

Burp Suite Essentials

Discover the secrets of web application pentesting
using Burp Suite, the best tool for the job

Akash Mahajan

BIRMINGHAM - MUMBAI

Burp Suite Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 2111214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-011-1

www.packtpub.com

www.packtpub.com

Credits

Author
Akash Mahajan

Reviewers
Luca De Fulgentis

Rejah Rehim

David Shaw

Commissioning Editor
Anthony Albuquerque

Acquisition Editor
Harsha Bharwani

Content Development Editor
Neeshma Ramakrishnan

Technical Editor
Mrunal M. Chavan

Copy Editor
Sarang Chari

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Ameesha Green

Lucy Rowland

Indexers
Monica Ajmera Mehta

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Akash Mahajan is "That Web Application Security Guy." He has more than
10 years of experience in application and network security. Before starting his
own company, he was a technical lead for one of the leading American commercial
security software companies specializing in endpoint security. He then started
working on the security of the web infrastructure for the Government of India.

He is the founder and community manager at null - The Open Security Community,
where he has made major contributions in making null a national-level group and
null Bangalore the biggest and most vibrant chapter.

He is currently a chapter leader of Open Web Application Security Project Bangalore
(OWASP Bangalore).

He is the founder of The AppSec Lab, a company focused on application security,
where he works with small- and medium-sized companies in securing their web
server security, web security, and mobile security, and guiding them to stay secure
while being competitive.

Currently, his areas of research include DevOps, SecOps, security in SDLC, cloud
security, and security awareness through community building. He conducts a lot
of training as well, including the extremely popular Xtreme Web Hacking.

He was actively involved with the Bangalore Barcamp Planners group and has
organized events such as AppJam and MobileCamps all over India, where he
has evangelized security to small- and medium-sized enterprises.

Acknowledgments

I would like to thank my parents for their constant guidance and encouragement.
They gave me all the independence in the world to break rules and question
fundamentals and have fun while doing all that. I also want to thank my wife,
Lubaina; finding someone like her to be with me and agree to marry me rekindled
my faith in fate and destiny. She takes care of the house and all my tantrums with a
brilliant smile all the time. I want to thank my elder sister, who has the unshakeable
faith in my abilities that only elder sisters can have. Apart from my family, I would
like to thank my friends Riyaz and Anant whom I met at null - The Open Security
Community and who are far more brilliant and knowledgeable than I will ever be.

I would like to thank Neeshma, whose help, support, and eternal patience in dealing
with me is the only reason this book was completed. I would like to thank the technical
reviewers, David Shaw, Luca De Fulgentis, and Rejah Rehim, who read through all
that I wrote—most of which in the first draft was pretty sad. They guided me to make
this book much better than I ever imagined it could be. Their insights and comments
helped me understand and correct numerous mistakes and blunders. I will always be
grateful to them for giving their time and effort to this endeavor.

About the Reviewers

Luca De Fulgentis is an Offensive Security enthusiast with experience in application
security engineering and penetration testing. He holds a Master's degree in Computer
Engineering from Politecnico di Milano, from where he graduated with a thesis on
evolutionary fuzzing. As the CTO of Secure Network S.r.l., he delivers and coordinates
the company's top-notch security services. He is also involved in training tigers for
the team and researching advanced client-side exploitation techniques, cross-device
attacks, and Windows Phone platform security.

Rejah Rehim is currently a software engineer with Digital Brand Group (DBG),
India, and is a longtime preacher of the open source community. He is a steady
contributor to the Mozilla Foundation, and his name has been featured in the
San Francisco Monument made by the Mozilla Foundation.

He is a part of the Mozilla add-on review board and has contributed to the
development of several node modules. He has also been credited with the creation
of eight Mozilla add-ons, including the highly successful Clear Console add-on that
was selected as one of the best Mozilla add-ons of 2013. With a user base of more than
44,000, it has registered more than 450,000 downloads till date. He has successfully
created the world's first, one-of-a-kind, open source, Linux-based security penetration
testing browser bundle, PenQ. It is preconfigured with tools for spidering, advanced
web searching, fingerprinting, and much more.

Rejah is also an active member of OWASP and the chapter leader of OWASP Kerala.
He is also one of the moderators of the OWASP Google+ group and an active speaker
at Coffee@DBG, one of the most premier monthly technology reviews in Technopark,
Kerala. Besides being a part of the Cyber Security division of DBG currently and
QBurst in the past, he is also a fan of process automation and has implemented it
in DBG.

David Shaw has extensive experience in many aspects of information security.
Beginning his career as a network security analyst, he monitored perimeter firewalls
and intrusion detection systems in order to identify and neutralize threats in real
time. After working in the trenches of perimeter analysis, he joined the External
Threat Assessment Team as a security researcher, working closely with large
financial institutions to mitigate external risk and combat phishing attacks.

David joined Redspin in 2009 and has worked as a senior security engineer, director
of penetration testing, and senior director of engineering. He is currently the CTO
and Vice President of Professional Services at Redspin, specializing in external and
application security assessments and managing a team of highly skilled engineers.

He has keen interest in complex threat modeling and unconventional attack vectors
and has been a speaker at THOTCON, NolaCon, ToorCon, LayerOne, DEF CON,
BSides Las Vegas, BSides Los Angeles, and BSides Seattle.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting Started with Burp 7

Starting Burp from the command line 8
Specifying memory size for Burp 9

Specifying the maximum memory Burp is allowed to use 9
Ensuring that IPv4 is allowed 10
Working with other JVMs 10
Summary 11

Chapter 2: Configuring Browsers to Proxy through Burp 13
Configuring widely used browsers to proxy through Burp Suite 14

Microsoft Internet Explorer 14
Google Chrome 15
Mozilla Firefox 16

Fine-grained proxy configuration 17
Mozilla Plug-n-Hack extension 18

Exclusive Firefox profile 19
Summary 20

Chapter 3: Setting the Scope and Dealing with
Upstream Proxies 21

Multiple ways to add targets to the scope 22
Loading a list of targets from a file 23

Scope and Burp Suite tools 23
Scope inclusion versus exclusion 24
Dropping out-of-scope requests 24
Dealing with upstream proxies and SOCKS proxies 25

Types of proxies supported by Burp 25

Table of Contents

[ii]

Working with SOCKS proxies 25
Using SSH tunneling as a SOCKS proxy 26

Setting up Burp to be a proxy server for other devices 27
Summary 29

Chapter 4: SSL and Other Advanced Settings 31
Importing the Burp certificate in Mozilla Firefox 32
Importing the Burp certificate in Microsoft IE and Google Chrome 34
Installing the Burp certificate in iOS or Android 35
SSL pass-through 35
Invisible Proxy 36
Summary 38

Chapter 5: Using Burp Tools As a Power User – Part 1 39
Target 40

Site map compare 42
Proxy 43
The Message Analysis tab 45
Actions on the intercepted requests 46

Response interception and modification 48
Using the Proxy history tab 49

Intruder 50
Scanner 57

Scanning optimization and requests 59
When to scan 60

Repeater 60
Summary 62

Chapter 6: Using Burp Tools As a Power User – Part 2 63
Spidering 63
Sequencer 67

Analysis of the tokens 70
Sample analysis 71

Decoder 72
Comparer 74
Alerts 76
Summary 76

Chapter 7: Searching, Extracting, Pattern Matching, and More 77
Filtering 78

Illustration 81
Matching 81
Grep - Match and Grep - Extract 84
Summary 86

Table of Contents

[iii]

Chapter 8: Using Engagement Tools and Other Utilities 87
Search 88
Target Analyzer 90
Content Discovery 91
Task Scheduler 93
CSRF proof of concept Generator 95
Summary 96

Chapter 9: Using Burp Extensions and Writing Your Own 97
Setting up the Python runtime for Burp Extensions 98
Setting up the Ruby environment for Burp Extensions 98
Loading and installing a Burp Extension from the Burp App Store 99

Using BApp files 100
Loading and installing a Burp Extension manually 101
Managing Burp Extensions 101

Memory issues with Burp Extensions 103
Writing our own Burp Extensions 104

A simple Burp Extension in Python 104
Noteworthy Burp Extensions 107
Summary 108

Chapter 10: Saving Securely, Backing Up, and Other
Maintenance Activities 109

Saving and restoring a state 110
Automatic backups 112
Scheduled tasks 113
Logging all activities 114
Summary 115

Chapter 11: Resources, References, and Links 117
Primary references 117

Learning about Burp 117
Web application security testing with Burp 118
Miscellaneous security testing tutorials with Burp Suite 119
Pentesting thick clients 120
Testing mobile applications for web security using Burp Suite 121
Extensions references 121
Books 122
Summary 123

Index 125

Preface
This book on Burp is meant for web security testers. You might be using browser
plugins or automated scanners or even other interception proxy tools. In this book,
you will see how Burp Suite is a versatile tool that allows almost any kind of web
security testing based on your needs. This book will build on how Burp can be used
with upstream proxies, SSL certificates, and more. You will learn how to search,
extract, and do pattern matching for requests and responses and use that knowledge
to test complex and simple web applications. You will learn to use different tools
and components together to form a powerful chain of tools for web testing. As
a professional tester, we need to be able to report our work, safeguard it, and
sometimes even extend the tools that we use.

You will learn how different components of Burp Suite can be used together and
how to use Burp Suite like a pro. You will learn to embrace the user-driven workflow
for testing web applications. You can customize and extend Burp according to your
needs for maximum testing and minimum software.

This book has an easy-to-follow style, where we focus on understanding what the
problem is that we are trying to solve and how Burp can make it easy for us to solve.
Looking at scenarios, real-world use cases, and applying the philosophy of how Burp
is designed makes for an easy read and a highly actionable list of items for you to
take back to your workplace.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Burp, starts with an introduction to Burp Suite.
We will cover some of the advanced flags that can be passed to the software when
we invoke it from the command line. By the end of this chapter, you will have a
pretty good idea of running Burp Suite in various operating systems, while being
able to tweak it for maximum performance.

Chapter 2, Configuring Browsers to Proxy through Burp, explains that interception proxies
work best when used with a browser software. Even though it is quite simple to get
Burp working with a browser, advanced users can use additional browser extensions
to perform powerful and customized integrations. By the end of this chapter, you will
have configured your browser to use Burp as an interception proxy. Additionally,
using browser extensions, you will create a powerful chain of tools to perform web
security testing.

Chapter 3, Setting the Scope and Dealing with Upstream Proxies, shows how more
and more complex web applications are being tested, including the ones that run
primarily on mobile platforms. How does one configure Burp Suite to intercept in
such cases? Testing web applications available on the Internet is quite simple with
Burp, but how do we test applications that are inside corporate networks, running
on company intranets? By the end of this chapter, you will know how to work with
SSH port forwarding, SOCKS-based proxies, and intercept HTTP traffic coming from
mobile devices.

Chapter 4, SSL and Other Advanced Settings, teaches that SSL-enabled applications
sometimes require additional configuration. Usually, you add the Burp Suite CA
certificate to your browser and start testing, but sometimes this is not desirable
or possible at all. Some additional settings make it possible for nonbrowser-based
HTTP applications and thick clients to be tested. By the end of this chapter, you will
be able to set up and test SSL-enabled applications without any errors. You will also
be able to test thick clients or clients that are not proxy-aware.

Chapter 5, Using Burp Tools As a Power User – Part 1, shows that Burp Suite is powerful
due to its amazing set of tools. We will start with Target, covering Site map and Scope,
and then we will move to Proxy, which is the workhorse for testers. Then, we will
move to the attack tool of choice, Intruder. After Intruder, we will cover the Scanner
tool and discuss when we should use the Scanner tool. We will end the chapter with
the Repeater tool, which supercharges the manual testing part by making it dead
simple to repeat requests and see responses.

Preface

[3]

Chapter 6, Using Burp Tools As a Power User – Part 2, covers the other tools that
make up the Burp Suite software and shows us how tools such as Spider, Sequencer,
Decoder, Comparer, and Alerts work in sync to provide us with what we need to
test web applications.

Chapter 7, Searching, Extracting, Pattern Matching, and More, explains that the suite of
tools provided by Burp is quite powerful in terms of performing the heavy lifting of
crafting HTTP requests and responses based on our actions on the web applications.
An important aspect of this power is the ability to match, extract, find, grep, and
search all the requests and responses based on our requirements. In this chapter,
you will learn the various ways in which we can search, extract, and pattern match
data in requests and responses, which allow us to complete our testing.

Chapter 8, Using Engagement Tools and Other Utilities, covers something called the
engagement tools of Burp suite. These tools allow us to automate some of the more
mundane and boring parts of the security testing process. Engagement tools is a
Pro-only feature of Burp Suite. Apart from the engagement tools, we will look at some
smaller utilities that aid the testing process such as Search, Target Analyzer, Content
Discovery, Task Scheduler, CSRF PoC Generator, and Manual Testing Simulator.

Chapter 9, Using Burp Extensions and Writing Your Own, shows that not only does
Burp Suite come with its own rich set of tools, but it also provides API interfaces
to extend its functionality. Many security researchers have written extensions that
enhance the native functionality or add to the already rich toolset. By the end of this
chapter, you will be able to use Burp Extensions and even write a sample extension
in Python.

Chapter 10, Saving Securely, Backing Up, and Other Maintenance Activities, states that
Burp Suite is just like any other testing tool. As with any software, it is imperative
that you make regular backups and carry out other maintenance activities. By the
end of this chapter, you will have all the knowledge about ensuring that your Burp
Suite data is backed up properly and securely and how you can run scheduled tasks
for backup and other maintenance activities.

Chapter 11, Resources, References, and Links, provides a number of great resources
and references that you can rely on. It provides you with the primary references that
you should follow to get more insight into how web security practitioners use Burp.
We will list useful and informative resources for application security as well.

Preface

[4]

What you need for this book
As this is a book about Burp Suite, we need Burp Suite. Most of the topics can
be covered using the free version, but some of the topics require the Burp Suite
Pro version.

To use Burp Suite, which is an application written in Java, we need the Java
Runtime Environment. While Java 7 should suffice, the software will run okay
with Java 8 as well.

To follow the steps and try out web security testing, we require a modern web
browser, such as Mozilla Firefox, Google Chrome, Microsoft Internet Explorer,
or others.

To try out Burp Extensions or attempt to write one would require Jython or
JRuby based on the language you choose.

Who this book is for
This book is for anyone interested in learning how to use Burp Suite to test
web applications.

If you have some experience of web security testing and Burp Suite as well but
now would like to become proficient in using all the different tools and options
present in Burp Suite so that your testing can become more powerful and effective,
this is the book for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The official documentation cautions users from double-clicking on the .jar file."

A block of code is set as follows:

Since we didn't get a request, we will look at response.
responseInfo = self._helpers.analyzeResponse(self._
helpers.bytesToString(messageInfo.getResponse()))

Preface

[5]

Many times, we figure out next steps based on the status
code of the response.
self._stdout.println(responseInfo.getStatusCode())

Any command-line input or output is written as follows:

java -jar -Xmx2048M /path/to/burpsuite.jar
java -jar -Xmx2G /path/to/burpsuite.jar

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"We need the JRE, so click on the Download button under JRE."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with Burp
Burp Suite is a collection of tightly integrated tools that allow effective security testing
of modern-day web applications. It provides a great combination of tools that allow
automated and manual workflows to test, assess, and attack web applications of all
shapes and sizes. Getting started with Burp is easy. With some application, we can
become extremely comfortable and skilled at using the various powerful tools that
are offered by Burp Suite.

Burp Suite is a piece of modern software written in the Java language. Java makes it
cross-platform and extremely versatile for use both by novices and professionals. This
chapter will get you started with Burp quickly while giving you enough information
that will facilitate our journey of getting acquainted with Burp Suite. The tool, unlike
point-and-click automated scanners, is meant to be used in a hands-on manner, and
while it makes it easy to automate parts of the testing, a lot can be done by the tool in
the hands of an expert. Since our aim is to optimize the way we use Burp, through this
chapter, we will get to know a few tricks that will make it easy to start with.

Burp Suite is distributed as a single Java Archive (.jar) file. The free version
can be downloaded from http://portswigger.net/burp/downloadfree.html.
There is no registration or form to fill out, but if you'd rather get the Pro version,
which I highly recommend, then you need to buy it from the same website to be
able to download it. There are significant differences between the free version and
the Pro version, but if you are a serious tester looking for the best value-for-money
scanner / web application security tool, it should be Burp Suite Pro.

The main differences between the free version and the Pro version of Burp Suite are:

• Burp Scanner
• The ability to save and restore your work
• Engagement tools, such as Target Analyzer, Content Discovery,

and Task Scheduler

http://portswigger.net/burp/downloadfree.html

Getting Started with Burp

[8]

These are the topics we'll be covering in this chapter:

• Starting Burp from the command line
• Setting memory options based on our requirement and system RAM
• Troubleshooting any IPv6 error that occurs sometimes

Oracle Java 1.6 or above is currently required for the software to run.

Oracle Java 1.6+ is usually installed for Windows and Mac OS X. If your computer
doesn't have it installed, go to http://java.com, choose the version of Java Runtime
Environment (JRE) for your operating system, and follow the installation instructions.

The official documentation cautions users from double-clicking on the .jar file.
This is to ensure that we can clearly specify the amount of RAM allocated for the
Burp process when we start it.

Some people have successfully run Burp with other flavors of Java, but for now,
we will focus on running it well with Oracle Java 1.6 or above.

Starting Burp from the command line
Burp doesn't have an elaborate setup process. Starting Burp is as simple as executing
a command in your shell of choice.

Starting Burp requires Java to be already installed and configured on your
computer. If your computer doesn't already have Java 1.6+, you can get it for
free from http://www.oracle.com/technetwork/java/javase/downloads/
index-jsp-138363.html.

We need the JRE, so click on the Download button under JRE.

If your computer already has Java 1.6 or above installed, execute the following in
your shell:

java -jar /path/to/burpSuite.jar

Those who have done Java programming will understand what is happening here.
We are passing a JAR to the Java runtime. Please note there are no command-line
options that need to be passed to Burp Suite.

http://java.com
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

Chapter 1

[9]

Specifying memory size for Burp
If we start Burp Suite by double-clicking on the .jar file, the Java runtime will
allocate the maximum memory available to Burp on its own. The total amount
allocated might vary based on the available system RAM. Since Burp Suite will
capture hundreds and sometimes thousands of requests and responses of various
sizes, it makes sense to allocate memory when we start the program.

There is the possibility that Burp Suite might crash if the total memory available
is not enough. While doing a security assessment, we don't want to worry about
disruption in our work or the feeling that we may lose valuable data about the
assessment due to Burp Suite crashing. Therefore, it is prudent to specify how
much system RAM is allocated to Burp Suite in the beginning itself.

Specifying the maximum memory Burp is
allowed to use
We can use command-line flags provided by Java to ensure that Burp has enough,
and more, memory to use while running our security assessment:

java -jar -Xmx2048M /path/to/burpsuite.jar

java -jar -Xmx2G /path/to/burpsuite.jar

Both these commands will allocate 2 GB of RAM to Burp Suite. We can also pass
options for gigabytes, megabytes, or kilobytes. You can read up more about this
at the Oracle page at http://docs.oracle.com/cd/E13150_01/jrockit_jvm/
jrockit/jrdocs/refman/optionX.html#wp999528.

This should be enough for most web applications that need to be tested. If you have
more system RAM to spare, you can even increase it further. There is a small caveat
you should know. If you increase the memory allocated to Burp Suite beyond 4 GB,
the Java Virtual Machine (JVM) garbage collector (GC) will need to do more work.
This has been known to adversely affect the performance of Java-based applications.
Keeping that in mind, there are clear performance gains that can be achieved by
increasing the minimum heap size from the default, which can be as low as 128 MB
on older machines.

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html#wp999528
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html#wp999528

Getting Started with Burp

[10]

Ensuring that IPv4 is allowed
Sometimes, Java picks up the IPv6 address on the interface, and Burp is unable to
make any connections to websites returning an IPv4 address. This results in a Java
error, which is as follows:

java.net.SocketException: Permission denied

The browser also shows a cryptic error, which is as follows:

Burp proxy error: Permission denied: connect

If we ever encounter this error, all we need to do is tell Java that we want to use
the IPv4 interface by passing the following parameter to the runtime:

java -Xmx2048M -Djava.net.preferIPv4Stack=true -jar /path/to/
burpsuite.jar

This command and flag tells the Java runtime that we will prefer the IPv4
network stack to run the Burp Suite JAR file. Another option is to set a Java
option environment variable.

Please note that by running the preceding command, the IPv6 interface will
be disabled.

Many people have reported this as a bug on the Burp support forums. Most of the
people who complained were using Microsoft Windows 7 64-bit operating system
running a 32-bit version of the JVM.

Working with other JVMs
The official documentation of Burp doesn't say anything about not working with
JVMs apart from the official Oracle Java. There was a time when if we tried to run
Burp Suite with OpenJDK, it would start off by giving a warning. But now, it runs
perfectly without any warnings in Kali with OpenJDK.

Chapter 1

[11]

Kali is a Linux-based distribution that has been specifically created for penetration
testing and security testing of applications and networks. Previously, it was known
as Backtrack. In the following screenshot, we can see that it runs the OpenJDK JRE
and is able to run Burp Suite without any issues:

Summary
We have successfully managed to start Burp Suite. Usually, we just double-click on
the application shortcut and get it working. However, if you want to utilize the full
power of the application, we need to understand some of the underlying concepts
of memory and networking.

In this chapter, you learned how to allocate and reserve a specified amount of RAM
for use while Burp Suite runs. This will ensure that while doing a security assessment,
memory issues will not hamper our progress in any way. We also saw an error that
can crop up, which is quite difficult to understand unless you have seen it before.

Now that we have successfully started Burp Suite, in the next chapter, we will see
how to configure our web browsers to send web traffic through it for interception
and analysis.

Configuring Browsers to
Proxy through Burp

The Burp Suite Proxy tool is an intercepting proxy. An intercepting proxy intercepts
all the traffic that is sent toward it from a client and all the resulting responses from
the server as well.

The primary job of the Burp Suite Proxy tool is to intercept regular web traffic, which
goes over Hypertext Transfer Protocol (HTTP), and with additional configuration,
encrypted HTTP (HTTPS) traffic as well. All of this to make it easy for you to see all
interactions and data that goes to and come from the web server. If you can see what
is happening in terms of requests and responses, you can test the website security
using various techniques and approaches available to you.

Burp Suite can be used to intercept any client-server communication that goes over
HTTP. The most common web clients are the web browsers that users like you and
me use. There are other software capable of crafting and working with HTTP requests,
such as curl and Wget.

Some desktop software that does send out HTTP requests don't have any provision
to specify proxy information. Burp Suite allows you to intercept traffic from such
clients using invisible proxying. We will cover this in detail in Chapter 4, SSL and
Other Advanced Settings.

Note that although Burp Suite is a lot more than just a proxy, everything starts
with configuring browsers to proxy through Burp Suite.

Let's see how we can configure Microsoft Internet Explorer, Google Chrome,
and Mozilla Firefox to proxy all their web traffic through Burp Suite.

Configuring Browsers to Proxy through Burp

[14]

Configuring widely used browsers to
proxy through Burp Suite
In this section, you will see how to configure commonly used browsers to proxy
through Burp Suite.

Microsoft Internet Explorer
The following simple steps allow us to configure Microsoft Internet Explorer ready
to be used with Burp Suite:

1. Start Microsoft Internet Explorer.
2. Click on Tools in the main menu bar.
3. Click on Internet Options and choose the Connections tab:

4. Click on LAN settings, as shown in the following screenshot:

5. Check Use a proxy server for your LAN.
6. Add localhost as the hostname and 8080 as the port number, as shown in

the following screenshot:

7. The address localhost and the port 8080 are the default values Burp
Suite uses once it is started. You will have an opportunity to change
this to something else later.

Chapter 2

[15]

8. At this point, once you click on OK, you have successfully configured
Microsoft Internet Explorer to use Burp Suite as your interception
proxy server.

9. You can verify this by going to http://burp in your newly configured
browser. You will see a welcome message on this page. If you don't see
such a message, confirm that Burp Suite is running at this point. Take a
look at the following screenshot:

Google Chrome
Google Chrome picks up the system's proxy settings. If, for some reason, that doesn't
happen, here is how you can quickly configure Burp Suite as the interception proxy
in it:

1. Start Google Chrome.
2. Click on the icon that looks like three horizontal parallel lines, which

is used to customize and control Google Chrome. This is present in
the top-right corner of the browser window.

3. From the menu that opens up, click on Settings.
4. Another way to reach the Settings page is through a URL chrome://

settings/. Type this in the address bar, and you should be able to see
some settings.

5. Type Proxy in the search bar in the top-right corner, and you will get a
button to change the proxy setting. Take a look at the following screenshot:

6. You will notice this opens the same dialog box as the Microsoft Internet
Explorer browser; you can follow the same steps from 4 till 9 and configure
the proxy settings.

Configuring Browsers to Proxy through Burp

[16]

Mozilla Firefox
Just like Google Chrome, if you have set the interception proxy settings properly in
Microsoft Internet Explorer, then you are already all set. While this is great, if we
don't care about sending all the HTTP traffic of the system to Burp Suite, this is a
problem. With Mozilla Firefox, we can ensure that intercepting proxy configuration
only sends browser-generated traffic to Burp Suite. This is one reason Firefox is
preferred for the testing and security assessment of web applications. The next
set of steps allows us to configure Mozilla Firefox so that it is ready for use with
Burp Suite:

1. Start Mozilla Firefox.
2. Click on Tools in the main menu bar and choose Options.
3. Once the Options window opens, go to Advanced | Network,

as shown in the following screenshot:

4. Add localhost in the HTTP Proxy textbox and 8080 in the Port text box:

5. Now, all your HTTP traffic from Mozilla Firefox will go through Burp Suite.
6. By default, when Burp Suite starts, it starts with the intercept mode on.

This means if you try to browse at this point, it would seem like nothing
is happening. Behind the scenes, Burp Suite is in the interception mode
and waiting for your input. At this point, you can either forward the
request or switch off the intercept mode.

Chapter 2

[17]

7. You can toggle the intercept mode, forward the request, or even drop it:

Fine-grained proxy configuration
Configuring the proxy every time for the entire browser is cumbersome. Additionally,
configuring the proxy sets the proxy browser wide. Mozilla Firefox has a rich tradition
of extending the core functionality using browser add-ons. We will use one such
add-on to get fine-grained control over what traffic should be proxied.

FoxyProxy Standard is a Mozilla Firefox add-on to get fine-grained control over
proxy traffic. It automates the processing of settings required to use proxies in
Firefox. Using FoxyProxy is quite simple.

If you haven't used an intercepting proxy before with any browser, you might not
understand the reason why we should use a browser-specific add-on to set up the
proxy configuration, but if you are planning to regularly use interception proxies
in your work flow, the initial time spent will become an invaluable time saver
going forward.

There are multiple reasons to use the FoxyProxy Standard add-on. Primarily,
it allows us to ensure that we only send selective traffic to Burp Suite. We can
configure FoxyProxy in such a way that only the actual target website that we
want to test is forwarded to Burp Suite and the rest of the traffic is sent directly.

Setting up FoxyProxy
Follow these steps to set up FoxyProxy:

1. Go to Tools | Add-ons in the main menu bar.
2. In the search box present in the top-right corner, type FoxyProxy Standard.
3. Click on the Install button present on the search results for

FoxyProxy Standard.
4. Restart the browser after the add-on is downloaded and installed.
5. Once restarted, you will see a small fox icon next to the address bar within

a red circle.
6. Right-click on that icon and choose Options.

Configuring Browsers to Proxy through Burp

[18]

7. Click on the Add New Proxy button present on the right-hand side,
as shown in the following screenshot:

8. This opens a new settings window. There will be three tabs visible. Add the
same values for Host and Port here as well.

9. Now click on the URL Patterns tab and add a new pattern. Add a new
pattern name as example and an actual pattern as *example.com/*.

10. We also need to add a pattern name, Burp, and a pattern, *burp/*, for that.
This is a special URL that is required for its working.

11. Now, we can click on OK to come back to the main FoxyProxy Standard
window. In this window, we need to select the mode as Use proxies as their
pre-defined patterns and priorities.

12. Click on the Close button, and we have successfully configured FoxyProxy
Standard for our purposes.

A good professional tip is to give a different color to every proxy that we set up using
FoxyProxy. Many times, we may want to run multiple proxies on our machines, and
the colors will indicate which proxy the data is being sent to.

Mozilla Plug-n-Hack extension
Mozilla has an interesting configuration extension called Plug-n-Hack that Burp
Suite supports out of the box. Even though it seems like a very cool idea and makes
it easy for people starting with this kind of setup, the current setup is a little tricky
to get going. Perform the following steps:

1. Download the add-on .xpi file from https://github.com/mozmark/
ringleader.

2. We can trust this link because Mozilla has mentioned it in their blog post,
https://blog.mozilla.org/security/2013/08/22/plug-n-hack/.

https://github.com/mozmark/ringleader
https://github.com/mozmark/ringleader
https://blog.mozilla.org/security/2013/08/22/plug-n-hack/

Chapter 2

[19]

3. We can install the .xpi file using the Firefox Add-ons manager:

4. Once installed, go to the URL http://burp/pnh in a new tab.
5. Click on Configure your browser and enable the configuration after

accepting the warning.
6. This has installed the proper configuration required for Burp Suite for use

as an interception proxy and some more additional configurations related
to SSL handling.

Exclusive Firefox profile
It is advisable to create a new profile to add FoxyProxy or the Plug-n-Hack
extension rather than working in your primary profile. Mozilla Firefox has
a handy profile manager, which can be invoked using a command-line flag,
and you can use it to create a security testing profile very easily:

/path/to/firefox-binary -ProfileManager

After issuing this command, the following window will appear:

Configuring Browsers to Proxy through Burp

[20]

Summary
We successfully intercepted traffic from our browser to Burp Suite. This allows
Burp Suite to see each and every request that leaves our browser. For our toolchain,
we can use Firefox with the FoxyProxy Standard add-on and ensure that only selective
traffic can be sent to Burp Suite. We also configured Internet Explorer, Chrome, and
Firefox to proxy traffic through Burp Suite and now, we are ready to go ahead.

The next logical step is to set the scope for our security assessment. While doing
assessments, sometimes we need to go through white-listed IP addresses using
upstream proxies with Burp. We will cover that in the next chapter.

Setting the Scope
and Dealing with

Upstream Proxies
In the preceding chapter, we saw how to set up Mozilla Firefox with the FoxyProxy
Standard add-on to create a selective, pattern-based forwarding process. This allows
us to ensure that only white-listed traffic from our browser reaches Burp. This is
something that Burp allows us to set with its configuration options itself. Think of it
like this: less traffic reaching Burp ensures that Burp is dealing with legitimate traffic,
and its filters are working on ensuring that we remain within our scope.

As a security professional testing web application, scope is a term you hear and read
about everywhere. Many times, we are expected to test only parts of an application,
and usually, the scope is limited by domain, subdomain, folder name, and even certain
filenames. Burp gives a nice, simple-to-use interface to add, edit, and remove targets
from the scope.

Setting the Scope and Dealing with Upstream Proxies

[22]

Multiple ways to add targets to the scope
Burp has a subtab called Scope under the Target tab. The most common way to
add a target to Scope is to navigate to it using your browser, find it in the Site map
subtab under the Target tab, right-click on it, and select Add to scope.

For example, if we have permission to test http://download.mozilla.org, and we
want to add it to the scope, we do the following:

We can always edit the URL in the URL editor window if we need to tweak it a bit or
if we made any mistakes and added something we shouldn't add. Have a look at the
following screenshot:

Apart from adding the URL to the scope using the context menu, we can always
paste the URL of the target as well. When we paste the URL, we can choose the
protocol, host/IP, port, and filename.

http://download.mozilla.org

Chapter 3

[23]

Loading a list of targets from a file
Loading a list of targets from a file is the most sensible way of adding targets to
the scope in Burp. In most security assessment scenarios, we are already aware of
exact URLs for our targets. This allows us to build a target list, which can simply
be loaded into the Scope section by clicking on the Load ... button. Have a look
at the following screenshot:

Once clicked, the File Browser dialog window opens and we can choose our file.
The links need to be one of each line and based on their protocol, port number, path,
and so on. All the fields get set up automatically. The following screenshot contains a
list of sample target URLs for illustration. Note that some of the URLs in the following
screenshot may not exist in reality:

Scope and Burp Suite tools
Almost all the tools follow the scope. Most of the tools might offer more granular
options over and above the Suite's scope. From Burp's application documentation,
the following are the advantages of these tools:

• You can set display filters for the target site map and Proxy HTTP history.
This allows us to focus on the task at hand, and everything else is kept
hidden away.

• The Proxy can be configured to only intercept in-scope items—a highly
desirable option in my opinion.

• Only in-scope items for spidering or live scanning in the scanner can be done.

Since most of the time, the activities that we carry out are undistinguishable from
regular web attacks, it is extremely important to only attack targets that we want to
without any shred of doubt. The target scope allows us to be precise just like that.

Setting the Scope and Dealing with Upstream Proxies

[24]

Scope inclusion versus exclusion
The target scope works on URL patterns. URL patterns can either be inclusive
or exclusive. An inclusive pattern will allow all URLs matching the pattern to go
through. An exclusive pattern will disallow all URLs matching the pattern from
proceeding further. To match the scope, Burp Suite matches URLs to the patterns
defined in the included list first. This allows us to add targets easily in scope. Once a
target URL pattern is matched, it is checked against in the exclusion list. This is done
to ensure that we don't inadvertently trigger critical functionality. For example, if we
want to attack everything and not get logged out, we can exclude the Logout page. If
some functionality triggers automated e-mails to thousands of users, we don't want
to annoy the users by sending e-mails while testing by mistake. We should explicitly
put the mentioned URLs in the exclusion list.

Spending some quality time figuring out the scope, adding the required target URLs,
and ensuring that our inclusion and exclusion lists will ensure, will save us a lot of
time and effort while using the other tools of the Suite. This might also be mandatory
based on the testing activity we are planning to do. I highly recommend you to get
comfortable using Target Scope.

Dropping out-of-scope requests
In the Options subtab under the Connections tab, we can decide how we would
like to treat requests that are out of scope. Out-of-scope requests are any requests
that don't match the URL patterns set in the Scope subtab.

A good plan is to drop all out-of-scope requests when you are absolutely sure
about what you are attacking. You might want to reconsider based on requirements,
especially if you are still figuring out the complete scope or functionality of the
application being tested. Take a look at the following screenshot:

Chapter 3

[25]

Dealing with upstream proxies and
SOCKS proxies
Sometimes, the application that we need to test lies inside some corporate network.
The clients give access to a specific IP address that is white-listed in the corporate
firewall. At other times, we work inside the client location but it requires us to
provide an internal proxy to get access to the staging site for testing.

In all such cases and more, we need to be able to add an additional proxy that
Burp can send data to before it reaches our target. In some cases, this proxy can
be the one that the browser requires to reach the intranet or even the Internet. Since
we would like to intercept all the browser traffic and Burp has become the proxy
for the browser, we need to be able to chain the proxy to set the same in Burp.

Types of proxies supported by Burp
We can configure additional proxies by navigating to Options | Connections.

If you notice carefully, the upstream proxy rule editor looks like the FoxyProxy
add-on proxy window. That is not surprising as both of them operate with URL
patterns. We can carefully add the target as the destination that will require a
proxy to reach to.

Most standard proxies that support authentication are supported in Burp. Out
of these, NTLM flavors are regularly found in networks with the Microsoft Active
Directory infrastructure. The usage is straightforward. Add the destination and
the other details that should be provided to you by the network administrators.

Working with SOCKS proxies
SOCKS proxies are another common form of proxies in use. The most popular
SOCKS-based proxy is TOR, which allows your entire browser traffic, including
DNS lookups, to occur at the proxy end. Since the SOCKS proxy protocol works
by taking all the traffic through it, the destination server can see the IP address
of the SOCKS proxy.

Setting the Scope and Dealing with Upstream Proxies

[26]

You can give this a whirl by running the Tor browser bundle http://www.
torproject.org/projects/torbrowser.html.en. Once the Tor browser bundle
is running successfully, just add the following values in the SOCKS proxy settings
of Burp. Make sure you check Use SOCKS proxy after adding the correct values.
Have a look at the following screenshot:

Using SSH tunneling as a SOCKS proxy
Using SSH tunneling as a SOCKS proxy is quite useful when we want to give a
white-listed IP address to a firewall administrator to access an application. So, the
scenario here requires you to have access to a GNU/Linux server with a static IP
address, which you can connect to using Secure Shell Server (SSH).

In Mac OS X and GNU/Linux shell, the following command will start a local
SOCKS proxy:

ssh -D 12345 user@hostname.com

Once you are successfully logged in to your server, leave it on so that Burp can keep
using it. Now add localhost as SOCKS proxy host and 12345 as SOCKS proxy
port, and you are good to go.

In Windows, if we use a command-line SSH client that comes with GNU, the process
remains the same. Otherwise, if you are a PuTTY fan, let's see how we can configure
the same thing in it.

In PuTTY, follow these steps to get the SSH tunnel working, which will be our
SOCKS proxy:

1. Start PuTTY and click on SSH and then on Tunnels.
2. Here, add a newly forwarded port. Give it the value of 12345.

Under Destination, there is a bunch of radio buttons; choose
Auto and Dynamic, and then click on the Add button:

http://www.torproject.org/projects/torbrowser.html.en
http://www.torproject.org/projects/torbrowser.html.en

Chapter 3

[27]

3. Once this is set, connect to the server.
4. Add the values localhost and 12345 in the Host and Port fields,

respectively, in the Burp options for the SOCKS proxy.
5. You can verify that your traffic is going through the SOCKS proxy by

visiting any site that gives you your external IP address. I personally
use my own web page for that http://akashm.com/ip.php; you might
want to try http://icanhazip.com or http://whatismyip.com.

Burp allows maximum connectivity with upstream and SOCKS proxies to make
our job easier. By adding URL patterns, we can choose which proxy is connected
in upstream proxy providers. SOCKS proxies, due to their nature, take all the traffic
and send it to another computer, so we can't choose which URL to use it for. But this
allows a simple-to-use workflow to test applications, which are behind corporate
firewalls and need to white-list our static IP before allowing access.

Setting up Burp to be a proxy server for
other devices
So far, we have run Burp on our computer. This is good enough when we want to
intercept the traffic of browsers running on our computer. But what if we would like
to intercept traffic from our television, from our iOS, or Android devices? Currently,
in the default configuration, Burp has started one listener on an internal interface on
port number 8080. We can start multiple listeners on different ports and interfaces.

http://akashm.com/ip.php
http://icanhazip.com
http://whatismyip.com

Setting the Scope and Dealing with Upstream Proxies

[28]

We can do this in the Options subtab under the Proxy tab. Note that this is different
from the main Options tab. We can add more than one proxy listener at the same
time by following these steps:

1. Click on the Add button under Proxy Listeners.
2. Enter a port number. It can be the same 8080, but if it confuses you,

can give the number 8081.
3. Specify an interface and choose your LAN IP address.
4. Once you click on Ok, click on Running, and now you have started an

external listener for Burp:

You can add the LAN IP address and the port number you added as the proxy server
on your mobile device, and all HTTP traffic will get intercepted by Burp. Have a look
at the following screenshot:

Chapter 3

[29]

Summary
Now you know how to restrict the scope of HTTP traffic you would like to intercept.
You saw how to include and exclude URL patterns for targets to configure, what
in-scope is, and what out-of-scope is. Additionally, you learned how to configure
Burp to be able to talk to other proxy servers if required and how to use the SOCKS
proxy server, especially in a SSH tunnel kind of scenario.

You also learned how simple it is to create multiple listeners for Burp, which allows
other devices in the network to send their HTTP traffic to the Burp interception proxy.
The next chapter covers how to configure a proxy for SSL and other advanced settings
that can be configured with Burp Suite.

SSL and Other Advanced
Settings

Until now, we have successfully managed to intercept HTTP traffic. This is
incredibly useful for a security professional tasked with the testing of applications
that talk about HTTP. However, in our experience. we know that most secure
applications are not served over HTTP, which is plain text, but over HTTP over
Secure Socket Layer (SSL).

HTTPS is a combination of HTTP over SSL/TLS to prevent eavesdropping, tampering,
and MITM attacks.

To intercept traffic over HTTPS, we need to configure some more settings.

Browsers and servers exchange X.509 certificates, which are signed by certificate
authorities. Since Burp runs at a layer below the layer in which encryption takes
place, the content of the web page is already encrypted when it reaches Burp.

SSL and Other Advanced Settings

[32]

The only way Burp can see the data is if the SSL/TLS connection terminates here.
So, Burp generates a per-site certificate, which the browser needs to accept. Since
this certificate is not signed by a certificate authority known to us, we encounter
an invalid certificate error, as shown in the following screenshot:

At this point, we can accept the error and interception will work exactly how we expect
it to work. A more elegant approach is to import the Burp Suite root certificate into the
browser we use for our testing. This way, we will get per-site unique certificates, and
also, there will be no more errors about wrong/untrustworthy certificates.

Importing the Burp certificate in
Mozilla Firefox
Starting with Mozilla Firefox, it is quite simple to import the certificate:

1. While Burp is running, go to http://burp.
2. Click on CA Certificate. Note where this file is downloaded:

Chapter 4

[33]

The method is very convenient for testers, but it does open the tester to
a malicious user who could perform MITM attacks against the pentester,
abusing the trust related to the Burp Suite root certificate.

3. Open Firefox Options, click on Advanced, Certificates, and View
Certificates. Have a look at the following screenshot:

4. Click on Authorities, click on the Import button, and navigate to the place
where you downloaded the certificate, as shown in the following screenshot:

5. You will get another window about whether you trust the new certificate
authority. Select Trust this CA to identify web sites. And if you like,
click on View to examine the CA certificate:

SSL and Other Advanced Settings

[34]

6. Click on the OK button and then navigate to https://burp. If there are no
errors or warnings about the certificate, you installed it successfully.

Importing the Burp certificate in
Microsoft IE and Google Chrome
Google Chrome uses the same certificate store as Microsoft Internet Explorer.
Adding the certificate from either one of them is enough for us. Since IE is almost
always installed by default, let's install the certificate in that first:

1. Open Internet Explorer options, and click on the Content tab, as shown in
the following screenshot:

2. Internet Explorer provides us with a simple Certificate Import Wizard. Do
note that the extension for the certificate is .der, which might not be visible
in the file-browse dialog. Just select all files and you will be able to see them:

Chapter 4

[35]

3. Accept the security warning about adding a root CA, and we are good to go,
as shown in the following screenshot:

4. Navigate to https://burp to confirm that the certificate is installed correctly
and working fine.

Installing the Burp certificate in iOS
or Android
The basic steps remain the same. We need to figure out where the certificate
should get installed. For iOS, since there is no simple way to add external files,
Burp documentation suggests e-mailing the certificate file to yourself and saving
it from there.

As long as we have proper privileges, we can install the root certificate on our devices.

SSL pass-through
Sometimes due to the way applications and websites are set up, it may not be
possible to intercept SSL traffic. Usually, Burp will show an SSL negotiation error in
the Alerts tab. One of the most common cases is when a mobile application utilizes
certificate pinning. In such a scenario, when we still want to keep working with the
other parts of the application, we can add the host in the SSL pass-through list.

SSL and Other Advanced Settings

[36]

This can be automated by checking an option, which will kick in as soon as Burp
encounters an SSL negotiation error. Have a look at the following screenshot:

Invisible Proxy
Sometimes, while intercepting a thick client, you might need to enable Invisible Proxy.
A thick client is a software that usually runs outside of the browser framework. This
means that some of this software doesn't have an option for HTTP proxies. When the
client is not proxy-aware and is incapable of sending requests that are used by a proxy,
such as Burp, we need to use the option of Invisible Proxy.

Since a thick client has no proxy options, we need to trick it into sending all its traffic
to the machine where the Burp proxy can listen. For example, if the nonproxy-aware
thick client needed to connect to https://example.com, this is what we need to do:

1. Add a mapping for a domain to the loopback IP address in the default
Hosts file. This file is usually found in the following paths for Windows
and Linux / OS X:

 ° Windows/System32/drivers/etc/hosts

 ° /etc/hosts

The mapping will look like this:
127.0.0.1 example.com

Chapter 4

[37]

2. Once this is set, we need to add a new listener running on the default port
for HTTP TCP port number 80 or, if the traffic was meant to be over HTTPS,
then TCP port number 443. Most likely, you need to be a privileged user
on the system to be able to listen on those two ports, as shown in the
following screenshot:

3. If the expected traffic is going to be over SSL, we need to ensure that we can
present an SSL certificate to the thick client with an accurate domain name,
as shown in the following screenshot:

SSL and Other Advanced Settings

[38]

4. Now, we need to send the traffic from Burp to the original server, which is
expecting it. We set this in Options | Connections | Hostname Resolution.
We can't miss this step because we told the operating system to send all the
traffic meant for example.com to the loopback interface earlier. Have a look
at the following screenshot:

5. At this point, we have tricked the thick client (the nonproxy-aware application)
to send all the traffic meant for example.com to the Burp Suite listener, and if
required, present a correct SSL certificate as well. Once the traffic reaches Burp
Suite, it can send it on its way to example.com.

6. There is a small caveat in all of this. Burp Suite uses the Host header in the
request to figure out where to send the request further. If the Host header
is not present in the request (rare, but can happen), we can configure Burp
Suite to send all the traffic reaching a particular listener on to another server.

7. If the traffic is meant for multiple servers and we need to see all of it, then
the only suggested solution is to create additional virtual interfaces where
we can start loopback listeners, and if that is not an option, start Burp Suite
on multiple computers to do what we did.

Summary
After this chapter, we can intercept SSL-enabled traffic for any website. While using
SSL/TLS certificates is desirable in terms of security, it does pose a challenge when
we wish to use an interception proxy, such as Burp, to test the website for flaws.

Burp provides a simple interface to set up SSL/TLS connections with minimal
fuss. Once a root certificate authority is imported, all certificates generated by Burp
and signed by the same root CA are identified as valid in the browsers. With this
configuration, we have basically covered all that we needed to move on to learning
about the various tools of Burp Suite that make it such a powerful tool to security
test applications that work over HTTP.

Using Burp Tools As a
Power User – Part 1

Burp Suite is powerful due to its amazing set of tools. In this chapter, we will look
at some of these. We will start with Target, covering Site map and Scope, and move
to Proxy, which is the work horse for testers. Then, we move on to the attack tool of
choice, Intruder. No matter how much we talk about Intruder, it will not be enough,
as this versatile tool can be used in a multitude of ways and combinations. After
Intruder, we cover the Scanner tool and discuss when it is a good time to use the
Scanner tool. We end the chapter with the Repeater tool, which supercharges the
manual testing part by making it dead simple to repeat requests and see responses.

Most of us get started using the Proxy tool of Burp. The fact that Burp always starts
with the Intercept mode switched on means that for everyone, the Proxy tab is the
first thing they will see and use in the Burp interface. Other tools in Burp Suite, such
as the Target, Proxy, Intruder, Scanner, and Repeater, are powerful as well. Their real
power comes when these powerful tools are combined together to get the job done.

This and the next chapter are all about understanding these powerful tools
individually and then learning to combine them for maximum impact.

Using Burp Tools As a Power User – Part 1

[40]

Target
While Proxy remains the main tool, the Target tab is like our desktop. We assemble
all our tools, files, and folders before embarking on a major project. The Target tab
allows us to do just that. The Target tab has two subtabs for Scope and Site map.
The Scope subtab allows us to set the scope for our testing (already covered in the
previous chapters) and the Site map subtab shows us all requested and unrequested
items for the website. The Site map subtab automatically collects data from other
sources, including Proxy, Spider, active and passive Scanner (if configured), and
content discovery.

The following screenshot shows how Site map creates a visual map that aids us in
our understanding of the layout of the web application:

What are the advantages of having the entire site as a map in one place? There are
many. To begin with, it provides a nice visual indication about whether we are on
track with our scope or not. A site map using visual cues can indicate which web
pages or links have already been visited and which haven't. This is indicated by
showing the unrequested items in gray color. Ideally, you want to browse all the
unrequested items. Sort all the items based on the Time requested column to see
all unrequested items. The requested items show up in a darker color as opposed
to the unrequested items, as shown in the following screenshot:

The ability to see the entire web application mapped out is incredibly powerful.
Burp makes it more powerful by ensuring that regardless of how data about the
website is gathered, it is updated in Site map. Therefore, any data gathered using
passive or active scanning, spidering, or any other technique also gets updated here.

Chapter 5

[41]

A site map allows testers to understand the application's structure and the design
patterns with one look. It tells us which frameworks, technologies, and plugins
are being used and whether there are any resources that might tell us more about
the website.

Just as with any data aggregation tool, more power comes when we select data on
various parameters, and Burp's Display filters do a great job here.

If you have added the scope properly, I recommend that you show only in-scope
items and focus on working with those site maps. Based on the kind of application
being tested, filter by MIME type, or status code, or just search for a specific string:

While mapping the application, it might make sense to uncheck Hide not-found
items. This might point to some resource that was present earlier and give hints
about the application and its flaws.

Now is a good time to look at the table view, and highlight and annotate the items
that interest you. A login request is a good candidate to test for SQL injection later.

Highlight and annotate any request that you might want to look at again. Just
right-click on a request, choose Highlight from the context menu, or double-click
on the host column for any row to do the same thing. Similarly, you can add a
comment by choosing Add Comment from the context menu, or by double-clicking
on the Comment column and adding your comment.

Using Burp Tools As a Power User – Part 1

[42]

We can filter highlighted and annotated information using the available display
filters. I personally find commented items more useful to remember my thoughts and
highlighted items to quickly sort the kind of testing I plan to do on requested items:

Site map compare
A great use case for a site map is when we want to know if there is any difference in
the requests made by two uses with the same privileges or between uses at different
privilege levels. For example, an application I tested requested all the endpoints
while a user tried to log in. Based on the user privilege, there will be responses with
different HTTP status codes. A comparison between the site map of a regular user
and an admin user revealed more than 10 differences. For a tester, such information
can be invaluable. A great tip from the Burp Suite documentation is to first map the
entire application as a high-privileged user and then as a low-privileged user. The
comparison will clearly show any access control violations that might be present.

To compare site maps, right-click on the domain in the Target tab, and choose
Compare site maps:

The basic flow for this functionality goes like this:

1. Once the Compare site maps option is selected, we choose the source for site
maps. One source can be the current site map, and another can be loaded
from a saved session. Have a look at the following screenshot:

Chapter 5

[43]

2. Burp can perform a comparison of the first and the second site maps by
comparing the requests sent based on the URL file path, HTTP method,
URL query string, and so on.

3. The responses can also be compared for response team headers, form field
values, and so on.

4. Use the display filters to understand what the exact differences between the
two site maps are.

The site map comparison is a good example of the differences between an automated
tool, which most likely generates false positives, and Burp Suite, which forces you
to think about privilege separation, but at the same time, it ensures that you can
manually compare the two.

Proxy
While Burp Suite is a lot more than just a proxy, everything starts with configuring
browsers to proxy through Burp. We covered the configuration of proxies
extensively in the earlier chapters.

Using Proxy is an integral part of what Burp calls the user-driven workflow.
The idea is that Burp sits in the middle of your HTTP client (mostly a browser)
and the web server. Have a look at the following diagram:

Burp Proxy ServerBrowser

Using Burp Tools As a Power User – Part 1

[44]

There are primarily two ways of using Proxy. One is when the interception is
turned off and the other when the interception is turned on. Take a look at the
following screenshot:

Proxy and, to some extent, Target tools are mainly meant for reconnaissance, mapping,
and analysis of the web application being tested.

This doesn't seem as exciting as finding and exploiting vulnerabilities, but as most
experienced testers realize with the passage of time, getting this phase correct is
extremely important, if not compulsory. When the intercept is off, we are busy
interacting with the application in our browser, and the Target site map is quietly
building all the links and mapping them for us. When intercept is on, we switch
between the browser window and the Burp Proxy Intercept tab to be able to view
or edit the request, perform actions, such as sending it forward to the server or
dropping the request. We can also choose to send the request to Scanner, Intruder,
or Repeater for further processing.

The process for dealing with websites with HTTPS is the same
once we have configured the Burp SSL certificate properly in
our browser (Chapter 4, SSL and Other Advanced Settings).

When you work in the intercept mode, you need to constantly switch between the
browser window and Burp Suite. It pays to learn the keyboard shortcuts to switch
windows in your operating system and also some of the keyboard shortcuts in use
to work with the intercept mode.

Once you have fired a request in the browser, switch to Burp Suite using Alt + Tab in
Windows and Ubuntu and Cmd + Tab in Mac. Whenever there is a request waiting for
you in the Intercept tab, the taskbar will flash Burp Suite. Inside Burp, type in Ctrl +
Shift + P to easily switch to the Proxy tab and Ctrl + F to forward the waiting request.

Chapter 5

[45]

To see all the keyboard shortcuts or edit them,
go to Options | Misc | HotKeys.

The Message Analysis tab
Burp's most amazing feature is the fact that it doesn't hide away the raw HTTP
packets behind the pretty GUI. The Message Analysis tab gives you multiple
ways to look at and deal with the intercepted requests. The default view is Raw.
Have a look at the following screenshot:

The subtabs that can be present include XML, AMF, and View State; these are
only available when the request and response are of that type. Have a look at the
following subtabs:

• Raw: This subtab is a text editor; requests can be changed from here.
• Params: This subtab is useful for easy viewing of parameters for HTTP

requests. We can edit it by double-clicking on the column.
• Headers: Just like Params, name-value pairs are shown in a tabular form.

This can be edited by double-clicking on the name-value pairs.
• Hex: This gives data in hex format with a hex editor built-in. Individual bytes

can be edited by providing hex values.
• HTML: If the HTTP response contains HTML in the message body, the HTML

tab can be used.

Using Burp Tools As a Power User – Part 1

[46]

• XML: If the HTTP response contains XML in the message body, the XML
tab can be used.

• Render: If you want to see the rendered HTML page in Burp itself, this
option is useful.

• View State: This is used to obtain an unencrypted view state for the ASP.
NET platform. The contents are shown in a tree format and in a raw format.
We can edit the raw format, and the tree will be redrawn. This is only useful
if the server-side ASP.NET is not MAC-enabled.

• AMF: This tab shows Action Message Format used by Flash. The contents
are displayed in a tree structure, allowing editing of data values.

We can easily modify the display settings for the Message Analysis tab:

Actions on the intercepted requests
Once we have an intercepted request, we can send it to Repeater (Ctrl + R)
to manipulate it one by one; we can send it to Intruder (Ctrl + I) to simulate an
automated attack; we can send it for more spidering, an active scan or even to
a Sequencer, Decoder, or Comparer (covered in the next chapter):

Chapter 5

[47]

The question to ask is what should decide whether we should use Repeater or
Intruder?. The short answer is, it is up to you. I personally use Repeater to figure
out whether there is a flaw worth using Intruder or not. An active scan is always
the last resort for the sake of completeness. This might change based on time and
scope as well.

Repeater is like REPL for application security testing. Just like Read-Eval-Print-Loop
is an interactive environment to try out any programming language, it allows a tester
to send requests and get instant feedback with the responses.

Intruder is like an iterator. We give it a range of values and unleash it on the
application. In most cases, the output of basic test cases from Repeater will point
you either to use Intruder or go with the active scanner.

Logical issues and input-based issues are better tested and verified with Repeater
once and then exploited using Intruder.

We will spend more time looking at engagement tools in Chapter 8, Using Engagement
Tools and Other Utilities, so let's talk about adding the intercept requests to Scope. From
the context menu, we can easily modify the scope and ensure that we can exclude the
intercept requests based on the host, IP address, file extension, and directory. Take a
look at the following screenshot:

Requesting in the browser allows us to do two things:

• The original request uses the same session cookie as the request in
the browser.

• The request is reissued with the session's cookie information from
the browser. This can be useful to test access control, where requests
generated by one user (in Burp) can be compared to another user,
such as an administrator (in the browser).

Using Burp Tools As a Power User – Part 1

[48]

Response interception and modification
By default, Burp doesn't intercept responses. You can easily intercept a response
for an intercepted request by choosing that in the context menu. If you would like
to intercept all responses, the same can be configured in Proxy Options accordingly.

To intercept responses, we need to perform the following steps:

1. Check the Intercept responses based on the following rules:, as shown in
the screenshot that appears after the next point in this series of steps.

2. We can choose when to intercept a response:
 ° Ideally only intercept if the request is modified
 ° A request is intercepted
 ° The request is in scope

This is shown in the following screenshot:

3. Apart from interceptions, we can also automodify responses based on rules
and what we would like to choose, as shown in the following screenshot:

Chapter 5

[49]

Using the Proxy history tab
The Proxy history, in my opinion, is the single most important data store for any
security testing project. Burp maintains all of it in the HTTP history subtab. The
History table has a lot of columns to manage, analyze, and work with the data.
All the columns are sortable by clicking on their headings. In a lot of security
assessments, allowing the site map to fill up and then going through the HTTP
history table gives us a very good idea about the functionality, architecture,
and common patterns that might indicate vulnerabilities and more.

The History table subtab has many columns providing useful information.

You can read more about the columns in the online Burp Suite documentation
under the History table heading:

http://portswigger.net/burp/help/proxy_history.html

Have a look at the following screenshot:

http://portswigger.net/burp/help/proxy_history.html

Using Burp Tools As a Power User – Part 1

[50]

Out of the columns in this screenshot, one should pay close attention to the Params
column, which indicates that we have parameters that can be fuzzed using Intruder
and status, which tells us what kind of responses we are getting. For example, when
a user is able to log in successfully to WordPress, they get a HTTP status code 302 as
opposed to status code 200 for an unsuccessful login. A good tester will also try to fuzz
the HTTP method (under the Method column) for sensitive requests, using Repeater.

If we use display filters, it is quite possible that some of the requests will seem
missing. They are just hidden due to the filters. Ideally, we want to look at only
in-scope requests and ignore images and Cascading Style Sheet (CSS) files to begin
with. Similar to the site map table, we can annotate and highlight requests that might
be useful for later. It is useful to sort out whether a request/response was modified
by the user, which indicates all requests that have parameters we can fuzz and were
edited before being sent to the server as part of our interception.

Unlike the Message Analysis window under the Intercept tab, we can't edit the
Message Analysis window under HTTP history. This makes sense, as this is a
historical record of every request and response made to the application while Burp
was configured as a proxy. We can use the menu having a similar context to figure
out our next move in terms of sending a request for further discovery or exploitation
of vulnerability or save the request response in a text file as well.

Intruder
Burp Intruder is meant for exploitation and automating attacks. Most of the attacks
against web applications are about sending them a lot of data and making sense of
the responses. Therefore, Intruder is a very good and efficient request sender and
response collector. The tool is incredibly flexible and infinitely customizable. That is
great once you have the hang of it, but can be a bit overwhelming for someone just
starting out.

The best way to get started is to find a request that has parameters that can be fuzzed.
A login form is a good example where we can check for weak credentials by simulating
a dictionary attack using the Intruder tool.

First, we choose an interesting-looking request that can and should be automated.
A few examples of this would be:

• Enumerating user information, such as names and passwords
• Enumerating common directories and files that can cause information leakage
• Fuzzing for XSS, SQLI, and path traversals

Chapter 5

[51]

Basically, we give a baseline request to Intruder, mark the positions where the
payloads or attack test cases should be placed, and start the attack. The Pro version of
Burp comes with a lot of attack payloads, but it is a good idea to add to the collection
by getting more payloads from:

• FuzzDB
• Web App URLs (https://github.com/pwnwiki/webappurls)
• The OWASP DirBuster Project

Once we have enough payloads, we just need to set the positions, and we are good to
go. The shortcut for this is to go to the HTTP history table and pick up a request that
has parameters and will nicely fit our automated attack scenario:

In the preceding screenshot, we can see that the same URL was requested using
GET and then using POST. It is a login form and has parameters, so we can easily
find positions for fuzzing. So, with a login form, we will try and guess the password
using brute forcing.

Let's send this request to Intruder either using the context menu, as shown in the
following screenshot, or using the keyboard shortcut Ctrl + I:

Now, getting to the attack part is a four-step process. Have a look at the
following screenshot:

https://github.com/pwnwiki/webappurls

Using Burp Tools As a Power User – Part 1

[52]

Here is how we attack:

1. First, it's about setting the target. This has already been set for us as we came
from the Proxy tool. We can change the given values for Host and Port if
required. Have a look at the following screenshot:

2. Then comes setting the positions. These are set using a position marker. Burp
intelligently selects some positions for us, as shown in the following screenshot:

3. We might want to clear the default selection and just select the parameters
we are interested in.

4. If the objective is to enumerate files and folders, the position for the path
should be selected; here, we are trying to dictionary the password for the
user admin. Therefore, we choose accordingly. We clear all the selections
except the one surrounding the password field's value, as shown in the
following screenshot:

Chapter 5

[53]

5. Now, we have the target and the position defined. It is time to choose the
payloads. This is done on the Payloads tab. Each payload will replace the text
present in the baseline request in the enclosed position markers that we have
already defined. For our particular case, we will choose a simple list from the
payload set. And then, we will add a list of passwords from the dropdown of
Add from list ... from the list:

Apart from adding the payload set, we will also set a rule for payload processing.
Payload processing adds programmability and unlimited customization for our
payload set.

In our case, we are interested in fuzzing the password field and try our various
passwords that can be possible for a given user.

Using Burp Tools As a Power User – Part 1

[54]

If the following is the list of payloads, we have the following screenshot:

We can use Payload Processing to transform the payloads to suit our needs.
Have a look at the following screenshot:

We can add the following types of rules to perform Payload Processing:

• Add prefix or suffix
• Match/replace
• Substring and reverse substring
• Modify case—to upper, lower, or sentence case
• Encode/decode—to URL, HTML, Base64, ASCII, JavaScript, and more
• Hash—from MD5 to up to SHA256
• Invoke another Burp Extension to do more than the given options

Chapter 5

[55]

At this point, a lot of testers get confused and go to the next tab, which is to set all the
options for Intruder.

What we need to do here is to go to Intruder | Start Attack. If you have thousands of
payloads and multiple positions, it makes sense to save the attack configuration and
then load it from the menu. If you want to add more payloads from other sources
or maybe your internal test cases, you can do so using the Configure predefined
payload lists option:

When we run Intruder, we run it with a certain configuration. While specifying the
payload positions, we also have to specify the attack types. There are four defined,
as follows:

• Sniper: Each payload is placed in the position one at a time
• Battering Ram: Each payload is placed in all the positions all at once
• Pitchfork: Multiple payloads for each position are placed
• Cluster Bomb: Multiple payloads for each position are placed, but all

combinations of payloads and positions take place

The default attack type is a sniper. Based on the complexity of operation, you will need
to choose the best option possible. Obviously, between Sniper and Cluster Bomb, the
number of requests made due to the number of payloads and the number of positions
is going to increase exponentially.

Using Burp Tools As a Power User – Part 1

[56]

When that happens, we need to pay attention to the Options subtab in the Intruder
tab, and do a Grep – Match action on responses. For our case, a logged in admin
user can see Logged In Admin as text on the web page; therefore, we will see the
following result after our dictionary attempt:

Grep is a powerful command-line tool from the *nix command line that provides us
with an easy way to identify patterns.

The Grep – Match string, which in this case is Logged In Admin, becomes a column
in the attack results table:

In the attack results table, the fourteenth attack request was successful, and the
column value for Logged in Admin is checked. This provides us with an easy way
to identify when and where our attack succeeded, and the second column lists our
payload as well:

The Burp documentation on Intruder is unparalleled. The philosophy of a
multipurpose, flexible, and infinitely customizable attack tool gives unprecedented
control over crafting our attacks against web applications.

Chapter 5

[57]

There are 18 payload types given in Burp. Some of the really interesting ones are:

• Extension Generated: We can use a specific type of Burp Extension to
generate our payloads. As I said, this is infinitely customizable.

• ECB Block Shuffler: This is used to shuffle blocks of cipher text in
ECB encrypted data to bypass application logic if required. Since ECB
ciphers encrypt blocks independently, previously known plain text will
give us predictable cipher text. There are attacks to manipulate this in
application logic.

• Character Frobber: This is useful to check whether a unique value is being
considered for processing or if changing one character has no effect on it.

• Null Payloads: Sometimes, we just want the application to generate and
give us different values for every request that can be fed into the sequencer
tool, which can be done using this option.

Other payload types include Brute forcer, Character Blocks, Illegal Unicode,
and so on.

Intruder is very efficient at taking multiple test cases, and after processing
(if required), it can quickly make the resultant requests and show the responses.
Intruder, therefore, can be used to do username enumeration, test for insecure
direct object reference issues, and forced browsing issues, and it is well suited
for parameter fuzzing.

It is indeed an extremely powerful tool in the hands of an experienced web
application security tester.

Scanner
Burp Scanner can automatically do vulnerability assessment of web applications.

We can conduct an active scan, which involves sending more data to the server,
or passive scanning, which is basically looking for vulnerabilities passing through
the Proxy tool. Either Custom scope can be set for the scanning, or active scanning
can be done for the already existing suite scope.

The Burp Scanner tool can also be configured to provide a point-and-click scan,
but this is not recommended according to the tool. Most web application scanners
suffer from similar issues in terms of the following:

• The coverage of the application is one major issue. In most cases, automated
scanners are unable to understand JavaScript or Flash content. In scanner
terms, this is called crawling.

Using Burp Tools As a Power User – Part 1

[58]

• If the crawling is not complete, all the functionality cannot be tested for
security, and there is no clear way of saying whether the web application
is secure or not.

• Most scanners are unable to manage the session handling part to test things,
such as role-based access control, in an automatic fashion.

An active scan is a great idea when we have full control over what is being scanned.
In the active scan mode, Burp sends different kinds of requests to the application
and based on the response, verifies whether a particular kind of vulnerability exists
or not.

The scanner options can be customized to understand what type of values will be
fuzzed as part of the active scanning mode. Have a look at the following screenshot:

Based on the type of application being tested, these values should be changed.

An active scan can be triggered automatically. Take a look at the following screenshot:

Chapter 5

[59]

Sometimes, we need to initiate it manually from anywhere in the application using
the context menu:

From the Burp documentation, the issues that Burp's active scanning is able to
identify mostly fall into two categories:

• Input-based vulnerabilities targeting the client side, such as cross-site scripting,
HTTP header injection, and open redirection

• Input-based vulnerabilities targeting the server side, such as SQL injection,
OS command injection, and file path traversal

Scanning optimization and requests
There are important options on how performant the scanner should be while doing
active scanning. A really fast scanner can unintentionally cause a denial of service
on the application.

The other important thing to keep in mind is that if you want a more thorough scan,
it will increase the number of requests sent to the server, due to which more work
will need to be done by Burp to understand and translate the results for you.

A passive scan is the analysis of traffic passing through the proxy. Again, it makes
sense to explicitly configure the scope so that the application doesn't have to do
more work than necessary.

Burp Scanner is able to identify numerous kinds of vulnerabilities using solely
passive techniques, including the ones mentioned at http://portswigger.net/
burp/help/scanner_scanmodes.html#passive.

Some of the issues that are not very interesting to report, but are quite sensitive with
respect to security, are:

• Clear-text submission of passwords
• Insecure cookie attributes, such as missing HttpOnly, and secure flags
• Caching of SSL-protected content
• Directory listings

http://portswigger.net/burp/help/scanner_scanmodes.html#passive
http://portswigger.net/burp/help/scanner_scanmodes.html#passive

Using Burp Tools As a Power User – Part 1

[60]

When to scan
A sound strategy for a semi-automated web application penetration or vulnerability
test involves understanding and deciphering the developer's mistakes. Usually, for an
application developer, mistakes indicate patterns. These patterns reoccur in multiple
places, and while we are doing manual testing of a particular module or section of the
application, running an active scan for that particular section can quickly give us a
good idea whether there are any low-lying vulnerabilities that get detected.

Some of the vulnerabilities that need to be detected and fixed are akin to rote work,
which for a human, can become mundane very soon. Humans tend to make mistakes
when they are tired or when not paying complete attention. At such times, the
software can make our job easier by ensuring that we don't miss out reporting such
issues for any nontechnical reasons.

Scan queues contain records of all the manual scanning that we initiated.

Repeater
Burp Repeater is a tool to send HTTP requests and see their responses one by
one. Consider it like a scratch pad. You can manually change parameters, request
methods, and see the response. The power of Repeater comes with its integration
with the rest of the suite. We can send a request from anywhere to Repeater to be
worked on, and we can create a brand new request as well:

Repeater's user interface is quite bare, and it can seem a little confusing at first.
As I mentioned before, the common way of using Repeater is to send a request to
it. But otherwise, we need to set the Host and Port values we would like to send
the request to. This can be done by clicking on the Edit host button in the top-right
corner and adding the proper values. Have a look at the following screenshot:

Chapter 5

[61]

Once the host and port are set, we can start making HTTP requests using a very basic
interface, as shown in the following screenshot:

All the requests that get sent to the Repeater tool are sequentially numbered. If the
request has been sent from Proxy History or from somewhere else, it will contain
all the information coming from the browser, including any cookie values that have
been set. This information is shown in an HTTP editor, and all other details about
the request can be changed.

Using Burp Tools As a Power User – Part 1

[62]

One of the most useful options we have is to change the request method for any
HTTP request. This allows us to change a POST to a GET, and automatically all the
parameters in the request body are converted into query string. The advantage of
being able to make a GET request in lieu of a POST is to quickly pass that to any
other tool that can accept and work with HTTP requests.

The best time to use Repeater is when using any other tool; you would like to
investigate an interesting response for a request and see what could be happening.
Sometimes, I use it to verify SQL injection or XSS or even to see if we can start
extracting data from the attack on the server.

A quick tip is to test any server acting as a mobile backend
for the OPTIONS header and see what comes back.

Summary
After this chapter, we can use Proxy, Scanner, Target, Intruder, and Repeater.
The important bit is to learn how to use these tools together. In a way, Burp Suite
tools mimic how simple command-line utilities on a Unix/Linux command line
can work together to fulfill complex tasks effectively. Similarly, Target, Proxy,
Scanner, Intruder, and Repeater offer an infinite number of ways to interact and
work with applications to test them for security.

Now, you should be aware of how and when to use which tool. The innate
understanding on how they all fit comes from testing a variety of applications
and facing challenges, which can be solved by combining the use of multiple
tools together.

We are now prepared to talk more about the rest of the power tools in the Burp
Suite arsenal.

Using Burp Tools As a
Power User – Part 2

In the preceding chapter, we looked at the primary tools of Burp Suite, such as
Proxy, Scanner, Target, Intruder, and Repeater. In this chapter, we will look at the
other tools that make up the Burp Suite software and see how Spider, Sequencer,
Decoder, Comparer, and Alerts work in sync to provide us with what we need
to test web applications.

Spidering
Spidering or web crawling, as it is better known, is the process of automatically
following all the links on a web page to discover both static and dynamic web
resources of the web application. Burp uses the Spider tool to automate the
mapping of an application.

The Burp documentation recommends that we complete our manual preparation and
fill up the Target site map with what is currently visible to the browser and Burp Suite.
Spidering, or crawling, of a website is a pretty intensive and performance-hungry
activity. This is one of the main reasons that, before we plan to spider a production
website, we should think really long and hard about any adverse effects on the
performance of the website for its users while spidering is going on.

Along with the site performance, websites with rich content, such as Ajax and
Adobe Flash-based content, may not get completely crawled as regular crawlers
can't understand how to interact with such elements. So, parts of the functionality
may not get detected if the spider encounters such elements on the web page.

Using Burp Tools As a Power User – Part 2

[64]

Burp follows all the links that are in scope, tries out standard files and folders, and
even submits forms with dummy data as part of its crawling and spidering activity.
Ideally, we want to avoid polluting the production database with dummy data and
be careful about which functionality to spider.

We can use the suite scope set in the Target tab for spidering and crawling.
We can use a custom scope as well. The advantage of using the already-defined
scope is obvious. Spider will try and complete the suite site map with links still
not requested, and this will give us a better picture of the site being tested. Have
a look at the following screenshot:

Sometimes, for a large website, we want to use spidering apart from passive
scanning. It is prudent to set up Crawler Settings before any kind of spidering
that you want to do. The default settings work in most cases but keep your use
case in mind. All the options are selected by default:

In a nonproduction environment, checking for robots.txt may not make a lot
of sense. But many security professionals forget to check this file for pointers to
understand how the website will be structured.

Chapter 6

[65]

A website owner can inform any automatic crawler visiting
their site about what is allowed to be crawled and what is not.
For example, for a staging website, which the website owner
doesn't want crawled by Googlebot, they can add the following
to robots.txt:

User-agent: *

Disallow: /

Most search engine bots will honor such a request and not
crawl the website. On a production site, there might be sensitive
directories that a website owner would rather not see in search
results. For each of these directories, they can add a new line of
text in the robots.txt file.
While this is great in terms of bots that will follow instructions,
such a file gives valuable information to an attacker or a tester
about what parts of the website are not being crawled.

Apart from following links and trying out common paths, Spider will also submit
HTML forms. We can either set Spider to prompt us for each form that might need
to be submitted, or we can set it to either not submit forms at all or completely
automate form submission:

We can completely configure the form field values using either exact matches or
regular expressions for the field names. For example, in the following screenshot,
we have set regular expressions for a standard form field name, such as mail (this
should match the e-mail), first (this should match the first name), and others. Do
not forget to customize the values for these fields, as some of the forms might save
data in a database. This way, if a production website has forms that get filled and
submitted as part of an assessment, the client will be able to clearly see that it was
part of our testing and not some random bot on the Internet.

Using Burp Tools As a Power User – Part 2

[66]

We need to be careful about spidering dangerous functionality automatically.
What if the admin dashboard had a link for Delete all users and just by clicking
on it, we triggered it? A spider/crawler is meant to follow all links, and if that link
is followed, we would end up deleting all the users. So, before we set up automatic
spidering of content, especially in the case of features only available to authenticated
users, we need to be careful about how to proceed:

As I mentioned before, spidering and crawling can be quite a drain on resources for
the website. It is important to set up limits on the backend engine that powers Burp
Spider to ensure that we don't inadvertently reduce the performance of the website.
We can control this with the Spider Engine options. The most relevant option here
is the Number of threads that we want to use for the crawling. Needless to say,
more the number of threads, faster the crawling will be. Based on how much you
want to crawl and how big the web application is, we might want to tinker with
the following settings:

Chapter 6

[67]

If you find frequent errors on the website, you might want to bring down the number
of threads for the spidering engine. After all the options have been set, the scope has
been determined, and the spider engine fine-tuned, all that remains to be done is
start the spider. Once the spider has been started, we can toggle the same button
to stop/pause the spidering. If required, we can even throw away all the scanning
already done and start again:

Sequencer
Sequencer is an interesting tool that comes with Burp Suite. Sequencer allows us to
test how random the data is.

Applications require different types of sufficiently random tokens for a multitude
of things, for example, session IDs, anti-CSRF tokens, password reset tokens, user
account activation tokens, and more. The basic question that we try to answer is
that given enough number of tokens, will the randomness of the tokens be enough?
Will a large enough sample of tokens reveal any patterns that allow us to guess a
token value that might have been generated in the past or might occur in the future?

A good place to use the Sequencer tool is when you suspect that developers have
tried to use their own code to create what they feel are random values, and that
additionally those values are being used for some kind of authentication in the
application. A simple enough example is to test the randomness of the cookie
UID that is used for authentication by Mutillidae.

Mutillidae is a web application that was created to be deliberately
insecure. It is a training application that we can use to learn more
about OWASP top-10 risks faced by applications. We can learn
how to attack such an application and what it will take to defend
it. We can download it as a standalone application or with the
OWASP Broken Web Applications live CD environment.

Using Burp Tools As a Power User – Part 2

[68]

The steps to test for randomness of the tokens using Sequencer go like this:

1. Choose the exact value you would like to test. This can either be captured
live by Burp generating the necessary traffic, or the already existing values
can be passed to Burp.

2. In our example, we will send the response for the request that allowed
generation of the UID cookie. Have a look at the following screenshot:

3. Burp has automatically selected cookies that might contain the value we
would like to sequence. Take a look at the following screenshot:

4. We can choose the default cookie values and even form fields when present
or use the custom location dialog box. This dialog box is available to use
when we choose custom locations and click on the Configure button.
Have a look at the following screenshot:

Chapter 6

[69]

5. We can start by typing the text to begin the search for and the text to end the
search with:

6. Alternatively, we can just work with an offset value and a fixed-length
beginning from the offset. This does mean that we are closely familiar with
the exact location of the value we are interested in extracting. Have a look
at the following screenshot:

Using Burp Tools As a Power User – Part 2

[70]

7. If we already have the tokens, we can click on the Manual Load tab and
select them for Analysis. Have a look at the following screenshot:

Analysis of the tokens
Adding the tokens is only the first part of using Sequencer. The analysis will tell
us about the randomness and whether the token values are secure enough to be
used for various kinds of authentication.

If the tokens require padding either at the beginning or the end or need to be
Base64 encoded, we can choose that under Token Handling. Have a look at
the following screenshot:

Chapter 6

[71]

We can also choose what kind of analysis tests to perform. To begin with, it is
recommended that you to leave all of them selected, and later when you have
more understanding of the kind of token or the testing required, you can pick
and choose, as shown in the following screenshot:

The randomness tests are based on statistical tests. The tests observe specific
properties of the values being tested for randomness. Based on the observations,
we get a probability of randomness. Each of the tests has a significance level.
If the probability falls below this significance level, then the token is considered
to be nonrandom.

There are primarily two ways to test the randomness: at the character level and at
the bit level. You can read all about how the tests work in the excellent Burp Suite
documentation at http://www.portswigger.net/burp/help/sequencer_tests.
html.

Sample analysis
To get an idea of what kind of output Sequencer gives, we create two synthetic
token loads.

First, using a simple command-line tool called jot, we generate 20,000 random
numbers between 1 and 400000 manually loaded for analysis. Have a look at
the following screenshot:

jot -r 20001 1 400000 | tee tokens-larger

http://www.portswigger.net/burp/help/sequencer_tests.html
http://www.portswigger.net/burp/help/sequencer_tests.html

Using Burp Tools As a Power User – Part 2

[72]

Here is what we get as the output:

We repeated this with a load of 5000 UUIDs generated from the command line and
loaded manually:

for i in `seq 1 5000`; do uuidgen | tee -a tokens-uuid; done

The output will be as follows:

For web application penetration testers, this is a useful result where we can compare
the bits of entropy as a mathematical number and understand whether the randomness
is poor or excellent. Sequencer is an excellent tool to do something quite challenging
for most of us (unless we understand how to manually do all this analysis).

The analysis report with its overall result and graphs showcasing the different types
of analysis done is incredibly useful.

Decoder
Decoder tool in Burp Suite does the job of encoding and decoding data. Applications
need to encode data while transmitting it or, in many cases, as a security measure.
Encoding is not a security measure but a lot of developers mistake it to be.

A simple rule of thumb is that if there is no key present, there is
no confidentiality. Since we don't require a key to encode a piece
of plain text, we don't require a key to decode.

A web application penetration tester needs to be able to understand the type of
encoding that has been applied and then successfully decode the piece of data.

Chapter 6

[73]

As with all the other tools, we saw that:

• We can select a piece of text anywhere in Burp Suite and send it to Decoder.
Have a look at the following screenshot:

• We can also do manual transforms (encoding or decoding) using the
context menu wherever we are currently working, as shown in the
following screenshot:

• We can do URL-decode and URL encode with different options using the
context menu. Have a look at the following screenshot:

We can select the following piece of data:
page=user-info.php&username=%27+or+1%3D1&password=%27+or+1%3D1&us
er-info-php-submit-button=View+Account+Details&popUpNotificationCo
de=SUD1

This code can be transformed into the following:

Using Burp Tools As a Power User – Part 2

[74]

• Similarly, we can decode and encode HTML for all characters or
key characters in numeric entities or hex entities, as shown in the
following screenshot:

Often, we will encounter pieces of data that are vaguely familiar, but we aren't sure
of the encoding used. We can use Smart Decode to recursively identify the hashing
or encoding applied and decode the piece of data.

Comparer
Next in our tools for Burp Suite is Comparer. Comparer is simply a tool to compare
to HTTP requests or responses.

Comparer is useful when you want to see how different values for parameters
and headers enable subtle changes in the responses that you receive. It is useful
to see how the application reacts to a valid user, invalid password combination
compared to an invalid user and invalid password combination. This can aid in
enumerating usernames.

Consider that a web application gives an informational error, such as a wrong
password for a given username. All I need to do is supply different usernames,
and for all those times, if I get the mentioned error, I will know for sure that those
usernames exist in the web application.

Many times with Blind SQL injection, there can be tiny differences in HTTP
responses, and the tool can help you identify exactly what is different.

We start by using the context menu to send either the HTTP request or response
to the Comparer. have a look at the following screenshot:

Chapter 6

[75]

Now, consider that we have two responses to compare. The first response is as follows:

The second response is as follows:

We can compare the responses using Words or Bytes. Byte-wise comparison is
computationally very expensive, and the Burp documentation recommends that it
should only be used when the Words comparison is not able to find the differences.
Have a look at the following screenshot:

To make out the visual differences, it is useful to sync views while scrolling.
When we sync the views, we can clearly make out what has changed between
the two responses. We can visually see the differences in what was modified,
deleted, or added. Have a look at the following screenshot:

A simple-to-follow color scheme helps you to identify data that has been
modified, deleted, or added in between both the responses. Have a look at
the following screenshot:

Using Burp Tools As a Power User – Part 2

[76]

The top of the Compare window clearly indicates how many differences were
detected by Burp. Have a look at the following screenshot:

Alerts
Alerts is not a tool as such but a place for all suite-wide notifications that Burp might
want to share. This is also a good place to see whether the proxy started successfully
or faced any errors. Whenever there are issues with SSL negotiation for applications,
the information on the errors, and others, they can be found in the Alerts tab. It is a
good idea to check what is being listed here if something is not working for you.

Summary
In this chapter, we used some of the lesser-known Burp Suite tools, such as Comparer,
Decoder, Sequencer, Spider, and briefly mentioned the Alerts tab. Even though these
are not as widely used as the tools we saw in Chapter 5, Using Burp Tools As a Power
User – Part 1, but an accomplished web application security tester can use these tools
to do their testing in a more structured and efficient manner.

Now we know how to spider any application, break seemingly random tokens,
compare different types of HTTP requests and responses, and decode and encode
pieces of data as required for our testing and creating attacks.

In the next chapter, we will look at how to search, match patterns, and use grep-like
tools in Burp Suite over requests and responses while we test the applications.

Searching, Extracting,
Pattern Matching, and More

There are thousands of different types of web applications with hundreds of thousands
of features and functionality. The suite of tools provided by Burp are quite powerful
in terms of doing the heavy lifting of crafting HTTP requests and responses based on
our actions on the web applications. An important aspect of that power is the ability
to match, extract, find, grep, and search all these requests and responses based on
our requirements.

In this chapter, we will learn the various ways in which we can search, extract,
and pattern match data in requests and responses, which will allow us to complete
our testing.

The ability to search and filter is provided throughout the application. Most editors
show a search bar at the bottom for quick search of text, as shown in the following
screenshot:

Searching, Extracting, Pattern Matching, and More

[78]

We can select different options to specify whether we would like to ignore the case,
use regular expressions, or scroll with each occurrence of the string found:

In theoretical computer science and formal language theory, a
regular expression (abbreviated regex or regexp), sometimes called
a rational expression, is a sequence of characters that forms a search
pattern, mainly for use in pattern matching with strings, or string
matching, that is find and replace-like operations. Each character in a
regular expression is either understood to be a metacharacter with
its special meaning or a regular character with its literal meaning—
from Wikipedia http://en.wikipedia.org/wiki/Regular_
expression.

Regular expressions are an extremely powerful tool for anyone working regularly
with text. Covering regular expressions here is beyond the scope of this book, but
being familiar with regular expressions is quite important for security testers.

A great resource for you to get started with regular expressions is:
http://www.regular-expressions.info/

Filtering
While searching for text is useful, sometimes the amount of data presented becomes
overwhelming. Especially, since we are using Burp to assist us in assessments, we need
to be able to quickly filter and pay attention to what is relevant and ignore what is not.

In the Target Site map, we have a comprehensive display filter. Using the filter options,
we can zero in to the exact requests that are of interest to us and hide all that is not.
Have a look at the following screenshot:

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

Chapter 7

[79]

In this comprehensive display filter, we can do many different kinds of filtering
based on our requirements and what it is that we are trying to analyze.

We can filter using the following options:

• Request type to show only in-scope requests, show only parameterized
requests, and even hide items not found, as shown in the following screenshot:

• Filtering by MIME type so that, based on our context, we can ignore images,
cascading style sheets, and other HTML pages. None of the options are
selected by default. Have a look at the following screenshot:

Searching, Extracting, Pattern Matching, and More

[80]

• Filtering by HTTP status codes is shown in the following screenshot:

• Hide empty folders.
• Filtering by annotation is shown in the following screenshot. This is useful

if we have already highlighted certain requests and/or added comments,
and we just want to look at those:

• File extension with options of show only and hide are another set of options.
We can add more extensions separated by commas. Based on what we are
after, we can show and/or hide the extensions that are not important for
analysis currently, as shown in the following screenshot:

• Filtering by search term. Here, we can specify a simple text-only search term
or even a regular expression. Have a look at the following screenshot:

Chapter 7

[81]

A simple Reset button just under the Help button allows us to reset the values to
default if we need to do that.

Illustration
When we load Mutillidae for the first time in our browser, we get 28 HTTP requests
and responses. By the time we log in as any user, the request and response count goes
up to 37. If the objective was to fuzz the login form and you don't want to see all the
filtered requests, you can use the following settings to zero in on the data that is useful
to us.

By careful selection of options in the display filter, we can bring down the number
of requests and responses we want to work with to 1 or 2. Have a look at the
following screenshot:

Matching
Filtering makes for a powerful analysis tool. But filtering happens after the requests
have been sent, the responses received, and we just need to analyze the output. What
if we want to make changes on the fly? Ideally, we would like to match certain data,
such as requests, responses, parameter values, header values, and more. So, while
the HTTP requests and responses are going through and coming back, we can create
rules to match the data and perform operations on that data.

Let's look at all the places we can perform matching and related operations:

• In the Proxy | Options tab:
 ° Under Intercept Client Requests
 ° Under Intercept Server Responses
 ° Under Match and Replace

Searching, Extracting, Pattern Matching, and More

[82]

• In Spider | Options:
 ° Form Submission

• In Scanner | Options:
 ° Attack Insertion Points

• In Intruder | Payloads:
 ° Payloads Processing

We can set rules for intercepting client requests based on conditions. Basically, a rule
has a Boolean operator, a match type, a relationship based on the match type, and the
condition. By default, certain rules are already set up for us. We can choose to enable
or disable these and add our own if required, as shown in following screenshot:

The rule creator for intercepting server responses is quite like the one mentioned in
the following screenshot:

By default, the setting to intercept server responses is not enabled. It is useful
to enable this with an additional rule to only intercept a server response if the
corresponding request was intercepted as well.

Match and Replace is useful when we want to change or replace some data
in requests or responses when it passes through the proxy. Have a look at the
following screenshot:

Chapter 7

[83]

We can even add a new header using the special match/replace rules editor. Just by
leaving the Match field blank and adding the relevant header in the Replace field,
we can easily add our header. This will show up in the automodified request.

Another useful trick is to match and replace the default user agent of the browser to
emulate another browser or a mobile device:

Just by enabling a default rule for matching the User-Agent header, we can replace
the current browser and emulate an Android device. This can easily be another
mobile device or whatever we need to bypass a user-agent check. We can also try to
make the remote web application reveal new functionalities that usually are exposed
to specific devices only—and so, try to correctly map the application's attack surface.

Similarly in the Spider options, we can match form fields to allow us to add our
customized data while submitting forms automatically. In Scanner Options, under
Attack insertion points, we can skip injection tests for some standard acceptable
parameters and even add our own. Have a look at the following screenshot:

Searching, Extracting, Pattern Matching, and More

[84]

Just like all the other places, we can match the exact string or a regular expression.
In Intruder | Payloads under payload processing, we can set match/replace rules
as well. Have a look at the following screenshot:

This operation will work on each payload that we specify before.

Grep - Match and Grep - Extract
Grep is the simplest and most used command-line tool on Linux/Unix to match
and extract data based on patterns, which can be simple string comparisons or
regular expressions.

We can use Grep - Match to quickly identify requests/responses that we get in
the Intruder results to filter these results based on certain conditions. Matches are
shown in a new column, which we can sort to quickly make sense of the output.

The default values provided to us are good to use, and we can add more based on
our requirement. Have a look at the following screenshot:

Chapter 7

[85]

We can add more keywords, set the match type to be simple strings or regular
expression patterns, and load more from our list of keywords. It is great for analysis
of output from the Intruder tool!

Grep - Extract allows us to extract data using the response extraction rules for the
requests made in Intruder. As in Grep - Match, a new column will list extracted data
in a new column. Response extraction is useful in many cases, such as the following
examples from the Burp documentation:

• Given a list of document IDs, extracting document titles for further analysis
• Given a list of usernames, extracting unique password hints per user

The Grep - Extract interface looks like this:

We can and should always set Maximum capture length to a reasonable number.

Searching, Extracting, Pattern Matching, and More

[86]

Summary
From this chapter, we have a good idea about how the various tools of Burp Suite
can be supercharged with effective searching, filtering, and matching of data. Based
on simple strings and many times with regular expressions, we can do better analysis
of data already generated, or customize our requests and responses to manipulate
the applications. We also saw that Match and Replace is an incredibly powerful
operation that allows us to add/remove headers and other data and even emulate
mobile devices on the fly.

Grep - Match allows us to gain more control over the output of the Intruder tool,
which is a blessing because the Intruder tool can generate a lot of data and manually
trawling through that would not be too productive. Grep - Extract allows us to not
only match the data, but also extract it for further analysis and operations.

Next, we look at the Burp Suite Pro features called engagement tools. We will look
at how these tools can be used cohesively to make our security-testing engagement
smoother and more efficient.

Using Engagement Tools
and Other Utilities

Engagement tools is a Pro-only feature of Burp Suite. Apart from the engagement
tools, we will look at some smaller utilities that aid the testing process, such as Search,
Target Analyzer, Content Discovery, Task Scheduler, CSRF PoC Generator, and
Manual Testing Simulator.

Out of all these, Manual Testing Simulator doesn't really have any use except maybe
like an inside joke for the creators. But it is enabled and can be used. The idea behind
all the other tools is to make the testing process smoother and faster. These tools
enhance the testing process, but due to their nature, they can be time consuming
and boring when done manually. Since they are of lower priority, we might give
them a miss, but the Burp Suite Pro version helps us to ensure that we go ahead
and complete them.

In the free version of Burp Suite, the engagement tool context menu is disabled
with a message that this is meant for the Pro version only, as shown in the
following screenshot:

Using Engagement Tools and Other Utilities

[88]

In the Pro version, we can see many options for Engagement tools in the context
menu, as shown in the following screenshot:

In this chapter, we will cover Search, Target Analyzer, Content Discovery,
Task Scheduler, and Manual Testing Simulator.

Search
Search is one of the key interfaces when working with Burp Suite. This works well
for most of us who are already familiar with search being the primary interface to
find information on the web. The advantage of using Search as an interface is the
fact that we stop caring about how much information is available to us as long as
we are able to find the relevant information reliably and reasonably quickly.

To begin searching, we just need to go to Burp | Search in the menu bar. This provides
us with a suite-wide search scope. Have a look at the following screenshot:

The search form is quite simple to understand. Any result that matches the simple
text search will be returned from Target, Proxy, Scanner, and Repeater. As usual,
we can use regular expressions, choose to negate the match, search only for in-scope
items, and ignore case as well. The search will apply to all headers and body requests
and responses. Have a look at the following screenshot:

Chapter 8

[89]

In the Target Site map context menu, you can search only for comments. Sometimes,
developers leave information that can be revealing for the application. Burp Suite
can find all the HTML comments on all the pages it can see and lets you go through
these quickly.

We can export the comments as well for further analysis or add them as part of our
report. Dynamic update allows us to automatically update the search results based on
our term if more responses contain the term. Take a look at the following screenshot:

The Export comments and Export scripts wizards looks exactly the same. With
options to deduplicate, save to clipboard or save to a file, and including the URLs
in the report, both of them allow us to store and do further processing of comments
and scripts:

Using Engagement Tools and Other Utilities

[90]

Target Analyzer
The Target Analyzer tool is the perfect example of an engagement tool. Target
Analyzer can help you to quickly figure out how many dynamic and static links you
are dealing with in a website. It will also tell you how many parameters are required
for each of the links. This can be utilized to calculate time and effort required to test the
application. Additionally, this can give you a good idea as to what to test first, or what
to focus on while starting the application. Do note that Target Analyzer only picks
information from the site map, and it does not do any scanning of its own. So, we
need to finish the task of mapping the application before we can analyze the target.

Target Analyzer shows the number of dynamic and static URLs. It also mentions the
total number of parameters it was able to see, as shown in the following screenshot:

Under the Dynamic URLs tab, we can see the complete list of dynamic URLs.
Similarly, under Static URLs, we can see all the listed static URLs. Obviously,
under the Parameters tab, we can see all the parameters found so far, as shown
in the following screenshot:

Chapter 8

[91]

In the Parameters tab, we can see each and every unique parameter listed with a list
of paths where that parameter was found. Also, we can see the exact request and
response that uses the parameter.

Content Discovery
How do you find a directory that is not linked by any page in the application? If we
know the directory name, we can check for its existence by making a request for it. A
HTTP status code of 200 and 403 will quickly tell us that the directory, in fact, exists
but is not linked anywhere. Similarly, there are many techniques to discover content.

Depending on how a web application is created, Content Discovery
can be quite useful or utterly useless. Some applications might return
HTTP status code 200 even for resources that are not found. So, we
need to be smart about the results. Also what we can do with Content
Discovery can be achieved by using Intruder as well. Testers normally
use other discovery tools such as OWASP DirBuster and Nikto along
with Burp Suite.

To get started, in the Pro version of Burp Suite, we can right-click on any HTTP
request under Engagement tools and click on the Discover Content option.
The same action can be performed in Target Site map as well.

Burp Suite uses different techniques to discover content, including brute-forcing
file and folder names. First, we define the starting path for Content Discovery and
specify if we are after files and directories or only files:

Using Engagement Tools and Other Utilities

[92]

There is a built-in list for filenames and directory names. Burp can reuse any file and
directory names it finds during discovery and add them to the list. So, if recursive
testing is enabled, all the previously found names will be tested in each new directory
found. Have a look at the following screenshot:

Additionally, we can specify which file extensions should be checked for and which
should be ignored, and it is always worthwhile to search for file extensions that ideally
should never be inside the document root of any web application:

We can choose to send the output of discovered content to be added to the main
Target Site map and spidered for more discovery.

Chapter 8

[93]

At this point, we are all set to discover the content. This is handled by the Control
tab. Once we are all prepared, click on the Session is not running button and Content
Discovery will start. A few statistics update while the session for Content Discovery
is running:

Task Scheduler
Burp Suite provides the handy Task Scheduler for a few tools that can be quite useful
depending on your use case.

A common task to schedule is an automatic backup of the Burp Suite session. We cover
this in detail in Chapter 10, Saving Securely, Backing Up, and Other Maintenance Activities.

Sometimes, clients have strict requirements as to what times we are allowed to
do security testing. Task Scheduler allows you to start, resume, pause scanning,
and spidering.

Using Engagement Tools and Other Utilities

[94]

We can schedule tasks under the engagement tools or go to Suite Options | Misc
under Schedule Tasks. Have a look at the following screenshot:

Once we select the type of task, we choose the date and time to start the task. We can
also specify the interval. The interval can be in days, hours, or minutes, as shown in
the following screenshot:

Now that the task has been scheduled, if we want to add, edit, or remove scheduled
tasks, we need to go to Suite Options | Misc | Scheduled Tasks. Take a look at the
following screenshot:

Chapter 8

[95]

CSRF proof of concept Generator
CSRF proof of concept (PoC) Generator is the most useful nonessential tool provided
by the Pro version of Burp Suite. This simply takes any request and automatically
writes the HTML code for doing a PoC for cross-site request forgery.

Cross-site request forgery is mentioned in the OWASP top-10 risks
applications face. Any security testing of a web application without
checking for CSRF defenses is incomplete. Burp Suite does the grunt
work of generating a PoC HTML page that can be used by the tester
to see whether the application checks for CSRF defenses, such as a
valid token.

All we have to do is choose a HTTP request, right-click on it, and navigate to
Engagement tools | Generate CSRF PoC.

The ideal candidate for CSRF testing would be a POST request, which doesn't have
any CSRF token checks being implemented. The CSRF PoC Generator not only creates
the HTML code for us, but it can also generate the required JavaScript to autosubmit
the form. Have a look at the following screenshot:

Using Engagement Tools and Other Utilities

[96]

There are other options that can be used, but in most cases, the CSRF technique
autoselected works very well for the generation of the PoC. If you make any
changes in the options, the code needs to be generated again using the Regenerate
button provided in the bottom-left corner of the tool's window. Have a look at the
following screenshot:

Do remember to click on Regenerate after every option change, as shown in the
following screenshot:

Summary
In this chapter, we saw some smaller tools that are part of the Pro version of Burp
Suite. Even though we could do without these tools, they make working with clients,
reporting, and so on, easy. We looked at suite-wide search functionality, how we can
find comments and scripts in web pages, how we can analyze a target that can aid in
estimating our testing effort, and additional discovery of content that is not linked
anywhere by the brute-forcing file and directory names. We also looked at how we
can schedule tasks and repeat them and how we can generate PoCs for CSRF.

Most of these tasks can be done manually, and a lot of us end up doing that; with the
automation provided by Burp Suite, we can ensure quality and consistency of these
tasks, which are low priority, but can make a great testing assessment even better.

In the next chapter, we will look at how we can extend the core functionality of Burp
Suite with extensions using the Burp Suite Extender tool.

Using Burp Extensions and
Writing Your Own

Not only does Burp Suite come with its own rich set of tools, it also provides
API interfaces to extend its functionality. Many security researchers have written
extensions that enhance the native functionality or add to the already rich tool set.

Using the Extender tool, we can load and manage different extensions written for
Burp Suite. These extensions might extend the core functionality of Burp Suite or
provide an easy way to do something that might be difficult with the basic Burp
Suite tools.

Burp Suite comes with its own BApp Store, which contains different types of
extensions that are ready to load and use. A few extensions are only meant for
the Pro version. The BApp Store is also available online, and the extensions can
be downloaded and installed manually if required (https://pro.portswigger.
net/bappstore/).

Burp Extensions can be written in Java, Python, or Ruby. For Python and Ruby,
we need to set up the environment before we can start using these extensions.

Let's see how to do all that in this chapter.

https://pro.portswigger.net/bappstore/
https://pro.portswigger.net/bappstore/

Using Burp Extensions and Writing Your Own

[98]

Setting up the Python runtime for Burp
Extensions
To set up the Python runtime for Burp Extensions, perform the following steps:

1. Download a stable version of Jython standalone JAR file from http://
mirrors.ibiblio.org/maven2/org/python/jython-standalone/2.5.3/.

2. Save the file to E:\jython\jython-standalone-2.5.3.jar.
3. Configure the path in Extender | Options | Python Environment.
4. We are all set to run Python-based Burp Extensions now.

Do note that the path for the Jython file depends on
where you download it in your machine.

Similarly, we can easily set up the Ruby environment required to run Burp Extensions
written in Ruby.

Setting up the Ruby environment for
Burp Extensions
Let's follow these steps to set up the Ruby environment:

1. Download a stable version of JRuby from http://www.jruby.org/download.
2. Download JRuby 1.7.15 Binary .zip and unzip this file. Inside the lib folder,

you will find jruby.jar.
3. Copy this to E:\jruby\jruby.jar.
4. Configure the path through Extender | Options| Ruby Environment.

Note that the path for JRuby depends on where you
download JRuby in your machine.

We can also add the path of additional libraries required for Java-based extensions in
the same place.

Before Burp Version 1.5.01+, getting extensions was not straightforward and consistent.
Since the introduction of the Burp app store, it has become very convenient to load and
install new extensions.

http://mirrors.ibiblio.org/maven2/org/python/jython-standalone/2.5.3/
http://mirrors.ibiblio.org/maven2/org/python/jython-standalone/2.5.3/
http://www.jruby.org/download

Chapter 9

[99]

The obvious limitation is that the extension author needs to submit the extension to
get it added to the Burp app store. Currently, this can be done by sending an e-mail
to support@portswigger.com with the subject line Submit BApp.

Once the extension is featured, it will show up on the website or inside Burp Suite
under the BApp Store subtab, as shown in the following screenshot:

Loading and installing a Burp Extension
from the Burp App Store
Getting and using Burp Extensions featured in the Burp App Store is just a series of
simple steps we can easily follow:

1. Go to Extender | BApp Store, and select the extension you want to install
from the list.

2. If the runtime is set up correctly, you will get an Install button, along with
a description of the extension, author information, rating (five stars being
the maximum).

3. Clicking on Install will initiate the downloading of the extension, and if all
goes well, the Install button will turn into Reinstall.

4. The extension will get listed under Burp Extensions.

Using Burp Extensions and Writing Your Own

[100]

Using BApp files
If we want to install extensions in offline mode, we can do this using the manual
installation method:

1. To do this, first we download the extension we want to install. Have a look
at the following screenshot:

2. Click on the Manual install button provided at the bottom of the BApp Store
tab. Browse to the folder where we downloaded the .bapp file. Have a look
at the following screenshot:

Chapter 9

[101]

3. Opening this file will install the extension, and we can manage it like any
other extension installed directly from the BApp Store tab.

Loading and installing a Burp Extension
manually
Not all extensions are present in the BApp Store. In such a case, we need to download
the extension files ourselves. To do this, use the Add button provided under the Burp
Extensions section, and browse to the extension file:

In Extension type, we can choose Java, Python, or Ruby, and based on that, we need
to browse to the actual extension file for the language we choose.

GitHub is a great place to find extensions. A simple text search will reveal different
and interesting extensions being written by people all across the world:

https://github.com/search?utf8=%E2%9C%93&q=burp+extension

Managing Burp Extensions
All the extensions we install and load are visible under Burp Extensions. We can
always remove the extension using the Remove button. We can modify the order
in which we load the extensions. Have a look at the following screenshot:

https://github.com/search?utf8=%E2%9C%93&q=burp+extension

Using Burp Extensions and Writing Your Own

[102]

For each extension that gets loaded, we see more information below that. Have a
look at the following screenshot:

Based on the settings chosen, output and errors will show up in the UI, or they can
be written to a local file.

Some of the extensions modify the standard tabs present in Burp. This is primarily
in order to provide a user interface to edit various options offered by the extensions.
Have a look at the following screenshot:

Apart from this, we need to refer to the documentation provided with the extension to
understand if any specific Burp Suite tool has been enhanced by the extension or not.

For example, the Headers Analyzer extension (only available for the Pro version
of Burp Suite) adds more information as part of the Scanner results by passively
collating all kinds of response headers. Have a look at the following screenshot:

Chapter 9

[103]

We can also configure the Header Analyzer extension with different options based
on our requirements. Have a look at the following screenshot:

Memory issues with Burp Extensions
While loading, unloading, and adding extensions, you might encounter memory
issues. This is a known issue, and guidance has been provided to ensure that this
does not affect our work. Whenever you encounter errors such as the one shown in
the following screenshot, you need to take some additional steps while starting Burp.

The following screenshot shows the Java out-of-memory error since we are loading
and unloading multiple extensions:

This happens due to the way Jython and JRuby dynamically generate Java classes,
so loading many extensions can cause this to happen.

We can use the following command-line flag to ensure that enough memory
is available to dynamically generate Java classes, which is required for loading
multiple Burp Extensions:

java -XX:MaxPermSize=1G -jar burp.jar

Using Burp Extensions and Writing Your Own

[104]

Writing our own Burp Extensions
Writing your own Burp Extensions is a great way to understand how the Burp Suite
software works. As mentioned earlier, we can write extensions in Java, Python, and
Ruby by simply setting up the environment correctly.

There is a project by Lift Security, called burpbuddy, that
exposes a certain functionality of Burp and allows the creation
of extensions in any language without the restrictions of JVM.
For more information on this, visit https://github.com/
liftsecurity/burpbuddy.

The best place to get started with writing extensions is to read the following blog post:

http://blog.portswigger.net/2012/12/writing-your-first-burp-
extension.html

The step-by-step process with the basic template code explains what it takes to write
your own extension and load it on Burp Suite.

A simple Burp Extension in Python
Let's write a simple Burp Extension in Python. In terms of functionality, the extension
won't do much, but will print the headers of a request if the method is POST and return
the status code of the response. Have a look at the following code:

All extensions need to import IBurpExtender
from burp import IBurpExtender

This will allow us to start a HTTP Listener
from burp import IHttpListener

This will allow us to retrieve and update details about HTTP
messages.
from burp import IHttpRequestResponse

The following two will allow us to get more details about requests
and responses
from burp import IRequestInfo
from burp import IResponseInfo

Basic debugging by printing to standard output
from java.io import PrintWriter

https://github.com/liftsecurity/burpbuddy
https://github.com/liftsecurity/burpbuddy
http://blog.portswigger.net/2012/12/writing-your-first-burp-extension.html
http://blog.portswigger.net/2012/12/writing-your-first-burp-extension.html

Chapter 9

[105]

class BurpExtender(IBurpExtender,IHttpListener,IHttpRequestResponse,I
RequestInfo):

 def registerExtenderCallbacks(self, callbacks):
 # This function is required to setup callbacks and get access
 to helper functions.
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()

 # This is where you name your extension. This name will show
 under Extensions | Burp Extensions when loaded.
 callbacks.setExtensionName("My first Burp extension")

 self._stdout = PrintWriter(callbacks.getStdout(), True)

 callbacks.registerHttpListener(self)

 # This will get printed once the extension is loaded without
 any errors
 self._stdout.println("Hello, Burp Extension World!")

 return

 def processHttpMessage(self, toolFlag, messageIsRequest,
 messageInfo):
 # This function is where all the work happens for us.

 # We want to ensure that we are working with a request to
 begin with.
 if messageIsRequest:
 requestInfo = self._helpers.analyzeRequest(messageInfo)

 # We are interested in finding out when a HTTP POST
 request is made.
 if requestInfo.getMethod() == "POST":
 # Once we have determined that an HTTP POST request
 was made, we want to enumerate the headers.
 headers = requestInfo.getHeaders()

 # Use the next line for debugging, if required.
 #self._stdout.println("Printing Request")

Using Burp Extensions and Writing Your Own

[106]

 # We are trying to find the Header Content-Type and
 then search for a form that has upload capabilities
 for header in headers:
 if header.startswith("Content-Type:") and
 "multipart/form-data" in header:
 # This comment will be useful for us later
 when we look for all kinds of requests,
 messageInfo.setComment("File Upload detected
 and this comment was created by an extension.")

 # Print all the headers
 self._stdout.println(header)

 else:
 # Since we didn't get a request, we will look at response.
 responseInfo = self._helpers.analyzeResponse(self._
 helpers.bytesToString(messageInfo.getResponse()))

 # Many times, we figure out next steps based on the status
 code of the response.
 self._stdout.println(responseInfo.getStatusCode())

The Burp Suite website offers more code snippets with examples to try out basic
functionalities, including a simple extension that outputs Hello World.

The EventListeners extension with sample code is a great way to learn how to
process HTTP messages, proxy messages, new scan issues, and more:

http://blog.portswigger.net/2012/12/sample-burp-suite-extension-
event.html

The BurpExtensions website has a simple-to-follow tutorial to create an extension
written in Python, which activates a UI change for a certain type of header when it
is found in a HTTP response:

http://www.burpextensions.com/tutorials/tutorial-python-extension-
post-1/

The full code can be downloaded from http://www.burpextensions.com/
downloads/pythontutorial-1.txt.

http://blog.portswigger.net/2012/12/sample-burp-suite-extension-event.html
http://blog.portswigger.net/2012/12/sample-burp-suite-extension-event.html
http://www.burpextensions.com/tutorials/tutorial-python-extension-post-1/
http://www.burpextensions.com/tutorials/tutorial-python-extension-post-1/
http://www.burpextensions.com/downloads/pythontutorial-1.txt
http://www.burpextensions.com/downloads/pythontutorial-1.txt

Chapter 9

[107]

Noteworthy Burp Extensions
The following are some of the extensions worth taking a look at:

• Heartbleed: This extension checks whether a particular server is vulnerable
to the Heartbleed vulnerability (http://heartbleed.com). Usually, such
a check would be done by the vulnerability assessment software, such as
Nessus or Nmap with NSE.

• Logger++: Many times, a client report requires full logs of each and every
request and response. Logger++ takes care of this really well. The logs can
be sorted and also saved in CSV format, which can then be imported in a
spreadsheet software, such as Microsoft Excel or OpenOffice Calc.

• CO2: This extension has multiple features, of which the most useful one
for me is the ability to give the sqlmap command-line output that can be
directly run on the command line.

• Reissue Request scripter: This extension generates scripts from Proxy
history, which can then be saved outside of Burp and run from the
command line. These scripts are generated for Python, Ruby, Perl, PHP,
and PowerShell and are mainly to test for second-order SQL injection
and padding Oracle vulnerabilities.

This extension gives us the ability to store text notes while doing
the assessment. Many testers have different ways of storing such
information, but the ability to store information in the tool itself
is useful in many cases.

There are many other extensions that might be useful for certain cases. Until very
recently, Burp Suite didn't have great support for static analysis of JavaScript for
DOM XSS detection (however, Burp Suite now supports DOM XSS identification),
and a bunch of people have written extensions for that. There are extensions to
beautify JavaScript (many websites compress them for various reasons) and .NET.
Some extensions are written to send the Scanner data to external systems from
where they can be scanned again or kept just for the record.

http://heartbleed.com

Using Burp Extensions and Writing Your Own

[108]

Summary
Now we are in a position to work with Burp Extensions. Extensions are meant to
enhance and extend the functionality or at times complement its event. Nowadays,
Burp has the Burp App Store, and extensions can be installed and loaded in a
structured manner. Extension authors can also distribute their extensions to a
wider audience once their extensions are in the Burp App Store.

If you encounter cases where the tools provided by Burp and the extensions aren't
enough, you can write your own extensions in Java, Python, and Ruby. For example,
you can passively scan for error messages, connect with PhantomJS to validate XSS
findings, audit HTML5 security, and do much more. Using tools such as burpbuddy,
you can even write them in other languages that you might think of.

The next chapter is all about maintenance activities required when we do real-world
security testing. We'll learn how we save our sessions, backup, and more.

Saving Securely,
Backing Up, and Other
Maintenance Activities

Burp Suite is just like any software a knowledge worker will use. Users of the tool,
like you and me, use the tool to work on some data and come up with more data.
All the work that we do and the output of our efforts should be secured and backed
up like any other person who works with spreadsheets or document software.

In this chapter, we will see what features Burp Suite has to save our work, back
up our data while we are busy doing security testing, and any other maintenance
activities that we should take up as part of good security testing project hygiene.

First and foremost is the fact that we want to be able to save the state of our current
session. This feature is only available in the Pro version of the software, so the free
users are left hanging here. Have a look at the following screenshot:

Saving Securely, Backing Up, and Other Maintenance Activities

[110]

The following is what Burp Suite Free users see instead:

A few security geeks get past this clear limitation by running Burp and OWASP ZAP
together. So, ZAP can be used to save and restore the session. All Burp traffic will
be proxied to OWASP ZAP. This technique is well documented in Justin Searle's
Samurai WTF Course Slides at http://sourceforge.net/projects/samurai/
files/SamuraiWTF%20Course/.

The steps to do this are fairly simple and straightforward, as follows:

1. Add an upstream proxy in Burp Suite under the Options | Connections tab.
2. The Proxy host will be 127.0.0.1, and the port needs to match where

OWASP ZAP will listen.
3. Start OWASP ZAP and choose File | Persist Session.
4. Edit the Port value in the Local proxy setting to match the value given to

Burp Suite. You can reach the settings in the menu item by navigating to
Tools | Options.

5. Now all the requests and responses will get saved in OWASP ZAP session.

Saving and restoring a state
Once we start relying on Burp Suite Pro for all our application security testing,
we need to ensure that we are safely able to save and restore all the work that
we are doing.

Now, based on your workload, you might be working on only one application
at a time, or you might have to test different applications for the same or different
clients. Either way, a good idea is to completely separate the state and configuration
for each application.

Saving the state allows you to close the Burp session at the end of the day.

http://sourceforge.net/projects/samurai/files/SamuraiWTF%20Course/
http://sourceforge.net/projects/samurai/files/SamuraiWTF%20Course/

Chapter 10

[111]

We can save the current state of Target, Proxy, Scanner, and Repeater. A great option
is to save the state for only in-scope items. Have a look at the following screenshot:

While we can only save the state of four tools, we can save all our configuration
settings for almost all of the tools:

Apart from saving the configuration settings, we should save all sensitive information,
such as passwords, with a master password. Needless to say, this password should
be strong:

Saving Securely, Backing Up, and Other Maintenance Activities

[112]

There is no way to save the state for Intruder. What you can do is save the attack
configurations with payloads. Have a look at the following screenshot:

The restore wizard works like the save wizard. We can choose what to restore and
what not to restore. Have a look at the following screenshot:

We can choose the tools that should have their configuration restored as well. By
default, the configuration is Pause Spider and Scanner after restore. This makes
sense as we may not be ready to resume a scan just after a restore. Sometimes, we
might be restoring after the project is over, but we need to look at some of results
to answer client questions. In such cases, automatic scanning is a bad idea. Have
a look at the following screenshot:

Automatic backups
We can and should back up our work in Burp. We can set this as an automated action
in Suite Options | Misc under Automatic Backup.

This option has saved my life and sanity multiple times. When I just started using
Burp and was unaware of setting memory options while starting a few times, I had
the software crash on me. This feature is incredibly useful if your work becomes part
of a report that might be seen by others.

Two sensible options, along with enabling automatic backups, are to choose a folder
on a partition with enough free disk space, and ideally backup only in-scope elements.

Chapter 10

[113]

I personally back up the folder to an external drive using my operating system
backup program just in case there is a catastrophic disk failure. Have a look at
the following screenshot:

Scheduled tasks
There is a scheduled task we can run to save the state. Automatic backups are great,
but sometimes, there is more assurance in saving the state at regular intervals to ensure
that we do not lose our precious testing work. Take a look at the following screenshot:

As usual, we should save the state for in-scope items on a drive that has ample free
disk space:

Saving Securely, Backing Up, and Other Maintenance Activities

[114]

Based on the amount of scanning, Spidering, and other activities you are doing,
you might want to figure out a good time interval to repeat. 60 minutes seems like
decent enough time, but you might want to lower or increase this based on your
comfort level. Have a look at the following screenshot:

Logging all activities
Under Suite Options | Misc | Logging, we get the option to log each and every
HTTP request and response for the different tools that are part of Burp Suite.

Logging all requests and responses might be a client requirement or may be that you
prefer keeping complete records of all requests and responses made. Even though
this may not be required always, it is very reassuring to know that, if required, we
can trace all the requests and responses we made using the tool sometime in the
future. Have a look at the following screenshot:

Chapter 10

[115]

Summary
In this chapter, we saw how to go about creating a basic process for data backup and
configuration backup. This is done via saving the state of the application and being
able to restore the same state. This is a Pro-only feature, but some testers figured out
how to chain Burp Suite and OWASP ZAP to get similar functionality with the free
version of Burp. We also looked at automatic backup of data, scheduled saving of
state, and logging functionality for all HTTP requests and responses.

Burp Suite provides enough tools for most of us to create a robust backup and
recovery strategy if we ever need it. Keeping the data of all projects separate and
password-protected is a good way to ensure that no leakage happens and that
mistakes don't cause any irreversible issues for us.

We have almost reached the end. The next chapter will cover all the helpful and
wonderful resources and links available to use and work with Burp Suite.

Resources, References,
and Links

Burp is a great piece of software. If you are still reading, then you think so, too.
The biggest feature of the suite is the fact that it gets out of the way of the user while
testing. While there is a recommended workflow we can use for testing, testers
need not follow it always. Some of the features are discovered over time and with
experience. While this is great, it also means that there is a learning curve.

This book offers you a start, but there are a lot of great resources and references that
you should rely on as well. We will look at the primary references that you should
follow to get more insights and approaches into how web security practitioners
use Burp. We will also list useful and informative resources for application security
as well.

Primary references
The Burp Suite documentation is the primary reference for this book, and it should
be the primary reference for anyone planning to use Burp or even if you have been
using Burp Suite for some time.

Learning about Burp
The primary source for all the Burp-related documentation has to be the documentation
that is shipped with the product and what is present on the website:

• You can always get the latest documentation online at
http://portswigger.net/burp/help/.

• You might prefer having a handy table of contents, found at
http://portswigger.net/burp/help/contents.html.

http://portswigger.net/burp/help/
http://portswigger.net/burp/help/contents.html

Resources, References, and Links

[118]

• All the help available online is also part of Burp Suite. You can access it using
the Help menu:

• The Troubleshooting page is always useful:
http://portswigger.net/burp/help/suite_troubleshooting.html

• The user forums on the website are useful when facing issues where the
regular documentation isn't helpful: http://forum.portswigger.net/

• A few video tutorials from the creators of Burp Suite can be viewed:
http://portswigger.net/burp/tutorials/

• The PortSwigger blog on application security:
http://blog.portswigger.net/

Web application security testing with Burp
Just learning about Burp is part of the job done. To gain understanding and to be
able to apply the learning to accomplish real-world security testing tasks requires
us to learn about web application security testing with Burp, as follows:

• All users of Burp should definitely read this Pentesting with Burp Suite
presentation, http://repo.zenk-security.com/Techniques%20d.
attaques%20%20.%20%20Failles/Pentesting%20With%20Burp%20Suite.
pdf. This presentation is great to help a security tester understand how
to use Burp Suite's capabilities for a web application penetration testing
process. It's a great overview that is worth reading over and over again.

http://portswigger.net/burp/help/suite_troubleshooting.html
http://forum.portswigger.net/
http://portswigger.net/burp/tutorials/
http://blog.portswigger.net/
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Pentesting%20With%20Burp%20Suite.pdf
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Pentesting%20With%20Burp%20Suite.pdf
http://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Pentesting%20With%20Burp%20Suite.pdf

Chapter 11

[119]

• Burp Suite Pro – Real-life tips & tricks is a great presentation on learning
some tips and tricks that are useful while doing web application pentesting,
http://www.agarri.fr/docs/HiP2k13-Burp_Pro_Tips_and_Tricks.pdf.
This presentation tries to cover use cases that we may not encounter every day
while using Burp Suite but covers great tips that we may use at some point.

• Burp Suite Tutorial – Web Application Penetration Testing is a good overview
of the entire software, https://www.pentestgeek.com/2014/07/02/burp-
suite-tutorial-1/.

• The Hacking Web Services with Burp article: https://www.netspi.com/blog/
entryid/57/hacking-web-services-with-burp.

Miscellaneous security testing tutorials
with Burp Suite
Other tutorials can be found at the following links:

• Security Ninja's tutorials on Burp Suite are very comprehensive and easy to
follow, http://www.securityninja.co.uk/?s=Burp+Suite.

• The Automating SQL Injection with Burp, Sqlmap, and GDS Burp API article,
http://milo2012.wordpress.com/2012/06/26/automating-sql-
injection-with-burp-sqlmap-and-gds-burp-api/. sqlmap is the go-to
tool for detecting and exploiting SQL injection. It is free and open source,
and using Burp Suite with sqlmap is a brilliant idea. Find possible SQL
injections with Burp Suite, and then pass them on to sqlmap for further
analysis and attack.

• The Adding Anti-CSRF Support to Burp Suite Intruder blog post, http://blog.
spiderlabs.com/2012/09/adding-anti-csrf-support-to-burp-suite-
intruder.html. This particular blog post explains a real-world scenario,
wherein using the Extender tool, we can supercharge the features of Burp
Suite. The language is simple and the code is easy to understand. Even
though this particular functionality can be implemented using Macros in
Burp Suite, the whole thought process of the author is helpful.

• Data extraction can be done using the Burp Suite Intruder tool, and more
information about this can be found at http://blog.nvisium.com/2014/08/
intro-to-burpsuite-v-extracting.html. A step-by-step tutorial to using
Burp Suite Intruder and stealing data from a vulnerable application using
OWASP is available at Webgoat.net.

http://www.agarri.fr/docs/HiP2k13-Burp_Pro_Tips_and_Tricks.pdf
https://www.pentestgeek.com/2014/07/02/burp-suite-tutorial-1/
https://www.pentestgeek.com/2014/07/02/burp-suite-tutorial-1/
https://www.netspi.com/blog/entryid/57/hacking-web-services-with-burp
https://www.netspi.com/blog/entryid/57/hacking-web-services-with-burp
http://www.securityninja.co.uk/?s=Burp+Suite
http://milo2012.wordpress.com/2012/06/26/automating-sql-injection-with-burp-sqlmap-and-gds-burp-api/
http://milo2012.wordpress.com/2012/06/26/automating-sql-injection-with-burp-sqlmap-and-gds-burp-api/
http://blog.spiderlabs.com/2012/09/adding-anti-csrf-support-to-burp-suite-intruder.html
http://blog.spiderlabs.com/2012/09/adding-anti-csrf-support-to-burp-suite-intruder.html
http://blog.spiderlabs.com/2012/09/adding-anti-csrf-support-to-burp-suite-intruder.html
http://blog.nvisium.com/2014/08/intro-to-burpsuite-v-extracting.html
http://blog.nvisium.com/2014/08/intro-to-burpsuite-v-extracting.html

Resources, References, and Links

[120]

• The Advanced XSS detection with BurpSuite and PhantomJS blog post,
http://blog.nvisium.com/2014/01/accurate-xss-detection-with-
burpsuite.html. PhantomJS is a headless JavaScript environment. This
post explains how to use PhantomJS to execute and test XSS integrated
with Burp Suite.

• Browser fuzzing with Burp and Radamsa: https://github.com/ikkisoft/
bradamsa.

• We can use FuzzDB with Burp Suite based on the information found at
http://www.securityninja.co.uk/application-security/improve-
your-security-testing-with-the-fuzzdb/. Combining the awesome
FuzzDB test cases with Burp Suite, FuzzDB contains attack patterns,
predictable resource locations, web shells, and more. All the tools that you
can use with Burp Suite Intruder.

• Taking Dirbuster Output into Burp Suite: http://www.securityaegis.com/
taking-dirbuster-output-into-burp-suite/.

• SQL injection with Burp Suite is an older tutorial but full of good information
at http://kaoticcreations.blogspot.in/2011/11/burp-suite-part-i-
intro-via-sql.html.

• Automating Burp Security Scanning with BDD-Security:
http://teammentordevelopment.wordpress.com/2012/05/19/
automated-burp-security-scanning-with-bdd-security/.

• Webpwnized's video tutorials on Burp Suite: https://www.youtube.com/
results?search_query=burp+webpwnized.

• Pentesting Adobe Flex Applications: http://blog.gdssecurity.com/
storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf.

• Pen-testing HSTS (Http Strict Security Transport) Sites with Burp:
http://superconfigure.wordpress.com/2013/01/29/pen-testing-
hsts-http-strict-transport-security-sites-with-burp/.

Pentesting thick clients
Pentesting thick clients can be done in the following two ways:

• Pentesting Java Thick Applications with Burp JDSer: https://www.netspi.
com/blog/entryid/67/pentesting-java-thick-applications-with-
burp-jdser

• "Reversing" Non-Proxy Aware HTTPS Thick Clients w/ Burp: http://blog.
spiderlabs.com/2014/02/reversing-non-proxy-aware-https-thick-
clients-w-burp.html

http://blog.nvisium.com/2014/01/accurate-xss-detection-with-burpsuite.html
http://blog.nvisium.com/2014/01/accurate-xss-detection-with-burpsuite.html
https://github.com/ikkisoft/bradamsa
https://github.com/ikkisoft/bradamsa
http://www.securityninja.co.uk/application-security/improve-your-security-testing-with-the-fuzzdb/
http://www.securityninja.co.uk/application-security/improve-your-security-testing-with-the-fuzzdb/
http://www.securityaegis.com/taking-dirbuster-output-into-burp-suite/
http://www.securityaegis.com/taking-dirbuster-output-into-burp-suite/
http://kaoticcreations.blogspot.in/2011/11/burp-suite-part-i-intro-via-sql.html
http://kaoticcreations.blogspot.in/2011/11/burp-suite-part-i-intro-via-sql.html
http://teammentordevelopment.wordpress.com/2012/05/19/automated-burp-security-scanning-with-bdd-security/
http://teammentordevelopment.wordpress.com/2012/05/19/automated-burp-security-scanning-with-bdd-security/
https://www.youtube.com/results?search_query=burp+webpwnized
https://www.youtube.com/results?search_query=burp+webpwnized
http://blog.gdssecurity.com/storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf
http://blog.gdssecurity.com/storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf
http://superconfigure.wordpress.com/2013/01/29/pen-testing-hsts-http-strict-transport-security-sites-with-burp/
http://superconfigure.wordpress.com/2013/01/29/pen-testing-hsts-http-strict-transport-security-sites-with-burp/
https://www.netspi.com/blog/entryid/67/pentesting-java-thick-applications-with-burp-jdser
https://www.netspi.com/blog/entryid/67/pentesting-java-thick-applications-with-burp-jdser
https://www.netspi.com/blog/entryid/67/pentesting-java-thick-applications-with-burp-jdser
http://blog.spiderlabs.com/2014/02/reversing-non-proxy-aware-https-thick-clients-w-burp.html
http://blog.spiderlabs.com/2014/02/reversing-non-proxy-aware-https-thick-clients-w-burp.html
http://blog.spiderlabs.com/2014/02/reversing-non-proxy-aware-https-thick-clients-w-burp.html

Chapter 11

[121]

Testing mobile applications for web
security using Burp Suite
Some useful resources to test mobile applications for web security using Burp Suite
can be found at the following locations:

• How To Set Up An iOS Pen Testing Environment: http://eightbit.io/
post/64319534191/how-to-set-up-an-ios-pen-testing-environment

• Importing Burp certificate for Android pentesting without root:
http://backtosecurity.com/importing-burp-certificate-for-
android-pentesting-without-root/

• Windows 8 Mobile Burp Proxy Setup: http://pentest-forum.com/index.
php?topic=688.0

• Pentesting Web Service with anti CSRF token using BurpPro: http://www.
notsosecure.com/blog/2014/07/02/pentesting-web-service-with-
csrf-token-with-burp-pro/

• iOS Assessments with Burp + iFunBox + SQLite: http://blog.nvisium.
com/2014/08/ios-assessments-with-burp-ifunbox-sqlite.html

Extensions references
Here are some references with which you can explore the world of extensions:

• Setting up the environment for Burp Extensions: Before we can write
extensions, we need to ensure that the environment is set up. This is very
important if you want to avoid hours and hours of frustration with yourself.
More information can be found at http://www.burpextensions.com/
tutorials/setting-up-the-pythonjython-environment-for-burp-
suite/.

• Writing your first Burp Extension: A gentle introduction to writing your
first extension—use the code provided here as your boiler plate to test
whether your environment has been set up properly. If the extension gets
added without any errors, then you are good to go. More information can
be found at http://blog.portswigger.net/2012/12/writing-your-
first-burp-extension.html.

http://eightbit.io/post/64319534191/how-to-set-up-an-ios-pen-testing-environment
http://eightbit.io/post/64319534191/how-to-set-up-an-ios-pen-testing-environment
http://backtosecurity.com/importing-burp-certificate-for-android-pentesting-without-root/
http://backtosecurity.com/importing-burp-certificate-for-android-pentesting-without-root/
http://pentest-forum.com/index.php?topic=688.0
http://pentest-forum.com/index.php?topic=688.0
http://www.notsosecure.com/blog/2014/07/02/pentesting-web-service-with-csrf-token-with-burp-pro/
http://www.notsosecure.com/blog/2014/07/02/pentesting-web-service-with-csrf-token-with-burp-pro/
http://www.notsosecure.com/blog/2014/07/02/pentesting-web-service-with-csrf-token-with-burp-pro/
http://blog.nvisium.com/2014/08/ios-assessments-with-burp-ifunbox-sqlite.html
http://blog.nvisium.com/2014/08/ios-assessments-with-burp-ifunbox-sqlite.html
http://www.burpextensions.com/tutorials/setting-up-the-pythonjython-environment-for-burp-suite/
http://www.burpextensions.com/tutorials/setting-up-the-pythonjython-environment-for-burp-suite/
http://www.burpextensions.com/tutorials/setting-up-the-pythonjython-environment-for-burp-suite/
http://blog.portswigger.net/2012/12/writing-your-first-burp-extension.html
http://blog.portswigger.net/2012/12/writing-your-first-burp-extension.html

Resources, References, and Links

[122]

• Write a simple Burp Extension in Python: Apart from the code given in
Chapter 9, Using Burp Extensions and Writing Your Own, this has to be the
place where you learn how to write a Burp Extension in Python. The code is
simple, the post explains all that is required, and the extension will do useful
things as soon as it is added. More information can be found at http://www.
burpextensions.com/tutorials/tutorial-python-extension-post-1/
and http://www.burpextensions.com/downloads/pythontutorial-1.txt.

• Burp's official API documentation: Once you have a working extension with
help from the mentioned resources, you will be hungry for more. Now is the
time to dive into the Java documentation and start reading it to make the next
cool extension. More information can be found at http://portswigger.
net/burp/extender/api/index.html.

• Burp Extensions tutorials: Now that you have read the official documentation,
you can make full use of these tutorials that delve deeper into extensions. More
information about Burp Extensions tutorials can be found at http://www.
burpextensions.com/category/tutorials/.

• Extending Burp Proxy with Extensions: http://blog.
opensecurityresearch.com/2014/03/extending-burp.html.

• Burp Extensions in Burp App Store: https://pro.portswigger.net/
bappstore/.

• Burp Crawljax Selenium JUnit integration: https://github.com/
malerisch/burp-csj.

• Writing and debugging Burp Suite Extensions in Python: http://sethsec.
blogspot.in/2014/01/writing-and-debugging-burpsuite.html.

• Searching GitHub for Burp Extensions: https://github.com/search?utf
8=%E2%9C%93&q=burp+extension.

• Writing Burp Extensions in any language you want: https://github.com/
liftsecurity/burpbuddy.

Books
Books that should be part of every web application security tester's library, especially
for using Burp Suite:

• If you are a web application penetration tester, you should get the Web
Application Hacker's Handbook, Dafydd Stuttard and Marcus Pinto, Wiley.
This is the de facto book on web application security.

• Get the Instant Burp Suite Starter, Luca Carettoni, Packt Publishing, to get
started quickly on using Burp Suite.

http://www.burpextensions.com/tutorials/tutorial-python-extension-post-1/
http://www.burpextensions.com/tutorials/tutorial-python-extension-post-1/
http://www.burpextensions.com/downloads/pythontutorial-1.txt
http://portswigger.net/burp/extender/api/index.html
http://portswigger.net/burp/extender/api/index.html
http://www.burpextensions.com/category/tutorials/
http://www.burpextensions.com/category/tutorials/
http://blog.opensecurityresearch.com/2014/03/extending-burp.html
http://blog.opensecurityresearch.com/2014/03/extending-burp.html
https://pro.portswigger.net/bappstore/
https://pro.portswigger.net/bappstore/
https://github.com/malerisch/burp-csj
https://github.com/malerisch/burp-csj
http://sethsec.blogspot.in/2014/01/writing-and-debugging-burpsuite.html
http://sethsec.blogspot.in/2014/01/writing-and-debugging-burpsuite.html
https://github.com/search?utf8=%E2%9C%93&q=burp+extension
https://github.com/search?utf8=%E2%9C%93&q=burp+extension
https://github.com/liftsecurity/burpbuddy
https://github.com/liftsecurity/burpbuddy

Chapter 11

[123]

• The Tangled Web: A Guide to Securing Modern Web Applications, Michal Zalewski,
No Starch Press. He is the author of the extremely informative Browser Security
Handbook as well: https://code.google.com/p/browsersec/wiki/Main.

Summary
After reading this chapter, you will be really busy. Now, you can fully explore
Burp Suite with all the help available to you, including what this book has to offer.
You will get a pretty good idea how application testers the world over use Burp
Suite in myriad of inventive ways to test applications as attackers. If you are active
on Twitter, following the accounts mentioned previously might offer some more
references, links, and documentation as well.

The references and links are provided to give you a good overview of how Burp is
flexible enough to be extended and utilized in various interesting ways. If you find
some great references, do let me know at @makash.

https://code.google.com/p/browsersec/wiki/Main

Index
A
actions, on intercepted requests 46, 47
activities

logging 114
Alerts 76
Android

Burp certificate, installing in 35
application security, PortSwigger blog

URL 118
attack types

Battering Ram 55
Cluster Bomb 55
Pitchfork 55
Sniper 55

automatic backups 112, 113

B
BApp files

used, for installing Burp Extensions 100
BApp Store

Burp Extensions, loading from 99
URL 97

browser configuration
Exclusive Firefox profile 19
Google Chrome 15
Microsoft Internet Explorer 14, 15
Mozilla Firefox 16, 17

browsers
configuring, to proxy Burp Suite 14

Burp
official API documentation 122
proxies, supported 25
references, for documentation 117, 118
setting up, to be proxy server for other

devices 27, 28

starting, from command line 8
URL, for handy table of contents 117
URL, for Troubleshooting page 118
URL, for user forums 118

burpbuddy
about 104
URL 104

Burp certificate
importing, in Google Chrome 34, 35
importing, in Microsoft IE 34, 35
importing, in Mozilla Firefox 32-34
installing, in Android 35
installing, in iOS 35

Burp Crawljax Selenium JUnit integration
URL 122

Burp Extensions
CO2 107
environment, setting up for 121
Heartbleed 107
installing 99-101
installing, BApp files used 100
loading 101
loading, from BApp Store 99
Logger++ 107
managing 101-103
memory issues 103
Python runtime, setting up for 98
references 121, 122
Reissue Request scripter 107
Ruby environment, setting up for 98
URL, for blogs 104-106
URL, for tutorials 106
writing 104, 121
writing, in Python 104-106, 122

Burp Extensions, GitHub
URL 101

[126]

Burp Extensions, Burp App Store
URL 122

Burp Proxy, extending with Extensions
URL 122

Burp Suite
about 7
free version, versus pro version 7
memory size, specifying 9
Scope 23
tools 23
URL 7
URL, for video tutorials 118

C
Cascading Style Sheet (CSS) 50
CO2 107
command line

Burp, starting from 8
Comparer 74-76
Content Discovery 91-93
crawling 57
cross-site request forgery 95
CSRF proof of concept (PoC)

Generator 95, 96

D
Decoder 72-74

E
engagement tools

about 87
using 87

environment
setting up, for Burp Extensions 121

EventListeners extension 106
exclusive pattern, Scope

versus inclusive pattern 24

F
file

targets list, loading from 23
filtering

about 78
illustration 81

options 79, 80
FoxyProxy

about 17
setting up 17, 18

free version, Burp Suite
versus pro version 7

G
garbage collector (GC) 9
GitHub 101
GitHub, searching for Burp Extensions

URL 122
Googlebot 65
Google Chrome

about 15
Burp certificate, importing 34, 35

Grep 56, 84
Grep - Extract

about 85
interface 85

Grep - Match 56, 84, 85

H
Heartbleed

about 107
URL 107

History Table heading
URL 49

Hypertext Transfer Protocol (HTTP) 13

I
inclusive pattern, Scope

versus exclusive pattern 24
Intruder

about 50, 85
request, sending to 51-54
rules, for performing Payload

Processing 54
using 51

Invisible Proxy 36-38
iOS

Burp certificate, installing 35
IPv4

usage, allowing 10

[127]

J
Java 1.6+

URL 8
Java Runtime Environment (JRE) 8
Java Virtual Machine (JVM)

about 9
working with 10

jot 71
JRuby

URL, for downloading 98
Jython standalone JAR file

URL, for downloading stable version 98

L
Logger++ 107

M
Manual Testing Simulator 87
Match and Replace 82, 83
matching

about 81, 82
operations 81
rules 83

memory issues, Burp Extensions 103
memory size, Burp Suite

maximum memory, specifying 9
specifying 9

Message Analysis tab
about 45
AMF subtab 46
display settings 46
Headers subtab 45
Hex subtab 45
HTML subtab 45
Params subtab 45
Raw subtab 45
Render subtab 46
View States subtab 46
XML subtab 46

Microsoft Internet Explorer
about 14, 15
Burp certificate, importing 34, 35

miscellaneous security testing tutorials,

Burp Suite
references 119, 120

mobile applications, for web security
resources 121

Mozilla Firefox
about 16, 17
Burp certificate, importing 32-34
Exclusive Firefox profile 19
fine-grained proxy configuration 17
Plug-n-Hack extension 18, 19
URL, for blog 18

Mutillidae 67

N
Nikto 91

O
Oracle Java 1.6+ 8
out-of-scope requests

dropping 24
OWASP DirBuster 91

P
passive scan 59
payload types

Character Frobber 57
ECB Block Shuffler 57
Extension Generated 57
Null Payloads 57

primary references 117
pro version, Burp Suite

versus free version 7
proxies

supported, by Burp 25
Proxy

using 44
Proxy history tab

using 49, 50
PuTTY 26
Python

Burp Extension, writing in 104-106, 122
Python runtime

setting up, for Burp Extensions 98

[128]

R
rational expression 78
regular expression

about 78
online resources 78
URL 78

Reissue Request scripter 107
Repeater

about 60
user interface 60, 61
using 62

response modification 48
responses

intercepting 48
Ruby environment

setting up, for Burp Extensions 98

S
sample analysis, Sequencer 71
Samurai WTF Course Slides

URL 110
Scanner

about 57-59
scanning optimization 59
scanning requests 59
URL 59

scan queues 60
scheduled tasks 113, 114
Scope

and Burp Suite tools 23
inclusive pattern, versus exclusive

pattern 24
out-of-scope requests, dropping 24
targets adding, ways 22

Search 88, 89
search form 88
Secure Shell Server (SSH) 26
Secure Socket Layer (SSL) 31
Sequencer

about 67
sample analysis 71
test for randomness, of tokens 68-70
token analysis 70, 71
URL, for tests 71

SOCKS proxies
dealing with 25
SSH tunneling, using as 26, 27
working with 25

spidering
overview 63-67

sqlmap 119
SSH tunneling

using, as SOCK proxy 26, 27
SSL pass-through 35
state

restoring 110-112
saving 110-112

T
Target Analyzer tool 90, 91
targets

adding to Scope, ways 22
list, loading from file 23

Task Scheduler 93
thick clients, pentesting

references 120
token analysis, Sequencer 70, 71
Tor browser bundle

URL 26

U
upstream proxies

dealing with 25

W
web application security testing, Burp

about 118
references 118, 119

web crawling. See spidering

Thank you for buying
Burp Suite Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Building Virtual Pentesting Labs
for Advanced Penetration Testing
ISBN: 978-1-78328-477-1 Paperback: 430 pages

Build intricate virtual architecture to practice any
penetration testing technique virtually

1. Build and enhance your existing pentesting
methods and skills.

2. Get a solid methodology and approach
to testing.

3. Step-by-step tutorials helping you build
complex virtual architecture.

Learning Nessus for
Penetration Testing
ISBN: 978-1-78355-099-9 Paperback: 116 pages

Master how to perform IT infrastructure security
vulnerability assessments using Nessus with tips
and insights from real-world challenges faced
during vulnerability assessment

1. Understand the basics of vulnerability
assessment and penetration testing as
well as the different types of testing.

2. Successfully install Nessus and configure
scanning options.

3. Learn useful tips based on real-world issues
faced during scanning.

Please check www.PacktPub.com for information on our titles

Penetration Testing with BackBox
ISBN: 978-1-78328-297-5 Paperback: 130 pages

An introductory guide to performing crucial
penetration testing operations using BackBox

1. Experience the real world of penetration
testing with BackBox Linux using live,
practical examples.

2. Gain an insight into auditing and
penetration testing processes by
reading though live sessions.

3. Learn how to carry out your own
testing using the latest techniques
and methodologies.

Metasploit Penetration Testing
Cookbook
Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1. Special focus on the latest operating systems,
exploits, and penetration testing techniques
for wireless, VOIP, and cloud.

2. This book covers a detailed analysis of
third-party tools based on the Metasploit
framework to enhance the penetration
testing experience.

3. Detailed penetration testing techniques
for different specializations such as wireless
networks, VOIP systems, along with a brief
introduction to penetration testing in the cloud.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Burp
	Starting Burp from the command line
	Specifying memory size for Burp
	Specifying the maximum memory Burp is allowed to use

	Ensuring that IPv4 is allowed
	Working with other JVMs
	Summary

	Chapter 2: Configuring Browsers to Proxy through Burp
	Configuring browsers to proxy through Burp Suite
	Microsoft Internet Explorer
	Google Chrome
	Mozilla Firefox
	Fine-grained proxy configuration
	Mozilla Plug-n-Hack extension

	Exclusive Firefox profile

	Summary

	Chapter 3: Setting the Scope and Dealing with Upstream Proxies
	Multiple ways to add targets to the scope
	Loading a list of targets from a file

	Scope and Burp Suite tools
	Scope inclusion versus exclusion
	Dropping out-of-scope requests
	Dealing with upstream proxies and SOCKS proxies
	Types of proxies supported by Burp
	Working with SOCKS proxies
	Using SSH tunneling as a SOCKS proxy

	Setting up Burp to be a proxy server for
other devices

	Summary

	Chapter 4: SSL and Other Advanced Settings
	Importing the Burp certificate in
Mozilla Firefox
	Importing the Burp certificate in Microsoft IE and Google Chrome
	Installing the Burp certificate in iOS
or Android
	SSL pass-through
	Invisible Proxy
	Summary

	Chapter 5: Using Burp Tools As a Power User – Part 1
	Target
	Site map compare

	Proxy
	The Message Analysis tab
	Actions on the intercepted requests
	Response interception and modification
	Using the Proxy history tab

	Intruder
	Scanner
	Scanning optimization and requests
	When to scan

	Repeater
	Summary

	Chapter 6: Using Burp Tools As a Power User – Part 2
	Spidering
	Sequencer
	Analysis of the tokens
	Sample analysis

	Decoder
	Comparer
	Alerts
	Summary

	Chapter 7: Searching, Extracting, Pattern Matching, and More
	Filtering
	Illustration

	Matching
	Grep - Match and Grep - Extract
	Summary

	Chapter 8: Using Engagement Tools and Other Utilities
	Search
	Target Analyzer
	Content Discovery
	Task Scheduler
	CSRF proof of concept Generator
	Summary

	Chapter 9: Using Burp Extensions and Writing Your Own
	Setting up the Python runtime for Burp Extensions
	Setting up the Ruby environment for Burp Extensions
	Loading and installing a Burp Extension from the Burp App Store
	Using BApp files

	Loading and installing a Burp Extension manually
	Managing Burp Extensions
	Memory issues with Burp Extensions

	Writing our own Burp Extensions
	A simple Burp Extension in Python

	Noteworthy Burp Extensions
	Summary

	Chapter 10: Saving Securely, Backing Up, and Other Maintenance Activities
	Saving and restoring a state
	Automatic backups
	Scheduled tasks
	Logging all activities
	Summary

	Chapter 11: Resources, References, and Links
	Primary references
	Learning about Burp

	Web application security testing with Burp
	Miscellaneous security testing tutorials with Burp Suite
	Pentesting thick clients
	Testing mobile applications for web security using Burp Suite
	Extensions references
	Books
	Summary

	Index

