and subgroup attacks including all three protocols, i.e.,
TCP, UDP and ICMP. Further, the attack can be both low-rate as well
as high-rate and direct as well as indirect. In this attack dataset, more
than 6000 packets per second is considered a high-rate attack, whereas
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a low-rate attack is about 1000 packets per second, covering almost
55-60% of a full attack.

2.9.1.2 Datasets Used

In this empirical study the three different datasets viz., the MIT Lin-
coln Laboratory dataset [172], [164], [159], the CAIDA DDoS 2007
dataset [42] and the TUIDS DDoS dataset [88], are used to assess the
effectiveness of the six information metrics and measures in detecting
both low-rate and high-rate DDoS attacks. The MIT Lincoln Labora-
tory tcpdump dataset is used as a reference normal data, and is free
of any attack traffic. In contrast, the TUIDS DDoS dataset includes
both low-rate as well as high-rate DDoS attack traffic. It was prepared
by launching TCP, UDP, and ICMP flooding attacks using the tool
TUCANNON+ in a testbed architecture with a demilitarized zone as
shown in Figure 2.9.

These CAIDA DDoS 2007 traffic traces contain both low-rate and
high-rate attack traffic. It includes anonymized attack traffic of 5 min-
utes duration (300 seconds) captured during a DDoS attack on August
4, 2007. It contains only attack traffic to the victim and the responses
from the victim. During preparation of the dataset, the non-attack
traffic was removed as much as possible. Moore et al. [175] character-
ize a DDoS attack in the dataset as high-rate when there are more than
10,000 packets per second in the network. Similarly, a low-rate DDoS
attack is one when there are 1000 packets per second covering 60% of
the full attack. A brief statistical summary of this dataset [175], [26]
is given in Table 2.2. Since a low-rate attack does not consume all
the computing resources of the victim machine or the bandwidth of the
network connecting the victim machine, to create a real low-rate attack
scenario, low-rate attack traffic and legitimate traffic were mixed.

2.9.1.3 Results of Empirical Study

In this empirical study, as stated earlier, t, = 5 minutes and ¢, =
10 seconds were chosen as the sizes of global and local time windows,
respectively, for analyzing legitimate and attack traffic. For faster iden-
tification of DDoS attacks, the study involved only three attributes,
namely SIP (i.e., Source IP), DIP (i.e., Destination IP), and protocol
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Table 2.2: Traffic features and details of CAIDA DDoS dataset.

Traffic Features Values

Maximum capture length for interface 0:65000

First timestamp 1186260576.487629000
Last timestamp 1186260876.482457000
Unknown encapsulation 0

IPv4 bytes 37068253

I1Pv4 packets 166448

Ipv4 traffic 8079

Unique IPv4 addresses 136

Unique IPv4 source addresses 132

Unique IPv4 destination addresses 136

Unique IPv4 TCP source ports 4270

Unique IPv4 TCP destination ports 3348

Unique IPv4 UDP source ports 1

Unique IPv4 UDP destination ports 1

Unique IPv4 ICMP type/codes 2

for estimation of randomness in the system [26]. SIP may be spoofed,
but may still be used to detect the source host that generates the
attack. Similarly, DIP helps determine the target of the attack, and
protocol is useful in determining the type of flooding attack in progress.
In addition to these three, the timestamp attribute was used for sam-
pling traffic using the sizes of the global and local windows. To assess
the effectiveness of generalized information distance in detecting both
low-rate and high-rate attacks, the order o was varied from 0 to 14,
whereas for generalized entropy, the order o was varied from 0 to 15.

In this study, to compute probabilities from the dataset, we use
classical probability distributions. Unique source IP addresses within
a 10-second local time window are identified and individual probability
values between 0 and 1 are computed for them. Then, entropy is com-
puted for each probability value and all entropy values within a time
window are summed up for total entropy. When computing probability,
symbolic data are not converted to numeric values.

Figure 2.11 shows the effectiveness of a generalized entropy measure
of order « in distinguishing attack traffic from normal traffic. Here,
“spacing” indicates the difference or gap between the two traffic types.
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Figure 2.10: Spacing results for low-rate and high-rate attacks.

The more spacing that is shown by a metric or measure between the
traffic types, the more effective the measure is. Figure 2.11 shows that
spacing between normal and low-rate attack traffic is smaller than the
spacing between normal and high-rate attack traffic. It is usual because
low-rate attack traffic is almost similar to normal traffic.

Exhaustive experimentation was carried out with both the gen-
eralized entropy measure and information distance with the CAIDA
dataset by varying the order « to assess its effectiveness in distinguish-
ing both low-rate and high-rate attacks from legitimate traffic. Figure
2.10 shows the spacing results for both low-rate and high-rate attacks
in comparison to normal traffic. We see in the table that spacing be-
tween normal and high-rate attack traffic is significantly higher than
the spacing between normal and low-rate attack traffic for both the
metric and the measure. In a similar fashion, the effectiveness of gen-
eralized entropy with the TUIDS dataset was evaluated and the results
are shown in Figures 2.12 and 2.13 for distinguishing high-rate and
low-rate attacks, respectively. To judge the suitability of information
distance in DDoS detection, a similar experiment was carried out and
the results are shown in Figures 2.14, 2.15, 2.16, and 2.17 for the
CAIDA and TUIDS datasets, respectively. Overall, the generalized
entropy measure is better suited for distinguishing attack traffic from
normal traffic with an increase in the order value of a.
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Figure 2.11: Differentiating high- and low-rate attack traffic from nor-
mal in CAIDA dataset using Generalized Entropy.
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Figure 2.12: Distinguishing high-rate attack traffic from normal in TU-
IDS dataset using Generalized Entropy.
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Figure 2.13: Distinguishing low-rate attack traffic from normal in TU-
IDS dataset using Generalized Entropy.
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Figure 2.14: Distinguishing high-rate attack traffic from normal in
CAIDA dataset using Information Distance.
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Figure 2.15: Distinguishing low-rate attack traffic from normal in
CAIDA dataset using Information Distance.
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Figure 2.16: Distinguishing high-rate attack traffic from normal in TU-
IDS dataset using Information Distance.



2.9. SOME EMPIRICAL STUDIES 59

1.6 : T T I T T T T T
15 | —m—ID order=1 7
" 1| —e—ID order=2 A
1.4 ID order=5 -
1.3 ]| —v—ID order=10 o ]

4 ID order=14
1.2 4
114 ]
1.0 o ]
o % 4
£ 08y v
g o7 _'\ ]
&osd v—0 . ]
0.5 l\ ¥ . ]
0.4 4
- [ 3 ”
0.3 ] \ ]
0.2 l\ = ]
0.1 l\ . ]
0.0 . ]
T Y T ¥ T : T T T LS T Y T '
2 4 6 8 10 12 14 16
Samples

Figure 2.17: Distinguishing low-rate attack traffic from normal in TU-
IDS dataset using Information Distance.

2.9.1.4 Discussion

We observe the following based on the results of the empirical study.

e The entropy measure performs better in detecting both low-rate
and high-rate DDoS attacks when the order of the generalized
entropy is increased.

e An information metric is preferred considering the computational
complexity of the process because it is dependent on a small num-
ber of parameters for detection.

e With the increase in the value of the order, the performance of
information distance improves over K-L divergence.

e Another important advantage of both generalized entropy and in-
formation divergence is that the value of a can be easily adjusted
(increased or decreased) for better performance.

2.9.2 Using Correlation Measures

In this section, six well-known similarity measures are used. These
are Pearson correlation [28], [143], Spearmen rank correlation [61],
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Kendall correlation [133], shifting-and-scaling correlation [8], and the
Normalized Mean Residue Similarity (NMRS) [158] measure, for an
experimental study. These measures have already been used in various
other domains and have been found effective.

Correlation between a pair of objects is a measure of how well they
are related. The most common measure of correlation in statistics is the
Pearson Correlation [28], [143]. It shows how linear the relationship is
between two sets of data. The mathematical representation of Pearson
correlation measure is given in Section 2.8.2.2. This standardized
covariance value ranges from —1, indicating a perfect negative linear
relationship, to +1, indicating a perfect positive relationship. A zero
value suggests no linear association.

Spearman rank correlation [61] is used to test the association be-
tween a pair of ranked variables, or one ranked variable and one mea-
surement variable. This correlation test is not dependent on any as-
sumption about the distribution of the data. The formula used to
calculate the Spearman rank correlation is given in Section 2.8.2.2.

The Kendall rank correlation [133] test is used to measure the
strength of dependence between two samples, say P and @), where each
sample size is n. We know that the total number of pairings with P
and @ is n(n — 1)/2. The formula used to calculate the value of the
Kendall rank correlation is given in Section 2.8.2.2.

SSSim is a robust correlation measure [8] that can handle shifting,
scaling, absolute, and shifting-and-scaling correlations between a pair
of objects. SSSim is robust in the presence of noisy data as this mea-
sure uses local means computed from values in a small interval. The
mathematical expression for SSSim is given in Section 2.8.2.2.

NMRS [158] is a correlation measure that can detect shifted correla-
tions effectively. The mathematical expression for the NMRS similarity
measure is given in Section 2.8.2.2.

2.9.2.1 An Example

The correlation and similarity measures mentioned above can be used
to evaluate relationships among objects. These measures play a key
role in the learning process. One major difference among these mea-
sures is the type of correlation the measure can handle. Some types
of correlations that may exist between a pair of objects are absolute
correlation, shifting correlation, scaling correlation, and shifting-and-
scaling correlation. Let us consider objects O1, 02, 03,04, and O5 as
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Table 2.3: Example objects.

O1| 0.814] 0.905( 0.127] 0.913] 0.632 0.097| 0.278| 0.546| 0.957 | 0.964
O3] 0.500] 0.970| 0.300] 0.485| 0.800| 0.141] 0.421| 0.915/ 0.792| 0.959
Os| 5.814] 5.905| 5.127| 5.913| 5.632| 5.097| 5.278| 5.546| 5.957 | 5.964
O4| 4.073] 4.529| 0.634] 4.566| 3.161| 0.487| 1.392| 2.734| 4.787 | 4.824
Os| 9.073] 9.529| 5.634] 9.566| 8.161| 5.487| 6.392 7.734| 9.787 | 9.824

given in Table 2.3, with their corresponding visual representation in
Figure 2.18. Let us compute distance and similarity values using the
aforementioned measures to judge their effectiveness. Distance or sim-
ilarity values among these objects using these measures are given in
Table 2.4.

A distance measure like Euclidean distance is used to determine
how close the values of two or more objects are. Closely situated ob-
jects in terms of values tend to bring the produced value toward zero.
Correlation that is only concerned with closeness of values is called
absolute correlation. Object Os is closest to O; compared to other ob-
jects and hence the pair produces the lowest Euclidean distance score.
Another type of correlation that may exist between a pair of objects

12

10

LV N\ .. =

——(1

Figure 2.18: Correlation plot of example objects.
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Table 2.4: Computed distance and correlations on example objects.

Object | Euclidean] NMRS | Pearson| SSSim | Spearman Kendall
Pairs Distance
01,02 |0.7283 0.6773 | 0.7245 | 0.5522 | 0.6606 0.5111
01,03 |15.8114 | 1.0000 | 1.000 | 1.0000 | 1.000 1.0000
01,04 |8.9160 0.6000 | 1.000 | 1.0000 | 1.000 1.0000
01,05 |24.0632 | 0.6000 | 1.000 |1.0000 |1.000 1.0000

is shifting correlation. In such correlation, an object can be obtained
from the other object by adding a constant value to each of the fea-
tures or observations. Os is obtained from O; by adding a constant 5
to all observations. Measures like NMRS can detect such correlation
and produces the highest similarity score, i.e., 1. In scaling correlation,
an object can be obtained from another object by multiplying each
feature value by a constant. Oy is obtained from O; by multiplying
each feature value by a constant 5. In shifting-and-scaling correla-
tion, an object can be obtained by performing a sequence of shifting
and scaling operations on the features of the other object. It is worth
mentioning that shifting correlation and scaling correlations are special
cases of shifting-and-scaling correlation. O; and Oy4 exhibits shifting
correlation with a multiplicative constant 5, whereas O; and Oy ex-
hibit shifting-and-scaling correlation with a multiplicative constant 5
and a shifting constant 5. Pearson correlation, Spearman, Kendall, and
SSSim measure can detect shifting-and-scaling correlation.

2.9.3 Using f-Divergence Measures

A common observation in DDoS flooding attacks is the sudden hike
in packet arrival rate within a short interval of time or an abrupt rise
in number of connection flows in the attacker’s target network. One
can expect that during a DDoS flooding attack, a major share of the
active connections in the i" time window still appears in the (i 4 1)
time window. In this study, an *" connection flow, i.e., say CF; is
represented by < SIP;, DIP; >, where SIP; and DIP; represent the
source IP and destination IP for i** unidirectional flow, respectively.
During a DDoS attack, usually the number of common connections
becomes significantly high, whereas it drops when the scenario becomes
normal. So, one needs to apply a simple, fast, yet accurate method
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that can help detect the attacks at least in near real time, if not in real
time. F-divergence is one such potential measure based on probability
theory, one that is efficient for this purpose. Typically, it computes
the information distance between two probability distributions to find
deviations.

To compute information distance between two given distributions,
one can use all the attributes or can select the most relevant subset of
attributes from each distribution. Use of a relevant and optimal sub-
set of attributes can improve the performance of information distance
significantly.

As an illustration, let us take two discrete probability distributions
P and @ over a given space () so that P can be found absolutely
continuous w.r.t. Q). For a convex function f, the divergence, i.e., say
Dy of Q from P, can be computed as

Dy(P| Q) = /Q f(jg)- (2.7)

In this study, four different measures under f-divergence are considered
for empirical study. These are K-L-divergence, Hellinger’s distance,
TVD and a-divergence. Although these measures are different or dis-
tinct, they are special cases of each other depending on the particular
choice of f. The mathematical expressions for these measures are al-
ready given in Section 2.8.2.3. For faster detection of DDoS attacks,
an optimal subset of relevant features is used. As f-divergence enables
one to compute the divergence of two probability distributions, we con-
sider sampled data values from two consecutive 5-second intervals, i.e.,
say for t and t + 5 seconds at a time. For processing convenience, the
study considers a recursive binary tree data structure using a single
key for each interval and for each type of flooding attack. It calculates
the key for each attack type differently.

For ICMP flooding attacks, we compute the number of unique con-
nection flows between a pair of consecutive 5-second intervals. A con-
nection flow represents the aggregate number of packets sent from say,
the " SIP to the i DIP in an interval. The study considers con-
nection size as a relevant feature to compute f-divergence of a flow
for each arrival of a packet in a flow. The extracted feature informa-
tion is stored in a node in a binary tree with different components,
viz., < Uniq_conn_ID, SIP, Conn_sizey, Conn_size;11, Flag >. The
unique connection 1D, i.e., Unig_conn_ID, is computed from SIP and
DIP addresses to represent a flow for each node, and this node is
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inserted in the tree with this unique ID as the key. The variables
Conn_size_t and Conn_size;+1 are used to store the size of a common
connection flow in each consecutive interval. For each time interval ¢,
the Conn_size; of a flow is added to the size of every new packet if an
already existing Unig_conn_ID is generated from its SIP and DIP ad-
dress combination. Otherwise, a new node with a new Unig_conn_I D
is created with its flag initially set to 0. In the next interval, i.e., at
(t + 1), the Uniq_conn_ID node flag is set to 1, if the same UID is
generated when reading the packets. Once both interval samples are
completely read and the tree is built, the nodes with flag value of 1 are
accessed by pre-order traversal and their Conn_size; and Conn_size;41
are extracted to compute probability distributions. A node with flag
value 1 represents common connections in two consecutive intervals and
represents the two discrete probability distributions P and (). This
can be explained as follows: For a probability distribution P (or Q),
let the distribution be an array of normalized connection sizes over n
connections with probability p; (or ¢;) for the it" connection flow with
connection size s; is p; or, ¢; is equal to <&-. Finally, we compute
the f-divergence using these connection size f)robability distributions
per connection flow and check whether the divergence value is above a
preset normal threshold value, and if so, a flooding attack is confirmed,
and these nodes with a high sum of Conn_size_t, Conn_size;;1 are
marked as malicious connection flows.

To detect TCP SYN flooding attacks, the study considers the ratio
of the number of TCP SYN and ACK packets to compute divergence.
It takes a single sample at a time and attempts to compute all unique
connection flows. For each flow, it computes the Unig_conn_I D value
from the source and destination IP addresses and then creates a node
with Uniqg_conn_ID,SIP, TCPSY NCount, ACKCount components,
to be updated in the tree based on Uniq_conn_ID as the key. From
each sample, each node is updated with the TCP SYN and the ACK
packet count for each connection flow. The study considers the se-
quence of TCP SYN packet counts as a probability distribution as P
and ACK packet count as Q. f-divergence is calculated for both the
distributions for each interval by considering all flows. If it detects that
the overall TCP SYN and ACK ratio divergence exceeds preset normal
threshold values, a TCP SYN flooding attack is confirmed. Finally,
connection flows with abnormal divergence are marked as anomalous.
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To detect UDP flooding, our study focuses on the feature called
destination port change containing random destination port addresses.
For each pair of consecutive intervals, we compute all unique connection
flows and store them in the tree. We also compute the Unig_conn_ID,
which is simply a unique <SIP, DI P>pair to be used as a key. It flags a
node with value “1” if the Unig_conn_I D is the same and fit represents
a common connection for a consecutive pair of intervals. It represents
the features as dest_port_change_count; and dest_port_change_countsiq
in the tree node. These values, given in sequence, also represent the
probability distributions P and (). For each sample and for a time
interval, say t, it updates the dest_port_change_count; for each desti-
nation port number change for a connection flow by SIP address. Once
the tree is constructed, one can access the nodes with flag 1 by pre-
order traversal to compute the probability distributions P and Q and
finally to compute the divergence between them.

For each measure, the approach can compute f-divergence in
O(nlog(n — 1)) + O(n) time approximately, where n is the number of
packets within a time interval ¢. The additional O(n) time is required
for pre-order traversal of the tree. In summary, it takes O(nlogn) time.

2.9.3.1 Results

The performance of f-divergence measures was evaluated in terms of
detection accuracy and execution time. We used three benchmark and
one real-life datasets (generated using our own testbed as discussed ear-
lier) to assess the effectiveness of these measures. The benchmark and
real-life datasets used in this empirical study are the MIT Lincoln Lab-
oratory dataset [172], [164], [159], the CAIDA DDoS 2007 dataset [42],
and the UCLA® and TUIDS DDoS dataset [88]. We use both normal
and attack traces from these datasets in isolation as well as in combi-
nation. The composition and traffic statistics for these datasets have
already been discussed in Subsection 2.9.1.2. The CAIDA DDoS 2007
dataset mostly includes attack traces and corresponding responses from
the victim. From this dataset we removed the normal traces as much
as possible. The generation of the TUIDS DDoS dataset using our own
testbed has already been discussed in detail in Subsection 2.9.1.1.
For each protocol-specific attack trace, we heuristically identify suit-
able ranges of threshold values for each member of the f-divergence

Shttp://www.lasr.cs.ucla.edu/ddos/traces/
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Figure 2.19: Threshold ranges for various f-divergence measures.

measure, for which a maximum divergence between a normal and at-
tack trace can be achieved. For the a-divergence measure, we consider
a = 2 because it obtains the highest divergence values to distinguish
attack traces from the normal for all three protocols. So, to compare
well with other measures, such as Hellinger distance, K-L divergence,
and TVD in terms of detection accuracy and computational perfor-
mance, o = 2 was used for the a-divergence measure throughout the
experimental study. To compute the threshold for detection of various
flooding attack types, we carefully examine the three types of bench-
mark normal traffic from CAIDA, MIT Lincoln Laboratory and UCLA
datasets for each of the divergence measures. Figure 2.19 shows the
threshold range for each measure and for each protocol-specific set of
attack traces.

A. Performance Evaluation in Terms of Detection Accuracy

To evaluate the performance of these four f-divergence measures, we
prepared three different datasets, namely, Trace I, Trace II, and Trace
III by injecting DDoS flooding attack traces at various proportions
into the normal traces of CAIDA, MIT Lincoln Laboratory, and UCLA
datasets in non-uniform proportions. We use a period of 300 seconds as
the total observation time for each of these new datasets. When inject-
ing attack traffic, the motive behind injecting non-uniform proportions
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Figure 2.20: f-divergence for ICMP flood detection using connection
size in Trace 1.

of attack traces is to avoid forming any specific patterns as well as to
ensure the presence of various attack types based on rate dynamics, as
discussed in Subsection 2.2.2.5.

Figure 2.20 shows the effectiveness of all the four f-divergence
measures for the Trace 1 dataset in detecting an ICMP ping flooding
attack using connection size as the distinguishing feature. One can see
from the figure that a-divergence can distinguish the attack spikes (i.e.,
peaks) more clearly than the other measures in the majority of cases. It
is to be noted that the range of thresholds for a-divergence for detection
of ICMP ping flooding is the highest (i.e., 0.40 to 6.38), which is also
seen in Figure 2.19. Other measures such as K-L-divergence are able
to differentiate these attack peaks, but not as clearly as a-divergence
can. Similarly, for the TUIDS dataset, a-divergence shows the best
performance in detecting ICMP ping flooding attacks in comparison to
others, as seen in Figure 2.21. K-L-divergence establishes itself as a
closed competitor of a-divergence in this case. For Trace II and Trace
11T datasets, which include TCP SYN flooding and UDP flooding at-
tacks, it is evident from Figures 2.22 and 2.23 that a-divergence is the
winner. In case of TCP SYN flooding detection, the threshold range for
a-divergence is the highest and the distinguishing feature is the TCP
SYN, ACK ratio. However, in case of a UDP flooding attack, with a
smaller range of threshold values, a-divergence shows the best possible
result using the destination_port_change as the distinguishing feature.
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Figure 2.21: f-divergence for ICMP flood detection using connection
size in TUIDS dataset.
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Figure 2.22: f-divergence for TCP SYN flooding attack detection using
TCP SYN ACK ratio in Trace II.

B. Performance Evaluation in Terms of Computation Time

It is an essential requirement to detect DDoS attacks in real time.
Although most victim-end detection systems show good detection ac-
curacy, they often fail to perform detection in real time. It may be
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Figure 2.23: f-divergence for UDP flood detection using destination
port change in Trace III.

due to (i) the use of a costly measure while differentiating illegitimate
traffic from normal traffic, (ii) additional requirements imposed by a
preprocessing task, and (iii) increased computational overhead. So, for
every DDoS defender, it is necessary to carry out an exhaustive study
of cost-effectiveness of various possible measures before deploying in a
live defense system. In this empirical study, we also carry out an exe-
cution time performance analysis on these four f-divergence measures
using those three traces. The results are shown in Table 2.5. One can
see that none of the participating measures is a clear winner in terms
of execution time performance.

Table 2.5: Execution time performance of f-divergence measures.
Trace I Trace 11 Trace II1

10 sec 300 sed 10sec 300sec 10 sec 300 sec

a-Divergence 1.84 4994 0.002 0.064 0.021 1.211

Hellinger Distance 1.83  506.8 0.003 0.065 0.020 1.200

KL Divergence 1.85 500.3 0.003 0.063 0.022 1.211

TVD 1.84 501.1 0.002 0.066 0.022 1.211

2.9.4 Discussion

Based on the empirical study described in this section, we make the
following observations.

e The study demonstrates that the performance of a-divergence is
better than other similar measures.
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e The study focuses on reducing the cost of divergence computa-

tion as much as possible when detecting attacks. In detecting
ICMP ping and UDP flood attacks, when computing divergence
for each pair of consecutive 5-second time intervals, it involves
two probability distributions, i.e., P and (), and accordingly, it
constructs two recursive binary trees, i.e., a primary tree and a
secondary tree. It starts with the primary tree for the initial inter-
val, which is also used in the next consecutive interval to record
feature values for common connections (i.e., node flagged as 1).
Subsequently, it may grow if uncommon connections are detected
(i.e., node flagged as 0). At time (¢+1), it constructs a secondary
tree, which becomes the primary tree at time (£ + 2) and again
a new secondary tree is constructed. Once the divergence com-
putation is over, the primary tree constructed at time (¢ + 1) is
removed, and this process iterates until all samples are read. So,
for these two attacks, the cost of divergence computation is low,
as shown in Table 2.5.

e The case is further simplified when detecting TCP SYN flood at-

tacks. It involves a single recursive binary tree construction at ev-
ery 5-second interval when computing divergence. Once the TCP
SYN ratio divergence computation is over, the tree is deleted.

e Although the search time may be a cause of concern as com-

pared to fixed-sized data structures, we see in Table 2.5 that the
computation time is significantly less for this data structure.

2.10 Chapter Summary

Based on all the discussion in this chapter, we can summarize a set of
observations as follows.

(a) DDoS attacks are coordinated attacks launched using a large num-

ber of compromised machines. Such attacks can paralyze a victim
network instantly, if an adequate defense is not deployed.

(b) Several design issues of the original Internet are responsible for

increasing growth of Internet attacks. Some of these are (i) the
existence of complex edges but simple cores, (ii) link bandwidth
mismatch between core and edge networks, (iii) simple routing
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principles, (iv) lack of centralized network management, and (v)
the habit of sharing reserved resources across data centers.

DDoS attacks are categorized in various ways by various individu-
als. Typically, a DDoS attack can be (i) direct or indirect, (ii) direct
or reflector based, (iii) protocol specific such as TCP DDoS flood-
ing, UDP flooding, or ICMP flooding, and (iv) attacks classified
based on rate dynamics such as pulsing, constant rate, increasing
rate, or sub-group attacks.

The desired characteristics of a DDoS defense system are real-time
performance, scalability, maintaining QoS, and accurate source
identification.

A DDosS attacker chooses a definite target when attacking a victim
network. The target can be (i) infrastructure, (ii) link, (iii) router,
(iv) OS, or (v) the defense mechanism itself.

Typically, a DDoS attacker follows a four-step strategy, viz., re-
cruitment, exploitation, infection, and attack.

Machine learning researchers help address the DDoS detection prob-
lem by adopting supervised learning or unsupervised learning meth-
ods. A supervised learning method has high detection accuracy
when adequate and accurate knowledge is provided, but it cannot
detect unknown attacks. In contrast, an unsupervised method can
detect unknown attacks, although it suffers from high false alarms.
Unsupervised methods are usually non-real-time, because they re-
quire more processing.

Several similarity and dissimilarity measures have been introduced
to work with machine learning algorithms. Each measure has its
own advantages and limitations, and it is difficult to select a mea-
sure which is best for all types of applications and scenarios.

Most measures are not scalable and their performance is affected
by the increase in dimensionality of the relevant data or in the
number of training data instances.

To support effective DDoS attack detection, three desired qualities
of a measure are: (i) sensitiveness, (ii) cost-effectiveness, and (iii)
scalability.
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(k) Among f-divergence measures, a-divergence performs better than
others in most cases.

(1) Among information metrics, improved performance can be achieved
when using generalized entropy by increasing the order of .

(m) Some measures show better performance only after pre-processing
the original test dataset. However, if we add the cost of preprocess-
ing, the overall performance of such a measure is often inadequate
for real-time or near-real-time detection of DDoS attacks.



Chapter 3

Botnets: Trends and
Challenges

Along with rapid developments in Internet technologies, the profession-
alism and sophistication of those who commit Internet crimes have also
been increasing exponentially. A major cause of such advancement in
attack technology is the availability of open source attack resources.
A DDoS attacker or a group of attackers hires or compromises a large
pool of computers, referred to as bots, to launch attacks. To control
the bots from a remote corner of the Internet, the attackers usually
connect them to a remote Internet Relay Chat (IRC) server, to form
what is called a botnet. Using such botnets, attackers flood the net-
works with spoofed IP addresses and generate spam emails, viruses,
and worms. In general, botnets include thousands of bots. However,
recently attackers have succeeded in reducing the size of a botnet to
a few thousand with the ability to generate attack packets of vari-
able intensity to make them less detectable. A medium-scale botnet
of size, say 20,000, can be highly effective in damaging the Website
of a corporate system with their combined bandwidth (20,000 uplinks
with bandwidths of 56 Kbps for a total of 1092 Mbps), which may be
higher than the bandwidth of many organizations’ Internet connectiv-
ity. In the recent past, several effective botnets have been introduced.
Some of these are Agobot, Spybot, RBot, and SDBot. Most of these
bots provide for source IP address spoofing and generation of source
ports, destination ports, TCP sequence numbers, and other fields that
go into packet headers at random. Greater randomization generates

73
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more anomalies, making mitigation more difficult due to problems in
computing packet signatures for filtering.

We stated in Chapter 2 that botnets are currently being used by
attackers to cause serious damage using both volumetric as well as ap-
plication layer DDoS attacks. In the recent past, botnet technology has
become quite sophisticated. We provide a discussion of botnet basics
and their usage in DDoS attack generation in the next section. The
evolution of botnet technology and its features in the context of DDoS
attack generation are discussed in two categories, viz., (i) stationary
botnets and (i) mobile botnets.

3.1 DDoS Attacks Using Stationary Botnets

In the recent years, most sophisticated and large-scale DDoS attacks
have been launched using botnet technology. The main reason behind
the popularity of botnet technology in DDoS attack launching is its
increasing growth, flexibility, and power, which have enabled the gen-
eration of various types of DDoS attacks. The four important reasons
that attackers prefer this technology are (i) inclusion of a large num-
ber of compromised nodes (i.e., zombies) to launch a high-intensity
flooding attack within a short period of time, (ii) the ability to exploit
protocols to bypass security mechanisms, (iii) difficulty in identifying
the origin of the attack, and (iv) difficulty in distilling malicious traffic
(especially low-rate DDoS attacks) from normal traffic in real time due
to lack of any distinguishing features. Figure 3.1 shows an example of a
DDoS attack using a botnet. Though botnets are now considered very
effective in launching most sophisticated DDoS attacks, they originated
from a text-based chat system, referred to as Internet Relay Chat (IRC)
that organizes communication in channels. The main purpose of the
IRC system was very affirmative and it provided services for message
sharing, along with administrative support, simple games, and other
services to chat users. In due course, bad actors came to understand
and exploit its ability to execute malicious activities such as launching
DDoS attacks to disrupt the services of a network.

3.1.1 Botnet Characteristics

Typically, botnets are characterized by the type of Command-and-
Control (C&C) system used for communication. Communications be-
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Figure 3.1: Botnet attack.

tween the botmaster and the bots take place according to the spec-
ification of the C&C system. Among the various C&C systems in-
troduced so far, centralized and distributed mechanisms are commonly
used for communication. Both types have their own advantages as
well as limitations. To address these limitations, attacker masterminds
have introduced another botnet technology of late, referred to as peer-
to-peer botnet, which is considered more effective and difficult to defend
against. To counter such botnet-based DDoS attacks, a network de-
fender has to know the malware code and the possible enhancements
that may have been incorporated in such code. Further, the topologies,
protocols, and the botnet architectures used by the attackers need to
be carefully studied during development of a DDoS defense. With the
recent successful convergence of traditional telecommunication services
and the Internet, the possibility of botnet-based DDoS attacks over es-
sential network services, including 3G, 4G, and 5G wireless networks,
has increased substantially.

3.1.2 Botnet Models

An attack mastermind typically uses any or a combination of three
basic models when launching a botnet-based DDoS attack. These are
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(i) the IRC botnet model, (ii) the agent handler model and (iii) the
Web-based model. We discuss each of these models next.

3.1.2.1 Agent Handler Model

Generally, four players participate in this model for successful launch-
ing of a DDoS attack. These are (i) the master or the attacker, (ii)
the handlers, (iii) the agents and (iv) the victim. The master or the
attacker initially attempts to bring some hosts in a network under its
control by compromising them. The handlers include some malicious
software residing on remote machines that are used by the attacker.
The purpose of choosing a set of victimized computers (handlers) to
launch DDoS attacks is mainly to overcome the possibility of tracing
the attack back to the attacker (client). The agents, i.e., the third set of
players are practically responsible for performing the attack. They typ-
ically consist of software on compromised machines through which the
attack is performed. One can imagine this set as a subset of handlers
that reside on the same systems. Generally, in a DDoS flooding at-
tack, the mastermind uses a large number of agents to make the attack
effective within a short interval and the victimized (hacked) machines
are used in the flooding attack without knowledge of their owners. To
launch such a flooding attack, the attacker may exploit the weaknesses
of protocols such as TCP, UDP, or ICMP. Another advantage of using
such a large number of handlers is to conceal the malicious use of a
handler computer. Finally, the victim, i.e., the fourth player, may be
a single target machine or a group of target machines.

3.1.2.2 IRC-Based Model

The Internet Relay Chat (IRC), a text-based chat system that orga-
nizes communication in channels, unwittingly facilitated the birth of
botnets. IRC-based DDoS attacks are now the most popular because
of the ability to generate a huge volume of attack traffic instantly.
Typically, this system, installed with a bot, can spread very fast and
exploit multiple vulnerabilities automatically. After successful installa-
tion, a full backdoor generally exists on the system, including an IRC
component to establish communication between the computer and a re-
mote IRC server; this backdoor is controlled by the attacker. The bots
or zombies used are responsive (can respond to commands), and are
easy to control, create, or influence. An attack mastermind launches
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a DDoS attack through IRC by simply logging into a malicious IRC
server, authenticates, and then instructs (by issuing commands) many
zombies at once or individual bots within private windows. It is trivial
to start and stop DDoS attacks via hundreds or thousands of zombies
using this method. To remain invisible from the defenders, IRC botnet
operators keep the size of bot herds small by rolling out updates and
many minor variants of the code to create smaller botnets in dozens,
if not hundreds, on various servers. The effect on a victim network is
largely influenced by the architecture, topology, and protocol used in
the botnet. Two crucial factors that judge its ability to avoid a sin-
gle point of failure, such as the capacity to survive when authorities
shut down a hostile IRC server, or to bypass the defense mechanism
are the technology and size of the botnet used within such a model.
IRC-based attacks may involve many different software code variants
and protocols. Like agent-handler-based DDoS attacks, an IRC-based
DDoS attack can also involve protocols like TCP, ICMP, or UDP.

3.1.2.3 Web-Based Model

Web-based models are effective alternatives for botnet command and
control. Bots have multifaceted roles to play. They not only help gather
statistics on a Website, but can also be configured and controlled via
sophisticated PHP scripts and use encrypted communication. Com-
pared to IRC, Web-based control has several advantages, such as (i)
user-friendly interface that enables one to set up, configure and rent out
easily, (ii) improved commands and reporting utilities, (iii) low band-
width consumption due to distributed load, which enables the use of
larger botnets, (iv) the simplicity in traffic concealment and difficulty
in filtering due to the use of port 80, and (v) lower possibility of botnet
hijacking.

In addition to the above, Web-based C&C has the ability to control
botnets of any size. As a consequence, it becomes extremely difficult
for a defender to locate the sources of DDoS attacks as well as to filter
out such traffic over TCP port 80. Further, malicious actors contin-
uously attempt to improve botnet technology to make DDoS attacks
even more effective. Recently, malicious actors have introduced addi-
tional layers to the architecture to make the attack more complex. For
example, in a distributed reflector DDoS attack, the attack master-
mind exploits uncompromised devices that unwittingly play role in the
attack. Another similar example is the exploitation of DNS servers as
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reflectors. In this example, the DNS server sends several times more
traffic to the victim than was actually sent. So, network defenders must
understand and predict trends in the evolution of botnet technology in
advance to defend their networks. Defenders also need to analyze the
attack trends in depth including extrapolation to the future to build
appropriate strategies for defense. For example, with the recent use
of peer-to-peer C&C systems, the next-generation of botnets will most
likely be a hybridization of P2P.

3.1.3 Botnet Formation Life Cycle

Typically, the botnet formation life cycle can be presented using five
distinct phases. The phases are (i) initial infection, (ii) secondary in-
fection, (iii) connection, (iv) malicious activity, and (v) maintenance.
Figure 3.2 shows the life cycle graphically. In Phase 1, the initial in-
fection takes place through the botnet mastermind who sends malware
to infect target hosts, with bots as payloads. In Phase 2, the attacker
attempts, through the infected machine, to log into an IRC server or
another communication medium to establish the botnet. The owner
of the botnet is paid by spammers for access rights in Phase 3. In
Phase 4, the spammer instructs the botnet to send malicious code or
spam to a large number of machines in the victim network. Finally,
the maintenance and update tasks are executed during Phase 5.

3.1.4 Stationary Botnet Architecture

Based on the availability of machines to compromise and according
to a set of pre-specified objectives, a mastermind may plan to set up
a botnet with various architectures. With the growing development
of botnet technologies, most recent attackers prefer complex commu-
nication structures with multiple or hybrid network topologies, rather
than the early centralized structure for communication among bots and
servers. Figure 3.3 shows three distinct botnet architectures commonly
used by attackers.

3.1.4.1 Botnet Topology

Four types of botnet topologies are used by most attackers. (i) In the
star topology, a single centralized C&C resource component commu-
nicates with all bot agents. This central component is responsible for
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Figure 3.2: Botnet life cycle.

issuing new instructions directly to each bot agent. (ii) The multi-
server topology, a logical extension of the star topology, provides C&C
instructions to bot agents by using multiple servers. To manage the
botnet, communications take place among the multiple command sys-
tems. If any of the individual servers fails to participate or is detached
permanently from the network, the remaining servers handle the situ-
ation and control the botnet. (iii) In contrast, a hierarchical topology
attempts to compromise and then propagate the bot agents among
themselves. Such bot agents have the ability to proxy new C&C in-
structions to previously propagated progeny agents. However, updated
command instructions generally suffer latency issues, which sometimes
makes it difficult for an operator to use the botnet for real-time activ-
ities. (iv) In the random topology, no centralized C&C infrastructure
exists. Signed (as authoritative) commands are injected into the bot-
net via any bot agent to instruct the agent to automatically propagate
commands to all other agents.

3.1.4.2 Protocols Used

Three communication protocols are commonly used by attackers in a
botnet. (i) The IRC protocol is used to transmit messages to other
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bots in the botnet. This protocol facilitates both one-to-one and one-
to-many conversations. However, a limitation of this protocol is that
one can easily block IRC traffic using appropriate security devices. (ii)
The HTTP protocol is another widely used protocol, with the advan-
tage that it is able to bypass the security system during communication.
It is usually difficult to identify malicious HT'TP traffic from legitimate
traffic due to its similarity to legitimate traffic. (iii) Finally, the P2P
protocol has recently become more popular among the attackers be-
cause of its distributed support.

3.1.4.3 Botnet C&C Systems

To counter a DDoS attack, it is very important for a defender to identify
the C&C system used by an attacker. In general, a mastermind adopts
any of three different C&C server approaches, viz., central, P2P, and
hybrid, as shown in Figure 3.3. Some botnet researchers also add a
fourth type of approach, known as the random C&C server approach.
We analyze them in the context of DDoS attack generation.

(a) Central C&C server: This C&C server is mostly preferred because
of its simplicity and low latency. It also provides an anonymous,
real-time and efficient platform for the botmaster. A botmaster
can exploit this server for direct communication with the bots.
However, a C&C server suffers from several limitations. Two such
common limitations are (i) single point of failure, i.e., failure of the
server may lead to failure of the botnet, since no bot can receive
any messages and (ii) the messages received by the servers from a
host can be triggered and sent by defenders also. An IRC botnet
is typically configured based on a client-server model to send text
messages to the IRC server from a client or even from a server to
another server. It is able to function in a distributed environment
and its four major functions are (i) access list management, (ii) file
movement, (iii) sharing of clients, and (iv) sharing of channel in-
formation. An attacker typically follows four basic steps to execute
an IRC-based botnet attack. (i) Creation, where the attacker finds
highly configurable bots in the Internet and adds malicious code or
modifies existing code. (ii) Configuration, where a victim machine
is connected to a selected host automatically, as long as the bot
remains on that machine. To enable restricted access or to pro-
tect the channel for personal or for business purposes, the attacker
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Figure 3.3: C&C server approaches.

may also configure the system. (iii) Infection, where bots start
propagation directly or indirectly. In case of direct propagation,
the attacker uses virus programs to exploit vulnerabilities of the
services or operating systems. In contrast, the attacker uses other
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programs as proxies to spread bots in indirect propagation. Some-
times, the attacker also uses distributed malware through DCC (Di-
rect Client-to-Client) file exchange on IRC or P2P networks. Once
an adequate number of vulnerable machines are compromised, they
are employed to spread the infection process, saving time for the
attacker to add other insecure victims. Two common examples
of vulnerable systems are Windows 2000 and XP SP1, where the
attacker often can find unpatched or insecure (e.g., without fire-
wall) hosts. (iv) Control, where the attacker sends instructions to
a group of bots via an IRC channel to carry out malicious tasks.

P2P C&C server: This architecture has recently gained tremen-
dous popularity, because (i) it is reliable and robust in comparison
to the centralized architecture, (ii) it cannot be shut down easily,
(iii) its design is simple, and (iv) it has a high survivability rate.
Recently, most people have started to depend on this approach to
share their resources, programs, documents, movies, and games.
This approach maintains a seed list with each host, and when a
bot receives a message, it forwards it only to the private list of
seeds. Another advantage of the P2P architecture is that the bot-
master needs to connect to only one of the bots (peers) to send
instructions over the network and each host periodically connects
to its neighbor host to retrieve instructions from the botmaster.
However, an important limitation is that it gives no guarantee of
message delivery. The three most commonly found P2P architec-
tures are discussed below.

(i) Unstructured C&C server: An unstructured C&C server is
free of the restriction to send messages from one host to an-
other. If the system is not maintaining a seed list, the bot
collects information to identify another bot by scanning the
network. In this architecture, the botmaster initially sends
an encrypted message to any one of the hosts over the net-
work. It is a simple, yet secure structure, where the discovery
of a host does not affect other hosts. The two major advan-
tages of this architecture are (i) low design complexity and
(ii) high survivability. However, it has limitations such as (i)
low message latency and (ii) no guarantee of message delivery.

(i) Structured CEC server: A structured C&C server is relatively
more efficient than its unstructured counterpart. The effec-
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tive use of a distributed hash table (DHT) [152] makes its
routing effective. It creates a mapping between the content
and its corresponding locations. Few commonly used exam-
ples of DHTs are CAN [202], Pastry [207], Kademlia [161],
Tapestry [287], and Pchord [103].

(iii) Superpeer P2P overlay [23]: In a superpeer P2P network, all
peers are not considered equal. A small subset of peers are
temporary servers and carry out network functions, such as
search and control. Bots belonging to this category usually
have a valid IP address and are not under firewalls or DHCP.
Some commonly found example applications of this type are
Skype, Fasttrack, and Gnutella. The high visibility and more
vulnerability to attacks make this design less preferable to
most botnets.

(¢) Hybrid: A hybrid C&C system is designed by deriving the benefits
of both centralized and P2P models. It includes both servant bots
and client bots. A servant bot includes both static and routable IP
addresses that behave both as client as well as server. In contrast,
client bots include dynamic and non-routable IP addresses. This
category of C&C system can also be placed behind firewalls without
having connectivity to the Internet.

(d) Random CEC system: This simple and secure C&C system is de-
signed based on the principle that a single bot should know at most
one other bot. The sender bot or controller of this system initially
scans the Internet at random to identify another bot. Once found,
it sends an encrypted message. An attractive feature of this design
is that detection of just a single bot is not enough to compromise
the full botnet. However, it suffers from three major shortcom-
ings, viz., (i) high message latency, (ii) frequent detectability of
the random probing behavior, and (iii) no guarantee of message
delivery.

3.1.5 Some Stationary Botnets

Most sophisticated DDoS attacks in recent times have been launched
using botnet technology. During the past few years, several significant
developments in botnet technology have been introduced. We present
a few commonly used bots for launching various types of attacks.
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. Agobot: This multi-threaded bot, authored by a German pro-

grammer called Axel Ago Gembe, was developed using C++, an
assembly language. It is considered the pioneer IRC bot used for
attack generation. Agobot is known for its four important fea-
tures, viz., (i) it is able to initiate port scanning to identify other
hosts and infect them, (ii) it can launch DDoS attacks by execut-
ing programs and commands, (iii) it uses a password-protected
IRC client control interface, and (iv) it can update and remove
installed bots from a remote location.

. Forbot: This botnet is derived from Agobot and it operates in a

centralized mode during command communication.

. SDBot: SDBot is able to perform several backdoor and infor-

mation stealing activities. This bot exploits any vulnerabilities
found and network shares during propagation.

. RBot: This bot enables the creation of a large family of backdoors|

remote administration utility programs. After successful instal-
lation of these backdoors, it allows a remote user to access and
control it over the Internet. A remote user with malice can con-
trol the infected hosts, usually without the knowledge or consent
of the original user(s). The user can also use the backdoors re-
motely to perform a set of activities on the infected machine
such as stealing data, executing commands, or accessing other
machines on a local network.

. Phatbot: Phatbot is another descendent of Agobot. It uses the

P2P botnet architecture and communicates using IRC channels.
Phatbot allows a remote attacker to compromise the victim ma-
chine and add it to a P2P network. It sends a large volume of
spam emails or floods Websites with data using the network to
knock them offline.

. Conficker: This powerful and effective computer worm can infect

millions of users instantly. It exploits vulnerabilities and flaws in
Windows software and attempts to mount dictionary attacks to
steal administrator passwords to propagate during the formation
of a botnet. It is extremely difficult to defend against Conficker’s
approach as a combination of several advanced malware tech-
niques.
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. Spybot: Spybot is a modified version of SDBot. It allows one to

connect and communicate with a designated IRC server and to
receive commands through private channels from the botmaster.

. MegaD: MegaD is a mass spamming botnet, which was iden-

tified in 2007. MegaD allows one to interact with four types of
C&C servers, viz., master servers (MS), SMTP Servers (SS), drop
servers (DS), and template servers (TS).

. Srizbi: Srizbi is a collection of computers (zombies) infected

through the Srizbi Trojan Horse. A botnet herder controls this
botnet by sending commands to these computers. The effective-
ness of the Srizbi botnet in terms of operations depends on a
number of servers included in the operation through which indi-
vidual bots are controlled. Srizbi includes a collection of redun-
dant copies of servers to protect the botnet from being crippled
in case of system failure.

Torpig: Torpig allows one to steal sensitive information such as
credit card data and bank account information from its victims.
It is a dangerous Trojan horse to infest the Internet. It applies
phishing attacks to extract additional, sensitive information from
the victim machines.

Grum: Grum is a spam email sender botnet. It includes two
types of control servers in its design. One type of control server
push configuration updates to the infected computers and the
other type instructs the botnet concerning the content of spam
emails to send.

Cutwail: Cutwalil is a simple yet effective spam email sender bot-
net that uses a Trojan component called pushdo to install the
bot on the victim machine. The bots are able to connect directly
to the C&C server, and to receive instructions about emails to
be sent. After successful delivery, the bots generate statistics
on email delivery and error messages (if any) and report to the
spamier.

Rustock: This bot is a rootkit-enabled backdoor Trojan that as-
sists in the distribution of spam emails. Rustock can transmit
more than 25,000 spam messages per hour from an infected ma-
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chine. Rustock is able to generate 13.82 billion daily junk mails
by including 470,000 to 690,000 computers.

EqggDrop: EggDrop is the first botnet that used IRC as a C&C
server.

GTbot: GTbot launches flooding attacks with huge volumes of
text messages using a legitimate IRC channel as a C&C server.
It initially accesses an IRC channel with a large volume of traffic
and then joins the target channels, and attempts to flood them
with endless repetitive data. This bot causes normal users to
become disconnected or their IRC clients to freeze, because it
cannot process the rapidly scrolling flood of garbage data fast
enough. GTbot can flood up to 150 kbps of data through the
IRC server and often incurs huge costs to the owner, who usually
gets free or cheap service, with high penalties for extra bandwidth
consumption.

Sinat: This is another backdoor Trojan that allows users with ma-
licious intentions to access a machine and connect to a distributed
botnet. Sinit uses P2P technology during communication.

Bagle: Bagle, which was first introduced in 2004, can be used in
proxy-to-relay email spam. Bagle is more effective than Rustock.
The number of computers included in Bagle is estimated to be
between 180,000 and 280,000, which can pump out 8.31 billion
spam emails in a day.

SpamThru: SpamThru shares information with other peers, such
as source IP and destination addresses, port addresses, and soft-
ware versions of the control server and template servers using
a custom P2P protocol. In this bot setup, all peers are aware
of each other and the botnet is usually maintained by a central
server. The control server is shut down, and the spammer can
update the other peers with the location of a new control server,
as long as the spammer controls at least one peer.

Kraken: Kraken, another spam Trojan, is used to spread spam
from an infected machine. It communicates with C&C using en-
crypted messages and can communicate with TCP and UDP pro-
tocols.
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Bobaz: Bobax is known to be a wide spanning botnet with a
large footprint. It uses plaintext HTTP for communication with
the C&C server. This worm exploits the DCOM and LSASS
vulnerabilities on Windows systems.

Asprox: This botnet emerged in 2007. It allows one to launch
SQL injection attacks on Websites and to send phishing scams.

Rzxbot: Rxbot, a Windows-based worm, is designed using an IRC
C&C server. It can be used for malicious activities such as spam
mail sending, identity stealing, fraud click, and to generate DDoS
attacks.

Nugache: Nugache is designed by customizing the Trojan worm.
It allows P2P communication without any C&C server, which
makes it not easily detectable. Nugache provides a new level of
resiliency for the botnet.

Waledac: This is a sophisticated worm that can be downloaded
and then used to execute binaries. It can act as a network proxy,
send spam, mine infected computers for confidential data such
as email addresses and passwords, and launch DoS attacks. It
enables propagation using social engineering and certain client-
side vulnerabilities.

Donbot: This is a specially designed botnet to transmit pharma-
ceutical and stock-based email spam. Donbot allows one to use
approximately 125,000 individual computers to send up to 800
million spam messages in a day.

Festi: Festi can be used as an email spammer as well as for
launching DoS attacks. It is designed based on the client server
C&C mechanism, where a set of servers is used to manage the
botnet.

TDL-4: TDL-4 is an effective and new-generation botnet. It
allows one to infect up to several million machines. In 2011,
TDL-4 infected more than 4.5 million machines within the first
three months. It infects the master boot record of the target
machine, making it extremely difficult to identify.
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Table 3.1: Comparison of stationary botnets.

Botnet Year | No of | Architecture| Attack | Protocol| Platform | Reference
Nodes Type Used
GTbot 1986 Centralized | DDoS IRC Windows| [156]
EggDrop 1993 Centralized IRC Windows| [3]
Linux
Agobot 2002 Centralized | DDoS IRC, Windows| [247]
HTTP
SDBot Centralized | DoS IRC Windows| [166]
RBot 2003 Centralized | DoS IRC Windows] [203]
Linux
Sinit 2003 P2P IRC/ | Windows| [284]
HTTP | Linux
Bagle 2004 | 230,000| Centralized,| Spam IRC Windows| [274]
P2P sending
Phatbot | 2004 P2pP HTTP/ | Windows| [274]
IRC
SpamThru | 2006 | 12,000 | P2P Sending | IRC Windows| [132]
spam
Nugache 2006 | 160,000 | P2P IRC Windows| [232]
Rxbot 2006 Centralized IRC Windows| [19]
Spybot Centralized | DoS IRC [150]
Rustock 2006 | 150,000 | Centralized | Sending | HTTP | Windows| [125]
spam,
DDoS
MegaD 2007 | 500,000| P2P DDoS Windows| [102]
Srizbi 2007 | 400,000 | Centralize | DoS, HTTP | Windows| [132]
DDoS Linux
Storm 2007 | 160,000| P2P DDoS IRC Windows| [232]
Conficker | 2008 | 10.5 P2p Buffer | HTTP | Windows| [165]
million over-
flow
Torpig 2008 | 180,000| Centralized | Phishing} IRC Windows| [231]
man-
in-the-
middle
Grum 2008 Centralized | Sending | IRC/ Windows| [125]
spam HTTP
Asprox 2008 | 15,000 | Centralized | SQLin- | HTTP | Windows| [30]
jection
Bobax 2008 | 185,000| Centralized HTTP/ | Windows| [274]
UDP
Kraken 2008 | 400,000| Centralized HTTP | Windows| [98]
'Waledac 2009 | 90,000 | P2P Sending | IRC Windows| [248]
spam Linux
Cutwail 2009 P2p DDoS IRC Windows| [65]
Donbot 2009 | 125,000 Centralized | DDoS TCP Windows| [230]
Festi 2010 | 25,000 | Centralized | DoS, HTTP | Windows| [114]
email
spam
TDL-4 2011 | 45 P2P DDoS, Windows | [91]
million DoS
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3.1.6 DDoS Attacks Using Mobile Botnets

A mobile botnet is a collection of compromised smartphones, which
are remotely controlled by a botmaster via C&C channels. In recent
times, many intruders have been attracted to exploit these mobile de-
vices as a means for launching DDoS attacks because of their ability to
communicate with Internet services through various techniques such as
Evolution Data Optimized or Enhanced Voice Data Only (EVDO), En-
hanced Data Rates for GSM Evolution (EDGE), High-Speed Downlink
Packet Access (HSDPA), Universal Mobile Telecommunication Sys-
tem (UMTS), and General Packet Radio Service (GPRS). Generally,
a DDoS attacker uses a mobile platform during the initial stage of the
launching because it has limited battery power, limited network traffic,
and no fixed IP address [221]. An example mobile botnet architecture
is shown in Figure 3.4.

Smartphones |

e
" A
A

A
| i
_i].— Internet;

Figure 3.4: Mobile botnet architecture.

3.1.6.1 Mobile Botnet Characteristics

From the constraints as presented above, it can be understood that
mobile environments are generally less secure. But the characteristics
of mobile botnets make it very difficult to detect them. It is also
difficult to detect malware that attack mobile devices. Some inherent
challenges posed by mobile botnets are discussed below.

1. Dewveloped with long-term intentions: A DDoS attacker develops
a mobile botnet with long-term intentions and the botmaster tries
to maintain the botnet safe and uncovered by applying various
strategies.
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. Distributed security management: Generally, a mobile botnet

lacks central security management. It can track and monitor
security threats and update security policies directly on mobile
devices.

. Social engineering: In recent times, most mobile botnet develop-

ers use social engineering approaches to propagate in the network.

. Flexibility: An attack mastermind regularly updates bots and

botnets, and changes the codes periodically. The attacker also
changes botnet control strategies frequently and develops im-
proved methods to recover and restore the detected bots, within
a short time.

. Works in silent mode: A mobile botnet developer always avoids

unnecessary or suspicious use of CPU, memory, or other computer
resources, which may help identify its presence.

. Resource limitations: Mobile device resources such as CPU, mem-

ory, and battery life are limited. Therefore, existing botnet de-
tection solutions are often inadequate for mobile botnets.

. Use standard protocols: Most attackers establish their communi-

cation infrastructure using standard protocols. In recent botnets,
the standard HTTP protocol is used to impersonate normal Web
traffic and to bypass current network security systems.

. Device-specific characteristics: Some characteristics are specific

to mobile devices such as mobility, strict personalization and var-
ious types of connectivity, technology convergence, and a variety
of capabilities.

. Diversity in infection: Typically, a mobile botnet developer uses

different communication media (e.g., MMS, SMS, and Bluetooth)
along with the Internet to spread with diversity. An important
advantage of this diversity is that it makes it difficult to detect
infection processes using current security systems.

3.1.6.2 C&C Mechanisms in Mobile Botnet

The botmaster in a mobile botnet is mainly responsible for controlling
channels for compromised nodes. So, if one can block the channel for
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the botmaster, the botnet will not be able to function. In a mobile
botnet, typically three types of C&C mechanisms are used.

1. GSM-based (SMS-based) CE&C: A botmaster uses a phone to con-
trol the botnet in this C&C mechanism.

2. Internet-based (IP-based) C&C': This C&C is similar to the P2P-
based mechanism used in traditional network botnets.

3. Local wireless C6(C': The botmaster in this mechanism injects a
command and allows it to travel through the net.

The C&C channel plays a major role in a mobile botnet. It is respon-
sible for circulating commands from the botmaster to the mobile bot.
So, a mobile botnet-based attacker needs to be careful with this chan-
nel in designing the botnet. In a mobile attack process, the attacker
may use four different channels during communication.

1. SMS C&C channel: SMS communication is a convenient way of
sending or receiving textual information between two communi-
cating parties. This C&C has four important features.

(a) The server of the service provider stores messages when the
recipient’s mobile device is switched off.

(b) Communication propagates through SMS or MMS functions.

(¢) It can support multiple sending and receiving channel op-
tions.

(d) It can hide malicious content.

To prevent detection of commands sent as SMS messages by a
remote user, each mobile bot intercepts all incoming SMS mes-
sages before they reach the inbox. SMS messages containing the
specific passcode are kept aside whereas the other SMS messages
are allowed to pass through the inbox.

2. Bluetooth C&C channel: This mobile phone-based botnet uses
Bluetooth to propagate control messages. It is almost similar to
an Internet-based P2P botnet.

3. HTTP C&C channel: In addition to Bluetooth and SMS channels
for retrieval of information from the server, HT'TP is commonly
used to transmit information for the C&C channel. This channel
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Table 3.2: Comparison of mobile botnets.

Botnet | Year | Platform | Architecture Attack Type Protocol Used | Ref.

Zeus | 2007 | Windows | Centralized Mobile banking HTTP [74]
Android

Tiger |2010| Android P2P Private data theft HTTP [74]
Droid |2011| Android P2pP Download malicious HTTP [74]
Dream applications

Andbot | 2011 | Android | Centralized | Theft of private data HTTP [268]

Geinimi | 2011 | Android P2P Illegal transactions | IRC/HTTP | [194]
MDK |2012| Android P2P Theft of private data | HTTP/IRC | [79]

is used to communicate information between the mobile bot and
control server.

4. Hybrid C&C channel: This channel overcomes almost all the lim-
itations of a single point of failure. It includes three major com-
ponents: (i) C&C channels, (ii) a propagation vector, and (iii) a
mobile botnet topology. Typically, a hybrid design makes use of
multiple C&C channels to satisfy various objectives. It attempts
to ensure that there is no single point of failure in the topology,
the cost of command dissemination is low, network activities are
limited, and battery consumption per bot is low.

With rapid developments in cellular networks and Internet access
capabilities of smartphones and tablets using Wi-Fi, GPRS, 3G, and
4G, the use of mobile botnets has become the trend. Many secu-
rity experts contend that large-scale attacks can and will be launched
from mobile networks. Till now, most DDoS attacks have been gen-
erated from a network of malicious computers using an IRC-based ar-
chitecture or an agent-handler architecture. But in recent times, net-
works of mobile devices or mobile botnets have also started to become
significantly involved in launching DDoS attacks. For example, An-
droid.DDoS.1.origin is an Android Trojan that can be used to mount
DDoS attacks from a mobile botnet. This Trojan is able to create
an application icon that looks almost like a normal application to a
legitimate user. It can connect to a remote server and transmit the
phone number of the compromised device to illegitimate parties and
then wait for further SMS commands. The Trojan can launch a DDoS
attack against a specified server by sending SMS messages.
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Table 3.3: Comparison between mobile botnet and stationary botnet.

Features

Mobile Botnet

Stationary Botnet

Use of IP address
Battery power
Bandwidth
Collection of
Central security
management

C & C protocol

Private
Limited
Limited
Mobile devices
No

IRC, HTTP, P2P

Public
Unlimited
High bandwidth
Stationary devices
Usually yes

SMS, MMS, Bluetooth

3.1.7 Some Mobile Botnets

The C&C center of a mobile botnet governs a network of compromised
mobile devices such as smartphones and tablets. A general compari-
son between mobile botnets and their stationary predecessors is given
in Table 3.3. We can clearly see that there is a clear distinction be-
tween these two types of botnets in terms of power backup, available
bandwidth, use of IP addresses, and the existence of centralized man-
agement. Some example mobile botnets are mentioned below.

1. Andbot: Andbot adopts a centralized C&C topology and uses

an effective C&C system called URL Flux [268]. It is attrac-
tive because of three important features: low cost, stealth, and
resilience.

. Waledac: This Web-based mobile botnet uses HI'TP for commu-
nication through channels. It is very effective as a spam mailer
and in this botnet, each infected mobile device communicates
with others to exchange lists of active proxy servers. Waledac
communicates among infected devices using MMS messages on
the mobile network.

. Ikee.B: This simple botnet operates on jailbroken iPhones with
almost the same capabilities as computer-based botnets. It has
several attractive features such as the ability to scan the IP range
of iPhone networks, look for vulnerable iPhones on a global scale,
and self-propagation.

. Geinimi: This is another effective Trojan malware that can steal
personal data on a user’s phone and transmit it to remote servers
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using an Android botnet. After injection and installation on a
user’s phone, the malware can receive commands from a remote
server allowing the owner of the server to control the phone.

. MDK: MDK is considered as the largest mobile botnet in China.

This botnet can very quickly infect a large number of devices. It
is a new variant of Android. Backscript, which uses the Advanced
Encryption Standard (AES) algorithm to encrypt data.

. Zeus: This botnet mainly uses social engineering approaches to

infect a large variety of mobile operating systems such as Win-
dows Mobile, Android, Symbian, and BlackBerry. Zeus or Zitmo
infects a mobile phone by sending an SMS message that con-
tains a fake URL to dupe users to download a security certificate
which is, in fact, the Zitmo bot. Zeus can also intercept messages
received from banks to customers and authenticate illegal trans-
actions by stealing mobile Transaction Authentication Numbers

(TAC).

. DrotdDream: DroidDream is a cleverly designed, silent botnet

that does not make any unusual or suspicious use of CPU, mem-
ory, or other resources, which may uncover its activities. This
botnet is typically activated at night (11 pm to 8 am) when mobile
users are usually asleep. It attempts to access the root privileges
on infected mobiles and tries to steal confidential information by
installing a second application.

. Tiger: Tiger is able to capture not only private SMS data but also

can record voice call conversations and even background sounds.
It is a fully SMS-controlled bot that can detect and uncover C&C
messages.

3.2 Chapter Summary and Recommendations

In this chapter we have noted that the requirements for designing an
effective DDoS attack launching tool using a stationary botnet are dif-
ferent from those for a mobile botnet. A mobile botnet-based attack
launching tool places additional demands on the planners and schemers
due to limited bandwidth, limited battery backup, lack of central secu-
rity management, lack of firewall protection as compared to a station-
ary botnet-based tool. The attacker and the defender need to be aware
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Figure 3.5: Major factors of botnet design.

of these issues while developing tools that attack or defend against a
DDoS attack.

During design of a botnet architecture, a DDoS attacker generally
considers the factors shown in Figure 3.5. The most relevant issues for
stationary botnet design are connected with dotted lines, whereas the
issues for mobile botnet design are connected with solid lines.

An important observation is that P2P botnet communication is
preferable over centralized networks. A P2P communication is gener-
ally too complex to be disrupted by the defender. Further, the failure
of a single bot does not have much impact on the entire network. In
this design, as commands pass through intermediate peers in a P2P
network, it is more difficult for analysts to identify bot controllers and
to determine the size of a network. Furthermore, just increasing the
size of a botnet may not always be effective if the goal is to inflict
maximal damage. Increased size increases the visibility of the botnet.
A botnet with a relatively small size, say between 15000 and 20000
bots can be quite effective in damaging a victim’s Website or server if
their combined bandwidth can be utilized properly with appropriately
skillful coding. In general, the low-rate attacks (50-70% of full attack)
with random variation in the pulse, amplitude, and interval are more
likely to bypass the defense system.

With rapid developments in botnet technology and increasing use
of smart phones, mobile botnets have emerged as an effective platform
for attackers to launch cellular network attacks such as SMS spam,
DDoS attack, and click fraud. In contrast to stationary botnets, a
mobile botnet’s design is influenced by factors such as device-specific
resource constraints (e.g., battery life) and flexibility. The coder for
mobile botnets must pay attention to these factors. Further, smart
phones are usually more vulnerable to an attack because getting access
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to a mobile phone through an SMS command and control system or via
Bluetooth [285] is easy. Furthermore, the P2P topology for mobile bot-
nets allows botmasters and bots to publish and search for commands in
a P2P fashion, making detection and disruption much harder. Attack
planners and designers also prefer the use of HI'TP in mobile botnet
communication, because it helps hide the contents of the communica-
tion.



Chapter 4

DDoS Detection

Today, the world is being computerized and Internetized at an aston-
ishing speed. To support this phenomenal growth, service providers
are trying their best to provide the utmost quality of service. In this
competitive environment, an aspect that stands out is security, which
is indeed an extremely serious topic of concern. As we have discussed
in the previous chapters, an intrusion or attack may be fast or slow.
We refer to a DDoS attack as fast when it generates a large number of
packets or extremely high-volume traffic within a very short time, say
a fraction of a minute, to disrupt service. An attack is referred to as a
slow attack, if it takes minutes or hours to complete the process.

To counter the rapid emergence of external and internal threats to net-
works and resources, researchers have looked at a variety of approaches
such as intrusion detection system (IDS), intrusion prevention system
(IPS), intrusion response system (IRS), and intrusion tolerance sys-
tem (ITS). Among these, IDS and IPS are important components of
a layered security infrastructure. To execute an attack on a network
or a system, as discussed in Chapter 2, an attacker generally follows
four main steps [25]: (a) the attacker scans the whole network to find
and recruit vulnerable host(s); (b) the vulnerable hosts are then com-
promised for exploitation by the attacker using malware or backdoor
programs; (c¢) the attacker infects the compromised hosts to create a
base for effective launching of an attack, and (d) finally, the attack is
launched using the compromised hosts.

97
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4.1 Modules of a DDoS Defense Solution

A generic DDoS defense solution is comprised of three modules, viz.,
monitoring, detection, and reaction. In this section, we discuss the
functions of these three modules of DDoS defense.

4.1.1 Monitoring

This module allows one to monitor services being used on a network and
to match against activities that we should see. To perform such mon-
itoring activities, it collects necessary information on the state of the
network at various points within the network. This module also helps
identify unauthorized services within a network. For identification of
such unauthorized services, one should look not only at external traf-
fic but also at internal traffic. Otherwise, one will miss internal hosts
involved in unauthorized activities.

MANAGING
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Figure 4.1: Modules of a DDoS defense system.

4.1.2 Detection

This module aims to identify any misuse or anomalous behavior in
a network and generate reports to the administration. The module
may also try to stop an intrusion attempt, but this is neither required
nor expected. Intrusion detection is primarily focused on identifying
possible intrusive patterns, incidents, or activities, and reporting them
in a timely and meaningful manner. Typically, a detection module
analyzes relevant network traffic information to identify possible se-
curity breaches, which include both misuses and anomalies, either by
using a supervised approach (using prior knowledge of intrusions) or
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by using an unsupervised approach (without using prior knowledge of
intrusions).

4.1.3 Reaction

A reaction module of a DDoS defense system typically reacts with two
basic components, viz., a passive and an active component. The pas-
sive component, composed of a set of procedures, is involved in the
inspection of the system’s configuration files to detect inadvisable set-
tings, inspection of the password files to detect inadvisable passwords,
and inspection of other system areas to detect policy violations. In
contrast, the active component, which is composed of another set of
procedures, reacts to known methods of attack and generates system
responses. It can respond to suspicious events in several ways, which
include displaying an alert, logging the event, or even paging an ad-
ministrator.

4.2 Types of DDoS Defense Solutions

In this section we discuss a categorization of DDoS defense based on
the approach used, the nature of control applied, the infrastructure
used, the deployment strategy used, and the type of technique applied.

4.2.1 Based on Approach Used

An approach to DDoS defense is developed with one or more of the four
major objectives viz., (a) to detect DDoS attacks at an early stage,
(b) to prevent DDoS attacks from occurring at all if possible, (c) to
react with appropriate action(s) on detection of DDoS attacks, and
(d) to improve the tolerance of the victim network. We discuss DDoS
detection in detail in this chapter. DDoS prevention, reaction, and
tolerance are discussed in detail in the subsequent chapters (i.e., in
Chapters 5 & 6, respectively).

An intrusion detection system (IDS) is an application that monitors
a network or system for malicious activities or policy violations. Some
systems may additionally try to stop an intrusion attempt, but this is
typically not expected from an IDS. If it detects any threat, anomalous
patterns, or policy violations, it alerts the system or network admin-
istrator. So, the objective of an IDS is to detect and inform active
defenders about intrusions. An IDS uses techniques that may detect
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DC: Detection Component
MC: Monitoring Component
MS: Managing System

RC Reaction Component

Figure 4.2: Intrusion detection system: a generic view.

suspicious activities either at the network or at the host levels. Figure
4.2 shows a generic view of an IDS. The four basic components of an
IDS are managing, monitoring, detection, and alarm generation.

e The managing component oversees traffic flow in the network.
It provides traffic information to the monitoring component for
analysis.

e The monitoring component monitors traffic and analyzes the be-
havior of the network.

e The detection component detects any suspicious behavior with
respect to the normal working nature of the network. If any
abnormal behavior is detected, it communicates with the alarm-
generation component.

e [f any abnormality in the traffic is detected, the alarm-generation
component raises an alarm to inform the administrator, so that
the intrusion can be handled appropriately.

4.2.2 Based on Nature of Control

In this section, we discuss the classification of defense systems based
on the control structure used to counter DDoS attacks. One can use
three basic ways to control detection and prevention of DDoS attacks,
viz., centralized, hierarchical, and distributed.

4.2.2.1 Centralized DDoS Defense

In a centralized defense system, each detection engine generates alerts
locally and sends them to a central server. The server attempts to
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Figure 4.4: Structure of hierarchical DDoS defense.

correlate the alerts and analyze them. Using this approach, an accurate
detection decision can be made based on all available alert information.
However, a major limitation of this approach is that the central server
is crucially vulnerable; any failure of this server leads to the collapse of
the whole process of correlation. In addition, the central server should
be prepared to handle a high volume of data received from the local
detection elements within a short interval of time.
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4.2.2.2 Hierarchical DDoS Defense

In this structure, the whole system is divided into several small sub-
systems based on features such as geography, administrative control,
and software platforms. The detection and prevention systems at the
lowest level work as detection elements while such a system at a higher
level is able to serve as an intrusion detector and a correlation handler.
A system at a higher level can correlate alerts from both its own level
and from lower levels. The correlated alerts are then forwarded to a
higher level for further analysis. This approach is more scalable than
the centralized approach, but still suffers from the vulnerability of the
central unit. In addition, the higher-level nodes have a higher-level
abstraction of the input, which may limit their detection coverage.

RU: Reaction Unit DE DE: Detection Engine

RU
DE l DE
RU RU
DE NETWORK ) DE
RU RU
DE [ DE
RU DE RU
RU

Figure 4.5: Structure of a distributed DDoS defense.

4.2.2.3 Distributed DDoS Defense

A distributed DDoS defense system avoids the use of a centralized unit
to process information. It is comprised of fully autonomous systems
with distributed management control. All participating detection and
prevention systems have their own components communicating with
each other. An important advantage of a fully distributed DDoS de-
fense system [146] is that although the network entities do not have
complete information about the network topology, it is possible to have
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a scalable design since there is no central entity responsible for doing
all the correlation work. Further, local alarm correlation is simpler
in this structure. However, a fully distributed DDoS defense system
is also not free from limitations [289]: (a) All alert information may
not be available during decision making, so accuracy may suffer. (b)
Inadequate alert information (usually has a single feature like IP ad-
dress) may be a bottleneck in appropriate decision making, especially
in detecting large-scale distributed attacks.

Looking at the different approaches used to control DDoS defense, we
observe the following.

e Fach control structure has its own advantages and limitations.

e Appropriateness of a control structure depends on the network
under consideration, its structure, size, and how the network is
constructed.

e In centralized defense, the central server plays a major role in the
decision-making process. The server covers the entire network
with no redundancy.

e In hierarchical or distributed DDoS defense, each level can detect
attacks and can react accordingly in its own neighborhood. Each
level or each unit usually handles a low volume of data.

4.2.3 Based on Defense Infrastructure

In this section, we discuss defense systems based on the infrastructure
used. There are two types, viz., host-based and network-based.

4.2.3.1 Host-Based DDoS Defense

In a host-based DDoS defense system, data is analyzed by individual
computers, which serve as hosts. Typically, it uses an agent-based
network architecture, where a software agent resides on each of the
hosts in the system. The detection and prevention engine processes
data that accumulate automatically, such as event and kernel logs.
Such a DDoS defense system also monitors activities such as which
program accesses what resources. Accordingly, it also flags anomalous
usage. A host-based DDoS defense system also monitors the state of the
system and makes sure that everything is in order, which is necessary
for effective functioning of anomaly filters.
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Table 4.1: Infrastructure-based defense: a comparison.

Infrastruc- Strengths Limitations

ture Used

Host based -Can detect and verify insider | -Vulnerable to both direct at-
attacks as the attackers reside | tacks and attacks against host
on host. operating system.
-Can decrypt encrypted pack- | -Vulnerable to DoS attacks.
ets in incoming traffic.
- Doesn’t require any addi- | -Performance overhead may in-
tional hardware. crease.

Network -Can work in large networks. -When size of network is large,

based the system may fail to recog-

-Usually passive in nature and
can be easily deployed without

nize attacks.
-Cannot analyze packets which
are encrypted.

disruption to normal network

operation.
-Less susceptible to direct at- | -Often found unreliable in
tack. terms of detection accuracy.

4.2.3.2 Network-Based DDoS Defense

A network-based DDoS defense system sniffs packets or extracts net-
work flow information either from the router or from stored network
traces and analyzes them for identification of misuses or anomalous
behaviors. A network-based IDS (NIDS) can be supervised, unsuper-
vised, or hybrid. A supervised NIDS uses prior knowledge in the form
of signatures, profiles, or references when identifying misuses. In con-
trast, an unsupervised NIDS attempts to identify anomalous patterns
without depending on any form of prior knowledge. Such a NIDS is
able to detect unknown or novel attacks. If any suspicious or anoma-
lous behavior is detected, it triggers an alarm and passes the message
to the central computer system or an administrator, and generates an
automatic response.

4.2.4 Based on Defense Location

A DDoS defense system can also be characterized based on its location
of deployment. Based on three possible locations of deployment, such
systems can be categorized as victim-end, intermediate, and source-end
system. We discuss each of these categories and analyze their pros and
cons.
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4.2.4.1 Victim-End DDoS Defense

A victim-end DDoS defense system is generally deployed in the routers
of the victim network. The detection software stores information about
known intrusion signatures or profiles of normal behavior. This infor-
mation is updated by the processing elements as new knowledge be-
comes available. The stored intrusion signatures and procedures for
other critical events such as false alarms are updated. The process-
ing element is responsible for frequent storage of configuration data,
which are the results generated at intermediate stages. Typically, a
victim-end detection approach is able to provide better detection accu-
racy than other approaches, because it gets more scopes to analyze the
traffic at the cost of higher resource consumption. An important disad-
vantage is that these approaches detect the attack only after it reaches
the victim and detecting an attack when legitimate clients have already
been affected may be pyrrhic victory.

Most DDoS defense mechanisms are deployed at the victim end
for effective detection and defense of a system. Victim-end detection
systems detect attacks either in a reactive or proactive manner. Unlike
the other two DDoS defense approaches, a victim-end defense approach
cannot provide complete protection from DDoS attacks when the rate of
attack traffic is very high. The DDoS attack may have already damaged
the victim network. So, in many high- rate attacks, victim-end-based
DDoS defense is not adequate. Besides, a victim-end defense system
can drop all incoming traffic when the traffic rate is very high and as
a consequence, legitimate traffic still cannot travel across the network
through congested links in other parts of the network and make it to
the victim. A victim-end detection architecture is shown in Figure ?77.

4.2.4.2 Source-End DDoS Defense

A source-end DDoS defense system operates in a fashion similar to
the victim-end defense. It can be considered the best approach from a
deployment perspective, if we want to stop intrusion at an early stage.
It is able to prevent congestion not only on the victim side, but also in
the whole intermediate network. Source-end defense can stop the attack
traffic before reaching the target network and it also reduces the chance
of collision by filtering attack traffic before it mingles with other attack
traffic flow in the network. Further, with this DDoS defense, it is not
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Figure 4.6: Source-end DDoS detection: a generic architecture.

only easy to perform traceback but it can also achieve high detection
accuracy due to low network traffic flow aggregation at the source end.
However, a major difficulty with this defense is that during an attack,
the sources of attack are typically distributed widely and the behavior
of a single source is almost like in normal traffic. In addition, from
an implementation perspective, deployment of such a defense system
at the source end is also extremely difficult. A source-end detection
architecture is shown in Figure 4.6.

So, the main advantage of source-end DDoS attack detection is that
it can protect a network near the point of attack generation, reducing
the chance of severe damage to the victim network. However, it may
cause collateral damage [115] to legitimate traffic. Mirkovic et al. [171]
propose a source-end DDoS defense system called D-WARD to defend
DDoS attacks at the source end. According to the authors, the source
end is the only effective deployment location to achieve better response
selectiveness in case of high-volume, high-spoofing flooding attacks, and
as a result it should be a key building block for a distributed defense
System.

4.2.4.3 Intermediate Network DDoS Defense

An intermediate network defense is designed to overcome the limita-
tions of source-end and victim-end DDoS defense by balancing the
problems of attack detection accuracy and bandwidth consumption.
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A major difficulty with such a defense system is its deployability. You
must employ the detection system in all routers on the Internet to
achieve maximum detection accuracy, because the unavailability of this
scheme on only a few routers may cause failure of the detection and
traceback processes. Thus, full practical implementation of this scheme
is practically impossible as it requires re-configuration of all the routers
on the Internet.

Network-based defense mechanisms are deployed mainly on the
routers of the network system. The main advantage of a network-based
defense mechanism is that proper actions can be taken in the routers
against malicious traffic before such malicious traffic is forwarded to
the victim machine. Suspicious network traffic filtering in the edge or
core routers of a victim machine is another advantage of a network-
based defense. Some well-known network-based defense mechanisms
are (i) router-based packet filtering [189], (ii) detecting and filtering
malicious routers [173], and (iii) pushback [115]. The main drawback
of the network-based defense mechanism is the overhead incurred due
to large network size. Such detection mechanisms are not very effective
and efficient for real-time defense against DDoS attacks. An interme-
diate end detection architecture is shown in Figure 4.7.

So, from the pros and cons analysis of these three DDoS defense
approaches based on location, one can make the following observations.

e The resource requirements at the three locations are not the same.

e Fach location has its advantages and disadvantages, which we list
clearly in Table 4.2.

e Legitimate clients suffer most in the victim-end approach com-
pared to the source-end and intermediate network approaches.

e Balancing the amount of resources needed to handle an attack and
the volume of traffic for legitimate clients is tougher in source-end
and intermediate locations.

4.2.5 Based on Techniques Used

During the past two decades, a large number of DDoS detection and
prevention techniques have been developed. These techniques have
been mostly developed using various statistical, data mining, and ma-
chine learning, soft computing and knowledge-based techniques. We
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Figure 4.7: Intermediate DDoS detection: a generic architecture.

introduce and discuss some popular DDoS detection, prevention, reac-
tion, and tolerance techniques next.

4.3 DDoS Detection Techniques

Detection of distributed denial-of-service attacks is broadly studied in
two categories: misuse detection and anomaly-based detection. Misuse
detection searches for definite patterns (i.e., signatures, rules, or ac-
tivities) in the captured network traffic to identify previously known
DDoS intrusion types. Such detection techniques usually exhibit high
detection rates with low numbers of false alarms. However, a mis-
use detection technique fails to detect unknown DDoS intrusion types.
Anomaly-based DDoS detection techniques aim to identify novel intru-
sion types in addition to detection of known types. Such techniques
analyze network traffic behavior and attempt to detect unusual pat-
terns at an early stage. We discuss each of these two major categories
of detection techniques below.
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Table 4.2: DDoS defense based on locations: a general comparison.

Defense
Location

Advantages

Disadvantages

Victim-end

-Shows good performance us-
ing stored known intrusion pat-
terns or signatures.

-Takes advantage of the avail-
ability of resources during de-
tection.

- If detection is not fast, legiti-
mate clients may be affected.

-Often unreliable in terms of
detection accuracy in the pres-
ence of new attacks.

lateral damage to the whole
network.
- Legitimate clients suffer less.

Intermediate | - Legitimate clients suffer less. - Defense deployability is the
major critical issue.
- Can balance between band- - All routers in the network
width consumed by an attack must employ the detection
and resources used for detec- scheme.
tion.
- Failure at a few routers can
cause damage to the whole de-
tection process.
Source-end - Can avoid congestion and col- - Deployment of such a de-

fense solution is usually cost-
effective.

- Often fails to distinguish at-
tack traffic from normal traffic.

Table 4.3: Misuse detection techniques: a comparison.

Signature-Based

Rule-Based

State Transition

-It matches the pattern of
attack against stored pat-
terns.

-Database is quickly up-
dated on discovery of a new
attack.

-Rules are defined by an-
alyzing attacks.

-Uses the rules as condi-
tions to detect an attack.

-Needs to identify the
states of a system and
transitions among them.
-Single or multiple changes
can  cause transitions
among states of the
monitored system.

4.3.1 Misuse Detection

In misuse detection, the defenders initially define the abnormal system
behavior and then they define other behavior as normal. In contrast, an
anomaly detection approach uses the reverse approach, defining normal
system behavior first and defining any other behavior as abnormal. In
other words, anything we don’t know as bad is normal in misuse detec-
tion. Using attack signatures in IDSs is an example of this approach.
The performance of an IDS in terms of detection accuracy depends
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entirely on how adequate the knowledge of known attacks is and how
well the detection engine can use it during detection. A defender with
well-crafted knowledge of known attacks can make an effective use of
this detection approach and can achieve high detection accuracy and
low false alarms.

4.3.1.1 Signature-Based DDoS Detection

A signature-based detection or misuse detection scheme stores sequences
of patterns and signatures of attacks or intrusions in a database. When
an attacker attacks or when an intrusion occurs, the IDS attempts to
identify its class by matching against a predefined set of attack signa-
tures that are already stored in the database. On a successful match,
the system generates an alarm. In this approach, the semantic char-
acteristics of an attack are analyzed and details are used to form at-
tack signatures. The attack signatures are organized using appropriate
data structures to facilitate faster search using audit data logs gener-
ated by computer systems. It uses well defined known attacks to build
a database of attack signatures. During detection, a signature-based
IDS matches string log data or audit data against the stored signatures
in the database for identification of attack. If it encounters and recog-
nizes a new attack, quick appropriate actions are taken to update the
signature database for up-to-date performance.

4.3.1.2 Rule-Based Detection

Rule-based detection systems are built using a number of if-then rules.
Experts develop rules by analyzing attacks or misuses and then trans-
form them into conditional rules, which are later used by inference
modules of the IDS to compare against monitored data (usually logs)
to detect any misuse.

4.3.1.3 State-Transition Techniques

A state-transition technique represents the misuses or attacks as a se-
quence of activities. An activity or a group of activities may cause
transition from one state of a monitored sensor to another, and can
eventually reach the alert state of a monitored system.
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4.3.2 Anomaly-Based DDoS Detection

Anomaly-based detection techniques first establish the normal behav-
ior of a subject, which may be a user or a system. If an action is
found to deviate significantly from the normal behavior or pattern, it
is recognized as anomalous or intrusive. So, if the defender can prop-
erly establish a normal activity profile for a system, it can also flag all
system states that vary from the normal profile significantly. So, in an
anomaly-based detection approach, two distinct possibilities may arise:
(a) false positives, which are anomalous activities that are flagged in-
trusive, but are not intrusive, (2) false negatives, which are anomalous
activities that are flagged as non-intrusive but are intrusive. The main
advantage of anomaly detection is that it can detect unknown attacks.

In the past two decades, the world has seen a good number of
anomaly-based DDoS detection approaches and systems [157], [244],
[144], [68], [151], [227], [27], [142]. In addition to these software-based
DDoS defense solutions, a large number of hardware-based network
security solutions have also evolved, as explained in [49]. To counter
DDoS attacks that use both low-rate and high-rate traffic, researchers
use a variety of approaches such as statistical, machine learning and
data mining, soft computing, and knowledge-based. We introduce some
prominent solutions under each category, discuss methods used, and
analyze their effectiveness.

4.3.2.1 Statistical Techniques

The effectiveness of statistical methods have already been established
in anomaly-based intrusion detection. A statistical approach initially
defines normal user behavior based on what is acceptable within system
usage policies. If a monitored behavior is found to deviate significantly
from predefined normal behavior thresholds, it is considered anomalous
activity and an attack. Most methods are designed to detect network
anomalies using various statistical and information theoretic measures
such as deviation, cumulative sum, correlations, entropy, mutual in-
formation (MI), and covariance. We discuss few prominent statistical
methods below.

Chen et al. [54] introduce a victim-end change-point (DCP) detec-
tion system to detect abrupt traffic anomalies across multiple network
domains using change aggregation trees (CATs). In this system, each
network domain corresponds to a single autonomous system (AS) and
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Figure 4.8: Architecture of DCP system.

the AS domain is supported by a CAT server to gather traffic change
information sensed at the routers. To produce an effective global con-
sensus across multiple domains, the CAT servers exchange flooding
alert information and to resolve any conflicts at various service provider
domains, if they arise, a secure infrastructure protocol (SIP) is intro-
duced. The protocol helps establish trust among them. In Figure 4.8,
the system architecture of the DCP system is shown. It shows multiple
AS domains such as A,, Ay, and A, for deployment of the system.
Each domain is equipped with a central CAT server. The DCP system
acts to (i) detect traffic changes, (ii) aggregate changes detected, and
(iii) collect alerts over collaborative CAT servers. It maintains the root
of the CAT at the last-hop domain server. In the change aggregation
tree, each node represents an attack-transit router (ATR), whereas the
edges of the tree correspond to the links among the ATRs. The CAT
servers of a DCP system may communicate with each other through
VPN (virtual private network) channels or through an overlay network.
The DCP system uses the non-parametric CUSUM (cumulative sum)
statistic to solve the change detection problem. The cumulative devi-
ation is significantly higher than random fluctuation during a DDoS
flooding attack. DCP detects such abrupt changes in traffic flows at
the router level through the CAT mechanism. The reliability of DCP
was established over 16 domains. According to simulation results, 4
domains are enough to achieve 98% detection accuracy for TCP SYN
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Figure 4.9: Architecture of the D-WARD system.

flooding attacks, whereas for UDP flooding attacks, it produces less
than 1% false alarms.

D-WARD [168] is a source-end DDoS defense system developed
using a statistical supervised approach, deployed at source-end net-
works to detect and stop attacks generated from these networks. The
authors configure D-WARD with a pre-specified set of addresses, with
an objective to police (its police address set) their outgoing traffic and
to monitor two-way traffic between the police address set and the rest
of the network. Figure 4.9 shows the architecture of D-WARD. The
classifier and the throttling component, as shown in the figure, are the
core components of this architecture. D-WARD gathers online traffic
characteristics, compares them with pre-defined normal traffic mod-
els, and attempts to rate-limit those flows which are non-complying.
It is able to adjust the rate-limit dynamically as and when flow be-
havior varies, and can hence recover fast from mis-classified legitimate
flows. D-WARD ensures good service to legitimate traffic by profiling
individual connections. However, scalability and real-time detection of
novel attacks are two major issues with this source-end DDoS detection
system.

The author of [50] introduces an effective DDoS detection method
based on the two-sample t-test. The author first investigates the SYN
arrival rate (SAR) sampling distributions of normal traffic and checks
whether they conform to a normal distribution or not. The method
attempts to distill DDoS attack traffic from legitimate traffic by (a)
computing the deviation of incoming SAR from normal SAR and (b)
finding the difference between the numbers of SYN and ACK pack-
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ets. The method initially compares the differences between the overall
means of the incoming traffic arrival rate and the normal traffic ar-
rival rate by the two-sample t-test. If it finds a significant difference,
it confirms that traffic may include attack traffic. However, in case
of a low-rate DDoS attack, its arrival rate test may not be helpful,
and hence the backlog queue may become full. In such a case, Chen’s
method compares the two groups with different numbers of SYN and
ACK packets by the two-sample t-test. If it finds significant difference,
it confirms that the traffic includes attack traffic. Like most other de-
tection schemes, two major issues with Chen’s method are inability (i)
to detect both high-rate and low-rate DDoS attacks with high detec-
tion accuracy in real time and (ii) to handle large DDoS attacks in real
time.

Saifullah [208] develops a DDoS defense system with weight-fair
router throttling to protect Internet servers. The mechanism depends
on a distributed algorithm, which is responsible for performing weight-
fair throttling at the upstream routers. The author uses weight-fair
throttling because it controls (increases or decreases) the traffic des-
tined to the server with leacky buckets at the routers, depending on the
number of users connected directly or indirectly. Initially, the routers
underestimate the ability of the server to survive, and hence update
the rate (increases or decreases) based on a server’s feedback sent to
its child routers and eventually propagates downward to all routers, to
protect the server from any sudden initial attack. The author estab-
lishes the effectiveness of the method using NS-2 simulation. However,
the drawbacks of the previous methods are not all overcome.

In another effort, Akella et al. [9] introduce several key challenges
to support an ISP network in detecting attacks targeted on it or tar-
geted on external sites using the ISP network. The authors introduce
an effective method to detect anomalous traffic at the router level us-
ing normal profiles. The profiles for normal traffic are generated using
stream sampling algorithms. The authors establish that one can gener-
ate these profiles reasonably and accurately. Further, it is cost effective
and can help identify anomalies with low false positives at the router.
Furthermore, it keeps a provision to improve confidence levels in the
decision-making process at the ISP router level by exchanging infor-
mation among such routers. When classifying aggregated traffic as
anomalous or normal, a router collects opinions (i.e., suspicions) from
all other routers and makes a decision based on them. Initial results
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show that a router profile is able to capture key characteristics of the
traffic and can identify anomalous traffic with high accuracy.

Another effective method [191] to detect bandwidth attacks by ob-
serving the arrival rate of new source IP addresses was introduced by
Peng et al. The method, referred to as SIM (source IP address monitor-
ing) works in two phases: (a) offline learning, where a learning engine
is used to keep an IP address database (IAD) up to date by adding
new source IP addresses and by deleting expired IP addresses, and (b)
detection and learning, where statistics are gathered on incoming traffic
during the current time interval to estimate the number of distinct IP
addresses arriving during the interval to decide whether a DDoS attack
is occurring or not, with reference to a user-defined threshold. Two ma-
jor attractive features of SIM are (i) it dynamically changes the attack
signature, which makes it hard for the attacker to counter the detection
scheme and (ii) it exploits an advanced non-parametric change detec-
tion technique called CUSUM [277] to achieve high detection accuracy.
The effectiveness of SIM was established using trace-driven simulation.
Two major limitations of SIM are (i) it cannot detect low-rate DDoS
attacks and (ii) the detection performance is highly dependent on the
threshold value, although determining appropriate threshold value is a
difficult task.

In recent years, with the advancement of botnet technology in terms
of both sophistication and scalability, the types of DDoS attacks have
also grown significantly. A mastermind, in order to continue using
botnet-based attack launching practices, attempts to take advantage
of novel anti-forensic methods to disguise attack traces, such as code
obfuscation, memory encryption [111], peer-to-peer implementation
technology [100], [20], [57], resurrection using fresh code pushing [57],
or mimicking flash crowd traffic [126], [212]. Flash crowd is legitimate
traffic that is usually an unexpected, sudden burst of traffic accessing
a server, and may be due to breaking news. An attack mastermind can
adopt a concrete strategy to launch DDoS attacks by simulating or by
mimicking the traffic patterns of flash crowds to fly under the radar.
Such a DDoS attack is referred to as a flash crowd attack.

Most existing DDoS detection systems face difficulty in countering
such DDoS attacks. Yu et al. [281], in their investigation of sizes
and organizations of botnet-based attack launching practices, observe
that current attack flows are more similar to each other compared to
flash crowd flows in a community network. Based on this observation,
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the authors present a discrimination algorithm to distill DDoS attack
traffic from flash crowds. Their method exploits a flow correlation
coefficient as the similarity metric. The authors initially establish a
DDoS attack detection model for a community network with a potential
victim. Then a theoretical proof is put forward to show that one can
distill attack flows from flash crowds with knowledge of botnet sizes
and organizations. Finally, they corroborate their theoretical findings
with experimental results using real-life flash crowd datasets and by
using attack launching tools in several scenarios.

Multivariate Correlation Analysis (MCA) is an effective approach
to measure abrupt variations in network traffic. This has been estab-
lished by Jin et al. in their SYN flooding attack detection model [123].
The authors show that MCA can be used to identify anomalous traffic
in a network in a simple yet effective way. It is possible to differenti-
ate anomalous traffic from legitimate traffic using correlation analysis
over multiple features in real time. For correlation-based analysis, the
authors initially generate a normal profile based on a selected set of fea-
tures of normal traffic. Next, to test whether incoming traffic is normal
or anomalous, it uses the same correlation analysis to generate a test
profile, which is matched against the normal profile. If it finds the test
profile deviating from the normal profile significantly above a prede-
fined threshold value, the method considers the test profile anomalous.
An added advantage of this MCA-based method is that it is also able
to detect subtle attacks, which it can differentiate from normal behav-
ior. The authors establish the effectiveness of their method in terms of
(i) detection accuracy and (ii) real-time performance in DDoS attack
detection.

Cheng et al.  [55] develop an effective DDoS attack detection
method using multiple salient features such as abrupt traffic variation,
non-uniformity in flow patterns, distribution patterns of source IP ad-
dresses, and concentration of target IP addresses. Their method, based
on an IP flow feature value (FFV) algorithm, uses a linear prediction
technique for detection of both attack and legitimate flows. The au-
thors establish their method based on experimentation using real-life
intrusion datasets.

Udhayan and Hamsapriya [249] use a statistical segregation method
(SSM) to achieve high detection accuracy in DDoS attack detection.
The method operates on network flow traffic over consecutive intervals,
and for detection of attack, it maintains attack state conditions. It sam-
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ples the flow in consecutive intervals, computes the mean as the param-
eter, and sorts the samples with reference to this parameter. Finally,
to segregate attack flows from legitimate ones, it performs a correlation
analysis. SSM has high detection accuracy and a low false alarm rate.
In addition to that, they evaluate SSM against several other its closed
counterparts. Li et al. [150] introduced another effective DDoS attack
detection method using entropy. The method initially computes the
patterns of distribution of the header attributes in the network packets
and then computes cumulative entropy to monitor behavior of network
traffic for an interval of time, instead of discriminating it as abnormal
traffic after detecting it as abnormal. Next, it identifies anomalous
patterns dynamically based on time instead of a threshold value set a
priori. If it finds non-conforming patterns or behavior to continue for a
significantly long duration of time, it marks the pattern as anomalous.

In another effort, Feinstein et al. [76] developed a statistical DDoS
attack detection method based on entropy. The method attempts to
identify anomalous traffic by computing entropy and sort distribution
of packet attributes based on frequency. It computes entropy of the
source addresses for a packet window of size, say 1000, to measure the
randomness or uniformity of the addresses. If it finds the amount of
randomness is significantly high, it recognizes the scenario as attack.
The authors’ observation is that in normal conditions, the entropy of
the source addresses is less than in attack conditions.

Low-rate DDoS attack traffic is very similar to normal traffic. As a
result, an accurate identification of such a low-rate attack is challeng-
ing. Xiang et al. [268] attempt to address this problem by introducing
an efficient detection mechanism and a traceback technique using infor-
mation theoretic measures. Their method uses a generalized entropy
measure to find the difference between legitimate traffic and attack
traffic, and then uses an information distance metric for detection of
low-rate DDoS attacks. The authors establish by experimentation that
the generalized entropy can detect an attack earlier than the traditional
Shannon metric. Further, their information distance metric performs
better than the Kullback—Leibler divergence approach. In addition,
the authors introduce an IP traceback scheme based on the informa-
tion distance metric, and establish it as capable of tracing the origin of
all attacks in a short time. The authors use (i) the MIT Lincoln Lab-
oratory Scenario (attack-free) inside tecpdump dataset! as the normal

"http://www.ll.mit.edu/ideval /data/
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traffic and (ii) the low-rate DDoS attack scenario from CAIDA as the
DDoS attack traffic to test the algorithms.

In another approach, Qi et al. [122] show that dynamic entropy is ef-
fective in identifying specific types of malicious traffic. They introduce
a novel dynamic entropy-based detection model to detect DoS attacks.
This model takes advantage of NetFlow conversation correlation at dif-
ferent perspectives in a group of correlated events like request and reply.
To establish the effectiveness of dynamic entropy, the authors include
an experimental study of dynamic and static entropy change rates in
anomaly detection and compare performance. The authors opine that
dynamic entropy can help sense the occurrence of anomalous traffic
more accurately than static entropy.

Yu et al. [275] present another fast and lightweight detection scheme
for identification of flooding attacks. The method collects SNMP MIB
traffic records from SNMP agents to analyze the security status of a
network and a system. Their method initially uses SNMP MIB statis-
tical data, which are collected from SNMP agents, instead of gathering
raw packet data from network links. Then they select SNMP MIB
features by an effective feature selection mechanism and collect data
using the optimal set of features by a mechanism of MIB update time
prediction. In the second step, the authors use a machine learning
approach based on Support Vector Machines (SVM) for attack classi-
fication. The authors claim that with appropriate tuning of MIB and
SVM, one can achieve high detection accuracy in efficient time. The
authors collect MIB datasets from real experiments involving a DDoS
attack every 15 seconds on average to validate their method. Experi-
mental results show that the method is able to detect network attacks
with high accuracy and low false alarms in less than 15 seconds.

Most defense methods discussed above focus on the IP and TCP
layers to protect resources from DDoS attacks. However, such methods
are often inadequate in handling new types of application layer attacks.
To address this issue, Xie et al. [271] introduce an effective scheme
for early detection and filtering of application layer DDoS attacks. The
authors use an extended hidden semi-Markov model to investigate and
describe the browsing patterns of Web surfers. To overcome the addi-
tional overhead due to the model’s large state space, the authors also
report a forward algorithm, which allows an online implementation of
their model. To estimate the user’s normality, the authors use en-
tropy of the HT'TP request sequence fitting to the model as a criterion.
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Figure 4.10: Xie et al.’s filtering strategy based on behavior model.

Figure 4.10 shows the use of the detector and the filter. As shown in
the figure, the filter, which resides between the Internet and the vic-
tim, receives an HTTP request and tries to identify it as anomalous or
legitimate. If it identifies the request as legitimate, it allows it to pass
through the filter toward the victim. To validate their model, the au-
thors perform several experiments using real traffic data collected from
an institutional Website and by generating an App-DDoS attack traffic.
Experimental results show that with an appropriate threshold setting,
their model can yield 98% detection accuracy and 1.5% false positive ac-
curacy. Further, their algorithm is able to reduce the memory require-
ment significantly and can help improve computational performance.

In addition to these, several other novel and effective statistical
methods have been developed [261], [140], [155], [237], [181], [5] to
counter DDoS attacks of both low-rate and high-rate types. However,
most of these methods have been developed to protect resources from
either high-rate attacks or from low-rate attacks, but not both at the
same time. Further, most methods are dependent on multiple user pa-
rameters, which are often crucial, greatly influencing the performance
of the system, when in fact, the correct estimation of such parameters
is a difficult task.

Based on the above discussion on a number of prominent statistical
methods for DDoS detection, we summarize as follows.

e A statistical method typically monitors user behavior in a net-
work and tries to observe occurrences of deviations (if any) with
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reference to predefined normal behavior thresholds. If it can iden-
tify any such non-conforming pattern or activity, it concludes that
a DDoS attack is occurring.

e The effectiveness of a statistical method is dependent on (i) the
reliability of the process of gathering legitimate user behavior,
(ii) modeling of legitimate user behavior, and (ii) determination
of the deviation threshold.

e One can develop an effective statistical method for DDoS detec-
tion by appropriate use of a statistical and information theoretic
measure such as deviation, cumulative sum, correlations, entropy,
mutual information (MI), and covariance.

e To be effective operationally, a statistical method requires time
to tune itself to a network environment. Once it is tuned and the
appropriate predictive model(s) is built, the method can show
detection performance of up to 100%. However, the tuned pa-
rameter values for such a model may vary from network scenario
to scenario.

e With the evolution of botnet technology, variations in DDoS at-
tacks have also been increasing. As a consequence, developing a
generic predictive model for a large variety of DDoS attacks has
become challenging.

4.3.2.2 Machine Learning and Data Mining Techniques

Machine learning (ML) and data mining play a significant role in the
development of efficient detection mechanisms to protect resources from
network intrusion due to their ability to help a system learn from the
environment without being explicitly programmed [25]. This growing
branch of Al enables a system to learn using mainly two distinct ap-
proaches (i) supervised learning, where the learning algorithm uses prior
knowledge (i.e., labeled instances) to predict class labels of previously
unknown instances and (ii) unsupervised learning, where the learning
algorithm attempts to identify groups of similar instances or the un-
derlying organization of the data without any prior knowledge. An un-
supervised learning algorithm uses similarity or dissimilarity measures
to group instances or identify the organization of data. In addition
to these, many researchers like to define two other approaches when
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categorizing learning algorithms. These are semi-supervised learning,
where the algorithm has access to partial knowledge (i.e., say, a set of
labeled pure “normal” or “legitimate” instances) prior to predicting the
class labels of previously unknown test instances, and hybrid learning,
where the learner takes advantage of both supervised and unsupervised
learning. A good number of machine learning and data mining algo-
rithms [27] have been used to detect both low-rate and high-rate DDoS
attacks. We discuss some prominent DDoS detection methods that use
machine learning and data mining techniques.
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Figure 4.11: The NetShield system and its components.

Hwang et al. [110] introduce an efficient DDoS defense solution,
referred to as NetShield, to protect network resources such as servers,
routers, and client hosts from becoming victims of DDoS flooding at-
tacks. NetShield attempts to identify DDoS flooding attacks using a
data mining approach to protect any IP-based public network in the
Internet. This detection software can not only defend against DDoS
flooding attacks, but can also detect, prevent, and respond to other
malicious network worms or virus attacks. It is able to generate a
class-specific intrusion report and can assess residue risks.

The NetShield software is designed using a simulator at the USC
Internet Wireless Security Laboratory. In addition to a packet filter, a
traffic monitoring module, and a security database, the NetShield sys-
tem comprises four basic modules, viz. (i) a detection module consist-
ing of both host-based (HIDS) and network-based intrusion detection
system (NIDS), (ii) an alarm matrix generator (AMG), (iii) a risk as-
sessment system (RAS), and (iv) an intrusion response system (IRS).
Figure 4.11 shows the structure of the NetShield software. It can be
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seen from the figure that all these four basic modules get support from
the packet filter, traffic monitor, and the security database. The au-
thors keep all attack and response information in a security database,
which is maintained and dynamically updated centrally. The HIDS is
designed to identify handler or zombie activities in a network. The
NIDS actively detects flooding attacks by analyzing incoming traffic.
The responsibility of the traffic monitor is to observe incoming network
traffic to identify traffic characteristics and to distill irregular bursty
traffic toward detection as a DDoS attack. The AMG module is re-
sponsible for generating alarms, once an attack type is confirmed. The
performance of NetShield was evaluated in a testbed environment by
carrying out a benchmark evaluation experiment. Although NetShield
is able to reduce some risks of DDoS attacks, some can be blocked
only partially. In addition to DDoS flooding attack detection, it can
be extended to provide defense against other attack types.

Chen et al.  [54] present another DDoS defense system using a
data mining technique, referred to as the DDoS Container, which op-
erates in inline mode to inspect, examine, and manipulate ongoing
traffic. DDoS container is based on a NIDS that helps identify and
manipulate DDoS traffic in real time. The system initially tracks con-
nections established during a DDoS attack and normal applications,
maintains state information for each session, carries out stateful in-
spection, and finally, attempts to correlate data between sessions. It
performs stream reassembly and dissects the resulting collections by
protocol. The framework of DDoS container is shown in Figure 4.12.
The figure shows that the system maintains several types of informa-
tion to support DDoS detection, including white and black lists of
source IPs, a free session pool, defunct session information, active ses-
sion information and a frequency table. Such information is accessed
by various components of the DDoS container, such as the protocol
decoder, session correlator, traffic arbitrator, traffic distinguisher and
message sequencer. The three main transport mechanisms used by
this system are TCP, UDP, and ICMP to communicate among clients,
handlers, and agents during a DDoS attack. It treats such traffic uni-
formly so that one can process packets and/or message streams during
a DDoS attack in an unbiased manner. In case of encrypted DDoS
traffic, the authors improve detection accuracy using deep inspection
and by analyzing behavior. Once successfully detected, the DDoS con-
tainer generates alarms to take necessary actions to block packets and
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Figure 4.12: The conceptual framework of a DDoS container.

to terminate the session. The authors establish the effectiveness of the
framework in several network settings.

The Naive Bayes (NB) classifier is an effective classifier for 2-class
and n-class problems. Vijaysarathy et al. [254] use a Naive Bayes
classifier to develop a defense solution to counter TCP and UDP attacks
in real time. The system uses a window-based architecture to analyze
incoming TCP and UDP traffic. It splits the incoming traffic accord-
ing to a window of a given size and processes the traffic in a window
with reference to a training model using the NB classifier to provide
a real-time response. The authors establish the effectiveness of their
method in terms of classification accuracy using 10-fold cross valida-
tion. However, the performance of this method is largely dependent on
the threshold value used during detection, and appropriate estimation
of the threshold value is difficult, since it may vary from network to
network and from one attack type to another.

In another effort, Gaddam et al. [83] develop a detection method
using cascading decision tree learning and clustering. It combines ID3
decision tree learning and k-means clustering for cascading, using two
specific rules, i.e., (i) the nearest-neighbor rule and (ii) the nearest con-
sensus rule. These two rules help obtain a concrete decision on attack
traffic classification. The approach uses k-means clustering to group
traffic samples into a fixed, say N, number of clusters and then each
cluster of instances is used to train the ID3 algorithm. The authors
justify the use of clustering because it ensures the association of each
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training instance with only one cluster. However, in case of traffic
patterns with the occurrence of a nested cluster (i.e., cluster(s) within
a cluster) or overlapped cluster patterns, the method requires special
care while training the ID3 algorithm, and as a consequence, in refining
decision boundaries. The method can detect attack traffic with satis-
factory accuracy, however, like the previous scheme, it also requires an
appropriate threshold setting during ID3 training. Further, it cannot
detect both low-rate and high-rate DDoS attacks at the same time or
in real time.
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Figure 4.13: Machine learning in DDoS attack detection.

Most classification-based DDoS detection schemes typically use as
features a set of header fields (e.g., port number, source IP, or protocol)
to classify the DDoS attack traffic. However, a common limitation with
these schemes is that often, applications do not use the port numbers
required by convention. In addition, if the protocol information is in
encrypted form, such methods consume a lot of computation to identify
the protocols. So, keeping these in mind, Zander et al. [283] develop
a DDoS attack detection scheme using ML techniques, which depend
on flow statistics rather than a set of header attributes. The scheme
applies ML techniques at two levels for automated traffic classification.
Figure 4.13 shows the architecture of Zander et al.’s approach. We see
in the figure that the scheme initially classifies the sniffed packets into
bidirectional flows, and then uses a NetMate traffic analyzer to compute
flow characteristics based on these sampled bidirectional flows received
from the initial classifier. The computed flow statistics are fed to a
second level of classifiers to predict the class labels of the previously
unknown instances based on flow characteristics with reference to a flow
attribute model. The method shows good classification performance
with a low false alarm rate. Further, the method also shows an effective
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use of the learned class label information for the previously unknown
instances in Quality of Service (QoS) mapping.

Zhong et al.  [288] also present a DDoS defense solution using
data mining techniques. The authors use fuzzy c-means (FCM) clus-
tering [70] and the Apriori algorithm [94], [262] to build a network
traffic threshold model and a packet protocol status model to support
DDoS attack detection. The method receives current normal traffic
and defines the normal model using k-means clustering. The Apriori
algorithm is used by the authors to mine packet protocol status in-
formation, whereas FCM clustering is applied to build protocol status
model. The authors establish their method to be effective in detecting
SYN flooding attacks with 100% accuracy. However, a major limitation
of this method is its inability to perform in real time.

In most cases, to train learning algorithms with appropriate la-
beled datasets for both legitimate and illegitimate classes of instances
may not be possible. Often, labeled instances representing possible
attack classes are not available, and to assign labels manually for
such instances is a time-consuming process. As a consequence, semi-
supervised learning becomes relevant. Erman et al. [73] introduce
a defense solution that can operate both offline and in real time to
classify network traffic using semi-supervised learning. The increasing
development of applications and their evolving nature has made classi-
fication of network traffic a challenging task. The authors’ observation
is that flow-based classification is more effective than packet content-
based classification due to the unpredictable nature of features. The
authors introduce a semi-supervised DDoS classification scheme, which
exploits distinctive flow characteristics of applications when they com-
municate on a network. Their scheme can handle both known and
unknown applications. The scheme uses only a few labeled, but many
unlabeled, flows to train. A distinguishing feature of their scheme is
that it considers two pragmatic classification issues, viz., longevity of
classifiers and the need for retraining of classifiers. The authors es-
tablish the effectiveness of their method by empirical evaluation on
Internet traffic traces that span a 6-month period. The results show
that the method can classify attack traffic with high detection accuracy
for both flow and byte, i.e., greater than 90%.

Both supervised and unsupervised learning algorithms have advan-
tages and disadvantages in detecting anomalies from network traffic in
real time. As a result, some researchers have developed effective DDoS
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Figure 4.14: The architecture of FireCol.

detection solutions by exploiting the benefits of both supervised and un-
supervised learning. One such example solution is Shon et al.’s [220] de-
tection method, which uses a hybrid machine learning approach called
enhanced SVM. The authors are of the opinion that among the variety
of machine learning techniques, Support Vector Machines (SVM) are
most effective in classifying anomalous patterns or behaviors. Unsuper-
vised learning can be best used in anomaly identification to obtain low
false alarm rates with an enhanced SVM method, using an appropriate
combination of both one-class SVM and soft-margin SVM methods.
Francois et al. [82] present a very effective detection method for
DDoS flooding attacks. The method, referred to as FireCol, is com-
posed of several IPSs located at various ISPs, which provide virtual
protection rings around the target hosts to counter DDoS attacks and
allow collaboration by exchanging specific traffic information. The ar-
chitecture of FireCol is shown in Figure 4.14. It provides protection by
maintaining virtual rings or shields around registered customers. Each
virtual ring of FireCol’s defense is formed by a set of IPSs maintained
at the same number of hops from the customers. The authors assign
each IPS instance the task of aggregate traffic analysis within a con-
figurable detection window. FireCol maintains a metric manager that
is responsible for computing the frequencies and entropies of each rule,
where each rule represents a specific traffic instance to monitor, and
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is essentially a traffic filter that works based on ports or IP addresses.
The selection manager is responsible for estimating the deviation of
the recent traffic profile compared to pre-recorded ones. On the basis
of estimated deviation, it selects the relevant profile rules and trans-
mits toward the score manager. The score manager plays a crucial role
also. It assigns a score to each selected profile rule by using a decision
table based on entropy, frequency information, and the scores obtained
from upstream IPSs. It considers a low score with reference to a given
threshold, as indicative of low attack potential and forwards the corre-
sponding traffic instance to a downstream IPS for score computation.
In contrast, a significantly high score is considered to indicate high at-
tack potential and subsequently triggers ring-level communication for
a validation of the decision to ensure or to dismiss the attack based on
whether the actual packet rate passing through the ring exceeds the
pre-defined client’s capacity. So, a major advantage of this method
is that it generates no false positives, as each potential attack is well
verified. FireCol is scalable and is able to detect DDoS attacks at an
early stage. Experimental results show its robustness and high accu-
racy in simulation environments, real Internet topologies, and with the
DARPA’99 dataset.

In addition to these, several other significant efforts have been made
by researchers to apply data mining and machine learning techniques to
develop effective DDoS detection systems. For example, Ramamoorthi
et al. [200] present an effective anomaly detection system, developed us-
ing an enhanced SVM (ESVM) with string kernels. The authors claim
that their method is able to detect DDoS attacks on both network and
transport layers with high accuracy. Further, the detection accuracy
of ESVM with string kernels is higher than one-class SVMs, binary
SVMs, and SVMs with string kernels. Farid et al. [75] present a deci-
sion tree-based adaptive intrusion detection method that distinguishes
attack from normal behavior with 98% accuracy. In this method, a
stochastic approach is used to split the dataset into sub-datasets until
all the sub-datasets belong to the same class. Lee et al. [144] pro-
pose a method for proactive detection of DDoS attacks by exploiting
an architecture consisting of a selection of handlers and agents that
communicate, compromise, and attack. The method performs cluster
analysis. The authors experiment with the DARPA 2000 Intrusion De-
tection Scenario Specific Dataset to evaluate the method. The clusters
show that traffic corresponding to each phase of the attack scenario
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gets partitioned well and the clusters can also detect precursors of a
DDoS attack as well as the attack itself. Sekar et al. [217] investi-
gate the design space for in-network DDoS detection and propose a
triggered, multistage approach that addresses both scalability and ac-
curacy. Their contribution is the design and implementation of LADS
(Large-scale Automated DDoS Setection System). The system makes
effective use of data (such as NetFlow and SNMP feeds from routers)
readily available to an ISP.

Dainotti et al. [62] present a cascade architecture for detection
of DDoS attacks using a traditional change-point detection approach
combined with wavelet analysis. The system makes an effective com-
bination of adaptive thresholding and cumulative sums with contin-
uous wavelet transforms for anomalous pattern identification for the
detection of DDoS attacks. The system was validated using publicly
available attack-free traffic traces superimposed with anomaly profiles
obtained using real DoS attack tools as well as time series of commonly
known behaviors. From the results obtained through offline evaluation,
the authors claim that the system can accurately detect a wide range
of DoS attacks.

Another systematic method using wavelet transformation for detec-
tion of DDoS attacks is introduced by Li and Lee [151]. The authors
feel that characterization of network traffic with behavior modeling
could be a good source of guidance for DDoS attack detection. The
authors explore the ability of wavelet analysis to capture and model
complex temporal correlation patterns across multiple time scales at
low cost. They make effective use of energy distribution to detect
DDoS attack traffic based on wavelet analysis. Legitimate traffic has
limited variation in energy distribution over time. On the other hand,
during a DDoS attack, such distributions will have significant varia-
tions within a short interval of time. Using experimental results, the
authors show that the spike caused by the occurrence of DDoS attacks
in energy distribution variance can be well captured by appropriate
wavelet analysis.

Xia, Lu, and Li [267] introduce a defense system for DDoS flooding
attacks using intelligent fuzzy logic. The system provides a real-time
solution for DDoS attacks in two stages. In stage I, they detect the
change point(s) of Hurst parameters caused by DDoS flooding attacks
based on statistical analysis of network traffic using discrete wavelet
transform (DWT) and Schwartz Information Criteria (SIC). In stage
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2, they use intelligent fuzzy logic in an effective manner to dynamically
decide the intensity of DDoS attacks. The authors show the ability
of their method based on NS2 simulation with various network traffic
characteristics and attack intensities.

A low-rate DDoS attack has significant ability to conceal its traffic
because of its similarity with normal traffic. Xiang et al. [268] propose
two new information metrics —(i) the generalized entropy metric and
(ii) the information distance metric —to detect low-rate DDoS attacks.
They identify the attack by measuring the distance between legitimate
traffic and attack traffic. The generalized entropy metric is more ef-
fective than the traditional Shannon metric [160]. In addition, the
information distance metric outperforms the popular Kullback—Leibler
divergence.

Another effective DDoS attack detection scheme with TP traceback
based on entropy variations is reported in [279]. In this work, the
authors show the usefulness of constant monitoring, observation, and
storage of short-term information such as entropy variations at routers.
When there is significant deviation in entropy variations, the scheme de-
tects the occurrence of a DDoS attack and initiates a pushback tracing
procedure to find the origin of the attacks. Experimental results estab-
lish the effectiveness of both the detection and the traceback scheme.

An effort by Zhang et al. [286] develops a low-rate DDoS (LD-
DoS) attack detection scheme using statistical analysis of the flow level
of network traffic. The authors introduce a CPR (Congestion Partici-
pation Rate)-based approach for identification of low-rate DDoS (LD-
DoS) attack traffic. They assume that a flow with a high CPR value
signals an LDDoS attack and hence consequently drop packets. To es-
tablish the scheme, the authors carry out NS2 simulation and testbed
experiments using Internet traffic traces, and claim that the method
can detect LDDoS flows with high detection accuracy. Gelenbe and
Loukas [87] introduce a mathematical model to evaluate the benefits
of DDoS defenses that drop attack traffic. The authors establish their
model using simulation results and testbed experiments. Further, the
authors present an autonomic defense mechanism based on the CPN
(Cognitive Packet Network) protocol. They establish that the mecha-
nism is capable of tracing back flows coming into a node automatically.
In another effort, Yuan and Kevin [282] develop a scheme to monitor
network-wide macroscopic effects for detection of DDoS flooding at-
tacks. The authors claim that their method can detect DDoS attacks
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with various rate dynamics, i.e., constant rate, increasing rate, pulsing
rate, and subgroup attacks.
Based on the discussion in this section, we summarize as follows.

e A machine learning or data mining technique can be supervised,
unsupervised or hybrid. A carefully designed supervised method
is able to show high DDoS attack detection accuracy, if precise,
certain and sufficient knowledge is provided for training. How-
ever, such methods are incapable of detecting unseen attacks.
On the other hand, an unsupervised machine learning or data
mining technique can detect unseen attack, in addition to known
attacks. Hybrid methods take advantage of both supervised and
unsupervised learning techniques.

e For consistently high performance of supervised learning meth-
ods, it is essential to provide complete, precise, up-to-date, and
relevant training data, which is often not possible for all network
situations.

e Dimensionality reduction and feature selection have important
roles to play in the development of cost-effective and real-time
DDoS defense.

e Ensemble or combination learners are able to classify anomalous
traffic with high detection accuracy, but usually cannot provide
real-time performance.

e A supervised machine learning or data mining technique imple-
mented in both hardware and software, one that uses an optimal
subset of features with up-to-date knowledge, could be ideal for
DDoS detection in all network situations.

e An appropriate use of information theoretic measures can help
develop an effective IP traceback mechanism for identification of
the source or origin of DDoS attacks.

e Sensitivity to user parameter(s) while classifying the network
anomalies, is a major issue with most machine learning or data
mining techniques.
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4.3.2.3 Soft Computing Techniques

Unlike traditional computing approaches, which are brittle in noisy or
unexpected situations, soft computing solutions are known for their
tolerance of imprecision, uncertainty, partial truth, and approxima-
tion. The basic principle that guides soft computing is to achieve a
low-cost, and robust solution by exploiting the tolerance for impreci-
sion, uncertainty, and partial truth. The five major approaches in soft
computing are fuzzy logic, neural computing, evolutionary computa-
tion, machine learning, and probabilistic reasoning. The ability of soft
computing methods has already been established in solving complex
pattern matching and machine intelligence problems in many real-life
application domains. Such methods are useful in solving problems, es-
pecially in situations when the information about the problem itself is
insufficient and the possible solutions are also imprecise and uncertain.
The ability of soft computing has been confirmed by network security
researchers in differentiating anomalous traffic from legitimate traffic
with high detection accuracy and low false alarm rates.

As we discussed in the previous subsections, most DDoS detection
systems suffer from high computational cost, when they try to achieve
high detection accuracy. To address this issue, some researchers prefer
to use classifiers that are adaptive and incremental to minimize the
cost of processing. The presence of uncertain or imprecise information
is also a major issue when analyzing and evaluating the performance
of DDoS attack detection methods. To overcome both hurdles, adap-
tive, incremental, soft computing approaches have been used. One can
use a fuzzy set theoretic approach for handling uncertainty in network
traffic and for better interpretation of rules. Similarly, appropriate use
of neural networks can help improve the learning ability and the gen-
eralization of the network. So, by accumulating the benefits of both
these soft computing techniques, Kumar and Kumar [141] develop a
DDoS detection system, referred to as NFBoost, using an ensemble of
adaptive and hybrid neuro-fuzzy inference systems (ANFIS). Since a
single classifier may be biased and can make mistakes in training traf-
fic samples, the authors overcome such bias by creating an ensemble
of classifiers and by combining their output using an appropriate com-
bination function. Figure 4.15 shows the framework of the adaptive
and hybrid neuro-fuzzy inference system. The authors use the gradient
learning approach and the fuzzy c-means (FCM) algorithm for learn-
ing and initialization of the fuzzy subsystem. The number of nodes
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used in the input layer is the product of the number of inputs and
the membership functions for each input. The method can deal with
both discrete and continuous attributes in a dataset, which is useful
for dealing with real-time intrusion. Using simulation results, the au-
thors show that NFBoost, with a weight update distribution strategy
can detect DDoS attacks with 99.2% accuracy and with low false alarm
rates. The authors also claim that the cost per instance is much lower
than the other competing methods. Further, NFBoost performs better
than other ensemble methods with a gain of up to 8.4%.

In another effort, Jalili et al. [120] develop an effective DDoS
detection system using a statistical pre-processor and applying an un-
supervised neural net. Their method, also referred to as SPUNNID,
initially extracts a set of eight statistical features from real-life network
traffic by using a pre-processor to form a training vector for the neu-
ral net. The features extracted are (i) percentage of ICMP packets,
(ii) percentage of UDP packets, (iii) percentage of TCP packets, (iv)
percentage of SYN in TCP packets, (v) percentage of SYN+ACK in
TCP packets, (vi) percentage of ACK in TCP packets, (vii) average
packet header size and (viii) average packet data size. To extract these
features and to analyze the traffic based on these features for identi-
fication of DDoS attacks, the method divides the packet traffic into
smaller time intervals, say each 7 seconds long. Once the features are
successfully extracted for each time interval, it forms a training vector
to support analysis of network traffic using the neural net to recognize
each time interval as normal or as DDoS attack. During evaluation of
their method, the authors carried out an experimental study on the
effects of several crucial parameters such as size or length of 7, param-
eters related to neural net, viz. (i) the number of appropriate clusters,
(ii) the number of epochs and (iii) the vigilance parameter and its value.
Experimental results show that SPUNNID is able to recognize attack
traffic 94.9% and in the best case, it requires 0.7 second to detect DDoS
attack.

Siaterlis and Vasilis [222] explore and show the ability of multi-layer
perceptron (MLP) as a classifier in detecting DDoS flooding attacks us-
ing several statistical detection metrics obtained through passive mea-
surements. The authors use five statistical metrics such as UDP ratio
(i.e., (incoming bits/sec)/(outgoing bits/sec)), ICMP ratio (i.e., (out-
going bits/sec)/(incoming bits/sec)), flow length, flow duration, and
flow-generation rate. These features are fed to the MLP for effective
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detection of DDoS flooding attacks in near real time. The method uses
a supervised learning approach that uses these metrics to train the
multi-layer feed-forward network to classify the state of the monitored
edge network as DDoS source, DDoS victim, or legitimate. The authors
use the MLP as an algorithm to fuse together all detection metrics and
the method overcomes the site-specific threshold dependency. Simu-
lation results show that the method is able to detect flooding attacks
with high detection accuracy.

Input Layer

Membership
Function

Defuzzification

Output Layer

Figure 4.15: The hybrid neuro-fuzzy inference system.

In another ANN-based approach, Gavrilis and Dermatas [86] use
radial-basis function neural networks (RBF-NN) for faster detection of
DDoS attacks. Their method is based on a relevant subset of statisti-
cal features extracted from short-time window analysis using captured
packet traffic. The system comprises three modules, viz. data collector,
feature estimator and DDoS detector, which are sequentially connected.
The data collector is responsible for gathering packet traffic in terms of
a selected set of attributes, such as source port, SEQ number of clients,
window size, SYN, ACK, FIN, PSH, URG, and RST flags. It gathers
statistics for each time frame in terms of frequency of occurrence for
six different flags, i.e., SYN, ACK, FIN, PSH, URG, and RST. The
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observation was that these flags could be a good source of information
for detection of DDoS attacks. The feature estimator is dedicated to
estimation of the frequency of the flags and the number of distinct val-
ues for the source ports, SEQ number and window size for each time
frame. Finally, the third module, i.e., the DDoS detector, uses the
RBF-NN by activating with a nine-feature vector for each time frame.
The occurrence of a DDoS attack is sensed by the most active out-
put neuron. The method is able to analyze network traffic based on
statistical features estimated in short time windows and shows 100%
detection accuracy and 0% false alarms in real time.

Another fast detection method for DDoS defense using fuzzy esti-
mators was proposed by Shiaeles et al. [219]. The method works in two
phases. In the initial phase, it performs the task of DDoS attack detec-
tion. Then it identifies malicious IP addresses. A major advantage of
this method is that it not only detects DDoS attacks, but also identifies
malicious source IPs before the victim service suffers from exhaustion
of resources due to the attack. Empirical evaluation shows that the
method achieves an 80% success rate in attack detection. In another
similar effort, fuzzy logic was used by Xia et al. [267] to detect DDoS
attacks in real time. Like the previous one, this method also works
in two phases. In phase I, the method performs a statistical analysis
on the captured and preprocessed network traffic data using discrete
wavelet analysis. Then it calculates the intensity of DDoS attack us-
ing fuzzy logic. The method performs satisfactorily for DDoS attack
detection accuracy, giving real-time performance.

In addition to the above, many other methods have been introduced
in the recent past. Su [236] presents a method for DDoS attack detec-
tion using a weighted KNN classifier. The method computes a weight
value for each feature and identifies a relevant subset of features for
effective classification. The author claims that their method is able to
classify attack traffic with 97.42% accuracy for known attacks and 78%
accuracy for unknown attacks. Chonka et al. [58] present a chaos-
theory-based DDoS attack detection algorithm. The authors use real
network packets and flow traffic and investigate the self-similar patterns
for the normal traffic. These patterns are then used as benchmarks for
detection of DDoS attacks. For detection purposes, the authors train
a neural network using the self-similar legitimate traffic for classifica-
tion of illegitimate or DDoS attack traffic. For detection, the authors
use the Lyapunov equation to differentiate the attack traffic from the
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normal. For evaluation, they simulated the prediction algorithm us-
ing benchmark DDoS datasets, including the DARPA LLS DDoS 1.0
dataset from MIT. The results show that the detection accuracy is
from 88% to 94% with a 0.05% to 0.45% false positive rate. Nguyen
and Choi [179] develop another proactive DDoS attack classification
method using a k-nearest neighbor classifier using a subset of features.
Initially, the authors select an optimal subset of features relevant for
DDoS attacks by breaking the attack traffic into phases. Next, they ap-
ply the KNN-based method to classify the network status during each
phase of a DDoS attack. The results show that the method performs
with high detection accuracy.

Wu et al. [265] explore the ability of decision trees and gray rela-
tional analysis in the detection of DDoS attacks. The authors use 15
attributes to monitor the incoming and outgoing packet traffic to esti-
mate packet or byte rate. The authors also estimate the TCP, SYN,
and ACK flag rates to understand traffic flow patterns. A decision tree
is used to classify the abnormal traffic flow with reference to the pre-
specified known traffic flow patterns, using a novel similarity matching
technique. Their method is followed by an effective traceback mecha-
nism to track the origin of the attack based on the similarity matching.
The method performs satisfactorily in detecting DDoS attacks and in
locating the origin of the attack source with high accuracy.

Gong et al. [89] develop an intrusion detection mechanism using
Genetic Algorithms (GA). The authors initially generate a set of effec-
tive classification rules by applying GA on network audit data. They
use a support-confidence framework to estimate the fitness of the rules.
These rules are then used to identify anomalous traffic in real time.
Two major advantages of this method are that (i) it is easy to im-
plement and (ii) it can detect intrusions with high accuracy due to
its simple rule representation and the effective fitness function. The
authors establish their method with experimental results using bench-
mark DARPA datasets of intrusions.

Though the aforementioned classifiers developed using soft com-
puting techniques are able to classify DDoS attacks satisfactorily, each
uses subjective thresholding and produces false alarms. To overcome
individual biases of these classifiers, an ensemble of several soft com-
puting and hard computing techniques is introduced by Mukkamala
et al. [177]. The authors use an ensemble of three classifiers, i.e.,
Support Vector Machines (SVM), Artificial Neural Networks (ANN),
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and Multivariate Adaptive Regression Splines (MARS) to achieve high
detection accuracy by combining these learning paradigms without any
hybridization. To design the ensemble, the authors initially construct
different connection-oriented models carefully to achieve the best pos-
sible performance. Once the ensemble is constructed, test data is fed
to the individual models and the respective outputs are recorded. To
obtain the best output that maximizes classification accuracy, majority
voting is used to detect the attack class. It is shown that the proposed
ensemble can outperform the individual classifiers, i.e., SVM, ANN,
and MARS for all types of DoS and other attacks in many datasets.

In another similar approach, Abraham and Jain [7] develop mul-
tiple soft computing models for network intrusion detection. The au-
thors explore the effectiveness of multiple classifiers, viz., fuzzy-rule
classifiers, decision trees, support vector machines, linear genetic pro-
gramming, and an ensemble method for fast intrusion detection. They
experiment in three phases: (i) data reduction, (ii) training, and (iii)
testing. In the first phase, i.e., in data reduction, the authors select
a relevant and optimal subset of features. In the training phase, they
construct different soft computing models using the training data to
obtain maximum generalization accuracy on unknown test patterns.
Finally, in the third phase, test data are passed through the saved
trained models for intrusion detection. They evaluate their method
using the KDD dataset and claim that the fuzzy classifier can detect
almost all attack classes with 100% accuracy in the KDD dataset.

Another neuro-fuzzy classifier was introduced by Toosi et al. [245]
to classify abnormal or non-conforming traffic patterns. The authors
use a fuzzy inference module, referred to as the fuzzy decision engine,
to detect malicious network traffic. The engine is used to generate a set
of fuzzy rules without the intervention of human analysts. To optimize
the ruleset, the authors use a genetic algorithm. The method is shown
to perform satisfactorily with the KDD-CUP99 intrusion dataset for
all attack class types.

Chimphlee [56] introduces a rough-fuzzy enabled soft computing
approach to handle the anomaly detection problem. The author uses a
fuzzy-rough c-means (FRCM) clustering algorithm to differentiate at-
tack traffic from normal traffic. It assigns a membership value within
the range 0 to 1 to each test instance when partitioning the traffic.
It partitions the test instances into three groups, viz., lower approx-
imation, boundary, and negative regions. The author evaluates the
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method using the KDD-CUP99 intrusion dataset and shows that it
can perform detection with 82.46% accuracy with a 91.45% detection
rate and a 24.8% false alarm rate, whereas the traditional k-means al-
gorithm performs with 76.0% accuracy only with a 91.81% detection
rate and a 16.9% false alarm rate.

From the above discussion on various soft computing methods in-
troduced for malicious traffic identification, we observe the following.

e Use of rough sets, fuzzy sets, and neural networks, in isolation or
in combination, can enhance the performance of a DDoS detec-
tion system, especially in situations when information about the
legitimate and attack traffic is insufficient, imprecise, and uncer-
tain.

e Like the approaches discussed in the previous subsections, soft
computing techniques also depend on multiple user parameters.
The performance of most soft computing methods is highly sen-
sitive to minor changes in the values of these parameters. At
the same time, the accurate estimation of these parameters is
difficult.

e Most soft computing methods achieve high detection accuracy
and low false alarm rate, at the cost of high execution time, which
is not desirable, especially in case of DDoS attack detection.

e The performance of supervised and semi-supervised soft comput-
ing methods is significantly better than that of unsupervised soft
computing methods. However, some unsupervised soft computing
methods are able to detect unseen attacks from even uncertain,
imprecise, and insufficient traffic information in some situations.

e A soft computing method, capable of handling both known and
unknown attacks in all situations with insufficient, imprecise, and
uncertain information with high detection accuracy in real time,
is still needed.

4.3.2.4 Knowledge-Based Techniques

In DDoS attack detection, a knowledge-based approach may be able to
identify known classes of DDoS attacks. In this approach, it is under-
stood that the defender uses prior knowledge acquired from the history
of previous DDoS attacks when developing a defense solution. Based



138 CHAPTER 4. DDOS DETECTION

on prior knowledge, the defender creates a set of rules or signatures
for each of the known attack types, and during detection, the newly
occurring network events are matched against these predefined rules
or signatures. If there is a match, it raises alarms, otherwise, consid-
ers it normal. Two major advantages of a knowledge-based technique
are (i) faster detection and (ii) high detection accuracy with low false
positives. Several effective knowledge-based techniques have been in-
troduced to counter DDoS attacks. These techniques mostly belong to
one of the four distinct categories, viz., rule-based filtering, signature
analysis, self- organizing maps, and state-transition analysis. For each
of these categories, we discuss some prominent techniques introduced
for DDoS defense.

Rule-based filtering is an effective way to mitigate known DDoS
attacks. Unlike statistical methods, a rule-based filter usually requires
much less time for setup and to initiate detection [99]. Once a set of
unambiguous, non-redundant and maximally covering rules is created,
the system can initiate detection immediately. An effective rule-based
filter can show detection performance up to 100% for known DDoS
attack types. The false positive rate shown by a carefully built rule-
based filter is also very low. The time requirement for maintaining the
rule-base is also significantly lower than statistical approaches. How-
ever, for unknown vulnerabilities, especially for zero-day DDoS attacks,
such rule-based filters are ineffective since the corresponding rules are
not available. Further, for large variations in DDoS attacks, the rule
repository becomes very large, and hence the time needed to match may
become high. Considering recent DDoS attacking scenarios, most at-
tacks have large variations and they propagate swiftly. So the defender
must develop a light defense solution to counter such varied attack
types in minimum time. Kim et al. [135] present a rule-based defense
method to support fast detection of multiple DDoS attack types. The
framework of their method is shown in Figure 4.16. The method ini-
tially collects traffic data for fixed time intervals. Then it analyzes the
traffic using the rule engine, as shown in the figure. The method has
a group of rules to identify anomalous traffic, and it attempts to make
an effective use of this rule set to detect DDoS attack types in real
time. It makes a swift decision using this rule set during the occur-
rence of a DDoS attack type. In addition, the method has a provision
to thoroughly investigate the alarm-generation process to reduce the
rate of false alarms and to assign weight to the rules. During analysis,
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the method considers nine typical factors, viz., TCP octet, TCP flows,
TCP packets, UDP octet, UDP flows, UDP packets, TCP source port
variation, TCP destination port variation, and source IP address varia-
tion. It considers a process as normal, if the result of the analysis does
not exceed critical values. Otherwise, it is judged abnormal and sub-
sequently the corresponding source IPs are blocked. The method also
has provision for post-alarm diagnosis and for recomputing the criti-
cal values to reduce false alarms. The authors establish satisfactory
performance of the method using real network traffic.

Rule Engine

Database

Data Collection
Analysis Module
Control Module

Figure 4.16: Framework of the rule-based DDoS detection mechanism.

Another approach to DDoS attack detection using inductive learn-
ing [59], [198] and a Bayesian classifier [95] is reported in [182].
The authors endow an alarm agent with a tapestry of reactive rules
for detection of DDoS attacks. The authors monitor TCP flag rates
and absence or presence of flooding attacks to create state-action rules.
They exploit the regularities in DDoS attacks to help in identification
and to enable the alarm agent. To obtain the rules, the authors use
machine learning algorithms, using the results of TCP flag rates. They
use a spectrum of approaches to support detection of various attacks
on Websites. For evaluation, the authors used a simulated network
environment using Linux machines, as shown in Figure 4.17. It con-
sists of (i) a Web server using Apache, (ii) Web clients, (iii) DDoS
attackers, (iv) network monitoring devices including a packet collect-
ing agent, and (v) an alarm-generation agent. In this environment,
they measure TCP flag rates. To generate normal and attack traffic
models, the method uses two settings, one using a normal Web server
and the other with a Web server with DDoS attacks. To evaluate the
effectiveness of the compiled ruleset generated for the alarm agent us-
ing three well-known classifiers, C4.5, CN2, and Bayesian classifier, the
authors express the performance obtained in terms of the ratio {total
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Figure 4.17: Simulated network environment with web clients, attack-
ers, server, and the proposed agent.

no of alarms—(number of false alarms + number of missed alarms)}
: {total number of alarms}. According to the authors, the rules con-
structed are qualitative and the detection performance is satisfactory
in comparison to similar techniques.

Thomas et al.’s victim-end NetBouncer [242] is another effective
knowledge-based defense solution to protect network resources from
DDoS attacks. The authors claim that NetBouncer is a practical solu-
tion with high performance. The basic idea is to distinguish legitimate
and illegitimate uses of the resources and to make the resources avail-
able only for legitimate use. As incoming traffic flows, NetBouncer uses
a long list of established legitimate clients for reference. If incoming
packets are not from any legitimate client, it administers a variety of le-
gitimacy tests. If it finds that the client passes these tests, NetBouncer
adds it to the legitimate list and subsequent packets from the client
are accepted until a certain legitimacy window expires. A traffic man-
agement subsystem controls the transmission of legitimate packets by
applying various bandwidth management and rate control schemes to
ensure that legitimate clients cannot be a cause of bandwidth misuse
and that target servers are not overwhelmed at any cost even though
the traffic appears to be legitimate.

Another effective knowledge-based DDoS defense solution was pro-
posed by Wang et al.  [258]. The authors introduce a formal and
systematic approach for modeling DDoS attacks using an augmented
attack tree (AAT)-based DDoS detection algorithm. Using the model,
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the authors capture delicate changes that occur in network traffic due
to the occurrence of DDoS attacks and the corresponding transitions
in network states considering transmission of network traffic on the
primary victim server. The authors use the AAT-based DDoS model
(ADDoSAT) to assess potential threats from anomalous packets on the
primary victim server and to detect such attacks. The AAT-based
bottom-up detection algorithm identifies possible DDoS attacks. Un-
like traditional attack tree modeling approaches, Wang el al.’s approach
is advanced feature-based and it provides additional information, es-
pecially about the state-transition process. Consequently, the model
can overcome the limitations of CAT modeling. Based on experimen-
tal results, the authors claim that their method is able to detect DDoS
attacks with high detection accuracy and at an early stage.

Considering the previous discussion of various knowledge-based com-
puting methods, we observe the following.

e In a knowledge-based approach, the defender uses prior knowl-
edge acquired from the history of previous DDoS attacks when
developing a defense solution.

e A knowledge-based DDoS detection technique can use rule-based
filtering, signature analysis, self-organizing maps, or state-transition
analysis.

o A carefully designed rule-based DDoS detector can usually initi-
ate its detection operation right away and show very high detec-
tion accuracy and low false positive rates.

e Most rule-based DDoS detectors suffer due to the need for instant
processing of a large number of rules to handle large variations
in DDoS attacks. Ideally, we need a light defense solution, yet
almost complete.

e A generic knowledge-based DDoS defense solution based on state-
transition or any other analysis that can handle all types of DDoS
attacks in multiple network environment still does not exist.

4.4 Chapter Summary

In the above sections, a large number of statistical, soft computing, ma-
chine learning, and data mining and knowledge-based DDoS detection
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techniques have been discussed. Based on the analysis of their salient
features and performance issues, we summarize their effectiveness as
follows.

e In a statistical method for DDoS detection, typically user behav-
ior is monitored, and if there is significant deviation from prede-
fined normal behavior thresholds, the non-conforming or anoma-
lous activity is considered an attack. So, the success of such
methods is highly dependent on (i) how data about the legiti-
mate user behavior is gathered, (ii) how legitimate user behavior
is modeled, and (ii) how the deviation threshold is decided.

e Statistical methods typically use various statistical and informa-
tion theoretic measures such as deviation, cumulative sum, cor-
relations, entropy, mutual information (MI), and covariance.

e If a precise, certain, and sufficient source of knowledge is available
for training, a supervised machine learning technique can help
detect DDoS attacks with high detection accuracy.

e An unsupervised data mining technique with a carefully chosen
proximity measure can help detect unseen attacks in addition to
known attacks.

e By appropriate hybridization of supervised and unsupervised ma-
chine learning and data mining techniques or by using an appro-
priate combination of learners, one can achieve high detection
accuracy for both known as well as unknown attacks.

e A carefully designed rough-fuzzy or ANN-based DDoS detection
system can handle both known and unknown attacks with high
detection accuracy, even if the situation does not provide suffi-
cient, precise, and certain information. However, like other ap-
proaches, a soft computing technique depends on multiple user
parameters and these parameters are crucial for performance.

e A rule-based DDoS detection system is typically faster than other
detection approaches. With an unambiguous, non-redundant,
and maximally covering ruleset, it can show detection perfor-
mance of up to 100% for known DDoS attack types.
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e A light-weight DDoS defense solution using both supervised and
unsupervised learners implemented on both hardware and soft-
ware, using an optimal subset of features with up-to-date knowl-
edge could be ideal for DDoS detection in multiple network situ-
ations.






Chapter 5

DDoS Prevention

An intrusion prevention system (IPS) is considered an “upgraded” ver-
sion of an intrusion detection system [69]. Both monitor network traf-
fic and/or system activities for malicious activity; however, unlike an
IDS, an intrusion prevention system is able to actively block intrusions
that are detected. Typically, an IPS does so by generating alarms,
dropping malicious packets, resetting the connection, and/or blocking
traffic from the offending IP addresses. A generic view of an intru-
sion prevention system is shown in Figure 5.1. The managing system,
monitoring component, and detection component are almost similar to
those in an IDS, but instead of the reaction component in this system,
prevention procedures are applied. The prevention engine applies a set
of procedures based on the pattern of behavior of the suspicious traffic
by working closely with the managing system. The responsibility of
the managing system is to manage the traffic flow and to apply the
procedures provided by the prevention engine.

5.1 DDoS Prevention Techniques

Intrusion prevention is performed by a software or hardware device
that can intercept detected threats in real time and prevent them
from moving closer toward victims. It is an useful approach against
DDoS, flooding, and brute force attacks. Today, the general lack of
adequate security infrastructure across the Internet is a major cause
of the tremendous pressure faced by Internet Service Providers to pre-
vent and mitigate DDoS attacks on their infrastructure and services,
on their own.

145
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Figure 5.1: Intrusion prevention system: a generic view.

Prevention of DDoS attacks in real time is a live network security
problem. One can consider an IPS as an extension of an IDS. Although
IPSs and IDSs both examine network traffic searching for attacks, there
are critical differences. IPSs and IDSs both aim to detect malicious or
unwanted traffic and both can potentially do so well, but they differ
in their response generation. For effective prevention, one must be
able to detect source(s) early and then initiate appropriate action(s)
to identify the attack sources. Since DDoS is a coordinated attack, it
is not straightforward to identify the attack sources in real time. Fur-
ther, spoofing of source IP addresses in the attack packets complicates
attempts at reliable DDoS prevention.

A good number of DDoS prevention methods have been developed
recently. Most prevention methods act upon detection of DDoS attacks
in one or more of the following ways: (a) by reconfiguring the security
mechanisms such as firewalls or routers to block future attacks, (b)
by removing malicious content from the attack traffic by filtering out
possible attack packets, or (c¢) by appropriate browser setting and by
reconfiguring other security and privacy controls to avoid occurrence of
future attacks. However, for effective DDoS prevention, identification
of true attack source(s) is an essential task. Although identification of
the true source of attack is a daunting task due to open and decentral-
ized structure of the Internet, several novel approaches have evolved in
the recent past. IP traceback is one such powerful candidate among the
mechanisms used to identify the true source of attacks in a network.

5.1.1 IP Traceback

As we have discussed earlier, in a DDoS attack, attackers mostly use
zombies or reflectors to send attack packets to the victim machine us-
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ing spoofed IP addresses. One can attempt to detect the attack source
manually as well as automatically. It may be performed either at the
victim end or from intermediate routers and traced back to the origi-
nal source end. Typically, a hop-by-hop traceback mechanism is used
from router to router. Therefore, for successful identification of the
attack source, co-operation among networks is highly essential. How-
ever, manual traceback is a tedious and time-consuming process. To
expedite the process, researchers have introduced automated traceback
schemes. An effective traceback mechanism should have the following
properties.

e The traceback mechanism should be cost-effective.
e The involvement of ISPs should be low.

e It should not incur any additional memory cost in routers or
switches.

e It should produce low network overhead.
e The false positive rate of detection should be low.
e The deployment of the traceback system should not be a problem.

e The traceback mechanism should be able to identify the original
source of attack with the help of a single packet.

To understand the working of a traceback scheme, let us introduce
an automated example using the traceback scheme developed in [279]
using a variation of Shannon’s entropy. For illustration, we use the
example network shown in Figure 5.2. In this example network, we
have six LANs (viz, LANy, LANy,--- ,LANg) and five routers (viz,
Ri, Ry, -+, Rs). Multiple attackers from LAN;, LAN3, and LANg tar-
get a single victim. So in a DDoS attack, the flows destined to a victim
include both legitimate flows as well as a combination of attack and
legitimate flows. In Figure 5.2, a flow such as f3 is a legitimate flow,
whereas fi; and fo are combinations of attack and legitimate flows.
Typically, during a DDoS attack, the volume of flow increases signifi-
cantly within a short interval of time. So, one can observe a significant
change in the traffic pattern at routers Rs and R4 and also at the
victim. In contrast, at routers R;, R3, and Rs, such changes or varia-
tions will not be visible due to the absence of attack flows. Once such
variations are sensed by the victim, typically the defender attempts
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Figure 5.2: An example network for traceback demonstration.

to push back to the LAN(s), that are suspected to be involved in the
attack. One can carry out such an exercise by using information met-
rics (such as entropy) to quantify the variations in the traffic at the
routers and the victim. In other words, one can measure the changes
in randomness of flows at the routers or at the victim for a given in-
terval of time. Based on the discovery of significant flow variations
at the victim machine in terms of entropy, the defending agent may
be able to guess that high-rate attack sources are somewhere behind
Ry, but not behind Rj, since no significant entropy variation is sensed
here. Accordingly, the network defender will send a traceback request
to Ry to locate the possible source of DDoS attacks. Like the victim,
based on entropy variations sensed, router Ry may identify that DDoS
attacks are from two sources, one behind LAN; and the other behind
LAN3. Subsequently, the traceback request can be forwarded to the
edge routers of LANy and LANg, i.e., R3 and Ry4. Similarly, at both
these routers, entropy variations will be estimated and if significant
change is detected in any one or at both routers, action will be taken
accordingly. In the sample network, R3 can infer that attack sources
are from LAN;. However, R4 will infer that attackers are from LANg
and also are behind R4. Accordingly, the traceback request needs to
be forwarded further to upstream routers, say Rs, to locate the attack
from LANg.

It is worth mentioning that such an entropy-based traceback scheme
is useful and effective only when the following assumptions are valid.
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Figure 5.3: Tracing attack flows at the router.

Assumption 1: During a DDoS attack, a dramatic change of network
traffic occurs in a very short period of time, say in seconds. In case of
non-DDoS attacks, such changes or variations also may occur, but it
happens over a longer duration, may be minutes.

Assumption 2: During a high-rate DDoS attack, attack packets are
generated by a large number of bots or zombies, usually thousands
[279], and hence the number of attack packets are significantly higher
compared to the normal or legitimate flows.

Assumption 8: In both attack and non-attack cases, the number of
flows at a given router is stable.

Assumption 4: In a given interval of time, only one DDoS flooding
attack takes place.

To overcome such restrictions, recently several novel traceback
schemes using variants of Shannon’s entropy [218] have been devel-
oped [278], [280], [269], [240]. These schemes use information theo-
retic or information distance measures with an objective of identifying
the attack source with low network overhead and with low false pos-
itive rates. The measures commonly used for sensing the attack at a
router are Shannon’s generalized entropy, collision entropy or Renyi’s
quadratic entropy [204], extended entropy [218] and Kullback—Leibler
divergence or information distance [36]. The authors of specific pa-
pers mostly attempt to establish their chosen measure in terms of ef-
fectiveness in sensing the variation between the attack traffic and the
legitimate traffic. Several additional traceback schemes have also been
developed using either link testing or by using various packet-marking
and logging schemes. So we broadly classify these schemes into four
categories: (i) link testing, (ii) packet marking, (iii) packet logging, and
(iv) ICMP Traceback Messages.
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5.1.1.1 Link Testing

In link testing, the victim conducts a test on each of its incoming links
as a probable input link for a DDoS attack traffic. If the test result
is positive, it contacts the upstream router(s) closest to the victim.
The contacted router then initiates an interactive traceback process
recursively with its upstream routers until the true source of attack is
identified. This scheme has at least three main advantages: (i) it can
discover attackers of flooding attacks reliably, (ii) it is cost effective due
to relatively low network overhead, and (iii) the scheme can be repli-
cated in a distributed manner easily. It has several limitations as well.
One major limitation is the generation of additional traffic, which usu-
ally consumes significant network resources. One can apply link testing
to detect attack sources in two distinct ways: (i) input debugging and
(ii) controlled flooding. These two link testing methods are introduced
next.

In the input debugging scheme, the first task is to recognize an at-
tack at the victim. Once an attack is recognized, the next task is to
generate an attack signature based on the common features of attack
packets. The victim then sends a message to an upstream router for
installation of an input debugging filter on the egress port. It is ex-
pected that such a filter will reveal the associated input ports and the
upstream routers responsible for generation of the attack traffic. The
process is repeated recursively until the source of the attack is detected.
This scheme is often successful in identifying the true sources of DDoS
attacks because of its distributed nature. Its limitations include facts
such as (i) the cost of management of resources used to support preven-
tion is significantly high, (ii) the network and router overhead is large,
(iii) it consumes a significantly large amount of time to communicate
with upstream routers, and (iv) it requires skilled network professionals
for effective traceback operation.

The controlled flooding traceback scheme, introduced by Burch and
Cheswick [39], works automatically without the involvement of net-
work operators. The scheme floods the incoming links on the router
with high rate (bursty) network traffic and then observes the response
from attackers. It chooses the incoming links nearest the victim, and
uses a pre-generated map of Internet topology, including a few selected
hosts. There is a high dropping probability for packets (including the
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attacker’s packets) travelling across the loaded links. The victim can
infer the attack links by computing the changes in packet arrival rates.
This process is then recursively applied on the upstream routers until
the source of attack is reached. It is a very effective traceback tech-
nique. However, like the previous schemes, it also suffers from three
major limitations: (i) It has high management overhead, (ii) It re-
quires coordination among routers or switches or even ISPs, and (iii)
It requires skilled network administrators.

5.1.1.2 Packet Marking

Packet marking is a significant recent addition to the techniques used
for identification of the origin of DDoS attacks. In a packet-marking
scheme, routers mark forwarding packets either deterministically or
probabilistically, with their own addresses. So, when an attack occurs,
the victim uses the marked information associated with the packet
to trace back to the attack source. Packet-marking-based traceback
schemes have been developed in two ways: (a) deterministic packet
marking, commonly known as DPM schemes, and (b) probabilistic
packet marking, also known as PPM schemes.

The probabilistic packet-marking (PPM) scheme, introduced by Sav-
age et al. [210], does not require prior knowledge of the whole network
to build an attack tree, i.e., a map of the routers along the path of the
attack. Ome can use this marking during an attack or even after an
attack has occurred. In this scheme, the IP header has only a single
field to store the marking information. Each router on the path from
the source to the destination writes down its unique identifier in the
entry in the packet header with some probability. By writing into the
field, routers overwrite any previous entry that was present there. The
victim can reconstruct the path from the source to itself on receiving
a large number of packets.

A major advantage of this scheme is that there is no need for any
additional network traffic like ICMP traceback, router storage for log-
ging, or packet size increase. In this scheme, each router performs an
information injection event using a 16-bit identification field in the IP
header for every forwarding packet. Out of 16 bits, it uses 5 bits for
maintaining hop count information and the remaining bits for the mes-
sage that the router wants to send to the destination of the packet. If
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the message is too long, fragmentation is performed to make it smaller
in size with some bits indicating the fragment offset and data fragment.
During a DDoS attack, a victim can reconstruct the message with the
help of a hash function interleaved in the original message it received
from the router. However, a major limitation of the PPM scheme is
high processing overhead in the victim during the reconstruction of the
path.

In deterministic packet marking (DPM), each outgoing packet is
marked by the router with its own unique identifier. This mechanism
is similar to the IP record-route option and it uses the marking infor-
mation during reconstruction of the attack path at the victim. Savage
et al. [210] calculate the optimal value for the marking probability to
be 1/d, where d is the length of the path.

Goodrich et al.’s [90] randomize-and-link approach is an improve-
ment over the probabilistic packet-marking scheme from security and
practicality points of view. The core concept is that each router frag-
ments its message M into several words and these words are included
randomly in b reusable bits together with a large checksum. Though
the approach is efficient, it wastes b precious bits. The checksum codes
significantly reduce the ability of an adversary to inject false messages
that collide with legitimate ones. The main strength of this approach
is that it can easily recognize 8-fragment messages or higher from hun-
dreds of routers, even when attackers inject packets to slow down the
approach. Moreover, this approach does not require any prior knowl-
edge of the whole network.

Xiang et al. [270] propose an optimized version of DPM called
flexible DPM (FDPM) that provides a defense system with the ability
to find real sources of attacking packets. Compared to link testing,
packet logging, ICMP traceback, PPM, and DPM, FDPM provides
more flexible features to trace IP packets and gives better performance.
In some situations, the method uses a service field in the IP header;
to store mark information. It uses two fields in the IP header, one
is the fragment ID and other is the reversed flag. The sender of a
packet assigns an identifying value to the ID field that helps assem-
ble all fragments of a datagram. Compared to DPM, FDPM is sim-
pler and more flexible during path reconstruction. FDPM is effective
in terms of low false positive rates as well as the number of packets
needed to reconstruct one source, the high number of sources that can
be traced in one traceback process, and the high forwarding rate of
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traceback-enabled routers. Major pros of FDPM include easy imple-
mentation, low processing cost, low bandwidth overhead, suitability for
attacks other than (D)DoS, scalability, and the lack of inherent security
flaws.

Alwis et al. [11] propose a network topology-based packet-marking
(TBPM) scheme, which is distinct from other similar schemes. It em-
beds network topology information in a data packet to be marked. The
main problem with traditional packet-marking methods is that they
mark the identity of the edge router through which a packet enters a
network. However, during flooding attacks, the edge router may be un-
reachable from the node under attack. The node can defuse the attack
close to its source with the help of information about the route that the
packet has traversed through the network. This is practically possible
even when the edge router is unreachable, and therefore, this approach
can restore functionality of the internal network in the presence of DoS
attacks at the edge routers. Space efficiency in the form of a constant
marking field and processing efficiency in the form of minimum router
support are two major advantages of this scheme. However, it also
suffers from limitations such as (i) a high false positive rate, (ii) a high
number of required packets, (iii) low capability for packet tracing, and
(iv) an inflexible marking rate that cannot adapt to the load of the
participating router.

5.1.1.3 Packet Logging

In the packet logging approach, routers store packet information so
that such information can be used to trace an attack long after the at-
tack has completed. One can use data mining techniques on the logged
packet data to determine the path that the packets may have traversed.
Many variations of packet logging methods have been proposed. Sno-
eren et al. propose [223] a hash-based IP traceback mechanism that
records the packet digest in an efficient data structure. This method
needs a significant amount of memory to store the logged information.
To overcome this problem, Broder and Mitzeamacher [34] propose the
use of bloom filters to minimize storage overhead significantly. The
main advantages of this method are (i) it stores packet log information
historically for future investigation, (ii) it is easy to trace back, and (iii)
it can be easily deployed in a distributed manner. However, it requires
high storage space to store historic data, and also has high network
overhead and high management overhead.
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5.1.1.4 ICMP Traceback Messages

In this mechanism, the router generates ICMP traceback messages that
include the content of forwarded packets along with information about
adjacent routers and sends them to the destination. When flooding
attacks occur, the victim uses these ICMP messages to construct attack
graphs back to the attacker. The traceback messages help the victim
find the original source of the attack. This mechanism relies on an input
debugging capability that is not enabled in many router architectures.
As a result, it may be difficult to establish a connection between a
participating router and a non-participating router. ICMP traceback
is effective in terms of network overhead as it incurs low management
cost. Moreover, the approach can be distributed easily and is able to
effectively detect attack paths during flooding attacks. However, this
approach generates high additional network traffic and creates many
false ICMP messages. ICMP messages can be distinguished easily and
hence may be filtered or rate limited differently from normal traffic.
The main disadvantages of this method are (i) computational overhead
is high if the network is large, (ii) detection of multiple attack paths
is difficult, (iii) IP traceback is difficult due to the stateless nature of
Internet routing, and (iv) manual IP traceback is tedious and difficult.

5.1.1.5 Discussion

Although a large number of IP traceback schemes have been proposed
under categories such as link testing, packet marking, packet logging,
and ICMP traceback messages, several issues remain to be resolved
satisfactorily.

e Network Overhead: Most link testing schemes suffer from (i) high
resource consumption, (ii) have high management overhead, and
(iii) require skilled network operators. A link testing scheme that
may be able to locate the true source of DDoS attacks by allevi-
ating these limitations is necessary.

e Processing Overhead: Packet-marking schemes are useful and ef-
fective in preventing DDoS attacks in real time. However, most
such schemes suffer from one common disadvantage, viz., high
processing overhead at the victim during reconstruction of the
path. So, a PPM (probabilistic packet marking) or DPM (deter-
ministic packet marking) scheme that is able to prevent DDoS
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attacks in real time with low processing overhead at the victim
is wanted.

5.1.2 Filtering Techniques

Filters provide a useful and powerful mechanism to protect network
resources from DDoS attacks. Several filtering techniques have been
introduced by network security researchers. In this section, we discuss
three commonly used, but effective approaches to filter DDoS attack
traffic, especially with spoofed source IP addresses.

5.1.2.1 Ingress and Egress Filtering

Ingress and egress filters are very useful in DDoS attack prevention.
Ingress filtering rules are useful to filter the traffic coming into a local
network, whereas egress filtering rules are set to filter the traffic leaving
a local network [239]. When setting ingress and egress filtering rules,
one requires a reference point to avoid confusion and conflict. As an
illustration of these two filtering mechanisms, consider the example
situation shown in Figure 5.4, in the context of the original filtering
proposal of Ferguson and Senie [77].

Egresstraffic Ingress traffic
forISP A forISP A

L~y

ISP A =
Ingresstraffic Egresstraffic Attacker

for ISP A for ISP A Al

Figure 5.4: An example network to demonstrate ingress and egress
filtering.

We see in the figure that ISP A provides access to the Internet
to the network of an institution or organization, referred to as a leaf
network. In the leaf network, router Rz is the edge router, connecting
to an edge router of ISP A, i.e., router Ry. ISP A has another edge
router, i.e., router Rz, through which connectivity is provided to other
networks. According to the proposal, ingress and egress filters allow
access to packets that come into a network or leave a network if their
source addresses match a pre-defined range of source IP addresses.



156 CHAPTER 5. DDOS PREVENTION

Let us consider a scenario. Assume that attacker Al is inside the
institution’s network and is sending packets with spoofed IP addresses
to the Server. Also assume that router Ry of ISP A is equipped with
an input filter, and is connected to the institution’s network. Assume
also that we have set a rule that the input filter will only allow packets
with source IP addresses with the prefix 202.141.129.0/24. If the at-
tacker A1’s packets with spoofed source IP addresses do not have such
a prefix, the filter will simply drop these packets at router Ry. Such
a filtering facility provided by router Ry is referred to as ingress filter-
ing. Similarly, in another scenario, assume the attacker A2 is outside
of both ISP A and the institution’s network, and is sending packets
with spoofed source IP addresses to the Server inside the institution’s
network. Also, assume that these source IP addresses are set to watch
for the ones with prefixes other than 202.141.129.0/24. Like the previ-
ous case, router Rz, which is equipped with an input filter, will simply
drop these packets due to non-match with the pre-defined range of IP
addresses. Such a filtering operation performed at router Rz is referred
to as ingress filtering. On the other hand, if the filtering operation is
performed at router Ry, it would be called egress filtering.

By now, it is clear that to apply such filtering operations, one has
to know the expected range of source IP addresses at a port. If such
a range can be predicted correctly, both ingress and egress filtering
work successfully. However, in many enterprise networks with complex
topologies, such prediction may not be correct and as a consequence,
legitimate traffic may be dropped, which is undesirable! To ameliorate
the situation, researchers address this issue using various approaches
to build adequate knowledge of correct IP ranges to watch for.

In general, the network of an institution or an organization is cre-
ated with a simple topology. Acquiring knowledge about the expected
source IP ranges of the network in such a case is not a difficult task.
Thus, ingress and egress filtering is usually effective. When such net-
works are deployed, filtering operations are relatively easy to install
because sufficient additional computing resources can be spared. An-
other significant advantage of filtering is that it can be applied not
only to source IP addresses, but also to port numbers, protocol types,
destination IP addresses, and other attributes of concern. However,
such filtering may not always be effective in the case of DDoS attacks.
Since, recent trends in launching DDoS attacks is to use large peer-to-
peer botnet technology, an attacker may compromise a large number
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(of the order of thousands) of hosts to generate the attack traffic. An
attacker does not have to spoof source IP addresses, and hence can
bypass the ingress/egress filtering easily.

5.1.2.2 Router-Based Packet Filtering (RPF)

Router-based packet filtering is an extension of ingress filtering, intro-
duced by Park and Lee [189]. The main principle behind this approach
to filtering is that in the core of the Internet, for each link usually only
a limited set of source addresses is valid for generation of legitimate
traffic on the link. So, if any deviation is detected in an IP packet
on a link, one can suspect that the source address is spoofed, and ac-
cordingly filter the packet. The working principle of the technique is
as follows. Initially, the Internet must be divided into a collection of
routing domains referred to as Autonomous Segments (AS). Each AS
may represent multiple networks, and is administered by a single entity,
which may be an organization, an institution, or a corporation. A bor-
der router is responsible for routing traffic between ASs using a gateway
protocol called Border Gateway Protocol (BGP) and depending on the
topology used, each AS (which is identified by a 16-bit unique ID) can
operate with more than one such border routers. Thus, following their
terminology, the whole Internet can be viewed as an interconnection
of border routers. In summary, this technique attempts to filter traffic
with spoofed source IP addresses using the information available about
the world-wide BGP topology.

Let us consider an example situation with eleven ASs or nodes, as
shown in Figure 5.5. The attacker R3 is in AS3 and attempts to flood
a target R6 in AS6. Assume that the attacker spoofs the source address

=p Attacktraffic —>» RoutefromR7 = => Alteredroutefor R7
fromR3

Addressis R9
spoofed

RPF

-
-
-
—_——

R10

Figure 5.5: A demonstration of router-based packet filtering.
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as if it is coming from R7 in AS7 and also let the filtering technique be
deployed at R4 in AS4. The traffic generated from R3 can be prevented
by filtering if R4 is aware of the network topology. Considering the
traffic path shown in the figure with the normal directed edge from R7,
which is the spoofed address of attack traffic, it will not be possible
for traffic generated from R7 to reach at R4 where the filter engine is
deployed on the link from R3 to R4. Therefore, we can confidently say
that attack traffic with the spoofed source address of R7 will be filtered
by the RPF at R4.

Although, an RPF has several advantages from the perspective of
DDoS prevention, it has some limitations as well. Recent DDoS attack
masterminds are very clever and are likely to use both carefully chosen
spoofed source IP addresses and genuine source IP addresses when
launching attacks. As a result, one may not find this filtering technique
effective against DDoS attacks. Therefore, both router-based filtering
approaches (viz., ingress / egress filters and RPF) may fail to prevent
attack traffic, especially, when dynamic Internet routing is used. To
address this issue, the following protocol has been introduced.

5.1.2.3 Source Address Validity Enforcement (SAVE)
Protocol

Li et al. [148] introduced the SAVE protocol to enable update of the
expected source IP address information dynamically on each link. Like
previous techniques, it blocks IP packets with source IP addresses which
are not included in the expected list of source IP addresses for a given
link. SAVE frequently updates information about all destinations by
propagating valid source IP addresses, so that each router can build
an up-to-date incoming table relevant for each link of the router and
accordingly can block any unexpected source IP addresses. Like ingress
filtering and RPF, SAVE also assumes that for each link of the router,
the expected source address space is known a priori and is stable. A
major advantage of the SAVE protocol in comparison to ingress fil-
tering and RPF is that it can overcome the problem associated with
asymmetries of Internet routing by updating the incoming table for
each link regularly. However, in case of DDoS attacks, like the previ-
ous two filtering techniques, SAVE is also not safe, since recent DDoS
attacks may not be dependent on spoofing.
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5.1.3 Rate Control

Rate control is another effective approach to prevent DDoS attacks
based on pre-specified prevention criteria. It attempts to control or
limit the arrival rate of packets matching the DDoS attack criteria.
Such schemes are carefully designed so that legitimate flows are min-
imally harmed. Further, unlike pushback schemes, typically such a
scheme does not incur any extra overhead during prevention, and as
a consequence, does not create a situation of denial of service by it-
self. Furthermore, rate control is also considered less severe than other
packet filtering schemes. Used with a DDoS defense method that leads
to too many false positives, such rate control schemes can be more ef-
fective than the usual packet filtering schemes. An appropriate rate
limiting scheme shapes packets, which is good because other Internet
sources are forced to respect constraints imposed on their forwarding
rate.

5.2 Chapter Summary

Based on the discussion of various DDoS preventive measures intro-
duced in the recent past, we make the following observations.

e Although filtering techniques prevent DoS/DDoS attacks by han-
dling the IP spoofing problem, they have become outdated and
ineffective due to (i) non-dependency of most recent DDoS attacks
on IP spoofing, (ii) difficulty in deployment, and (iii) inability to
handle IP spoofing within the same network.

e Ingress and egress filters can prevent DDoS attacks with high
accuracy, especially when the source IP addresses are spoofed.
However, in case of high-rate DDoS attacks without IP spoofing
or carefully chosen spoofed IP addresses, such filters may not
perform effectively.

e RPF has several advantages, but still has one serious limitation.
It may not perform well against DDoS attacks generated by large
botnets without source IP spoofing, especially when dynamic In-
ternet routing is used.

e Rate control has no significant extra overhead during prevention
and is generally more effective when the DDoS defense method
leads to too many false positives.






Chapter 6

DDoS Reaction and
Tolerance

An intrusion response system (IRS) monitors the health of a system
continuously based on IDS alerts to effectively handle malicious or
unauthorized activities. It applies appropriate countermeasures to pre-
vent problems from worsening and to return the system to a healthy
mode. A notification system generates alerts when an attack is de-
tected. An alert can contain information such as attack description,
time of attack, source IP, and user accounts used to attack. Typically,
an IRS automatically executes a preconfigured set of response actions
based on the occurrence of a specific type of attack. This approach
is more automated than the IDS approach, where an administrator is
required to take such response actions manually. Unlike an IDS, here
no human intervention is required. So, there is no delay between in-
trusion detection and response. Figure 6.1 shows a generic structure
of an IRS. The four basic components of a generic IRS are a detec-
tion component, a reaction component, a monitoring component, and
a managing system. Unlike IDSs and IPSs, the reaction component of
an IRS includes a response system, which uses a predefined approach
to respond to any intrusion automatically.

6.1 Intrusion Response System (IRS)

Once anomalous or intrusive behavior is detected by an intrusion de-
tection system (IDS), it is desirable that appropriate action(s) be taken
to minimize the damage and to guarantee protection of computing and
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Figure 6.1: Intrusion response system: a generic view.

network resources. Actions or corrective measures taken to thwart at-
tacks and to ensure safety of the resources are commonly known as
intrusion responses (IRs) [229], [127]. In an IDS, such response activ-
ities are considered integral to it when monitoring, tracing, and analyz-
ing system activities. However, an intrusion response system (IRS) has
its own existence and it has an important role to play in DDoS defense.
An IRS is dedicated to constantly observing the health of a networked
system based on alerts received from IDSs, and to take appropriate
actions for effective handling of malicious activities to bring the net-
worked system back into a healthy state. In the past two decades,
although IDS research has been able to attract considerable attention
of the computer science research community, very little attention has
been given to IRS research. The following may be reasons for poor
progress on the IRS front.

e Developing an adaptive and dynamic IRS that can thwart most
DDoS attacks most of the time is very difficult.

e Deployment of such a system in automatic mode to provide real-
time services is very challenging as well.

6.1.1 Intrusion Response (IR) and Its Types

Intrusion response can be of various types based on the approach used
to generate it. An IR can be generated manually, semi-automatically,
or automatically based on alerts received from an IDS. But, in all these
types of IR generations, a human analyst or system administrator has
a direct or indirect role to play. Especially, in case of a manual and
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semi-automatic IRS, involvement of such human analysts with ade-
quate knowledge and experience is a must to select an appropriate
course of actions. An IR can also be proactive or reactive. A reactive
IRS generates the response only after the attack is confirmed. In con-
trast, a proactive IR is generated only after a probabilistic analysis of
the network behavior indicates the possibility of occurrence of a DDoS
attack in the near future. Similarly, an intrusion response may be gen-
erated in active or passive mode. In an active IRS, the system does
not just notify the administration with attack details, but also takes
necessary actions to minimize the damage by the DDoS attack and to
prevent repeated such attacks in the near future. In contrast, a passive
IR just notifies the system administrator about the occurrence of an
attack. Considering the three basic types of responses, viz., passive,
proactive, and reactive, to show relationships among them using differ-
ent attack time frames, a response model was developed by [12]. We
explain it next.

6.1.1.1 A Model to Demonstrate Relationships among Re-
sponses

In this model, the authors [12] establish the relationships among the
three basic types of responses, viz., passive, proactive, and reactive, us-
ing three distinct time frames. Once an attack is detected by an IDS,
the types of responses that can be generated at various stages and their
inter-relationships, are shown using three time frames (represented by
three dotted horizontal lines) viz., T),_~, T), and T}, 1, as shown in Fig-
ure 6.2. These time frames also represent two stages viz., (a) before an
intrusion alarm (i.e., normal or pre-attack stage) or during the interval
Ty—~ to Tp,, and (b) after an intrusion alarm (i.e., post-attack stage)
or during the interval from T}, to T,,. In addition to these stages,
another stage is introduced in this model, i.e., stage III or the post-
reaction response stage, which is also referred to as the investigation
stage.

Stage I: Pre-attack Stage

During the pre-attack stage, i.e., during the interval from T;,_, to T,
prior to detection of any attack by the IDS, proactive response gen-
eration is active. This stage plays two significant roles to defend and
protect network resources. First, it identifies a possible occurrence of
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Figure 6.2: IRS model.

a DDoS attack with high confidence based on prediction analysis and
takes appropriate actions to block such potential malicious incidents.
Second, it receives feedback from passive and reactive response com-
ponents, analyzes them, and takes necessary actions to prevent future
and current attacks.

Stage II: Post-attack Stage

In this stage, i.e., during the time interval 7T}, to T},4-, the reactive
response model becomes active and plays an important role to mini-
mize damage to resources. During this post-attack stage, appropriate
reactive countermeasures are taken based on the seriousness of the at-
tack, and the level of confidence in its confirmation. If the confidence
level is high and the attack sources are identified, it blocks the sus-
pected source IPs from accessing victim host(s). The reaction process
continues until T3, 1.

Stage III: Investigation Stage

This stage starts at 75,4, and has no specific end interval. It con-
tinues until the incident has been completely investigated. It is mostly
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applicable to non-critical systems where the time interval for analysis
and response generation is not strictly specified. Stage III waits, in-
vestigates, and learns from Stage II about the incident and then takes
response actions. It also involves the passive component, collects its
feedback and combines with the current stage, and prepares a feedback
for reactive and proactive responses. The feedback between passive and
reactive responses is bidirectional and hence it forms a feedback cycle,
as shown in Figure 6.2.
Based on the above discussion, we summarize as follows.

e Intrusion response generation can be divided into two major zones:
the active zone and the passive zone.

e The passive, proactive, and reactive responses are inter-related.

e Feedback items from both passive and reactive responses are com-
bined and prepared as input for both reactive and proactive re-
sponses.

6.1.2 Development of IRSs: Approaches, Methods, and
Techniques

In the past few years, several innovative IRSs have been developed.
We classify these IRSs into two major groups [229] based on the degree
of automation, as shown in Figure 6.3. Each group of IRSs is further
categorized into subgroups using five other criteria. These are (i) the
approach used for triggering responses, (ii) adaptability, (iii) prompt-
ness in response generation, (iv) ability to cooperate, and (v) versatility
in reacting to unseen situations. We discuss various approaches used
to develop IRSs in the next section, following the taxonomy given in
Figure 6.3.

6.1.2.1 Based on the Degree of Automation

Classification schemes based on the degree of automation have been
introduced by several researchers [229], [224], [44], [199].

Following these authors, we classify IRSs into three distinct cate-
gories on the basis of degree of automation, viz., manual, semi-automatic,
and automatic. These categories can also be differentiated according to
the level of participation and expertise of the human analysts or sys-
tem administrators involved in generating appropriate courses of action
based on IDS alerts.
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Figure 6.3: A taxonomy of IRSs.

Manual IRS: In a manual IRS, the system administrator or secu-
rity analyst has a major role to play. It is an IRS with the lowest
degree of automation. The system administrator manually decides an
appropriate set of response actions from a pre-specified (i.e., already
defined) set of responses based on the alert information received from
the IDSs. The correctness or relevance of the responses generated by
such an TRS mostly depend on (i) the experience of the administrator
and (ii) the content in the attack information received from the IDSs.

Semi-automatic IRS: This category of IRSs is situated between man-
ual and automatic IRSs. In other words, the participation of the sys-
tem administrator in this IRS is more pronounced than in an automatic
IRS, but less than in a manual IRS. It generates responses faster than
a manual IRS using a decision support process with low involvement of
the system administrator. Such IRSs are generally more effective due
to (i) easy implementability, (ii) high adaptability, (iii) easy configura-
bility, and (iv) low rate of false alarms.

Automatic IRS: The aim of an automatic IRS is to react immediately
on identification of an intrusion using a fast decision-making process,
without intervention of a system administrator or human analyst. The
decision-making process of this type of IRS should be able to gener-
ate responses automatically based on attack information received from
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the IDS. In contrast to the other two categories of IRSs, an automatic
IRS generates responses in a timely fashion, which is highly essential,
especially for critical systems. However, with increasing sophistication
in attackers’ skills, implementation of such automatic IRSs in real life
with zero false alarms is challenging.

6.1.2.2 Based on the Approach Used for Triggering Responses

An IRS may also act in an active or passive mode. In an active IRS,
the system does not stop after notifying the administration with details
of an attack, but also takes necessary action to minimize the damage
by a DDoS attack and to prevent such attacks in the near future. In
contrast, a passive IRS simply notifies the system administration about
the attack.

(a) Active IRS: An active IRS is more involved in the defense pro-
cess. It analyzes the alert information received from the IDSs and
may take several response actions to minimize the damage by (i)
blocking suspicious source IPs and ports, (ii) restoring the target
system, (iii) blocking suspicious incoming / outgoing connections,
and (iv) tracing the connection to isolate the attacker.

(b) Passive IRS: A passive IRS usually restricts itself to generation
of alarms, notification of attack report with information about the
victim, criticality of the attack, time of the attack, source IP in-
formation, and attack statistics. Depending on the situation, it
may also enable (i) additional IDSs, (ii) network activity logging,
(iii) trace connection for information gathering, and (iv) intrusion
analysis tools.

(¢) Hybrid IRS: This category of IRSs combines the advantage of both
active and passive IRSs. Depending on the situation and the class
of attack, such IRSs can act as dynamic IRSs, whereas in some
other situations and for some non-critical attack classes, they act
like static IRSs. In addition to performing like a static IRS, it also
has the abilities of an active IRS such as (i) blocking suspicious
ports, IP addresses, or connections, (ii) tracing connections to iso-
late attackers, and (iii) enabling or disabling additional firewall
rules.

Cost-sensitive IRSs are examples of hybrid IRSs. The main goal of
such IRSs is to minimize the damage due to attack at low response
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cost. To estimate response action cost and damage cost, it defines
a cost-sensitivity assessment model taking into account a number
of factors related to cost and risk. The main purpose of using this
model is to balance these two factors. However, it is extremely
difficult to estimate these two factors accurately. Such a system
activates a passive or an active IRS module depending on how
critical the system is. The number and nature of factors to consider
to estimate damage and risk depends on the type of system and
type of attack being handled. The dynamic module also needs to
update the number and nature of cost factors and their values over
time, which is a difficult task.

6.1.2.3 Based on Adaptability

IRSs can also be categorized based on their ability to adapt to changing
situations. IRSs are referred to as adaptive, if they can update or
adapt themselves during an attack. Otherwise, they are non-adaptive
or static.

(i) Non-adaptive or Static IRS: A non-adaptive or static IRS is
usually simple and easy to implement and deploy. However, it
requires periodic upgrades by the system administrator based on
feedback and past performance. Generally, during an attack pe-
riod, such IRSs remain static. But if the performance of the IRS
is not found to be effective, upgrade through human interven-
tion becomes inevitable. Static IRSs are cost-effective and useful,
especially in non-critical systems.

(ii) Adaptive IRS: In contrast to a static IRS, an adaptive IRS is able
to update or adjust its response during an attack. In an adaptive
IRS, adjustments to the system can take place in various ways,
as indicated below:

e dynamic allocation or reallocation of resources dedicated to
response generation due to augmentation in the IDS and

e recent performance evaluation of both the IDS and the IRS
in terms of false alarms generated.

In the recent past, there have been several efforts to develop adap-
tive IRS. However, developing a generic IRS that can counter a
wide range of attacks across multiple scenarios remains a chal-
lenge.
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6.1.2.4 Based on Promptness in Response Generation

An IRS can act proactively or reactively. It may generate actions only
after the attack is confirmed in a reactive IRS. In contrast, in a proac-
tive IRS, the response system attempts to analyze the network behav-
iorally and tries to predict the occurrence of a DDoS attack probabilis-
tically.

(i) Proactive IRS: This category of IRSs aims to ensure minimum
damage to the system. It applies probabilistic analysis of network
traffic and user—system behavior to estimate the probability of an
attack in the near future. Such an IRS is usually strongly coupled
with an IDS so that an instant response can be generated by the
IRS once an attack is identified by the IDS. However, to foresee an
attack based on statistical analysis before it actually takes place is
not an easy task. Often, such systems generate a large number of
false alarms. In addition, to be able to provide support for timely
or real-time response generation without compromising accuracy
in attack prediction remains an active area of research.

(ii) Reactive IRS: A reactive IRS generates responses only when oc-
currence of an attack is confirmed. So, such IRSs usually produce
delayed responses since they follow a rigorous process to confirm
an attack either (i) through a satisfactory matching against a rele-
vant group of signatures with respect to a user threshold or (ii) by
achieving a high confidence level based on the confidence matrix
of the intrusion detection system. Hence, a reactive IRS often is
not effective when systems are critical in nature.

6.1.2.5 Based on the Level of Cooperation

An IRS can generate response actions either independently or in coop-
eration with other IRSs. So, depending on the approach used by the
IRSs to handle intrusion alerts, one can classify them as independent
or cooperative.

Independent TRS: An independent IRS handles intrusion alerts in-
dependently by generating local response actions tailored to the attack
information. For example, alerts received from a host-based intrusion
detection system due to anomalies found in a server or host (single
machine) may be handled by such an IRS by generating actions such
as restarting the system, forcing shut down, and terminating processes.
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Cooperative IRSs: Unlike an independent IRS, a cooperative IRS
always decides on a set of response actions based on the combined
effort of multiple IRSs. Such an IRS gathers feedback from several
independent IRSs corresponding to autonomous systems (ASs), which
are capable of responding to intrusion alerts locally, and then under-
takes a global combination strategy suited to counter the attack. Such
cooperative IRSs achieve very high precision and low response time, in
comparison to an independent IRS in each individual AS acting alone.
However, developing an unbiased combination strategy with proper co-
ordination among a large number of ASs across an enterprise network
is often difficult.

6.1.2.6 Based on Versatility in Reacting to Unseen Situa-
tions

One can classify IRSs based on their versatility in reacting to both
known and unknown attack situations into two categories, viz., non-
versatile or static mapping, and dynamic mapping.

(i) Non-versatile or Static Mapping: A non-versatile or static map-
ping IRS can be automatic or semi-automatic. It enumerates and
uses a pre-defined set of responses. Response generation maps
the alerts received from the IDSs into corresponding pre-defined
responses. The alerts received on detection of a DDoS attack may
trigger blocking of certain source IPs or may block some incoming
packets. If the pre-defined set of response actions is exhaustive
and the mapping is accurate, such static mapping IRSs are suit-
able for most systems. Such IRSs are easy to implement and
maintain. However, a common difficulty with this type of IRS
is that it offers a limited number of choices of response actions,
which can be a serious vulnerability, since intruders can easily
predict them. Further, such a system works effectively only when
it is known how to raise an alert specific to an attack. Further-
more, a static mapping IRS cannot tune itself to the present state
of the network and also cannot dynamically configure the decision
table to cope with changes in the network environment.

(ii) Versatile or Dynamic Mapping: This category of IRSs is more
sophisticated and technically more sound than its static versions,
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as discussed above. Such IRSs follow an advanced response se-
lection mechanism using multiple attack metrics such as attack
confidence and attack severity. Based on characteristics of the
attack, such IRSs select an appropriate set of responses that cor-
respond to intrusion alerts in real time. To generate responses in
real time, such an IRS follows a fast rule-based or signature-based
approach. Three important advantages of this approach are: (i)
it is flexible in reconfiguring the rule base dynamically, (ii) it is
flexible in adjusting the attack metrics depending on the situa-
tion, and (iii) it can provide attack responses with high precision
and low false alarms. However, it suffers from limitations such as
(1) it is still vulnerable to attackers and (ii) it is costly to update
rules after appropriate conflict resolution.

6.1.3 Some Example Intrusion Response Systems

In this section, we introduce a few popular IRSs from both non-
commercial and commercial categories and discuss their features.

6.1.3.1 Cooperative Intrusion Traceback and Response Ar-
chitecture (CITRA)

CITRA [213] is a cooperative intrusion response system, which was ini-
tially developed to provide infrastructure to enable network anomaly
detectors, firewalls, routers, and other network components to work
cooperatively to trace the origin of attack sources as accurately as pos-
sible and block them. Later, it was extended to handle bandwidth
depletion attacks. It was enhanced by incorporating a cooperative ap-
proach using a network of nodes, each installed with the CITRA soft-
ware to adapt in response to DDoS attacks. In the enhanced model,
each node in the network registers itself and coordinates with the rest
of the nodes through a dedicated component called the Discovery Coor-
dinator (DC). Once an attack is detected, the nodes in the network use
the network audit data to trace back toward the origin of the attack.
During this traceback operation, it takes temporary action lasting only
2 minutes to minimize damage due to network flooding using traffic
rate limiting. Traffic rate limiting overcomes the difficulties in packet
filtering. Within a 2—minute interval, CITRA comes up with a strat-
egy to handle the attack using the discovery coordinator, following the
attack path, such that the components gather responses according to
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the policy adopted to minimize the attack.

CITRA performs well if (i) parameters are appropriately chosen
and (ii) bandwidth is adequate for legitimate traffic. For experimental
evaluation, the authors created a test-bed using several subnets each
with its own router enabled with CITRA. The authors establish that
when the system is active, it allows uninterrupted viewing, although
with poor quality. CITRA requires only 10 seconds to minimize the
damage due to a denial-of-service attack. One can improve performance
using more powerful hardware; however, quality is not guaranteed.

6.1.3.2 Distributed Management Architecture for Coopera-
tive Detection and Reaction

Koutepas et al.’s approach [137] for detection and reaction to DDoS
attacks is another cooperative IRS. The authors introduce an architec-
ture to detect a DDoS attack and to locate its source using the con-
cept of cooperative domains. These domains internally check whether
DDoS attacks originate from within them and if so, generate alerts for
other networks which may be affected. The authors use an optimal ap-
proach for multicast transmission of alerts to handle increased network
congestion from the messages. It uses a minimal spanning-tree-based
multicast approach to send messages only once from the source hosts
and then replicates them whenever the path along the tree splits.

To determine the probability of an attack internally, there are en-
tities in each domain which observe the alerts coming in from other
domains and entities and the reports of local IDSs. These entities work
in a cooperative manner and when an entity fails to work, another en-
tity takes over the responsibility. The system checks the number of
alerts, and if it exceeds a pre-defined user threshold, it takes appro-
priate actions following a reaction table stored at the entities. The
reaction table specifies a set of response actions that can be taken at a
certain state.

The claims made by the authors are not supported using exper-
imental evidence. Theoretical analysis shows that unlike traditional
traceback mechanisms, the system reacts faster and more efficiently.
However, the heavy dependency on the multicast backbone may seri-
ously limit the approach, if the attacker can successfully target this
system backbone.



6.1. INTRUSION RESPONSE SYSTEM (IRS) 173

6.1.3.3 EMERALD

Neumann et al.’s [178] Event Monitoring Enabling Responses to Anoma-
lous Live Disturbances (EMERALD) is a dynamic mapping system,
enabling monitoring of events and generation of appropriate response
actions. EMERALD uses established analytical techniques to primar-
ily support, intrusion detection, and secondarily, automated response
generation. Its architecture is highly reusable, interoperable, and scal-
able to large network infrastructures [8, 31]. Its modular structure and
effective tool sets enable timely generation of response actions.

From a structural point of view, EMERALDS’s primary entity is
the monitor, which has a well-specified interface to receive and send
event data and analytical results from third-party security services. A
monitor typically interacts with the environment in two modes, viz.,
(i) in passive mode, by reading network packets or logged activities or
(ii) in active mode, by scanning or probing to supplement normal event
gathering. It deploys multiple interacting monitors within each admin-
istrative domain. The monitors are empowered to analyze a target
event stream signature analysis as well as using profile-based statisti-
cal analysis for anomaly detection. Further, each monitor includes a
countermeasure decision engine, referred to as EMERALD resolver in-
stance, to fuse or aggregate alerts from its associated analysis engines
and to invoke response handlers to protect resources from malicious
activities. Because of its ability to aggregate alerts received in a dis-
tributed environment, EMERALD is an effective intrusion response
generator. EMERALD’s tiered organization of monitors and coordi-
nated exchange of alert information help achieve timely generation of
response actions to minimize damage. Its resolvers can perform the
following two major activities.

e Request and receive intrusion reports from other resolvers at
lower layers of the analysis hierarchy, enabling the monitoring
of and response to malicious activity on a global basis.

e Invoke real-time countermeasures in response to malicious or anoma-
lous activity reports produced by the analysis engines.

With each valid response method, EMERALD includes evaluation met-
rics to help identify the circumstances following certain criteria for de-
tachment of the method. Typically, two criteria are used.
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(i) Confidence of the analysis engine that the attack is real.

(ii) The severity of the attack.

By combining these metrics, the resolver formulates an appropriate
response policy for its monitors. The authors claim that EMERALD is
effective because of its strong analytical base and tiered organization of
monitors in both anomaly detection and timely generation of response
actions.

6.1.3.4 CSM

CSM [263] is an effective dynamic mapping system that can (i) de-
tect intrusions in a large network environment, and (ii) select response
actions based on computed confidence information about the attack.
CSM works in a cooperative manner to detect intrusive behavior based
on the feedback of the individual anomaly detection monitors, referred
to as Security Managers. These monitors not only observe, but also
play other roles in the detection of an attack. CSM does not depend on
a centralized component to detect the occurrence of an attack. When-
ever a security manager, i.e., a monitor, senses suspicious behavior,
it performs anomaly detection for its own users. Once any anoma-
lies are detected, each Security Manager reports it to the connection
originating Security Manager for the host. By doing so, an added
advantage is that a Security Manager can update itself about the ac-
tivities as the user travels from one host to another in a distributed
environment.

Once an intrusion is detected, a dedicated component, which can be
referred to as the intruder-handler (IH), is activated to decide the set
of response actions. The decision of the IH mainly depends upon the
severity of the attack, as perceived. Initially, the IH simply notifies the
occurrence of the attack to the system manager. In subsequent steps,
it gradually notifies other trailing security managers for this user. In
addition, two other important actions are taken: (i) killing the recent
session of the identified intruder, and (ii) blocking the account of the
suspected user to gain control. CSM initiates the process of response
generation, only when (i) attack evidence is strong and (ii) damage is
presumed to be severe, if immediate response action is not taken.
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6.1.3.5 Adaptive, Agent-Based IRS (AAIRS)

AAIRS, introduced by [44], is a dynamic mapping agent-based auto-
mated IRS. It was introduced by the same research group, that devel-
oped CSM. In this system, several IDSs monitor a computer system
and if any anomalous behavior or attack is detected, generate intru-
sion alarms. AAIRS gathers alert information through interface agents
and builds a model of false alarms and missed alerts received from the
detectors to compute an attack confidence metric. This metric, along
with the intrusion statistics sent to a master analysis (MA) agent to
classify the situation either as an existing incident or as a novel attack
using a decision-making process that uses a set of parameters, such
as the target application and target port. The decision-making process
used in AAIRS is also adopted by another system called ADEPTS [81].

When MA identifies an unseen intrusion, it generates a new analysis
agent to handle the intrusion. The agent uses the response taronomy
agent to analyze the incident and to generate appropriate abstract re-
sponse actions. The abstract response actions are forwarded to the
tactics agent for implementation using a Response Toolkit. The tactics
agent decomposes the abstract response actions into specific actions
and then implements them invoking appropriate components from the
Response Toolkit. AAIRS provides response adaptation using three
components:

(i) an interface agent, to adapt by modifying the confidence metric
associated with each IDS,

(ii) an analysis component, to receive additional incidence reports,
which may lead to reclassification of the type of attacker and/or
type of attack, and

(iii) a tactics agents, to implement the planned steps using multiple
techniques and to adapt by choosing alternate steps, if necessary.

All these components keep track of success metrics on their plans and
actions and use the most successful ones in subsequent instances of an
attack.

6.1.3.6 ALPHATECH

Armstrong et al. introduce a lightweight autonomous defense system
(ADS), called a-LADS [14] using a partially observable Markov deci-
sion process (PO-MDP). It is a host-based defense system developed by
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a company called Alphatech, which was later acquired by BAE systems
[14], [15], [139]. a-LADS is a prototype autonomous defense system de-
veloped using the PO-MDP stochastic controller. The main focus of
this work is to develop and analyze the controller and to evaluate its
performance experimentally.

The two main goals of a-LADS at an abstract level are (i) to select
a correct set of responses in the face of an attack, and (ii) not to take
any actions if any attack has not occurred. «-LADS has a stochas-
tic feedback controller, which receives input from an anomaly sensor,
called CylantSecure, and attempts to compute the attack occurrence
probability for the system. If the probability is high, it invokes actua-
tors to react to the perceived attack. The authors refer to the system
as partially observable for two reasons: (i) the alerts generated by the
intrusion detecting sensors may be inaccurate or false, and (ii) the re-
sponse actions taken by the system may not bring back the system to
a functional state.

To evaluate the performance of a-LADS, the authors used data
from a worm attack on a host and developed a Markov state model
for the attack scenario. T'wo intrusion detector sensors were chosen to
receive observations. One sensor was used to monitor activities on the
IP port, whereas the other was used to monitor processes operating
on the host computer. The authors calibrated both sensors against
activities which represent typical usage of a computer system. For
validation, the authors used training data generated by combining both
stochastic HT'TP and FTP accesses in addition to random issuances of
commands. From the first experimentation, it was concluded that the
prototype ADS built on a feedback controller performs better in the
presence of legitimate system activities than a static controller. From
the second experiment, it was established that a-LLADS was able to
respond to unseen attacks as well. In other words, when a~-LADS was
trained with a worm attack on the FTP server, it was able to counter
similar worm attacks. Further, a-LADS could also counter every single
instance of unknown attacks.

6.1.3.7 SITAR

The design of this intrusion-tolerant system relies on redundancy [14].
Its major architectural components are proxy servers which help (i)
validate both incoming and outgoing network traffic, and (ii) detect
failures within and among application servers. SITAR mitigates unde-
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sirable effects from successful intrusion attempts using redundant and
diverse internal components. It introduces diversity in internal com-
ponent selection by manually choosing different server codes such as
Apache and Internet Information Server for Web servers, and by se-
lecting multiple OSs such as Linux, Solaris, and Microsoft. The main
motive behind using multiple servers is that an intruder can mutually
compromise only one server at a time with a single intrusion attempt.
Detailed architecture of SITAR is given in Section 6.2.1.

6.1.4 Discussion

Following the discussion on intrusion reaction systems, we summarize
below.

e An IRS has its own independent existence in most IDSs and is
responsible for generating response activities.

e Adaptive and dynamic IRSs are able to counter most types of
DDoS attacks and minimize damage to network resources.

e In a proactive IRS, responses are generated prior to occurrence
of an attack using probabilistic analysis of network behavior. In
contrast, in a reactive IRS, response actions are taken only after
confirmation of the attack based on analysis of alert information
received from the IDSs.

e Reactive and proactive IRSs can work together to minimize dam-
age to resources from both known and unknown intrusions.

6.2 DDoS Tolerance Approaches and Methods

In a DDoS tolerance system, the defender aims to defend a network
and its resources from malicious attacks using a fault-tolerant design
approach. Abandoning the conventional aim of preventing all intru-
sions, intrusion tolerance instead uses mechanisms that prevent intru-
sions from causing system security failure. Classical fault tolerance
techniques can be useful for tolerating intrusion and error detection-
and-recovery, or error masking techniques can be applied to maintain
data integrity or service availability in spite of intrusions. However,
such fault tolerance techniques are usually harmful to data confiden-
tiality due to the redundancy that they imply. Figure 6.4 provides a



178 CHAPTER 6. DDOS REACTION AND TOLERANCE

MANAGING
Il £\
\
MONITOR W
- =
Q o
&
DETECT [P W

Figure 6.4: Intrusion tolerance system: a generic view.

generic view of an intrusion tolerance system. The managing system,
the monitoring component, and the detection component are similar
to those in an IDS, but the reaction component uses tolerance tech-
niques. In the reaction component, intrusion tolerance techniques try
to prevent intrusions from causing system failure.

A tolerance system aims to provide reliable services and survivabil-
ity to legitimate users of a network under DDoS attack by limiting the
possible damage caused by the attacks. Typically, a tolerance mech-
anism does not depend on a specific DDoS detection or prevention
system, or even may not be aware of occurrence of an attack in a net-
work. Without even distilling the anomalous traffic from legitimate
ones, an intrusion tolerance system (ITS) attempts to minimize the
damage caused by a DDoS attack.

In designing an intrusion tolerant system, most researchers are
guided by three basic principles: (i) redundancy, to avoid any single
point of failure, (ii) diversity, to alleviate common weaknesses using
software (e.g., operating systems) of different kinds in the servers, and
(iii) reconfiguration of the services, components and servers to ensure
that services are continually provided only to legitimate users, even in
an attack situation.

In the recent past, several novel approaches have been introduced
[256], [136], [187], [205], [184], [253], [84] to provide tolerance
support to the network community. One can classify these approaches
into three broad categories [180]: (i) multi-level IDS-based, (ii) mid-
dleware algorithm-based and (iii) recovery-based. In addition to these,
researchers have also developed tolerance mechanisms by successful
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combination of these approaches to provide the best possible tolerance
services. Such approaches can be categorized as hybrid approaches. In
this chapter, we discuss a few prominent and representative methods
from these three categories only.

6.2.1 Multi-Level IDS-Based Approaches

In this approach, ITS developers improve defense capability by incor-
porating multiple levels of detection to achieve high reliability and sur-
vivability. The basic idea behind the design is that only through fast,
accurate, and reliable DDoS detection, one can trigger an appropriate
recovery mechanism, and hence can ensure continuity of operation.

SITAR [256] is one such architecture, introduced to work with
distributed services, especially for commercial off-the-shelf (COTS)
servers. The main idea behind the design of SITAR is that effects are
given more importance than causes, because the network or a system
must first survive in an attack situation before it can identify whether
the cause was an attack or an accidental failure. SITAR relies on both
redundancy and diversity. Figure 6.5 shows the conceptual framework
of the SITAR service architecture. The basic building blocks shown
within the dashed-line box are the major contributions of the authors
of SITAR. The block at the bottom in the figure includes the COTS
servers. The thin downward directed lines show requests, whereas the
thick and dashed upward directed lines represent responses and con-
trol, respectively. SITAR uses intrusion vulnerable servers, but is able
to provide intrusion-tolerant services. Typically, information flow oc-
curs in such an architecture as follows.

Proxy servers shown at the top are the public access points for
the intrusion-tolerant services. The policy enforced by these servers
decides which COTS servers (CS) are responsible and how the service is
rendered. On behalf of the original request, a new request is generated
by the PS (Proxy Server) as shown by the thin downward directed line
and submitted to the appropriate COTS server. During this process,
relevant BMs (Ballot Monitors) and AMs (Acceptance Monitors) also
get involved by message passing. While responses are generated by the
CSs (shown by thick upward directed lines), they are initially processed
by the AMs after validity check and then forwarded to the BMs with
checksum results. The BMs finally decide the response on behalf of the
CSs based on majority voting or by a Byzantine agreement process.
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Figure 6.5: The architecture of SITAR for intrusion tolerance.

The AR (Adaptive Reconfiguring) module is responsible for evalu-
ating intrusion threats and cost/performance impact based on trigger
information received from all other modules, and it generates new re-
configurations for the system. SITAR also maintains a backup AR to
safeguard against a single point of failure, because at any time any of
the individual components may be compromised. AC (Audit Control)
is responsible for auditing the behavior of the various components of
an ITS. A detailed security analysis of SITAR is reported in [255].

SITAR’s advantages include its scalability and ability to provide
tolerance services by means of redundancy and diversity. It is able to
handle unknown attacks and zombies responsible for unpredictable be-
havior during DDoS attacks using existing intrusion-vulnerable servers.
When an attack (external or internal) is detected, SITAR is able to
reconfigure compromised servers. However, SITAR has its own limita-
tions. (i) It has high computational complexity, (ii) acceptance tests
are specific to applications and require specific configurations, and (iii)
adaptive recovery is executed, only when intrusion is detected.

In addition to SITAR, several other significant ITSs have been de-
veloped. DPASA (Designing Protection and Adaptation into a Surviv-
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ability Architecture) [187] is one such system developed by Pal et al.
This system, also commonly known as DPASA Survivable JBI, inte-
grates concrete defense mechanisms to prevent, detect, and respond to
known and unknown intrusions, that cannot be prevented. DPASA is
designed to protect assets and resources using multiple zones and layers
to contain external attacks. In this architecture, the innermost zone is
the host, which manages security defense. Proxy servers are responsi-
ble for intercepting incoming traffic from outer zones. Like SITAR, it
also detects intrusions using its own network intrusion detection system
(NIDS).

The Willow architecture [136] is another significant proposal that
seeks to protect critical applications in a distributed computing envi-
ronment. The architecture includes components (i) to identify faults
due to malicious activities, (ii) to analyze system vulnerabilities, and
(iii) to perform reconfiguration, once malicious activities are identified.
The reconfiguration component of this architecture performs a key role.
For identification of intrusions, it monitors application hosts using dis-
tributed intrusion-detection sensors. It is able to sense network states
effectively, can analyze changes, and can estimate required changes to
the configuration. Like SITAR, the Willow architecture also performs
reconfiguration, only when intrusion is detected. The cost of processing
in this architecture is high.

An adaptive intrusion-tolerant architecture, referred to as DIT (De-
pendable Intrusion Tolerance), was introduced by Valdes et al. [250]
to provide alert information when intrusions take place. This adap-
tive architecture is composed of a cluster of mediating proxies and a
monitoring system. The cluster is not only able to detect intrusions
but also able to identify anomalies using an agreement protocol. Like
other IDS-based tolerance methods discussed above, DIT also requires
a significant amount of processing to analyze, monitor, and detect in-
trusions and anomalies.

Similarly, HACQIT (Hierarchical Adaptive Control of Quality of
Service for Intrusion Tolerance) is another significant contribution to
the area of intrusion tolerance. This intrusion-tolerant service, intro-
duced by Reynolds and Just [205], delivers critical user services allow-
ing performance degradation at most 25%. It tries to minimize redun-
dancies working with other R&D and COTS efforts, and develop new
capabilities. HACQIT uses active defenses and diversity in design to
augment standard fault-tolerant ability. It alleviates repeatable errors
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by preventing use of out-of-band control systems, once errors are de-
tected. Depending on the situation and feasibility, it introduces COTS-
supplied design diversity (e.g., various operating systems, DBMSs, and
server applications) to enhance fault-tolerant abilities. HACQIT’s ad-
vantages include the following: (i) it can use diversity effectively for
intrusion detection, enhancing tolerance, (ii) it is able to prevent re-
peated attacks from succeeding, for any server on the Internet, and (iii)
it can provide recovery from intrusions by continuous on-line repair.
However, two common disadvantages of HACQIT are: (i) it requires
a significant amount of additional cost in hardware and software, and
(ii) it demands high administrative overhead.

ITSI (Intrusion-Tolerant Server Infrastructure), introduced by O’Brien,
Smith, Kappel, and Bitzer, [184] is another useful development in in-
trusion tolerance system design, with its ability to detect intrusions at
the network layer. It detects and isolates intrusions, blocks them from
spreading freely from one host to another, and continues to provide ser-
vices to legitimate users. For identification of intrusions, it uses smart
NICs and after detection of an intrusion, it helps fast recovery from
the intrusion. Like the other systems, ITSI also suffers from the need
for additional computing cost and administrative overhead.

6.2.2 Middleware Algorithm-Based Approaches

The systems developed under this category are mostly focused on de-
veloping special middleware algorithms such as threshold cryptography,
voting algorithms, and fragmentation redundancy scattering (FRS) to
harden resilience.

MAFTIA (Malicious and Accidental Fault Tolerance for Internet
Applications), introduced by Verissimo [253] is a pioneer middleware
algorithm-based approach, suitable for constructing large-scale depend-
able distributed applications. It is able to handle both accidental and
malicious faults. Though it incorporates IDS sensors, it does not focus
on building IDS capability. Instead, it relies on authority and transac-
tion management services that are developed on a platform of common
services that provide voting algorithms and k-threshold cryptography.
The MAFTIA architecture can be viewed in terms of three crucial
dimensions, i.e., hardware, local support, and distributed software, as
shown in Figure 6.6. The hardware dimension includes the host and
network devices comprising the physical system. The local support ser-
vices are provided by the operating system (OS) and runtime platform
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Figure 6.6: Three crucial dimensions of MAFTTA.

within each node, which may vary from host to host. The distributed
software provides authorization, intrusion detection, and trusted third
parties. The MAFTIA operational framework is shown in Figure 6.7.
It is able to provide an effective defense against both known and un-
known threats. The MAFTIA technology has now been incorporated
into product and service offerings from IBM. However, like all other
systems, it introduces additional cost for processing and management
overhead.

PASIS (Perpetually Available and Secure Information System [84])
is another significant effort by researchers to provide effective tolerance
services. It is designed with two primary goals, to provide for avail-
ability and confidentiality. It is a distributed framework for building
perpetually available secure systems. The PASIS architecture is based
on three fundamental technologies, viz., (i) decentralized storage sys-
tems, to avoid single point of failure, (ii) threshold data encoding, to
provide information availability and confidentiality, and (iii) dynamic
self- management, for automatic and instantaneous data maintenance
to achieve reliable and survivable storage. The client-side agents of PA-
SIS establish communication with the storage nodes for reading and
writing information. PASIS hides its decentralized nature from the
client system. A threshold secret-sharing scheme is used to encode and
disperse data in survivable storage systems. The authors believe that
to increase intrusion tolerance capability, one must increase the number
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Figure 6.7: MAFTIA: a middleware algorithm-based tolerance archi-
tecture.

of replicas and threshold values. The agents responsible for automated
monitoring and repairing are helpful in providing self-maintenance fea-
tures. The three major benefits provided by PASIS are the following.
(i) Confidentiality: It reveals 0% information if one storage node is
compromised and 4.4%, when 3 nodes are compromised. (ii) Availabil-
ity: It ensures that the probability that PASIS cannot serve a read
request is extremely low, given that any node fails with a probability
0.001. (iii) Performance: It shows performance comparable to conven-
tional systems for reading large objects. The two major limitations of
PASIS are that (i) development of PASIS libraries and agent software
for relevant client platform is costly, but it is a one-time cost and (ii)
processing overhead is high.

OASIS [71], i.e., Organically Assured and Survivable Information
System, is another significant addition to developments in ITS. It is a
US DARPA program, with a major focus on providing defense capabil-
ities against sophisticated attacks to allow continued operation in the
presence of known and future cyber attacks. The three major objectives
of the OASIS program are: (i) to develop ITS using potentially vulner-
able components, (ii) to analyze and specify the cost benefits of ITSs,
and (iii) to provide evaluation and validation support for any ITS. The
program has financed 30 intrusion tolerance projects. ITUA (Intru-
sion Tolerance by Unpredictable Adaptation) [186] is one among these
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projects. It is a middleware algorithm-based approach that provides ef-
fective tolerance service. ITUA is a distributed object framework that
adaptively protects applications at the object level using protocols for
group communication and cryptography. It is a collection of several
mechanisms based on redundancy, Byzantine fault tolerance and adap-
tive response that supports tolerance of network attacks. A schematic
view of the ITUA architecture is shown in Figure 6.8. The architec-
ture enables (i) isolation of compromised resources, (ii) recovery from
failure, and (iii) graceful degradation. It provides cryptographic sup-
port for authentication and consensus-based message signing. It uses
intrusion-tolerant gateways to protect object—object communication.
ITUA manages a number of redundant hosts organized in a decentral-
ized manner in the security domain without implicit trust to provide
continuous tolerance support against network intrusions.
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Figure 6.8: ITUA architecture.

6.2.3 Recovery-Based Approaches

Unlike the two previous types of architectures, recovery-based archi-
tectures assume that once a system becomes online, it may be compro-
mised at any moment. So, periodic restoration of the system to a good
known state is an essential requirement.

Self-Cleansing Intrusion Tolerance (SCIT)[108] is an effective and
well-known recoverable intrusion tolerance system that uses a peri-
odic recovery policy and maintains service availability using redundant
servers. It is composed of an SCIT controller and several redundant
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servers, as shown in Figure 6.9. The SCIT server can exist in any of
four different states, viz., active, grace period, cleansing period, and
live spare period. In the active state, the server is online and accepts
requests from the outer world. When the server is in the grace period,
it does not communicate with the outer world and only processes tasks
for requests that were received during the active period. In the cleans-
ing period, the server is offline and it recovers system configuration
files, service files, and so on. Finally, the server waits to be active in
the live spare period.
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Figure 6.9: SCIT architecture.

The group of identical servers employed by SCIT may have some
diversity. It applies round-robin cleansing among this group of servers
to restore the system to its pristine image. The SCIT model has sev-
eral significant advantages. It is applicable to any open server on the
Internet, such as Web and Domain Name System servers. The archi-
tecture is simple and does not rely on intrusion detection. The core
component of SCIT is its controller. The responsibility of the controller
is to manage server rotation in and out of cleansing mode. The con-
troller algorithm managing the server rotation takes into account the
group cardinality, a server’s cleansing-cycle time, and the number of
required online servers. The implementation of this algorithm is based
on virtualization technology. It assumes that the interfaces between
the controller and the group of servers to be protected are trusted.

Huang et al. develop several remediation mechanisms [109], [106],
[107], [105], [104] based on the Self-Cleansing Intrusion Tolerance (SCIT)
architecture, to counter a wide range of unknown attacks. Typically, in
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an SCIT-based mechanism, multiple servers are configured to provide
various services such as Web services, email services, or DNS services.
The SCIT cluster architecture permits an individual server to perform
different roles at different points of time without compromising the
quality of service that the cluster is supposed to provide. Within the
SCIT framework, a server always begins its lifecycle with the cleansing
role and then gradually proceeds with one or more online service roles.
As we cannot expect an individual online server to remain online for an
infinite period of time, such cleansing operations are performed peri-
odically. It minimizes the opportunities an attacker gets to exploit any
vulnerabilities in a server by limiting the maximum duration a server is
exposed online. In addition, due to periodic cleansing, it limits the pos-
sibility that attackers are able to set up a foothold to be exploited later
to launch future attacks. In [107], [105], the authors introduce an ini-
tial hardware enhancement for an SCIT-based DNS system. Similarly,
in [104], the authors introduce a cluster-wide self-cleansing intrusion
tolerance management approach.

However, the operations and mechanisms of SCIT could also be
compromised by unknown attacks, and hence the cleansing operation
and role rotation may also be disrupted. It is definitely possible in case
of software implementation of the SCIT mechanism. To overcome, the
authors introduce a hardware-based generic SCIT framework, referred
to as SCIT/HES [16]. The two main motivations behind the design of
the hardware SCIT mechanism are the following. (i) Considering the
growing complexities and newer vulnerabilities that continually arise,
a software implementation can be potentially corrupted through com-
munications. (ii) Online servers cannot be expected to be online in-
definitely; they can be corrupted at any point of time, since all possi-
ble vulnerabilities are not known. SCIT/HES is a scalable hardware
framework that attempts to alleviate the shortcomings of the software
components in SCIT and to enforce and guarantee the six security
primitives of SCIT. These are given below.

(i) The servers are reset and cleansed periodically.

(ii) Files, which are critical for successful server operation, are loaded
only from read-only and secure devices.

(iii) The initial transition of a server is from the clean (ready) state
to the assigned online service role.
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(iv) Execution of critical security operations takes place only during
the offline clean state.

(v) Online servers are isolated from internal network and trusted stor-
age.

(vi) Secure controllers are isolated.

In addition to the above, SCIT/HES also addresses three other
important issues viz., scalability, generality, and removal of a single
point of failure. A schematic view of SCIT/HES high-level architecture
is shown in Figure 6.10. In this figure, for simplicity, the detailed
interactions between the central controller and a particular server X
is shown. A similar setup is applicable for other servers in the SCIT
cluster. The authors also show that their hardware architecture not
only guarantees security properties but also is economical and easy to
administer.
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Figure 6.10: SCIT/HES architecture for a single server X.
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In addition to the SCIT-based family of recovery-based architec-
tures, several other significant efforts have also been made by researchers.
Aung et al. [18] introduce a cluster recovery model with a software
rejuvenation methodology with two approaches, i.e., a stochastic ap-
proach and a Markov decision process approach. The model’s analysis
is effective in deciding which vulnerable application component pro-
cesses lead to longevity flaws and to choose them for rejuvenation. The
authors consider the service daemon processes as better candidates, as
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these processes are expected to run forever. Rejuvenation is a cost-
effective approach, and it ensures high availability of services, provided
analysis and tuning of its parameters are properly carried out. How-
ever, proper estimations of the mean time between failures, vulnerable
component processes, base longevity interval, survivability, downtime
cost due to scheduled rejuvenation and unexpected failures, and avail-
ability, are extremely difficult and costly tasks.

Another significant tolerance service provided under this category
is FOREVER (Fault/intrusiOn REmoVal through Evolution & Recov-
ery) [190]. The main objective of this service is to eliminate faults
and intrusions by effective use of evolution and recovery techniques.
The service is able to enhance the resilience of the replicated systems,
which may be affected by malicious attacks. To guarantee availability,
FOREVER coordinates the recovery of different replicas. For this coor-
dination, it requires three distinct services: (i) perfect failure detection
to detect whether the application replicas are alive or not, (ii) clock syn-
chronization to ensure that the recovery time schedule for each replica
is precise, and (iii) total order multicast to update the same recov-
ery schedule on every FOREVER monitor without compromising the
availability of the intrusion-tolerant application. For effective imple-
mentation of these services, a major requirement is that the wormhole
subsystem be synchronized. FOREVER is known for another impor-
tant feature, the introduction of diversity after a successful recovery
operation is over. In other words, a recovered system is made dif-
ferent from its previous form or incarnation. However, generation of
diversified forms after successful recoveries must be done carefully. An
appropriate tradeoff to achieve enhanced resilience is another major
issue with FOREVER.

In addition to the above three distinct categories of tolerant support
services, several other significant efforts have been made by researchers
in the past few years to provide best possible tolerance services. Fire-
flies, introduced by Johansen et al. [124] is one such effort. Fireflies is
a scalable protocol that supports intrusion-tolerant network overlays.
A network overlay provides the necessary routing functionality such as
multicast routing, content-based routing, and resilient routing, which
are not supported by the Internet directly. Members considered by
Fireflies are in three states: correct, stopped, and Byzantine. Fireflies
allows members identified as correct to execute protocols such as Gossip
and Ping, whereas Byzantine members are not within the jurisdiction
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of the protocol. Stopped members are not allowed to execute the pro-
tocol. Gossip is a simple group communication protocol where each
member picks a random member from its view and exchanges state
information. Pinging is used by a member to detect failures of other
members. Both correct and Bizantine members are also categorized as
“live”, and they can switch between states at any point in time. To sup-
port intrusion-tolerant network overlays, the Fireflies protocol depends
on three sub-protocols: (i) an adaptation pinging protocol that makes
the probability of a wrong failure detection independent of message
loss, (ii) an intrusion-tolerant gossip protocol that helps communica-
tion among the correct members within a probabilistic time bound, and
(iii) a membership protocol, responsible for implementation of member-
ship details by using accusations and rebuttals provided by Fireflies.
This protocol provides its correct members with a membership view of
all the members found correct over a long period, and at the same time
eliminate all members found stopped for a long duration.

6.2.4 Discussion

Based on the discussion on the design and analysis of various intrusion
tolerance systems in this chapter, we make the following observations.

e An ITS provides reliable services and survivability to legitimate
users of a network under DDoS attack by minimizing the damage
caused by the attacks.

e Three basic principles that guide ITS developers are (i) redun-
dancy, which helps avoid any single point of failure, (ii) diversity,
to overcome common weaknesses of different types of servers, and
(iii) reconfiguration, to ensure that services are provided only to
legitimate users during an attack.

e Intrusion-tolerant systems can be categorized into three distinct
types, viz., multi-level IDS-based, middleware algorithm-based,
and recovery-based.

e Designers of multi-level ITSs improve defense capability by in-
corporating multiple levels of detection mechanism to achieve
high reliability and survivability. In contrast, in a middleware
algorithm-based ITS, developers mostly focus on developing spe-
cial middleware to harden resilience. However, in a recovery-
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based ITS, developers assume that an online system can be com-
promised at any moment, hence, periodic restoration of the sys-
tem to a good state is absolutely necessary.

6.3 Chapter Summary

We end the discussion on intrusion reaction and tolerance, and systems
that support these goals, by making the following summary observa-
tions.

e Unlike passive IRSs, an active IRS analyzes alert information
received from IDSs and takes response actions to minimize the
damage that can be caused by attacks.

e In contrast to static IRS, an adaptive IRS can update or adjust
response selection during an attack period itself.

e Proactive IRSs analyze network traffic and user-system behavior
using probabilistic approaches and aim to ensure minimum dam-
age to systems. However, though the response actions generated
by reactive IRSs are mostly accurate, they are slow and hence
not suitable for critical systems.

e Static mapping IRSs are suitable for most systems if the set of
response actions is exhaustive and the mapping mechanism is
accurate.

e Dynamic mapping IRSs are flexible and can handle changing net-
work configurations.

e An IRS should be able to handle unpredictable attack scenarios,
in addition to known ones.

e Existing intrusion-tolerant systems can be classified into three
distinct categories, i.e., multi-level IDS-based, middleware algorithm-
based, and recovery-based.

o Multi-level IDS-based ITS designers assume that only through
fast, accurate, and reliable DDoS detection, one can trigger an
appropriate recovery mechanism, and hence can ensure continuity
of operation.
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Designers of middleware algorithm-based ITSs develop special
middleware algorithms such as threshold cryptography, voting
algorithms, and fragmentation redundancy scattering (FRS) to
harden resilience.

A recovery-based ITS designer assumes that an exposed system
can be compromised at any moment. So, periodic restoration of
the system to a known good state is absolutely necessary.

Most I'TSs have been designed to provide continued services in
the presence of both known and unknown adversaries. But, they
are able to do so only with significantly high (i) computing cost
and (ii) administrative and management overhead.

Although in the recent past, a good number of intrusion-tolerant
systems under various categories have been proposed, an efficient
ITS that addresses the following two issues properly, is still yet
to be built.

(a) Providing IDS-based, real-time, intrusion-tolerant services with
low administrative and management overhead to obviate the
necessity of a separate NIDS for DDoS detection.

(b) Developing an ITS with low additional computing cost that
allows continuity of operation in any known or unknown ad-
verse situation.



Chapter 7

Tools and Systems

7.1 Introduction

With continuing growth in the number of network users, the number of
malicious network activities also keeps on increasing. As a consequence
of security threats posed by such malicious activities, network systems
are often compromised. Network attacks attempt to bypass security
mechanisms of a target network by exploiting its vulnerabilities. An
attacker usually attempts to disrupt a network system or a server by
launching various types of attacks using attack tools. Today, one can
easily download a sophisticated attack tool such as LOIC [196] or HOIC
from the Web, and can disrupt a network system using such a tool.

At the receiving end, for smooth administration of a network of
systems, the administrators also require tools to monitor and analyze
network traffic so that they are prepared to defend their networks.
To build a proper line of defense, network engineers or administrators
must have a good understanding of the psychology and behavior of the
attackers.

A network security tool is usually developed with multiple objec-
tives in mind, such as attack generation, packet or flow capture, net-
work traffic monitoring and analysis, and visualization of traffic behav-
ior. With increased sophistication and complexity of attacks, constant
vigilance and sophistication have become absolutely necessary. In this
chapter, we provide a comprehensive and structured presentation of
a number of network security tools, along with salient features, the
purposes for which they were designed, and their effectiveness in the
context of what they were designed for. We also give a glimpse of how
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one can develop one’s own tool to launch DDoS attacks of various types
as well as to monitor and analyze network traffic.

If we analyze the intentions or motives of an attacker based on
observed attack patterns or behaviors, we see six distinct classes of
attackers in general. The first class of attackers, whom we call ordi-
nary attackers, is comprised of individuals who discover that there are
tools available on the Web to generate attacks, become curious, and
experiment with them and execute such tools causing attacks without
pre-meditated malice. There is another class of individuals who may
be knowledgeable about systems as well as attacks, and their intention
may be simply to create nuisance in the network to annoy or vex people
they dislike or for fun. On the other hand, there is a third class of dan-
gerous hackers who attack a network intentionally for profit. This class
of attackers attacks networks to capture or sniff important and useful
information. A fourth class of attackers are those who attack a network
to degrade network performance or to challenge the security system to
express political views. A fifth class of attackers consists simply of ter-
rorists intent on causing maximum harm. Finally, governments across
the world have become involved in cyberattacks and cyber-espionage
causing large-scale intrusions in government and corporate networks in
enemy or even friendly countries.

To launch an attack successfully, the attacker must be aware of
weaknesses or vulnerabilities in the target network. The weaknesses can
be assessed by scanning the network in an information gathering step.
Once the vulnerability information has been gathered, the attacker
attempts to exploit identified weakness(es) of the security system for
successful launch of an attack. In recent times, a large number of attack
launching tools and systems to generate network attacks have become
available in the public domain. One can use these tools to launch an
attack on any of the network layers in the TCP/IP network model,
however, most target network and transport layers.

In the recent past, a large number of highly sophisticated attacks
have evolved making the task of defending networks burdensome. How-
ever, an appropriate use of tools and systems can simplify the task
significantly. This necessitates a good understanding of the character-
istics and capabilities of these tools and systems, and how they are
used. This chapter presents a large number of tools in three major
categories: (a) information gathering tools, (b) attack launching tools,
and (c) capture, visualization, and monitoring tools. The lack of a
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consistent description of attack-related tools has often made it difficult
to understand the network security literature. Therefore, before we de-
scribe the tools, we introduce a taxonomy of relevant network security
tools.

7.2 Types of Network Security Tools

As discussed in the previous section, attackers generally target Web-
sites or databases or organizational networks by first gathering infor-
mation on their weaknesses. Attackers choose appropriate tools for
the class of attack they desire to launch and based on the weaknesses
discovered at the target site or networks already assessed, they make
use of the tool(s). Based on the features they possess, purposes for
which they are designed and used, we classify existing tools as shown
in Figure 7.1. Sub-categories are introduced under each basic category
considering differentiating characteristics within a class of tools. In the
next few sections, we introduce some well-known tools that are useful
to an attacker and discuss each briefly. We also present comparisons
among the tools by category to provide readers with a better overall
understanding.

7.2.1 Information Gathering Tools

The first step an attacker takes before launching an attack is to un-
derstand the environment where the attack is to be launched. To do
so, attackers initially gather information about the network such as the
number of machines, types of machines, operating systems, versions of
various software systems, and so forth. Once relevant information is
gathered, attackers try to assess weaknesses in the target Website or
network using various tools. In this section, we discuss information
gathering tools [101], [206] under two major categories, i.e., sniffing
tools and network mapping and scanning tools.

7.2.1.1 Sniffing Tools

An efficient sniffing tool is capable of capturing, examining, analyzing,
and visualizing packets or frames traversing the network. Such a tool
also helps extraction of additional packet features for subsequent anal-
ysis. Most sniffing tools also help understand the underlying protocols
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Figure 7.1: Taxonomy of attack-related tools.

and accordingly, include protocol parameters during visualization. We
list some popular packet sniffing tools and briefly describe them.

(a) Tepdump: This is a premier packet analyzer for security profes-
sionals. It enables the analyst to capture, save, and view packet
data. This tool also can be used by a third-party software such as
Wireshark.

(b) Ethereal: This is a multi-platform sniffer and traffic analyzer. This
tool includes two libraries: (i) GTK+, a GUI-based library and (ii)
libpcap, a packet capture and filtering library. Ethereal is capable of
reading tcpdump output and can apply tepdump filters to select and
display records conditionally. It allows decoding of a large number
(> 400) of protocols. Further, this tool is useful in identifying and
inspecting a network attack.

(¢) Net2pcap: This is a simple tool to transform packet traffic into a
pcap file. It does not use any library during the transform. Fur-
ther, it is partially dependent on libc, a Linux library utility. The
command % tepdump -w capfile almost does the same thing as



7.2. TYPES OF NETWORK SECURITY TOOLS 197

Net2Cap. Finally, it can capture and help analyze traffic in a hos-
tile environment.

Snoop: This is a Linux tool almost similar to tepdump. However,
its file format differs from the pcap format, and is defined in RFC
1761. Its provision of writing to an intermediate file avoids packet
loss. Further, it allows one to filter, read, and interpret packet
data. To observe traffic between two systems, say X and Y, we
simply need to write % snoop X, Y.

Snort: This is a lightweight, yet powerful misuse detection tool.
Snort is flexible and runs on multiple platforms. To capture traffic
and to detect misuse, one simply needs to pick up the appropriate
commands.

Angst: This is a Linux and OpenBSD-based active packet sniffer. It
allows one to capture data by injecting data into switched networks.
Angst is able to flood a network using random MAC addresses, by
causing switches to transmit packets toward all ports.

Ngrep: This provides a filtering facility on payloads of packets.
This tool has the sniffing functionality of tcpdump. It uses the
libpcap library.

Ettercap: This is an effective sniffer that supports multiple plat-
forms. FEttercap can also be used as an active hacking tool. It uses
an ncurses interface, and is able to decode several protocols. Fur-
ther, this tool can collect passwords in multiple situations, such as
when killing connections and injecting packets or commands into
live connections.

Dsniff: This is a collection of tools that enable active sniffing
on a network. This tool can perform man-in-the-middle attacks
against SSHv1 and HTTPS sessions. Further, it is capable of sniff-
ing switched networks by actively injecting data into the network.

Cain € Able: This is a multipurpose sniffer that runs on Windows
NT, 2000, and XP. It allows for password recovery for a number
of protocols. One can also launch man-in-the-middle attacks for
SSHv1 traffic using this tool.
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(k) Aimsniff: This is a simple tool to capture the IP address of an
AOL Instant Messenger user. Once the connection is established
successfully, it is able to capture the IP address easily.

(1) Tcptrace: This is a very effective and powerful tcpdump file ana-
lyzer that can generate connection-specific information. This tool is
capable of accepting input files generated by several capture tools.
Further, it supports graphical presentation of traffic characteristics
for analysis.

(m) Teptrack: This tool can sniff and display TCP connection infor-
mation. Tcptrack can watch passively for connections on the net-
work interface and can keep track of their state and display a list
of connections. It displays source IP, source port, destination IP,
destination port, connection state, idle time, and bandwidth usage.

(n) Nstreams: This is a visualizer and analyzer for network streams
generated by users between several networks, and between networks
and the outside. This tool can optionally output the ¢pchains or
ipfw rules. It parses the outputs generated by tcpdump or tcpdump
with the -w option.

(o) Argus: This tool runs on several operating systems and can pro-
cess either live packet data or captured traffic files. Argus can
output status reports on flows detected in a stream of packets.
It also obtains information on almost all packet parameters such
as reachability, availability, connectivity, duration, rate, load, loss,
and jitter.

(p) Karpski: This is a user-friendly tool, with limited sniffing and
scanning capabilities. It can include protocol definitions dynami-
cally. This tool can also serve as an attack launching tool against
addresses on a local network.

(q) IPgrab: This tool supports network debugging at the data link,
network, and transport layers. It is able to provide detailed header
field information for all network layers.

(r) Nast: This can sniff packets in normal or promiscuous mode for
analysis. It uses libnet and libpcap for sniffing. Nast captures
and stores header and payload information in ASCII/ASCII-hex
format.
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(s) Aldebaran: This is an advanced libpcap-based TCP sniffing and
filtering tool. This tool provides partial header information with-
out flag details. It also monitors data sent by connections to sniff
passwords. It uses libpcap rules to sniff packet headers and pay-
load contents and can transmit captured data to another host via
UDP. In addition, it can encrypt, analyze, and report the desired
packet statistics.

(t) ScoopLM: This is a Windows-based sniffer to capture LM and
NTLM authentication information. Such captured information can
later be used by a tool like BeatLM to crack authentication data.

(u) Gulp: This is a robust tool that can capture and store voluminous
network traffic from the network firehose. It overcomes the packet
loss problem of tcpdump by using multiple CPUs during capture.
It writes data as a pcap file.

(v) Nfsen: This tool is used to capture network flow data and to display
the data graphically. It can visualize protocol specific flows in a
graphical format.

(w) Nfdump: This tool enables one to collect and process Netflow data.
It can read Netflow data and can organize them based on time. It
is capable of analyzing a single file or several concatenated files for
a single run. The tool generates output in either ASCII text or
binary form.

In Table 7.1, we summarize these commonly used sniffing tools with im-
portant features along with the sources from which they can be down-
loaded.

From the above discussion, it is perhaps transparent that different
sniffing tools are designed with different purposes in mind. So a network
defender or an attacker must judge the importance and effectiveness of
a tool based on his/her requirements and relevance to the task at hand.
To clarify, let us consider a few example cases. Cain & Able is capable
of password cracking, but is not suitable for capturing live network
traffic. Similarly, one can use tcpdump and libpcap for capturing all
information in a packet and to store it in a file. On the other hand,
we cannot use Nfsen or Nfdump for packet traffic capture, but they
are effective in flow traffic capture and analysis. Similarly, Gulp is very
useful for packet traffic capture, but not for Netflow capturing.
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Table 7.1: Some sniffing tools and their features.
Tool Protocols Features Sources
name
Ethereal | TCP/HTTP | Powerful packet capture; pro- | www.ethereal.com.
/SMTP vides user-friendly interface.
Tcpdump | TCP/UDP Powerful packet capture; less | www.tcpdump.org
/ICMP intrusive than Ethereal.
Net2pcap | TCP/UDP A Linux-based packet capture | www.secdev.org
/ICMP tool; it is also auditable.
Snoop TCP/UDP/ | A robust packet capture tool; | www.softpanorama.org
ICMP /Telnet | no packet loss; supports >12
/FTP options.
Snort TCP/UDP A Linux- and Windows-based | www.snort.org
/ICMP lightweight, yet robust tool.
Angst HTTP/POP | An aggressive Linux-based | www.angst.sourceforge.net
sniffer; easy to use.
Ngrep TCP/UDP A Linux and Windows-based | www.ngrep.sourceforge.net
/ICMP packet capture tool; can han-
dle large data.
Ettercap | TCP/UDP An  effective Linux and | www.ettercap.sourceforge.net|
Windows-based sniffer; can
be used for man-in-middle
attack.
Dsniff FTP/Telnet/ | A Unix-based password sniffer. | www.naughty.monkey.org
HTTP/POP/
SMTP
Cain & A Windows NT/XP-based | www.oxid.it
Able password recovery tool.
Aimsniff | TCP/HTTP | A Linux-based packet capture | www.sourceforge.net
/UDP tool.
Tcptrace | TCP A commonly used Linux-based | www.tcptrace.org/
TCP packet traffic analyzer.
Teptrack | TCP A Linux-based TCP connec- | www.rhythm.cx
tion analyzer.
Nstream A Linux and Windows-based | www.hsc.fr/cvs.nessus.org
traffic analyzer.
Argus TCP/UDP A Linux and Windows-based | www.qosient.com/argus/
audit data analyzer.
Karpski TCP/UDP A Linux-based packet ana- | www.softlist.net
lyzer.
IPgrab A Linux-based packet ana- | www.ipgrab.sourceforge.net/
lyzer.
Nast TCP/UDP A Linux-based traffic analyzer. | www.nast.berlios.de
Gulp TCP/UDP A Linux-based packet capture | staff.washington.edu/corey
/ICMP tool; supports visualization.
Libpcap TCP/UDP A Linux and Windows-based | www.tcpdump.org
/ICMP packet capture tool.
Nfsen TCP/UDP An effective Linux-based flow | www.nfsen.sourceforge.net
capture tool; supports user-
friendly visualization of net
flow data.
Nfdump TCP/UDP A Linux-based flow capture | www.nfdump.sourceforge.net

tool;  an effective traffic an-

alyzer.
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7.2.1.2 Network Mapping/Scanning Tools

Network scanning or mapping activities are useful to both network de-
fenders and attackers. Using a network scanning tool, one can identify
active hosts on a network. Based on scanned information, an attacker
can assess vulnerabilities in the target Website or network and sub-
sequently can attack them. An efficient scanning tool supports four
types of port scans: (i) one-to-one, (ii) one-to-many, (iii) many-to-one,
and (iv) many-to-many as shown in Figure 7.2. Such a tool provides
an overall status report regarding network hosts, ports, IP addresses,
etc. We present some commonly used scanning tools, their features,
and sources in the rest of the section.

Ay X

(a) Single source port scan (b) Distributed port scan (c) Distributed port scan
{one-to-many) {many-to-one) (many-to-many)

Figure 7.2: Types of port scans.

(a) Nmap: Nmap facilitates network exploration and security audit-
ing. Nmap is capable of scanning large networks fast, especially
from single hosts. It uses raw IP packets and can effectively iden-
tify a large number of useful parameters such as available hosts,
services offered by the hosts, OSs running, and use of packet fil-
ters or firewalls. Nmap is not only useful in scanning and gathering
useful network parameters, but also helpful for network administra-
tors in security audits and other routine tasks such as maintaining
network inventory, managing service upgrade schedules, and mon-
itoring host or service uptime.

(b) Amap: This tool can identify applications running on a specific
port by sending trigger packets, which typically leads to an appli-
cation protocol handshake. It is capable of detecting an application
protocol, without depending on the TCP or UDP ports to which
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it is bound. In general, network daemons respond to the correct
handshake (e.g., SSL) only. Amap considers the responses and
attempts to find matches. It supports TCP and UDP protocols,
regular and SSL-enabled ASCII and binary protocols, and supports
a wide range of options to control its behavior.

(¢) Vmap: This version of the mapper tool enables one to identify the
version of a daemon by fingerprinting its characteristics, based on
its responses to bogus commands.

(d) Unicornscan: This is an asynchronous scanner as well as a payload
sender. This scalable and flexible tool collects information quickly.
For fast response, it uses a distributed TCP /TP stack and provides
a user-friendly interface to introduce a stimulus into a TCP/IP-
enabled device or network and measure the response. The main
features of this tool include asynchronous protocol-specific UDP
scanning, asynchronous stateless TCP scanning with wide varia-
tions in TCP flags, and asynchronous stateless TCP banner grab-
bing.

(e) Ttlscan: Ttlscan sends TCP SYN packets to each port of the host
using libnet and libpcap utilities to identify a host. It sniffs the
response from the host and uses it to identify hosts with services
by forwarding packets to another host behind a firewall. It reads
specific header parameters such as TTL, window size, and IPID to
identify the OS and its various versions running on a host behind
the firewall.

(f) Ike-scan: This tool is able to discover, fingerprint, and test IPSec
VPN servers based on the IKE protocol. Ike-scan works in Linux,
Unix, Mac OS, and Windows environments under the GPL license.

(g) Paketto: This set of tools is useful to assist in manipulating TCP /TP
networks based on non-traditional strategies. They can provide
tapping functionality within the existing infrastructure and also
extend protocols beyond their original intention. Example tools
include (i) Scanrand, which facilitates fast discovery of network
services and topologies, (ii) Minewt, which serves as user space
for a NAT/MAT router, (iii) Linkcat, which offers a Ethernet link
to stdio, (iv)Paratrace, which helps trace network paths without
spawning new connections, and (v) Phentropy, which uses Open-
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QVIS to render arbitrary amounts of entropy from data sources in
3-D phase space.

In Table 7.2, we show the basic features of the tools discussed in this
section and the sources from which they can be obtained. Almost all
these tools are Linux based.

Table 7.2: Some scanning tools and their features.

Tool’s Protocol Features Sources

name

Nmap TCP/UDP A Linux and Windows-based | www.insecure.org
scanning tool;  provides sev-
eral options.

Amap TCP/UDP A Linux and Windows-based | www.freeworld.thc.org
scanning tool.

Vmap TCP/UDP A Unix-based version mapping | www.tools.l0t3k.net
tool.

Unicornscan| TCP/UDP A Linux and Unix-based scan- | www.unicornscan.org
ning tool.

Ttlscan TCP A Linux-based effective scan- | www.freebsd.org
ning tool.

Ike-scan TCP/UDP A Linux and Unix-based scan- | www.stearns.org
ning and host discovery tool.

Paketto TCP A Linux-based scanning tool www.packages.com

From our experience, we feel that for scanning a large network,
Nmap is the best choice. This tool not only provides several options for
scanning a large network, but also has the ability to determine identities
of active hosts and ports, host operating systems, protocols, timing and
performance, firewall evaluation, and spoofing. It is a popular multi-
functional tool with most network administrators. Although Amap and
Vmap are similar tools, they do not support most functions of Nmap.
Most DDoS attackers use Namp to find vulnerabilities of a host to
compromise it for constructing botnets during attack generation using
the agent handler architecture.

7.2.2 Attack Launching Tools

During the past decade, a large number of attack launching tools have
come into existence with various levels of sophistication, and have been
made available on the Web. One can easily download these tools
and can use them for malicious activities. Some example tools can
be used for Trojan propagation, probe attack, buffer overflow attacks,
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DoS/DDoS attacks, and application layer attacks. Some DDoS attack
tools are very effective in disrupting the services of a network or a Web-
site instantly. Some tools are used in wired networks to capture and
exploit valuable information while others are used in wireless networks.
We discuss these tools under three main categories, viz., Trojans, trans-
port and network layer attack tools, and finally, application layer attack
tools.

7.2.2.1 Trojans

A Trojan is a malicious file whose executables are powerful enough
to break the security system of a computer or a network. Generally,
when a user attempts to open the file, the Trojan is executed and
damaging action is performed. The four possible sources from which
victims usually download a Trojan are (i) the Internet, (ii) an FTP
archive, (iii) via peer-to-peer file exchange using IRC, and (iv) Internet
messaging. Typically, Trojans are of seven distinct types. We introduce
each type with examples.

(a) Remote Access Trojans: This type of malware program uses back
doors to control a target machine with administrative privilege.
One can download this type of Trojan invisibly with a user request
for a game program or an email attachment. Once the attacker
compromises a machine, the Trojan uses this machine to compro-
mise more machines to construct a botnet for launching a DoS or
DDoS attack. An example of this type of Trojan is Danger.

(b) Sending Trojans: This type of Trojan is very dangerous and can
silently provide confidential data about the victim to the attacker.
It attempts to install a keylogger to capture and transmit sensi-
tive information such as passwords, credit card information, log
files, email addresses, and IM contact lists to the attacker based
on recorded keystrokes. Examples of this type of Trojan are Bad-
trans.B email virus and Eblast.

(¢) Destructive Trojans: This is another dangerous Trojan type and is
often programmed to infect a computer by automatically deleting
some essential executable programs, configuration, and DLL (dy-
namic link library) files. Such a Trojan acts either (i) as per the
instructions of a back-end server, or (ii) based on pre-installed or
pre-programmed instructions, to strike on a specific day and at a
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specific time. Two examples of this type are Bugbear virus and
Goner worm.

(d) Prozy Trojans: This Trojan type attempts to use a victim com-
puter as a proxy server. It compromises a computer and attempts
to perform malicious activities such as fraudulent credit card trans-
actions and launching of malicious attacks against other networks.
Examples of proxy Trojans are TrojanProxy: Win32 and Paramo.F.

(e) FTP Trojans: This type of Trojan attempts to open port 21 and
establish a connection from the victim computer to the attacker
using File Transfer Protocol (FTP). An example of an FTP Trojan
is FTP99cmp.

(f) Security Software Disable Trojans: These Trojans can destroy de-
fense or protection mechanisms such as antivirus programs or fire-
walls. Typically, an attack mastermind combines such a Trojan
with another type of Trojan as a payload. Two common examples
are Trojan. Win32. KillAV.ctp and Trojan. Win32. Disable.b.

(g) DoS Trojans: This is another type of dangerous Trojan that at-
tempts to flood a network instantly with useless traffic so that it
cannot provide any service. Some examples of this category of
Trojan are Ping-of-death and Teardrop.

7.2.2.2 Transport and Network Layer Denial-of-Service At-
tacks

Denial of service is a common class of attacks. This class of attacks is
caused by an explicit attempt by an intruder to prevent or block legit-
imate users of a service from using desired resources. Some common
examples of this class of attacks are SYN Flooding, Smurf, Fraggle, Jolt,
Land, and Ping-of-death. Such an attack may occur in both centralized
as well as in a distributed setting.

Denial of service in a distributed setting, also referred to as Dis-
tributed Denial-of-Service (DDoS) attack, is a coordinated attempt on
the availability of services of a victim system or a group of systems or on
network resources, launched directly or indirectly from a large number
of compromised machines on the Internet. Typically, a DDoS attacker
adopts two approaches: (i) m : 1, i.e., many compromised machines
attack a single victim machine, or (ii) m : n, i.e., many compromised



206 CHAPTER 7. TOOLS AND SYSTEMS

Table 7.3: Types of trojans.

Trojan Features of Trojan Types Examples
Remote | A malware program; uses back doors to control | Danger
Access the target machine with administrative privilege;

downloadable invisibly with a user request for a
program (game or an email attachment); uses a
compromised machine to compromise more ma-
chines to create a botnet for DoS /DDoS attack.
Sending | Captures and provides sensitive information such | Eblast
as passwords, credit card information, log files,
email addresses, and IM contact lists to the at-
tacker; attempts to install a keylogger to cap-
ture and transmit all recorded keystrokes to the

attacker.
Destruc- | Very destructive for a computer; can be pro- | Bugbear virus
tive grammed to delete automatically some essential

executable programs, configuration and DLL (dy-
namic link library) files to infect a computer;
can act based on the instructions of a back-end
server; also can act based on pre-installed or
programmed instructions, to strike on a specific
day, at a specific time.

Proxy Attempts to use a victims computer as a proxy | Paramo.F
server; compromises a computer and attempts
to perform malicious activities such as fraudulent
credit card transactions; can launch malicious
attacks against other networks.

FTP Attempts to open port 21 for file transfer; es-| FTP99cmp
tablishes a connection from the victim computer
to the attacker using the File Transfer Protocol
(FTP).

Security | Attempts to destroy or to thwart defense mech- | trojan. Win32.
software | anisms or protection programs such as antivirus | Disable.b

Disable programs or firewalls; can be combined with
another type of Trojan as a payload.
DoS Floods a network instantly with useless traffic so | Teardrop

that it cannot provide any service.

machines attack many victim machines, making it very difficult to de-
tect or prevent. A DDoS attacker normally initiates such a coordinated
attack using either an architecture based on agent handlers or Internet
Relay Chat (IRC). The attacking hosts are usually personal comput-
ers with broadband connections to the Internet. These computers are
compromised by viruses or Trojan programs called bots. These com-
promised computers are usually referred to as zombies. The actions of
these zombies are controlled by remote perpetrators often through (i)
botnet commands and (ii) a control channel such as IRC.
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Generally, a DDoS attack can be launched using any one of seven dis-
tinct ways. (i) By degree of automation, where the attack-generation
phases such as recruit, exploit, infect, and use are performed in three
possible ways, i.e., manually, automatically, and semi-automatically.
(ii) By exploited vulnerability, where the attacker exploits the vulnera-
bility of a security system to deny the services provided by that system.
A semantic attack exploits a specific feature or implementation bug of
some protocols or applications installed in the victim machine to over-
load the resources used by that machine. An example of such attacks
is the TCP SYN attack. (iii) By attack network used, where an at-
tacker uses either an agent handler network or IRC network to launch
a DDoS attack. (iv) By attack rate dynamics, where the attacker varies
the attack rate depending on the number of agents used to generate the
DDoS attack. Depending on the fluctuations used, such attacks can be
increasing rate, constant rate, fluctuating rate, and subgroup attacks.
(v) By victim type, where the attackers attempt to paralyze different
types of victims. Victims may be of four types: application attack,
host attack, network attack, and infrastructure attack. (vi) By impact,
where an attack is characterized based on the impact it has created. It
can be either disruptive or degrading. (vii) Finally, by agent, where an
attacker launches DDoS attacks using a constant agent set or a variable
agent set.

Many DoS and DDoS attack-generation tools have been developed
and made publicly available. Some of those tools and their features are
presented next.

(a) Jolt: This tool attacks a target machine running Windows 95 or
NT by sending a large number of fragmented ICMP packets in such
a manner that the target machine fails to reassemble them for use,
and as a consequence, it freezes up and cannot accept any input
from the keyboard or mouse. The damage caused by this tool is
not very serious and one can recover from this attack with a simple
reboot.

(b) Bubonic: This tool attacks a Windows 2000 machine by randomly
sending a large number of TCP packets with random settings. As a
consequence, the load in the target machine significantly increases
and the machine fails to accept any input, and finally it crashes.

(¢) Targa: This tool comprises 16 different DoS attack programs. One
can launch these attacks individually as well as in a group and can
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damage a target machine or a network instantly.

Blast20: This TCP service stress tool is able to quickly identify
potential weaknesses in the network servers. An example use of
this tool is shown below.

% blast targetIP port start_ size end_size /b (i.e., begin text) “GET/SOME
TEXT” /e (i.e. end text) “URL”

The command is used to send attack packets of size minimum
start_size bytes to maximum end_size bytes on a server address
at the specified target IP.

Crazy Pinger: This tool launches an attack by sending a large
number of ICMP packets to a victim machine or to a large remote
network.

UDPFlood: This tool can flood a specific IP address at a specific
port instantly with UDP packets. The flooding rate, maximum
duration and maximum number of packets can be specified when
launching this tool. It can also be used for testing the performance
of a server.

FSMaz: This is a server stress testing tool. To test a server in
evaluating buffer overflows that may be exploited during an attack,
it accepts a text file as input and using the input, a sequence of
tests is conducted on a server to assess the ability of the server.

Nemsey: The presence of this tool implies that a computer is inse-
cure, and is infected with malicious software. It attempts to launch
an attack with an attacker-specified number of packets of attack-
specific sizes including information such as protocol and port.

Panther: This UDP-based DoS attack tool can flood a specified IP
at a specified port instantly.

Slowloris: This tool creates a large number of connections to a tar-
get victim Web server by sending partial requests, and attempts to
hold them open for a long duration. As a consequence, the victim
servers maintain these connections as open, consuming their max-
imum concurrent connection pool, which eventually compels them
to deny additional legitimate connection attempts from clients.

BlackEnergy: This Web-based DDoS attack tool, which is an HTTP-
based botnet, uses IRC-based command and control.
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Q)

HOIC": This is a very effective DDoS tool that focuses on creating
high-speed multi-threaded HTTP flooding. It can simultaneously
flood up to 256 Websites. The built-in scripting system in this tool
allows the attacker to deploy boosters, which are scripts designed
to thwart DDoS countermeasures.

(m) Trinoo: Trinoo uses a master host and several broadcast hosts to

launch a DDoS attack. It issues commands using a TCP connection
to the master host, and the master instructs the broadcast hosts
via UDP, to flood a specific target host IP address at random ports
with UDP packets. To launch an attack using this tool, an attacker
should have prior access to the host to install a Trinoo master or
broadcast server, either bypassing or by compromising the existing
security system.

Shaft: This is a variant of Trinoo that provides statistics on TCP,
UDP, and ICMP flood attacks. This helps the attackers identify
the victim machine’s status (e.g., completely down or alive), or to
decide termination of zombie additions to the attack.

Knight: This IRC-based tool can launch multiple DDoS attacks for
a SYN attack, UDP flood, and urgent pointer flood on Windows
machines.

Kaiten: This is an IRC-based attack tool, capable of launching
multiple attacks, such as UDP and TCP flood, SYN attacks, and
PUSH-+SYN attacks. It uses randomized source addresses.

RefRef: RefRef exploits SQL injection vulnerabilities by using fea-
tures included in MySql SELECT permissions to create a denial-
of-service attack on the associated SQL server. It works with a
Perl translator and attempts to exhaust server resources by send-
ing malformed SQL queries carrying payloads.

LOIC: This is a very effective DDoS attack tool that works via
IRC. It supports multiple protocols and operates in three modes
of attack: TCP, UDP, and HTTP. LOIC creates a large number of

threads to launch an attack and it exists in two versions: binary
and Web-based.

Hgod: This Windows XP-based tool can be used to spoof source IP
addresses, and specify protocol and port numbers during an attack.
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By default, it is used for TCP SYN flooding. An example use of
this tool against 192.168.10.10 on port 80 with a spoofed address
of 192.168.10.9, is shown below.

Y%hgod 192.168.10.10 80 -s 192.168.10.9

(t) TFN: TFN, a variant of Trinoo, is another effective DDoS attack
launching tool. It is composed of a client host and several daemon
hosts. TFN can launch ICMP flood, UDP flood, SYN flood, and
Smurf attacks. TFN2K is a variant of TFN, which includes some
special features such as encryption and decryption, and the ability
to launch stealth attacks to crash a specified target host using DoS
attacks and to communicate shell commands to daemons.

(u) Stacheldrath: This is a hybridization of TFN and Trinoo. It in-
cludes some additional features such as encrypted transmission be-
tween components and automatic updating of daemons.

Out of a large and increasing pool of DoS/DDoS attack tools, we have
discussed only a select few. Most tools are freely available on the Inter-
net and are powerful enough to crash networks and Websites. However,
among these, LOIC and HOIC are very effective in launching a DDoS
attack within a short duration of time. LOIC is capable of generat-
ing attack packets involving TCP, UDP, and HTTP protocols, whereas
HOIC supports only the HT'TP protocol. Although TFN, Trinoo, and
Stachaldraht are effective in launching DDoS attacks, these tools re-
quire substantial customization to use on an experimental testbed. Fur-
ther, they are not as powerful as LOIC. However, it must be noted that
use of these tools to launch an attack in a public network is unethical
and a crime.

7.2.2.3 Application Layer Attack Tools

Application layer DDoS attacks are usually low-rate DDoS attacks and
they are more subtle than the transport or network layer attacks since
they use legitimate protocols and legitimate connections. Hence, de-
tection of application layer attacks is more difficult. An application
layer attack tool generally uses legitimate HT'TP requests from legiti-
mately connected network machines to overwhelm a Web server [271].
The attack itself may be a session flooding attack, a request flooding
attack, or an asymmetric attack [201, 276]. We discuss four basic types
of application layer attacks.
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Table 7.4: Some attacking tools.

Tool’s name | Platform Protocol Sources

Jolt Windows ICMP http://www.flylib.com/books/
en/ 3.500.1.136/1/

Burbonic Linux/Windows| TCP http://www.
packetstormsecurity.org/

Targa Linux TCP/UDP/ICMP | http://www.
packetstormsecurity.org/

Blas20 Linux/Windows| TCP

Crazy Pinger | Linux/Windows| ICMP http://www.softwaretopic.
informer.com

UDPFlood Windows UDP http://www.foundstone.com

FSMax Windows http://www.brothersoft.com

Nemsey Windows TCP http://packetstormsecurity.org/

Panther Windows UDP http://www.
bestspywarescanner.net

Slowloris Windows HTTP http://www.ha.ckers.org/
slowloris/

Blackenergy | Linux/Windows| TCP/UDP/ICMP | http://www.airdemon.
net

HOIC Windows/Linux| HTTP https://www.rapidshare.com

Shaft Linux/Windows| TCP/UDP /ICMP

Knight Windows TCP/UDP http://www.cert.org

Kaiten Windows TCP/UDP http://www.mcafee.com

RefRef Windows http://www.hackingalert.net/
2011/10/ completeguideto-
refrefdostool.html

Hgod Windows TCP/UDP/ICMP | http://www.flylib.com/books/
en/ 3.500.1.136/1/

LOIC Linux/Windows| TCP/UDP/ICMP | http://www.sourceforge.net

Trinoo Linux/Windows| UDP http://www.nanog.org

TEFN Linux/Windows| TCP/UDP/ICMP | http://www.codeforge.com

TFN2K Linux/Windows| TCP/UDP/ICMP | http://www.goitworld.com

Stachaldraht | Linux/Windows| TCP http://www.
packetstormsecurity.org

Mstream Linux/Windows| TCP http://www.ks.uiuc.edu/
Research/namd/
doxygen/MStream_
8Csource.html

Trinity Linux/Windows| TCP/UDP http://www.garykessler.
net/library/ ddos.html
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(a) HTTP-related attacks: In this type of application layer attack, the
attacker sends a massive number of HT'TP requests to overwhelm
the target site in a very short period of time. Some well-known
tools of this type are Code Red Worm and its mutations, Nimda
Worm and its mutations, and AppDDoS.

(b) SMTP-related attacks: In this attack, the attacker uses the SMTP
protocol to transmit email over the Internet. The attacker attempts
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to flood a mail server using the Simple Mail Transfer Protocol.
Some commonly used attack tools of this category are SMTP Mail
Flooding, SMTP worms and their mutations, Extended Relay at-
tacks, and Firewall Traversal attacks.

(¢) FTP-related attacks: In this attack, the attacker establishes a le-
gitimate FTP connection with the victim and then sends attack
packets to it. Examples include FTP bounce attacks, FTP port
injection attacks, passive FTP attacks, and TCP segmentation at-
tacks.

(d) SNMP-related attacks: This class of attacks aims to change the
configuration of a system and then monitor the state or availabil-
ity of the system. Examples of this category of attacks include
SNMP flooding attacks, default community attacks, and SNMP
put attacks.

7.2.2.4 Additional Attack Tools

In addition to the large number of tools reported above, there are
plenty of others that have direct or indirect use in attack launching or
defending. In this section, we discuss a few more tools that will further
help improve awareness of students and security researchers.

(a) Ping: This pioneering tool helps check the connectivity status of a
computer or a router on the Internet. It performs a simple task by
sending a ping request to a particular host to test its connectivity
or reachability on an IP network. In reply, it displays the response
of the destination and how long it takes to receive a reply. Ping
uses the ICMP protocol, which has low priority and slower speed
than regular network traffic.

(b) Hping2: This is a variant of Ping with additional features. It sends
custom TCP/IP packets to a target and displays reply messages
received from the target. It handles fragmentation and arbitrary
packet size and can also be used to transfer files. Hping?2 is capa-
ble of testing firewall rules, port scanning, testing-protocol-based
network performance, and path MTU discovery.
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(d)

Hping8: 1t is an effective variant of Hping2. It can handle frag-
mentation and arbitrary packet size like Hping2. Hping3 can also
find the sequence numbers of reply packets from the source port.
It starts with a base source port number and increases this number
for each packet sent. The base source port number is random. The
source port number may also be kept constant for each sent packet.

Traceroute: Traceroute is useful in finding the route between two
systems in a network. This tool can show all intermediate routers
from the source end to the destination end. Using this tool, one
determines how systems are connected to each other or how IPs
connect to the Internet to provide services. The traceroute program
is available on most computers including most Unix systems, Mac
OS, and Windows 95.

Tctrace: This is almost similar to traceroute, although it uses TCP
SYN packets to trace. Tctrace enables one to trace through fire-
walls if one knows a TCP service that is allowed to pass from the
outside.

Teptraceroute: Tceptraceroute is another effective tool to find the
path that a packet traverses to reach the destination. It sends
either UDP or ICMP ECHO request packets using a TTL field
that is incremented on each hop until the destination is reached. A
difficulty with this tool is that widespread firewall usage may filter
Tcptraceroute packets, as a result of which, it may not be able to
complete the path to the destination.

Traceproto: Traceproto is another variant of Traceroute, which
allows the user to choose the protocols to be traced. It normally
allows one to trace TCP, UDP, and ICMP protocols. One can also
use this tool to test and bypass firewalls, packet filters, and check
if ports are open. Traceproto is also referred to as a traceroute
substitute written in C.

Fping: Fping is a powerful tool to determine whether a host is
active or not. It uses the ICMP protocol and can scan any number
of hosts or a file containing a list of hosts. Unlike other similar
tools, after trying one host, Fping does not wait until it times
out or replies; rather it sends out a ping packet and moves on to
the next host in a round-robin fashion. Once a host replies, it is
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noted and removed from the list of hosts to check. If a host does
not respond within a certain time limit and/or retry limit, Fping
considers it unreachable. Fping is used in scripts and its output
can be easily parsed.

(i) Arping: This is a Unix tool to test whether an IP address is in use
or not. It performs the task by sending ARP request messages to
a destination host in a LAN.

Table 7.5: Additional relevant tools.

Tool Name Protocol Features Sources
Ping ICMP A Linux and Windows-based | www.download.cnet.com
user-friendly host discovery
tool with.
Hping2 TCP/UDP/| A Linux-based port scanner; | www.hping.org.
ICMP supports several options.
Hping3 TCP/UDP/| A Linux-based port scanner; | www.hping.org.
ICMP powerful for network testing.
Traceroute TCP/UDP/| A Linux, Solaris and Windows- | www.brothersoft.com
ICMP based user-friendly route dis-
covery tool.
Tctrace TCP A Linux-based user-friendly | www.tcptrace.org/
route discovery tool.
Tcptraceroute| TCP A Linux and Solaris-based | www.michael.toren.net/
DNS lookup tool; very effective
in route discovery.
Traceproto TCP/UDP/| A Linux route discovery tool; | www.traceproto.sourceforge.
ICMP effective in firewall testing. net
Fping ICMP A Linux and Windows-based | www.softpedia.com
target host discovery tool.
more effective than ping.
Arping ARP A Linux-based tool to send | www.linux.softpedia.com
ARP request.

7.2.3 Network Monitoring Tools

Monitoring network traffic is an essential activity for network adminis-
trators who want to observe, analyze, and identify anomalies occurring
in the network. To support such activities of the network administrator
and to assist in meaningful interpretation of the outcomes of their anal-
ysis, network monitoring and analysis tools have an important role to
play. Widespread malicious attempts to compromise the confidential-
ity, integrity, and access control mechanisms of a system or to prevent
legitimate users of a service from accessing requested resources, have
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led to an increased demand for useful tools to visualize network traffic
in a meaningful manner to support subsequent analysis. We introduce
some tools in two distinct categories, visualization and analysis.

7.2.3.1 Visualization and Analysis Tools

An effective network traffic (both packet traffic and network flow) visu-
alization tool can be of significant help to the network administrator in
monitoring and analysis tasks. Appropriate visualization not only sup-
ports meaningful interpretation of analysis results, but also assists the
system administrator in identifying anomalous patterns. It also helps
in taking appropriate action to mitigate attacks before they propagate
and infect other parts of the network. Some visualization tools are
presented below.

(a) Tnv: This is a time-based traffic visualization tool that discovers
packet details and links among local and remote hosts. Tnv assists
in learning normal patterns in a network, investigating packet de-
tails, and network troubleshooting. It is able to provide multiple
services such as (i) opening and reading libpcap files, (ii) capturing
live packets, and (iii) saving captured data in a MYSQL database.

(b) Network Traffic Monitor: This tool supports scanning and presen-
tation of detailed traffic scenarios from the inception of an appli-
cation. It allows analysis of traffic details.

(¢) Rumint: This Windows-based tool allows one to visualize live cap-
tured traffic as well as saved pcap traffic data.

(d) EtherApe: EtherApe is a Unix tool that allows one to sniff live
packet data and to monitor captured data in the Unix environment.

(e) NetGrok: This is an effective real-time network monitoring tool
that creates a graphical layout and a tree map to support visual
organization of the network data. It supports capture of live pack-
ets and trace, and assists in filtering activities.

(f) NetViewer: This is an effective visualization tool that not only
allows observation of captured live traffic data in aggregate, but
also helps identify network anomalies. NetViewer also supports
visualization of useful traffic characteristics to support tuning of
defense mechanisms.



216 CHAPTER 7. TOOLS AND SYSTEMS
(g) VizNet: This monitoring tool helps visualize the performance of a
network based on bandwidth utilization.

We have presented here a few visualization tools, most of which also
support analysis of network traffic. Not all tools are useful for all kinds

Table 7.6: Some visualization tools and their features.

Tool’s name | Protocol Features Sources
Tnv TCP/UDP/ | -A Linux and Windows-based | www.tnv.sourceforge.net
ICMP traffic visualizer; -supported
by all OSes.
Traffic Mon- | TCP/UDP/ | -A Windows-based live traf- | www.monitor-network-
itor 1.02 ICMP fic monitoring tool; -user- | traffic.winsite.com
friendly display.
Rumint TCP/UDP/ | -A Windows-based live traffic | www.rumint.org
ICMP/IGMP | visualizer; -flexible and user-
friendly.
EtherApe TCP -A Linux and Unix-based flow | www.brothersoft.com
visualizer; -simple but power-
ful.
Netgrok TCP/UDP/ | -A Windows-based real-time | www.softpedia.com
ICMP traffic visualizer; -user-
friendly and supports multiple
platforms.
Netviewer TCP/UDP -A Windows-based traffic ana- | www.brothersoft.com
lyzer; -can be used for de-
fense.
VizNet TCP/UDP -A Windows-based traffic ana- | www.viznet.ac.uk
lyzer and visualizer.

of monitoring and analysis tasks. EtherApe in Unix or NetViewer in
Windows are two useful visualization tools. However, for real-time vi-
sualization of live traffic for intrusion detection, NetViewer is the best
choice due to its additional ability to detect anomalous traffic. A net-
work administrator requires support for real-time visualization of live
traffic as well as for identification of abnormal behavior of network
traffic and subsequent generation of alert messages to inform the ad-
ministrator.

7.3 Observations

In the preceding sections, we have discussed several tools, their salient
features, purposes for which they were designed, and sources from
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Table 7.7: Category-wise information for some important tools.

Category Tool Name Effectiveness Source
NukeNabbler Malicious executa- | community.norton.com
Trojans bles;
AIMSpy Breaks security of www.securitystronghold.com
NetSpy systems or net- | www.netspy-trojan-
works. horse.downloads
ASS Gathers  network | www.manpages.ubuntu.com
info.
Information NMap Assesses weak- | www.nmap.org
nesses of
Gathering | pOf systems or net- | www.lcamtuf.coredump.cx/
works. pOf.shtml
Tools MingSweeper www.hoobie.net/
mingsweeper
THC Amap www.freeworld.thc.org/thc-
amap
Angry IP Scan- www.angryziber.com/w/
ner Download
DoS Targa Prevents legitimate | www.security-science.com/
attack Burbonic users from access- | www.softpedia.com
ing resources.
tools Blast20 Coordinated at- | seomagz.com/2010/03/dos-
tempts are more | denial- of-service-attack-
devastating. tools-ethical-hacking-session-
3/
Engage Packet www.engage-packet-
Builder builder.software. in-
former.com/
Spoofing Hping Allows attackers to | www.hping.org
sniff, receive, craft,
and
attack Nemesis inject varieties of www.nemesis.sourceforge.
net
tools PacketExcalibur | packets. www.linux.softpedia.com
Scapy www.softpedia.com
libpcap Robust packet snif- | www.sourceforge.net/
fer. projects/ libpcap
Spoofing Kismet Can capture and | www.linux.die.ne
store
Attack libnet packet information | www.libnet.sourceforge.net
fast.
Tools in libdnet www.libdnet.sourceforge.net/
Wireless libradiate www.packetfactory.net/
projects/libradiate
App Lyr HOIC Attempts to flood | www.rapidshare.com
the
Attack LOIC Webserver by send- | www.softpedia.com
ing
Tools RefRef valid HTTP re- | www.softpedia.com
quests.
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which they can be obtained under three main categories, i.e., infor-
mation gathering, attack launching and capture, and visualization and
monitoring. It is clear from the discussion that a network defender or
an attacker cannot expect to get all the desired features in a single
tool. So, for both a network defender as well as an attacker, an appro-
priate selection of tools is highly essential. This requires an adequate
knowledge of the pros and cons of each tool. To acquire appropriate
hands-on experience, we suggest that the user assess the abilities of
the tools of interest practically on a testbed. A testbed will also help
in the design and development of suitable security tools. To provide
practical guidance, we discuss a step-by-step procedure for developing
a multi-purpose network security tool in the next section. Our tool,
referred to as TUCANNON++, provides support for information gath-
ering, DDoS attack launching as well as for visualization of live attack
and normal traffic. TUCANNON+ is able to launch all types of DDoS
attacks using a large number of threads.

7.4 TUCANNON+: DDoS Attack-Generation
and Monitoring Tool

DDosS attack tools, such as Trinoo [60], TFN [60], TEN2k [60], and oth-
ers, are easily downloadable from the Internet. However, these tools
need substantial customization to generate a coordinated DDoS attack
in a testbed environment. We believe that to develop good defense solu-
tions as part of network security research, one has to develop one’s own
testbed and DDoS attack-generation and network monitoring tools. In
this section, we discuss the development of an experimental prototype
of a DDoS attack-generation and monitoring tool, referred to as TU-
CANNON+, which supports not only generation of DDoS attacks of
various types but also provides a facility to visualize the captured traf-
fic patterns for analysis. TUCANNON+ is composed of two modules:
(i) an attacker’s module, which is installed in the attacker’s network,
and (ii) a defender’s module, which is installed in the victim’s network.
A simplified TUIDS testbed for implementation and validation of the
experimental prototype is shown in Figure 7.3.

The TUIDS testbed was developed in the Network Security labora-
tory of Tezpur University. It includes multiple networks and the hosts
are divided into several VLANs. Each VLAN is attached to an L3
switch or an L2 switch inside the testbed. One can attack from both
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Figure 7.3: TUIDS testbed architecture with DMZ for TUCANNON+.

wired or wireless networks (may be with reflectors), but the victim or
target is inside the network (shown in dotted oval). The attackers can
use the TUCANNON+ tool to launch attack traffic of all types, such
as constant-rate, increasing-rate, pulsing-rate, and subgroup attacks
including all the three protocols, i.e., TCP, UDP, and ICMP.

The attack module within TUCANNON+, which comprises two
sub-modules, the Server sub-module and the Client sub-module, can
be operated from any node specified as the attacker in the testbed,
whereas the monitoring module of TUCANNON+ includes four sub-
modules, viz., capture/read, packet and flow traffic organizer, statis-
tics generator, and visualizer, can be operated in the victim’s network
(shown in dotted oval) to observe packet traffic for analysis. Below,
we discuss the development of these two modules of the experimental
prototype testbed.
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7.4.1 TUCannon: Attack-Generation Module

The attack module, viz., TUCannon in TUCANNON+ adopts the di-
rect DDoS attack strategy depicted in Figure 7.4. It can generate
DDoS attack types such as the constant-rate attack, increasing-rate
attack, pulsing attack, and subgroup attack, as defined in [170]. The
two sub-modules of TUCannon are described next.

Figure 7.4: Direct attack strategy adopted by TUCannon.

(i) The first sub-module, referred to as the server module, is used by
the attacker to establish communication and to send instructions
to the bots. This module uses a graphical user interface to easily
specify parameters such as protocol type, attack pattern type,
and number of threads.

(ii) The other sub-module, referred to as the client module, is a pro-
gram that is executed in each bot or compromised machine. This
module is responsible for accepting commands from the server
module and launching the attack accordingly.

Now we discuss the logic structure of each of these sub-modules in
detail.

7.4.2 Server Sub-module of TUCannon
Based on the protocol used, we classify the attack types as follows.

(a) TCP floods: A stream of packets with various flags (SYN, RST,
ACK) are sent to the victim machine. TCP SYN flood works by
exhausting the TCP connection queue of the host, denying legiti-
mate connection requests. TCP ACK floods can cause disruption
at the nodes corresponding to the host addresses of the floods as
well. TEN [60] is a popular DDoS tool for this type of attack.
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(b) ICMP floods (e.g., ping floods): A stream of ICMP packets is
sent to the victim host. A variant of the ICMP flood attack is
the Smurf attack, in which a spoofed IP packet consisting of an
ICMP ECHO_REQUEST is sent to a directed broadcast address.
TFN [60] is able to launch this DDoS attack type also.

(c) UDP floods: A huge number of UDP packets are sent to the victim
host. Trinoo [60] is a popular DDoS tool that uses UDP floods as
one of its attack payloads.

The server sub-module communicates with the machines that are con-
figured as bots in the testbed. This server program is developed with
a user interface through which one can easily specify and control dif-
ferent properties of the attack traffic. Such properties are the protocol
type (TCP, UDP and ICMP), the attack pattern (constant-rate attack,
increasing-rate attack, and pulsing attack) and the type of source IP
(actual IP of the machine or randomly generated valid but spoofed IP
address), the number of threads (where each thread executes one copy
of the slave program inside a single bot machine), and the range of
ports of the victim to send the traffic. After the master starts, it waits
for slaves to connect to it. Figure 7.5 is a snapshot of the GUI of the
server sub-module. We discuss the various components of the interface

next.
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Figure 7.5: GUI of TUCannon server sub-module.
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(a) List of zombies: After the attacker starts the server program, it
waits for the client programs to connect to it. As soon as a client
program connects to the server, the client’s IP address is shown on
the left side panel of the interface as shown in Figure 7.5.

(b) Protocol type: To launch an attack, the attacker selects the type
of protocol by selecting one of the radio buttons.

(c) Source IP configuration: These options are used to specify whether
the attack packet carries the actual source IP address or a spoofed
one. For spoofed source IP addresses, the attacker can also specify
the number of different unique spoofed IP addresses used in the
attack. This option allows the attacker to spread the required
attack traffic over a specified number of source IP addresses.

(d) Number of threads: The number of machines in our testbed is very
limited. Hence, to increase the amount of traffic, each client pro-
gram sends traffic using multiple threads. The number of threads
used by each client can be specified by the attacker through this
input. This feature is used by the attacker to control the traffic
rate in the attack.

(e) Victim IP: This input field is used by the attacker to specify the
IP address of the victim machine.

(f) Low port and high port: The attacker can specify the range of ports
to which traffic is sent via these inputs.

(g) Attack pattern: As mentioned earlier there can be four different
traffic patterns. The attacker can select a pattern from this list.

(h) Fire: When the attacker clicks this button, the attack command
and the specified input are sent to all clients currently connected
to the server.

(i) Stop: The attacker can stop the attack by clicking this button.

7.4.3 Client Sub-module

This sub-module is responsible for sending the attack traffic as specified
by the commands sent from the master. When the client sub-module
starts, it connects to the server whose IP address is specified as input
to the client program. Once connection is established with the server,
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it waits for commands from the server. On receipt of commands, the
client module takes actions accordingly.

7.4.4 Scalability of TUCannon

TUCannon is able to generate attack traffic ranging from 50,000 traces
with all possible attack patterns, viz., increasing rate, pulsing rate,
constant rate, and subgroup attack.

7.4.5 Speed of TUCannon

TUCannon is able to generate a full (i.e., 95-100%) attack within a very
short time due to its efficient logic structure. In the above testbed, it
can generate a full bursty attack within a second.

7.4.6 Reflector Attack

TUCannon is also able to launch indirect or reflector attacks. In a
reflector attack, the attacker instructs the zombies to send attack traffic
to a set of innocent machines with the source IP address spoofed as the
victim’s IP address. When an innocent machine receives these spoofed
requests, it sends a reply to the source IP address carried by the request
packet. As a result, the victim receives a huge number of response
messages, which may exhaust the victim’s resources. A typical indirect
attack is shown in Figure 7.6. To perform an indirect attack, the user

 Cretecons

G-

Figure 7.6: Reflector attack.

interface of TUCannon allows the attacker to send a list of innocent IP
addresses to the zombies. The zombies then use these innocent servers
as reflectors to perform an indirect attack.
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7.5 TUCannon Architecture

In this section we discuss the design of TUCannon. As mentioned,
TUCannon comprises of two different sub-modules, server and client.
The architectures of these two components is shown in Figure 7.7 and
Figure 7.8, respectively.

We use a modular structure for both components so that any further
enhancements can be performed to accommodate new features with the
least modification of the corresponding module.

7.5.1 Server Architecture

The server component of TUCannon consists of three modules as shown
in Figure 7.7. The user interface module is responsible for providing
the user with a sophisticated but easy-to-understand user interface from
which the user can specify attack parameters such as the protocol, num-
ber of threads, source IP type, destination port range, victim address,
and attack pattern (constant, pulsing, increasing, and subgroup). The
user can also specify the attack mode as direct or indirect. In case of an
indirect attack, the user is provided with a user interface to transmit
the IP addresses of the reflectors to the zombies.
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Figure 7.8: Client architecture of TUCannon.

The command-generation module extracts the input specified by
the user and generates a command string that is recognizable by the
client (i.e., a zombie). Once the command is constructed based on the
user specification, the transmit module transmits the command to the
list of zombies connected to the server.

7.5.2 Client Architecture

The modular architecture of the client component is shown in Figure
7.8. The client program consists of three units, the server communica-
tion unit, the attack configuration unit, and the packet-generation unit.
The server communication unit consists of two modules. The connect
module is responsible for connecting to the server at a fixed port as soon
as the client program is started. After connection establishment, the
listen module takes control and waits for commands from the server.
When the listen module receives a command from the server, it is
passed to the attack configuration unit. The attack configuration unit
consists of a parser and a configuration module. The parser module
parses the received command to extract the user-specified parameters.
The configuration module then configures parameters of the zombie
such as the protocol, the number of threads, the source and destina-
tion IP addresses of the attack packets, and the number of threads to
generate packets. After configuration of the parameters, packets are



226 CHAPTER 7. TOOLS AND SYSTEMS

generated accordingly by activating a TCP, UDP, or ICMP module
based on the protocol specified by the user. The generated packets are
then injected into the network using a raw socket.

7.6 TUMonitor

TUMonitor is a GUI-based packet and flow traffic monitoring tool,
which allows one to observe a set of selected features such as packet
count per interval, protocol-specific packets per interval, TCP flag spe-
cific packets per interval, and the number of unique source IP addresses
within a given interval of time. TUMonitor can also accept arithmetic
expressions involving a subset of the features as input to monitor a spe-
cific network traffic pattern. For example, a user of this tool might be
interested in observing the percentage of SYN packets over all TCP-
specific packets; this percentage can vary widely under a TCP SYN
flooding attack with a very high probability. The tool is also useful for
a student or researcher to understand traffic under different conditions.
Certainly, TUMonitor is not an IDS; however, a network administrator
can use this tool to keep an eye on the traffic passing through the mon-
itoring point. For example, the network administrator can monitor the
difference between the number of SYN and (FIN4RST) packets. As
suggested by [257], a sudden hike in the value of the above-mentioned
observed traffic attribute could be a strong sign of a TCP SYN flood-
ing DDoS attack. Similarly, a drastic increase in the fraction of ICMP
or UDP traffic may also raise suspicion or the sudden increase in the
number of unique source IP addresses might be a point of concern for
the network administrator.

7.6.1 TUMonitor: An Overview

TUMonitor provides support to a network administrator or a network
security researcher not only in observing traffic patterns in a network,
but also aids in network defense building. It allows the user to capture
and read both packet and flow traffic. It is also able to organize, gather,
and visualize network traffic statistics using user-specified traffic fea-
tures. We discuss the support provided by TUMonitor below.

(a) Selection of Capture Type: TUMonitor provides options to either
listen to live network traffic or to open already existing captured
traffic traces stored in a particular directory. It allows capturing
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of packets as well as extraction of flow information using a selected
subset of features. In its beginning screen, it allows the user to
select any of these options. For flow information, one can extract
it from the router or from the stored packet information.

Selection of Traffic Source: After selecting the capture type, the
user is asked to specify either the available network interfaces or
the path of the directory from which captured traffic traces can
be read, based on the selection made by the user. In both cases,
TUDMonitor will support visualizing the input packets for a given
interval of time, as a graph to the user. Two sample screen shots
for these two features are shown in Figures 7.9 and 7.10.

Specify and Visualize Traffic Features: TUMonitor provides an op-
tion, called IOGraph, for a user (i) to specify a set of features and

S

Figure 7.10: Traffic reading from file in TUMonitor.
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Figure 7.11: Traffic feature selection in TUMonitor.

(ii) to visualize their graph form for a given interval of time in sev-
eral windows. A sample screen shot related to feature selection is
shown in Figure 7.11.

Another screen-shot, shown in Figure 7.12, exhibits the facility
TUDMonitor provides to visualize multiple graphs at a time. By
using this facility, one can specify multiple feature types and can
monitor the attack and normal traffic patterns for a given interval
of time in multiple windows.

Arithmetic Ezxpression as Input: TUMonitor also supports a spe-
cial provision to monitor packet and Netflow traffic patterns by
writing an arithmetic expression in an expression textbox for a
given interval of time. Figure 7.14 shows an example of such a fa-
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Figure 7.12: Visualization of multiple graphs in TUMonitor.
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cility. It shows the percentage of SYN packets over all TCP packets.
Here, each feature is represented by a letter. For example, packet
count is represented by the letter A, the number of TCP packets
is represented by B, and so on. The user can write any valid infix
arithmetic expression using these letters as space holders in the
given textbox to obtain the corresponding graph.

7.6.2 TUMonitor Architecture

In this section, we provide the modular architecture of TUMonitor.
Figure 7.13 depicts the architecture of TUMonitor. The four basic sub-
modules that comprise the TUMonitor module are described below.

NI NT TIMER
? ? ? = D
CAPTURE TRAFF ORGNR GENERATE DISP ORGNR
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Figure 7.13: TUMonitor architecture.
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(a) Capture/Read Sub-module: This sub-module is responsible for sniff-
ing live traffic from the network interface (NI) or from stored traces
(NT). It uses a user-specified file to store the captured data. It is
dependent on two dedicated components, called PCM and FCM.
PCM is used to collect packets from live traffic or to read from a
specified file. It forwards the packet information to a packet traffic
organizer (PTO). For the purpose of packet capture, it uses the
pcap.net library [1]. Similarly, for extracting flow information,
FCM provides two options, viz., to collect directly from router or
to extract from packets already captured. Once flow information is
successfully extracted, FCM forwards it to a flow organizer, called
the flow traffic organizer (FTO).

(b) Traffic Organizer Sub-module: As we mentioned earlier, TUMoni-
tor keeps track of protocol-specific packet counts, TCP flag-specific
packet counts, as well as the number of unique source IPs for a
given interval of time. To facilitate this, it includes two compo-
nents called PTO and FTO. PTO, i.e., the packet organizer, main-
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Figure 7.14: Arithmetic expression in TUMonitor.

tains counters for different features and updates them upon the
arrival of new packet information. Similarly, FTO organizes flow
information extracted from two different sources and maintains it.

Traffic Statistics Generator Sub-module: This sub-module is ded-
icated to generation of statistical information from both packet
traffic and flow information. Like the previous sub-modules, it is
also composed of two generator components, i.e., a packet statistics
generator (PSG) and a flow statistics generator (FSG). For packet
statistics generation, the PSG maintains a timer, that ticks after
each specified interval. On each tick, it extracts the value of each
counter and inserts it into an in-memory table, where each row
corresponds to the statistics at a particular interval and each col-
umn represents the value of the corresponding feature at a different
interval. The FSG follows similar logic to generate flow statistics
from the extracted flow information.

Feature Display Organizer Sub-module: This visualization support
module provides options for selecting features or for entering an
arithmetic expression for visualization of either packet traffic (using
PFS) or flow information (using FFS). Once a request is submit-
ted based on specified features or an expression is submitted, the
display unit creates a new thread. The thread in turn reads (and
evaluates in case of an expression) the specied features for each
interval from the in-memory statistics table and plots the graph in
a separate window.
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Figure 7.15: Visualization under normal conditions in T'UMonitor.

7.6.3 Visualization with TUMonitor

To demonstrate the working of TUMonitor, the testbed discussed in
the previous section (as shown in Figure 7.3) is used. The monitoring
tool can be installed at the edge router of the victim subnet, marked
as the wvictim zone, shown in the right oval. One can generate DDoS
attacks of different specification using TUCannon and can visualize and
monitor the patterns of different selected features under these attacks
using T'UMonitor. For easy understanding, a demonstration showing
monitoring of packet count, the number of different protocol packets,
the number of unique source IP addresses, and an arithmetic expression
SYN—(FIN+RST), which can be considered the parameters for DDoS
detection, as given in [257], is shown in Figures 7.15, 7.16, and 7.17.
In this demonstration, a DDoS attack was launched targeting a victim
machine using TUCannon by sending a huge number of packets with
randomly spoofed source IP addresses. Figure 7.16 shows a screen-
shot of a TCP flooding traffic, whereas in Figure 7.17, a screen-shot
of UDP flooding attack is shown.

An executable version of TUCANNON+ is available at  http://
agnigarh.tezu. ernet.in/~dkb/resources.html.

7.7 DDoS Defense Systems

In this section, we present some well-known academic and commercial
defense systems for DDoS detection, prevention, tolerance, and reac-
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Figure 7.16: Visualization of TCP flooding in TUMonitor.
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Figure 7.17: Visualization of UDP flooding in TUMonitor.

tion. We present architectures and pros and cons analysis of several
detection, prevention, tolerance, and reaction systems.

7.7.1 Systems that Respond to Intrusion

We can define intrusion as a way to create an abnormal state in a sys-
tem or a computer network, due to which, normal services are affected
undesirably. Thus, maintaining a system or a network in a fully normal
or pseudo-normal state is the aim of a defense system. Defense experts,
analysts, and researchers provide methodologies, approaches, architec-
tures, and systems with such goals. In this section, some commonly
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used and well-known architectures and systems are described for the
benefit of our readers.

7.7.1.1 Architectures of Some Well-Known Defense Systems

We have already discussed in Chapter 4 that an intrusion detection
system (IDS) monitors and analyzes a network or system for malicious
activities, or policy violations, or abnormal traffic behavior. If any
threat is detected, the IDS alerts the system or network administrator.
In Figure 7.18, the architecture of a successful IDS, referred to as the
Bro cluster architecture [33], is shown.

Traffic

B e——
( Tap j Local Network

Manager
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—» Packets
— 1= Llogs
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Figure 7.18: Bro IDS cluster architecture [33].

This Unix-based open-source, passive network traffic analyzer in-
spects network traffic for detection of any abnormal behavior. Bro
adopts a signature-based approach to detect known attacks and events,
such as failed connection attempts, using a set of predefined attack sig-
natures. Bro generates neutral events after analyzing live or recorded
traffic. To handle events, it uses policy scripts or actions such as send-
ing an email, raising an alert, executing a system command, updating
an internal metric, and even calling another Bro script.
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In addition, a virtual machine introspection-based architecture for
host-based IDS, proposed by Garfinkel and Rosenblum [85], is shown
in Figure 7.19. Unlike most traditional host-based IDSs, this detection
system observes hardware status, events, and software states of hosts
and offers a more robust view of the system than HIDS. The virtual
machine monitor (VMM) is responsible for hardware virtualization and
also offers isolation, monitoring, and interposition properties.

IDS

Policy Engine

Hardware State il
|| Respanse
|

Iy .
Virtual Machine Monitor J

Figure 7.19: VMI-based IDS architecture.

As noted in Chapter 5, an intrusion prevention system (IPS) is de-
veloped as an advanced version of IDS. Though, both IDS and IPS
monitor network traffic and/or system activities for malicious activ-
ity, an IPS is able to actively prevent intrusions that are detected by
(i) dropping malicious packets, (ii) generating an alarm, (iii) blocking
traffic from the offending source IP addresses, and/or (iv) resetting the
connection. In Figure 7.20, a network-based architecture called Javvin
[118] is shown. It can be seen in the figure that every specific zone is
protected by an IPS system. The IPS is organized in layers and works
in a coordinated manner to provide defense against intrusion.

Jia and Wang [121] introduce a method to support designing and
analyzing an intelligent IPS model based on a dynamically distributed
cloud firewall linkage as shown in Figure 7.21. The authors have es-
tablished the significance of their model considering several important
issues of cloud security. Their model can detect, intercept, and handle
a good number of the latest attacks such as computer viruses and ma-
licious Websites. The model sends best the possible solutions to users
for proactive defense in their network.
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Figure 7.22: An example architecture of IDPS [211].

An intrusion detection and prevention system (IDPS) combines
both detection and prevention approaches. The detection module of
the system first monitors and analyzes the captured traffic in a net-
work. If it identifies any abnormality, the prevention module drops or
blocks the unwanted traffic actively. The defense system introduced by
Scarfone and Mell [211], the architecture of which is shown in Figure
7.22, is an example of such an IDPS.

It introduces the concept of deploying IDPS sensors inline. The
main motivation is to enable the sensors to stop attacks by blocking
network traffic at an early stage. Inline sensors are deployed in the
network just like other devices such as firewalls. They segregate the
external networks and the borders between different internal networks.

We mentioned in Chapter 6 that an intrusion response system
(IRS) automatically executes a predefined and preconfigured set of re-
sponsive actions based on the type of attack. A distinguishing feature
of an automated IRS is that it does not require any human intervention,
unlike an IDS where there is a delay between intrusion detection and re-
sponse. EMERALD (Event Monitoring Enabling Responses to Anoma-
lous Live Disturbances)[195] is a successful IRS. It is a distributed and
scalable system that keeps track of malicious activities through and
across large networks. The highly distributed nature of surveillance,
attack isolation, and automated response generation, make EMERALD
more attractive and useful as an IRS. Figure 7.23 shows the architec-
ture of EMERALD. The monitors contribute to a streamlined event
analysis system that combines signature analysis with statistical pro-
filing to provide localized real-time protection of the most widely used
network services on the Internet.
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Figure 7.23: EMERALD architecture.

7.7.2 Some Commercial and Academic Defense Systems

In this section, we present some commercially available and academic
defense systems introduced in the past two decades.

(i)

(iii)

AlienVault: This is an open source security information and event
management system, designed to provide security, intrusion de-
tection and prevention [10]. It is available for both commercial
and non-commercial sectors. It runs on a Debian Linux core, and
hence can be deployed on VMware virtual machines or Amazone
EC2 cloud or directly in hardware. A sensor component collects
log information and helps detect intrusions. File integrity mon-
itoring, log normalizations and SIEM event correlation are also
performed.

ArcSight Enterprise Security Manager: This is a security event
manager system [13]. Every event that occurs is analyzed and
correlated to maintain an exact priority of security risks and com-
pliance violations. Example events include login, logoff, file ac-
cess, and database query. The correlation engine is very powerful
and it can go through millions of log records to detect critical
incidents to resolve the matter at home. The correlation engine
communicates with security administrators to report critical in-
cidents.

CA-Host-Based IPS: This tool [41] provides five services in a
host-based environment. These are endpoint firewall, operating
system security, intrusion detection, intrusion prevention, and ap-
plication control. It is deployed and managed from a central lo-
cation via a single, intuitive console to improve endpoint security.
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(iv) Checkpoint IPS-1: This is an intrusion prevention system for
both clients and servers, that uses the gateway firewall technique.
Blocking of traffic is based on source, destination, and port infor-
mation. Checkpoint IPS [47] can also check the traffic content. It
can be deployed as software or as a sensor without the firewall.

(v) Cisco IDS: Cisco IDS [43] is a network-based detection system.
It uses a signature-oriented database to trigger intrusion alarms.
The sensors monitor real-time traffic packets. Alarms are trans-
mitted through the command-and-control interface to the director
platform. The director platform manages software configuration,
log creation and display of alarms.

(vi) Cisco Security Monitoring, Analysis, and Response System (MARS):
This system [241] identifies threats on the Cisco network by learn-
ing the environment structure including topology, configuration,
and behavior. It helps the mitigation procedure by visualizing
the attack path and identifying the source of the threat. Man-
agement and response are simple due to integration with Cisco
Security Manager software.

(vii) DeepNines IPS: This is an intrusion prevention system [66] that
is deployed in the network layer. Specifically, it is deployed at
critical points in the network architecture, like in front of the
router, and acts as the first line of defense. Its capabilities in-
clude inspection using multiple methods, provision of an intelli-
gent firewall, fragmentation control, policy checking, signature-
based IPS, adaptive rate control, etc.

(viii) Enterasys Intrusion Prevention System: The Enterasys Intru-
sion Prevention System [72] ensures confidentiality, integrity, and
availability of business, critical resources with industry-leading in-
trusion prevention capabilities. It has the ability to gather records
of an attacker’s activity, remove the access of the illegitimate user
to the network, and reconfigure the network to resist penetration.
Enterasys IPS offers an extensive range of detection capabilities,
host-based and network-based deployment options, and seamless
integration with the Enterasys Secure Networks architecture.

(ix) FlowMatriz: Flow Matrix [80] by Akma Labs is a free security tool
that provides network behavior analysis and anomaly detection.
It is a non commercial network-based detection system.
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IBM Proventia Desktop Endpoint Security: IBM Proventia Desk-
top [216] is an automatic endpoint security system. It tries to
reduce the risk from known and unknown attacks by providing
multilayered security in a single host. It can be managed simply,
and it also helps prevent data theft.

IBM Proventia Network IPS Series: Having access to high-speed
Internet, large enterprises and telecommunication providers re-
quire an optimized platform with both high security and high
performance. IBM Proventia Network IPS [112] Series provides a
network-based solution. It is a next-generation firewall solution
that combines a firewall and an intrusion prevention system into
a single module.

IBM Tivoli Security Operation Manager: This system [38] au-
tonomously monitors and analyzes the data collected throughout
the IT infrastructure to detect intrusions or any threats. It also
provides optimization, incident recognition, investigation, and re-
sponse. By monitoring and administering security policies, it
helps users gain knowledge of threats to mitigate them before
they turn into unwanted incidents.

(xiii) iPolicy Intrusion Detection/Prevention: The network-based iPol-

icy Intrusion Detection/Prevention Firewall [116] combines an in-
trusion detection engine and an intrusion prevention engine that
delivers comprehensive, high-performance, real-time attack de-
tection and prevention. The Detection component uses multi-
ple detection techniques to detect intrusion to form a real-time
high-speed detection engine. It applies signature-based detec-
tion to identify known attacks, and the iPolicy IDS/IPS signa-
ture database has over 2000 entries. An application-aware pro-
tocol anomaly engine detects anomalies and a statistical traffic
anomaly engine provides the ability to detect suspicious behavior
and Distributed Denial-of-Service (DDoS) attacks.

(xiv) TippingPoint IDS/IPS: TippingPoint IDS/IPS [113] provides an

advanced security solution for protection of resources from both
known and unseen attacks. It is equipped with (i) a strong set
of application layer functionalities with user awareness and (ii)
abilities to investigate input/output content. It is scalable and
dynamic, and works with applications, network, and data. It uses
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adaptive intelligence to protect resources from new and advanced
threats at the application layer in real time.

StoneGate IPS: StoneGate IPS[117] is a proactive defense sys-
tem to block malicious traffic automatically before any damage
occurs. Its SSL inspection feature monitors encrypted Web traffic
and prevents disruption to business network traffic. The sensor
appliances protect up to two line segments. It has a bypass inter-
face pair for each inline segment and two standard Ethernet inter-
faces. These standard interfaces are used as capture interfaces to
detect intrusion and one of them is used for traffic management.

(xvi) Strata Guard IPS: Strata Guard[234] is a high-speed intrusion

detection/prevention system with greater than 4 GB throughput
with up to 8 interfaces. Beyond blocking intrusions, it enforces
network audits and usage policies and blocks a peer-to-peer file
sharing, instant messaging, chat, prohibited browsing activity,
and worm propagation. Strata Guard detects anomalous events
like spoofed attack source addresses, performs TCP state verifi-
cation and rough services running on the network. Strata Guard
takes the powerful, open-source Snort IDS engine and makes it
practical for protecting corporate-scale networks. A hardened
Linux OS installs with Strata Guard. Through its multilayered
Dynamic Attack Qualification technologies, Strata Guard elimi-
nates false positives. Its multi-node, multi-user management ca-
pabilities allow for enterprise-wide deployments and provide ap-
propriate levels of control for all users requiring access to secure
data.

(xvii) Snort IDS: Snort IDS [183] is a network-based open source in-

trusion detection system. Using packet sniffing, it monitors the
network traffic in real time, checking the payload of each packet
closely for any suspicious anomalies. Snort is based on libpcap,
a tool which is widely used in TCP/IP packet sniffing and analy-
sis. Through protocol analysis, content searching, and matching,
Snort detects attack methods, including denial-of-service, buffer
overflow, CGI attacks, stealth port scans, and SMB probes. If
any detection of attack occurs, Snort sends a real-time alert to
syslog.
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(xviii) SecureNet IDS/IPS: SecureNet System [215] performs critical

deep packet analysis and is endowed with application awareness.
It can be deployed actively for intrusion prevention and passively
for intrusion detection. In both cases, the system gathers un-
surpassed knowledge about traffic in the network removing all
guesswork involved with establishing perimeter defense. Intru-
sion prevention deployments can be configured to block or pass
network traffic on failure.

(xix) Samhain: Samhain [2] is a host-based intrusion detection sys-

tem that provides file integrity checking and log file monitoring
and analysis, in addition to rootkit detection, port monitoring,
and detection of rough or hidden processes. It has been designed
to monitor multiple hosts with different operating systems with
centralized management. It can be applied in a standalone envi-
ronment also.

Radware’s DefensePro: Radware’s DefensePro [67] appliances
are designed to be in front of the firewall and provide security
against intrusion. They provide prevention and DoS protection
for networks and individual servers. They use behavioral analysis
for the networks and generate real-time signatures.

(xxi) PHPIDS: PHPIDS [193] is a open source Web-based applica-

tion for intrusion detection. It has the ability to find intrusion
data coming from the client side to PHP Web applications. It
speeds up PHP application development by reducing the time
and money needed to spend on security. Cross-site scripting, SQL
injection, header injection, directory traversal, remote file execu-
tion, local file inclusion, and Denial-of-Service are detected using
PHPIDS by checking input variables like POST, GET, SESSION
and COOKIE.

(xxii) OSSEC: OSSEC [32] is comprised of a central manger and agents.

The central manager monitors everything that is received from
agents. All rules and decoders are stored centrally in the man-
ager to make it easy to deploy for a large number of agents. The
agents are small programs installed on the systems that are to be
monitored. The agents collect the information in real time and
forward to the manager to analyze.
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(xxiil) McAfee Host Intrusion Prevention for Desktop: It is a commer-
cial host-based intrusion prevention system [162] for the endpoint
desktop. McAfee Host Intrusion Prevention for Desktop reduces
patching frequency and protects data confidentiality, and simpli-
fies regulatory compliance.

(xxiv) McAfee IntruShield IDS: The complete McAfee IntruShield IDS
(McAfee) [163] is a combination of network appliances and soft-
ware. This combination is built for accurate detection and pre-
vention of intrusions, denial-of-service attacks, and network mis-
use. McAfee combines real-time detection and prevention for a
comprehensive and effective network security system.

(xxv) Osiris: Osiris [185] came into being as a few Perl scripts which
eventually evolved into a extensive and sophisticated package.
The architecture is geared toward central management with en-
crypted communications. The hosts naturally require a client to
be installed, which is a drawback of any HIDS, but otherwise
nothing is stored on the host. The central manager does the
heavy lifting. This is not unlike an application that needs to be
installed on every computer on the LAN, something that is done
all the time, but it is still overhead.

(xxvi) Juniper IDP: Juniper IDP [225] products provide comprehen-
sive inline network security from worms, Trojans, spyware, key-
loggers, and other malware. By accurately identifying application
traffic, the network security solutions ensure continuous availabil-
ity of critical applications. It is a network-based commercial sys-
tem.

(xxvil) Netfence Gateways: Netfence [266] gateways combine all func-
tions needed in modern network security infrastructure and are
primarily used as classic perimeter security systems. They are
also the central entities for branch office networking and Uni-
fied Threat Management infrastructures. Its flexible structure
enables it to meet customer requirements such as the number of
users, performance, and NICs. Netfence gateways can also be
used in virtualized environments and support VMware ESX as a
platform.

(xxviii) DC&A: This [78] is a static proactive intrusion response sys-
tem that provides a delayed response. The time is delayed until
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the attack is confirmed. If a response system acts in a proac-
tive manner, we can consider it as a prevention-type process. By
delaying the response, intrusion handling is performed after the
intrusion occurs and it includes actions to restore system state.

(xxix) CSM: Cooperating Security Managers (CSM) [264] performs
intrusion detection by delaying the response until the observed
abnormality matches an intrusion pattern. It reports the match
to the functions in a distributed environment autonomously with-
out requiring a designated central site or server to perform the
analysis of network audit data.

(xxx) BMSL-Based Response: Behavioral Monitoring Specification Lan-
guage (BMSL) [31] enables concise specifications of event-based
on security-relevant properties. This action can be represented by
invocation of a response function, assignment to a state variable,
or a set of rules for process isolation. This intrusion response
system provides a response in delayed time with autonomous ac-
tivity.

(xxxi) SoSMART: The SOSMART model [174] uses Case-Base Rea-
soning (CBR) for an adaptation mechanism that matches current
system state to the previously identified situations as intrusive.
The use of CBR is to define incident and response pairings that
can recognize situations that may require response and associate
response actions according to the situations.

(xxxii) pH: Somayaji and Forrest developed the pH system [224] to
detect and respond to intrusion. The detection component is
comprised of a normal behavioral profile of N-gram sequences
of system calls. Sequences of calls deviating from the normal
behavior are considered anomalous and can be either aborted or
delayed.

(xxxiii) Lee’s IRS: Lee et al. [145] proposed an approach to intru-
sion response based on a cost-sensitive modeling of the intrusion
detection and response. The authors define three cost factors:
operational cost of processing and analyzing data for detection of
intrusion, damage cost to assesses the amount of damage due to
attack, and response cost to characterize the cost of reaction to
intrusion.



244 CHAPTER 7. TOOLS AND SYSTEMS

(xxxiv) SARA: Survivable Autonomic Response Architecture (SARA) [147]
was developed to coordinate fast automatic response against in-
trusion. It comprises several components that work as sensors for
information gathering, detectors for analysis of sensored data, ar-
bitrators in selection of appropriate response actions, and respon-
ders for implementation of response. These components can be
sequenced among participating machines to provide the strongest
defense.

(xxxv) CITRA: The Cooperative Intrusion Traceback and Response
Architecture (CITRA) [214] was developed to provide a cooper-
ative agent-based solution. The architecture uses neighborhood
structure to propagate information about a detected intrusion to
the source of the attack and submit to the centralized authority.
The centralized authority, the Discovery Coordinator, determines
an optimal system response. It is also responsible for coordinating
a global response.

(xxxvi) TBAIR: The TBAIR (Tracing-Based Active Intrusion Response)
[259] framework attempts to trace back to the intrusion source
host and dynamically choose a suitable response, such as remote
blocking of the intruder, isolation of the contaminated hosts, etc.

Its operation is based on the idea of Sleepy Watermark Tracing
(SWT) [260].

(xxxvii) Network IRS: Toth and Kruegel [246] proposed a method by
considering costs and benefits of the response actions, and by
modeling dependencies among services in a system. Such mod-
eling reveals priorities at response targets and can evaluate the
impact of different response strategies on dependent services and
the system.

(xxxviil) Specification-Based IRS: Balepin et al. [21] developed a sys-
tem, where a hierarchy of local resources is represented using a
directed graph. The system follows a cost-sensitive and coopera-
tive approach. Nodes of the directed graph are system resources
and graph edges represent dependencies among the resources. A
list of response actions is attached with each node. These actions
can be performed to restore the working state of the resource in
case there is an attack.
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(xxxix) ADEPTS: Foo et al. presented a proactive approach [81] to

(x1)

(x1i)

mount a response. The system they proposed employs an in-
trusion graph (I-Graph) to build an attack model of goals and
consequently to determine possible spread of the intrusion. In-
tegrating IDS map alarms to IGraph nodes indicates the attack
spread based on alarm confidence values. Finally, appropriate re-
sponse actions are performed according to the identified attack
goals.

FLIPS: Locasto et al. introduce a hybrid adaptive intrusion pre-
vention system [154] called FLIPS (Feedback Learning IPS). Host-
based FLIPS uses both signature matching and anomaly-based
classification. Its goal is to detect and prevent code injection
attacks. It uses an intermediate emulator to detect injected ma-
licious attack code and does not generate attack signatures.

FAIR: Papadaki and Furnell proposed a cost-sensitive response
system [188]. The system assesses the statics and dynamics of
the attack. To manage important characteristics of an attack, a
database is used to analyze them. The characteristics include tar-
gets, applications, vulnerabilities, and so on. For the evaluation
of the dynamic context of an attack, they apply some interesting
ideas. The two main features of this model are (i) the ability
to easily propose different orders of responses for different attack
scenarios, and (ii) the ability to adapt decisions in response to
changes in the environment.

(xlii) Kheir’s IRS: Kheir et al. developed a dependency graph [134]

to calculate the confidentiality, integrity impacts, and the avail-
ability impacts. Each resource present in the dependency graph
is defined with a 3D CIA vector. The 3D CIA vector values are
cost values and these are quickly updated either by active moni-
toring to estimate them or by extrapolation using the dependency
graph.

(xliii) OrBAC: Kanoun et al. were the first to provide a risk-aware

framework [131] to activate and deactivate response methodolo-
gies in regard to intrusion. It consists of an online model and its
architecture. The success possibility of an ongoing threat or an
actual attack, the cumulative impacts and the response are con-
sidered before activating or deactivating a strategic response. The
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main contribution of the proposed model is to determine when a
strategic response should be deactivated and how.

(xliv) IRDM-HTN: Mu and Li reported a hierarchical task network
planning model [176] to defend intrusions. In this system, every
response has an associated static risk threshold. The value is
calculated by its ratio of positive to negative effects. When the
risk index is more than the response static threshold, the required
response is deployed. They also proposed a response selection
window, where the most effective responses are selected to repel
intrusions.

(xlv) Strasburg’s IRS: Strasburg et al. [233] presented a host-based
framework for the assessment of sensitive cost and selecting intru-
sion response. They introduce a set of measurements that charac-
terize the potential costs associated with the intrusion-handling
method. They provide a theory for intrusion response evalua-
tion with respect to the risk of potential intrusion damage, the
effectiveness of the response action, and the response cost for a
system.

(xlvi) Jahnke: Jahnke et al. presented a graph-based approach [119]
against intrusion. The graph is used for modeling the effects of
attacks against resources. The effects of the response measures
are taken into account to measure reaction to the attacks. Using
metrics from the graph, it may (a) be possible to quantify rele-
vant properties of a response method after its execution, and (b)
be easier to estimate these properties for all available response
methods before deploying them.

(xlvii) DIPS: Haslum et al. proposed a real-time intrusion prevention
method [97]. This model is cost-sensitive. It involves in a dynamic
risk assessment process based on a fuzzy model. Fuzzy logic is
used to estimate risk.

(xlviii) Stakhanova’s IRS: Stakhanova et al. [228] reported a cost-
sensitive preemptive intrusion response model. This model de-
tects anomalous behavior in software monitoring system behav-
iors such as system calls. It uses two levels of classification to
detect intrusion. In the first step, if normal and abnormal pat-
terns are available, the model determines what kind of pattern
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is triggered when a series of system behaviors are observed. If
the monitored sequences do not match normal or abnormal pat-
terns, the system uses machine learning techniques to determine
whether the system is normal or abnormal.

(xlix) Tanachaiwiwat’s IRS: Tanachaiwiwat et al. propose a response

model [238] against intrusion using a cost-sensitive method. They
report that verifying the effectiveness of a response is necessary.
They consider IDS efficiency, alarm frequency (per week), and
damage cost to select the best strategy. The alarm frequency gives
the number of alarms triggered per attack, and cost estimates the
amount of damage that could be caused by the attacker.

7.7.3 Discussion

After studying different architectures and systems, whether they are
commercial and non-commercial, we can state the security problem in
a network against intrusion in a general way. The success of a defense
system in a network depends on the following points.

7.8

The defense system should be generic in nature to confront any
anomalous activity.

The defense system should be deployed on the basis of potential
intrusion activities observed and their nature.

A dynamic solution in real time with a low false positive rate and
low false negative rate is preferred.

Scalability of the defense system and incremental updating as
new anomalies become apparent should be possible.

The design should be independent of the underlying communica-
tion protocol.

Chapter Summary

Based on a detailed discussion of a large number of tools in this chapter,

we summarize the following.

Existing information-gathering tools can scan a network success-
fully in one-to-one and one-to many scenarios. However, most



248

CHAPTER 7. TOOLS AND SYSTEMS

existing tools are unsuitable for coordinated scanning (i.e., m : 1
and n : m mappings) with varying source and destination IP
addresses that are obtained dynamically.

An integrated tool with support for capture, preprocessing, anal-
ysis, and visualization of both flow and packet data is desired.
Existing tools (e.g., Wireshark, Nfsen, and Nfdump) can support
either flow capture and presentation or packet analysis and pre-
sentation, but not both.

Most DDoS attack tools are network layer specific, protocol spe-
cific, or traffic pattern specific. They do not provide enough flex-
ibility, and require substantial customization before using on a
testbed or in practice in the real world.

Most existing DDoS attack tools are restricted to a limited num-
ber of attack scenarios and cannot be customized to use in addi-
tional attack scenarios.



Chapter 8

Conclusion and Research
Challenges

8.1 Conclusion

In the previous chapters, we provided an extensive presentation of
machine learning methods followed by detailed discussions of current
state-of-the-art research in DDoS attack detection, prevention, reac-
tion, mitigation, and tolerance. In particular, Chapter 2 is dedicated
to causes, evolution, and classification of DDoS attacks. To practically
understand how attackers plan and mount DDoS attacks, we discussed
the development of a testbed with accompanying tools to launch DDoS
flooding attacks of random packet intensity (low-rate to high-rate) us-
ing a random number of compromised nodes in Chapter 7. Although in
past years, network security researchers have presented several innova-
tive and practical solutions to detect, protect from, react to, mitigate,
and tolerate DDoS attacks, there are still many challenges to overcome
to safeguard networks from growing threats of this sophisticated attack.
With the increased complexity in the technology used by intruders to
launch attacks and with the growing evolution of high-speed network
technology, we believe that future attackers are always designing more
effective attack launching tools to inflict maximum damage. Our inten-
tion is to help improve the know-how of network security researchers
and practitioners about design trends in attacks tools; our purpose is
neither to educate anyone in the design of attack launching tools them-
selves nor to teach how to counter DDoS attack mitigation techniques
or methods. It is only possible for a defender to protect a network by
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filtering malicious traffic when the defender has in-depth knowledge of
the various ways an attacker can attempt to intrude into the network.

8.1.1 Source IP Spoofing

Source IP spoofing is an effective technique used widely by DDoS at-
tackers. Although many researchers deem source IP spoofing to be of
low relevance and low usefulness in the context of current botnet-based
DDoS attacks, many attackers still prefer to use it because it is inex-
pensive and effective at the same time. It is also costly to hire a botnet
and manage it properly. Even though ingress and egress filters are
considered very effective in filtering traffic with invalid IP addresses,
attackers still manage to bypass such protection mechanisms using ap-
propriate source IP spoofing schemes. Thus, providing a foolproof so-
lution against source IP spoofing still remains an important research
issue.

8.1.2 Degree of Randomization

Most attackers believe that a high degree of randomization of header
fields such as port addresses (source and destination) and sequence
numbers along with partial or complete spoofing of source IP addresses,
are enough to mount a successful DDoS attack. But it is not really true!
It is actually easier for a defender to distill anomalous traffic from le-
gitimate traffic when the degree of randomization is high. A believable
and effective tool should generate traffic with addresses within a prob-
able range. Any traffic with an arbitrary address (beyond a safe range)
may generate an obvious anomaly. Therefore, we believe that sophisti-
cated attackers are likely to develop and use tools that generate attack
traffic with careful and partial source IP spoofing, and randomization
of other header fields without violating the likely range. Network de-
fenders must be able to counter such efforts of attackers.

8.1.3 Isolation vs. Combination

Most flooding tools, such as the UDP flooding of Agabot, generates
attack traffic by exploiting packet size randomization, source IP spoof-
ing, or randomization of other header fields. None of the tools are
designed by carefully combining all the relevant features. So, we be-
lieve that the next generation of attackers is likely to develop attack
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tools that combine all such features with greater sophistication and are
able to generate flooding attacks that work with a wide range of pro-
tocols. Therefore, network defenders must think ahead now to develop
methods to detect such efforts at feature combination.

8.1.4 Realistic TCP SYN Flooding

Improper balance between SYN and ACK packets and unusual service
requests are the major actions that give away TCP SYN flooding at-
tacks. Knowing this, in each round of flooding, a sophisticated attack
tool is likely to generate SYN and ACK packets with the proper balance
to avoid quick detection as anomalous traffic. An expert attacker is un-
likely to generate any service requests for unusual IP protocol types,
other than the most commonly used TCP or UDP. The use of other
protocols is quite likely to lead to anomalies in the traffic and hence
make it easily detectable. So, proper understanding of the protocols
and associated typical services in the context of a specific network are
important for a malfeasant who wants to develop an effective attack
tool. Network defenders must be prepared to apprehend such expert
attacks.

8.1.5 Removal of Unique Characteristics

A knowledgeable attacker is likely to avoid generating any traffic with
unique characteristics that stand out (such as the use of unusual or
unrealistically spoofed addresses for source IPs and ports, or unlikely
values for other parameters, e.g., packet size, service type, and gran-
ularity in delay setting), because they will help detect such traffic as
anomalies. Therefore, an advanced attack tool will probably have a
mechanism to filter out traffic with easily discoverable characteristics
before sending traffic to cause flooding. A defense mechanism must be
prepared to handle traffic that is not very far from normal.

8.1.6 Low-Cost and Limited Bandwidth Attack

An attacker who plans to launch a DDoS attack using mobile botnet
technology must work with limited bandwidth and battery backup. So,
to develop an attack tool on a mobile botnet, a sophisticated attacker
will have to be able to generate many variations of attack classes un-
der these constraints. It is imperative that a defender should also be
looking out for the same variations.
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Another one of our observations is that most existing DDoS defense
methods are very specific and are developed to counter a specific class
of DDoS attacks, particular to a group of layer-specific protocols. Such
methods are mostly validated either using a restricted network environ-
ment or on a set of synthetic datasets. A generic DDoS defense system
that is able to detect and block several or most classes of DDoS attacks
using various protocols and at all network layers, is still a dream. We
also have observed that most DDoS detection and protection methods
depend on multiple user parameters and the performance of the meth-
ods is highly sensitive to the values of these parameters. It is quite
likely that defenders must develop heuristic method(s) that can esti-
mate values of these parameters more accurately. Similarly, although
several source-end defense systems have been introduced, developing a
cost-effective and real-time source-end defense system that can work
with all protocols is not yet a reality.

8.2 Research Challenges

Based on our extensive experience, we have identified a few important
research challenges for network defenders who want to be well prepared
for tomorrow’s DDoS attacks. We enumerate them below.

8.2.1 Developing a Generic DDoS Defense Mechanism

As far as we know, a generic DDoS defense system that can identify any
class of DDoS attacks that can occur in a real network environment,
regardless of protocol and network layer, does not exist. Designing
such a defense system with generic features, but one that is able to
identify DDoS anomalies in real time without compromising QoS is a
very challenging task, if it is at all possible to do so. Maybe a generic
architecture with plugins for various specific attacks is the way to go,
or maybe a more integrated solution is a better choice.

8.2.2 Integration of Packet/Flow Monitoring and Detec-
tion

At this time, there is no integrated monitoring-cum-defense tool that
supports monitoring as well as detection of both high-rate and low-
rate DDoS attacks in real time. It may be possible to develop a soft
computing solution that can adapt to a variety of attack situations
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such as Cormelt and Crossfire attacks. Thus, it is time to develop a
security solution that provides plugins for comprehensive protection in
real time.

8.2.3 Developing DDoS-Tolerant Architecture

An efficient, practical, and robust defense architecture that uses mini-
mum resources but can withstand all classes of DDoS flooding attacks
does not currently exist. Thus, designing an architecture that can tol-
erate DDoS flooding and is able to offer high-quality services even in
the worst case of flooding, is the ideal goal of DDoS research.

8.2.4 Developing a Cost-Effective Source-End Defense

Developing a cost-effective and adaptive source-end defense system that
uses minimum computational resources and can block all classes of
DDoS attacks regardless of protocols remains a big challenge. Such a
defense mechanism should be able to adapt itself when a new type of
DDoS attack is identified.

8.2.5 Developing an Efficient Dynamic Firewall

Designing a firewall with the ability to dynamically update a ruleset,
assisted by efficient filtering (e.g., ingress/egress filtering), to block
forged IPs without compromising quality of service is another research
challenge. When a new type of DDoS attack is identified, the ruleset
needs to be updated and it needs to become effective without delay or
interruption.

8.2.6 Hybridization Issues to Support Real-Time
Performance with QoS

Developing an appropriate hybridization of source-end and victim-end
defense mechanisms, that uses an optimal set of dynamic rules to recog-
nize as well as block both known and unknown DDoS attacks without
compromising quality of service (QoS), is an important research issue.
The hybridization should be cost-effective and should be able to per-
form well in real time.
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8.2.7 Heuristics for Accurate Estimation of Defense
Parameters

Developing an effective heuristic method to accurately estimate the
width of local and global packet windows and the corresponding user
thresholds that fit the network environment and can identify all classes
of DDoS attacks without false alarms, is a challenging task. The meth-
ods should not be biased to a specific or a handful of network scenarios.

8.2.8 Developing a Robust and Cost-Effective Proximity
Measure

Designing a robust proximity measure to help accurately distill out
anomalous traffic (high-rate as well as low-rate traffic) from normal
traffic in real time by working with a small number of attributes, is a
challenge that needs to be overcome.

8.2.9 Standard for Unbiased Evaluation of Defense So-
lutions

Developing an appropriate measure to evaluate the effectiveness of a
solution for DDoS attack detection is an absolute current necessity.
A measure should consider all possible aspects of a defense system
such as accuracy, reliability, adaptability, scalability, timeliness, and
consistency, for unbiased evaluation of the system.

8.2.10 Large-Scale Testbed for Defense Validation

To validate tolerance, timeliness, accuracy, reliability, and scalability
of a defense system, development of a large-scale testbed with a large
combination of both virtual and physical nodes is essential. Developing
such a testbed to allow (i) launching of all possible types and classes
of DDoS attacks that are both high-rate and low-rate, and (ii) eval-
uating the defense system for its ability to identify attacks from the
normal traffic in real time, is a problem that is difficult but needs to
be addressed.
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